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The evaluation and learning of classifiers is of particular importance in several computer

security applications such as intrusion detection systems (IDSs), spam filters, and watermarking

of documents for fingerprinting or traitor tracing. There are however relevant considerations

that are sometimes ignored by researchers that apply machine learning techniques for security

related problems. In this work we identify and work on two problems that seem prevalent in

security-related applications. The first problem is the usually large class imbalance between

normal events and attack events. We address this problem with a unifying view of different

proposed metrics, and with the introduction of Bayesian Receiver Operating Characteristic (B-

ROC) curves. The second problem to consider is the fact that the classifier or learning rule will

be deployed in an adversarial environment. This implies that good performance on average

might not be a good performance measure, but rather we look for good performance under the

worst type of adversarial attacks. We work on a general methodology that we apply for the

design and evaluation of IDSs and Watermarking applications.



DESIGN AND EVALUATION OF DECISION MAKING ALGORITHMS
FOR INFORMATION SECURITY

by

Alvaro A. Cárdenas

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:
Professor John S. Baras, Chair/Advisor
Professor Virgil D. Gligor
Professor Bruce Jacob
Professor Carlos Berenstein
Professor Nuno Martins



c© Copyright by
Alvaro A. Cárdenas

2006



DEDICATION

To my family (which now includes a wonderful wife), friends, and everyone who made

my stay in College Park one of the happiest in my life.

ii



ACKNOWLEDGMENTS

This work would not have been possible without the support and guidance of my advisor

Dr. John S. Baras. I am also indebted largely to Dr. George Moustakides, who showed me the

light on how to formulate and solve problems. Part of this dissertation is also joint work with

Svetlana Radosavac, who had to start with a very nice formulation of the SPRT in the MAC

layer, and with Karl S. Seamon who helped me with experimental evaluations on Intrusion

Detection.

iii



TABLE OF CONTENTS

List of Figures vi

1 Introduction 1

2 Performance Evaluation Under the Class Imbalance Problem 4

I Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

III Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

IV Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

V Graphical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

VI Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

3 Secure Decision Making: Defining the Evaluation Metrics and the Adversary 30

I Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

II A Set of Design and Evaluation Guidelines . . . . . . . . . . . . . . . . . . .31

III A Black Box Adversary Model . . . . . . . . . . . . . . . . . . . . . . . . . .34

IV A White Box Adversary Model . . . . . . . . . . . . . . . . . . . . . . . . . .50

V Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

4 Performance Comparison of MAC layer Misbehavior Schemes 56

I Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

II Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

III Problem Description and Assumptions . . . . . . . . . . . . . . . . . . . . . .60

IV Sequential Probability Ratio Test (SPRT) . . . . . . . . . . . . . . . . . . . .61

V Performance analysis of DOMINO . . . . . . . . . . . . . . . . . . . . . . . .68

VI Theoretical Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

VII Nonparametric CUSUM statistic . . . . . . . . . . . . . . . . . . . . . . . . .75

VIII Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

IX Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . .82

5 Secure Data Hiding Algorithms 84

I Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84

iv



II General Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84

III Additive Watermarking and Gaussian Attacks . . . . . . . . . . . . . . . . . .88

B.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

C.1 Minimization with respect toRe . . . . . . . . . . . . . . . . 94

C.2 Minimization with respect toΓ . . . . . . . . . . . . . . . . 95

IV Towards a Universal Adversary Model . . . . . . . . . . . . . . . . . . . . . .102

Bibliography 113

v



LIST OF FIGURES

2.1 Isoline projections ofCID onto the ROC curve. The optimalCID value is
CID = 0.4565. The associated costs areC(0,0) = 3×10−5, C(0,1) = 0.2156,
C(1,0) = 15.5255 andC(1,1) = 2.8487. The optimal operating point isPFA =
2.76×10−4 andPD = 0.6749. . . . . . . . . . . . . . . . . . . . . . . . . . .17

2.2 As the cost ratioC increases, the slope of the optimal isoline decreases . . . . .19

2.3 As the base-ratep decreases, the slope of the optimal isoline increases . . . . .20

2.4 The PPV isolines in the ROC space are straight lines that depend only onθ.
The PPV values of interest range from 1 top . . . . . . . . . . . . . . . . . . 22

2.5 The NPV isolines in the ROC space are straight lines that depend only onφ.
The NPV values of interest range from 1 to 1− p . . . . . . . . . . . . . . . . 22

2.6 PPV and NPV isolines for the ROC of an IDS withp = 6.52×10−5 . . . . . . 24

2.7 B-ROC for the ROC of Figure 2.6. . . . . . . . . . . . . . . . . . . . . . . . .24

2.8 Mapping of ROC to B-ROC . . . . . . . . . . . . . . . . . . . . . . . . . . .25

2.9 An empirical ROC (ROC2) and its convex hull (ROC1) . . . . . . . . . . . . . 26

2.10 The B-ROC of the concave ROC is easier to interpret . . . . . . . . . . . . . .27

2.11 Comparison of two classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . .28

2.12 B-ROCs comparison for thep of interest . . . . . . . . . . . . . . . . . . . . .29

3.1 Probability of error forhi vs. p . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 The optimal operating point . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

3.3 Robust expected cost evaluation . . . . . . . . . . . . . . . . . . . . . . . . .47

3.4 Robust B-ROC evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

4.1 Form of the least favorable pmfp∗1 for two different values of g. When g
approaches 1,p∗1 approachesp0. As g decreases, more mass ofp∗1 concentrated
towards the smaller backoff values. . . . . . . . . . . . . . . . . . . . . . . . .66

4.2 Tradeoff curve between the expected number of samples for a false alarm
E[TFA] and the expected number of samples for detectionE[TD]. For fixed a
and b, as g increases (low intensity of the attack) the time to detection or to
false alarms increases exponentially. . . . . . . . . . . . . . . . . . . . . . . .68

vi



4.3 For K=3, the state of the variable cheatcount can be represented as a Markov
chain with five states. When cheatcount reaches the final state (4 in this case)
DOMINO raises an alarm. . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

4.4 Exact and approximate values ofp as a function ofm. . . . . . . . . . . . . . . 73

4.5 DOMINO performance forK = 3, m ranges from 1 to 60.γ is shown explicitly.
As γ tends to either 0 or 1, the performance of DOMINO decreases. The SPRT
outperforms DOMINO regardless ofγ andm. . . . . . . . . . . . . . . . . . . 75

4.6 DOMINO performance for various thresholdsK, γ = 0.7 andm in the range
from 1 to 60. The performance of DOMINO decreases with increase ofm. For
fixed γ, the SPRT outperforms DOMINO for all values of parametersK andm. 76

4.7 The best possible performance of DOMINO is whenm= 1 andK changes in
order to accommodate for the desired level of false alarms. The bestγ must be
chosen independently. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76

4.8 Tradeoff curves for each of the proposed algorithms. DOMINO has parame-
tersγ = 0.9 andm= 1 while K is the variable parameter. The nonparametric
CUSUM algorithm has as variable parameterc and the SPRT hasb = 0.1 and
a is the variable parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

4.9 Tradeoff curves for default DOMINO configuration withγ = 0.9, best perform-
ing DOMINO configuration withγ = 0.7 and SPRT. . . . . . . . . . . . . . . .81

4.10 Tradeoff curves for best performing DOMINO configuration withγ = 0.7, best
performing CUSUM configuration withγ = 0.7 and SPRT. . . . . . . . . . . .81

4.11 Comparison between theoretical and experimental results: theoretical analysis
with linear x-axis closely resembles the experimental results. . . . . . . . . . .82

5.1 Let us definea = y− x1 for the detector. We can now see the Lagrangian
function overa, where the adversary tries to distribute the densityh such that
L(λ,h) is maximized while satisfying the constraints (i.e., minimizingL(λ,h)
overλ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

5.2 Piecewise linear decision function, whereρ(0) = ρ0(0) = ρ1(0) = 1
2 . . . . . . 107

5.3 The discontinuity problem in the Lagrangian is solved by using piecewise linear
continuousdecision functions. It is now easy to shape the Lagrangian such that
the maxima created form a saddle point equilibrium. . . . . . . . . . . . . . .108

5.4 New decision function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

5.5 Withρ defined in Figure 5.4 the Lagrangian is able to exhibit three local max-
ima, one of them at the pointa = 0, which implies that the adversary will use
this point whenever the distortion constraints are too severe . . . . . . . . . . .110

vii



5.6 ρ¬ represents a decision stating that we do not possess enough information in
order to make a reliable selection between the two hypotheses. . . . . . . . . .111

viii



Chapter 1

Introduction

Look if I can raise the money fast, can I set up my own lab?

-The Smithsonian Institution. Gore Vidal

The algorithms used to ensure several information security goals, such as authentication,

integrity and secrecy, have often been designed and analyzed with the help of formal mathe-

matical models. One of the most successful examples is the use of theoretical cryptography for

encryption, integrity and authentication. By assuming that some basic primitives hold, (such

as the existence of one-way functions), some cryptographic algorithms can formally be proven

secure.

Information security models have however theoretical limits, since it cannot always be

proven that an algorithm satisfies (or not) certain security conditions. For example, as for-

malized by Harrison, Ruzzo, and Ullman, the access matrix model is undecidable and Rices

theorem implies that static analysis problems are also undecidable. Because of similar results

such as the undecidability of detecting computer viruses, there is reason to believe that several

intrusion detection problems are also undecidable.

Undecidability is not the only problem for being able to formally characterize the security

properties of an algorithm. Not only are some problems intractable, or undecidable, but also

there are certain inherent uncertainties in several security related problems such as biometrics,

data hiding (watermarking), fraud detection and spam filters that are impossible to factor out.
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All algorithms trying to solve these problems will make a non-negligible amount of de-

cision errors. These errors occur due to approximations and can consequently be formulated

as a tradeoff between the costs of operation (e.g., the necessary resources for their operation,

such as the number of false alarms) and the correctness of their output (e.g., the security level

achieved, or the probability of detection). It is however very difficult in practice to assess both:

the real costs of these security solutions and their actual security guarantees. Most of the re-

search therefore relies on ad hoc solutions and heuristics that cannot be shared between security

fields trying to address these hard problems.

In this work we try to address the problem of providing a necessary framework in order to

reason about the security and the costs of an algorithm for solving problems where the decision

between two hypotheses cannot be made without errors.

Our framework is composed of two main parts.

Evaluation Metrics:We introduce in a unified framework several metrics that have been pre-

viously proposed in the literature. We give intuitive interpretations of them and provide

new metrics that address two of the main problems for decision algorithms. First, the

large class imbalance between the two hypotheses, and second, the uncertainty of several

parameters, including costs and the class imbalance severity.

Security Model: In order to reason formally about the security level of a decision algorithm,

we need to introduce a formal model for an adversary and the system being evaluated.

We therefore clearly define the feasible design space, and the properties the decision al-

gorithm need to satisfy by an evaluation metric. Then we model the considered adversary

class by clearly defining the information available to the adversary, the capabilities of the

adversary and its goal. Finally, since the easiest way to break the security of a system is
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to step outside the box, i.e., to break the rules under which the algorithm was evaluated,

we clearly identify the assumptions made in our model. These assumptions then play

an important part in the evaluation of the algorithm. Our tools to solve and analyze this

models are based on robust detection theory and game theory, and the aim is always the

same, minimize the advantage of the adversary (the advantage of the adversary is defined

according to the metric used), for any possible adversary in a given adversary class.

We apply our model to different problems in intrusion detection, selfish packet forward-

ing in ad hoc networks, selfish MAC layer misbehavior in wireless access points and water-

marking algorithms. Our results show that formally modeling these problems and obtaining

the least favorable attack distribution can lead in the best cases to show how there is merit in

our framework, by outperforming previously proposed heuristic solutions (analytically and by

simulations), and in the worst cases they can be seen as pessimistic decisions based on risk

aversion.

The following is the layout of this dissertation. In chapter 2 we view in a unified frame-

work traditional metrics used to evaluate the performance of intrusion detection systems and

introduce a new evaluation curve called the B-ROC curve. In chapter 3 we introduce the notion

of security of a decision algorithm and define the adversarial models that are going to be used

in the next chapters in order to design and evaluate decision making algorithms. In chapter

4 we compare the performance of two classification algorithms used for detecting MAC layer

misbehavior in wireless networks. This chapter is a validation of our approach, since it shows

how the design of classification algorithms using robust detection theory and formal adversarial

modeling can outperform theoretically and empirically previously proposed algorithms based

on heuristics. Finally in chapter 5 we apply our framework for the design and evaluation of

data hiding algorithms.
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Chapter 2

Performance Evaluation Under the Class Imbalance Problem

For there seem to be many empty alarms in war

-Nicomachean Ethics, Aristotle

I Overview

Classification accuracy in intrusion detection systems (IDSs) deals with such fundamen-

tal problems as how to compare two or more IDSs, how to evaluate the performance of an IDS,

and how to determine the best configuration of the IDS. In an effort to analyze and solve these

related problems, evaluation metrics such as theBayesian detection rate, theexpected cost, the

sensitivityand theintrusion detection capabilityhave been introduced. In this chapter, we study

the advantages and disadvantages of each of these performance metrics and analyze them in a

unified framework. Additionally, we introduce the Bayesian Receiver Operating Characteristic

(B-ROC) curves as a new IDS performance tradeoff which combines in an intuitive way the

variables that are more relevant to the intrusion detection evaluation problem.

II Introduction

Consider a company that, in an effort to improve its information technology security

infrastructure, wants to purchase either intrusion detector 1 (I DS1) or intrusion detector 2

(I DS2). Furthermore, suppose that the algorithms used by each IDS are kept private and there-
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fore the only way to determine the performance of each IDS (unless some reverse engineering

is done [1]) is through empirical tests determining how many intrusions are detected by each

scheme while providing an acceptable level of false alarms. Suppose these tests show with high

confidence thatI DS1 detects one-tenth more attacks thanI DS2 but at the cost of producing

one hundred times more false alarms. The company needs to decide based on these estimates,

which IDS will provide the best return of investment for their needs and their operational envi-

ronment.

This general problem is more concisely stated as the intrusion detection evaluation prob-

lem, and its solution usually depends on several factors. The most basic of these factors are the

false alarm rateand thedetection rate, and their tradeoff can be intuitively analyzed with the

help of thereceiver operating characteristic(ROC) curve [2, 3, 4, 5, 6]. However, as pointed

out in [7, 8, 9], the information provided by the detection rate and the false alarm rate alone

might not be enough to provide a good evaluation of the performance of an IDS. Therefore,

the evaluation metrics need to consider the environment the IDS is going to operate in, such

as the maintenance costs and the hostility of the operating environment (the likelihood of an

attack). In an effort to provide such an evaluation method, several performance metrics such

as theBayesian detection rate[7], expected cost[8], sensitivity[10] and intrusion detection

capability[9], have been proposed in the literature.

Yet despite the fact that each of these performance metrics makes their own contribu-

tion to the analysis of intrusion detection systems, they are rarely applied in the literature when

proposing a new IDS. It is our belief that the lack of widespread adoption of these metrics stems

from two main reasons. Firstly, each metric is proposed in a different framework (e.g. informa-

tion theory, decision theory, cryptography etc.) and in a seemingly ad hoc manner. Therefore

an objective comparison between the metrics is very difficult.
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The second reason is that the proposed metrics usually assume the knowledge of some

uncertain parameters like the likelihood of an attack, or the costs of false alarms and missed

detections. Moreover, these uncertain parameters can also change during the operation of an

IDS. Therefore the evaluation of an IDS under some (wrongly) estimated parameters might not

be of much value.

A. Our Contributions

In this chapter, we introduce a framework for the evaluation of IDSs in order to address

the concerns raised in the previous section. First, we identify the intrusion detection evaluation

problem as a multi-criteria optimization problem. This framework will let us compare several

of the previously proposed metrics in a unified manner. To this end, we recall that there are

in general two ways to solve a multi-criteria optimization problem. The first approach is to

combine the criteria to be optimized in a single optimization problem. We then show how

the intrusion detection capability, the expected cost and the sensitivity metrics all fall into this

category. The second approach to solve a multi-criteria optimization problem is to evaluate a

tradeoff curve. We show how the Bayesian rates and the ROC curve analysis are examples of

this approach.

To address the uncertainty of the parameters assumed in each of the metrics, we then

present a graphical approach that allows the comparison of the IDS metrics for a wide range of

uncertain parameters. For the single optimization problem we show how the concept ofisolines

can capture in a single value (the slope of the isoline) the uncertainties like the likelihood of an

attack and the operational costs of the IDS. For the tradeoff curve approach, we introduce a new

tradeoff curve we call the Bayesian ROC (B-ROC). We believe the B-ROC curve combines in

a single graph all the relevant (and intuitive) parameters that affect the practical performance of
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an IDS.

In an effort to make this evaluation framework accessible to other researchers and in order

to complement our presentation, we started the development of a software application available

at [11] to implement the graphical approach for the expected cost and our new B-ROC analysis

curves. We hope this tool can grow to become a valuable resource for research in intrusion

detection.

III Notation and Definitions

In this section we present the basic notation and definitions which we use throughout this

document.

We assume that the input to an intrusion detection system is a feature-vectorx ∈ X . The

elements ofx can include basic attributes like the duration of a connection, the protocol type,

the service used etc. It can also include specific attributes selected with domain knowledge

such as the number of failed logins, or if a superuser command was attempted. Examples of

x used in intrusion detection are sequences of system calls [12], sequences of user commands

[13], connection attempts to local hosts [14], proportion of accesses (in terms of TCP or UDP

packets) to a given port of a machine over a fixed period of time [15] etc.

Let I denote whether a given instancex was generated by an intrusion (represented by

I = 1 or simply I ) or not (denoted asI = 0 or equivalently¬I ). Also let A denote whether

the output of an IDS is an alarm (denoted byA = 1 or simplyA) or not (denoted byA = 0, or

equivalently¬A). An IDS can then be defined as an algorithmI DS that receives a continuous

data stream of computer event featuresX = {x[1],x[2], . . . ,} and classifies each inputx[ j] as

being either a normal event or an attack i.e.I DS : X →{A,¬A}. In this chapter we do not
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address how the IDS is designed. Our focus will be on how to evaluate the performance of a

given IDS.

Intrusion detection systems are commonly classified as eithermisusedetection schemes

or anomalydetection schemes. Misuse detection systems use a number of attack signatures de-

scribing attacks; if an event featurex matches one of the signatures, an alarm is raised. Anomaly

detection schemes on the other hand rely on profiles or models of the normal operation of the

system. Deviations from these established models raise alarms.

The empirical results of a test for an IDS are usually recorded in terms of how many

attacks were detected and how many false alarms were produced by the IDS, in a data set

containing both normal data and attack data. The percentage of alarms out of the total number

of normal events monitored is referred to as thefalse alarm rate(or theprobability of false

alarm), whereas the percentage of detected attacks out of the total attacks is called thedetection

rate (or probability of detection) of the IDS. In general we denote the probability of false alarm

and the probability of detection (respectively) as:

PFA≡ Pr[A = 1|I = 0] and PD ≡ Pr[A = 1|I = 1] (2.1)

These empirical results are sometimes shown with the help of the ROC curve; a graph

whose x-axis is the false alarm rate and whose y-axis is the detection rate. The graphs of

misuse detection schemes generally correspond to a single point denoting the performance of

the detector. Anomaly detection schemes on the other hand, usually have a monitored statistic

which is compared to a thresholdτ in order to determine if an alarm should be raised or not.

