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Abstract— In this paper, we present a routing algorithm for a class 

of dynamic networks called the Delay Tolerant Networks (DTNs). 

The proposed algorithm takes into account the quintessential DTN 

characteristic namely, intermittent link connectivity. We modify 

the breadth first search (BFS) algorithm to take into account link 

state changes and find the quickest route between source and 

destination nodes. We adopt a message drop policy at intermediate 

nodes to incorporate storage constraint. We also introduce the idea 

of time-varying storage domains where all nodes connected for a 

length of time act as a single storage unit by sharing the 

aggregated storage capacity of the nodes. We evaluate the routing 

algorithm with and without storage domain in an extensive 

simulation. We analyze the performance using metrics such as 

delivery ratio, incomplete transfers with no routes and dropped 

messages. The DTN topology dynamics are analyzed by varying: 

number of nodes generating traffic, link probability, link 

availability through combinations of downtime/uptime values, 

storage per node, message size, and traffic. The delay performance 

of the proposed algorithms is conceptually the same as 

flooding-based algorithms but without the penalty of multiple 

copies. More significantly, we show that the Quickest Storage 

Domain (Quickest SD) algorithm distributes the storage demand 

across many nodes in the network topology, enabling balanced 

load and higher network utilization. In fact, we show that for the 

same level of performance, we can actually cut the storage 

requirement in half using the Quickest SD algorithm.  

 

Index Terms—Delay Tolerant Network (DTN), Routing 

algorithm, Quickest delivery algorithm, and Storage domain 

algorithm  

I. INTRODUCTION 

HE topic of this paper is efficient data delivery in 

dynamic network topologies with intermittent links. 

Specifically, we will focus on the design and development of 

routing algorithms for a class of networks that is distinctly 

different from the traditional TCP/IP-based networks. The class 

of dynamic networks under consideration is also referred to as 

delay tolerant or disruption tolerant networks (DTNs). As 

network technologies have evolved over the years, many 

non-traditional networks have been developed for instance, 

wireless, sensor, and mobile ad hoc networks.  Reliance on 

infrastructure-based networking seems to be slowly eroding as 

we discover potential uses for these self-configuring networks. 

Applications for these networks range from military combat 

situations to civilian applications of vehicle-based mobile data 

centers; disaster relief situations where fixed infrastructure may 

have been destroyed; a commuter bus as it moves through rural 

areas provides connectivity by acting as a store and forward 

switch. Some industries are anticipating advanced 

vehicle-to-vehicle and vehicle-to-enterprise capabilities to set 

up vehicle-based mobile datacenters 

[www.erpdaily.com/news/2005], particularly useful for law 

enforcement surveillance vehicles.  

DTNs are an emerging class of networks that define a new 

approach and a framework to provide networked services in 

non-TCP/IP networks, sometimes also referred to as 

“challenged” networks. Some unique challenges arise as we 

move away from the underlying assumptions for traditional 

IP-based networks [1].  To operate TCP protocol, there must be 

an end-to-end path between the source and the destination and 

the round trip delays must be small enough that there can be a 

“conversation” about the data transfer between the source and 

the destination. Neither of these assumptions is valid in a DTN 

-- intermittent connectivity makes it difficult to guarantee an 

end-to-end path for an ongoing data transfer and long round trip 

delays make it impossible to provide timely acknowledgements 

and retransmissions. The proposed DTN architecture offers a 

set of choices to counter these challenges: application-specific 

data units, known as bundles versus stream of packets; 

hop-by-hop delivery with optional in-network storage versus 

end-to-end routing. Given these new operational semantics, 

efficient data delivery becomes an important design issue with 

the objective of maximizing delivery, minimizing buffer/storage 

usage, and minimizing overhead due to routing protocols. 

In this research, our objective is to design and develop 

efficient routing algorithms, protocols and other support 

services that take into consideration the absence of an 

end-to-end path and long network delays. For this paper, we 

focus on developing routing algorithms.  Assuming a store and 

forward type of data transfers, our main objective in designing 

routing algorithms is to minimize the delay and maximize 

Routing in Delay Tolerant Networks Using Storage 

Domains 

Padma Mundur, Sookyoung Lee, and Matthew Seligman 

T 

Padma Mundur is with the Institute for Advanced Computer Studies 

(UMIACS), University of Maryland, College Park, MD 20742 (e-mail: 

pmundur@umiacs.umd.edu).   

Sookyoung Lee is with the Department of Computer Science and Electrical 

Engineering, University of Maryland Baltimore County, MD 21250 (e-mail: 

slee22@cs.umbc.edu). 

Matthew Seligman is with the Laboratory for Telecommunication Sciences 

(LTS), 8080 Greenmead Road College Park, MD 20742 (e-mail:  

seligman@ltsnet.net). 

 



 

 2 

reliability through higher delivery ratio subject to storage 

constraints on intermediate nodes connected by intermittent 

links. This simple formulation of the routing problem raises 

some important design considerations: (1) nature of 

disconnections – predictable or random; (2) links activated by 

mobile nodes with opportunistic intent for data delivery; (3) 

policies that govern message rejections and conservation of 

storage for more important messages – priorities and class of 

service; (4) congestion control – unlike IP-based network, 

congestion in DTNs manifests as lack of available storage on 

intermediate nodes due to high usage on a particular route.  

In this paper, we present a routing algorithm that assumes 

predictable link connectivity and storage constraints on 

intermediate nodes. We modify the Breadth First Search (BFS) 

algorithm to take into account link state changes and find the 

quickest route possible between a source and a destination. 

Messages will be dropped if storage is unavailable on 

intermediate nodes. We also introduce the idea of storage 

domain where all connected nodes act as a single storage unit by 

sharing the aggregated storage capacity of the nodes in the 

domain. The storage domains are time-varying as links go up 

and down and constituent nodes in the domain change. We 

evaluate the routing algorithm with and without storage 

domains in an extensive simulation. The most significant 

simulation result as discussed later shows that routing with 

storage domain results in better performance even while cutting 

the storage requirement in half.  

The paper is organized as follows: in Section II, we present 

related work. We discuss the proposed routing framework and 

the algorithm in Section III and IV. Detailed performance 

evaluation and simulation results are presented in Sections V 

and VI with a conclusion in Section VII. We present the pseudo- 

code for the proposed storage domain algorithm and an example 

in the Appendix. 

II. RELATED WORK 

DTNs are overlays residing above heterogeneous networks 

providing network services and interoperability (For 

architectural details see [2] and [1]).  

