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Communication constraints in Networked Control systems are frequently limits

on data packet rates. To efficiently use the available packet rate budgets, we have to

resort to event-triggered packet transmission. We have to sample signal waveforms

and transmit packets not at deterministic times but at random times adapted to the

signals measured. This thesis poses and solves some basic design problems we face

in reaching for the extra efficiency.

We start with an estimation problem involving a single sensor. A sensor makes

observations of a diffusion process, the state signal, and has to transmit samples of

this process to a supervisor which maintains an estimate of the state. The objective

of the sensor is to transmit samples strategically to the supervisor to minimize the

distortion of the supervisor’s estimate while respecting sampling rate constraints.

We solve this problem over both finite and infinite horizons when the state is a

scalar linear system. We describe the relative performances of the optimal sam-

pling scheme, the best deterministic scheme and of the suboptimal but simple to

implement level-triggered sampling scheme. Apart from the utility of finding the op-



timal sampling strategies and their performances, we also learnt of some interesting

properties of the level-triggered sampling scheme.

The control problem is harder to solve for the same setting with a single

sensor. In the estimation problem for the linear state signal, the estimation error

is also a linear diffusion and is reset to zero at sampling times. In the control

problem, there is no equivalent to the error signal. We pay attention to an infinite

horizon average cost problem where, the sampling strategy is chosen to be level-

triggered. We design piece-wise constant controls by translating the problem to one

for discrete-time Markov chain formed by the sampled state. Using results on the

average cost control of Markov chains, we are able to derive optimality equations

and iteratively compute solutions.

The last chapter tackles a binary sequential hypothesis testing problem with

two sensors. The special feature of the problem is the ability of each sensor to

hear the transmissions of the other towards the supervisor. Each sensor is afforded

on transmission of a sample of its likelihood ratio process. We restrict attention

to level-triggered sampling. The results of this chapter remind us not to expect

improvements in performance merely beccause of switching to event-triggered sam-

pling. Even though the detection problem is posed over an infinite-time horizon,

threshold policies dont measure up.

The chief merits of this thesis are the formulation and solution of some basic

problems in multi-agent estimation and control. In the problems we have attacked,

we have been able to deal with the differences in information patterns at sensors

and supervisors. The main demerits are the ignoring of packet losses and of vari-



able delays in packet transmissions. The situation of packet losses can however be

handled at the expense of additional computations. To summarize, this thesis pro-

vides valuable generalizations of the works of Åström and Bernhardsson [1] and of

Kushner [2] on timing of Control actions and of Sampling observations respectively.
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Chapter 1

Estimation and Control with Data-rate Constraints

This work proposes some new ideas for the design of sampling, estimation

and control schemes in multi-agent architectures where there is a one-way rate con-

straint on the flow of information from the sensing agents to a central supervisor.

The constraint will essentially be a limit on the rate at which data packets can be

transmitted from each sensor.

These situations arise frequently from basic limitations on the information

exchange pipelines such as costs on the usage of bandwidth, energy and power.

Sometimes, there is a limited ability to process all the information that can be

gathered. There could also be a task-induced need to minimize communication in

this distributed setting because of reasons like ‘keeping the voices low’ when using

a distributed sensor bed for spying. Sometimes, the chief reason is a ‘Decentralized’

design philosophy that emphasizes autonomous behaviour at the agent-level so that

the overall collaborative effort is less susceptible to problems with information ex-

change or failure of individual agents. The same information-rate constraints appear

when autonomous agents are cast into a team and need to communicate using costly

resources in order to achieve the mission assigned. These constraints come-up again,

in centralized architectures where the measurements have to be digitized - sampled

and quantized, in order to reach the decision-maker. Frequently, the digital com-
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munication link over which the measurements travel is a data packet network. The

Networked control problem is to identify the required data-rates for achieving

control tasks and given such data-rates, to prescribe measurement-communication,

estimation and control policies for good performance. To solve this, we will ac-

tual analyze the reverse of the problem where given prescribed rate-constraints, we

seek the best achievable performance and the corresponding estimation and control

algorithms.

1.1 A collection of motivating examples.

The design of decision and control algorithms when the information input

is rate-constrained requires a simultaneous planning of the real-time information

transmitted along with the choice of estimation and control policies. There are

many systems-control applications where the resolution of this challenge is essential

to the functioning of the system. We list some examples in the following paragraphs.

1.1.1 Controller Area Networks (CANs) in Automobiles:

Today’s motor vehicle contains on-board computers that monitor and con-

trol various operations in the whole system. A single computer handling the Fuel-

injection, cruise-control, and various other monitoring and regulation tasks can pro-

cess only a limited amount of sensor measurements per unit time. This means that

the total rate of all information gathered for processing should correspond to this

limit. Frequently, a single Ethernet bus can connect most of the sensors. This
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makes sense because the computer can listen to only one device at a time and hav-

ing a single bus eliminates a lot of wiring costs. This bus, the so-called Controller

Area Network(CAN) while sufficiently bandwidth-endowed for safety and efficiency,

is designed to handle some fraction of its maximum traffic rate. The system de-

sign must allocate packet rate quotas (average and peak) to various sensors and

actuators in a way that ensures satisfactory performance of the various sensing and

control tasks. It must also take care of finer but important details such as assign-

ing priorities for packet traffic from various sources on the CAN and guaranteeing

on-demand attention for certain sensors (say, the ones for the Anti-lock Braking

system). To solve the rate allocation problem, the designer needs, for every task, a

Pareto curve that describes the trade-off between task performance and the avail-

able packet rates between the relevant sensors and the computer. Then perhaps,

a (hierarchical) multi-objective optimization problem can find the best allocations.

For each specific sensing, detection or feedback control problem, we need to find out

the best technique of packetizing measurements at the rate available.

1.1.2 The CEO problem:

A CEO who makes various decisions based on the information the employees of

her firm gather has to determine when she needs to receive intimation of the various

goings-on. For instance, while she may want the newly hired System Administrator

to keep her posted on the progress in filtering spam (to prevent him from slacking

off), she will not want him to report each day that there has been no virus flood on
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the network thus far. She has to allocate attention (time) to different charges and

make sure that the individual attentions dispensed get the jobs done. Some CEOs

might want to find out the limits of the multi-tasking she/he could pull-off. All of

them would/should have learnt how many sub-CEOs to hire into what hierarchy

and how their individual times are going to be spent. We will not have much to say

about this specific problem since our own attention will be devoted to continuous-

time problems. Still, the questions and answers we care about for diffusion state

processes can, at least in principle, be carried over to Discrete Markov chains. A

more academic version of these issues is discussed in [3, 4, 5] and [6].