Therefore their ROC curve is obtained as a parametric plot of the probability of false alarm

(PFA) versus the probability of detection (PD) (with parameterτ) as in [2, 3, 4, 5, 6].
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IV Evaluation Metrics

In this section we first introduce metrics that have been proposed in previous work. Then

we discuss how we can use these metrics to evaluate the IDS by using two general approaches:

the expected cost and the tradeoff approach. In the expected cost approach, we give intuition

of the expected cost metric by relating all the uncertain parameters (such as the probability of

an attack) to a single line that allows the IDS operator to easily find the optimal tradeoff. In the

second approach, we identify the main parameters that affect the quality of the performance of

the IDS. This will allow us to later introduce a new evaluation method that we believe better

captures the effect of these parameters than all previously proposed methods.

A. Background Work

Expected Cost

In this section we present the expected cost of an IDS by combining some of the ideas

originally presented in [8] and [16]. The expected cost is used as an evaluation method for

IDSs in order to assess the investment of an IDS in a given IT security infrastructure. In

addition to the rates of detection and false alarm, the expected cost of an IDS can also depend

on the hostility of the environment, the IDS operational costs, and the expected damage done

by security breaches.

A quantitative measure of the consequences of the output of the IDS to a given event,

which can be an intrusion or not are the costs shown in Table 2.1. HereC(0,1) corresponds to

the cost of responding as though there was an intrusion when there is none,C(1,0) corresponds

to the cost of failing to respond to an intrusion,C(1,1) is the cost of acting upon an intrusion

when it is detected (which can be defined as a negative value and therefore be considered as a
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profit for using the IDS), andC(0,0) is the cost of not reacting to a non-intrusion (which can

also be defined as a profit, or simply left as zero.)

Adding costs to the different outcomes of the IDS is a way to generalize the usual tradeoff

between the probability of false alarm and the probability of detection to a tradeoff between the

expected cost for a non-intrusion

R(0,PFA)≡C(0,0)(1−PFA)+C(0,1)PFA

and theexpected cost for an intrusion

R(1,PD)≡C(1,0)(1−PD)+C(1,1)PD

It is clear that if we only penalize errors of classification with unit costs (i.e. ifC(0,0) =

C(1,1) = 0 andC(0,1) = C(1,0) = 1) the expected cost for non-intrusion and the expected

cost for intrusion become respectively, the false alarm rate and the detection rate.

The question of how to select the optimal tradeoff between the expected costs is still

open. However, if we let the hostility of the environment be quantified by thelikelihood of

an intrusion p≡ Pr[I = 1] (also known as thebase-rate[7]), we can average the expected

non-intrusion and intrusion costs to give the overallexpected cost of the IDS:

E[C(I ,A)] = R(0,PFA)(1− p)+R(1,PD)p (2.2)

It should be pointed out thatR() andE[C(I ,A)] are also known as therisk andBayesian

risk functions (respectively) in Bayesian decision theory.

Given an IDS, the costs from Table 2.1 and the likelihood of an attackp, the problem now

is to find the optimal tradeoff betweenPD andPFA in such a way thatE[C(I ,A)] is minimized.
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State of the system Detector’s report

No Alarm (A=0) Alarm (A=1)

No Intrusion (I = 0) C(0,0) C(0,1)

Intrusion (I = 1) C(1,0) C(1,1)

Table 2.1: Costs of the IDS reports given the state of the system

The Intrusion Detection Capability

The main motivation for introducing theintrusion detection capability CID as an evalu-

ation metric originates from the fact that the costs in Table 2.1 are chosen in a subjective way

[9]. Therefore the authors propose the use of the intrusion detection capability as an objective

metric motivated by information theory:

CID =
I(I ;A)
H(I)

(2.3)

whereI andH respectively denote the mutual information and the entropy [17]. TheH(I) term

in the denominator is a normalizing factor so that the value ofCID will always be in the[0,1]

interval. The intuition behind this metric is that by fine tuning an IDS based onCID we are

finding the operating point that minimizes the uncertainty of whether an arbitrary input eventx

was generated by an intrusion or not.

The main drawback ofCID is that it obscures the intuition that is to be expected when

evaluating the performance of an IDS. This is because the notion of reducing the uncertainty

of an attack is difficult to quantify in practical values of interest such as false alarms or de-

tection rates. Information theory has been very useful in communications because the entropy

and mutual information can be linked to practical quantities, like the number of bits saved by

compression (source coding) or the number of bits of redundancy required for reliable com-

munications (channel coding). However it is not clear how these metrics can be related to
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quantities of interest for the operator of an IDS.

The Base-Rate Fallacy and Predictive Value Metrics

In [7] Axelsson pointed out that one of the causes for the large amount of false alarms

that intrusion detectors generate is the enormous difference between the amount of normal

events compared to the small amount of intrusion events. Intuitively, the base-rate fallacy

states that because the likelihood of an attack is very small, even if an IDS fires an alarm,

the likelihood of having an intrusion remains relatively small. Formally, when we compute

the posterior probability of intrusion (a quantity known as theBayesian detection rate, or the

positive predictive value(PPV)) given that the IDS fired an alarm, we obtain:

PPV≡ Pr[I = 1|A = 1]

=
Pr[A = 1|I = 1]Pr[I = 1]

Pr[A = 1|I = 1]Pr[I = 1]+Pr[A = 1|I = 0]Pr[I = 0]

=
PDp

(PD−PFA)p+PFA
(2.4)

Therefore, if the rate of incidence of an attack is very small, for example on average only

1 out of 105 events is an attack (p = 10−5), and if our detector has a probability of detection

of one (PD = 1) and a false alarm rate of 0.01 (PFA = 0.01), then Pr[I = 1|A = 1] = 0.000999.

That is on average, of 1000 alarms, only one would be a real intrusion.

It is easy to demonstrate that the PPV value is maximized when the false alarm rate of

our detector goes to zero, even if the detection rate also tends to zero! Therefore as mentioned

in [7] we require a trade-off between the PPV value and thenegative predictive value(NPV):

NPV≡ Pr[I = 0|A = 0] =
(1− p)(1−PFA)

p(1−PD)+(1− p)(1−PFA)
(2.5)
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B. Discussion

The concept of finding the optimal tradeoff of the metrics used to evaluate an IDS is an

instance of the more general problem of multi-criteria optimization. In this setting, we want

to maximize (or minimize) two quantities that are related by a tradeoff, which can be done via

two approaches. The first approach is to find a suitable way of combining these two metrics in

a single objective function (such as the expected cost) to optimize. The second approach is to

directly compare the two metrics via a trade-off curve.

We therefore classify the above defined metrics into two general approaches that will

be explored in the rest of this chapter: the minimization of the expected cost and the tradeoff

approach. We consider these two approaches as complimentary tools for the analysis of IDSs,

each providing its own interpretation of the results.

Minimization of the Expected Cost

Let ROCdenote the set of allowed(PFA,PD) pairs for an IDS. The expected cost approach

will include any evaluation metric that can be expressed as

r∗ = min
(PFA,PD)∈ROC

E[C(I ,A)] (2.6)

wherer∗ is the expected cost of the IDS. GivenI DS1 with expected costr∗1 and anI DS2

with expected costr∗2, we can sayI DS1 is better thanI DS2 for our operational environment

if r∗1 < r∗2.

We now show howCID, and the tradeoff between the PPV and NPV values can be ex-

pressed as an expected costs problems. For theCID case note that the entropy of an intrusion

H(I) is independent of our optimization parameters(PFA,PD), therefore we have:
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(P∗FA,P∗D) = arg max
(PFA,PD)∈ROC

I (I ;A)
H(I)

= arg max
(PFA,PD)∈ROC

I(I ;A)

= arg min
(PFA,PD)∈ROC

H(I |A)

= arg min
(PFA,PD)∈ROC

E[− logPr[I |A]]

It is now clear thatCID is an instance of the expected cost problem with costs given by

C(i, j) =− logPr[I = i|A = j]. By finding the costs ofCID we are making theCID metric more

intuitively appealing, since any optimal point that we find for the IDS will have an explanation

in terms of cost functions (as opposed to the vague notion of diminishing the uncertainty of the

intrusions).

Finally, in order to combine the PPV and the NPV in an average cost metric, recall that

we want to maximize both Pr[I = 1|A = 1] and Pr[I = 0|A = 0]. Our average gain for each

operating point of the IDS is therefore

ω1Pr[I = I |A = 1]Pr[A = 1]+ω2Pr[I = 0|A = 0]Pr[A = 0]

whereω1 (ω2) is a weight representing a preference towards maximizing PPV (NPV). This

equation is equivalent to the minimization of

−ω1Pr[I = I |A = 1]Pr[A = 1]−ω2Pr[I = 0|A = 0]Pr[A = 0] (2.7)

Comparing equation (2.7) with equation (2.2), we identify the costs as beingC(1,1) = −ω1,

C(0,0) =−ω2 andC(0,1) =C(1,0) = 0. Relating the predictive value metrics (PPV and NPV)

with the expected cost problem will allow us to examine the effects of the base-rate fallacy on

the expected cost of the IDS in future sections.
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IDS classification tradeoffs

An alternate approach in evaluating intrusion detection systems is to directly compare the

tradeoffs in the operation of the system by a tradeoff curve, such as ROC, or DET curves [18] (a

reinterpretation of the ROC curve where they-axis is 1−PD, as opposed toPD). As mentioned

in [7], another tradeoff to consider is between the PPV and the NPV values. However, we do

not know of any tradeoff curves that combine these two values to aid the operator in choosing

a given operating point.

We point out in section B that a tradeoff betweenPFA andPD (as in the ROC curves) as

well as a tradeoff between PPV and NPV can be misleading for cases wherep is very small,

since very small changes in thePFA and NPV values for our points of interest will have drastic

performance effects on thePD and the PPV values. Therefore, in the next section we introduce

the B-ROC as a new tradeoff curve betweenPD and PPV.

The class imbalance problem

A way to relate our approach with traditional techniques used in machine learning is to

identify the base-rate fallacy as just another instance of the class imbalance problem. The term

class imbalancerefers to the case when in a classification task, there are many more instances

of some classes than others. Theproblemis that under this setting, classifiers in general perform

poorly because they tend to concentrate on the large classes and disregard the ones with few

examples.

Given that this problem is prevalent in a wide range of practical classification problems,

there has been recent interest in trying to design and evaluate classifiers faced with imbalanced

data sets [19, 20, 21].
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A number of approaches on how to address these issues have been proposed in the litera-

ture. Ideas such as data sampling methods, one-class learning (i.e. recognition-based learning),

and feature selection algorithms, appear to be the most active research directions for learning

classifiers. On the other hand the issue of how to evaluatebinaryclassifiers in the case of class

imbalances appears to be dominated by the use of ROC curves [22, 23] (and to a lesser extent,

by error curves [24]).

V Graphical Analysis

We now introduce a graphical framework that allows the comparison of different met-

rics in the analysis and evaluation of IDSs. This graphical framework can be used to adaptively

change the parameters of the IDS based on its actual performance during operation. The frame-

work also allows for the comparison of different IDSs under different operating environments.

Throughout this section we use one of the ROC curves analyzed in [8] and in [9]. Mainly

the ROC curve describing the performance of the COLUMBIA team intrusion detector for the

1998 DARPA intrusion detection evaluation [25]. Unless otherwise stated, we assume for our

analysis the base-rate present in the DARPA evaluation which wasp = 6.52×10−5.

A. Visualizing the Expected Cost: The Minimization Approach

The biggest drawback of the expected cost approach is that the assumptions and infor-

mation about the likelihood of attacks and costs might not be known a priori. Moreover, these

parameters can change dynamically during the system operation. It is thus desirable to be able

to tune the uncertain IDS parameters based on feedback from its actual system performance in

order to minimizeE[C(I ,A)].
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We select the use of ROC curves as the basic 2-D graph because they illustrate the be-

havior of a classifier without regard to the uncertain parameters, such as the base-ratep and the

operational costsC(i, j). Thus the ROC curve decouples the classification performance from

these factors [26]. ROC curves are also general enough such that they can be used to study

anomaly detection schemes and misuse detection schemes (a misuse detection scheme has only

one point in the ROC space).
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Figure 2.1: Isoline projections ofCID onto the ROC curve. The optimalCID value isCID =

0.4565. The associated costs areC(0,0) = 3×10−5, C(0,1) = 0.2156,C(1,0) = 15.5255 and

C(1,1) = 2.8487. The optimal operating point isPFA = 2.76×10−4 andPD = 0.6749.

In the graphical framework, the relation of these uncertain factors with the ROC curve of

an IDS will be reflected in theisolinesof each metric, where isolines refer to lines that connect

pairs of false alarm and detection rates such that any point on the line has equal expected

cost. The evaluation of an IDS is therefore reduced to finding the point of the ROC curve that

intercepts the optimal isoline of the metric (for signature detectors the evaluation corresponds

to finding the isoline that intercepts their single point in the ROC space and the point (0,0) or
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(1,1)). In Figure 2.1 we can see as an example the isolines ofCID intercepting the ROC curve

of the 1998 DARPA intrusion detection evaluation.

One limitation of theCID metric is that it specifies the costsC(i, j) a priori. However,

in practice these costs are rarely known in advance and moreover the costs can change and be

dynamically adapted based on the performance of the IDS. Furthermore the nonlinearity ofCID

makes it difficult to analyze the effect differentp values will have onCID in a single 2-D graph.

To make the graphical analysis of the cost metrics as intuitive as possible, we will assume from

now on (as in [8]) that the costs are tunable parameters and yet once a selection of their values

is made, they are constant values. This new assumption will let us at the same time see the

effect of different values ofp in the expected cost metric.

Under the assumption of constant costs, we can see that the isolines for the expected cost

E[C(I ,A)] are in fact straight lines whose slope depends on the ratio between the costs and the

likelihood ratio of an attack. Formally, if we want the pair of points(PFA1,PD1) and(PFA2,PD2)

to have the same expected cost, they must be related by the following equation [27, 28, 26]:

mC,p≡
PD2−PD1

PFA1−PFA2
=

1− p
p

C(0,1)−C(0,0)
C(1,0)−C(1,1)

=
1− p

p
1
C

(2.8)

where in the last equality we have implicitly definedC to be the ratio between the costs, and

mC,p to be the slope of the isoline. The set of isolines ofE[C(I ,A)] can be represented by

I SOE = {mC,p×PFA +b : b∈ [0,1]} (2.9)

For fixedC and p, it is easy to prove that the optimal operating point of the ROC is the

point where the ROC intercepts the isoline inI SOE with the largestb (note however that there

are ROC curves that can have more than one optimal point.) The optimal operating point in the

ROC is therefore determined only by the slope of the isolines, which in turn is determined by

p andC. Therefore we can readily check how changes in the costs and in the likelihood of an
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attack will impact the optimal operating point.
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Figure 2.2: As the cost ratioC increases, the slope of the optimal isoline decreases

Effect of the Costs

In Figure 2.2, consider the operating point corresponding toC = 58.82, and assume that

after some time, the operators of the IDS realize that the number of false alarms exceeds their

response capabilities. In order to reduce the number of false alarms they can increase the cost

of a false alarmC(0,1) and obtain a second operating point atC = 10. If however the situation

persists (i.e. the number of false alarms is still much more than what operators can efficiently

respond to) and therefore they keep increasing the cost of a false alarm, there will be acritical

slope mc such that the intersection of the ROC and the isoline with slopemc will be at the point

(PFA,PD) = (0,0). The interpretation of this result is that we should not use the IDS being

evaluated since its performance is not good enough for the environment it has been deployed

in. In order to solve this problem we need to either change the environment (e.g. hire more IDS
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operators) or change the IDS (e.g. shop for a more expensive IDS).

The Base-Rate Fallacy Implications on the Costs of an IDS

A similar scenario occurs when the likelihood of an attack changes. In Figure 2.3 we can

see how asp decreases, the optimal operating point of the IDS tends again to(PFA,PD) = (0,0)

(again the evaluator must decide not to use the IDS for its current operating environment).

Therefore, for small base-rates the operation of an IDS will be cost efficient only if we have

an appropriate largeC∗ such thatmC∗,p∗ ≤ mc. A largeC∗ can be explained if cost of a false

alarm much smaller than the cost of a missed detection:C(1,0)�C(0,1) (e.g. the case of a

government network that cannot afford undetected intrusions and has enough resources to sort

through the false alarms).
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Generalizations

This graphical method of cost analysis can also be applied to other metrics in order to get

some insight into the expected cost of the IDS. For example in [10], the authors define an IDS

with input spaceX to beσ−sensitiveif there exists an efficient algorithm with the same input

spaceE : X → {¬A,A}, such thatPE
D −PE

FA ≥ σ. This metric can be used to find the optimal

point of an ROC because it has a very intuitive explanation: as long as the rate of detected

intrusions increases faster than the rate of false alarms, we keep moving the operating point

of the IDS towards the right in the ROC. The optimal sensitivity problem for an IDS with a

receiver operating characteristicROCis thus:

max
(PFA,PD)∈ROC

PD−PFA (2.10)

It is easy to show that this optimal sensitivity point is the same optimal point obtained with the

isolines method formC,p = 1 (i.e.C = (1− p)/p).

B. The Bayesian Receiver Operating Characteristic: The Tradeoff Approach

Although the graphical analysis introduced so far can be applied to analyze the cost

efficiency of several metrics, the intuition for the tradeoff between the PPV and the NPV is

still not clear. Therefore we now extend the graphical approach by introducing a new pair of

isolines, those of the PPV and the NPV metrics.

Lemma 1: Two sets of points(PFA1,PD1) and (PFA2,PD2) have the same PPV value if

and only if

PFA2

PD2
=

PFA1

PD1
= tanθ (2.11)

whereθ is the angle between the line PFA = 0 and the isoline. Moreover the PPV value of an
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isoline at angleθ is

PPVθ,p =
p

p+(1− p) tanθ
(2.12)

Similarly, two set of points(PFA1,PD1) and(PFA2,PD2) have the same NPV value if and only if

1−PD1

1−PFA1
=

1−PD2

1−PFA2
= tanφ (2.13)

whereφ is the angle between the line PD = 1 and the isoline. Moreover the NPV value of an

isoline at angleφ is

NPVφ,p =
1− p

p(tanφ−1)+1
(2.14)

Figures 2.4 and 2.5 show the graphical interpretation of Lemma 1. It is important to note

the range of the PPV and NPV values as a function of their angles. In particular notice that asθ

goes from 0◦ to 45◦ (the range of interest), the value of PPV changes from 1 top. We can also

see from Figure 2.5 that asφ ranges from 0◦ to 45◦, the NPV value changes from one to 1− p.

If p is very small, thenNPV≈ 1.