Authors in [3], [4] propose several routing algorithms 

specifically for delay tolerant networks that consider 

intermittent connectivity. They modify Dijkstra’s shortest path 

algorithm by including link weights that take into account the 

waiting time at nodes because of disconnected links. Different 

variations of this modified algorithm based on the knowledge of 

the dynamic network topology are presented. However, none of 

these variations consider the all important storage constraints on 

DTN nodes. While they propose an LP formulation that takes 

into account the storage constraints for the store and forward 

DTN network, the algorithm itself is heavyweight and 

impractical. In comparison, our proposed algorithm considers  

storage constraint within the routing framework as does the LP 

formulation but has the distinct advantage of being more 

practical.  

In addition to the algorithms in [3], [4], other researchers 

have developed probabilistic models for describing intermittent 

link behavior using node mobility. The most well known 

algorithm using that approach is PROPHET from [5] and 

variations of it with storage constraints in [6]. The basic idea 

behind this algorithm is to represent link connectivity behavior 

using a probabilistic metric called delivery predictability at 

every node in the network topology to each known destination. 

For instance, nodes that frequently encounter each other will 

result in high delivery predictability.  In [6], the authors 

combine probabilistic routing from their previous work with 

various buffer management policies to analyze performance in 

terms of message delivery, end-to-end delay and overhead. In 

[7] authors derive a directional link cost for each node using 

connectivity history which takes into consideration the number 

of transitions from disconnected state to connected state 

between pairs of nodes, the duration of disconnected state and 

so on. We can develop a similar technique in our algorithm to 

predict link state changes using historical connectivity logs. We 

will address that in our future work. While the newer version of 

PROPHET in [6] considers buffer management policies, our 

proposed storage domain algorithm goes further by 

incorporating storage as a constraint in routing. Transfers 

without a complete route with storage to the destination are not 

initiated at all. The in-network storage is utilized better for that 

reason.  

For mobility based opportunistic link connectivity, other 

researchers have followed two distinct approaches. The first 

approach is to model the intrinsic mobility of the nodes using 

such mobility models as Random Way-Point (RWP) and the 

second approach uses controlled mobility inspired by the 

robotic applications. While the first approach has fallen out of 

favor to some extent in the recent past [8], the controlled 

mobility approach using special mobile nodes ferries is gaining 

attention as a more realistic approach for mobility to enable link 

connectivity among stationary nodes in DTNs.  

Many of the mobility-based solutions are inspired by the 

routing problem in sparse ad hoc networks where network 

partitions similar to DTN can occur. Most of the early 

algorithms however, rely entirely on node mobility to move data 

in the event of network partitions such as epidemic routing in 

[9], or a refinement of the same algorithm in [10]. The authors in 

[11] propose a routing scheme called Spray and Wait that aims 

to reduce the overhead of flooding by spraying a limited number 

of copies into the network and waiting to see if that will suffice 

to reach the destination node. Li and Rus [12] propose an 

approach where mobile hosts actively modify their trajectories 

to deliver messages. Musolesi and others in [13] consider 

asynchronous communication between nodes in separate clouds 

by computing delivery probabilities for each host and using the 

host with the highest delivery probability to actually deliver the 

data across the cloud. In the same spirit, [14] present five 

strategies for opportunistic forwarding of messages when two 

mobile routers are within transmission range but where mobility 

of vehicles is not controlled.  Many of these algorithms are 

unsuitable for DTNs with stationary nodes.  
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Zhao and others [15], [16] employ special mobile nodes 

called message ferries in the deployment area that move in a 

predictable manner among the stationary nodes to help collect 

and deliver the data. They address the challenging issue of ferry 

route design under single or multiple ferries, single or multiple 

routes, different degrees of interaction between the ferries and 

nodes. They present algorithms to calculate ferry routes which 

minimize delivery delay for fixed traffic demand. Using the 

message ferrying scheme, Chuah and Yang consider buffer 

management issues to provide differentiated services in [17], 

[18] so that urgent messages with a guaranteed level of service 

receive better performance than the regular messages.  

In this paper, we abstract the cause of link connection state 

change and simply consider link up and down times in our 

routing algorithm. This type of predictable link state knowledge 

could result from implementing node mobility within the 

network topology as in message ferrying scheme where the ferry 

routes are predetermined. Most researchers in this area have 

been forced to work under either of the two extreme positions – 

knowing everything about the network topology dynamics or 

knowing nothing about it. We have assumed that we can 

assemble topology knowledge and that we have a mechanism to 

know node and link state changes, for instance, by using an 

out-of-band, low bandwidth communication mechanism that is 

different from the data networks needed for a more robust data 

transfer. Dissemination of control information in a DTN to 

promote network topology awareness is still an open research 

area and is not addressed in this paper.  

Consideration of storage limitation in DTNs is another 

important design factor we can not ignore and for that reason, 

data forwarding mechanisms such as broadcast and flooding  are 

not appropriate. In the recent past, most researchers model 

storage as a limited resource in the DTN context -- [6], [16], 

[17], [18] among them. Many of their solutions are however, 

limited to message drops due to buffer overflow while 

differentiating and enforcing message priorities.  In this paper, 

we explicitly consider storage constraint as part of the routing 

problem.  In that respect, our paper is similar to some of the 

LP-based formulations but with one distinct advantage: our 

algorithm is more practical. In the proposed storage domain 

routing algorithm, the quickest path with available storage is 

chosen for each transfer. The proposed algorithm therefore, 

provides minimum delay, similar to flooding-based approaches, 

without duplication.  The routing solution using storage 

domains proposed here can easily be adopted using the 

architectural guidelines from DTNRG such as custody transfer 

to forward data reliably both within a storage domain and 

between storage domains.  With the proposed algorithm we are 

pre-computing the routes with storage for each transfer, and 

therefore, we can easily implement custody transfer. In a related 

paper in [19], Seligman et al. implement custody transfer 

policies at individual nodes to mitigate storage limitation in 

DTN. This is appropriate and necessary when complete network 

topology knowledge is not known and each node has to decide 

to take custody based only on information on its neighbors. 

III. ROUTING FRAMEWORK 

Our initial approach for developing a framework for routing 

in DTN is based on algorithm design and graph theory. We 

propose to formulate the routing problem using the network 

topology graph as input with nodes (vertices) having limited 

buffer, and links (edges) with contact establishment information 

(when, where, for how long). What makes this formulation 

different and challenging is the time-varying nature of the 

underlying topology and the storage constraints on intermediate 

nodes. Even as we acknowledge that the data being transported 

is not real-time, the primary emphasis will be on quick delivery 

– minimizing delay is still an important goal.  

 

Network Connectivity In a DTN environment, 

disconnections can be long lasting and not generally related to 

network faults as in traditional networks. The following types of 

connectivity are possible in a DTN: Predictable or Scheduled, 

Random or Probabilistic, and Opportunistic. Probabilistic or 

opportunistic connectivity can be enhanced by node mobility as 

seen from most of the papers on mobile ad hoc networks 

mentioned before. 