1.1.3 A splurge of sensors:

It is common and sometimes necessary nowadays to perform some sensing

tasks by throwing a large number of cheap sensors at the job. They would all use

a common medium to communicate with a computer which acts as the supervisor.

Two examples are given below:

MEMS arrays and sensors on a bus: If you are going to keep tabs on

something like air quality with a very cheap but not very reliable device, it makes a

lot of sense to use a horde of them and make a computer listen to all of them. You

may also need to use different devices to look for different things in the environment.

If many of these can be cheaply fabricated on a single board (a MEMS device array

for example), it is infeasible to wire them individually to the computer (No space

for the wires and limited data fan-in for the computer). All of these devices and the
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computer are going to be shouting on the same data bus and the designer needs to lay

out a communication strategy for each of the sensors that gives everyone just enough

voice. There is also a desire to keep the data-rate low because energy dissipation and

the associated rise of temperature in these micro electronic components are costly

or even undesirable. This needs to be done in a way that maximizes (detection)

performance. Even if the bus is shared on a TDMA-like fixed scheme guaranteeing

periodic access to individual devices, we need to determine the best allocation of

sampling rates to individual devices.

Wireless sensor cluster: A cluster of wireless sensors all linked to a common

hub in one hop presents the same issues as in the case of the MEMS array. To save

energy and power and bandwidth, and perhaps to limit RF activity to cover-up a

covert sensing operation, the individual nodes should plan to send as few packets

as possible to the supervisor. The situation becomes much more interesting if the

sensors are laid out not in a small neighbourhood where everybody is within reach

of everyone else, but as a spreading mesh network that is several hops wide. The

overall collation of information that helps the supervisor arrive at the best possible

decision and control choices is very much like the firm hierarchy problem faced by the

CEO. There are many facets of the multi-access wireless communication channels

that are not factored into estimation and control design right now. With or without

the multi-access channel complications, one would like to know how many sensors

can provide a prespecified-level of performance and how to organize the information

gathering process to achieve good performance. Some related problems are studied

in [7, 8, 9].
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1.1.4 Collaborative Sensing and Control

In tracking and control tasks carried out by a team of possibly mobile agents,

the issue of how much of the local measurements to relay to others is crucial for

team success.

Energy efficient Monitoring: Detection and tracking: Take a sensor

minefield replete with acoustic sensors and video/IR cameras. The acoustic sen-

sors are cheap and low-energy devices and hence can be used all the time. But

the video/IR cameras have better ‘SNR’. To detect and track an intruder without

wasting too much energy on the expensive sensors or in communicating local sce-

narios, the designer needs to solve a joint sensor scheduling, sampling and detection

problem.

Pursuit games: A flock of mobile agents trying to zero-in on a possibly

mobile target that is not exactly visible (at least until getting up close) need to

share their views. Having to do this in a packet efficient manner brings us back to

the world of rate-constrained estimation and control.

Each sensor has to transmit to a supervisor, at times it chooses, data packets

that contain condensed information that will be useful for the supervisor to estimate

the state at current and future times. At all times, the supervisor computes an

estimate (filter) of the current state given the record of packets (contents of the

packets including the sampling times) received thus far from the sensor. The strategy

used by the sensor to choose the times at which to sample the observation process

is known to the supervisor as well. The real-time estimate by the supervisor could
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be used to compute a certainty-equivalence continuous feedback control signal that

can be relayed to the plant without communication constraints. The only constraint

on communication rates in this setup is a limit on the rate of packets sent from the

sensor to the supervisor. This limit apart, the data packet link from the sensor to

the supervisor is to be considered a lossless, zero-delay packet pipeline.

1.2 Packetization of measurements

The digital representation of observations for communication or other purposes

introduces a loss of information that decreases estimation and control performance.

In recursive estimation and control problems, the signal to noise ratio of the received

information as well as the timeliness of the information are vital for efficient use.

Digitization affects both. The sampling introduces periods of virtual information

black-out1 and a coarse quantization introduces more noise than a fine quantization.

The effect of digitization on estimation, detection and control performance has been

studied by some researchers basically as the effect of measurements made piece-wise

constant with the jumps made at sampling times [10, 11, 12, 13]. In this framework,

we can describe what the optimal sampling rate and quantization scheme is, or what

the minimal rates should be to guarantee stabilization or boundedness of estimation

error measures, especially for linear systems.

The transmission of measurements using a packet-based communication scheme

has some features that simplify the analysis. In most scenarios, the packets are of

1In packetizing schemes that are adapted to the measurements, there could actually be some

useful information even in the non-arrival of packets (resulting in a Timing channel).
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uniform size and even when of variable size, have at least a few bytes of header

and trailer files. These segments of the packet carry source and destination node

addresses, a time stamp at origin, some error control coding, some higher layer

(link and transport layers in the terminology of data networks) data blocks and

any other bits/bytes that are essential for the functioning of the packet exchange

scheme but which nevertheless constitute what is clearly an overhead. The payload

or actual measurement information in the packet should then be at least of the

same size as these ‘bells and whistles’. It costs only negligibly more in terms of

network resources, time, or energy to send a payload of five or ten bytes instead of

two bits or one byte when the overhead part of the packet is already 5 bytes. In

other words, in essentially all packet-based communication schemes, the right unit

of communication cost is the cost of transmitting a single packet whether or not

the payload is longer by a few bytes. This means that the samples being packe-

tized can be quantized with very fine detail, say with 4 bytes, a rate at which the

quantization noise can be ignored for low dimensional variables. The actual effect

of this fine quantization could be investigated perhaps along the lines of [14]. For

Markov state processes, dealt with in this paper, this will actually mean that all of

these bytes of payload can be used to specify the latest state estimate. An example

of an information-constrained problem where this argument fails is the TCP-RED

congestion control problem where the state information is carried by a single bit in

the whole packet in which the real payload is irrelevant to the congestion state.

In these packetized schemes, the other design variable left then is the sampling

scheme.
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1.3 Sampling strategy: predetermined or adaptive ?

