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Abstract. Watermarking digital media is one of the important chal-
lenges for information hiding. Not only the watermark must be resistant
to noise and against attempts of modification, legitimate users should
not be aware that it is embedded in the media. One of the techniques
for watermarking is using an special variant of spread-spectrum tech-
nique, called frequency hopping. It requires ensembles of periodic binary
sequences with low off-peak autocorrelation and cross-correlation. Un-
fortunately, they are quite rare and difficult to find. The small Kasami,
Kamaletdinov, and Extended Rational Cycle constructions are versatile,
because they can also be converted into Costas-like arrays for frequency
hopping. We study the implementation of such ensembles using linear
feedback shift registers. This permits an efficient generation of sequences
and arrays in real time in FPGAs. Such an implementation requires
minimal memory usage and permits dynamic updating of sequences or
arrays.

The aim of our work was to broaden current knowledge of sets of se-
quences with low correlation studying their implementation using linear
feedback shift registers. A remarkable feature of these families is their
similarities in terms of implementation and it may open new way to
characterize sequences with low correlation, making it easier to gener-
ate them. It also validates some conjectures made by Moreno and Tirkel
about arrays constructed using the method of composition.

Keywords: Periodic Sequences ·Multidimensional Arrays ·Watermark-
ing.

1 Introduction

Digital media has became a widely used product in everyday life. The availability
of electronic devices, like computers and smartphones, makes possible large-scale
distribution of digital content without proper authorization from content pro-
ducers. This situation has created a need for finding ways of hiding copyright
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messages or serial numbers in order to trace copyright violators. Several com-
panies decided to fund the Digital Watermarking Alliance for raising awareness
and promote the adoption of digital watermarking.

There are several techniques that this consortium plan to standardize, and
one proposed method to hide information in digital media is a variant of spread-
spectrum techniques using ensembles of periodic sequences with low off-peak
autocorrelation and low cross-correlation [12]. This makes sets of arrays with
low correlations find applications in watermarking of images, audio, video, and
multimedia; but they are also prized in radar and communications, because
of their efficiency and noise immunity. Known ensembles of sequences, such as
the small Kasami set [11], are optimal with respect to the Sidelnikov corre-
lation bound, but their linear complexity is logarithmic in the length of the
sequences, so prone to cryptanalytic attacks. Other optimal ensembles of binary
sequences are Kamaletdinov ensembles of sequences [10], discovered indepen-
dently by Moreno and Tirkel among other families of sequences unfolded from
arrays constructed by the Extended Rational Cycle (ERC) [15]. These sequences
have lengths whose factors are relatively prime, so they can be folded into two-
dimensional arrays using the Chinese remainder theorem (CRT) [9]. They consist
of cyclic shifts of a pseudonoise or constant column [18] and can all be generated
using the composition method [17]. The idea behind this procedure is to build
arrays using shifted versions of the same pseudonoise sequence, by means of a
shift array or shift sequence. This method is very flexible and it allows also to
generate higher dimensional arrays [15]. A similar family of sequences with good
correlation properties are given by the interleaved sequences [8], but we remark
that the definition is different and so is the theory to generated by them. While
both constructions make use of the method of composition, and the concepts
of shift sequence and Trace function, they are quite distinct. The constructions
discussed here utilise families of novel shift sequences with low auto and cross
hit correlation, together with a solitary pseudonoise column. These construc-
tions yield sequences of length p(p+ 1) and p(p− 1) [13] and multidimensional
multi-periodic arrays [18, 15]. By contrast, interleaved sequences [8] use the com-
position of a solitary shift sequence with ingeniously chosen column sequences.
This construction is limited to sequence lengths (2n − 1)2. The construction is
single periodic because of the choice of the shift sequence [5] and only two such
shift sequences are available: exponential Welch and the folded m sequence in-
troduced by Baumert and Games, see [6]. Moreover, the shift arrays used in
the sequences can be converted into Costas-like arrays with bounded auto- and
cross-hit correlations [16]. Apart from watermarking, such ensembles are useful
in multiple access frequency/time hopping systems for UWB ranging, sonar, and
wireless communications.