Congestion in DTN will take the form of unavailable storage 

on DTN nodes for message transfers. Techniques to avoid and 

control congestion manifest in the routing problem formulation 

as storage constraints.  

A. Routing using Modified Breadth-First Search (mBFS) 

In this section, we present work that forms the basis for the 

proposed algorithmic approach which we introduced in [20]. 

We present a modification to the breadth-first search algorithm 

to find the quickest route between a given source and any 

destination node in a delay-tolerant network. This is done 

without flooding the network – at any one time we maintain only 

one copy of the message in the network.  The delay performance 

of the proposed algorithm and its improved storage domain 

version is conceptually the same as flooding-based algorithms.  

Main assumptions in developing this routing algorithm are: 1.  

that the link state changes are predictable; 2. that the links are 

symmetric and, when up, have sufficient bandwidth to carry the 

messages needed; 3. that intermediate nodes have persistent 

storage; 4. that network and transmission delays are negligible 

compared to the delays due to parts of the network being 

unreachable. Our algorithm determines the path in its entirety at 

the time of message origination.  

The assumption of predictable link state changes is justified 

and similar to the situation presented in other works in this area. 

In our model, we do not use an agent to bring about link state 

changes but leave it as implementation dependent. For instance, 

Zhao and others in [15] employ special mobile nodes called 

message ferries in the deployment area that move in a 

predictable manner among the nodes to help collect and deliver 

the data. Their main idea is to make the node movement 

non-random so that data delivery is planned and more efficient. 

Given a pre-determined ferry route the nodes can either be static 

or pro-actively move closer to a ferry. With this type of set up, 

an event list for link state changes of the type we use in our 
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formulation can be easily generated.  Abstracting the link 

connectivity behavior without using node mobility makes our 

algorithm applicable to more diverse environments. 

Algorithm Description   We adapt the breadth-first search 

(BFS) algorithm for graphs to find the “quickest” route from a 

single source node to all other nodes in the graph. The 

pseudo-code for the proposed algorithm is shown in Figure 1. 

We assume an undirected graph G = (V, E) where V is a set of 

vertices (or nodes) and E, edges. We assume an adjacency list 

representation of G, consisting of an array A of |V| lists, one for 

each node in V. One of the nodes s Є G is the source node. With 

delay tolerant networks, any edge (u, v), u, v Є G may be added 

or deleted at any time, in turn changing G. In general, we call 

these additions and deletions of edges events. We assume that 

events are predictable, in that we assume that we know in 

advance which edge will be added to or deleted from the graph 

and at what time. We refer to fixed edges as static and edges 

which get added or deleted as dynamic. In our analysis we will 

assume a starting configuration for G at time to. We define a 

time-ordered set Evts(u, v, te,a) to represent the set of events.  

Each event in the set is represented by a 4-tuple: (u, v) Є G is the 

edge that is added to or deleted from E at time te and a denotes 

the action, which could be either ADD or DELETE. We 

propose a time limit T called the look ahead time (LAT) to 

within which we are to restrict our search. This is to avoid 

potentially endless event lists where edges are added and 

deleted regularly. Thus the set Evts must contain all events 

which occur between times to and T. 

The proposed modified BFS (mBFS) algorithm calculates a 

route without in-network storage constraint; however, a 

message is successfully delivered only if there is available 

storage on all nodes in its path.  To calculate a path from a 

source node S to a destination node D at a time ts where ts  is the 

message origination time, we initially search all nodes reachable 

immediately from S using mBFS. Each node is assigned the time 

ts as the node discovery time, tdiscovered. If a destination D is 

reached in the initial search, the shortest path from D back to S is 

returned. Otherwise we keep searching other undiscovered 

nodes to find the D.  For this, each event in Evts(u, v, te, a) is 

processed from ts for the duration of the look-ahead-time, T. The 

current topology G is first updated as the event action is ADD or 

DELETE. If the addition of an edge leads to the discovery of a 

new node at a certain time x, mBFS is called to find other nodes 

which can be reached through the node at time x. The 

discovered time kept at each node during mBFS search 

represents the earliest reachable time from a source node S. This 

is because, the discovered time, tdiscovered is assigned when the 

node is first discovered by the earliest link up event among 

events sorted by time. The transfer for a message will not be 

initiated if a destination node D is not discovered even after 

processing all events between ts and (ts + LAT) and will count as 

a failure. Otherwise, the final route is calculated by following 

the predecessor of each node from a destination node D all the 

way back to the source node S. The computed route is the 

quickest delivery path from S to D because each next-hop node 

from S to D is reached at the earliest possible time given an 

events list. During the transfer from S to D, a message could be 

dropped due to storage constraint along the path. For a drop 

policy, we propose that the message with the longest life time in 

a queue would be dropped when there is no available storage. 

This conforms with the idea of not transmitting “stale” data. 

Analysis In addition to the O(V+E) time taken for Modified 

BFS, we need to compute the time taken to process the events. 

Line 17 of our algorithm ensures that only previously 

unexplored nodes are used as source nodes when calling 

Modified BFS on Line 25. We ignore events where both nodes 

are the same color, which implies that they are both either 

discovered or undiscovered. Theerefore, nodes are discovered 

only once by our algorithm irrespective of the event length or 

sequence. The running time of the modified BFS part of the 

algorithm therefore is the summation of the running times of 

BFS on disjoint parts of the graph, or O(V+E). Since each event 

is processed once, the running time of the event processing part 

of the algorithm is O(Evts). Therefore, the total running time of 

the algorithm is O(V+E+Evts). 

 

 

Modified BFS(G, x, tdiscovered) 

1 F ← {x} 

2 While F ≠ Ф 

3 Do u ← head(F) 

4 For each v Є A[u] 

5 Do if color[v] == WHITE 

6    Then color[v] ← GRAY 

7         d[v] ← d[u] + 1 

8         π[v] ← u 

9         dt[v] ← tdiscovered  

10         ENQUEUE(F,v) 

11    DEQUEUE(F) 

12    Color[u] ← BLACK 

 

Single-Source Quickest Delivery (G, s, to, T, 

Evts) 

1 For each vertex u Є V[G] – {s} 

2 Do color[u] ← WHITE 

3    d[u] ← ∞ 

4    Π[u] ← NIL 

5    dt[u] ← NEVER 

6 Color[s] ← GRAY 

7 dt[s] ← to 

8 Modified BFS(G, s, to) 

9 While Evts ≠ Ф 

10 Do Evt ← DEQUEUE(Evts) 

11    u ← u(Evt);  

12    v ← v(Evt);  

13    te ← te(Evt); 

14    If a(Evt) == DELETE then 

15       E ← E - (u, v) 

16    Else Do E ← E U (u, v) 

17       if color[u] ≠ color[v] 

18       Then do 

19          if color[u] ≠ BLACK               

20          then swap(u, v) 