Figure 2.6 shows the application of Fact 1 to a typical ROC curve of an IDS. In this figure

we can see the tradeoff of four variables of interest:PFA, PD, PPV, andNPV. Notice that if

we choose the optimal operating point based onPFA andPD, as in the typical ROC analysis, we

might obtain misleading results because we do not know how to interpret intuitively very low

false alarm rates, e.g. isPFA = 10−3 much better thanPFA = 5×10−3? The same reasoning

applies to the study of PPV vs. NPV as we cannot interpret precisely small variations in NPV

values, e.g. isNPV = 0.9998 much better thanNPV = 0.99975? Therefore we conclude that

the most relevant metrics to use for a tradeoff in the performance of a classifier arePD and PPV,

since they have an easily understandable range of interest.

However, even when you select as tradeoff parameters the PPV andPD values, the isoline
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analysis shown in Figure 2.6 has still one deficiency, and it is the fact that there is no efficient

way to account for the uncertainty ofp. In order to solve this problem we introduce the B-ROC

as a graph that shows how the two variables of interest:PD andPPV are related under different

severity of class imbalances. In order to follow the intuition of the ROC curves, instead of using

PPV for the x-axis we prefer to use 1-PPV. We use this quantity because it can be interpreted

as theBayesian false alarm rate: BFA≡ Pr[C = 0|A = 1]. For example, for IDSsBFA can be a

measure of how likely it is, that the operators of the detection system will loose their time each

time they respond to an alarm. Figure 2.7 shows the B-ROC for the ROC presented in Figure

2.6. Notice also how the values of interest for the x-axis have changed from[0,10−3] to [0,1].

PFA BFA

PDPD

00

1 1

1 1− p

Figure 2.8: Mapping of ROC to B-ROC

In order to be able to interpret the B-ROC curves, Figure 2.8 shows how the ROC points

map to points in the B-ROC. The vertical line defined by 0< PD ≤ 1 andPFA = 0 in the ROC

maps exactly to the same vertical line 0< PD ≤ 1 andBFA = 0 in the B-ROC. Similarly, the top
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horizontal line 0≤PFA≤ 1 andPD = 1 maps to the line 0≤BFA≤ 1−p andPD = 1. A classifier

that performs random guessing is represented in the ROC as the diagonal linePD = PFA, and

this random guessing classifier maps to the vertical line defined byBFA = 1− p andPD > 0

in the B-ROC. Finally, to understand where the point(0,0) in the ROC maps into the B-ROC,

let α and f (α) denotePFA and the correspondingPD in the ROC curve. Then, as the false

alarm rateα tends to zero (from the right), the Bayesian false alarm rate tends to a value that

depends onp and the slope of the ROC close to the point(0,0). More specifically, if we let

f ′(0+) = limα→0+ f ′(α), then:

lim
α→0+

BFA = lim
α→0+

α(1− p)
p f(α)+α(1− p)

=
1− p

p( f ′(0+)−1)+1
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Figure 2.9: An empirical ROC (ROC2) and its convex hull (ROC1)

It is also important to recall that a necessary condition for a classifier to be optimal, is

that its ROC curve should be concave. In fact, given any non-concave ROC, by following

Neyman-Pearson theory, you can always get a concave ROC curve by randomizing decisions
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between optimal points [27]. This idea has been recently popularized in the machine learning

community by the notion of the ROC convex hull [26].
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Figure 2.10: The B-ROC of the concave ROC is easier to interpret

The importance of this observation is that in order to guarantee that the B-ROC is a well

defined continuous and non-decreasing function, we map only concave ROC curves to B-ROCs.

In Figures 2.9 and 2.10 we show the only example in this document of the type of B-ROC curve

that you can get when you do not consider a concave ROC.

We also point out the fact that the B-ROC curves can be very useful for the comparison

of classifiers. A typical comparison problem by using ROCs is shown in Figure 2.11. Several

ideas have been proposed in order to solve this comparison problem. For example by using

decision theory as in [29, 26] we can find the optimal classifier between the two by assuming a

given priorp and given misclassification costs. However, a big problem with this approach is

that the misclassification costs are sometimes uncertain and difficult to estimate a priori. With
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a B-ROC on the other hand, you can get a better comparison of two classifiers without the

assumption of any misclassification costs, as can be seen in Figure 2.12.

VI Conclusions

We believe that the B-ROC provides a better way to evaluate and compare classifiers

in the case of class imbalances or uncertain values ofp. First, for selecting operating points

in heavily imbalanced environments, B-ROCs use tradeoff parameters that are easier to un-

derstand than the variables considered in ROC curves (they provide better intuition for the

performance of the classifier). Second, since the exact class distributionp might not be known

a priori, or accurately enough, the B-ROC allows the plot of different curves for the range of

interest ofp. Finally, when comparing two classifiers, there are cases in which by using the

B-ROC, we do not need cost values in order to decide which classifier would be better for given

values ofp. Note also that B-ROCs consider parameters that are directly related to exact quan-
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Figure 2.12: B-ROCs comparison for thep of interest

tities that the operator of a classifier can measure. In contrast, the exact interpretation of the

expected cost of a classifier is more difficult to relate to the real performance of the classifier

(the costs depend in many other unknown factors).
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Chapter 3

Secure Decision Making: Defining the Evaluation Metrics and the Adversary

They did not realize that because of the quasi-reciprocal and circular nature of all

Improbability calculations, anything that was Infinitely Improbable was actually very likely to

happen almost immediately.

-Life the Universe and Everything. Douglas Adams

I Overview

As we have seen in the previous chapter, the traditional evaluation of IDSs assume that

the intruder will behave similarly before and after the deployment and configuration of the IDS

(i.e. during the evaluation it is assumed that the intruder will be non-adaptive). In practice

however this assumption does not hold, since once an IDS is deployed, intruders will adapt and

try to evade detection or launch attacks against the IDS.

This lack of a proper adversarial model is a big problem for the evaluation of any decision

making algorithm used in security applications, since without the definition of an adversary, we

cannot reason about and much less measure the security of the algorithm.

We therefore layout in this chapter the overall design and evaluation goals that will be

used throughout the rest of this dissertation.

The basic idea is to introduce a formal framework for reasoning about the performance

and security of a decision making algorithm. In particular we do not want to find or design the
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best performing decision making algorithm on average, but the algorithm that performs best

against the worst type of attacks.

The chapter layout is the following. In section II we introduce a general set of guidelines

for the design and evaluation of decision making algorithms. In section III we introduce a

black box adversary model. This model is very simple yet very useful and robust for cases

where having an exact adversarial model is intractable. Finally in section IV we introduce a

detailed model of an adversary which we will use in chapters 4 and 5.

II A Set of Design and Evaluation Guidelines

In this chapter we focus on designing a practical methodology for dealing with attackers.

In particular we propose the use of a framework where each of these components is clearly

defined:

Desired Properties Intuitive definition of the goal of the system.

Feasible Design SpaceThe design spaceS for the classification algorithm.

Information Available to the Adversary Identify which pieces of information can be avail-

able to an attacker.

Capabilities of the Adversary Define a feasible class of attackersF based on the assumed

capabilities.

Evaluation Metric The evaluation metric should be a reasonable measure how well the de-

signed system meets our desired properties. We call a systemsecureif its metric outcome

is satisfied for any feasible attacker.
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Objective of the Adversary An attacker can use its capabilities and the information available

in order to perform two main classes of attacks:

• Evaluation attack. The goal of the attacker is opposite to the goal defined by

the evaluation metric. For example, if the goal of the classifier is to minimize

E[L(C,A)], then the goal of the attacker is to maximizeE[L(C,A)].

• Base system attack. The goal of an attacker is not the opposite goal of the classifier.

For example, even if the goal of the classifier is to minimizeE[L(C,A)], the goal of

the attacker is still to minimize the probability of being detected.

Model Assumptions Identify clearly the assumptions made during the design and evaluation

of the classifier. It is important to realize that when we borrow tools from other fields,

they come with a set of assumptions that might not hold in an adversarial setting, because

the first thing that an attacker will do is violate the set of assumptions that the classifier

is relying on for proper operation. After all, the UCI machine learning repository never

launched an attack against your classifier. Therefore one of the most important ways to

deal with an adversarial environment is to limit the number of assumptions made, and to

evaluate the resiliency of the remaining assumptions to attacks.

Before we use these guidelines for the evaluation of classifiers, we describe a very simple

example of the use of these guidelines and their relationship to cryptography. Cryptography is

one of the best examples in which a precise framework has been developed in order to define

properly what a secure system means, and how to model an adversary. We believe therefore

that this example will help us in identifying the generality and use of the guidelines as a step
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towards achieving sound designs1.

A. Example: Secret key Encryption

In secret key cryptography, Alice and Bob share a single keysk. Given a messagem

(calledplaintext) Alice uses an encryption algorithm to produce unintelligible dataC (called

ciphertext): C← Esk(m). After receivingC, Bob then usessk and a decryption algorithm to

recover the secret messagem= Dsk(C).

Desired PropertiesE andD should enable Alice and Bob to communicate secretly, that is, a

feasible adversary should not get any information aboutmgivenC except with very small

probability.

Feasible Design SpaceE andD have to be efficient probabilistic algorithms. They also need

to satisfy correctness: for anyskandm, Dsk(Esk(m)) = m.

Information Available to the AdversaryIt is assumed that an adversary knows the encryption

and decryption algorithms. The only information not available to the adversary is the

secret keyskshared between Alice and Bob.

Capabilities of the AdversaryThe class of feasible adversariesF is the set of algorithms run-

ning in a reasonable amount of time.

Evaluation MetricFor any messagesm0 andm1, given a ciphertextC which is known to be an

encryption of eitherm0 or m1, no adversaryA ∈ F can guess correctly which message

was encrypted with probability significantly better than 1/2.

1We avoid the precise formal treatment of cryptography because our main objective here is to present the

intuition behind the principles rather than the specific technical details.
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Goal of the AdversaryPerform an evaluation attack. That is, design an algorithmA ∈ F that

can guess with probability significantly better than 1/2 which message corresponds to

the given ciphertext.

Model AssumptionsThe security of an encryption scheme usually relies in a set of crypto-

graphic primitives, such as one way functions.

Another interesting aspect of cryptography is the different notions of security when the

adversary is modified. In the previous example it is sometimes reasonable to assume that the

attacker will obtain valid plaintext and ciphertext pairs:{(m0,C0),(m1,C1), . . . ,(mk,Ck)}. This

new setting is modeled by giving the adversary more capabilities: the feasible setF will now

consist of all efficient algorithms that have access to the ciphertexts of chosen plaintexts. An

encryption algorithm is therefore secure againstchosen-ciphertextattacks if even with this new

capability, the adversary still cannot break the encryption scheme.

III A Black Box Adversary Model

In this section we introduce one of the simplest adversary models against classification

algorithms. We refer to it as ablack boxadversary model since we do not care at the moment

how the adversary creates the observationsX. This model is particularly suited to cases where

trying to model the creation of the inputs to the classifier is intractable.

Recall first that for our evaluation analysis in the previous chapter we were assuming

three quantities that can be, up to a certain extent, controlled by the intruder. They are the

base-ratep, the false alarm ratePFA and the detection ratePD. The base-rate can be modified

by controlling the frequency of attacks. The perceived false alarm rate can be increased if the

intruder finds a flaw in any of the signatures of an IDS that allows him to send maliciously
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crafted packets that trigger alarms at the IDS but that look benign to the IDS operator. Finally,

the detection rate can be modified by the intruder with the creation of new attacks whose sig-

natures do not match those of the IDS, or simply by evading the detection scheme, for example

by the creation of a mimicry attack [30, 31].

In an effort towards understanding the advantage an intruder has by controlling these pa-

rameters, and to provide a robust evaluation framework, we now present a formal framework

to reason about the robustness of an IDS evaluation method. Our work in this section is in

some sense similar to the theoretical framework presented in [10], which was inspired by cryp-

tographic models. However, we see two main differences in our work. First, we introduce the

role of an adversary against the IDS, and thereby introduce a measure of robustness for the

metrics. In the second place, our work is more practical and is applicable to more realistic

evaluation metrics. Furthermore we also provide examples of practical scenarios where our

methods can be applied.

In order to be precise in our presentation, we need to extend the definitions introduced

in section III. For our modeling purposes we decompose theI DS algorithm into two parts: a

detectorD and adecision makerDM . For the case of an anomaly detection scheme,D(x[ j])

outputs the anomaly scorey[ j] on inputx[ j] andDM represents the threshold that determines

whether to consider the anomaly score as an intrusion or not, i.e.DM (y[ j]) outputs an alarm

or it does not. For a misuse detection scheme,DM has to decide to use the signature to report

alarms or decide that the performance of the signature is not good enough to justify its use and

therefore will ignore all alarms (e.g. it is not cost-efficient to purchase the misuse scheme being

evaluated).

Definition 1 An I DS algorithm is the composition of algorithmsD (an algorithm from where

we can obtain an ROC curve) andDM (an algorithm responsible for selecting an operat-
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ing point). During operation, anI DS receives a continuous data stream of event features

x[1],x[2], . . . and classifies each inputx[ j] by raising an alarm or not. Formally:2

I DS(x)

y = D(x)

A←DM (y)

OutputA (whereA∈ {0,1})

♦

We now study the performance of an IDS under an adversarial setting. We remark that

our intruder model does not represent a single physical attacker against the IDS. Instead our

model represents a collection of attackers whose average behavior will be studied under the

worst possible circumstances for the IDS.

The first thing we consider, is the amount of information the intruder has. A basic as-

sumption to make in an adversarial setting is to consider that the intruder knows everything

that we know about the environment and can make inferences about the situation the same way

as we can. Under this assumption we assume that the base-rate ˆp estimated by the IDS, its

estimated operating condition(P̂FA, P̂D) selected during the evaluation, the originalROCcurve

(obtained fromD) and the cost functionC(I ,A) arepublic values(i.e. they are known to the

intruder).

We model the capability of an adaptive intruder by defining some confidence bounds. We

assume an intruder can deviate ˆp− δl , p̂+ δu from the expected ˆp value. Also, based on our

confidence in the detector algorithm and how hard we expect it to be for an intruder to evade

the detector, or to create non-relevant false positives (this also models how the normal behavior

of the system being monitored can produce new -previously unseen- false alarms), we defineα
2The usual arrow notation:a←DM (y) implies thatDM can be a probabilistic algorithm.

36



andβ as bounds to the amount of variation we can expect during the IDS operation from the

false alarms and the detection rate (respectively) we expected, i.e. the amount of variation from

(P̂FA, P̂D) (although in practice estimating these bounds is not an easy task, testing approaches

like the one described in [32] can help in their determination).

The intruder also has access to an oracleFeature(·, ·) that simulates an event to input into

the IDS.Feature(0,ζ) outputs a feature vector modeling the normal behavior of the system that

will raise an alarm with probabilityζ (or a crafted malicious feature to only raise alarms in the

caseFeature(0,1)). And Feature(1,ζ) outputs the feature vector of an intrusion that will raise

an alarm with probabilityζ.

Definition 2 A (δ,α,β)− intruder is an algorithmI that can select its frequency of intrusions

p1 from the intervalδ = [p̂− δl , p̂+ δu]. If it decides to attempt an intrusion, then with prob-

ability p2 ∈ [0,β], it creates an attack featurex that will go undetected by the IDS (otherwise

this intrusion is detected with probabilitŷPD). If it decides not to attempt an intrusion, with

probability p3 ∈ [0,α] it creates a featurex that will raise a false alarm in the IDS
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I(δ,α,β)

Selectp1 ∈ [p̂−δl , p̂+δu]

Selectp2 ∈ [0,α]

Selectp3 ∈ [0,β]

I ← Bernoulli(p1)

If I = 1

B← Bernoulli(p3)

x← Feature(1,(min{(1−B), P̂D}))

Else

B← Bernoulli(p2)

x← Feature(0,max{B, P̂FA})

Output (I,x)

where Bernoulli(ζ) outputs a Bernoulli random variable with probability of successζ.

Furthermore, ifδl = p andδu = 1− p we say thatI has the ability to make achosen-

intrusion rate attack.

♦

We now formalize what it means for an evaluation scheme to be robust. We stress the

fact that we are not analyzing the security of an IDS, but rather the security of theevaluationof

an IDS, i.e. how confident we are that the IDS will behave during operation similarly to what

we assumed in the evaluation.

A. Robust Expected Cost Evaluation

We start with the general decision theoretic framework of evaluating the expected cost
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(per input)E[C(I ,A)] for an IDS.

Definition 3 An evaluation method that claims the expected cost of anI DS is at mostr is ro-

bust against a(δ,α,β)− intruder if the expected cost ofI DS during the attack (Eδ,α,β[C[I ,A)])

is no larger thanr, i.e.

Eδ,α,β[C[I ,A)] = ∑
i,a

C(i,a)×

Pr[ (I ,x)← I(δ,α,β); A← I DS(x) : I = i,A = a ]≤ r

♦

Now recall that the traditional evaluation framework finds an evaluation valuer∗ by using

equation (2.6). So by findingr∗ we are basically finding the best performance of an IDS and

claiming the IDS is better than others ifr∗ is smaller than the evaluation of the other IDSs.

In this section we claim that an IDS is better than others if its expected value under the worst

performance is smaller than the expected value under the worst performance of other IDSs. In

short

Traditional EvaluationGiven a set of IDSs{I DS1,I DS2, . . . ,I DSn} find the best expected

cost for each:

r∗i = min
(Pα

FA,Pβ
D)∈ROCi

E[C(I ,A)] (3.1)

Declare that the best IDS is the one with smallest expected costr∗i .

Robust EvaluationGiven a set of IDSs{I DS1,I DS2, . . . ,I DSn} find the best expected cost

for eachI DS i when being under the attack of a(δ,αi ,βi)− intruder3. Therefore we find

3Note that different IDSs might have differentα andβ values. For example ifI DS1 is an anomaly detection

scheme then we can expect that the probability that new normal events will generate alarmsα1 is larger than the

same probabilityα2 for a misuse detection schemeI DS2.
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the best IDS as follows:

r robust
i = min

(Pαi
FA,P

βi
D )∈ROC

αi ,βi
i

max
I(δ,αi ,βi)

Eδ,αi ,βi [C(I ,A)] (3.2)

Several important questions can be raised by the above framework. In particular we are

interested in finding the least upper boundr such that we can claim the evaluation ofI DS to

be robust. Another important question is how can we design an evaluation ofI DS satisfying

this least upper bound? Solutions to these questions are partially based on game theory.

Lemma 2: Given an initial estimate of the base-ratep̂, an initial ROC curve obtained

fromD, and constant costs C(I ,A), the least upper bound r such that the expected cost evalua-

tion of I DS is r-robust is given by

r = R(0, P̂α
FA)(1− p̂δ)+R(1, P̂β

D)p̂δ (3.3)

where

R(0, P̂α
FA)≡ [C(0,0)(1− P̂α

FA)+C(0,1)P̂α
FA] (3.4)

is the expected cost ofI DS under no intrusion and

R(1, P̂β
D)≡ [C(1,0)(1− P̂β

D)+C(1,1)P̂β
D] (3.5)

is the expected cost ofI DS under an intrusion, and̂pδ, P̂α
FA andP̂β

D are the solution to a zero-

sum game between the intruder (the maximizer) and the IDS (the minimizer), whose solution

can be found in the following way:

1. Let (PFA,PD) denote any points of the initial ROC obtained fromD and let ROC(α,β)

be the ROC curve defined by the points(Pα
FA,Pβ

D), where PβD = PD(1− β) and Pα
FA =

α+PFA(1−α).
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2. Using p̂+ δu in the isoline method, find the optimal operating point(xu,yu)in ROC(α,β)

and usingp̂−δl in the isoline method, find the optimal operating point(xl ,yl ) in ROC(α,β).