An important aspect which has been little discussed is implementation. Al-
though all known constructions can be easily implemented in a computer, the
challenge is to do it in low-resource devices. Linear Feedback Shift Registers (-
LFSRs) provide the most common technique for generating sequences. However,
Kamaletdinov ensembles and ERC families require quite large LFSRs. Leukhin
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and Tirkel [13] proposed an implementation using cascade LFSRs and then asked
for a general formula for the length of the LFSRs involved. This paper presents
formulas for that parameter. For certain array sizes, this allows an efficient gen-
eration of sequences and arrays in real time in FPGAs. Such an implementation
requires minimal memory usage and permits dynamic updating of sequences or
arrays.

Moreover, the factorization of the minimal polynomials of these LFSRs fol-
lows a certain pattern. This provides a way to unify the above sequences and
constructions and brings order to apparently haphazard discoveries. A challeng-
ing area in the field of finding families of low correlation sequences is to char-
acterize properties of these sets like linear complexity. This is still not widely
understood and this research is a step forward to close this gap. Our results also
validate some conjectures made by Moreno and Tirkel about arrays constructed
using the method of composition. These results build on [13], where empirical
data suggested that such unification should be possible. In turn, Leukhin and
Tirkel [13] drew attention upon the pioneering works [1, 4], which analysed the
cycle lengths of reducible polynomials and, most importantly, those containing
repeated factors. In order to understand the unified constructions, we first study
the nature of the most common column sequence employed by the method of
composition: the Legendre sequence which exists for every prime number. Ding
et al. [3] calculated the linear complexity of the binary Legendre sequence and
its minimal polynomial. We extend this result, giving the number of factors as
well as their degree. Explicitly, the factors are those of cyclotomic polynomials,
so similar algorithms as those by Tuxanidy and Wang [19] for odd characteris-
tic could be applied. We leave the development of such algorithms as an open
problem.

The paper is organized as follows: Section 2 introduces cascade LFSRs and
shows how a recursion polynomial (or minimal polynomial) for a Legendre se-
quence factors into lower degree polynomials. Section 3 analyses the minimal
polynomials for arrays generated by the method of composition using the Leg-
endre sequence as column. By default, it also provides the minimal polynomials
for m-sequence columns, a much simpler case. Section 4 discusses how the new
theory is consistent with and validates the empirical findings in [13].

2 Cascade LFSRs and Legendre sequence

Throughout the rest of the paper, we assume that the reader is familiar with
the theory of LFSRs. We recommend consulting the work by Birdsall and Ris-
tenbatt [1].

Implementation of sequences is an important and difficult issue. Although
any sequence can be generated by an LFSR, it is not always efficient because its
length can be close to that of the sequence.

There is an alternative to the naive implementation using LFSRs, called
cascade LFSRs. The idea is to speed up the generation combining the output of
several LFSRs by a XOR gate, as shown in Figure 1. It is even more convenient
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Fig. 1. A cascade with two LFSRs

when some of the LFSRs give decimated sequences of another. In this case, some
memory can be saved.

Finding such a representation for a sequence is equivalent to finding factors
of its minimal polynomial. In this paper, we focus on nontrivial factors, i.e.
irreducible factors of degree greater than one. These are the ones which matter
most, because the factor x + 1 represents a sequence inversion. Although there
are efficient algorithms to factor polynomials with binary coefficients, our aim is
deriving formulas depending directly on the parameters of the sequence.

Now, we recall that The Legendre sequence (si) with respect to the prime p
is defined, for 0 ≤ i < p, by

si =

{
(

1 +
(

i
p

)

)

/2, if gcd(i, p) = 1;

0, otherwise;
(1)

where
(

i
p

)

is the Legendre symbol. A binary Legendre sequence exists for all odd
prime length and its correlation is perfect if p = 3 mod 4, which makes it very
versatile and this is the reason it is used in the method of composition. Ding et
al. proved the following result regarding its minimal polynomial.