21          d[v] ← d[u] + 1 

22          π[v] ← u 

23          dt[v] ← te 

24          Color[v] ← GRAY 

25          Modified BFS(G, v, te) 

 
Figure 1.  Pseudo-code for the quickest delivery algorithm 

(mBFS)  
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B. Routing with Storage Constraint 

We next introduce the constraint that the amount of storage 

available at any node is limited. This implies that when we make 

routing decisions, we must ensure that the message can be 

stored in its entirety on nodes along the predecessor tree 

determined by breadth-first search (path). In the basic mBFS 

routing algorithm, storage is considered outside of the routing 

decision. As the message is transmmitted, it will be stored on a 

node for next-hop transfer only if the following equation holds 

true; otherwise the message gets dropped. If Su is the total 

storage available on node u, m is the size of the arriving message, 

and su is the amount of storage in use at node u, we must ensure 

that:  su + m ≤ Su 

 

Drop policy coupled with the proposed algorithm mBFS 

addresses storage limitations on intermediate nodes. However, 

this solution does not address mitigating congestion due to 

unavailable storage on frequently used routes. Our solution is to 

develop algorithms which use storage from nodes that may not 

necessarily be on the routing path to the destination. We 

introduce the idea of storage domain as a connected network of 

nodes, each providing storage on behalf of another node when 

that node does not have sufficient storage. This idea will help in 

reducing dropped transfers and result in better performance as 

we show later in the simulation results. Because of the available 

connectivity among the nodes in a storage domain, storage on 

different nodes could be viewed as a single storage. Messages 

on these nodes could be forwarded back and forth within the 

domain, thus mitigating the storage limitation on some 

bottleneck nodes.  

IV. ROUTING USING STORAGE-DOMAINS  

A. Storage Domains in the Proposed Algorithm 

To find the quickest route using storage domains, we must 

consider routing the message through not just those nodes along 

the predecessor path, but through other nodes connected to the 

nodes on the path. It is possible that while storage cannot be 

found on a node located along the path, storage may be found on 

nodes which are connected to the congested node while the 

message is in transit through that node. We must explore all 

such possibilities. We do this as follows.  

If a set of nodes are connected during certain times between 

times to and T, we ignore the routing issues between them (since 

they can be addressed by traditional routing mechanisms) and 

assume that we can store the message on any of the connected 

nodes as convenient. We call such node sets storage domains. 

We thus transform our task from finding routes between nodes 

to finding routes between storage domains. 

We discover storage domains by processing link additions 

and deletions.  A link is redundant or non-redundant based on its 

effect on  the storage domains. When a non-redundant link is 

added, it combines two storage domains into one; when a 

non-redundant link is deleted, a storage domain is split into two 

smaller domains. In Figure 2, all links that are added or deleted 

are non-redundant links. Since these links alternate between up 

and down events, the storage domains in the proposed routing 

algorithm are time-varing as shown in Figure 2. Where links are 

static, the constituent nodes will always form a storage domain.  

 

 

 
Figure 2. Time-varying Storage Domains 

 

B. Node Re-discovery 

While the simplest route between a given source node and 

any destination would be the one discovered by the algorithm 

presented earlier, it is possible that storage considerations force 

a more tortuous route, including possible loops. 

 

 
  

Figure3. Example to illustrate node re-discovery 

 

In the network shown in Figure 3, if a message is to be routed 

from node 1 to 4, the quickest path has been determined to be 

1-2-3-4. It is possible that before the link 3-4 is established, 

several link state changes occur between 2 and 3. Further, it is 

possible that as other link state changes occur between 2, 3, and 

the rest of the network, storage conditions change on 2 and 3, 

forcing the message to oscillate between 2 and 3. It may be that 

the link 3-4 cannot be established for a few hours, and that the 

link 2-3 changes state every few minutes. The conditions are 

such that storage becomes scarce on 2 at the top of the hour, and 

on 3 at the bottom of the hour. In this contrived example, the 

message would have to be transferred back and forth between 2 

and 3 hourly until the link 3-4 is eventually established. The 

proposed algorithm is designed to handle node re-discovery 

required in situations described above. Unlike traditional 

routing algorithms, looping within reason is a desirable 

characteristic for DTN routing. In evaluating different paths 
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between a source node and a destination node, we must take into 

account possibilities such as the one above. We do this by 

allowing nodes to be re-discovered as we process events.  

Oscillations and loops of unknown length are possible in the 

proposed storage domain algorithm as discussed above and 

even have desirable effect for some transfers by offering better 

storage management. However, their adverse effect is mitigated 

to the extent that there is no wastage of real resources. This is 

because for each transfer, the complete route is computed a 

priori and the transfer initiated only if a successful route with 

storage is found within a given LAT.  

C. Quickest Delivery Algorithm with Storage Domain 

(Quickest SD) 

   

The pseudo code for the proposed algorithm is presented in 

the Appendix along with an example. Here we provide a brief 

description of the essential details of the algorithm. We start at 

the source node s at time to and discover all nodes immediately 

reachable, marking them with their time of discovery. These 

nodes form a storage domain. We use three pieces of 

information – time of formation, time of break-up, and a label 

(for uniqueness), to identify a storage domain. 

We then process the events from the set Evts. When a link is 

added, if one of the nodes is already discovered, we explore all 

newly reachable nodes and record the time of their discovery td, 

and the predecessor node information. When two previously 

discovered storage domains that are currently disconnected are 

subsequently connected by the addition of a link, each domain 

would be treated as the predecessor of the other. In addition, 

when a link is added, the associated nodes from both domains 

form a new storage domain. When a link is deleted, if it leads to 

partitioning of the storage domain (that is, if the link is not 

redundant), a message stored on the domain would have to be 

stored in one of the two new, smaller domains. We process this 

condition by terminating the large storage domain, starting two 

new storage domains, and making each of the new domains the 

predecessor of the other. In our algorithm, as predecessor 

information is updated on a node, we update all nodes in the 

storage domain with the same information. This enables us to 

ignore the routing issues between nodes of a storage domain and 

treat all nodes in the same domain to belong to a given path. 

Note that although a node may be part of different storage 

domains at different times, a node belongs to one and only one 

storage domain at any given time.  

To determine a path between a source and a destination, we 

process all events and start at the destination node and find the 

earliest event that led to its discovery, and find its predecessor 

node. We then repeat the process with the predecessor node, 

finding its earliest predecessor, and so on, recursively, until we 

work back to the source node at time to. We would now have 

found one possible path. We then verify whether sufficient 

storage is available on each of the storage domains during the 

times the storage is required along the path. 

