

 1

Abstract— In this paper, we present a routing algorithm for a class

of dynamic networks called the Delay Tolerant Networks (DTNs).

The proposed algorithm takes into account the quintessential DTN

characteristic namely, intermittent link connectivity. We modify

the breadth first search (BFS) algorithm to take into account link

state changes and find the quickest route between source and

destination nodes. We adopt a message drop policy at intermediate

nodes to incorporate storage constraint. We also introduce the idea

of time-varying storage domains where all nodes connected for a

length of time act as a single storage unit by sharing the

aggregated storage capacity of the nodes. We evaluate the routing

algorithm with and without storage domain in an extensive

simulation. We analyze the performance using metrics such as

delivery ratio, incomplete transfers with no routes and dropped

messages. The DTN topology dynamics are analyzed by varying:

number of nodes generating traffic, link probability, link

availability through combinations of downtime/uptime values,

storage per node, message size, and traffic. The delay performance

of the proposed algorithms is conceptually the same as

flooding-based algorithms but without the penalty of multiple

copies. More significantly, we show that the Quickest Storage

Domain (Quickest SD) algorithm distributes the storage demand

across many nodes in the network topology, enabling balanced

load and higher network utilization. In fact, we show that for the

same level of performance, we can actually cut the storage

requirement in half using the Quickest SD algorithm.

Index Terms—Delay Tolerant Network (DTN), Routing

algorithm, Quickest delivery algorithm, and Storage domain

algorithm

I. INTRODUCTION

HE topic of this paper is efficient data delivery in

dynamic network topologies with intermittent links.

Specifically, we will focus on the design and development of

routing algorithms for a class of networks that is distinctly

different from the traditional TCP/IP-based networks. The class

of dynamic networks under consideration is also referred to as

delay tolerant or disruption tolerant networks (DTNs). As

network technologies have evolved over the years, many

non-traditional networks have been developed for instance,

wireless, sensor, and mobile ad hoc networks. Reliance on

infrastructure-based networking seems to be slowly eroding as

we discover potential uses for these self-configuring networks.

Applications for these networks range from military combat

situations to civilian applications of vehicle-based mobile data

centers; disaster relief situations where fixed infrastructure may

have been destroyed; a commuter bus as it moves through rural

areas provides connectivity by acting as a store and forward

switch. Some industries are anticipating advanced

vehicle-to-vehicle and vehicle-to-enterprise capabilities to set

up vehicle-based mobile datacenters

[www.erpdaily.com/news/2005], particularly useful for law

enforcement surveillance vehicles.

DTNs are an emerging class of networks that define a new

approach and a framework to provide networked services in

non-TCP/IP networks, sometimes also referred to as

“challenged” networks. Some unique challenges arise as we

move away from the underlying assumptions for traditional

IP-based networks [1]. To operate TCP protocol, there must be

an end-to-end path between the source and the destination and

the round trip delays must be small enough that there can be a

“conversation” about the data transfer between the source and

the destination. Neither of these assumptions is valid in a DTN

-- intermittent connectivity makes it difficult to guarantee an

end-to-end path for an ongoing data transfer and long round trip

delays make it impossible to provide timely acknowledgements

and retransmissions. The proposed DTN architecture offers a

set of choices to counter these challenges: application-specific

data units, known as bundles versus stream of packets;

hop-by-hop delivery with optional in-network storage versus

end-to-end routing. Given these new operational semantics,

efficient data delivery becomes an important design issue with

the objective of maximizing delivery, minimizing buffer/storage

usage, and minimizing overhead due to routing protocols.

In this research, our objective is to design and develop

efficient routing algorithms, protocols and other support

services that take into consideration the absence of an

end-to-end path and long network delays. For this paper, we

focus on developing routing algorithms. Assuming a store and

forward type of data transfers, our main objective in designing

routing algorithms is to minimize the delay and maximize

Routing in Delay Tolerant Networks Using Storage

Domains

Padma Mundur, Sookyoung Lee, and Matthew Seligman

T

Padma Mundur is with the Institute for Advanced Computer Studies

(UMIACS), University of Maryland, College Park, MD 20742 (e-mail:

pmundur@umiacs.umd.edu).

Sookyoung Lee is with the Department of Computer Science and Electrical

Engineering, University of Maryland Baltimore County, MD 21250 (e-mail:

slee22@cs.umbc.edu).

Matthew Seligman is with the Laboratory for Telecommunication Sciences

(LTS), 8080 Greenmead Road College Park, MD 20742 (e-mail:

seligman@ltsnet.net).

 2

reliability through higher delivery ratio subject to storage

constraints on intermediate nodes connected by intermittent

links. This simple formulation of the routing problem raises

some important design considerations: (1) nature of

disconnections – predictable or random; (2) links activated by

mobile nodes with opportunistic intent for data delivery; (3)

policies that govern message rejections and conservation of

storage for more important messages – priorities and class of

service; (4) congestion control – unlike IP-based network,

congestion in DTNs manifests as lack of available storage on

intermediate nodes due to high usage on a particular route.

In this paper, we present a routing algorithm that assumes

predictable link connectivity and storage constraints on

intermediate nodes. We modify the Breadth First Search (BFS)

algorithm to take into account link state changes and find the

quickest route possible between a source and a destination.

Messages will be dropped if storage is unavailable on

intermediate nodes. We also introduce the idea of storage

domain where all connected nodes act as a single storage unit by

sharing the aggregated storage capacity of the nodes in the

domain. The storage domains are time-varying as links go up

and down and constituent nodes in the domain change. We

evaluate the routing algorithm with and without storage

domains in an extensive simulation. The most significant

simulation result as discussed later shows that routing with

storage domain results in better performance even while cutting

the storage requirement in half.

The paper is organized as follows: in Section II, we present

related work. We discuss the proposed routing framework and

the algorithm in Section III and IV. Detailed performance

evaluation and simulation results are presented in Sections V

and VI with a conclusion in Section VII. We present the pseudo-

code for the proposed storage domain algorithm and an example

in the Appendix.

II. RELATED WORK

DTNs are overlays residing above heterogeneous networks

providing network services and interoperability (For

architectural details see [2] and [1]).

Authors in [3], [4] propose several routing algorithms

specifically for delay tolerant networks that consider

intermittent connectivity. They modify Dijkstra’s shortest path

algorithm by including link weights that take into account the

waiting time at nodes because of disconnected links. Different

variations of this modified algorithm based on the knowledge of

the dynamic network topology are presented. However, none of

these variations consider the all important storage constraints on

DTN nodes. While they propose an LP formulation that takes

into account the storage constraints for the store and forward

DTN network, the algorithm itself is heavyweight and

impractical. In comparison, our proposed algorithm considers

storage constraint within the routing framework as does the LP

formulation but has the distinct advantage of being more

practical.

In addition to the algorithms in [3], [4], other researchers

have developed probabilistic models for describing intermittent

link behavior using node mobility. The most well known

algorithm using that approach is PROPHET from [5] and

variations of it with storage constraints in [6]. The basic idea

behind this algorithm is to represent link connectivity behavior

using a probabilistic metric called delivery predictability at

every node in the network topology to each known destination.