3. Find the points(x∗,y∗) in ROC(α,β) that intersect the line

y =
C(1,0)−C(0,0)
C(1,0)−C(1,1)

+x
C(0,0)−C(0,1)
C(1,0)−C(1,1)

(under the natural assumptions C(1,0)> R(0,x∗)>C(0,0), C(0,1)>C(0,0) and C(1,0)>

C(1,1)). If there are no points that intersect this line, then set x∗ = y∗ = 1.

4. If x∗ ∈ [xl ,xu] then find the base-rate parameter p∗ such that the optimal isoline of Equa-

tion (2.9) intercepts ROC(α,β) at (x∗,y∗) and setp̂δ = p∗, P̂α
FA = x∗ andP̂β

D = y∗.

5. Else if R(0,xu) < R(1,yu) find the base-rate parameter pu such that the optimal isoline of

Equation (2.9) intercepts ROC(α,β) at (xu,yu) and then set̂pδ = pu, P̂α
FA = xu andP̂β

D = yu.

Otherwise, find the base-rate parameter pl such that the optimal isoline of Equation (2.9)

intercepts ROC(α,β) at (xl ,yl ) and then set̂pδ = pl , P̂α
FA = xl andP̂β

D = yl .

The proof of this lemma is very straightforward. The basic idea is that if the uncertainty

range ofp is large enough, the Nash equilibrium of the game is obtained by selecting the point

intercepting equation (3). Otherwise one of the strategies for the intruder is always a dominant

strategy of the game and therefore we only need to find which one is it: either ˆp+δu or p̂−δl .

For most practical cases it will be ˆp+ δu. Also note that the optimal operating point in the

originalROCcan be found by obtaining (P̂FA,P̂D) from (P̂α
FA, P̂β

D).

B. Robust B-ROC Evaluation

Similarly we can now also analyze the robustness of the evaluation done with the B-ROC

curves. In this case it is also easy to see that the worst attacker for the evaluation is an intruder
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I that selectsp1 = p̂−δl , p2 = α andp3 = β.

Corollary 1: For any point( ˆPPV, P̂D) corresponding top̂ in the B-ROC curve, a

(δ,α,β)− intruder can decrease the detection rate and the positive predictive value to the

pair ( ˆPPV
δ,α,β

, P̂β
D), whereP̂β = P̂D(1−β) and where

ˆPPV
δ,α,β =

Pβ
Dp−Pβδ

Pβ
Dp+Pα

FA(1− p)+δPα
FA−δPβ

D

(3.6)

C. Example: Minimizing the Cost of a Chosen Intrusion Rate Attack

In this example we introduce probably one of the easiest formulations of an attacker

against a classifier: we assume that the attacker cannot change its feature vectorsx, but rather

only its frequency of attacks:p. This example also shows the generality of lemma 2 and also

presents a compelling scenario of when does a probabilistic IDSs make sense.

Assume an ad hoc network scenario similar to [33, 34, 35, 36] where nodes monitor and

distribute reputation values of other nodes’ behavior at the routing layer. The monitoring nodes

report selfish actions (e.g. nodes that agree to forward packets in order to be accepted in the

network, but then fail to do so) or attacks (e.g. nodes that modify routing information before

forwarding it).

Now suppose that there is a network operator considering implementing a watchdog mon-

itoring scheme to check the compliance of nodes forwarding packets as in [33]. The operator

then plans an evaluation period of the method where trusted nodes will be the watchdogs report-

ing the misbehavior of other nodes. Since the detection of misbehaving nodes is not perfect,

during the evaluation period the network operator is going to measure the consistency of reports

given by several watchdogs and decide if the watchdog system is worth keeping or not.
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During this trial period, it is of interest to selfish nodes to behave as deceiving as they

can so that the neighboring watchdogs have largely different results and the system is not per-

manently established. As stated in [33] the watchdogs might not detect a misbehaving node in

the presence of 1) ambiguous collisions, 2) receiver collisions, 3) limited transmission power,

4) false misbehavior, 5) collusion or 6) partial dropping. False alarms are also possible in sev-

eral cases, for example when a node moves out of the previous node’s listening range before

forwarding on a packet. Also if a collision occurs while the watchdog is waiting for the next

node to forward a packet, it may never overhear the packet being transmitted.

We now briefly describe this model according to our guidelines:

Desired PropertiesAssume the operator wants to find a strategy that minimizes the probability

of making errors. This is an example of the expected cost metric function withC(0,0) =

C(1,1) = 0 andC(1,0) = C(0,1) = 1.

Feasible Design SpaceDM = {πi ∈ [0,1] : π1 +π2 +π3 +π4 = 1}.

Information Available to the AdversaryWe assume the adversary knows everything that we

know and can make inferences about the situation the same way as we can. In game

theory this adversaries are usually referred to asintelligent.

Capabilities of the AdversaryThe adversary has complete control over the base-ratep (its fre-

quency of attacks). The feasible set is thereforeF = [0,1].

Goal of the AdversaryEvaluation attack.

Evaluation Metric

r∗ = min
πi∈DM

max
p∈F

E[C(I ,A)]
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Note the order in optimization of the evaluation metric. In this case we are assuming that

the operator of the IDS makes the first decision, and that this information is then available

to the attacker when selecting the optimalp. We call the strategy of the operatorsecureif

the expected cost (probability of error) is never greater thanr∗ for any feasible adversary.

Model AssumptionsWe have assumed that the attacker will not be able to changeP̂FA andP̂D.

This results from its assumed inability to directly modify the feature vectorx.

Notice that in this case the detector algorithmD is the watchdog mechanism that monitors

the medium to see if the packet was forwardedF or if it did not hear the packet being forwarded

(unheardU) during a specified amount of time. Following [33] (where it is shown that the

number of false alarms can be quite high) we assume that a given watchdogD has a false alarm

rate of P̂FA = 0.5 and a detection rate of̂PD = 0.75. Given this detector algorithm, a (non-

randomized) decision makerDM has to be one of the following rules (where intuitively,h3 is

the more appealing):

h1(F) = 0 h1(U) = 0

h2(F) = 1 h2(U) = 0

h3(F) = 0 h3(U) = 1

h4(F) = 1 h4(U) = 1

Since the operator wants to check the consistency of the reports, the selfish nodes will

try to maximize the probability of error (i.e.C(0,0) = C(1,1) = 0 andC(0,1) = C(1,0) = 1)

of any watchdog with a chosen intrusion rate attack. As stated in lemma 2, this is a zero-sum

game where the adversary is the maximizer and the watchdog is the minimizer. The matrix of

this game is given in Table 3.1.

It is a well known fact that in order to achieve a Nash equilibrium of the game, the players

should consider mixed strategies (i.e. consider probabilistic choices). For our example the
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Figure 3.1: Probability of error forhi vs. p

h0 h1 h2 h3

I = 0 R(0,0) R(0, P̂D) R(0, P̂FA) R(0,1)

I = 1 R(1,0) R(1, P̂FA) R(1, P̂D) R(1,1)

Table 3.1: Matrix for the zero-sum game theoretic formulation of the detection problem

optimal mixed strategy for the selfish node (see Figure 3.1) is to drop a packet with probability

p∗ = P̂FA/(P̂FA1 + P̂D). On the other hand the optimal strategy forDM is to selecth3 with

probability 1/(P̂FA + P̂D) andh1 with probability(P̂FA− (1− P̂D))/(P̂FA− (1− P̂D)+1). This

example shows that sometimes in order to minimize the probability of error (or any general

cost) against an adaptive attacker,DM has to be a probabilistic algorithm.

Lemma 2 also presents a way to get this optimal point from the ROC, however it is not

obvious at the beginning how to get the same results, as there appear to be only three points

in the ROC:(PFA = 0,PD = 0) (by selectingh1), (P̂FA = 1/2, P̂D = 3/4) (by selectingh3) and

(PFA = 1,PD = 1) (by selectingh4). The key property of ROC curves to remember is that the

(optimal) ROC curve is a continuous and concave function [27], and that in fact, the points

that do not correspond to deterministic decisions are joined by a straight line whose points

can be achieved by a mixture of probabilities of the extreme points. In our case, the line
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y = 1− x intercepts the (optimal) ROC at the optimal operating pointsP̂∗FA = P̂FA/(P̂D + P̂FA)

andP̂∗D = P̂D/(P̂FA + P̂D) (see Figure 3.2). Also note thatp∗ is the value required to make the

slope of the isoline parallel to the ROC line intersecting(P∗FA,P∗D).
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Figure 3.2: The optimal operating point

The optimal strategy for the intruder is thereforep∗ = 2/5, while the optimal strategy for

DM is to selecth1 with probability 1/5 andh3 with probability 4/5. In the robust operating

point we haveP∗FA = 2/5 andP∗D = 3/5. Therefore, after fixingDM , it does not matter ifp

deviates fromp∗ because we are guaranteed that the probability of error will be no worse (but

no better either) than 2/5, therefore the IDS can be claimed to be 2/5-robust.

D. Example: Robust Evaluation of IDSs

As a second example, we chose to perform an intrusion detection experiment with the

1998 MIT/Lincoln Labs data set [37]. Although several aspects of this data set have been

criticized in [38], we still chose it for two main reasons. On one hand, it has been (and arguably

still remains) the most used large-scale data set to evaluate IDSs. In the second place we are

not claiming to have a better IDS to detect attacks and then proving our claim with its good

performance in the MIT data set (a feat that would require further testing in order to be assured
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on the quality of the IDS). Our aim on the other hand is to illustrate our methodology, and

since this data set is publicly available and has been widely studied and experimented with

(researchers can in principle reproduce any result shown in a paper), we believe it provides the

basic background and setting to exemplify our approach.

Of interest are the Solaris system log files, known as BSM logs. The first step of the

experiment was to record every instance of a program being executed in the data set. Next, we

created a very simple tool to perform buffer overflow detection. To this end, we compared the

buffer length of each execution with a buffer threshold, if the buffer size of the execution was

larger than the threshold we report an alarm.
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We divided the data set into two sets. In the first one (weeks 6 and 7), our IDS per-

forms very well and thus we assume that this is the ”evaluation” period. The previous three

weeks were used as the period of operation of the IDS. Figure 3.3(a)4 shows the results for

the ”evaluation” period when the buffer threshold ranges between 64 and 780. The dotted

lines represent the suboptimal points of the ROC or equivalently the optimal points that can be

achieved through randomization. For example the dotted line of Figure 3.3(a) can be achieved

by selecting with probabilityλ the detector with threshold 399 and with probability 1−λ the

detector with threshold 773 and lettingλ range from zero to one.

During the evaluation weeks there were 81108 executions monitored and 13 attacks,

therefore ˆp = 1.6×10−4. Assuming that our costs (per execution) areC(0,0) = C(1,1) = 0,

C(1,0) = 850 andC(0,1) = 100 we find that the slope given by equation 2.8 ismC,p̂ = 735.2,

and therefore the optimal point is(2.83× 10−4,1), which corresponds to a threshold of 399

(i.e. all executions with buffer sizes bigger than 399 raise alarms). Finally, with these oper-

ating conditions we find out that the expected cost (per execution) of the IDS isE[C(I ,A)] =

2.83×10−2.

In the previous three weeks used as the ”operation” period our buffer threshold does not

perform as well, as can be seen from its ROC (shown in Figure 3.3(b).) Therefore if we use

the point recommended in the evaluation (i.e. the threshold of 399) we get an expected cost of

4Care must always be taken when looking at the results of ROC curves due to the ”unit of analysis” problem

[38]. For example comparing the ROC of Figure 3.3(a) with the ROC of [6] one might arrive to the erroneous con-

clusion that the buffer threshold mechanism produces an IDS that is better than the more sophisticated IDS based

on Bayesian networks. The difference lies in the fact that we are monitoring the execution ofevery programwhile

the experiments in [6] only monitor the attacked programs (eject, fbconfig, fdformat andps). Therefore

although we raise more false alarms, our false alarm rate (number of false alarms divided by the total number of

honest executions) is smaller.
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Eoperation[C(I ,A)] = 6.934×10−2. Notice how larger the expected cost per execution is from

the one we had evaluated. This is very noticeable in particular because the base-rate is smaller

during the operation period ( ˆpoperation= 7×10−5) and a smaller base-rate should have given us

a smaller cost.

To understand the new ROC let us take a closer look at the performance of one of the

thresholds. For example, the buffer length of 773 which was able to detect 10 out of the 13

attacks at no false alarm in Figure 3.3(a) does not perform well in Figure 3.3(b) because some

programs such asgrep, awk, find andld were executed under normal operation with long

string lengths. Furthermore, a larger percent of attacks was able to get past this threshold. This

is in general the behavior modeled by the parametersα andβ that the adversary has access to

in our framework.

Let us begin the evaluation process from the scratch by assuming a([1× 10−5,0],1×

10−4,0.1)− intruder, whereδ = [1×10−5,0] means the IDS evaluator believes that the base-

rate during operation will be at most ˆp and at least ˆp−1×10−5. α = 1×10−5 means that the

IDS evaluator believes that new normal behavior will have the chance of firing an alarm with

probability 1×10−5. And β = 0.1 means that the IDS operator has estimated that ten percent

of the attacks during operation will go undetected. With these parameters we get theROCα,β

shown in Figure 3.3(c).

Note that in this case,p is bounded in such a way that the equilibrium of the game is

achieved via a pure strategy. In fact, the optimal strategy of the intruder is to attack with

frequency ˆp+δu (and of course, generate missed detections with probabilityβ and false alarms

with probability α) whereas the optimal strategy ofDM is to find the point inROCα,β that

minimizes the expected cost by assuming that the base-rate is ˆp+δu.

The optimal point for theROCα,β curve corresponds to the one with threshold 799, having
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an expected costEδ,α,β[C(I ,A)] = 5.19×10−2. Finally, by using the optimal point forROCα,β,

as opposed to the original one, we get during operation an expected cost ofEoperation[C(I ,A)] =

2.73×10−2. Therefore in this case, not only we have maintained our expected 5.19×10−2−

securityof the evaluation, but in addition the new optimal point actually performed better than

the original one.

Notice that the evaluation of Figure 3.3 relates exactly to the problem we presented in

the introduction, because it can be thought of as the evaluation of two IDSs. One IDS having

a buffer threshold of length 399 and another IDS having a buffer threshold of length 773.

Under ideal conditions we choose the IDS of buffer threshold length of 399 since it has a lower

expected cost. However after evaluating the worst possible behavior of the IDSs we decide to

select the one with buffer threshold length of 773.

An alternative view can be achieved by the use of B-ROC curves. In Figure 3.4(a) we

see the original B-ROC curve during the evaluation period. These curves give a false sense of

confidence in the IDS. Therefore we study the B-ROC curves based onROCα,β in Figure 3.4(b).

In Figure 3.4(c) we can see how the B-ROC of the actual operating environment follows more

closely the B-ROC based onROCα,β than the original one.

IV A White Box Adversary Model

So far we have been treating the decision making process without considering the exact

way that an adversary can modify or create the input to the classifierx. However following the

same statistical framework we have been considering there is a way to formulate this problem

in a way that sheds light into the exact behavior and optimal adversarial strategies.

In order to define this problem recall first that anoptimal decision rule (optimal in the
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sense that it minimizes several evaluation metrics such as the probability of error, the expected

cost or the probability of missed positives given an upper bound on the probability of false

positives) is the log-likelihood ratio test lnf (x|1)
f (x|0)

H1
≷
H0

τ, whereHi denotes the hypothesis thatI = i,

andτ depends on the particular evaluation metric and its assumptions (e.g., misclassification

costs, base-rates etc.). If the log-likelihood ratio is greater thanτ then the detector outputsA= 1

and if it less thanτ, the detector outputsA = 0 (if it is equal toτ the detector randomly selects

the hypothesis based on the evaluation metric being considered).

This new detailed formulation allows us to model the fact that an attacker is able to

modify its attack strategyf (x|1). The pdf f (x|0) of the normal behavior can be learnt via one-

class learning, however since the attacker can change its strategy, we cannot trust a machine

learning technique to estimatef (x|1), since learning a candidate densityf (x|1) for an attacker

without some proper analysis may result in serious performance degradation if the attacker’s

strategy diverges from our estimated model.

It is therefore one of our aims in the following two chapters to evaluate and design al-

gorithms that try to estimate the least favorable pdff (x|1) within a feasible adversary class

F . The adversary classF will consists of pdfsf (x|1) constrained by a requirement that an

adversary has to satisfy. For example in the next chapter it is a desired level of wireless channel

access, and in chapter?? the feasible classF is composed of pdfs that satisfy certain distortion

constraints.

An abstract example on how to model the problem of finding the least favorablef (x|1)

is now considered. Assume an adversary whose objective is to create mimicry attacks: i.e., it

wants to minimize the probability of being detected. Furthermore assumex takes only discrete

values, sof (x|i) are in fact probability mass functions (pmfs) (as opposed to density functions).

A way to formulate this problem can be done with the help of information theory inequalities
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[39]:

PFA log
PFA

PD
+(1−PFA) log

1−PFA

1−PD
≤ KL[ f (x|0)|| f (x|1)] (3.7)

whereKL[ f0|| f1] denotes the Kullback-Leibler divergence between two pmfsf0 and f1. From

this inequality it can be deduced that if we fixPFA to be very small (PFA→ 0), then

PD ≤ 1−2−KL[ f (x|0)|| f (x|1)] (3.8)

The task of the adversary would be therefore the following:

h∗ = arg min
h∈F

KL[ f (x|0)||h(x)]

It can be shown in fact that some of the examples studied in the next two chapters can be

formulated as exactly performing this optimization problem.

Besides estimating least favorable distributions, another basic notion in minimax game

approaches that is going to be very useful in the next two sections is that of asaddle point. A

strategy (detection rule)d? and an operating point (attack)f (x|1)? in the uncertainty classF

form a saddle point if:

1. For the attackf (x|1)?, any detection ruled other thand? has worse performance. Namely

d? is the optimal detection rule for attackf (x|1)? in terms of minimizing the objective

function (evaluation).

2. For the detection ruled?, any attackf (x|1) from the uncertainty class, other thanf (x|1)?

gives better performance. Namely, detection ruled? has its worst performance for attack

f (x|1)?.

Implicit in the minimax approach is the assumption that the attacker has full knowledge

of the employed detection rule. Thus, it can create a misbehavior strategy that maximizes
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the cost of the performance of the classifier. Therefore, our approach refers to the case of an

intelligent attacker that can adapt its misbehavior policy so as to avoid detection. One issue

that needs to be clarified is the structure of this attack strategy. Subsequently, by deriving the

detection rule and the performance for that case, we can obtain an (attainable) upper bound on

performance over all possible attacks.