If storage is not found on a domain along the path, we mark its 

successor node with a flag (to avoid re-trying the same path later) 

and move on to the next path, by choosing the next earliest 

predecessor on the successor node, work back to the source 

node at time to along a different path, and check for storage 

along the new path. We repeat the process of trying new paths 

by choosing the next predecessors systematically along all 

predecessor nodes starting from the destination in the order of 

the discovery time, until we find a path with sufficient storage 

along it. If no such path can be found, we conclude that the 

message cannot be delivered within the look-ahead time T. 

 

Implementaion Details In our notation (see  pseudo-code in 

the Appendix), we use a set P of three-element members to store 

predecessor information for each node, which include the time 

when the predecessor becomes reachable, the predecessor node, 

and the flag that denotes whether delivery along that path has 

already been attempted, as described above. The flag has value 

TRY initially and is changed to DONT when we determine that 

storage is unavailable on the predecessor storage domain. We 

use another set S of three-element members for each node to 

store storage domain information – the time of formation, time 

of break-up, and a label. We use the look-ahead time T as 

default to denote the time of break-up until we have knowledge 

of when the break-up actually occurs. The label (we use one of 

the node names as the label) is needed to differentiate between 

two domains formed as a result of the break-up of a domain. The 

same information consisting of (time of formation, time of 

break-up, and the label) on two or more nodes shows that they 

are part of the same storage domain for that time interval. 

Finally, we use a two-dimensional array Avail, a V x Evts 

matrix, to update storage availability information on each node 

between times to and T. The example presented in the appendix 

provides step by step execution of the algorithm including 

changes to set P, set S on each node and the Avail matrix. 

 

Analysis The routine mbfss requires running repeated 

breadth-first searches. In the worst case, each event would cause 

breadth-first search to be run on the entire network. Therefore 

mbfss runs in O(V + E)*Evts, where V = |V| is the number of 

nodes, and |E|, number of links. 

 

In the recursive routine FindRoute for the Quickest SD 

algorithm (see pseudo-code in Appendix) we note that each 

predecessor tree is explored at most once. Once it is determined 

that a sub-tree does not yield a valid custody transfer schedule, 

the flag enables us to avoid the sub-tree during subsequent 

searches. The running time of the routine is therefore 

proportional to the number of predecessor nodes recorded in all 

nodes which is the same as the running time of the routine mbfss, 

or O(V + E)*Evts. 

V. PERFORMANCE EVALUATION 

A. Simulation Setup  

We evaluate the proposed DTN routing algorithm using ns2. 

Our DTN network topology consists of 15 or 30 nodes with 

intermittent links between pairs of nodes. There are several 
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parameters that are applied to affect the basic network topology 

and evaluate its performance. These are listed below with a 

description of their effect on the network performance: 

 

Link probability: this parameter is related to topology 

construction and defines the number of neighbors any node will 

have in the DTN topology. For instance, 0.1 link probability 

gives a sparsely connected network than a link probability of 

0.5. Therefore, we can expect higher link probabilities resulting 

in a better delivery ratio. 

Disconnection periods – UpTime and DownTime of each 

link are generated using exponential distributions with a certain 

mean. For instance, 50/200 sec indicates a uptime mean of 50 

sec and downtime mean of 200 sec. The network topology with 

lower/higher downtime/uptime results in a better delivery ratio.  

Storage capacity per node: In the basic mBFS algorithm, we 

use a drop policy whenever there is no storage on the 

intermediate node. Higher storage means that we can reduce 

message drops in intermediate nodes. In the Quickest SD 

algorithm there are no message drops because the transfer is not 

initiated if a complete route with storage is not found. However, 

higher storage will still mean more routes with storage and 

therefore, higher delivery ratios. 

Look Ahead Time (LAT): This parameter is the result of our 

routing algorithm and the modified BFS. Longer look ahead 

times mean better delivery ratio and fewer transfers with 

incomplete routes.  

Workload: In our simulation the workload is expressed in 

terms of messages per second (mps). Each node generates 

messages with mean exponential interarrival times. The 

destination for the message is randomly picked. Each data 

transfer is affected by link disconnections along the path, the 

LAT, and the storage available on intermediate nodes. Each 

transfer can result in three different outcomes: 1) failure to find 

a route because either algorithm failed to discover the 

destination node within the given LAT and with Quickest SD in 

particular, failure to find a route with storage; 2) once the 

quickest path is found between the source and the destination 

using the mBFS algorithm, the message may be dropped due to 

unavailable storage on intermediate nodes; 3) the message gets 

transferred successfully.  

Message size:  Higher the message sizes, lower is the 

expected delivery ratio because of storage limitations. In our 

simulation, we do not consider message fragmentation due to a 

possible network partition during transmission.  We implement 

a message to be processed in its entirety as it arrives at each 

intermediate hop. Also in our simulation, we assume that the 

link bandwidth is unlimited since transmission delays are a 

negligible part compared to link up and down times. 

  

Table 1 summarizes the various values of each parameter we 

used for the simulation. 

B. Performance Metrics  

The performance metrics used in the simulation are:  

Delivery Ratio (DR): is defined as the ratio of successful 

transfers to number of overall transfers.  Overall transfers will 

include those that result in no routes and message drops in 

addition to the successful transfers.  

 

DR = S / (S + N + D) 

 

where S is the number of successful transfers, N is the number of 

no routes, D is the number of message drops.  

 

Number of successful transfers (S): this metric defines the 

number of complete transfers with storage on intermediate 

nodes.  

Number of No Routes (N): this metric defines the number of 

transfers that result in incomplete paths to the destination 

because the mBFS fails to find a path within the given LAT. 

Number of message drops (D): this metric defines the number 

of transfers failed to complete because of storage unavailability 

at intermediate nodes. This metric is relevant to mBFS 

algorithm and the drop policy used is remove the oldest message 

in the queue. 

 

 

 

Table 1. Parameter values used in the simulation 

 

Parameter  Value 

Number of nodes 15, 30 

Link Probability: Probability 

of link connection between 

any two nodes  

0.1 (low) 

0.2, 0.3 

0.25 (medium) 

0.4 

0.5 (high) 

Messages/second: Number of 

messages generated per 

second on each source node 

0.25, 0.5 

0.75, 1 

Simulation Time 1000sec. 

Look-ahead-time (LAT) 300sec. 

Link Downtime/Uptime 

duration  

400/50sec. 

350/50sec. 

300/50sec. 

250/50sec. 

200/50sec 

150/50sec 

100/50sec 

50/50sec 

Message size  10KB, 20KB, 

30KB, 50KB, 

70KB, 90KB, 

110KB 

Storage on each node  100KB, 200KB, 

300KB, 400KB, 

500KB, 600KB,  

700KB 
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VI. SIMULATION RESULTS  

We simulate the network environment using workload  

parameters with some combinations of values described in 

Table 1. The proposed routing algorithms are evaluated using 

flat network topology. The two routing algorithms evaluated are 

the basic mBFS with message drop policy (labeled DP) and 

mBFS with storage domain, also called the Quickest SD 

algorithm (labeled QSD).  All results are subjected to 95 percent 

confidence interval analysis. The intervals themselves are very 

small and not shown on all graphs. Each experimental result is 

averaged over 5 trials. Within each trial, a warm-up period is 

used to eliminate the influence of initial system state.  