For instance, nodes that frequently encounter each other will

result in high delivery predictability. In [6], the authors

combine probabilistic routing from their previous work with

various buffer management policies to analyze performance in

terms of message delivery, end-to-end delay and overhead. In

[7] authors derive a directional link cost for each node using

connectivity history which takes into consideration the number

of transitions from disconnected state to connected state

between pairs of nodes, the duration of disconnected state and

so on. We can develop a similar technique in our algorithm to

predict link state changes using historical connectivity logs. We

will address that in our future work. While the newer version of

PROPHET in [6] considers buffer management policies, our

proposed storage domain algorithm goes further by

incorporating storage as a constraint in routing. Transfers

without a complete route with storage to the destination are not

initiated at all. The in-network storage is utilized better for that

reason.

For mobility based opportunistic link connectivity, other

researchers have followed two distinct approaches. The first

approach is to model the intrinsic mobility of the nodes using

such mobility models as Random Way-Point (RWP) and the

second approach uses controlled mobility inspired by the

robotic applications. While the first approach has fallen out of

favor to some extent in the recent past [8], the controlled

mobility approach using special mobile nodes ferries is gaining

attention as a more realistic approach for mobility to enable link

connectivity among stationary nodes in DTNs.

Many of the mobility-based solutions are inspired by the

routing problem in sparse ad hoc networks where network

partitions similar to DTN can occur. Most of the early

algorithms however, rely entirely on node mobility to move data

in the event of network partitions such as epidemic routing in

[9], or a refinement of the same algorithm in [10]. The authors in

[11] propose a routing scheme called Spray and Wait that aims

to reduce the overhead of flooding by spraying a limited number

of copies into the network and waiting to see if that will suffice

to reach the destination node. Li and Rus [12] propose an

approach where mobile hosts actively modify their trajectories

to deliver messages. Musolesi and others in [13] consider

asynchronous communication between nodes in separate clouds

by computing delivery probabilities for each host and using the

host with the highest delivery probability to actually deliver the

data across the cloud. In the same spirit, [14] present five

strategies for opportunistic forwarding of messages when two

mobile routers are within transmission range but where mobility

of vehicles is not controlled. Many of these algorithms are

unsuitable for DTNs with stationary nodes.

 3

Zhao and others [15], [16] employ special mobile nodes

called message ferries in the deployment area that move in a

predictable manner among the stationary nodes to help collect

and deliver the data. They address the challenging issue of ferry

route design under single or multiple ferries, single or multiple

routes, different degrees of interaction between the ferries and

nodes. They present algorithms to calculate ferry routes which

minimize delivery delay for fixed traffic demand. Using the

message ferrying scheme, Chuah and Yang consider buffer

management issues to provide differentiated services in [17],

[18] so that urgent messages with a guaranteed level of service

receive better performance than the regular messages.

In this paper, we abstract the cause of link connection state

change and simply consider link up and down times in our

routing algorithm. This type of predictable link state knowledge

could result from implementing node mobility within the

network topology as in message ferrying scheme where the ferry

routes are predetermined. Most researchers in this area have

been forced to work under either of the two extreme positions –

knowing everything about the network topology dynamics or

knowing nothing about it. We have assumed that we can

assemble topology knowledge and that we have a mechanism to

know node and link state changes, for instance, by using an

out-of-band, low bandwidth communication mechanism that is

different from the data networks needed for a more robust data

transfer. Dissemination of control information in a DTN to

promote network topology awareness is still an open research

area and is not addressed in this paper.

Consideration of storage limitation in DTNs is another

important design factor we can not ignore and for that reason,

data forwarding mechanisms such as broadcast and flooding are

not appropriate. In the recent past, most researchers model

storage as a limited resource in the DTN context -- [6], [16],

[17], [18] among them. Many of their solutions are however,

limited to message drops due to buffer overflow while

differentiating and enforcing message priorities. In this paper,

we explicitly consider storage constraint as part of the routing

problem. In that respect, our paper is similar to some of the

LP-based formulations but with one distinct advantage: our

algorithm is more practical. In the proposed storage domain

routing algorithm, the quickest path with available storage is

chosen for each transfer. The proposed algorithm therefore,

provides minimum delay, similar to flooding-based approaches,

without duplication. The routing solution using storage

domains proposed here can easily be adopted using the

architectural guidelines from DTNRG such as custody transfer

to forward data reliably both within a storage domain and

between storage domains. With the proposed algorithm we are

pre-computing the routes with storage for each transfer, and

therefore, we can easily implement custody transfer. In a related

paper in [19], Seligman et al. implement custody transfer

policies at individual nodes to mitigate storage limitation in

DTN. This is appropriate and necessary when complete network

topology knowledge is not known and each node has to decide

to take custody based only on information on its neighbors.

III. ROUTING FRAMEWORK

Our initial approach for developing a framework for routing

in DTN is based on algorithm design and graph theory. We

propose to formulate the routing problem using the network

topology graph as input with nodes (vertices) having limited

buffer, and links (edges) with contact establishment information

(when, where, for how long). What makes this formulation

different and challenging is the time-varying nature of the

underlying topology and the storage constraints on intermediate

nodes. Even as we acknowledge that the data being transported

is not real-time, the primary emphasis will be on quick delivery

– minimizing delay is still an important goal.

Network Connectivity In a DTN environment,

disconnections can be long lasting and not generally related to

network faults as in traditional networks. The following types of

connectivity are possible in a DTN: Predictable or Scheduled,

Random or Probabilistic, and Opportunistic. Probabilistic or

opportunistic connectivity can be enhanced by node mobility as

seen from most of the papers on mobile ad hoc networks

mentioned before.

Congestion in DTN will take the form of unavailable storage

on DTN nodes for message transfers. Techniques to avoid and

control congestion manifest in the routing problem formulation

as storage constraints.

A. Routing using Modified Breadth-First Search (mBFS)

In this section, we present work that forms the basis for the

proposed algorithmic approach which we introduced in [20].

We present a modification to the breadth-first search algorithm

to find the quickest route between a given source and any

destination node in a delay-tolerant network. This is done

without flooding the network – at any one time we maintain only

one copy of the message in the network. The delay performance

of the proposed algorithm and its improved storage domain

version is conceptually the same as flooding-based algorithms.

Main assumptions in developing this routing algorithm are: 1.

that the link state changes are predictable; 2. that the links are

symmetric and, when up, have sufficient bandwidth to carry the

messages needed; 3. that intermediate nodes have persistent

storage; 4. that network and transmission delays are negligible

compared to the delays due to parts of the network being

unreachable. Our algorithm determines the path in its entirety at

the time of message origination.

The assumption of predictable link state changes is justified

and similar to the situation presented in other works in this area.

In our model, we do not use an agent to bring about link state

changes but leave it as implementation dependent. For instance,

Zhao and others in [15] employ special mobile nodes called

message ferries in the deployment area that move in a

predictable manner among the nodes to help collect and deliver

the data. Their main idea is to make the node movement

non-random so that data delivery is planned and more efficient.

Given a pre-determined ferry route the nodes can either be static

or pro-actively move closer to a ferry. With this type of set up,

an event list for link state changes of the type we use in our

 4

formulation can be easily generated. Abstracting the link

connectivity behavior without using node mobility makes our

algorithm applicable to more diverse environments.

Algorithm Description We adapt the breadth-first search

(BFS) algorithm for graphs to find the “quickest” route from a

single source node to all other nodes in the graph. The

pseudo-code for the proposed algorithm is shown in Figure 1.