The question of when to sample and packetize is quite important for the re-

sulting performance. Periodic sampling, or, more generally sampling at times de-

termined independently of the actual observation process brings an element of sim-

plicity to the sampling scheme. But an adaptive scheme, that chooses the sampling

instants causally based on past measurements at the sensor (and any other informa-

tion granted to it by the supervisor), is better. The adaptive schemes include the

predetermined ones trivially.

A special situation of such a sampling scheme (or rather a control invocation

scheme), called Lebesgue sampling, is studied in [15, 1]. A deterministic problem is

treated in [16].

Consider a particular adaptive scheme: sampling at some hitting times of the

measurement process. There is information transfer through the packets as well as

an additional information transmitted when there is no packet transmitted: the fact

that the hitting time hasn’t arrived yet. For a practical set-up to take advantage of

this, packets should be transmitted reliably and with negligible delay (transmission

delays are negligible) and the clocks at the various nodes should be reasonably

synchronized. The synchronization condition is required for all sampling schemes

to work well in real-time applications. We also require that all nodes work reliably

and that they do not die out during operation. This condition can be relaxed if

we are presented with a probabilistic model for node failure. Note that in an non-

adaptive sampling scheme, at least when the sampling instants are deterministic,
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non-arrival of a packet at a designated time would automatically signal failure.

So, an efficient and robust scheme, especially for networks made up of a horde

of cheap sensors, is a combination of open-loop and closed-loop policies: that of

predetermined and adaptive policies. For example, some engineers are introducing

TDMA-style packetizing in CANs (goes by the name of Time-triggered CAN) to

guarantee access to some sensors in the midst of packet-collisions/reliability-issues

etc.

An altogether separate aspect of the multi-sensor case arises when the sensor

network has a ‘star’ topology. Here, all nodes are able to listen to the packets their

peers send to the decision-maker because they use a common medium. They can

coordinate their message transmissions. The trick then is to come up with decen-

tralized schemes which provide each node with a packetizing policy which takes into

account the information fed to the decision maker by peers. This model of informa-

tion exchange with full listening applies to wireless or Ethernet networks operating

under something like CSMA-CD. We should add that, at this stage, we will disre-

gard collisions or multiuser detection possibilities and other issues associated with

multi access communication. The same model works when the nodes are commu-

nicating with the decision-maker in a way inaudible to their peers but have access

to a continuous broadcast of estimates and viewpoints of the resource-rich decision

maker. The controlled version of this model is the multi-agent co-ordinated control

problem with the information-rate constraints built into it. For problems where the

control enters the dynamics in an affine way, the optimal controller, we hope, will

turn out to be the certainty-equivalence controller.

10



Sensor

Partially observed
diffusion process

yt

Nonlinear Filter

Computer of ‘best’
Finite dimensional

statistic θt

πt

(θt)

Causal Sampler

Fy
t

Fine Quantizer

Lossy but 0-delay,
Data Network
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Figure 1.1: Schematic of a general Networked Control and Monitoring system with

a single sensor.

1.4 Contributions of this thesis

Control, estimation and detection problems with communication constraints

have been usually analysed with a focus on the effects of quantization. In each of

the works [10, 11, 17, 18], we have a discrete time linear system (perhaps the result

of sampling a continuous time system periodically). The communication constraint

is a limit on the number of bits allowed for quantizing sensor transmissions at the

discrete time instants. In these works, the task is to keep bounded and perhaps

minimize an estimation or control cost in the presence of hard limits on the bit rate.

The work of Åström and Bernhardsson [1] focusses on the sampling problem

for a rate-limited impulse control problem. This thesis is an exploration of event-
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triggered sampling strategies for estimation, control and detection problems.

The study of event-triggered sampling, estimation and control problems in-

volves a choice of sequences of stopping times along with control and estimation

waveforms. Results on the joint choice of stopping times and feedback control sig-

nals are available in the works [19, 20]. However, we are unable to utilize these

rersults because of a key difference between the problems solved in these papers and

the ones in this thesis. In this thesis, the problems of joint choice of control and

stopping times have a special information pattern. While any stopping (sampling)

time has to be adapted to the sensor observations, the feedback control waveform

is adapted to the process of samples and sample times of these observations.

Throughout this thesis, packet losses as well as transmission delays will be

ignored.

In the next chapter, we will address the problem of real-time estimation on a

finite time horizon. We will be able to find optimal sampling strategies when the

single sensor has perfect observations. We produce comparisons of the performances

of key strategies. We should mention that analogous control problems in finite time

can be posed and solved. However, their solutions become computationally much

more burdensome. Our solution of multiple stopping problems which arise in this

chapter will be solved by using standard solution techniques [21, 22] of optimal single

stopping problems and a recursive reduction of the solution of multiple stopping

problems to a single stopping problem.

In chapter 3, we will deal with a countably repeated sampling problem over the

infinite horizon. This will also be for real-time estimation. The literature on average

12



cost optimal multiple stopping [23] provides the tools necessary for determining the

optimal sampling policy. The result we have on the optimality of Lebesgue sampling

for scalar linear systems seems to be new. The level-triggered sampling whose

performance we describe here is the stochastic analogue of level-triggered sampling

for (unknown) deterministic bandlimited signals studied by Lazar and Tóth [24].

In chapter 4, we design controls for countably repeated sampling on the infinite

horizon. We see how the control problem is inherently more difficult than the

estimation problem even when the signal model is linear. Here, the non-triditional

information pattern described at the beginning of this section makee the problem

different from that descussed in the literature on swtiching control.

In the last chapter 5, we attack a sequential detection problem with two sen-

sors gathering measurements. The problem is one of sampling asynchronously, like-

lihood ratios once at each sensor with the sample being heard at the other sensor as

well. Although, we are unable to prove the overall optimality of the asynchronous

threshold-triggered sampling scheme we study, we are able to compare performances

of natural candidates for good performance and/or ease of implementation.
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Chapter 2

Finite Sampling for Real-Time Estimation

In this chapter, we focus our attention on packetization (sampling) and on es-

timation based on the generated packets in a special Networked Control/Estimation

System. We have a sensor that makes continuous observations (yt) of a diffusion

state process (xt). On [0, T ],

dxt = f(xt)dt+ g(xt)dWt, (2.1)

dyt = h(xt)dt+ dVt. (2.2)

With x0 ∼ π0(x)dx, y0 = 0, xt ∈ R
n, yt ∈ R

m, Wt ∈ R
n, Vt ∈ R

m, W and

V being standard, independent Wiener processes, with g being positive definite:

g(x)g(x)T > 0, ∀x ∈ R
n, and with f, g, h and π0 being such that the conditional

probability density of xt given {ys|0 ≤ s ≤ t} exists. The sensor has to transmit

to a supervisor, at times it chooses in [0, T ], data packets that contain condensed

information that will be useful for the supervisor to estimate the state at current

and future times.