Even though we did not point it out before, it can in fact be shown that the optimal oper-

ating points in the two IDS examples presented section III are in fact saddle point equilibria!

V Conclusions

There are two main problems that any empirical test of a classifier will face. The first

problem relates to the inferences that once can make about any classifier system based on

experiments alone. An example is the low confidence on the estimate for the probability of

detection in the ROC. A typical way to improve this estimate in other classification tasks is

through the use of error bars in the ROC. However, if tests of classifiers include very few

attacks and their variations, there is not enough data to provide an accurate significance level

for the bars. Furthermore, the use of error bars and any other cross-validation technique gives

the average performance of the classifier. However, this brings us to the second problem, and

it is the fact that since the classifiers are subject to an adversarial environment, evaluating such

a decision maker based on its average performance is not enough. Our adversary models tries

to address these two problems, since it provides a principled approach to give us the worst case

performance of a classifier.

The extent by which the analysis with a(δ,α,β)− intruderwill follow the real operation

of the IDS will depend on how accurately the person doing the evaluation of the IDS under-
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stands the IDS and its environment, for example, to what extent can the IDS be evaded, how

well the signatures are written (e.g. how likely is it that normal events fire alarms) etc. How-

ever, by assumingrobustparameters we are actually assuming a pessimistic setting, and if this

pessimistic scenario never happens, we might be operating at a suboptimal point (i.e. we might

have been too pessimistic in the evaluation).

Finally, although the white box framework for adversarial modeling gives us a fine

grained evaluation procedure, it is not always a better alternative to the black box adversary

model. There are basically two problems with the white box adversary model. The first prob-

lem is the fact that finding the optimal adversarial distribution is usually an intractable problem.

The second problem is that sometimes in order to avoid the intractability of the problem,f (x|1)

is sometimes assumed to follow a certain parametric model. Therefore instead of searching for

optimal adversarial pdfsf (x|1) the problem is replaced with one of finding the optimal parame-

ters of a prescribed distribution. The problem with this approach is that assuming a distribution

form creates extra assumptions about the attacker, and as explained in the guidelines defined

at the beginning of this chapter, any extra assumption must be taken with care. Specially be-

cause in practice the adversary will most likely not follow the parametric distribution assumed

a priori.
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Chapter 4

Performance Comparison of MAC layer Misbehavior Schemes

If anything could dissipate my love to humanity, it would be ingratitude. In short, I am a hired

servant, I expect my payment at once- that is, praise, and the repayment of love with love.

Otherwise I am incapable of loving anyone.

- The Brothers Karamazov, Dostoevsky

I Overview

This chapter revisits the problem of detecting greedy behavior in the IEEE 802.11 MAC

protocol by evaluating the performance of two previously proposed schemes: DOMINO and

the Sequential Probability Ratio Test (SPRT). The evaluation is carried out in four steps. We

first derive a new analytical formulation of the SPRT that takes into account the discrete nature

of the problem. Then we develop a new tractable analytical model for DOMINO. As a third

step, we evaluate the theoretical performance of SPRT and DOMINO with newly introduced

metrics that take into account the repeated nature of the tests. This theoretical comparison

provides two major insights into the problem: it confirms the optimality of SPRT and motivates

us to define yet another test, a nonparametric CUSUM statistic that shares the same intuition

as DOMINO but gives better performance. We finalize this chapter with experimental results,

confirming the correctness of our theoretical analysis and validating the introduction of the new

nonparametric CUSUM statistic.
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II Introduction

The problem of deviation from legitimate protocol operation in wireless networks and

efficient detection of such behavior has become a significant issue in recent years. In this work

we address and quantify the impact of MAC layer attacks that aim at disrupting critical network

functionalities and information flow in wireless networks.

It is important to note that parameters used for deriving a decision of whether a protocol

participant misbehaves or not should be carefully chosen. For example, choosing the percent-

age of time the node accesses the channel as a misbehavior metric can result in a high number

of false alarms due to the fact that the other protocol participants might not have anything (or

have significantly less traffic) to transmit within a given observation period. This could easily

lead to false accusations of legitimate nodes that have large amount of data to send. Measur-

ing throughput offers no indication of misbehavior since it is impossible to define “legitimate”

throughput. Therefore, it is reasonable to use either fixed protocol parameters (such as SIFS or

DIFS window size) or parameters that belong to a certain (fixed) range of values for monitoring

misbehavior (such as backoff).

In this work we derive analytical bounds of two previously proposed protocols for de-

tecting random access misbehavior: DOMINO [40] and SPRT-based tests [41, 42] and show

the optimality of SPRT against the worst-case adversary for all configurations of DOMINO.

Following the main idea of DOMINO, we introduce a nonparametric CUSUM statistic that

shares the same intuition as DOMINO but gives better performance for all configurations of

DOMINO.

A. Background Work
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MAC layer protocol misbehavior has been studied in various scenarios and mathematical

frameworks. The random nature of access protocols coupled with the highly volatile nature of

wireless medium poses the major obstacle in generation of the unified framework for misbehav-

ior detection. The goals of a misbehaving peer can range from exploitation of available network

resources for its own benefit up to network disruption. An efficient Intrusion Detection System

should exhibit a capability to detect a wide range of misbehavior policies with an acceptable

False Alarm rate. This presents a major challenge due to the nature of wireless protocols.

The current literature offers two major approaches in the field of misbehavior detection.

The first set of approaches provides solutions based on modification of the current IEEE 802.11

MAC layer protocol by making each protocol participant aware of the backoff values of its

neighbors. The approach proposed in [43] assumes existence of a trustworthy receiver that

can detect misbehavior of the sender and penalize it by assigning him higher back-off values

for subsequent transmissions. A decision about protocol deviation is reached if the observed

number of idle slots of the sender is smaller than a pre-specified fraction of the allocated back-

off. The sender is labeled as misbehaving if it turns out to deviate continuously based on a

cumulative metric over a sliding window. The work in [44] attempts to prevent scenarios of

colluding sender-receiver pairs by ensuring randomness in the course of the MAC protocol.

A different line of thought is followed in [40, 41, 42], where the authors propose a misbe-

havior detection scheme without making any changes to the actual protocol. In [40] the authors

focus on multiple misbehavior policies in the wireless environment and put emphasis on detec-

tion of backoff misbehavior. They propose a sequence of conditions on available observations

for testing the extent to which MAC protocol parameters have been manipulated. The proposed

scheme does not address the scenarios that include intelligent adaptive cheaters or collaborat-

ing misbehaving nodes. The authors in [41, 42] address the detection of an adaptive intelligent
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attacker by casting the problem of misbehavior detection within the minimax robust detection

framework. They optimize the system’s performance for the worst-case instance of uncertainty

by identifying the least favorable operating point of a system and derive the strategy that op-

timizes the system’s performance when operating in that point. The system performance is

measured in terms of number of required observation samples to derive a decision (detection

delay).

However, DOMINO and SPRT were presented independently, without direct comparison

or performance analysis. Additionally, both approaches evaluate the detection scheme per-

formance under unrealistic conditions, such as probability of false alarm being equal to 0.01,

which in our simulations results in roughly 700 false alarms per minute (in saturation condi-

tions), a rate that is unacceptable in any real-life implementation. Our work contributes to the

current literature by: (i) deriving a new pmf for the worst case attack using an SPRT-based

detection scheme, (ii) providing new performance metrics that address the large number of

alarms in the evaluation of previous proposals, (iii) providing a complete analytical model of

DOMINO in order to obtain a theoretical comparison to SPRT-based tests and (iv) proposing

an improvement to DOMINO based on the CUSUM test.

The rest of the chapter is organized as follows. Sect. III outlines the general setup of the

problem. In Sect. IV we propose a minimax robust detection model and derive an expression for

the worst-case attack in discrete time. In Sect. V we provide extensive analysis of DOMINO,

followed by the theoretical comparison of two algorithms in Sect. VI. Motivated by the main

idea of DOMINO, we offer a simple extension to the algorithm that significantly improves its

performance in Sect. VII. In Sect. VIII we present the experimental performance comparison

of all algorithms. Finally, Sect. IX concludes our study. In subsequent sections, the terms

“attacker” and “adversary” will be used interchangeably with the same meaning.
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III Problem Description and Assumptions

Throughout this work we assume existence of an intelligent adaptive attacker that is

aware of the environment and its changes over a given period of time. Consequently, the

attacker is able to adjust its access strategy depending on the level of congestion in its en-

vironment. Namely, we assume that, in order to minimize the probability of detection, the

attacker chooses legitimate over selfish behavior when the level of congestion in the network is

low. Similarly, the attacker chooses adaptive selfish strategy in congested environments. Due to

the previously mentioned reasons, we assume a benchmark scenario where all the participants

are backlogged, i.e., have packets to send at any given time in both theoretical and experimental

evaluations. We assume that the attacker will employ the worst-case misbehavior strategy in

this setting, and consequently the detection system can estimate the maximal detection delay.

It is important to mention that this setting represents the worst-case scenario with regard to the

number of false alarms per unit of time due to the fact that the detection system is forced to

make maximum number of decisions per time unit.

In order to characterize the strategy of an intelligent attacker, we assume that both mis-

behaving and legitimate node attempt to access the channel simultaneously. Consequently,

each station generates a sequence of random backoffsX1,X2, . . . ,Xi over a fixed period of time.

Accordingly, the backoff values,X1,X2, . . . ,Xi , of each legitimate protocol participant are dis-

tributed according to the probability mass function (pmf)p0(x1,x2, . . . ,xi). The pmf of the mis-

behaving participants is unknown to the system and is denoted withp1(x1,x2, . . . ,xi), where

X1,X2, . . . ,Xi represent the sequence of backoff values generated by the misbehaving node over

the same period of time.

The assumption that holds throughout this chapter is that a detection agent (e.g., the
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access point) monitors and collects the backoff values of a given station. It is important to note

that observations are not perfect and can be hindered by concurrent transmissions or external

sources of noise. It is impossible for a passive monitoring agent to know the backoff stage of

a given monitored station due to collisions and to the fact that in practice, nodes might not be

constantly backlogged. Furthermore, in practical applications the number of false alarms in

anomaly detection schemes is very high. Consequently, instead of building a “normal” profile

of network operation with anomaly detection schemes, we utilize specification based detection.

In our setup we identify “normal” (i.e., a behavior consistent with the 802.11 specification)

profile of a backlogged station in the IEEE 802.11 without any competing nodes, and notice

that its backoff processX1,X2, . . . ,Xi can be characterized with pdfp0(xi) = 1/(W + 1) for

xi ∈ {0,1, . . . ,W} and zero otherwise. We claim that this assumption minimizes the probability

of false alarms due to imperfect observations. At the same time, a safe upper bound on the

amount of damaging effects a misbehaving station can cause to the network is maintained.

Although our theoretical results utilize the above expression forp0, the experimental

setting utilizes the original implementation of the IEEE 802.11 MAC. In this case, the detection

agent needs to deal with observed values ofxi larger thanW, which can be due to collisions or

due to the exponential backoff specification in the IEEE 802.11. We further discuss this issue

in Sect. VIII.

IV Sequential Probability Ratio Test (SPRT)

Due to the nature of the IEEE 802.11 MAC, the back-off measurements are enhanced by

an additional sample each time a node attempts to access the channel. Intuitively, this gives rise

to the employment of a sequential detection scheme in the observed problem. The objective of
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the detection test is to derive a decision as to whether or not misbehavior occurs with the least

number of observations. A sequential detection test is therefore a procedure which decides

whether or not to receive more samples with every new information it obtains. If sufficient

information for deriving a decision has been made (i.e. the desired levels of the probability

of false alarm and probability of miss are satisfied), the test proceeds to the phase of making a

decision.

It is now clear that two quantities are involved in decision making: a stopping timeN and

a decision ruledN which at the time of stopping decides between hypothesesH0 (legitimate

behavior) andH1 (misbehavior). We denote the above combination withD=(N,dN).

In order to proceed with our analysis we first define the properties of an efficient detector.

Intuitively, the starting point in defining a detector should be minimization of the probability

of false alarmsP0[dN = 1]. Additionally, each detector should be able to derive the decision as

soon as possible (minimize the number of samples it collects from a misbehaving station) before

calling the decision functionE1[N]. Finally, it is also necessary to minimize the probability of

deciding that a misbehaving node is acting normallyP1[dN = 0]. It is now easy to observe that

E1[N], P0[dN = 1], P1[dN = 0] form a multi-criteria optimization problem. However, not all

of the above quantities can be optimized at the same time. Therefore, a natural approach is to

define the accuracy of each decision a priori and minimize the number of samples collected:

inf
D∈Ta,b

E1[N] (4.1)

where

Ta,b = {(N,dN) : P0[dN = 1]≤ a andP1[dN = 0]≤ b}

The solutionD∗ (optimality is assured when the data is i.i.d. in both classes) to the above
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problem is the SPRT [41] with:

Sn = ln
p1(x1, . . . ,xn)
p0(x1, . . . ,xn)

andN = inf
n

Sn ∈ [L,U ].

The decision ruledN is defined as:

dN =


1 if SN ≥U

0 if SN ≤ L,

(4.2)

whereL≈ ln b
1−a andU ≈ ln 1−b

a . Furthermore, by Wald’s identity:

E j [N] =
E j [SN]

E j

[
ln p1(x)

p0(x)

] =
E j [SN]

∑W
x=0 p j(x) ln p1(x)

p0(x)

(4.3)

with E1[SN] = Lb+U(1−b) andE0[SN] = L(1−a)+Ua. We note that the coefficientsj = 0,1

in Eq.(4.3) correspond to legitimate and adversarial behavior respectively.

A. Adversary Model

To our knowledge, the current literature does not address the discrete nature of the misbehavior

detection problem. This section sets a theoretical framework of the problem in discrete time.

Due to the different nature of the problem, the relations derived in [41, 42] no longer hold

and a new pmfp∗1 that maximizes the performance of the adversary is derived. We assume

the adversary has full control over the probability mass functionp1 and the backoff values

it generates. In addition to that we assume that the adversary is intelligent, i. e. he knows

everything the detection agent knows and can infer the same conclusions as the detection agent.

Goal of the Adversary: we assume the objective of the adversary is to design an access

policy with the resulting probability of channel accessPA, while minimizing the probability of

detection. As it has already been mentioned, the optimal access policy results in generation of

backoff sequences according to the pmfp∗1(x).

Theorem 1: The probability that the adversary accesses the channel before any other ter-

minal when competing with n neighboring (honest) terminals for channel access in saturation
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condition is:

Pr[Access]≡ PA =
1

1+nE1[X]
E0[X]

(4.4)

Note that whenE1[X] = E0[X] the probability of access is equal for all n+1 competing nodes

(including the adversary), i.e., all of them will have access probability equal to1
n+1. We omit

the proof of this theorem and refer the reader to [42] for the detailed derivation.

Solving the above equation forE1[X] gives us a constraint onp1. That is,p1 must satisfy

the following equation:

E1[X] = E0[X]
1−PA

nPA
(4.5)

We now letg = 1−PA
nPA

in order to be able to parametrize the adversary by the scalarg, which

intuitively denotes the level of misbehavior by the adversary. ForPA ∈
{ 1

1+n,1
}

, g ∈ {0,1}.

Therefore,g= 0 andg= 1 correspond to legitimate behavior and complete misbehavior respec-

tively. Now, for any giveng, p1 must belong to the class of allowed probability mass functions

Ag, where

Ag≡

{
q :

W

∑
x=0

q(x) = 1 and
W

∑
x=0

xq(x) = gE0[X]

}
(4.6)

After defining its desired access probabilityPA (or equivalentlyg), the second objective of the

attacker is to maximize the amount of time it can misbehave without being detected. Assuming

that the adversary has full knowledge of the employed detection test, it attempts to find the

access strategy (with pmfp1) that maximizes the expected duration of misbehavior before

an alarm is fired. By looking at equation Eq.(4.3), the attacker thus needs to minimize the

following objective function

min
p1∈Ag

W

∑
x=0

p1(x) ln
p1(x)
p0(x)

(4.7)

Theorem 2: Let g∈ {0,1} denote the objective of the adversary. The pmf p∗
1 that mini-
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mizes Eq.(4.7) can be expressed as:

p∗1(x) =


rx(r−1−1)
r−1−rW for x∈ {0,1, . . . ,W}

0 otherwise

(4.8)

where r is the solution to the following equation:

WrW− r−1(WrW + rW−1)
(r−1−1)(r−1− rW)

= g
W
2

(4.9)

Proof: Notice first that the objective function is convex inp1. We letqε(x) = p∗1(x)+

εh(x) and construct the Lagrangian of the objective function and the constraints

W

∑
x=0

qε(x) ln
qε(x)
p0(x)

+µ1(
W

∑
x=0

qε(x)−1)+µ2(
W

∑
x=0

xqε(x)−gE0[X]) (4.10)

By taking the derivative with respect toε and equating this quantity to zero for all possible

sequencesh(x), we find that the optimalp∗1 has to be of the form:

p∗1(x) = p0(x)e−µ2x−µ0 (4.11)

whereµ0 = µ1+1. In order to obtain the values of the Lagrange multipliersµ0 andµ2 we utilize

the fact thatp0(x) = 1
W+1. Additionally, we utilize the constraints inAg. The first constraint

states thatp∗1 must be a pmf and therefore by setting Eq.(4.11) equal to one and solving forµ0

we have

µ0 = ln
W

∑
x=0

p0(x)rx = ln
1

W+1
r− rW

r−1
(4.12)

wherer = e−µ2. Replacing this solution in Eq. 4.11 we get

p∗1(x) =
rx(r−1−1)
r−1− rW (4.13)

The second constraint inAg is rewritten in terms of Eq.(4.13) as

r−1−1
r−1− rW

W

∑
x=0

xrx = gE0[X] (4.14)

from where Eq.(4.9) follows.
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Fig. 4.1 illustrates the optimal distributionp∗1 for two values of the parameterg.

B. SPRT Optimality for any Adversary inAg

Let Φ(D, p1) = E1[N]. We notice that the above solution was obtained in the form

max
p1∈Ag

min
D∈Ta,b

Φ(D, p1) (4.15)

That is, we first minimizedΦ(D, p1) with the SPRT (minimization for anyp1) and then found

the p∗1 that maximizedΦ(SPRT, p∗1).

However, an optimal detector needs to minimize all losses due to the worst-case attacker.

That is, the optimal test should in principle be obtained by the following optimization problem

min
D∈Ta,b

max
p1∈Ag

Φ(D, p1) (4.16)

Fortunately, our solution also satisfies this optimization problem since it forms a saddle point

equilibrium, resulting in the following theorem:
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Theorem 3: For every D∈ Ta,b and every p1 ∈ Ag

Φ(D∗, p1)≤Φ(D∗, p∗1)≤Φ(D, p∗1) (4.17)

We omit the proof of the theorem since its derivation follows reasoning similar to the one in

[42]. As a consequence of this theorem, no incentive for deviation from(D∗, p∗1) for any of the

players (the detection agent or the misbehaving node) is offered.