We assume an undirected graph G = (V, E) where V is a set of

vertices (or nodes) and E, edges. We assume an adjacency list

representation of G, consisting of an array A of |V| lists, one for

each node in V. One of the nodes s Є G is the source node. With

delay tolerant networks, any edge (u, v), u, v Є G may be added

or deleted at any time, in turn changing G. In general, we call

these additions and deletions of edges events. We assume that

events are predictable, in that we assume that we know in

advance which edge will be added to or deleted from the graph

and at what time. We refer to fixed edges as static and edges

which get added or deleted as dynamic. In our analysis we will

assume a starting configuration for G at time to. We define a

time-ordered set Evts(u, v, te,a) to represent the set of events.

Each event in the set is represented by a 4-tuple: (u, v) Є G is the

edge that is added to or deleted from E at time te and a denotes

the action, which could be either ADD or DELETE. We

propose a time limit T called the look ahead time (LAT) to

within which we are to restrict our search. This is to avoid

potentially endless event lists where edges are added and

deleted regularly. Thus the set Evts must contain all events

which occur between times to and T.

The proposed modified BFS (mBFS) algorithm calculates a

route without in-network storage constraint; however, a

message is successfully delivered only if there is available

storage on all nodes in its path. To calculate a path from a

source node S to a destination node D at a time ts where ts is the

message origination time, we initially search all nodes reachable

immediately from S using mBFS. Each node is assigned the time

ts as the node discovery time, tdiscovered. If a destination D is

reached in the initial search, the shortest path from D back to S is

returned. Otherwise we keep searching other undiscovered

nodes to find the D. For this, each event in Evts(u, v, te, a) is

processed from ts for the duration of the look-ahead-time, T. The

current topology G is first updated as the event action is ADD or

DELETE. If the addition of an edge leads to the discovery of a

new node at a certain time x, mBFS is called to find other nodes

which can be reached through the node at time x. The

discovered time kept at each node during mBFS search

represents the earliest reachable time from a source node S. This

is because, the discovered time, tdiscovered is assigned when the

node is first discovered by the earliest link up event among

events sorted by time. The transfer for a message will not be

initiated if a destination node D is not discovered even after

processing all events between ts and (ts + LAT) and will count as

a failure. Otherwise, the final route is calculated by following

the predecessor of each node from a destination node D all the

way back to the source node S. The computed route is the

quickest delivery path from S to D because each next-hop node

from S to D is reached at the earliest possible time given an

events list. During the transfer from S to D, a message could be

dropped due to storage constraint along the path. For a drop

policy, we propose that the message with the longest life time in

a queue would be dropped when there is no available storage.

This conforms with the idea of not transmitting “stale” data.

Analysis In addition to the O(V+E) time taken for Modified

BFS, we need to compute the time taken to process the events.

Line 17 of our algorithm ensures that only previously

unexplored nodes are used as source nodes when calling

Modified BFS on Line 25. We ignore events where both nodes

are the same color, which implies that they are both either

discovered or undiscovered. Theerefore, nodes are discovered

only once by our algorithm irrespective of the event length or

sequence. The running time of the modified BFS part of the

algorithm therefore is the summation of the running times of

BFS on disjoint parts of the graph, or O(V+E). Since each event

is processed once, the running time of the event processing part

of the algorithm is O(Evts). Therefore, the total running time of

the algorithm is O(V+E+Evts).

Modified BFS(G, x, tdiscovered)

1 F ← {x}

2 While F ≠ Ф

3 Do u ← head(F)

4 For each v Є A[u]

5 Do if color[v] == WHITE

6 Then color[v] ← GRAY

7 d[v] ← d[u] + 1

8 π[v] ← u

9 dt[v] ← tdiscovered

10 ENQUEUE(F,v)

11 DEQUEUE(F)

12 Color[u] ← BLACK

Single-Source Quickest Delivery (G, s, to, T,

Evts)

1 For each vertex u Є V[G] – {s}

2 Do color[u] ← WHITE

3 d[u] ← ∞

4 Π[u] ← NIL

5 dt[u] ← NEVER

6 Color[s] ← GRAY

7 dt[s] ← to

8 Modified BFS(G, s, to)

9 While Evts ≠ Ф

10 Do Evt ← DEQUEUE(Evts)

11 u ← u(Evt);

12 v ← v(Evt);

13 te ← te(Evt);

14 If a(Evt) == DELETE then

15 E ← E - (u, v)

16 Else Do E ← E U (u, v)

17 if color[u] ≠ color[v]

18 Then do

19 if color[u] ≠ BLACK

20 then swap(u, v)

21 d[v] ← d[u] + 1

22 π[v] ← u

23 dt[v] ← te

24 Color[v] ← GRAY

25 Modified BFS(G, v, te)

Figure 1. Pseudo-code for the quickest delivery algorithm

(mBFS)

 5

B. Routing with Storage Constraint

We next introduce the constraint that the amount of storage

available at any node is limited. This implies that when we make

routing decisions, we must ensure that the message can be

stored in its entirety on nodes along the predecessor tree

determined by breadth-first search (path). In the basic mBFS

routing algorithm, storage is considered outside of the routing

decision. As the message is transmmitted, it will be stored on a

node for next-hop transfer only if the following equation holds

true; otherwise the message gets dropped. If Su is the total

storage available on node u, m is the size of the arriving message,

and su is the amount of storage in use at node u, we must ensure

that: su + m ≤ Su

Drop policy coupled with the proposed algorithm mBFS

addresses storage limitations on intermediate nodes. However,

this solution does not address mitigating congestion due to

unavailable storage on frequently used routes. Our solution is to

develop algorithms which use storage from nodes that may not

necessarily be on the routing path to the destination. We

introduce the idea of storage domain as a connected network of

nodes, each providing storage on behalf of another node when

that node does not have sufficient storage. This idea will help in

reducing dropped transfers and result in better performance as

we show later in the simulation results. Because of the available

connectivity among the nodes in a storage domain, storage on

different nodes could be viewed as a single storage. Messages

on these nodes could be forwarded back and forth within the

domain, thus mitigating the storage limitation on some

bottleneck nodes.

IV. ROUTING USING STORAGE-DOMAINS

A. Storage Domains in the Proposed Algorithm

To find the quickest route using storage domains, we must

consider routing the message through not just those nodes along

the predecessor path, but through other nodes connected to the

nodes on the path. It is possible that while storage cannot be

found on a node located along the path, storage may be found on

nodes which are connected to the congested node while the

message is in transit through that node. We must explore all

such possibilities. We do this as follows.

If a set of nodes are connected during certain times between

times to and T, we ignore the routing issues between them (since

they can be addressed by traditional routing mechanisms) and

assume that we can store the message on any of the connected

nodes as convenient. We call such node sets storage domains.

We thus transform our task from finding routes between nodes

to finding routes between storage domains.

We discover storage domains by processing link additions

and deletions. A link is redundant or non-redundant based on its

effect on the storage domains. When a non-redundant link is

added, it combines two storage domains into one; when a

non-redundant link is deleted, a storage domain is split into two

smaller domains. In Figure 2, all links that are added or deleted

are non-redundant links. Since these links alternate between up

and down events, the storage domains in the proposed routing

algorithm are time-varing as shown in Figure 2. Where links are

static, the constituent nodes will always form a storage domain.

Figure 2. Time-varying Storage Domains

B. Node Re-discovery

While the simplest route between a given source node and

any destination would be the one discovered by the algorithm

presented earlier, it is possible that storage considerations force

a more tortuous route, including possible loops.