Lemma 1 (Theorem 2 in [3]). Let (si) be the Legendre sequence with respect

to the prime p and m(x) its minimal polynomial. We introduce the following

additional elements:

– F2 = {0, 1}, the finite field of two elements

– β, a primitive root over an extension of F2 of order p,
– q(x) =

∏

{x+ βi | 0 ≤ i < p,
(

i
p

)

= 1},

Then,

– m(x) = q(x)(x+ 1), if p ≡ −1 mod 8
– m(x) = q(x), if p ≡ 1 mod 8
– m(x) = xp + 1, if p ≡ 3 mod 8
– m(x) = (xp + 1)/(x+ 1), if p ≡ 5 mod 8

Next lemma give some properties of the factorization of m(x).
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Lemma 2 (Theorem 2.47 in [14]). Let F2[x] be the ring of polynomials with

coefficients in F2. For a prime p > 2, the irreducible factors of (xp + 1)/(x+ 1)
over F2[x] have all degree d, the minimal positive integer such that 2d − 1 is

divisible by p. In particular, since m(x) divides xp + 1, all of its irreducible

factors have degree d.

A decimation of a p-periodic sequence (ui) is a sequence (vi) defined by vi = uαi,
where α is a positive integer. For the Legendre sequence, we can prove that a
cascade representation can be given by decimations of p-periodic sequences.

Theorem 1. Let Fp be the field with p elements. There exists a p-periodic se-

quence (ui) such that the minimal polynomial of the Legendre sequence (si) can
be expressed as x+1 times the product of the minimal polynomials of decimations

of (ui) by quadratic residues of Fp, if p ≡ −1, 3 mod 8. All these minimal poly-

nomials have degree d, the minimal positive integer such that 2d − 1 is divisible

by p.

Proof. We denote by F2d the finite field with 2d elements. By Lemma 2, all factors
of the polynomial (xp+1)/(x+1) have degree d and are irreducible. Indeed, any
LFSR (ui) which has as minimal polynomial one of these factors is of the form
ui = Tr(αi), for some α ∈ F2d , αp = 1, where Tr is the trace function. If α is a
generator of the multiplicative group of elements of order p, i.e. a primitive root
of order p, any other LFSR must be a decimation of (ui). Indeed, if vi = Tr(βi)
and there exists g such that αg = β,

vi = Tr(αgi) = ugi mod p.

The minimal polynomial of the Legendre sequence must be a product of these
irreducible factors, each of them defining a decimation of (ui). The fact that
these decimations are obtained through quadratic residues of the finite field Fp

is a consequence of Lemma 1. This concludes the proof. ⊓⊔

Example 1. We calculate the occurring LFSRs for p = 73. In this case, we get
29 = 512 ≡ 1 mod 73, so d = 9. The factorization of the minimal polynomial of
the Legendre sequence with respect to prime p is exactly

m(x) = (x9 + x4 + x2 + x+ 1)(x9 + x6 + x5 + x2 + 1)

(x9 + x7 + x4 + x3 + 1)(x9 + x8 + x7 + x5 + 1).

For general values of p, notice that we know exactly the linear complexity of
the Legendre sequence L(si), and that (si) can be represented in cascade LFSRs
using:

– (p− 1)/(2d) nontrivial LFSRs, if p ≡ −1, 1 mod 8
– (p− 1)/(d) nontrivial LFSRs, otherwise

By Lemma 1, the output sequence has to be XORed with the constant sequence
of ones if p ≡ 3, 7 mod 8.
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Fig. 2. Graphical example of the construction of a two-dimensional array using as
column a Legendre sequence with respect to the prime 7. The doubly periodic shift
sequence is [0, 1, 3, 4, 3, 1] and is represented as the left two-dimensional array: the shifts
for each output column are the black squares. The output is the array on the right.

3 Composition Method

The composition method builds a two-dimensional array from a shift array and
a column. The output columns are cyclic shifts (as indicated by the shift array)
of the input one.

This procedure admits a nice graphical representation: the shift array gets a
black square in position (i, j) if the column of index i is to be shifted j positions.
Figure 2 shows an example with a shift array belonging to family Kamaletdinov 1
and a Legendre sequence with respect to the prime 7 as input column. If the
numbers of rows and columns are coprime, it is possible to transform the two-
dimensional array into a sequence using the Chinese remainder theorem.

The shift array of T × N admits a representation as a sequence of integers
between 0 and T − 1, which are the shifts. So, in a similar vein, consider a
T -periodic binary sequence (ui) and an N -periodic sequence of shifts (yi) with
gcd(N,T ) = 1. The resulting sequence using the Chinese remainder theorem is

Si = u(i+yi mod N ) mod T , 0 ≤ i < NT. (2)

Next result gives a lower bound for the linear complexity of (Si), which is
generated by the composition method using (ui) and (yi).