2.1 Sampling by a single sensor

We will first describe in general terms, the problem of optimal adaptive sam-

pling that minimizes a filtering distortion. However, we will revert to a specific

version of the problem in order to get concrete solutions.
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2.1.1 The sampling problem

The state process xt is a partially observed diffusion process. Any unnormal-

ized version (ρt) of the conditional density of the state given the observations so far

(πt), will obey the Duncan-Mortensen-Zakai SPDE:

dρt(x) = L∗
(
ρt(x)

)
+ h(x)ρt(x)dyt (2.3)

where L∗ is the Fokker-Planck (FP) operator given by:

L∗φ = −
n∑

i=1

∂(fiφ)

∂xi

+
1

2

n∑
i=1

n∑
j=1

∂2(gigjφ)

∂xi∂xj

. (2.4)

for φ ∈ C2(Rn). We will assume that a finite dimensional sufficient statistic (θt)

exists for πt so that

dθt = Φ(θt)dt+ Ψ(θt)dyt (2.5)

πt(x) = κ(t, x, θt) (2.6)

with θt ∈ R
k. We will further assume that the sensor is able to compute with high

accuracy, a numerical approximation of θt resulting in a high accuracy computation

of πt.

The causal sampling problem with a fixed number of samples is to pick an

increasing sequence TN({ys|0 ≤ s ≤ T}) : {ys|0 ≤ s ≤ T} → [0, T ]N of N stopping

times.

TN({ys|0 ≤ s ≤ T}) = {τ1, . . . τN} , (2.7)

0 ≤ τ1 < τ2 < . . . < τN−1 < τN ≤ T, (2.8)

1{τi>t} ∈ Fy
t ∀ i ∈ {1, 2, . . . , N}. (2.9)

15



At these stopping times, the supervisor receives instantaneously, the current values

of θt (equivalently, the current values of πt). Notice that we have basically neglected

the noise introduced through quantization of θt and through the actual numerical

computation of {θt} itself.

At all times, the supervisor computes the conditional density of the state (σt)

given the packet record thus far

{(τ1, πτ1), . . . , (τi(t), πl(t))},

where, l(t) is the last sampling time and i(t) the corresponding packet index. Note

that σt could be discontinuous at sampling times. If i(t) < N ,

σt(x)dx = P

[
xt ∈ dx

∣∣∣{(τ1, πτ1), . . . , (τi(t), πl(t))
}
, τi(t)+1 > t

]
. (2.10)

If i(t) = N ,

σt(x)dx = P

[
xt ∈ dx

∣∣∣{(τ1, πτ1), . . . , (τN , πτN
)
}]
. (2.11)

Right at the sampling instants, the conditional densities at the supervisor are the

same as those at the sensor.

σl(t) = πl(t).

πt is a density-valued Markov process. [25]. σt is the best extrapolation of πt

available at the supervisor.

P
[
πt ∈ dπ| {πs|0 ≤ s ≤ l(t)}, t < τi(t)+1

]
= P

[
πt ∈ dπ|πl(t), t < τi(t)+1

]
(2.12)

This justifies our decision to packetize πt (or actually, its finite dimensional statistic

θt). When there is no known finite dimensional sufficient statistic for πt, it is not
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clear whether it is optimal to packetize yt or E[xt|Fy
t ] or some finite dimensional

approximation of a sufficient statistic.

Filtering distortion: Let Δ(·, ·) be a distance operator (positive and semi-

definite binary function) in the space of densities. We could also use a pseudo-

distance function namely the Kullback Liebler divergence (we will first have to show

that σt is absolutely conntinuous with respect to πt), the L1 distance, and the square

of the Euclidean distance between the means of σt and πt. Corresponding to a chosen

distance function, we can set-up a filtering distortion measure at the supervisor end:

E

[∫ T

0

Δ(σs, πs)ds

]
. (2.13)

The communication cost is the total number of packets sent: N . The Optimal

sampling problem for Filtering with a fixed sample count is to choose a sequence

T ∗
N({ys|0 ≤ s ≤ T}) of stopping times that minimizes the aggregate filtering distor-

tion and to provide a recipe for computing σt.

T ∗
N({ys|0 ≤ s ≤ T}) = arg min

TN ({ys|0≤s≤T})
E

[∫ T

0

Δ(σs, πs)ds

]
. (2.14)

The discussion above can be summarized as follows: A causal sampling policy

is a multiple stopping time policy. Given such a policy TN ({ys|0 ≤ s ≤ T}) , the

optimal filter at the supervisor is derived from it as the conditional density given

by (2.10,2.11). We seek the optimal T ∗
N({ys|0 ≤ s ≤ T}) as the one that minimizes

(2.13). It would save a lot of computational effort if for this optimal sampling

strategy, the conditional density can be computed in the fashion of eqn. (2.6) or

least as a numerical approximation to something like eqn. (2.3).
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This optimization problem can be also posed as a joint optimization over causal

sampling policies and causal estimators. We will have occasion to do that in the

special case of sampling an ideal sensor once.

Variable number of samples: We can easily extend the solution of the fixed

packet count problem to a slightly better performing variable packet count problem.

We describe such an extension in section II.C of [26]. This can be done when the

sensor has a lot of computing power at its disposal.

A solution to this joint multiple stopping and filtering problem seems difficult

because of the complicated relationship between a stopping policy and the corre-

sponding filter at the supervisor. However, the problem formulation itself is a step

forward because it can be solved in special cases and because a natural approxi-

mation (which is used in [1] for an infinite time interval problem) still outperforms

the periodic sampling strategy. It is a proper generalization of the deterministic

sampling problem for linear systems studied by Kushner [2].