Figure3. Example to illustrate node re-discovery

In the network shown in Figure 3, if a message is to be routed

from node 1 to 4, the quickest path has been determined to be

1-2-3-4. It is possible that before the link 3-4 is established,

several link state changes occur between 2 and 3. Further, it is

possible that as other link state changes occur between 2, 3, and

the rest of the network, storage conditions change on 2 and 3,

forcing the message to oscillate between 2 and 3. It may be that

the link 3-4 cannot be established for a few hours, and that the

link 2-3 changes state every few minutes. The conditions are

such that storage becomes scarce on 2 at the top of the hour, and

on 3 at the bottom of the hour. In this contrived example, the

message would have to be transferred back and forth between 2

and 3 hourly until the link 3-4 is eventually established. The

proposed algorithm is designed to handle node re-discovery

required in situations described above. Unlike traditional

routing algorithms, looping within reason is a desirable

characteristic for DTN routing. In evaluating different paths

A B

C D

E

F

G

H

< At time tn+1 >

A B

C D

E

F

G

H

Storage Domain 1

Storage

Domain 2

Storage

Domain 3

Storage

Domain 1

Storage

Domain 3

Storage

Domain 4

< At time tn >

Storage

Domain 2

 6

between a source node and a destination node, we must take into

account possibilities such as the one above. We do this by

allowing nodes to be re-discovered as we process events.

Oscillations and loops of unknown length are possible in the

proposed storage domain algorithm as discussed above and

even have desirable effect for some transfers by offering better

storage management. However, their adverse effect is mitigated

to the extent that there is no wastage of real resources. This is

because for each transfer, the complete route is computed a

priori and the transfer initiated only if a successful route with

storage is found within a given LAT.

C. Quickest Delivery Algorithm with Storage Domain

(Quickest SD)

The pseudo code for the proposed algorithm is presented in

the Appendix along with an example. Here we provide a brief

description of the essential details of the algorithm. We start at

the source node s at time to and discover all nodes immediately

reachable, marking them with their time of discovery. These

nodes form a storage domain. We use three pieces of

information – time of formation, time of break-up, and a label

(for uniqueness), to identify a storage domain.

We then process the events from the set Evts. When a link is

added, if one of the nodes is already discovered, we explore all

newly reachable nodes and record the time of their discovery td,

and the predecessor node information. When two previously

discovered storage domains that are currently disconnected are

subsequently connected by the addition of a link, each domain

would be treated as the predecessor of the other. In addition,

when a link is added, the associated nodes from both domains

form a new storage domain. When a link is deleted, if it leads to

partitioning of the storage domain (that is, if the link is not

redundant), a message stored on the domain would have to be

stored in one of the two new, smaller domains. We process this

condition by terminating the large storage domain, starting two

new storage domains, and making each of the new domains the

predecessor of the other. In our algorithm, as predecessor

information is updated on a node, we update all nodes in the

storage domain with the same information. This enables us to

ignore the routing issues between nodes of a storage domain and

treat all nodes in the same domain to belong to a given path.

Note that although a node may be part of different storage

domains at different times, a node belongs to one and only one

storage domain at any given time.

To determine a path between a source and a destination, we

process all events and start at the destination node and find the

earliest event that led to its discovery, and find its predecessor

node. We then repeat the process with the predecessor node,

finding its earliest predecessor, and so on, recursively, until we

work back to the source node at time to. We would now have

found one possible path. We then verify whether sufficient

storage is available on each of the storage domains during the

times the storage is required along the path.

If storage is not found on a domain along the path, we mark its

successor node with a flag (to avoid re-trying the same path later)

and move on to the next path, by choosing the next earliest

predecessor on the successor node, work back to the source

node at time to along a different path, and check for storage

along the new path. We repeat the process of trying new paths

by choosing the next predecessors systematically along all

predecessor nodes starting from the destination in the order of

the discovery time, until we find a path with sufficient storage

along it. If no such path can be found, we conclude that the

message cannot be delivered within the look-ahead time T.

Implementaion Details In our notation (see pseudo-code in

the Appendix), we use a set P of three-element members to store

predecessor information for each node, which include the time

when the predecessor becomes reachable, the predecessor node,

and the flag that denotes whether delivery along that path has

already been attempted, as described above. The flag has value

TRY initially and is changed to DONT when we determine that

storage is unavailable on the predecessor storage domain. We

use another set S of three-element members for each node to

store storage domain information – the time of formation, time

of break-up, and a label. We use the look-ahead time T as

default to denote the time of break-up until we have knowledge

of when the break-up actually occurs. The label (we use one of

the node names as the label) is needed to differentiate between

two domains formed as a result of the break-up of a domain. The

same information consisting of (time of formation, time of

break-up, and the label) on two or more nodes shows that they

are part of the same storage domain for that time interval.

Finally, we use a two-dimensional array Avail, a V x Evts

matrix, to update storage availability information on each node

between times to and T. The example presented in the appendix

provides step by step execution of the algorithm including

changes to set P, set S on each node and the Avail matrix.

Analysis The routine mbfss requires running repeated

breadth-first searches. In the worst case, each event would cause

breadth-first search to be run on the entire network. Therefore

mbfss runs in O(V + E)*Evts, where V = |V| is the number of

nodes, and |E|, number of links.

In the recursive routine FindRoute for the Quickest SD

algorithm (see pseudo-code in Appendix) we note that each

predecessor tree is explored at most once. Once it is determined

that a sub-tree does not yield a valid custody transfer schedule,

the flag enables us to avoid the sub-tree during subsequent

searches. The running time of the routine is therefore

proportional to the number of predecessor nodes recorded in all

nodes which is the same as the running time of the routine mbfss,

or O(V + E)*Evts.

V. PERFORMANCE EVALUATION

A. Simulation Setup

We evaluate the proposed DTN routing algorithm using ns2.

Our DTN network topology consists of 15 or 30 nodes with

intermittent links between pairs of nodes. There are several

 7

parameters that are applied to affect the basic network topology

and evaluate its performance. These are listed below with a

description of their effect on the network performance:

Link probability: this parameter is related to topology

construction and defines the number of neighbors any node will

have in the DTN topology. For instance, 0.1 link probability

gives a sparsely connected network than a link probability of

0.5. Therefore, we can expect higher link probabilities resulting

in a better delivery ratio.

Disconnection periods – UpTime and DownTime of each

link are generated using exponential distributions with a certain

mean. For instance, 50/200 sec indicates a uptime mean of 50

sec and downtime mean of 200 sec. The network topology with

lower/higher downtime/uptime results in a better delivery ratio.

Storage capacity per node: In the basic mBFS algorithm, we

use a drop policy whenever there is no storage on the

intermediate node. Higher storage means that we can reduce

message drops in intermediate nodes. In the Quickest SD

algorithm there are no message drops because the transfer is not

initiated if a complete route with storage is not found. However,

higher storage will still mean more routes with storage and

therefore, higher delivery ratios.

Look Ahead Time (LAT): This parameter is the result of our

routing algorithm and the modified BFS. Longer look ahead

times mean better delivery ratio and fewer transfers with

incomplete routes.

Workload: In our simulation the workload is expressed in

terms of messages per second (mps). Each node generates

messages with mean exponential interarrival times. The

destination for the message is randomly picked. Each data

transfer is affected by link disconnections along the path, the

LAT, and the storage available on intermediate nodes. Each

transfer can result in three different outcomes: 1) failure to find

a route because either algorithm failed to discover the

destination node within the given LAT and with Quickest SD in

particular, failure to find a route with storage; 2) once the

quickest path is found between the source and the destination

using the mBFS algorithm, the message may be dropped due to

unavailable storage on intermediate nodes; 3) the message gets

transferred successfully.