Theorem 2. Let (ui) be a binary sequence of period T and (yi) an N -periodic

sequence of shifts. We define the following NT -periodic sequence:

Yi =

{

1, if ∃l, i ≡ (l − (l + yl)AN) mod NT, l = 0, . . . , N − 1;

0, otherwise;
(3)

where A is the modular inverse of N modulo T , i.e. AN ≡ 1 mod T . Then,

L(Si) ≥ NL(ui) + L(Yi)−NT.
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Proof. We consider the generating polynomial associated with (Si) (Eq. (2)):

S(x) =

NT−1
∑

i=0

Six
i.

It is well known that the linear complexity of that sequence is

NT − deg(gcd(S(x), xTN − 1)).

In order to calculate the greatest common divisor of these two polynomials, we
denote by A an integer such that AN ≡ 1 mod T .

gcd
(

S(x), xTN − 1
)

= gcd

(

NT−1
∑

i=0

Six
i, xTN − 1

)

=

gcd





N−1
∑

l=0

T−1
∑

j=0

SNj+lx
Nj+l, xTN − 1



 = gcd





N−1
∑

l=0

T−1
∑

j=0

uNj+l+yl
xNj+l, xTN − 1



 =

gcd

(

u
(

xN
)

N−1
∑

l=0

x(l−(l+yl)AN) mod NT , xTN − 1

)

,

whose degree is not larger than

deg

(

gcd

(

N−1
∑

l=0

x(l−(l+yl)AN) mod NT , xTN − 1

))

+deg
(

gcd
(

u(xN ), xTN − 1
))

=

deg

(

gcd

(

N−1
∑

l=0

x(l−(l+yl)AN) mod NT , xTN − 1

))

+N deg
(

gcd
(

u(x), xT − 1
))

.

Using the relation between the generating function and the linear complexity,
we get the result. ⊓⊔

This is, to our knowledge, the first result that relates the linear complexity of the
column and doubly periodic shift sequences to the linear complexity generated
by the composition method and the Chinese remainder theorem.

Next, we give a formula to calculate a multiple of the minimal polynomial
of the unfolded sequences presented by Leukhin and Tirkel [13]. Indeed, if a
plausible conjecture holds true, we can give the LFSRs in cascade representation
of the unfolded sequences, up to multiplicities.

We define the following operation: given two polynomials f, g ∈ F2[x], f ⊙ g
is the monic polynomial defined by

f ⊙ g =
∏

f(α)=0

∏

g(β)=0

(x− αβ),

where the products run over all roots of f and g over a closed extension of F2,
see [19] for more about this operation.
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Theorem 3. Take a column sequence of length p whose minimal polynomial

is M(x) and a doubly periodic shift sequence of length T with gcd(T, p) = 1.
The minimal polynomial of any sequence unfolded using the Chinese remainder

theorem from an array output by the composition method is a divisor of M(x)⊙
(xT + 1), if (xp + 1)/M(x) is not divisible by x + 1. Otherwise, the minimal

polynomial is a divisor of the product of M(x)⊙ ((xT +1)/(x+1)) and (x+1).
As a consequence, sequences coming from unfolded arrays generated by the

composition method can be represented as a set of cascade LFSRs. All these

LFSRs are decimations of a single linear generator of degree d, the minimum

integer satisfying

2d ≡ 1 mod pT ′, gcd(T ′, 2) = 1, T = 2fT ′,

and the multiplicity of the factors is less than 2f .

Proof. Given M(x), we define two sets:

{αβ | M(α) = 0, βT = 1}, (4)

{αβ | M(α) = 0, βT = 1, β 6= 1} ∪ {1}. (5)

A proof that all roots of the minimal polynomial of the unfolded array are in
one of these sets can be found in [15, Lemma 5.1]. For the second statement,
note that the generated sequence has period pT , which implies that the minimal
polynomial is xpT +1, whose roots are powers of a primitive root of order 2d− 1
and occur with multiplicity at most 2f . This finishes the proof. ⊓⊔

As an example, let us apply the theorem above to the array generated in Figure 2.
In that case, p = 7 and the period of the doubly periodic shift sequence is T = 6,
so the length of the LFSRs in the cascade representation is at most d = 6, which
is the minimum integer such that 2d ≡ 1 mod 21.