In what follows, we will solve this problem for a very special case in which

there is a decoupling between the optimal stopping policy and the matching least

squares estimate at the supervisor.

2.1.2 Scheduling a single packet from an ideal sensor - Decoupling

the sampling strategy from the filter

We describe here the optimal schedule of a single sample on [0, T ] for the

special case of a perfectly observed scalar state process with odd drift and either
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Gaussian process

xt

Real-Time Filter

x̂t

SupervisorIdeal Noiseless Sensor

Figure 2.1: The situation of sampling a perfect sensor for real-time estimation based

on the sampled stream. The plant here is linear. The discussion in section 2.1.2

covers some nonlinear plants as well.

even or odd diffusion coefficient functions and an even initial probability density

function.

dxt = f(xt)dt+ g(xt)dBt (2.15)

dyt = xtdt (2.16)

With, x0 ∼ π0(x)dx, y0 = 0, xt ∈ R, f being odd, and g either odd or even.

The sampling problem is to choose a single Fx
t -stopping time τ on [0, T ].

T1({xs|0 ≤ s ≤ T}) = {τ} , (2.17)

0 ≤ τ ≤ T, (2.18)

1{τ>t} ∈ Fx
t . (2.19)
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A non-standard optimal stopping problem

Since xt is fully observed at the sensor, the relevant distortion at the supervisor

is now:

J = E

[∫ T

0

(x̂s − xs)
2ds

]
(2.20)

where x̂t is the conditional mean of the state computed by the supervisor based on

the initial density, the knowledge of the sampling strategy and either the received

single sample or the fact that the sampling has not happened yet.

x̂t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E[xt|x0 = 0, τ > t] if τ > t

E[xt|xτ ] if τ ≤ t

(2.21)

On [0, τ), x̂t is determined entirely by t. On [τ, T ], x̂t is determined by the sample

received: xτ . The filtering distortion splits into two parts.

E

[∫ τ

0

(x̂s − xs)
2ds

]
+ E

[∫ T

τ

(x̂s − xs)
2ds

]
. (2.22)

The second part is entirely determined by xτ and T − τ . On [τ, T ], the variance

E[(x̂t − xt)
2] = Pt obeys the ODE:

dPt

dt
= E

[
2xtf(xt) + g2(xt)

∣∣xτ

]
dt (2.23)

with zero as the initial condition : Pτ = 0. Let C(τ, t, xτ ) be the solution to this

ODE on [τ, T ]. Then, the supervisor’s distortion becomes:

E

[∫ τ

0

(x̂s − xs)
2ds

]
+ E

[
E

[∫ T

τ

(x̂s − xs)
2ds

∣∣∣τ, xτ

]]

= E

[∫ τ

0

(x̂s − xs)
2ds

]
+ E

[∫ T

τ

C(τ, s, xτ )ds

]
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Now, let the cost to go from τ be

∫ T

τ

C(τ, s, xτ)ds = C (τ, T, xτ ). (2.24)

Then, the overall optimization problem is to choose a stopping policy T1({xs|0 ≤

s ≤ T}) such that the cost

J = E

[∫ τ

0

(x̂s − xs)
2ds+ C (τ, T, xτ )

]
(2.25)

is minimized. For an optimal sampling strategy, if we can somehow know the depen-

dence of x̂t on t for t ∈ [0, τ), we can use the Snell envelope (St) (see [27] Appendix

D) to determine the optimal stopping rule.

St = essup
τ≥t

E

[∫ τ

0

(x̂s − xs)
2ds+ C (τ, T, xτ )

∣∣∣Fx
t

]
,

=

∫ t

0

(x̂s − xs)
2ds

+essup
τ≥t

E

[∫ τ

t

(x̂s − xs)
2ds+ C (τ, T, xτ )

∣∣∣xt

]
.

Then, the smallest time τ ∗ when the cost of stopping at that time hits the Snell

envelope is an optimal stopping time (see [27] Appendix D ).

∫ τ∗

0

(x̂s − xs)
2ds+ C (τ ∗, T, xτ∗) = Sτ∗ . (2.26)

Or equivalently,

C (τ ∗, T, xτ∗) = essup
τ≥τ∗

E

[∫ τ

τ∗
(x̂s − xs)

2ds+ C (τ, T, xτ )
∣∣∣xt

]
. (2.27)

Since the Snell envelope depends only on the current value of the state and the

current time, we get a simple threshold solution for our problem. We can compute

the condition to be satisfied by xt, t for stopping at t by relating this problem to
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a variational inequality that gives us continuation and stopping regions. In any

case, for numerical computation of the solution, we will have to take that route [28].

Now, we will use some properties of the state process that result from our earlier

assumptions.

The unobserved xt is a process with an even density function at all times if

the initial density function is even. Basically, the FP operator (2.4) is linear and so,

if we split ρt into its even and odd parts

ρ+
t (x) =

ρt(x) + ρt(−x)

2
,

ρ−t (x) =
ρt(x) − ρt(−x)

2
,

the separate parts obey the FP equation which, with our assumptions, preserves

their even and odd properties respectively. Since the initial density function is even,

ρt is even at all times. C (τ, x, T ) is also an even function of x.

Optimization over arbitrary estimate waveforms at the supervisor

The joint optimization problem of filtering and sampling has been cast so far

as a non-standard optimal stopping problem with the filter x̂t being a funtional of

the stopping rule being optimized. Now, we will look at this optimization (2.25) as

one over different surrogate waveforms ξt that the supervisor could use up to the

stopping time:

ξt : [0, T ] → R

For example, the supervisor may want to use a piece-wise linear waveform to keep

track of xt until the sampling time but use the least squares estimate x̂t after the
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sample has been received.

By arbitrarily using a ξ-waveform instead of x̂t, the supervisor disregards the

stopping policy used at the sensor. All the sensor can do now is to tailor its stopping

policy T1 to minimize the aggregate distortion between the state and the supervisor’s

estimate process:

E

[∫ T

0

(
1{τ>s}ξs + 1{τ≤s}E [xt| τ, xτ ] − xs

)2
ds

]
.

This cost can be expressed as:

JTOTAL(ξt, T1) = E

[∫ τ

0

(ξs − xs)
2ds+ C (τ, T, xτ )

]
. (2.28)

Given an estimator ξt, let T ∗
1 ({ξ}) be an optimal stopping rule that minimizes

JTOTAL i.e.