Message size: Higher the message sizes, lower is the

expected delivery ratio because of storage limitations. In our

simulation, we do not consider message fragmentation due to a

possible network partition during transmission. We implement

a message to be processed in its entirety as it arrives at each

intermediate hop. Also in our simulation, we assume that the

link bandwidth is unlimited since transmission delays are a

negligible part compared to link up and down times.

Table 1 summarizes the various values of each parameter we

used for the simulation.

B. Performance Metrics

The performance metrics used in the simulation are:

Delivery Ratio (DR): is defined as the ratio of successful

transfers to number of overall transfers. Overall transfers will

include those that result in no routes and message drops in

addition to the successful transfers.

DR = S / (S + N + D)

where S is the number of successful transfers, N is the number of

no routes, D is the number of message drops.

Number of successful transfers (S): this metric defines the

number of complete transfers with storage on intermediate

nodes.

Number of No Routes (N): this metric defines the number of

transfers that result in incomplete paths to the destination

because the mBFS fails to find a path within the given LAT.

Number of message drops (D): this metric defines the number

of transfers failed to complete because of storage unavailability

at intermediate nodes. This metric is relevant to mBFS

algorithm and the drop policy used is remove the oldest message

in the queue.

Table 1. Parameter values used in the simulation

Parameter Value

Number of nodes 15, 30

Link Probability: Probability

of link connection between

any two nodes

0.1 (low)

0.2, 0.3

0.25 (medium)

0.4

0.5 (high)

Messages/second: Number of

messages generated per

second on each source node

0.25, 0.5

0.75, 1

Simulation Time 1000sec.

Look-ahead-time (LAT) 300sec.

Link Downtime/Uptime

duration

400/50sec.

350/50sec.

300/50sec.

250/50sec.

200/50sec

150/50sec

100/50sec

50/50sec

Message size 10KB, 20KB,

30KB, 50KB,

70KB, 90KB,

110KB

Storage on each node 100KB, 200KB,

300KB, 400KB,

500KB, 600KB,

700KB

 8

VI. SIMULATION RESULTS

We simulate the network environment using workload

parameters with some combinations of values described in

Table 1. The proposed routing algorithms are evaluated using

flat network topology. The two routing algorithms evaluated are

the basic mBFS with message drop policy (labeled DP) and

mBFS with storage domain, also called the Quickest SD

algorithm (labeled QSD). All results are subjected to 95 percent

confidence interval analysis. The intervals themselves are very

small and not shown on all graphs. Each experimental result is

averaged over 5 trials. Within each trial, a warm-up period is

used to eliminate the influence of initial system state.

A. Effect of Look Ahead Time (LAT)

Among the simulation parameters mentioned before, the

look-ahead-time (LAT) has a critical influence on the

performance of the proposed routing algorithm. In order to find

a final route, both algorithms first consider time-variant DTN

topology within a given look-ahead-time and then the Quickest

SD algorithm additionally considers available storage in

time-variant storage domain with two kinds of history lists –

predecessor list and storage availability list -- calculated within

the given LAT. Each algorithm has more information to explore

an available route with longer look-ahead-time. However, a

long look-ahead-time introduces longer delays in route

computation with only marginal improvement in delivery ratio.

In Figure 4, we show the results of this experiment for LAT

ranging from 100 to 400 seconds. All other parameters are

fixed as shown. For the DP algorithm, the unsuccessful

messages include messages with no calculated route using the

modified BFS function and messages dropped during transfer.

For the Quickest SD algorithm, however, it means messages

with no route found within LAT considering path and storage

simultaneously. The left diagram of Figure 4 shows the number

of unsuccessful message transfers in each routing algorithm.

Considering the two diagrams in Figure 4, both algorithms get

into the stable status at 300 second LAT. We will use this value

in all other experiments that follow.

Figure 4. Proportion of messages delivered unsuccessfully (left

side) and Delivery ratio (right side) depending on different

Look-ahead-time; 15 nodes, 0.25 Link Probability, 1000 sec.

Simulation Time, 0.25 messages/sec., 200/50 sec. Link

Downtime/Uptime, 300KB storage on each node and 10KB

message size

B. Effect of Traffic

In Figure 5, we show results of an experiment where we vary

traffic, messages per second, injected from each source node in

the DTN topology. We show the results for a combination of

storage and link probability values both of which have desirable

effect on the delivery ratio. Higher link probability indicates a

well connected network and higher storage mitigates storage

limitation. However, each algorithm shows different rate of

increase of delivery ratio. Figure 6 represents the differential in

delivery ratio improvement from Quickest SD algorithm over

DP algorithm with respect to medium and high link probabilities

of DTN topology and different amount of storage on each node.

At the most desirable scenario of 0.5LinkProb, 300 KB storage,

the advantage of Quickest SD over DP keeps increases even as

we increase traffic, where as at the middle of the road scenario

of 0.25 LinkProb, 300 KB storage the performance differential

is more stable. The third scenario depicting lower link

probability (0.25) and lowest storage (150 KB) shows that the

Quickest SD algorithm gradually loses advantage over DP as we

increase traffic since network connectivity and storage

limitation play a dominant role as we increase traffic for both

algorithms. It is still significant that the Quickest SD algorithm

always performs better than DP over a wide range of traffic

situations as well as network topology dynamics as shown in

Figures 5 and 6.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.25 0.5 0.75 1 1.25

traffic (messages per second)

D
el

iv
e
ry

 R
a
ti

o0
0

QSD_0.25LinkProb_0.3MBstorage DP_0.25LinkProb_0.3MBstorage

QSD_0.25LinkProb_0.15MBstorage DP_0.25LinkProb_0.15MBstorage

QSD_0.5LinkProb_0.3MBstorage DP_0.5LinkProb_0.3MBstorage

Figure 5. Delivery ratio according to the different amount of

traffic in DTN; 15 nodes, 1000 sec. Simulation Time, 300 sec.

Look-ahead-time, 200/50 sec. Link Downtime/Uptime, and

10KB message size

C. Effect of Storage

Figure 7 shows the effect of varying storage from 50KB to

700KB on the delivery ratio. Quickest SD shows better

performance over DP with the largest difference occurring at

300 KB storage. The Quickest SD algorithm is likely to exploit

available storage on all nodes in DTN to determine a successful

route for each message. Another significant result from this

experiment is that to achieve the same level of performance

from the DP algorithm, we have to double the storage – compare

Quickest SD performance at 300KB to DP’s performance at

0.5

0.6

0.7

0.8

0.9

100 150 200 250 300 350 400

Look-ahead-time (sec)

D
el

iv
er

y
 R

at
io

=
=

DP

QSD

0

0.1

0.2

0.3

0.4

0.5

100 150 200 250 300 350 400

Look-ahead-time (sec)

P
ro

p
o

rt
io

n
 o

f
m

es
sa

g
es

d
el

iv
er

ed
=

 u
n

su
c
ce

ss
fu

ll
y DP

QSD

 9

600KB. The proposed Quickest SD algorithm is a routing

algorithm that overcomes performance degradation of DTN due

to storage constraint. On the other hand, the difference of

delivery ratios between the two algorithms becomes very small

when the amount of storage on each node is too small or too

large like 50 KB and 700 KB in our simulation environment. It

is because too small or too large storage means that no smart

mechanism is needed to use storage.