C. Evaluation of Repeated SPRT

The original setup of SPRT-based misbehavior detection proposed in [41] was better suited for

on-demand monitoring of suspicious nodes (e.g., when a higher layer monitoring agent requests

the SPRT to monitor a given node because it is behaving suspiciously, and once it reaches a

decision it stops monitoring) and was not implemented as a repeated test.

On the other hand, the configuration of DOMINO is suited for continuous monitoring of

neighboring nodes. In order to obtain fair performance comparison of both tests, a repeated

SPRT algorithm is implemented: wheneverdN = 0, the SPRT restarts withS0 = 0. This setup

allows a detection agent to detect misbehavior for both short and long-term attacks. The major

problem that arises from this setup is that continuous monitoring can raise a large number of

false alarms if the parameters of the test are not chosen appropriately.

This section proposes a new evaluation metric for continuous monitoring of misbehaving

nodes. We believe that the performance of the detection algorithms is appropriately captured by

employing the expected time before detectionE[TD] and the average time between false alarms

E[TFA] as the evaluation parameters.

The above quantities are straightforward to compute for SPRT. Namely, each time the

SPRT stops the decision function can be modeled as a Bernoulli trial with parametersa and
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and the expected number of samples for detectionE[TD]. For fixed a and b, as g increases (low

intensity of the attack) the time to detection or to false alarms increases exponentially.

1−b; the waiting time until the first success is then a geometric random variable. Therefore:

E[TFA] =
E0[N]

a
andE[TD] =

E1[N]
1−b

(4.18)

Fig. 4.2 illustrates the tradeoff between these variables for different values of the param-

eterg. It is important to note that the chosen values of the parametera in Fig. 4.2 are small.

We claim that this represents an accurate estimate of the false alarm rates that need to be sat-

isfied in actual anomaly detection systems [29, 7], a fact that was not taken into account in the

evaluation of previously proposed systems.

V Performance analysis of DOMINO

We now present the general outline of the DOMINO detection algorithm. The first

step of the algorithm is based on computation of the average value of backoff observations:

Xac = ∑m
i=1Xi/m. In the next step, the averaged value is compared to the given reference

backoff value:Xac < γB, where the parameterγ (0 < γ < 1) is a threshold that controls the
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tradeoff between the false alarm rate and missed detections. The algorithm utilizes the variable

cheat_count which stores the number of times the average backoff exceeds the thresholdγB.

DOMINO raises a false alarm after the threshold is exceeded more thanK times. A forgetting

factor is considered forcheat_count if the monitored station behaves normally in the next

monitoring period. That is, the node is partially forgiven:cheat_count=cheat_count-1 (as

long ascheat_count remains greater than zero).

We now present the actual detection algorithm from [40]. The algorithm is initialized

with cheat_count = 0 and after collectingm samples, the following detection algorithm is

executed, wherecondition is defined as1m ∑m
i=1Xi ≤ γB

i f c o n d i t i o n

c h e a t c o u n t = c h e a tc o u n t + 1

i f c h e a t c o u n t > K

r a i s e a la rm

end

e l s e i f c h e a t c o u n t > 0

c h e a t c o u n t = c h e a tc o u n t − 1

end

It is now easy to observe that DOMINO is a sequential test, withN = m∗Nt , whereNt

represents the number of stepscheat_count takes to exceedK and dN = 1 every time the

test stops. We evaluate DOMINO and SPRT with the same performance metrics. However,

unlike SPRT wherea controls the number of false alarms andb controls the detection rate,

the parametersm, γ andK in DOMINO are difficult to tune because there has not been any

analysis of their performance. The correlation between DOMINO and SPRT parameters is
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alarm.

further addressed in Sec. VIII.

In order to provide an analytical model for the performance of the algorithm, we model

the detection mechanism in two steps:

1. We first definep := Pr
[ 1

m ∑m
i=1Xi ≤ γB

]
2. We define a Markov chain with transition probabilitiesp and 1− p. The absorbing state

represents the case when misbehavior is detected (note that we assumem is fixed, sop

does not depend on the number of observed backoff values). A Markov chain forK = 3

is shown in Fig. 4.3.

We can now write

p = p j = P j

[
1
m

m

∑
i=1

Xi ≤ γB

]
, j ∈ 0,1

where j = 0 corresponds to the scenario where the samplesXi are generated by a legitimate

stationp0(x) and j = 1 corresponds to the samples being generated byp∗1(x). In the remainder

of this section we assumeB = E0[Xi ] = W
2 .

We now derive the expression forp for the case of a legitimate monitored node. Follow-

ing the reasoning from Sect. III, we assume that eachXi is uniformly distributed on{0,1, . . . ,W}.

It is important to note that this analysis provides a lower bound on the probability of false alarms
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when the minimum contention window of sizeW+1 is assumed. Using the definition ofp we

derive the following expression:

p = P0

[
m

∑
i=1

Xi ≤mγB

]

=
bmγBc

∑
k=0

P0

[
m

∑
i=1

Xi = k

]
(4.19)

=
bmγBc

∑
k=0

∑
{(x1,...,xm):∑m

i=1xi=k}

1
(W+1)m

where the last equality follows from the fact that theX′i s are i. i. d with pmfp0(xi) = 1
W+1 for

all xi ∈ {0,1, . . .W}.

The number of ways thatm integers can sum up tok is

 m+k−1

k

 and∑L
k=0

 m+k−1

k

=

 m+L

L

. An additional constraint is imposed by the fact thatXi can only take values up

to W, which is in general smaller thank, and thus the above combinatorial formula cannot be

applied. Furthermore, a direct computation of the number of waysxi bounded integers sum up

to k is very expensive. As an example, letW+1 = 32= 25 andm= 10. A direct summation

needed for calculation ofp yields at least 250 iterations.

Fortunately, an efficient alternative way for computingP0 [∑m
i=1Xi = k] exists. We first

defineY := ∑m
i=1Xi . It is well known that the moment generating function ofY, MY(s) =
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MX(s)m can be computed as follows:

MY(s) =
1

(W+1)m

(
1+es+ · · ·+eW)m

=
1

(W+1)m×

∑
k0, . . . ,kW :

∑ki = m



 m

k0; · · · ;kW

1k0esk1 · · ·esWkW

where

 m

k0;k2; · · · ;kW

 is the multinomial coefficient.

By comparing terms with the transform ofMY(s) we observe that Pr[Y = k] is the coef-

ficient that corresponds to the termeks in Eq.(4.20). This result can be used for the efficient

computation ofp by using Eq.(4.19).

Alternatively, we can approximate the computation ofp for large values ofm. The ap-

proximation arises from the fact that asm increases,Y converges to a Gaussian random variable,

by the Central Limit Theorem. Thus,

p = Pr[Y ≤mγB]≈Φ(z)

where

z=
mγB−mW

2√
(W)(W+2)m/12

andΦ(z) is the error function. Fig. 4.4 illustrates the exact and approximate calculation ofp as a

function ofm, for γ = 0.9 andW+1= 32. This shows the accuracy of the above approximation

for both small and large values ofm.

The computation ofp = p1 follows the same steps (although the moment generating

function cannot be easily expressed in analytical form, it is still computationally tractable) and

is therefore omitted.
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A. Expected Time to Absorption in the Markov Chain

We now derive the expression for expected time to absorption for a Markov Chain withK +1

states. Letµi be the expected number of transitions until absorption, given that the process

starts at statei. In order to compute the stopping timesE[TD] andE[TFA], it is necessary to

find the expected time to absorption starting from state zero,µ0. Therefore,E[TD] = m×µ0

(computed underp = p1) andE[TFA] = m×µ0 (computed underp = p0).

The expected times to absorption,µ0,µ1, . . . ,µK+1 represent the unique solutions of the

equations

µK+1 = 0

µi = 1+
K+1

∑
j=0

pi j µj for i ∈ {0,1. . . ,K}

wherepi j is the transition probability from statei to statej. For anyK, the equations can be

represented in matrix form:
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−p p 0 · · · 0

1− p −1 p 0 0

0 1− p −1 p 0

...

0 · · · 0 1− p −1





µ0

µ1

µ2

...

µK


=



−1

−1

−1

...

−1


For example, solving the above equations forµ0 with K = 3, the following expression is derived

µ0 =
1− p+2p2 +2p3

p4

The expression forµ0 for any other value ofK is obtained in similar fashion.

VI Theoretical Comparison

In this section we compare the tradeoff curves betweenE[TD] andE[TFA] for both algo-

rithms. For the sake of concreteness we compare both algorithms for an attacker withg = 0.5.

Similar results were observed for other values ofg.

For SPRT we setb = 0.1 arbitrarily and varya from 10−1/2 up to 10−10 (motivated by

the realistic low false alarm rate required by actual intrusion detection systems [29]). Due to

the fact that in DOMINO it is not clear how the parameters m, K andγ affect our metrics, we

vary all the available parameters in order to obtain a fair comparison. Fig. 4.5 illustrates the

performance of DOMINO forK = 3 (the default threshold used in [40]). Each curve forγ has

m ranging between 1 and 60, wherem represents the number of samples needed for reaching

a decision. Observing the results in Fig. 4.5, it is easy to conclude that the best performance

of DOMINO is obtained forγ = 0.7, regardless ofm. Therefore, this value ofγ is adopted

as an optimal threshold in further experiments in order to obtain fair comparison of the two

algorithms.
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As γ tends to either 0 or 1, the performance of DOMINO decreases. The SPRT outperforms

DOMINO regardless ofγ andm.

Fig. 4.6 represents the evaluation of DOMINO forγ = 0.7 with varying thresholdK. For

each value ofK, m ranges from 1 to 60. In this figure, however, we notice that with the increase

of K, the point withm= 1 forms a performance curve that is better than any other point with

m> 1.

Consequently, Fig. 4.7 represents the best possible performance for DOMINO; that is, we

let m= 1 and changeK from one up to one hundred. We again test differentγ values for this

configuration, and conclude that the bestγ is still close to the optimal value of 0.7 derived from

experiments in Fig. 4.5. However, even with the optimal setting, DOMINO is outperformed by

the SPRT.

VII Nonparametric CUSUM statistic

As concluded in the previous section, DOMINO exhibits suboptimal performance for

every possible configuration of its parameters. However, the original idea of DOMINO is very
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intuitive and simple; it compares the observed backoff of the monitored nodes with the expected

backoff of honest nodes within a given period of time. This section extends this idea to create

a test that we believe will have better performance than DOMINO, while still preserving its

simplicity.

Inspired by the notion of nonparametric statistics for change detection, we adapt the

nonparametric cumulative sum (CUSUM) statistic and apply it in our analysis. Nonparametric

CUSUM is initialized withy0 = 0 and updates its value as follows:

yi = (yi−1−xi + γB)+ (4.20)

The alarm is fired wheneveryi > c.

AssumingE0[X] > γB andE1[X] < γB (i. e. the expected backoff value of an honest

node is always larger than a given threshold and vice versa), the properties of the CUSUM test

with regard to the expected false alarm and detection times can be captured by the following

theorem.

Theorem 4: The probability of firing a false alarm decreases exponentially with c. For-

mally, as c→ ∞

sup
i
|ln(P0[Yi > c])|= O(c) (4.21)

Furthermore, the delay in detection increases only linearly with c. Formally, as c→ ∞

TD =
c

γB−E1[X]
(4.22)

The proof is a straightforward extension of the case originally considered in [45].

It is easy to observe that the CUSUM test is similar to DOMINO, withc being equivalent

to the upper thresholdK in DOMINO and the statisticy in CUSUM being equivalent to the

variablecheat_count in DOMINO whenm= 1.
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The main difference between DOMINO whenm = 1 and the CUSUM statistic is that

every time there is a “suspicious event” (i.e., wheneverxi ≤ γB), cheat_count is increased by

one, whereas in CUSUMyi is increased by an amount proportional to the level of suspected

misbehavior. Similarly, whenxi > γB, cheat_count is decreased only by one (or maintained as

zero), while the decrease inyi can be expressed asγB−xi (or a decrease ofyi if yi−γB−xi < 0).

VIII Experimental Results

We now proceed to experimental evaluation of the analyzed detection schemes. It has

already been mentioned that we assume existence of an intelligent adaptive attacker that is able

to adjust its access strategy depending on the level of congestion in the environment. Namely,

we assume that, in order to minimize the probability of detection, the attacker chooses legiti-

mate over selfish behavior when the congestion level is low. Consequently, he chooses adaptive

selfish strategy in congested environments. Due to the above reasons, we assume the scenario

where all the participants are backlogged, i.e., have packets to send at any given time in con-

structing the experiments. We assume that the attacker will employ the worst-case misbehavior

strategy in this setting, enabling the detection system to estimate the maximal detection delay.

It is important to mention that this setting also represents the worst-case scenario with regard

to the number of false alarms per unit of time due to the fact that the detection system is forced

to make maximum number of decisions per unit of time. We expect the number of alarms to be

smaller in practice.

The backoff distribution of an optimal attacker was implemented in the network simulator

Opnet and tests were performed for various levels of false alarms. We note that the simulations

were performed with nodes that followed the standard IEEE 802.11 access protocol (with ex-
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ponential backoff). The results presented in this work correspond to the scenario consisting of

two legitimate and one selfish node competing for channel access. The detection agent was

implemented such that any backoff valueXi > W was set up to be W. We know this is an ar-

bitrary approximation, but our experiments show that it works well in practice. It is important

to mention that the resulting performance comparison of DOMINO, CUSUM and SPRT does

not change for any number of competing nodes, SPRT always exhibits the best performance.

In order to demonstrate the performance of all detection schemes for more aggressive attacks,

we choose to present the results for the scenario where the attacker attempts to access channel

for 60% of the time (as opposed to 33% if it was behaving legitimately). The backlogged en-

vironment in Opnet was created by employing a relatively high packet arrival rate per unit of

time: the results were collected for the exponential(0.01) packet arrival rate and the packet size

was 2048 bytes. The results for both legitimate and malicious behavior were collected over a

fixed period of 100s.

In order to obtain fair performance comparison, a performance metric different from the

one in [42] was adopted. The evaluation was performed as a tradeoff between the average time

to detection and the average time to false alarm. It is important to mention that the theoretical

performance evaluation of both DOMINO and SPRT was measured in number of samples.

Here, however, we take advantage of the experimental setup and measure time in number of

seconds, a quantity that is more meaningful and intuitive in practice.

We now proceed to the experimental performance analysis of SPRT, CUSUM and DOMINO-

based detection schemes. Fig. 4.8 represents the first step in our evaluation. We evaluated the

performance of the SPRT using the same parameters as in the theoretical analysis in Sect. VI.

DOMINO was evaluated for fixedγ = 0.9, which corresponds to the value used in the experi-

mental evaluation in [40]. In order to compare the performance to SPRT, we vary the value of
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γ = 0.9 andm= 1 while K is the variable parameter. The nonparametric CUSUM algorithm

has as variable parameterc and the SPRT hasb = 0.1 anda is the variable parameter.

K, which essentially determines the number of false alarms. We observe the performance of

DOMINO for 2 different values of parameterm. As it can be seen from Fig 4.8, SPRT outper-

forms DOMINO for all values ofK andm. We note that the best performance of DOMINO

was obtained form= 1 (the detection delay is smaller when the decision is made after every

sample). Therefore, we adoptm= 1 for further analysis of DOMINO. Fig. 4.9 reproduces the

setting used for theoretical analysis in Fig. 4.7. Naturally, we obtain the same results as in

Fig. 4.7 and chooseγ = 0.7 for the final performance analysis of DOMINO.

After finding the optimal values ofγ andmwe now perform final evaluation of DOMINO,

CUSUM and SPRT. The results are presented in Fig. 4.10. We observe that even for the optimal

setting of DOMINO, the SPRT outperforms it for all values ofK. We also note that due to the

reasons explained in Sect. VII, the CUSUM test experiences detection delays similar to the

ones of the SPRT.

If the logarithmic x-axis in the tradeoff curves in Sect. VI is replaced with a linear one,

we can better appreciate how accurately our theoretical results match the experimental evidence
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(Fig. 4.11).

IX Conclusions and future work

In this work, we performed extensive analytical and experimental comparison of the ex-

isting misbehavior detection schemes in the IEEE 802.11 MAC. We confirm the optimality of

the SPRT-based detection schemes and provide analytical and intuitive explanation of why the

other schemes exhibit suboptimal performance when compared to the SPRT schemes. In ad-

dition to that, we offer an extension to the DOMINO algorithm that still preserves its original

idea and simplicity, while significantly improving its performance. Our results show the value

of doing a rigorous formulation of the problem and providing a formal adversarial model since

it can outperform heuristic solutions. We believe our model applies not only to MAC but to a

more general adversarial setting. In several practical security applications such as in biomet-

rics, spam filtering, watermarking etc., the attacker has control over the attack distribution and

this distribution can be modeled in similar fashion as in our approach.
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We now mention some issues for further study. This chapter focused on the performance

analysis and comparison of the existing detection schemes. A first issue concerns employment

of penalizing functions against misbehaving nodes once an alarm is raised. When an alarm

is raised, penalties such as the access point never acknowledging the receipt of the packet (in

order to rate-limit the access of the node) or denying access to the medium for a limited period

of time should be considered. If constant misbehavior (even after being penalized) is exhibited,

the system should apply more severe penalties, such as revocation from the network. A second

issue concerns defining alternative objectives of the adversary, such as maximizing throughput

while minimizing the probability of detection.
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Chapter 5

Secure Data Hiding Algorithms

It will readily be seen that in this case the alleged right of the Duke to the whale was a

delegated one from the Sovereign. We must needs inquire then on what principle the Sovereign

is originally invested with that right.

-Moby Dick, Herman Melville

I Overview

Digital watermarking allows hidden data, such as a fingerprint or message, to be placed

on a media signal (e.g., a sound recording or a digital image). When a watermark detector is

given this media signal, it should be able to correctly decode the original embedded fingerprint.

In this chapter we give a final example of the application of our framework to the problem

of watermark verification. In the next section we provide a general formulation of the problem.

Then in section III we present a watermark verification problem where the adversary is param-

eterized by a Gaussian distribution. Finally, in section IV we model a watermark verification

problem where the adversary is given complete control over its attack distribution.

II General Model

A. Problem Description
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The watermark verification problem consists on two main algorithms, an embedding al-

gorithmE and a detection algorithmD.

• The embedderE receives as inputs a signalsand a bitm. The objective of the embedder

is to produce a signalx with no perceptual loss of information or major differences from

s, but that carries also the information aboutm. The general formulation of this required

property is to force the embedder to satisfy the following constraint:D(x,s) < Dw, where

D() is a distortion function andDw is an upper bound on the amount of distortion allowed

for embedding.

• The detection algorithmD receives a signaly, which is assumed to bex or an altered

version ofx either by natural errors (e.g., channel losses) or by an adversary. The detector

has to determine ify was embedded withm= 1 or not.

• In order to facilitate the detection process, the embedder and the detector usually share a

random secret keyk (e.g., the seed for a pseudorandom number generator that is used to

create an embedding patternp). This key can be initialized in the devices or exchanged

via a secure out of band channel.