ĴTOTAL(ξt) = JTOTAL

(
ξt, T ∗

1

(
{ξ}

))
= min

T1

JTOTAL(ξt, T1). (2.29)

Let ξ∗t be an estimator that minimizes ĴTOTAL, i.e.

ĴTOTAL(ξ∗t ) = min
ξt

ĴTOTAL(ξt). (2.30)

This means that the pair (
ξ∗t , T ∗

1

(
{ξ∗}

))

minimizes (in sequence) the nested optimization problem:

min
ξt

(
min
T1

{
E

[∫ τ

0

(ξs − xs)
2ds+ C (τ, T, xτ )

]})
(2.31)

The optimal waveform ξ∗t has the property that it is also the least squares estimate

(conditional mean of (2.21)) corresponding to the stopping policy T ∗
1

(
{ξ∗}

)
:

ξ∗t
a.s.
= E

[
xt| τ > t, T ∗

1

(
{ξ∗}

)
� τ

]
.
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If not, we could achieve lower cost by retaining the sampling policy T ∗
1

(
{ξ∗}

)
and

using the conditional mean (of eqn. (2.21)) it generates.

It turns out that combining the estimator −ξ∗t with the best stopping rule

for ξ∗t does not increase the cost ! This is because the process −xt has the same

statistics as xt. The unique minimizer (a.s.) of ĴTOTAL is the conditional mean ,

then, ξ∗t = −ξ∗t a.s. This means that

ξ∗t ≡ 0.

This is indeed the conditional mean for the corresponding optimal stopping problem

because its Snell’s envelope St depends only on |xt| and t. In essence, there is no

Timing Channel between the optimal filter and the optimal stopping policy. We

should remember that, although the conditional mean x̂t under optimal sampling

at the supervisor is the same as the mean of the density from the Fokker-Planck

equation(FP-ρ), the conditional variance at the supervisor is smaller than that of

FP-ρ.

2.1.3 Keeping track of a scalar Ornstein-Uhlenbeck process

For simplicity of exposition, here we consider the signal to be a scalar Ornstein-

Uhlenbeck process.

We are interested in keeping track of the state xt on a prescribed time interval

[0, T ].

dxt = −axtdt+ dwt

where wt is a standard Wiener process and x0 is a zero mean random variable with
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pdf f(x0). Positive values of a give rise to a stable process, negative to an unstable

and finally a = 0 to the Wiener process.

If x̂t is the estimate, we measure its quality by the following average integral

squared error ∫ T

0

E
[
(xs − x̂s)

2
]
ds.

The estimate x̂t relies on knowledge about xt acquired during the time inter-

val [0, T ]. The type of information we are interested in, are samples obtained by

sampling xt at k time instances 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τk ≤ T . If we use the minimum

mean square error estimate given by

x̂t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if t ∈ [0, τ1),

xτne
−a(t−τn) if t ∈ [τn, τn+1),

the performance measure becomes

J (τ1, . . . , τk) = E

[∫ τ1

0

x2
t dt+

k−1∑
n=1

∫ τn+1

τn

(xt − x̂t)
2 dt+

∫ T

τk

(xt − x̂t)
2 dt

]
. (2.32)

The goal here is to find sampling policies that are optimal in the sense that they

solve the following optimization problem:

inf
τ1,...,τk

J (τ1, . . . , τk).

For the remainder of this paper, and in order to clarify the concepts and compu-

tations involved, we treat the single sample case. The multiple sample case just

described will be treated in sections (2.3,2.4).
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2.2 The single sample case

Let us limit ourselves to the single sample case where, for simplicity, we drop

the subscript from the unique sampling instance τ1. Material in this section was

publishe in [29]. In this special case the performance measure in (2.32) takes the

form

J (τ) = E

[∫ τ

0

x2
t +

∫ T

τ

(xt − x̂t)
2 dt

]

= E

[∫ T

0

x2
t − 2

∫ T

τ

xtx̂t dt+

∫ T

τ

(x̂t)
2 dt

]
.

Now notice that the second term can be written as follows

E

[∫ T

τ

xtx̂t dt

]
= E

[∫ T

τ

E[xt|Fτ ]x̂t dt

]

= E

[∫ T

τ

(x̂t)
2 dt

]
,

where we have used the strong Markov property of xt and that for t > τ we have

E[xt|Fτ ] = xτe
−a(t−τ) = x̂t. Because of this observation the performance measure

J (τ) takes the form

J (τ) = E

[∫ T

0

x2
t dt−

∫ T

τ

(x̂t)
2 dt

]

=
e−2aT − 1 + 2aT

4a2
+ E

[
x2

0

1 − e−2aT

2a
− x2

τ

1 − e−2a(T−τ)

2a

]

= T 2

{
e−2aT − 1 + 2aT

4(aT )2
E

[
x2

0

T

1 − e−2aT

2(aT )
− x2

τ

T

1 − e−2(aT )(1−τ/T )

2(aT )

]}

= T 2

{
e−2ā − 1 + 2ā

4ā2
+ E

[
x̄2

0

1 − e−2ā

2ā
− x̄2

τ̄

1 − e−2ā(1−τ̄ )

2ā

]}
,

where,

t̄ =
t

T
; ā = aT ; x̄t̄ =

x t
T√
T
. (2.33)

It is interesting to note that

dx̄t̄ = −āx̄t̄dt̄+ dwt̄.
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This suggests that, without loss of generality, we can limit ourselves to the normal-

ized case T = 1 since the case T 
= 1 can be reduced to the normalized one by using

the transformations in (2.33). The performance measure we are finally considering

is

J (τ) =
e−2a − 1 + 2a

4a2

+ E

[
x2

0

1 − e−2a

2a
− x2

τ

1 − e−2a(1−τ)

2a

]
; τ ∈ [0, 1].

(2.34)

We will also need the following expression

J (τ, x0) =
e−2a − 1 + 2a

4a2
+ x2

0

1 − e−2a

2a

− E

[
x2

τ

1 − e−2a(1−τ)

2a

∣∣∣x0

]
; τ ∈ [0, 1].

(2.35)

Clearly, J (τ) = E[J (τ, x0)], where the last expectation is with respect to the statis-

tics of the initial condition x0.