A. Effect of Look Ahead Time (LAT) 

Among the simulation parameters mentioned before, the 

look-ahead-time (LAT) has a critical influence on the 

performance of the proposed routing algorithm. In order to find 

a final route, both algorithms first consider time-variant DTN 

topology within a given look-ahead-time and then the Quickest 

SD algorithm additionally considers available storage in 

time-variant storage domain with two kinds of history lists – 

predecessor list and storage availability list -- calculated within 

the given LAT.  Each algorithm has more information to explore 

an available route with longer look-ahead-time. However, a 

long look-ahead-time introduces longer delays in route 

computation with only marginal improvement in delivery ratio.  

In Figure 4, we show the results of this experiment for LAT 

ranging from 100 to 400 seconds.  All other parameters are 

fixed as shown. For the DP algorithm, the unsuccessful 

messages include messages with no calculated route using the 

modified BFS function and messages dropped during transfer. 

For the Quickest SD algorithm, however, it means messages 

with no route found within LAT considering path and storage 

simultaneously. The left diagram of Figure 4 shows the number 

of unsuccessful message transfers in each routing algorithm. 

Considering the two diagrams in Figure 4, both algorithms get 

into the stable status at 300 second LAT. We will use this value 

in all other experiments that follow.   

 

 
 

Figure 4. Proportion of messages delivered unsuccessfully (left 

side) and Delivery ratio (right side) depending on different 

Look-ahead-time; 15 nodes, 0.25 Link Probability, 1000 sec. 

Simulation Time, 0.25 messages/sec., 200/50 sec. Link 

Downtime/Uptime, 300KB storage on each node and 10KB 

message size 

  

B. Effect of Traffic 

In Figure 5, we show results of an experiment where we vary 

traffic, messages per second, injected from each source node in 

the DTN topology.  We show the results for a combination of 

storage and link probability values both of which have desirable 

effect on the delivery ratio. Higher link probability indicates a 

well connected network and higher storage mitigates storage 

limitation.  However, each algorithm shows different rate of 

increase of delivery ratio. Figure 6 represents the differential in 

delivery ratio improvement from Quickest SD algorithm over 

DP algorithm with respect to medium and high link probabilities 

of DTN topology and different amount of storage on each node.  

At the most desirable scenario of 0.5LinkProb, 300 KB storage, 

the advantage of Quickest SD over DP keeps increases even as 

we increase traffic, where as at the middle of the road scenario 

of 0.25 LinkProb, 300 KB storage the performance differential 

is more stable. The third scenario depicting lower link 

probability (0.25) and lowest storage (150 KB) shows that the 

Quickest SD algorithm gradually loses advantage over DP as we 

increase traffic since network connectivity and storage 

limitation play a dominant role as we increase traffic for both 

algorithms.  It is still significant that the Quickest SD algorithm 

always performs better than DP over a wide range of traffic 

situations as well as network topology dynamics as shown in 

Figures 5 and 6.  
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Figure 5. Delivery ratio according to the different amount of 

traffic in DTN; 15 nodes, 1000 sec. Simulation Time, 300 sec. 

Look-ahead-time,  200/50 sec. Link Downtime/Uptime, and 

10KB message size 

 

C. Effect of Storage 

Figure 7 shows the effect of varying storage from 50KB to 

700KB on the delivery ratio. Quickest SD shows better 

performance over DP with the largest difference occurring at 

300 KB storage. The Quickest SD algorithm is likely to exploit 

available storage on all nodes in DTN to determine a successful 

route for each message.  Another significant result from this 

experiment is that to achieve the same level of performance 

from the DP algorithm, we have to double the storage – compare 

Quickest SD performance at 300KB to DP’s performance at 
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600KB. The proposed Quickest SD algorithm is a routing 

algorithm that overcomes performance degradation of DTN due 

to storage constraint. On the other hand, the difference of 

delivery ratios between the two algorithms becomes very small 

when the amount of storage on each node is too small or too 

large like 50 KB and 700 KB in our simulation environment. It 

is because too small or too large storage means that no smart 

mechanism is needed to use storage.  
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Figure 6. Comparison of delivery ratios of the Quickest SD 

algorithm and the DP algorithm; 15 nodes, 1000 sec. 

Simulation Time, 300 sec. Look-ahead-time, 200/50 sec. Link 

Downtime/Uptime, and 10KB message size 

 

 

 
 

Figure 7. Delivery ratio according to the different amount of 

storages on each node in DTN (left side) and difference of 

delivery ratios between the Quickest SD algorithm and the DP 

algorithm (right side); 15 nodes, 0.25 Link Probability, 1000 

sec. Simulation Time, 300 sec. Look-ahead-time, 200/50 sec. 

Link Downtime/Uptime, and 10KB message size.  

 

D. Effect Link Availability 

Figure 8 shows how various link disconnection intervals affect 

delivery ratio of each algorithm. Both algorithms have higher 

delivery ratio as link downtime gets lower with the ideal and 

equal performance at 50/50 downtime/uptime. Notice that the 

highest performance differential between the two algorithms 

occurs at 200/50 link availability.  If the link downtime is equal 

to the link uptime as seen in the two leftmost bars, the delivery 

ratios of both algorithms reaches almost 1.0. This is because the 

traffic generated during link down time is relatively small to be 

stored that most messages can be transferred during the next link 

up interval at intermediate nodes.  Storage is not a limitation at 

this level of link availability. Since a larger link downtime needs 

more storage with in DTN for both algorithms, delivery ratios 

decrease as the link downtime increases from 50 to 700.  Given 

the topology dynamics and the LAT used for this experiment, 

the largest performance differential between the two algorithms 

occurs at 200/50 link availability – a decrease or increase in 

downtime from that value makes the performance of both 

algorithms converge.  
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Figure 8. Delivery ratio depending on different link 

deactivation duration; 15 nodes, 0.25 Link Probability, 1000 

sec. Simulation Time, 300 sec. Look-ahead-time, 0.25 

messages/sec., 300KB storage on each node and 10KB message 

size. 

E. Effect of Storage and Link Availability 

In this experiment, we analyze the effect of storage with 

different levels of link availability results of which are shown in 

Figure 9. We fix the link up time at 50 seconds on average and 

vary link downtime as 50, 100, 150, 200 and 250 seconds. The 

top two graphs show that both algorithms approach almost 1.0 

delivery ratio when link downtime and uptime are the same as 

50 seconds which was the result we observed in Figure 8.  No 

messages are dropped during transfer using the DP algorithm 

because no link is overflowed. In this experiment all messages 

to be delivered unsuccessfully are caused by insufficient routes 

in DTN due to low link probability.  