1

1.05

1.1

1.15

1.2

1.25

1.3

0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

traffic (messages per second)

P
ro

p
o

rt
io

n
 o

f
D

e
li

v
e
ry

 R
a
ti

o
s..

o
f

 Q
S

D
 t

o
 D

P

0.25 LinkProb_300KB storage

0.25 LinkProb_150KB storage

0.5 LinkProb_300KB storage

Figure 6. Comparison of delivery ratios of the Quickest SD

algorithm and the DP algorithm; 15 nodes, 1000 sec.

Simulation Time, 300 sec. Look-ahead-time, 200/50 sec. Link

Downtime/Uptime, and 10KB message size

Figure 7. Delivery ratio according to the different amount of

storages on each node in DTN (left side) and difference of

delivery ratios between the Quickest SD algorithm and the DP

algorithm (right side); 15 nodes, 0.25 Link Probability, 1000

sec. Simulation Time, 300 sec. Look-ahead-time, 200/50 sec.

Link Downtime/Uptime, and 10KB message size.

D. Effect Link Availability

Figure 8 shows how various link disconnection intervals affect

delivery ratio of each algorithm. Both algorithms have higher

delivery ratio as link downtime gets lower with the ideal and

equal performance at 50/50 downtime/uptime. Notice that the

highest performance differential between the two algorithms

occurs at 200/50 link availability. If the link downtime is equal

to the link uptime as seen in the two leftmost bars, the delivery

ratios of both algorithms reaches almost 1.0. This is because the

traffic generated during link down time is relatively small to be

stored that most messages can be transferred during the next link

up interval at intermediate nodes. Storage is not a limitation at

this level of link availability. Since a larger link downtime needs

more storage with in DTN for both algorithms, delivery ratios

decrease as the link downtime increases from 50 to 700. Given

the topology dynamics and the LAT used for this experiment,

the largest performance differential between the two algorithms

occurs at 200/50 link availability – a decrease or increase in

downtime from that value makes the performance of both

algorithms converge.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50/50 100/50 200/50 300/50 400/50 500/50 600/50 700/50

Link Downtime/Uptime (sec/sec)

D
e
li

v
e
ry

 R
a
ti

o
 =
=

DP

QSD

Figure 8. Delivery ratio depending on different link

deactivation duration; 15 nodes, 0.25 Link Probability, 1000

sec. Simulation Time, 300 sec. Look-ahead-time, 0.25

messages/sec., 300KB storage on each node and 10KB message

size.

E. Effect of Storage and Link Availability

In this experiment, we analyze the effect of storage with

different levels of link availability results of which are shown in

Figure 9. We fix the link up time at 50 seconds on average and

vary link downtime as 50, 100, 150, 200 and 250 seconds. The

top two graphs show that both algorithms approach almost 1.0

delivery ratio when link downtime and uptime are the same as

50 seconds which was the result we observed in Figure 8. No

messages are dropped during transfer using the DP algorithm

because no link is overflowed. In this experiment all messages

to be delivered unsuccessfully are caused by insufficient routes

in DTN due to low link probability.

As the link downtime increases, the delivery ratio generally

degrades in both routing algorithms. Since the Quickest SD

algorithm implements a greedy mechanism to determine a route,

the overall network storage is used in a more efficient way than

the DP algorithm. Therefore, the former algorithm achieves

much higher delivery ratio than the latter even as we increase

link downtime. The significant result in this experiment is that

the Quickest SD algorithm with 200 second link downtime

outperforms the DP algorithm with 150 second link downtime.

Also of significance is the performance of the two algorithms at

250/50 second link availability. As we increase storage, notice

the diverging performance between the Quickest SD and DP –

the reason for this is the improved storage utilization with the

Quickest SD algorithm which is required when the downtime is

as large as 250 seconds.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800

Storage on each node (KB)

D
el

iv
e
ry

 R
a
ti

o
 =
=

QSD
DP

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

50 100 200 300 400 500 600 700

Storage on each node (KB)

D
if

fe
re

n
ce

 o
f

D
e
li

v
e
ry

 R
at

io
s =

=

Q
S

D
 t

o
 D

P

 10

Figure 9. Delivery ratio with different link deactivation

duration according to different amounts of storage on each

node; 15 nodes, 0.25 Link Probability, 1000 sec. Simulation

Time, 300 sec. Look-ahead-time, 0.25 message/sec., and 10KB

message size

F. Effect of Message Size

Figure 10 represents delivery ratios of the two routing

algorithms when different size messages are generated and

injected into DTN. In this experiment, each node produces

about 250 messages during the entire simulation time using the

exponential distribution with 4 seconds mean inter-arrival time.

Per node storage is fixed at 300KB storage. With a 10KB

message size each source generates 2500 KB of storage demand

and each message is needed to be forwarded or stored at the

maximum 300KB storage allocated on each node along the

successful path.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70 80 90 100 110 120

Message size (KB)

D
e
li

v
e
ry

 R
a
ti

o
 =

=

QSD

DP

Figure 10. Delivery Ratio depending on different message size;

15 nodes, 0.25 Link Probability, 1000 sec. Simulation Time,

300 sec. Look-ahead-time, 0.25 messages/sec., 200/50 sec. Link

Downtime/Uptime, and 300KB storage on each node

As shown in Table 2, the average number of nodes along the

successful path is about 6 and 3 for the Quickest SD and DP

algorithms respectively. This result indicates that the Quickest

SD algorithm uses twice the storage as the DP algorithm to

deliver a message successfully. However, this result points to

the disadvantage of the DP algorithm that it does not make use

of the available storage effectively. The DP algorithm exploits

storages of only three nodes on the path calculated using mBFS

to transfer a message. Since the Quickest SD algorithm is, on the

other hand, capable of calculating all possible routes

considering storage availability in advance before a message is

really transferred through DTN, it theoretically exploits storage

on all nodes in the network (15 nodes in our simulation).

We present results related to delay and hop count in Table 2

from the same experiment as in Figure 10. Delay refers to the

waiting time at intermediate nodes for the links to come up. It is

interesting to note that the average delay that each transfer

incurs decreases as the message size increases. The reason for

this is that there is actually less traffic using network resources

as we increase message size. The delivery ratio is degraded but

the average delay is improved as the message size increases.

Since less traffic uses the overall network resources, messages

delivered successfully spend less time across the DTN. This

phenomenon is more emphasized in the Quickest SD algorithm

because it does not put messages that do not have a complete

route (no route) into the network.

Table 2. Average Delay and average hop according to different

message size when link probability is 0.25

Average

Delay (sec)

Average

Hop

Average

Delay

incurred in

one hop

Messa

ge

 size

(KB)

Total

Storage

Required

(KB)
QSD DP QSD DP QSD DP

10 2500 70.91 69.44 6.25 2.87 11.4 24.2

20 5000 69.31 62.46 5.82 2.76 11.9 22.6

30 7500 62.93 54.98 5.39 2.68 11.7 20.5

50 12500 52.78 43.70 4.82 2.54 11.0 17.2

70 17500 49.03 37.40 4.31 2.51 11.4 14.9

90 22500 39.95 32.30 3.98 2.46 10.0 13.1

110 27500 36.10 27.88 3.71 2.41 9.7 11.6

Figure 11 presents delay of each transfer for the length of

simulation time from the experiment using 10KB message size

in the first row of Table 2. The left side shows delay and hop

counts from the DP algorithm and the right side from the

Quickest SD algorithm. The delay values in Figure 11 are

obtained as the sum of waiting times at each hop due to link

unavailability for each transfer. The delay values are bounded

by 300 (LAT). The average of the delay values for all transfers

over the simulation time are shown in Table 2. The warm-up

period used in the simulation gets rid of any undesirable effect

from the initial state of the links. It has been verified that these

delay values follow the exponential distribution as they should.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

 Storage on each node (KB)

D
e

li
v

e
ry

 R
a

ti
o

 =
=

QSD_50/50 DP_50/50

QSD_100/50 DP_100/50

QSD_150/50 DP_150/50

QSD_200/50 DP_200/50

QSD_250/50 DP_250/50

 11

Figure 11. Trace representing Delay values and Hop count for

DP (left side) and QSD (right side) algorithms during

simulation time; 15 nodes, 1000 sec. Simulation Time, 300 sec.