B. Adversary Model

• Information available to the adversary: We assume the adversary knows the embedding

and detection algorithmsE and D. Furthermore we assume the adversary knows the

distribution of K, S, M, however it does not know the particular realizations of these

values. That is, the adversary does not know the particular realization ofk, s, or m and

therefore does not know the input arguments ofE .
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• Capabilities of the adversary: The adversary is a man-in-the-middle between the embed-

der and the detector. Therefore it can intercept the signalx produced byE , and can send

in its place, a signaly to the detector. However the output of the adversary should satisfy

a distortion constraintD(y,s) < Da, sincey should be perceptually similar tos.

C. Design Space

The previous description can be summarized by the following diagram:

Ek(m,s) A Dk

x← f (x|s,m,k)
x

−−−−−−−−−−−−−−−→

y← f (y|x)
y

−−−−−−−−−−−−−−−→

ln f (y|k,m=1)
f (y|k,m=0)

H1
≷
H0

τ

Wherei ← f (i| j) refers toi being sampled from a distribution with pdff (i| j). Alter-

natively i can be understood to be the output of an efficientprobabilisticalgorithm with input

j and outputi. Therefore from now on, we will useEk(m,s) andA(y) interchangeably with

f (x|s,m,k) and f (y|x) (respectively).

Notice that anoptimaldetection algorithm (optimal in the sense that it minimizes several

evaluation metrics such as the probability of error, the expected cost or the probability of missed

positives given an upper bound on the probability of false positives) is the log-likelihood ratio

test ln f (y|k,m=1)
f (y|k,m=0)

H1
≷
H0

τ, whereHi denotes the hypothesis thatm= i, andτ depends on the evaluation

metric. If the log-likelihood ratio is greater thanτ then the detector decides form= 1 and if it

less thanτ, the detector decides form= 0 (if it is equal toτ the detector randomly selects the

hypothesis based on the evaluation metric being considered).
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Of course, in order to implement this optimal detection strategy, the detector requires the

knowledge off (y|k,m), which can be computed as follows:

f (y|k,m) =
∫

S

∫
X

f (y|s,x,k,m) f (x|s,k,m) f (s)dxds

=
∫

S

∫
X

f (y|x) f (x|s,k,m) f (s)dxds

Therefore an optimal detection algorithm requires knowledge of the embedding distri-

bution f (x|s,k,m), the attack algorithmf (y|x), and of the pdf ofs: f (s). Note that f (s) is

fixed, since neither the embedding algorithm or the adversary can control it. As a result, the

overall performance of the detection scheme is only a function of the variablef (y|x) (i.e., on

the adversaryA) and on the variablef (x|s,k,m) (i.e., the embedding algorithmE). The perfor-

mance can then be evaluated by a metric which takes into account the two variable parameters:

Ψ(E ,A).

AssumingΨ(E ,A) represent the losses of the system, our task is to findE∗ to minimize

Ψ. However sinceA is unknown and arbitrary, the natural choice is to find the embedding

schemeE∗ that minimizes the possible damage that can be done by an adversaryA∗:

(E∗,A∗) = arg min
E∈FDw

max
A∈FDa

Ψ(E ,A) (5.1)

where thefeasible design spaceFDw and thefeasible adversary classFDa consist on embedding

distributions and least favorable attack distributions that satisfy certain distortion constraints.

This formulation guarantees that

∀A Ψ(E∗,A)≤Ψ(E∗,A∗)
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whenever possible we are also interested in finding out ifE∗ is indeed the best embedding

distribution againstA∗, and therefore we would like to satisfy a saddle point equilibrium:

Ψ(E∗,A)≤Ψ(E∗,A∗)≤Ψ(E ,A∗)

D. Evaluation metric

The evaluation metric should reflect good properties of the system for the objective it

was designed. For our particular case we are going to be interested in the probability of er-

ror Pr[Dk(y) 6= m] when the following random experiment is performed:k is sampled from a

uniform distribution in{0,1}n (wheren is the length ofk), s is assumed to be sampled from

a distribution with pdff (s), m is sampled from its prior distributionf (m), and then the em-

bedder algorithm and the adversary algorithm are executed. This random experiment is usually

expressed in the following notation:

Ψ(E ,A)≡ Pr[k←{0,1}n;s← f (s);m← f (m);x← Ek(s,m);y← A(x) : Dk(y) 6= m] (5.2)

The min-max formulation with this evaluation metric minimizes the damage of an ad-

versary whoseobjectiveis to produce a signaly that removes the embedded informationm. In

particular the adversary wants the detection algorithm on inputy to make an incorrect decision

on whether the original signals was embedded withm= 1 or not.

III Additive Watermarking and Gaussian Attacks

The model described in the previous section is often intractable (based on the specific

objective function, distortion functions, prior distributions etc.) and therefore several approxi-

mations are made in order to obtain a solution.
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For example, in practice there exists several popular embedding algorithms such as spread

spectrum watermarking and QIM watermarking, and researchers often try to optimize the pa-

rameters of these embedding schemes, as opposed to finding new embedding algorithms. Fur-

thermore modeling an adversary that can select any algorithm to produce its output is also very

difficult because we have to consider non-parametric and arbitrary non-linear attacks. There-

fore researchers often assume a linear (additive) adversary that is parameterized by a Gaussian

random process. This assumption is motivated by several arguments, including information

theoretic arguments claiming a Gaussian distribution is the least favorable noise in a channel,

or as an approximation given the central limit theorem.

In this chapter we follow one such model originally proposed by [46]. Contrary how-

ever to the results in [46], we relax two assumptions. First, we relax the assumption of spread

spectrum watermarking and instead search for the optimal embedding algorithm in this model

formulation. Secondly, we relax the assumption of the diagonal processors (an assumption

mostly due to the fact that the embedding algorithm used spread spectrum watermarking) and

obtain results for the general case. The end result is that our algorithms achieve a lower objec-

tive function value than [46] for any possible attacker in the feasible attacker class.

In the following section we describe the model of the problem and obtain our results.

Then in section E we discuss our results and compare them to [46].

A. Mathematical Model

Givens∈RN andm∈ {0,1}, we assume an additive embedderE that outputsx = Φ(s+

pm), Φ is anN×N matrix and wherep∈RN is a pattern sampled from a distribution with pdf

h(p). Sincep is the only random element in the watermarking algorithm, it is assumed to be

dependent on the keyk, and therefore from now on we will replacek with p without loss of
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generality.

The attackerA is modeled byy= Γx+e, whereΓ is anN×N matrix ande is a zero-mean

(since any non-zero mean attack is suboptimal [46]) Gaussian random vector with correlation

matrixRe.

Finally, the detection algorithm has to perform the following hypothesis test:

H0 : y = ΓΦs+e

H1 : y = ΓΦs+e+ΓΦp

If the objective functionΨ(E ,A) the detector wants to minimize is the probability of

error, then we know that an optimal detection algorithm is the log-likelihood ratio test. By

assuming that the two hypothesis are equally likely, we find thatτ = 0. Furthermore in order to

computef (y|p,m) it is assumeds is a Gaussian random vector with zero mean (zero mean is

assumed without loss of generality) and correlation matrixRs.

The following diagram summarizes the model

Ep(m,s) A Dp

x = (s+ pm)Φ
x

−−−−−−−−−−−−−−−→

y = Γx+e
y

−−−−−−−−−−−−−−−→

ptϒtR−1
y y− 1

2 ptϒtR−1
y ϒp

H1
≷
H0

0

WhereRy = ΓΦRsΦtΓt +Re, andϒ = ΓΦ.

The distortion constraints thatE andA need to satisfy are selected to be the squared error

distortion:

FDw =
{

E : E||X−S||2≤ NDw
}
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and

FDa =
{

A : E||Y−S||2≤ NDa
}

whereE = (Φ,Rp,h) andA = (Γ,Re).

B. Optimal Embedding Distribution

In the model described in the previous section, the probability of error can be found to

be:

Ψ(E ,A) = Pr[Dp(y) 6= m] = Ep

[
Q
(√

ptΩp
)]

=
∫

Q
(√

ptΩp
)

h(p)dp

where

Ω =
1
2

ΦtΓt(ΓΦRsΦtΓt +Re)−1ΓΦ

and wherep is the random pattern (watermark) andh(p) is its unknown pdf.Ω is a function of

the signal and noise covariancesRs,Re, the watermark covarianceRp and the scaling matrices

Γ andΦ. If we fix all these quantities thenwe would like to determine the form of h(p) that will

minimize the error probability(since this is the goal of the decision maker).

To solve the previous problem we rely on a the following property of theQ (·) function,

that can be verified by direct differentiation

Lemma 3: The functionQ (
√

x) is a convex function of x.

Now we can use this convexity property and apply Jensen’s inequality and conclude that

Ex[Q (
√

x)]≥ Q
(√

Ex[x]
)

;

we have equality iffx is a constant with probability 1 (wp1). Using this result in our case

we get
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Pe = Ep

[
Q
(√

ptΩp
)]
≥ Q

(√
Ep [ptΩp]

)
= Q

(√
tr{ΩRp}

)
. (5.3)

Relation (5.3) provides alower boundon the error probability forany pdf (which of

course satisfies the covariance constraint). We have equality in (5.3) iff wp1 we have that

ptΩp = tr{ΩRp}. (5.4)

In other wordsevery realizationof p (that is every watermarkp) must satisfy this equality.

Notice that if we can find a pdf forp which can satisfy (5.4)under the constraintthatE[ppt ] =

Rp (remember we fixed the covarianceRp), then we will attain the lower bound in Equation

(5.3).

To find a random vectorp that achieves what we want, we must do the following. Con-

sider the SVD of the matrix

R1/2
p ΩR1/2

p = UΣU t (5.5)

whereU orthonormal andΣ = diag{σ1, . . . ,σK}, diagonal with nonnegative elements.

The nonnegativity ofσi is assured because the matrix is nonnegative definite. LetA be a random

vector with i.i.d. elements that take the values±1 with probability 0.5. For every vectorA we

can then define an embedding vectorp as follows

p = R1/2
p UA (5.6)

Let us see if this definition satisfies our requirements. First consider the covariance matrix

which must be equal toRp. Indeed we have

E[ppt ] = R1/2
p UE[AAt ]U tR1/2

p = R1/2
p UIU tR1/2

p = R1/2
p IR1/2

p = Rp,
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where we used the independence of the elements of the vectorA and the orthonormality

of U (I denotes the identity matrix). So our random vector has the correct covariance structure.

Let us now see whether it also satisfies the constraint thatptΩp = tr{ΩRp} wp1. Indeed for

every realization of the random vectorA we have

ptΩp = AtU tR1/2
p ΩR1/2

p UA = AtΣA = A2
1σ1 +A2

2σ2 + · · ·+A2
KσK

= σ1 +σ2 + · · ·+σK,

where we use the fact that the elementsAi of A are equal to±1. Notice also that

tr{ΩRp}= tr{R1/2
p ΩR1/2

p }= tr{UΣU t}= tr{ΣU tU}= tr{Σ}= σ1 + · · ·+σK,

which proves the desired equality. So we conclude that, althoughp is a random vector

(our possible watermarks),all its realizations satisfy the equality

ptΩp = tr{ΩRp}.

This of course suggests that this specific choice of watermarking attains the lower bound

in (5.3).

B.1 Summary

We have found theoptimumembedding distribution. It is a random mixture of the

columns of the matrixR1/2
p U of the formR1/2

p UA, whereA is a vector with elements±1.

This of course suggests that we can have 2N different patterns.Rp is thefinal matrix we

end up from the max-min game andU is the SVD of the correspondingfinal matrixR1/2
p ΩR1/2

p .

Once we are givenh∗, the game the embedder and the attacker play is the following:
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max
Rp,Φ

min
Re,Γ

tr{ΩRp}

More specifically:

max
Rp,Φ

min
Re,Γ

tr{(ΓΦRsΦtΓt +Re)−1ΓΦRpΦtΓt} (5.7)

Subject to the distortion constraints:

tr{(Φ− I)Rs(Φ− I)t +ΦRpΦt} ≤ NDw (5.8)

tr{(ΓΦ− I)Rs(ΓΦ− I)t +ΓΦRpΦtΓt +Re} ≤ NDa (5.9)

C. Least Favorable Attacker Parameters

C.1 Minimization with respect toRe

Assumingϒ = ΓΦ is fixed, we start by minimizing (??) with respect toRe. This mini-

mization problem is addressed with the use of variational techniques. LetRε
e = Ro

e + ε∆. By

forming the Lagrangian of the optimization problem (??) under constraint (??), the goal of the

attacker is to minimize with respect toε the following objective function:

f (ε) = tr{(ϒRsϒt +Rε
e)
−1ϒRpϒt}+µ(tr{(ϒ− I)Rs(ϒ− I)t +ϒRpϒt +Rε

e}−NDa) (5.10)

A necessary condition for the optimality ofR∗e is when

d f(ε)
dε
|ε=0 = 0
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which implies

−tr{(ϒRsϒt +R∗e)
−1∆(ϒRsϒt +R∗e)

−1ϒRpϒt}+µtr{∆}= 0

which must be zero for any∆, and thus we need that

(ϒRsϒt +R∗e)
−1ϒRpϒt(ϒRsϒt +R∗e)

−1 = µI

from where we solve forR∗e = 1√
µ(ϒRpϒt)1/2−ϒRsϒ

The dual problem is then to maximize with respect toµ the following function:

√
µtr{(ϒRpϒt)1/2}+µ(tr{(ϒ− I)Rs(ϒ− I)t +ϒRpϒt +(µ)−1/2(ϒRpϒt)1/2−ϒRsϒt}−NDa)

which after some simplification becomes

2
√

µtr{(ϒRpϒt)1/2}−2µtr{ϒRs}+µtr{Rs}+µtr{ϒRpϒt}−µNDa

taking the derivative with respect toµ and equating to zero we obtain:

1
√

µ
=

2tr{ϒRs}− tr{Rs}− tr{ϒRpϒt}+NDa

tr{(ϒRpϒt)1/2}

C.2 Minimization with respect toΓ

Sinceϒ = ΓΦ we note that the attacker can completely controlϒ by an appropriate choice

of Γ (assumingΦ is invertible), therefore we only need to consider the minimization overϒ of

the following function:

(tr{(ϒRpϒt)1/2})2

2tr{ϒRs}− tr{Rs}− tr{ϒRpϒt}+NDa
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Proceeding similarly to the previous case, we use variational techniques withϒε = ϒo +

ε∆. After deriving the objective function with respect toε and equating to zero, we obtain the

following equation:

tr{(∆Rpϒo
t +ϒoRp∆t)(ϒoRpϒo

t)−1/2}Cd− (2tr{∆Rs}− tr{∆Rpϒo
t +ϒoRp∆t})Cn = 0

whereCd andCn are scalar factors not dependent of∆ (and will be determined later.)

Since the above equation must be equal to zero for any∆ we need that

2Cd(Rpϒt
o(ϒoRpϒt)−1/2)−2Cn(Rs−Rpϒt

o) = 0

or alternatively, if we letC = Cd/Cn

c(ϒoRpϒt
o)

1/2 +ϒoRpϒt
o = ϒRs

Letting Σ = ϒoRp1/2 andA = R−1/2
p Rs we obtain

C(ΣΣt)1/2 = ΣA−ΣΣt

after squaring both sides we have

C2Σt = (A−Σt)Σ(A−Σt)

or equivalently,

(A−Σt)Σ(A−Σt)−C2Σt = 0

D. Optimal Embedding Parameters
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max
Φ,Rp

(
tr
{

(ΦRpΦt)1/2
})2

2tr{ΦRs}− tr{Rs}− tr
{

ΦRpΦt
}

+NDa
(5.11)

Subject to:

tr
{
(Φ− I)Rs(Φ− I)t +ΦRpΦt}≤ NDw (5.12)

For anyΦ and anyRp we have by Schwarz inequality that:

(
tr
{

(ΦRpΦt)1/2
})2

2tr{ΦRs}− tr{Rs}− tr
{

ΦRpΦt
}

+NDa
(5.13)

≤ Ntr{ΦRsΦt}
2tr{ΦRs}− tr{Rs}− tr

{
ΦRpΦt

}
+NDa

(5.14)

(5.15)

Equality is achieved if and only ifΦRpΦt = κI (i.e., R∗p = κ(ΦtΦ)−1), whereκ is a

constant that can be determined by the following arguments. Notice first that Equation 5.14 is

an increasing function of tr{ΦRpΦt}. The maximum value is therefore achieved when Equation

is satisfied with equality. Solving forκ from this constraint we obtain

κ =
NDw− tr{(Φ− I)Rs(Φ− I)t}

N

Replacing the values ofκ andRp into the original objective function and lettingλ be the

maximum value the objective function can achieve (as a function ofΦ), we have:

N(NDw− tr{(Φ− I)Rs(Φ− I)t})
2tr{ΦRs}− tr{Rs}+NDa−NDw + tr{(Φ− I)Rs(Φ− I)t}

≤ λ

After some algebraic manipulations we obtain the following:

NDw

λ+1
− λ(Da−Dw)

λ+1
≤ tr

{
(Φ− (λ+1)−1I)Rs(Φ− (λ+1)−1I)t}+

λtr{Rs}
(λ+1)2
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We can see that the minimum value the right hand side of this equation can achieve (as a

function ofΦ) is whenΦ∗ = (λ+1)−1I . With Φ∗, the following equation can be used to solve

for λ:

λ
λ+1

tr{Rs}+λ(Da−Dw) = NDw

Solving forλ we obtain

λ =
Dw−Da +NDw− tr{Rs}+

√
4(Da−Dw)NDw +(Da−Dw−NDw + tr{Rs})2

2(Da−Dw)

E. Discussion

Notice that so far we have solved the problem in the following way:

min
Φ,Rp

max
Γ,Re

min
h

Ψ(E ,A) (5.16)

where (as we mentioned before)E = (h,Rp,Φ) andA = (Γ,Re). This means that givenΦ

andRp, the adversary will selectΓ andRe in order to maximize the probability of error, and

then given the parameters chosen by the adversary we finally find the embedding distributionh

minimizing the probability of error.

The problem with this solution is that in practice, the embedding algorithm will be given

in advance and the adversary will have the opportunity of changing its behavior based on the

given embedding algorithm (includingh).

For notational simplicity assumeΦ andRp are fixed, so we can replaceE with h in the

remaining of this chapter. Furthermore leth(A) denote the embedding distribution as a function

of the parametersA = (Γ,Re) (recall thath depends onA by the selection ofU in Equation
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5.6). Now we can express easily the problem we have solved:

∀A Ψ(h∗(A),A)≤Ψ(h(A),A)

This is true in particular forA∗, the solution to the full optimization problem from Equation

5.16. Moreover, the above is also true for the distribution used in the previous work [46], which

assumed a Gaussian embedding distributionhG:

∀A Ψ(h∗(A),A)≤Ψ(hG,A)

Notice also that in [46], the solution obtained was

AG = arg max
A

Ψ(hG,A) (5.17)

Due to some approximations done in [46],Ψ(hG,A) turns out to be the same objective function

given in Equation 5.7. Furthermore in [46] there were further approximations in order to obtain

linear processors (diagonal matrices). In this work we relaxed this assumption in order to obtain

the full solution to Equation 5.7. Therefore the general solution (without extra assumptions

such as diagonal matrices) in both cases is the same:

AG = arg max
A

Ψ(hG,A) = A∗ = arg max
A

{
min

h
Ψ(h,A)

}
(5.18)

One of the problems with our solution however is that there might existA ′ such that

Ψ(h∗(A∗),A∗) < Ψ(h∗(A ′),A ′)

However, even in this case it is easy to show thath∗ is still better thanhG, since the performance

achieved byhG is not as good as the performance obtained withh∗, even for any otherA :

max
A

Ψ(h∗(A),A) < max
A

Ψ(hG,A)
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The main problem is that in order to obtain this optimal performance guarantee, the

embedding distributionh∗ needs to know the adversary final strategy of the adversaryA . In

particular we are interested in two questions. With regards to the previous work in [46] we

would like to know if the following is true:

∀A Ψ(h∗(A∗),A)≤Ψ(hG,A∗) (5.19)

that is, once we have fixed the operating pointA∗ (the optimal adversary according to Equation

5.7) there is no other adversarial strategy that will makeh∗ perform worse than the previous

work.