As the link downtime increases, the delivery ratio generally 

degrades in both routing algorithms. Since the Quickest SD 

algorithm implements a greedy mechanism to determine a route, 

the overall network storage is used in a more efficient way than 

the DP algorithm. Therefore, the former algorithm achieves 

much higher delivery ratio than the latter even as we increase 

link downtime. The significant result in this experiment is that 

the Quickest SD algorithm with 200 second link downtime 

outperforms the DP algorithm with 150 second link downtime. 

Also of significance is the performance of the two algorithms at 

250/50 second link availability. As we increase storage, notice 

the diverging performance between the Quickest SD and DP – 

the reason for this is the improved storage utilization with the 

Quickest SD algorithm which is required when the downtime is 

as large as 250 seconds.  
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Figure 9. Delivery ratio with different link deactivation 

duration according to different amounts of storage on each 

node; 15 nodes, 0.25 Link Probability, 1000 sec. Simulation 

Time, 300 sec. Look-ahead-time, 0.25 message/sec., and 10KB 

message size 

 

 

F. Effect of Message Size 

Figure 10 represents delivery ratios of the two routing 

algorithms when different size messages are generated and 

injected into DTN. In this experiment, each node produces 

about 250 messages during the entire simulation time using the 

exponential distribution with 4 seconds mean inter-arrival time. 

Per node storage is fixed at 300KB storage. With a 10KB 

message size each source generates 2500 KB of storage demand 

and each message is needed to be forwarded or stored at the 

maximum 300KB storage allocated on each node along the 

successful path.   
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Figure 10. Delivery Ratio depending on different message size; 

15 nodes, 0.25 Link Probability, 1000 sec. Simulation Time, 

300 sec. Look-ahead-time, 0.25 messages/sec., 200/50 sec. Link 

Downtime/Uptime, and 300KB storage on each node  

 

As shown in Table 2, the average number of nodes along the 

successful path is about 6 and 3 for the Quickest SD and DP 

algorithms respectively. This result indicates that the Quickest 

SD algorithm uses twice the storage as the DP algorithm to 

deliver a message successfully. However, this result points to 

the disadvantage of the DP algorithm that it does not make use 

of the available storage effectively. The DP algorithm exploits 

storages of only three nodes on the path calculated using mBFS 

to transfer a message. Since the Quickest SD algorithm is, on the 

other hand, capable of calculating all possible routes 

considering storage availability in advance before a message is 

really transferred through DTN, it theoretically exploits storage 

on all nodes in the network (15 nodes in our simulation).  

 

We present results related to delay and hop count in Table 2 

from the same experiment as in Figure 10. Delay refers to the 

waiting time at intermediate nodes for the links to come up.  It is 

interesting to note that the average delay that each transfer 

incurs decreases as the message size increases. The reason for 

this is that there is actually less traffic using network resources 

as we increase message size. The delivery ratio is degraded but 

the average delay is improved as the message size increases. 

Since less traffic uses the overall network resources, messages 

delivered successfully spend less time across the DTN. This 

phenomenon is more emphasized in the Quickest SD algorithm 

because it does not put messages that do not have a complete 

route (no route) into the network. 

 

 

Table 2. Average Delay and average hop according to different 

message size when link probability is 0.25 

 

Average  

Delay (sec) 

Average  

Hop 

Average 

Delay 

incurred in 

one hop 

Messa

ge 

 size 

(KB) 

Total 

Storage 

Required 

(KB) 
QSD DP QSD DP QSD DP 

10 2500 70.91 69.44 6.25 2.87 11.4 24.2 

20 5000 69.31 62.46 5.82 2.76 11.9 22.6 

30 7500 62.93 54.98 5.39 2.68 11.7 20.5 

50 12500 52.78 43.70 4.82 2.54 11.0 17.2 

70 17500 49.03 37.40 4.31 2.51 11.4 14.9 

90 22500 39.95 32.30 3.98 2.46 10.0 13.1 

110 27500 36.10 27.88 3.71 2.41 9.7 11.6 

 

 

Figure 11 presents delay of each transfer for the length of 

simulation time from the experiment using 10KB message size 

in the first row of Table 2. The left side shows delay and hop 

counts from the DP algorithm and the right side from the 

Quickest SD algorithm. The delay values in Figure 11 are 

obtained as the sum of waiting times at each hop due to link 

unavailability for each transfer. The delay values are bounded 

by 300 (LAT). The average of the delay values for all transfers 

over the simulation time are shown in Table 2. The warm-up 

period used in the simulation gets rid of any undesirable effect 

from the initial state of the links. It has been verified that these 

delay values follow the exponential distribution as they should.   
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Figure 11. Trace representing  Delay values and Hop count for 

DP (left side) and QSD (right side) algorithms during 

simulation time; 15 nodes, 1000 sec. Simulation Time, 300 sec. 

Look-ahead-time, 0.25 messages/sec., 200/50 sec. Link 

Downtime/Uptime, 300KB storage on each node and 10KB 

message size 

 

G. Effect of Link Probability 

The bar graph seen on the left side of Figure 12 shows how 

delivery ratio is dominated by link probability used to construct 

DTN topology. Delivery ratios of both routing algorithms 

degrade as lower link probability is sued to generate DTN 

topology. It is because both algorithms primarily depend on 

physical link availability in DTN regardless of storage amount 

assigned on each node. The link availability is determined by 

the number of links in DTN calculated by link probability and 

its dynamic characteristics decided by link downtime and 

uptime. With fixed link downtime and uptime, a lower link 

probability means that the number of available routes is small. 

 

 

 
Figure 12. Delivery ratio for different Link Probabilities (left 

side) and proportions of QSD to DP for Delivery ratio, average 

hop and average delay between two routing algorithms 

depending on different Link Probabilities (right side); 15 

nodes, 1000 sec. Simulation Time, 300 sec. Look-ahead-time, 

0.25 messages/sec., 200/50 sec. Link Downtime/Uptime, 300KB 

storage on each node and 10KB message size 

 

Table 3 presents the number of neighbors (allocated to a node 

calculated by link probability), average delay, and average 

number of hops that a message incurs during transfer in each 

algorithm. The average delay per transfer for both algorithms 

goes down as we increase the number of neighbors each node 

has for the obvious reason that there are more routes available. 