Look-ahead-time, 0.25 messages/sec., 200/50 sec. Link

Downtime/Uptime, 300KB storage on each node and 10KB

message size

G. Effect of Link Probability

The bar graph seen on the left side of Figure 12 shows how

delivery ratio is dominated by link probability used to construct

DTN topology. Delivery ratios of both routing algorithms

degrade as lower link probability is sued to generate DTN

topology. It is because both algorithms primarily depend on

physical link availability in DTN regardless of storage amount

assigned on each node. The link availability is determined by

the number of links in DTN calculated by link probability and

its dynamic characteristics decided by link downtime and

uptime. With fixed link downtime and uptime, a lower link

probability means that the number of available routes is small.

Figure 12. Delivery ratio for different Link Probabilities (left

side) and proportions of QSD to DP for Delivery ratio, average

hop and average delay between two routing algorithms

depending on different Link Probabilities (right side); 15

nodes, 1000 sec. Simulation Time, 300 sec. Look-ahead-time,

0.25 messages/sec., 200/50 sec. Link Downtime/Uptime, 300KB

storage on each node and 10KB message size

Table 3 presents the number of neighbors (allocated to a node

calculated by link probability), average delay, and average

number of hops that a message incurs during transfer in each

algorithm. The average delay per transfer for both algorithms

goes down as we increase the number of neighbors each node

has for the obvious reason that there are more routes available.

The average hop count for Quickest SD hovers around 6 and for

the DP algorithm around 3. DP shows a slight increase in hop

count while the opposite is true for Quickest SD as we increase

the number of neighbors. The explanation for DP results is that

the algorithm is not optimized in terms of hop count and will

pick a route that results in the quickest time even if it is the

longer route. For Quickest SD, increasing the number of

neighbors means more routes to explore and also spread the

storage demand. It will employ shorter routes if the longer

quicker route does not have available storage. The hop count for

each transfer can have higher variability in Quickest SD because

it is designed to explore more number of routes than DP. This

result can also be seen in Figure 11. At lower link probability,

Quickest SD will use nodes that are not on the routing path for

storage and this detour will result in higher hop counts. In the

adjoining graph in Figure 12, we see that Quickest SD maintains

its superior performance in delivery ratio and average delay

where as average hop count converges to a smaller number as

explained before.

Table 3. Number of neighbors of each node and average delay

and hop incurred during transfer depending on link probability

with 15 nodes in DTN

Average

Delay
Average Hop

Average

Delay

incurred in

one hop

Link

Prob.

Number

of

neighbors

of each

node

(nodes)
QSD DP QSD DP QSD DP

0.1 1.5 149.75 123.82 6.86 2.43 21.8 43.9

0.2 3 109.88 100.61 7.11 2.75 15.5 36.6

0.25 3.75 70.91 69.44 6.25 2.87 11.4 24.2

0.3 4.5 74.41 68.65 6.47 3.06 11.5 22.4

0.4 6 37.93 37.23 5.04 3.17 7.5 11.7

0.5 7.5 27.17 25.95 4.13 3.15 6.6 8.2

H. Scalability and Stability

Throughout the many experiments we conducted for evaluating

the algorithms, we have also addressed issues of scalability and

stability of both of them. The DTN topology reflects different

degrees of network connectivity as determined by link

probability and link up and down interval. In Figure 12, the

Quickest SD algorithm shows better performance over DP in a

stable pattern for varying link probability. Figure 8 presents

results for different values of link downtime/uptime. Figure 7

and Figure 10 show that the Quickest SD algorithm produces

stable graphs with better performance as we increase storage

and message size. Also the Quickest SD algorithm shows

scalability and stability as a function of number of nodes in

DTN as seen in Figure 13. Figure 13 shows the behavior of each

algorithm when the number of traffic source changes. Each

source generates the same amount of traffic during simulation

time using the exponential distribution. While the DP algorithm

shows high sensitivity in delivery ratio when traffic increases,

the Quickest SD algorithm presents a stable performance in this

experiment. Since the Quickest SD algorithm utilizes overall

network storage capacity, it is not highly sensitive to the change

in traffic amount. Figure 14 shows the results for delivery ratio

when we double the number of nodes in the DTN topology,

0

50

100

150

200

250

300

350

Time

D
e
la

y
 o

f
D

P
 a

lg
o

ri
th

m

0

50

100

150

200

250

300

350

Time

D
e
la

y
 o

f
Q

S
D

 a
g

o
ri

th
m

0

5

10

15

20

25

30

35

Time

H
o

p
s

o
f

Q
S

D
 a

lg
o

ri
th

m

0

1

2

3

4

5

6

7

8

9

Time

H
o

p
s

o
f

D
P

 a
lg

o
ri

th
m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5

Link Probability

D
e
li

v
e
ry

 R
a
ti

o
 =
=

QSD

DP

0.5

1

1.5

2

2.5

0.1 0.2 0.3 0.4 0.5

Link Probability

C
o

m
p

a
ri

so
n

 o
f Q

S
D

 t
o

 D
P Average Hop

Delivery Ratio
Average Delay

 12

from 15 nodes to 30 nodes. We see that when the topology size

is doubled, the performance obtained from Quickest SD is in the

acceptable range of 70 to near 100%. The relative performance

differential between the two algorithms is still maintained. The

performance for 15 node topology corresponds to the bottom

two curves in Figure 9.

100
90

80
70

60
50DP

QSD

0.6

0.65

0.7

0.75

0.8

0.85

0.9

D
e
li

v
er

y
 R

at
io

=
=

Percentage of source generating traffic

Figure 13. Delivery ratio depending on different percentage of

source nodes generating traffic; 15 nodes, 0.25 Link

Probability, 1000 sec. Simulation Time, 300 sec.

Look-ahead-time, 0.25 messages/sec., 200/50 sec. Link

Downtime/Uptime, 300KB storage on each node and 10KB

message size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

 Storage on each node (KB)

D
e
li

v
e
ry

 R
a
ti

o
 =
=

QSD_30nodes DP_30nodes

QSD_15nodes DP_15nodes

Figure 14. Delivery ratio depending on number of nodes in

DTN; 15 or 30 nodes, 0.25 Link Probability, 1000 sec.