Next we are going to consider three different classes of admissible sampling

strategies and we will attempt to find the optimum within each class that minimizes

the performance measure in (2.34). The classes we are interested in are: a) deter-

ministic sampling; b) threshold sampling and c) general event-triggered sampling.

Our results in this problem have appeared in [29].

2.2.1 Optimum deterministic sampling

Let us first minimize (2.34) over the class of deterministic sampling times i.e.

open loop, predetermined sampling times. The performance measure then takes the
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form

J (τ) =
e−2a − 1 + 2a

4a2
+ σ2 1 − e−2a

2a

− 1

4a2

{
1 − (1 − 2aσ2)e−2aτ

}{
1 − e−2ae2aτ

}
; τ ∈ [0, 1] (2.36)

where σ2 denotes the variance of the initial condition. Clearly J (τ) is minimized

when we maximize the last term in the last expression. It is a simple exercise to

verify that the optimum sampling time satisfies

τo = arg max
τ

{
1 − (1 − 2aσ2)e−2aτ

}{
1 − e−2ae2aτ

}

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

+ log(1−2aσ2)
4a

for σ2 ≤ 1−e−2a

2a
,

0 otherwise.

(2.37)

In other words, if the initial variance is greater than the value (1 − e−2a)/2a then

it is better to sample at the beginning. The corresponding optimum performance

becomes

J (τo) =
e−2a − 1 + 2a

4a2

− 1

4a2
(e−a −

√
1 − 2aσ2)21

σ2≤ 1−e−2a

2a

.

(2.38)

2.2.2 Optimum threshold sampling

Here we consider a threshold η and we sample the process xt whenever |xt|

exceeds η for the first time. If we call τη the sampling instance

τη = inf
0≤t

{t : |xt| ≥ η}.

then it is clear that we can have τη > 1. We therefore define our sampling time as

the minimum of the two, that is, τ = min{τη, 1}. Of course sampling at time τ = 1,
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has absolutely no importance since from (2.34) we can see that such a sampling

produces no contribution in the performance measure. Another important detail in

threshold sampling is the fact that whenever |x0| ≥ η then we must sample at the

beginning.

Our goal here is, for a given parameter a and pdf f(x0) to find the threshold

η that will minimize the performance measure J (τ). As in the previous case let us

analyze J (τ). We first need to compute J (τ, x0) for given threshold η. From (2.35)

we have

J (τ, x0) =
e−2a − 1 + 2a

4a2

+

{
x2

0

1 − e−2a

2a
− η2

E

[
1 − e−2a(1−τ)

2a

∣∣∣x0

]}
1|x0|<η. (2.39)

We first note that our expression captures the fact that we sample in the beginning

whenever |x0| ≥ η. Whenever this does not happen, that is, on the event {|x0| < η}

we apply our threshold sampling. If |xt| reaches the threshold η before the limit

time 1, then we sample and xτ = ±η, therefore

x2
τ

1 − e−2a(1−τ)

2a
= η2 1 − e−2a(1−τ)

2a
.

If however |xt| does not reach the threshold before time 1, then we sample at t = 1

and we have

x2
τ

1 − e−2a(1−τ)

2a

∣∣∣
τ=1

= 0 = η2 1 − e−2a(1−τ)

2a

∣∣∣
τ=1

,
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Manipulating the last term in (2.39) we obtain

J (τ, x0) =
e−2a − 1 + 2a

4a2

− (η2 − x2
0)

[
1 − e−2a

2a

]
1|x0|<η

+ η2e−2a
E

[∫ τ

0

e2at dt
∣∣∣x0

]
1|x0|<η.

The only term that needs special attention in the previous formula is the last one,

for which we must find a computational recipe. Consider a function U(x, t) defined

on the orthogonal region |x| ≤ η, 0 ≤ t ≤ 1. We require U(x, t) to satisfy the

following PDE and boundary conditions

1

2
Uxx − axUx + Ut + e2at = 0; U(±η, t) = U(x, 1) = 0. (2.40)

If we apply standard Itô calculus on U(xt, t) we have

E[U(xτ , τ)|x0] − U(x0, 0) = E

[∫ τ

0

dU(xt, t)
∣∣∣x0

]

= E

[∫ τ

0

{
1

2
Uxx − axUx + Ut

}
dt
∣∣∣x0

]

= −E

[∫ τ

0

e2atdt
∣∣∣x0

]
.

Notice that at the time of sampling, xτ is either at the boundary xτ = ±η in which

case U(xτ , τ) = U(±η, τ) = 0, or we have reached the limit t = 1 with |x1| < η,

thus we sample at τ = 1 which yields U(xτ , τ) = U(x1, 1) = 0. We thus conclude

that E[
∫ τ

0
e2atdt|x0] = U(x0, 0).

With the help of the function U(x0, 0) we can write J (τ, x0) as

J (τ, x0) =
e−2a − 1 + 2a

4a2

−
{

(η2 − x2
0)

1 − e−2a

2a
+ η2e−2aU(x0, 0)

}
1|x0|<η.
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Averaging this over x0 yields the following performance measure

J (τ) =
e−2a − 1 + 2a

4a2

− 1 − e−2a

2a
E
[
(η2 − x2

0)1|x0|<η

]
− η2e−2a

E
[
U(x0, 0)1|x0|<η

]
.

To find the optimum threshold and the corresponding optimum performance we need

to minimize J over η. This optimization can be performed numerically as follows:

for every η we compute U(x0, 0) by solving the PDE in (2.40); then we perform the

averaging over x0; we then compute the performance measure for different values of

η and select the one that yields the minimum J (τ).
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Figure 2.2: Relative performance of optimum (variable) threshold and suboptimum

constant threshold sampling scheme, as a function of the variance (σ2) of the initial

condition.