We remark that all the appearing LFSRs are decimations of the same LFSR,
but not all proper necessarily. That is why the examples in Equations 16 and 18
calculated by Leukhin and Tirkel involve factors with different degrees.

Computer experiments show that the roots of the minimal polynomial are
those in either Equation (4) or (5). Indeed, it is straightforward to prove this
for the shift arrays defined by ERC, Family A and Kamaletdinov 1 and 2 if the
following conjecture holds [7].

Conjecture 1. The sequences generated by the composition method with shift
arrays defined by Kamaletdinov families have maximal linear complexity.

Example 2. Let us go through the example in [13, Figure 7]. Take p = 7 and
a doubly periodic shift sequence of length T = 6, so 6 = 2T ′ and T ′ = 3. The
degree d can be calculated directly:

26 = 64 ≡ 1 mod pT ′.

Notice that the factor multiplicity equals 2. In this case, Conjecture 1 holds and
the roots of the minimal polynomial are given exactly by Equation (4). Using [2,
p. 119], it is possible to calculate a polynomial whose roots are exactly (4) or (5).
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We finish this section with a corollary on the length of the LFSRs in the cascade
representation when the Legendre sequence is used as column.

Corollary 1. Under the conditions of Theorem 3 and for the cascade represen-

tation defined in the theorem, using as input column the Legendre sequence with

respect to the prime p, all nontrivial LFSRs of the resulting cascade representa-

tion have degree d, if T ′ = 1. Otherwise, write φ for the Euler totient function

and, for an integer D > 1, let dD be the minimum positive integer such that

2dD ≡ 1 mod pD. One of the following cases holds:

– if p ≡ −1 mod 8, there are φ(pD)/(2dD) nontrivial LFRSs of length dD for

each divisor D of T ′

– if p ≡ 3 mod 8, there are φ(pD)/dD nontrivial LFRSs of length dD for each

divisor D of T ′

– if p ≡ 1 mod 8, there are φ(pD)/(2dD) nontrivial LFRSs of length dD for

each divisor D of T ′, except possibly for D = 1.
– if p ≡ 5 mod 8, there are φ(pD)/dD nontrivial LFRSs of length dD for each

divisor D of T ′, except possibly for D = 1.

Proof. If the sequences have maximal linear complexity, the minimal polynomial
must have as many roots as possible, i.e. the set of roots must be the one defined
in either Equation (4) or (5). Now, the result is an immediate application of
Theorem 3 and the factorization of xpT ′

+ 1 by cyclotomic polynomials. The
number of LFSRs for the case D = 1 is deduced in Example 1 and can be found,
in general, in [14]. ⊓⊔

Example 3. For p = 23, Leukhin and Tirkel [13] give the factorization for the
minimal polynomial of the sequence generated using the Extended Rational Cy-
cle. The parameters, in that case, are T = 24, T ′ = 3, and 2f = 8. Using our
notation, we have D1 = 11 and D3 = 22, so, applying the formula, there is only
one factor of degree 11 and another of degree 22.

Interestingly enough, Theorem 3 states that the multiplicity is less than 8.
In this case, the factor of degree 11 has multiplicity 7 and the other has multi-
plicity 8.

4 Conclusions

This paper shows that the recursion polynomial of the Legendre sequence is
the product of specific irreducible polynomials. Consequently, we compute the
recursion polynomials of sequences and arrays constructed by the method of
composition using the Legendre sequence as input column.

This validates empirical findings and conjectures by Leukhin, Moreno, and
Tirkel. It also shows that apparently unrelated constructions by Kamaletdinov,
Moreno, and Tirkel can be unified under these results.

We leave two open problems: the first one is to develop similar algorithms as
those in [19]. This would recover explicitly the factors of the minimal polynomial
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of the sequence. Although there are tables with the factorization of XpT +1 for
some values of pT , it would still be interesting to obtain faster algorithms.

The second problem is to find an explicit formula for the multiplicity of the
different factors. Computer experiments show some regularities, for example,
there are always factors with maximal multiplicity, i.e. 2f . Again, it is possible
to compute the multiplicity efficiently.

As a final remark, the ideas outlayed here apply if the column is replaced by
any other sequence. However, only the Legendre sequence is presented because
it provides the most interesting case, due to its applications.
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