Simulation Time, 300 sec. Look-ahead-time, 0.25

messages/sec., 250/50 sec. Link Downtime/Uptime, and 10KB

message size

VII. CONCLUSION

 In this paper, we presented two routing algorithms that result

in the quickest delivery time in a DTN environment comparable

only to flooding-based algorithms but without the penalty of

multiple copies in the network for each transfer. We

successfully incorporated the storage constraint into routing in

the Quickest SD algorithm. The algorithm is ideally suited for

implementing custody transfers between nodes on the path as

the routes are initiated only if storage is available. We modified

the simplest routing algorithm, namely, the breadth first search

(BFS) algorithm to suit DTN environment. We extended the

BFS to handle DTN link state change events essential for

implementing intermittent connectivity. We assume that these

events are predictable but as part of future work, we will model

topology dynamics in a more comprehensive manner that

includes probabilistic or opportunistic link state changes. In the

current paper, the DTN topology dynamics are analyzed by

varying: 1) number of nodes generating traffic, 2) link

probability, 3) link availability through combinations of

downtime/uptime vales, 4) storage per node, 5) message size,

and 6) traffic. Most significantly, we show that the results due to

the Quickest SD algorithm spread the storage demand across

many nodes in the network topology, enabling balanced load

and superior network utilization. Summarizing the results, we

conclude that:

• Quickest SD always results in better performance than DP for

the same network conditions.

• Longer look ahead times generally increase delivery ratio but

are limited by the degree of network connectivity and link

availability.

• Larger storage will increase delivery ratio for both

algorithms. However, too small or too large storage results in

only marginal improvement.

• Quickest SD reduces storage requirement in half for the same

level of performance with DP.

• In general, higher link availability means higher delivery

ratio for both algorithms. However, Quickest SD can tolerate

higher link downtime for the same level of performance from

DP because of improved storage utilization with the SD

algorithm.

• Relative performance advantage is maintained by Quickest

SD as message size is increased.

• Both algorithms demonstrate scalability and stability through

the many experiments we have shown. However, Quickest SD

algorithm shows lower sensitivity and therefore, higher stability

to changing network or workload conditions.

ACKNOWLEDGMENT

The authors would like to thank Manohar Malayanur and Yun

Teng for fruitful discussions on the algorithms presented in this

paper. They would also like to thank the editors and the

anonymous reviewers for their insightful comments.

REFERENCES

[1] F. Warthman. Delay-Tolerant Networks (DTNs), A

Tutorial. http://www.dtnrg.org/

[2] http://www.dtnrg.org/

[3] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant

network,” in Proc. ACM SIGCOMM, 2004.

[4] J. Alonso and K. Fall, “A linear programming formulation

of flows over time with piecewise constant capacity and

transit times,” Technical report IRB-TR-03-007, Intel

Research Berkeley, July 2003.

 13

[5] A. Lindgren, A. Doria, and O. Schel´en, “Probabilistic

routing in intermittently connected networks,” in Proc. of

the Fourth ACM International Symposium on Mobile Ad

Hoc Networking and Computing (MobiHoc 2003), June

2003.

[6] A. Lindgren and K. S. Phanse, “Evaluation of policies and

forwarding strategies for routing in intermittently

connected networks,” IEEE Distributed Systems Online,

August 2006.

[7] D. Thakore and S. Biswas, “Routing with persistent link

modeling in intermittently connected wireless networks, “

in Proc. of MILCOM 2005.

[8] J. Yoon, M. Liu, and B. Noble, “Random waypoint

considered harmful,” in Proc. of IEEE INFOCOM, April

2003.

[9] A. Vahdat and D. Becker, “Epidemic routing for partially

connected ad hoc networks,” University of California, San

Diego Technical Report CS-2000-06, July 2000.

[10] X. Chen and A. L. Murphy, “Enabling disconnected

transitive communication in mobile ad hoc networks,” in

Proc. of the Workshop on Principles of Mobile Computing

(POMC’01), August 2001.

[11] T. Spyropoulos, K. Psounis, and C. S. Raghavendra,

“Spray and Wait: An efficient routing scheme for

intermittently connected mobile networks,” in Proc. Of the

Workshop on Delay Tolerant Networks (WDTN), ACM

SIGCOMM Workshops, 2005.

[12] Q. Li and D. Rus, “Communication in disconnected ad hoc

networks using message relay,” Journal of Parallel and

Distributed Computing, 2003.

[13] M. Musolesi, S. Hailes, and C. Mascolo, “Adaptive routing

for intermittently connected mobile ad hoc networks,” in

Proc. of the ACM WoWMom, 2005.

[14] J. LeBrun, C-N Chuah, D. Ghosal, “Knowledge-based

opportunistic forwarding in vehicular wireless ad hoc

networks,” in Proc. of IEEE VTC, Spring 2005.

[15] W. Zhao, M. Ammar, and E. Zegura, “Message ferrying

approach for data delivery in sparse mobile ad hoc

networks,” in Proc. of the 3rd ACM International

Symposium on Mobile Ad Hoc Networking and Computing

(Mobihoc), 2004.

[16] W. Zhao, M. Ammar, and E. Zegura, “Controlling the

mobility of multiple data transport ferries in a delay tolerant

network,” in Proc. of the IEEE INFOCOM 2005.

[17] M. Chuah and P. Yang, “Message ferrying scheme with

differentiated services,” in Proc. of the IEEE MILCOM

2005.

 [18] R. Viswanathan, J. Li, and M. Chuah, “Message ferrying

for constrained scenarios,” in Proc. of the ACM WoWMoM

2005.

[19] M. Seligman, K. Fall, and P. Mundur, “Alternative

custodians for congestion control in delay tolerant

networks,” in Proc. of the Workshop on Delay Tolerant

Networks (WDTN), ACM SIGCOMM Workshops, 2005.

[20] P. Mundur, S. Lee, and M. Seligman, “Routing in

intermittently connected networks,” in Proc. of the

ACM/IEEE MSWiM, October 2006.

Padma Mundur received a Masters degree in Systems engineering

from the University of Virginia, Charlottesville, VA, in 1990 and the

Ph.D. degree in information technology from George Mason

University, Fairfax, VA, in 2000. She was a faculty member in the

Computer Science Department at University of Maryland, Baltimore

County from 2000 to 2006. She is currently a research faculty at the

Institute for Advanced Computer Studies at

University of Maryland, College Park

(UMIACS). Her research interests include

distributed systems, multimedia networking,

DTNs and other challenged networks, and

analytical performance modeling. She is on

the editorial board of IEEE Communications

Surveys and Tutorials Journal; she has been

on program committees for ICDCS, ICME

and others. She has served as a reviewer for

NSF panels, and many IEEE/ACM journals.

Sookyoung Lee received a Masters degree in Computer Science from

the Ewha Womans University, Korea, in 1997. She was with LG

ELECTRONICS Inc., Electronics and Telecommunications Research

Institute, Korea Electrics Technology

Institute, and Samsung Electronics Co. LTD,

Korea from 1998 to 2004. She is a Ph.D.

student in the Department of Computer

Science and Electrical Engineering,

University of Maryland Baltimore County

since Fall 2005. Her primary research interest

is in network modeling and performance

analysis for dynamic and sparse networks.

Matthew Seligman is a networking

researcher at the Laboratory for

Telecommunications Sciences (LTS) and

is a Ph.D. candidate in the Department of

Electrical and Computer Engineering at

Stevens Institute of Technology. He

received his Masters degree in Electrical

Engineering from Stevens Institute of

Technology and his Bachelorsdegree in

Computer Engineering and Electrical

Engineering from Pennsylvania State University. He previously held

positions at Coree Networks and Lucent Technologies in New Jersey.

His research interests include DTNs, network simulation, and

embedded systems. He is a member of ACM and IEEE.

 14

APPENDIX

Quickest SD Algorithm – Pseudo-code