The average hop count for Quickest SD hovers around 6 and for 

the DP algorithm around 3. DP shows a slight increase in hop 

count while the opposite is true for Quickest SD as we increase 

the number of neighbors. The explanation for DP results is that 

the algorithm is not optimized in terms of hop count and will 

pick a route that results in the quickest time even if it is the 

longer route. For Quickest SD, increasing the number of 

neighbors means more routes to explore and also spread the 

storage demand. It will employ shorter routes if the longer 

quicker route does not have available storage. The hop count for 

each transfer can have higher variability in Quickest SD because 

it is designed to explore more number of routes than DP. This 

result can also be seen in Figure 11. At lower link probability, 

Quickest SD will use nodes that are not on the routing path for 

storage and this detour will result in higher hop counts.  In the 

adjoining graph in Figure 12, we see that Quickest SD maintains 

its superior performance in delivery ratio and average delay 

where as average hop count converges to a smaller number as 

explained before.  

 

Table 3. Number of neighbors of each node and average delay 

and hop incurred during transfer depending on link probability 

with 15 nodes in DTN 

 

Average  

Delay 
Average Hop 

Average 

Delay 

incurred in 

one hop 

Link 

Prob. 

Number 

of 

neighbors 

of each 

node 

(nodes) 
QSD DP QSD DP QSD DP 

0.1 1.5  149.75 123.82 6.86 2.43 21.8 43.9 

0.2 3  109.88 100.61 7.11 2.75 15.5 36.6 

0.25 3.75  70.91 69.44 6.25 2.87 11.4 24.2 

0.3 4.5  74.41 68.65 6.47 3.06 11.5 22.4 

0.4 6  37.93 37.23 5.04 3.17 7.5 11.7 

0.5 7.5 27.17 25.95 4.13 3.15 6.6 8.2 

 

H. Scalability and Stability 

Throughout the many experiments we conducted for evaluating 

the algorithms, we have also addressed issues of scalability and 

stability of both of them. The DTN topology reflects different 

degrees of network connectivity as determined by link 

probability and link up and down interval. In Figure 12, the 

Quickest SD algorithm shows better performance over DP in a 

stable pattern for varying link probability. Figure 8 presents 

results for different values of link downtime/uptime. Figure 7 

and Figure 10 show that the Quickest SD algorithm produces 

stable graphs with better performance as we increase storage 

and message size. Also the Quickest SD algorithm shows 

scalability and stability as a function of number of nodes in 

DTN as seen in Figure 13.  Figure 13 shows the behavior of each 

algorithm when the number of traffic source changes. Each 

source generates the same amount of traffic during simulation 

time using the exponential distribution. While the DP algorithm 

shows high sensitivity in delivery ratio when traffic increases, 

the Quickest SD algorithm presents a stable performance in this 

experiment. Since the Quickest SD algorithm utilizes overall 

network storage capacity, it is not highly sensitive to the change 

in traffic amount. Figure 14 shows the results for delivery ratio 

when we double the number of nodes in the DTN topology, 

0

50

100

150

200

250

300

350

Time

D
e
la

y
 o

f 
D

P
 a

lg
o

ri
th

m

0

50

100

150

200

250

300

350

Time

D
e
la

y
 o

f 
Q

S
D

 a
g

o
ri

th
m

0

5

10

15

20

25

30

35

Time

H
o

p
s 

o
f 

Q
S

D
 a

lg
o

ri
th

m

0

1

2

3

4

5

6

7

8

9

Time

H
o

p
s 

o
f 

D
P

 a
lg

o
ri

th
m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5

Link Probability

D
e
li

v
e
ry

 R
a
ti

o
 =
=

QSD

DP

0.5

1

1.5

2

2.5

0.1 0.2 0.3 0.4 0.5

Link Probability

C
o

m
p

a
ri

so
n

 o
f Q

S
D

 t
o

 D
P Average Hop

Delivery Ratio
Average Delay



 

 12 

from 15 nodes to 30 nodes. We see that when the topology size 

is doubled, the performance obtained from Quickest SD is in the 

acceptable range of  70 to near 100%. The relative performance 

differential between the two algorithms is still maintained. The 

performance for 15 node topology corresponds to the bottom 

two curves in Figure 9. 
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Figure 13. Delivery ratio depending on different percentage of 

source nodes generating traffic; 15 nodes, 0.25 Link 

Probability, 1000 sec. Simulation Time, 300 sec. 

Look-ahead-time, 0.25 messages/sec., 200/50 sec. Link 

Downtime/Uptime, 300KB storage on each node and 10KB 

message size 
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Figure 14.  Delivery ratio depending on number of nodes in 

DTN; 15 or 30 nodes, 0.25 Link Probability, 1000 sec. 

Simulation Time, 300 sec. Look-ahead-time, 0.25 

messages/sec., 250/50 sec. Link Downtime/Uptime, and 10KB 

message size 

VII. CONCLUSION 

   In this paper, we presented two routing algorithms that result 

in the quickest delivery time in a DTN environment comparable 

only to flooding-based algorithms but without the penalty of 

multiple copies in the network for each transfer. We 

successfully incorporated the storage constraint into routing in 

the Quickest SD algorithm. The algorithm is ideally suited for 

implementing custody transfers between nodes on the path as 

the routes are initiated  only if storage is available. We modified 

the simplest routing algorithm, namely, the breadth first search 

(BFS) algorithm to suit DTN environment. We extended the 

BFS to handle DTN link state change events essential for 

implementing intermittent connectivity. We assume that these 

events are predictable but as part of future work, we will model 

topology dynamics in a more comprehensive manner that 

includes probabilistic or opportunistic link state changes. In the 

current paper, the DTN topology dynamics are analyzed by 

varying: 1) number of nodes generating traffic, 2) link 

probability, 3) link availability through combinations of 

downtime/uptime vales, 4) storage per node, 5) message size, 

and 6) traffic. Most significantly, we show that the results due to 

the Quickest SD algorithm spread the storage demand across 

many nodes in the network topology, enabling balanced load 

and superior network utilization. Summarizing the results, we 

conclude that: 

• Quickest SD always results in better performance than DP for 

the same network conditions. 

• Longer look ahead times generally increase delivery ratio but 

are limited by the degree of network connectivity and link 

availability. 

• Larger storage will increase delivery ratio for both 

algorithms. However, too small or too large storage results in 

only marginal improvement.  

• Quickest SD reduces storage requirement in half for the same 

level of performance with DP. 

• In general, higher link availability means higher delivery 

ratio for both algorithms. However, Quickest SD can tolerate 

higher link downtime for the same level of performance from 

DP because of improved storage utilization with the SD 

algorithm. 

• Relative performance advantage is maintained by Quickest 

SD as message size is increased.  

• Both algorithms demonstrate scalability and stability through 

the many experiments we have shown. However, Quickest SD 

algorithm shows lower sensitivity and therefore, higher stability 

to changing network or workload conditions.  
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APPENDIX 

Quickest SD Algorithm – Pseudo-code 
 

 
 

 
 
 

 

 

 