The second question is in fact more general and it relates to the original intention of

minimizing the worst possible error created by the adversary:

min
h

max
A

Ψ(h,A) (5.20)

yet we have only solved the problem in a way whereh is dependent onA :

(h∗,A∗) = arg max
A

min
h

Ψ(h,A)

A way to show that(h∗,A∗) satisfies Equation 5.20 (and therefore also satisfy Equation

5.19) is to show that the pair(h∗,A∗) forms a saddle point equilibrium:

∀(h,A) Ψ(h∗,A)≤Ψ(h∗,A∗)≤Ψ(h,A∗) (5.21)

To be more specific letE denote again the triple(h,Rp,Φ). Then we are interested in

showing that

∀(E ,A) Ψ(E∗,A)≤Ψ(E∗,A∗)≤Ψ(E ,A∗) (5.22)

where(E∗,A∗) = (h∗,R∗p,Φ∗,R∗e,Γ∗) is the solution to Equation (5.16).
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It is easy to show how the right hand side inequality of Equation (5.22) is satisfied:

Ψ(E ,A∗) = Ep

[
Q

(√
pt 1

2
ΦtΓ∗t(Γ∗ΦRsΦtΓ∗t +R∗e)

−1Γ∗Φp

)]

≥ Q

(√
Rp

1
2

ΦtΓ∗t(Γ∗ΦRsΦtΓ∗t +R∗e)−1Γ∗Φ

)
by Jensen’s inequality

≥ Q

(√
R∗p

1
2

Φ∗tΓ∗t(Γ∗Φ∗RsΦ∗tΓ∗t +R∗e)−1Γ∗Φ∗
)

by Equation (5.7)

= Ψ(E∗,A∗) by the definition ofh∗

The left hand side of Equation (5.22) is more difficult to satisfy. A particular case where

it is satisfied is thescalarcase, i.e., whenN = 1. In this case we have the following:

Ψ(E∗,A∗) = Q

√ R∗p(Φ∗Γ∗)2

2((Γ∗Φ∗)2Rs+R∗e)


≥ Q

√ R∗p(Φ∗Γ)2

2((ΓΦ∗)2Rs+Re)

 by Equation (5.7)

= Ep

[
Q

(√
p2(Φ∗Γ)2

2((ΓΦ∗)2Rs+Re)

)]
Sincep is independent ofA

= Ψ(E∗,A∗)

The independence ofp in the scalar case comes from the fact that Equation (5.6) yields in this

casep =
√

Rp with probability 1
2 and p = −

√
Rp with probability 1

2. With this distribution

Equation (5.4) is always satisfied (since the adversary has no control over it).

This result can in fact be seen as a counterexample against the optimality of spread spec-

trum watermarking against Gaussian attacks: if the attack is Gaussian, then the embedding

distribution should not be a spread spectrum watermarking, or conversely, if the embedding

distribution is spread spectrum, then the attack should not be a Gaussian attack.

In future work we plan to investigate under which conditions or assumptions is the left

inequality in Equation (5.22) satisfied. An easier goal we also plan to investigate is whether

Equation (5.19) is true, since this will also show an improvement over previous work. We also
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plan to extend the work to other evaluation metrics, such as the case when one of the errors is

more important than the other. In this case we can set an arbitrary level of false alarms and find

the parameters of the embedder that maximize the probability of detection while the adversary

tries to minimize detection.

IV Towards a Universal Adversary Model

In the previous section we attempted to relax the usual assumptions regarding the optimal

embedding distributions (Spread Spectrum or QIM) and find new embedding distributions that

achieve better performance against attacks. The problem with the formulation in the previous

section is that the optimal embedding distributionh∗ will depend on the strict assumptions made

to keep the problem tractable. In particular it assumes the correctness of the source signal model

f (s) and even more troubling, it assumes the adversary will perform a Gaussian and scaling

attack only. This limitation on the capabilities of the adversary is a big problem in practice,

since any data hiding algorithm that is shown to perform well under any parametric adversary

(e.g., Gaussian attacks) will give a false sense of security, since in reality the adversary will

never be confined to create only Gaussian attacks or follow any other parametric distribution

prescribed by the analysis.

In this section we are going to focus in another version of the embedding detection prob-

lem: non-Blind watermarking. This formulation is very important for several problems such

as fingerprinting and traitor tracing. In non-blind watermarking both the embedder and the

detector have access to the source signals, and therefore the problem can again be represented

as:
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Ek(m,s) A Dk(s)

x← f (x|k,m,s)
x

−−−−−−−−−−−−−−−→

y← f (y|x)
y

−−−−−−−−−−−−−−−→

ln f (y|s,k,m=1)
f (y|s,k,m=0)

H1
≷
H0

τ

whereA should satisfy some distortion constraint, for example for quadratic distortion con-

straints:A ∈ FD :
{

A : E[(x−y)2]≤ D
}

Our main objective is to model and understand the optimal strategy that a non-parametric

adversary can do. To the best of our knowledge this is the first attempt to model this all powerful

adversary.

In order to gain a better insight into the problem we are going to start with the scalar case:

N = 1, or in particulars, x andy are inR. Furthermore we assumeE is fixed and parameterized

by a distanced between different embeddings: that is, for allk ands d= |Ek(1,s)−Ek(0,s)|.

Since for every output of the attackery← f (y|x) there exists a random realization ofa with pdf

h such thaty = x+a, we can replace the adversarial model with an additive random variablea

sampled from an attacker distributionh. Finally, the decision functionρ will output an estimate

of m: m= 0 orm= 1 given the output of the adversary:y.

E(m,s) A D(s)

x
−−−−−−−−−−−−−−−→

y = x+a
y

−−−−−−−−−−−−−−−→

ρ(y)

Having fixed the embedding algorithm this time, our objective is to find a pair(ρ∗,h∗)

such that

∀ρ andh∈ FD Ψ(ρ∗,h)≤Ψ(ρ∗,h∗)≤Ψ(ρ,h∗) (5.23)
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whereΨ(ρ,h) is again the probability of error:

Pr[m←{0,1};x = E(m,s);a← h(a) : ρ(x+a) 6= m]

and whereFD simplifies to
{

h : E[a2]≤ D,
∫

h(a)da= 1 andh≥ 0
}

.

Notice that this problem is significantly more difficult than the problem of finding the

optimal parameters of an adversary, since in this case we need to perform the optimization over

infinite dimensional spaces, becauseh is a continuous function.

A. On the Necessity of Randomized Decisions for Active Distortion Constraints

Let xi = E(i,s). Then we know that to satisfyΨ(ρ∗,h∗)≤Ψ(ρ,h∗), ρ∗ should select the

largest between the likelihood ofy givenx1: f (y|x1) and the likelihood ofy givenx0: f (y|x0),

and should randomly flip a coin to decide if both likelihoods are equal (this decision is called

Bayes optimal). Therefore in order to find the saddle point equilibrium we are going to assume

a givenρ and maximize forh (subject to the distortion constraints) and then check to see ifρ is

indeedBayes optimal.

Before we obtain a saddle point solution we think it is informative to show our attempt

to solve the problem with a non-randomized decision functionρ. A typical non-randomized

decision function will divide the decision space into two sets:R and its complementRc. If

y∈ R thenρ(y) = 1, otherwiseρ(y) = 0.

Assume without loss of generality thatd = x0−x1 > 0. The probability of error can be
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expressed then as:

Ψ(ρ,h) = Pr[ρ = 1|M = 0]Pr[M = 0]+Pr[ρ = 0|M = 1]Pr[M = 1]

=
1
2

(∫
R

h(y−x0)dy+
∫

Rc
h(y−x1)dy

)
=

1
2

(∫
R

h(a−d)da+
∫

Rc
h(a)da

)
=

1
2

(∫
R−d

h(a)da+
∫

Rc
h(a)da

)
=

1
2

∫
(1R−d(a)+1Rc(a))h(a)da

where 1R is the indicator function for the setR(i.e., 1R(a) = 1 if a∈Rand 1R(a) = 0 otherwise)

and whereR−d is defined as the set{a−d : a∈ R}.

The objective function is therefore:

min
R∈R

max
h∈FD

1
2

∫
(1R−d(a)+1Rc(a))h(a)da

Subject to:

E[a2]≤ D

The Lagrangian is

L(λ,h) =
∫ (

1
2

(1R−d(a)+1Rc(a))−λa2
)

h(a)da+λD

whereΨ(ρ,h∗) = L∗(λ∗) = L(λ∗,h∗).

By looking at the form of the Lagrangian in Figure 5.1 (forλ > 0) it is clear that a

necessary condition for optimality is thatR−d
⋂

Rc = /0, since otherwise, the adversary will

put all the mass ofh in this interval. Under this condition we assumeR−d = [− inf, −d
2 ].

Now notice that forD≥ (d
2)2, λ∗ = 0, and therefore there will always be anh∗ such that

Ψ(ρ,h∗) = 1
2. The interpretation for this case is that the distortion constraints are not strict
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1
2
− λa2

0
a

d

x1 x0 y

λa2

R− d Rc

L(λ, h)

Figure 5.1: Let us definea = y−x1 for the detector. We can now see the Lagrangian function

overa, where the adversary tries to distribute the densityh such thatL(λ,h) is maximized while

satisfying the constraints (i.e., minimizingL(λ,h) overλ.

enough, and the adversary can create error rates up to 0.5. It is impossible to find a saddle point

solution for this case, since anyρ will not be Bayesian, and if it is Bayes optimal thenh∗ is

not a maximizing distribution. However by assumingR−d = [− inf, −d
2 ] we guarantee that the

probability of error is not greater than 0.5. Having such a high false alarm rate is unfeasible in

practice and thus the embedding scheme should be designed with ad such thatD≥ (d
2)2

Assumingλ > 0 it is now clear from Figure 5.1 that an optimal solution is for

h∗(a) = p0δ(−d/2)+ p1δ(0)+ p2(d/2)

wherep0 + p1 + p2 = 1.

For D < (d
2)2, λ∗ = 2

d2 and thusΨ(ρ,h∗) = 2D
d2 , where

h∗(a) =
2D
d2 δ(−d/2)+

d2−4D
d2 δ(0)+

2D
d2 δ(d/2)

Notice however that in this caseρ is not optimal, since the solution assumes that at the boundary

betweenR andRc, ρ decides for both:m= 0 andm= 1 at the same time! and thus clearly this
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0 d

ρ1(a)
1

0

ρ0(a)

Figure 5.2: Piecewise linear decision function, whereρ(0) = ρ0(0) = ρ1(0) = 1
2

is not a Bayes optimal decision rule (in fact this is not a decision at all!). An naive approach to

solve this problem is to randomize the decision at the boundary: i.e., to flip an unbiased coin

whenevery is in the boundary betweenR andRc. This decision will then be Bayes optimal for

h∗, however it can be shown that thish∗ is not a solutionh that maximizes the probability of

error and thus we cannot achieve a saddle point solution. In the next section we introduce a

more elaborate randomized decision that achieves a saddle point equilibria.

B. Achieving Saddle Point Equilibria with Active Constraints

Let ρ(a) = 0 with probabilityρ0(a) andρ(a) = 1 with probabilityρ1(a). In order to have

a well defined decision function we requireρ0 = 1−ρ1. Consider now the decision function

given in Figure 5.2. The Lagrangian is now:

L(λ,h) =
∫ (

1
2

(ρ1(a+d)+ρ0(a))−λa2
)

h(a)da+λD

In order to have active distortion constraints, the maxima ofL(λ,h) should be in the

intervala∈ [−d,d]. Looking at Figure 5.3 we see that

1
2

(ρ1(a+d)+ρ0(a))−λa2

achieves its maximum value fora∗ =± 1
4λd . Therefore

h∗(a) =
1
2

(
δ
(
− 1

4λd

)
+δ
(

1
4λd

))
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1
2
− λa2

0
a

d

λa2

L(λ, h) a

2d
− λa2

Figure 5.3: The discontinuity problem in the Lagrangian is solved by using piecewise linear

continuousdecision functions. It is now easy to shape the Lagrangian such that the maxima

created form a saddle point equilibrium.

ρ1(a)
1

0

ρ0(a)

z − 1
z

d
d

z
0

z

(z − 2)d
a− 1

z − 2

d

Figure 5.4: New decision function

Notice however that underh∗, ρ will only be Bayes optimal if and only if1
4λd = d

2, which occurs

if and only if λ∗ = 1
2d2 which occurs if and only ifD =

(
d
2

)2
(sinceλ∗ = 1

4d
√

D
minimizes the

Lagrangian.)

As a summary, forD =
(

d
2

)2
, (ρ∗,h∗) form a saddle point equilibrium whenρ∗ is defined

as in Figure 5.3 and

h∗(a) =
1
2

(
δ
(
−−d

2

)
+δ
(

d
2

))
Furthermore the probability of error isΨ(ρ∗,h∗) = 1

16λd2 +λD = 1
8 + D

2d2 = 1
4.
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It is still an open question whether there are saddle point equilibria for the distortion

constraintE[a2] < D whereD > d2

4 , however forD < d2

4 we can obtain a saddle point by

considering the decision function shown in Figure 5.4. Forz∈ (3,∞), the local maxima of the

Lagrangian occur fora = 0, anda = ± z
4d(z−2)λ , where the second value was obtained as the

solution to

d
da

[
1
2

(
z

(z−2)d
a− 1

z−2

)
−λa2

]
a∗

= 0

i.e., the derivative evaluated ata∗ must be equal to zero. By symmetry of the Lagrangian we

have that another local maximum occurs ata =−a∗.

The value ofλ∗ that makes all these local maxima the same (and thus gives the opportu-

nity of an optimal attack with three delta functions, one on each local maximum) is the solution

to:

1
2

(
z

(z−2)d
z

4d(z−2)λ∗
− 1

z−2

)
−λ∗

(
z

4d(z−2)λ∗

)2

=
z2−8d2(x−2)λ∗

16d2(z−2)2λ∗
= 0

which isλ∗ = z2

8d2(z−2) . Any otherλ would have implied inactive constraints (D too large) or

D = 0. See Figure 5.5.

The optimal adversary has the form

h∗(a) = p0δ
(
−2d

z

)
+(1−2p0)δ(0)+ p0δ

(
2d
z

)

We can see thatρ defined as in Figure 5.4, andh∗ can only form a saddle point ifz= 4.

Notice also thath∗ is an optimal strategy for the adversary as long as

E[a2] = 2p0

(
d
2

)2

= D

That is p0 = 2D
d2 . Since the maximum value thatp0 should attain is1

2, this implies that this is

the optimal strategy for the adversary for anyD ≤ d2

4 . The probability of error for this saddle
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1
2
− λa2

0

a

d

λa2

L(λ, h) 1
2

(
z

(z − 2)d
a− 1

z − 2

)
− λa2

Figure 5.5: Withρ defined in Figure 5.4 the Lagrangian is able to exhibit three local maxima,

one of them at the pointa = 0, which implies that the adversary will use this point whenever

the distortion constraints are too severe

point equilibrium is

Ψ(ρ∗,h∗) = L∗(λ∗) = λ∗D =
D
d2 ≤

1
4

C. Saddle Point Solutions for D> d2

4

In the previous section we saw how the adversary can create pdfsh that generate pointsy

where the decision function makes large errors in classification, therefore the idea of using an

“indecision” region can help the decision function in regions where deciding between the two

hypothesis is prone to errors. In this framework we allowρ(y) to output¬ when not enough

information is given iny in order to decide betweenm= 0 orm= 1.

LetC(i, j) represent the cost of deciding fori (ρ = i) when the true hypothesis wasm= j.

By using as an evaluation metric the probability of error, we have been so far minimizing the

expected costE[C(ρ,m)] whenC(0,0) =C(1,1) = 0 andC(1,0) =C(0,1) = 1. We now extend

this evaluation metric by incorporating the cost of not making a decision:C(¬,0) = C(¬,1) =

α.
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ρ1(a)

0

1
ρ0(a)

β0 dd/2

ρ¬(a)

Figure 5.6:ρ¬ represents a decision stating that we do not possess enough information in order

to make a reliable selection between the two hypotheses.

If we let α < 1
2, it is easy to show (assuming Pr[m= 0] = Pr[m= 1] = 0.5) that a decision

function that minimizesΨ(ρ,h) = E[C(ρ,m)] has the following form:

ρ∗(y) =


1 if f (y|x1)

f (y|x0)
> 1−α

α

¬ if 1−α
α > f (y|x1)

f (y|x0)
> α

1−α

0 if f (y|x1)
f (y|x0)

< α
1−α

(5.24)

and wheneverf (y|x1)
f (y|x0)

equals either α
1−α or 1−α

α the decision is randomized between 1 and¬ and

between¬ and 0 (respectively).

Under our non-blind watermarking model the expected cost becomes:

Ψ(ρ,h) =
1
2

∫
{[ρ1(x+d)+αρ¬(x+d)]+ [ρ0(x)+αρ¬(x)]}h(x)dx

whereρi is the probability of deciding fori and whereρ0(x)+ρ¬(x)+ρ1(x) = 1.

Givenρ, the Lagrangian for the optimization problem of the adversary is:

L(λ,h) =
1
2

∫ [
ρ1(a+d)+αρ¬(a+d)+ρ0(a)+αρ¬(a)−λa2]h(a)da+λD

Consider now the decision function given in Figure 5.6. Following the same reasoning

as in the previous chapter, it is easy to show that forβ = 3
2d, the maximum values forL(λ,h)
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occur fora = 0 anda =±d. The optimal distributionh has the following form:

h∗(a) =
p
2

δ(−d)+(1− p)δ(0)+
p
2

δ(d)

The decision functionρ is Bayes optimal for this attack distribution only if the likelihood ratio

for a = 0 is equal to1−α
α , (i.e., if 1−p

p/2 = 1−α
α ) and if the likelihood ratio fora =±d () is equal

to α
1−α (i.e., p/2

1−p = α
1−α ).

This optimality requirement places a constraint onα: α = 2p− 1. Furthermore, the

distortion constraint implies the adversary will selectE[a2] = pd2 = D. Since we needα < 1
2

in order to make use of the “indecision” region, the above formulation is thus satisfied for

D≤ 3
4d2.
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