In order to observe certain key properties of the optimum thresholding scheme
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Figure 2.3: Optimum threshold as a function of the initial variance σ2, with a = 1.

let us consider the case a = 1 with a zero mean Gaussian initial value x0 of variance

σ2. Fig. 2.2(a) depicts the optimum performance J (τ) as a function of the variance

σ2 and Fig. 2.3(b) the corresponding optimum threshold η. From Fig. 2.3(b) we

observe that the optimum threshold is between two limiting values η0, η∞. The

interesting point is that both these values are independent of the actual density

function f(x0), as long as the pdf is from an unimodal family of the form: f(x) =

h(x/σ)/σ, σ ≥ 0 where, h(·) is a unimodal pdf with unit variance and with both

its mean and mode being zero. Indeed for such a pdf, variance tending to 0, means

that the density f(x0) tends to a Dirac delta function at zero. The performance

measure in (2.2.2) then takes the simple form

J (τ) =
e−2a − 1 + 2a

4a2
− η2

{
1 − e−2a

2a
+ e−2aU(0, 0)

}

which, if minimized with respect to η, yields η0. If now we let the variance σ2 → ∞
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then every unimodal function becomes almost flat with value f(0) inside each finite

interval [−η, η]. The corresponding performance measure then takes the form

J (τ) ≈ e−2a − 1 + 2a

4a2

− f(0)

∫ η

−η

1 − e−2a

2a
(η2 − x2

0) dx0

− f(0)

∫ η

−η

η2e−2aU(x0, 0) dx0.

To optimize the previous expression it is sufficient to optimize the last integral,

which is independent of the actual pdf f(x0). This optimization will yield η∞.

Threshold sampling has another interesting property. If instead of using the

optimal threshold η which is a function of the initial pdf and the variance σ2, we use

the constant threshold ηo = 0.5(η0+η∞), then the resulting sampling policy is clearly

suboptimal. However as we can see from Fig. 2.2 the performance of the suboptimal

scheme is practically indistinguishable from that of the optimal. Having a sampling

scheme which is (nearly) optimal for a large variety of pdfs (unimodal functions)

and practically any variance value, is definitely a very desirable characteristic. We

would like to stress that this property breaks when f(x0) is not unimodal and also

when a takes upon large negative values (i.e. the process is strongly unstable).

2.2.3 Optimal sampling

In this section we are interested in sampling strategies that are optimal in

the sense that they minimize the performance measure (2.34) among all possible

sampling policies (stopping times) τ . Unlike the previous sampling scheme, the

optimal sampling rule is completely independent of the pdf f(x0). From (2.34) it is
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clear that in order to minimize the cost J (τ) it is sufficient to perform the following

maximization

V (τ) = sup
0≤τ≤1

E

[
x2

τ

1 − e−2a(1−τ)

2a

]
. (2.41)

Using standard optimal stopping theory [21] let us define the optimum cost to

go (Snell envelope) as follows

Vt(x) = sup
t≤τ≤1

E

[
x2

τ

1 − e−2a(1−τ)

2a

∣∣∣xt = x

]
. (2.42)

If one has the function Vt(x) then it is straightforward to find the optimal sampling

policy. Unfortunately this function is usually very difficult to obtain analytically, we

therefore resort to numerical approaches. By discretizing time with step δ = 1/N ,

we define a sequence of (conditionally with respect to x0) Gaussian random variables

x1, . . . , xN , that satisfy the AR(1) model

xn = e−aδxn−1 + wn, wn ∼ N
(

0,
1 − e−2aδ

2a

)
; 1 ≤ n ≤ N.

As it is indicated, wn are i.i.d. Gaussian random variables.

Sampling in discrete time means selecting a sample xν from the set of N + 1

sequentially available random variable x0, . . . , xN , with the help of a stopping time

ν ∈ {0, 1, . . . , N}. As in (2.42) we can define the optimum cost to go which can be

analyzed as described below. For n = N,N − 1, . . . , 0,

Vn(x) = sup
n≤ν≤N

E

[
x2

ν

1 − e−2aδ(N−ν)

2a

∣∣∣xn = x

]

= max

{
x2 1 − e−2aδ(N−n)

2a
,E[Vn+1(xn+1)|xn = x]

}
.

Equation (2.43) provides a (backward) recurrence relation for the computation of the

cost function Vn(x). Notice that for values of x for which the l.h.s. in (2.43) exceeds
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the r.h.s. we stop and sample, otherwise we continue to the next time instant.

We can prove by induction that the optimal policy is a time-varying threshold one.

Specifically for every time n there exists a threshold λn such that if |xn| ≥ λn we

sample, otherwise we go to the next time instant. The numerical solution of the

recursion presents no special difficulty. If Vn(x) is sampled in x then this function is

represented as a vector. In the same way we can see that the conditional expectation

is reduced to a simple matrix-vector product. Using this idea we can compute

numerically the evolution of the threshold λt with time. Fig. 2.4 depicts examples

of threshold time evolution for values of the parameter a = −1, 0, 1.
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Figure 2.4: Time evolution of the optimum threshold λt for parameter values a =

1, 0,−1.

Using Vn(x) the final optimum cost can be computed from (2.34) as

J (τ) =
e−2a − 1 + 2a

4a2
− E

[
V0(x0) − x2

0

1 − e−2a

2a

]
.

Since from the recursion we know that V0(x0) = x2
0(1 − e−2a)/2a for |x0| ≥ λ0, we
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conclude that we can also write

J (τ) =
e−2a − 1 + 2a

4a2

− E

[{
V0(x0) − x2

0

1 − e−2a

2a

}
1|x0|≤λ0

]
.

(2.43)

The Wiener case

Let us now focus on the case a = 0 which gives rise to a Wiener process. We

consider this special case because it is possible to obtain an analytic solution for the

optimization problem. For a = 0 the optimization in (2.41) takes the form

V (τ) = sup
0≤τ≤1

E
[
x2

τ (1 − τ)
]
.

Consider the following function of t and x

Vt(x) = A

{
1

2
(1 − t)2 + x2(1 − t) +

x4

6

}
(2.44)

where A =
√

3/(1 +
√

3). Using standard Itô calculus, if xt is a standard Wiener

process, we can show that

E[Vτ (xτ )|x0] − V0(x0) = E

[∫ τ

0

dVt(xt)|x0

]
= 0 (2.45)

for any stopping time τ . Notice now that

Vt(x) − x2(1 − t) = A

(
x2

√
6
− 1 − t√

2

)2

≥ 0. (2.46)

Combining (2.45) and (2.46) we conclude that for any stopping time τ

V0(x0) = E[Vτ (xτ )|x0] ≥ E[x2
τ (1 − τ)|x0].

This relation suggests that the performance of any stopping time τ is upper bounded

by V0(x0). Consequently if we can find a stopping time with performance equal to
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this value then it will be optimal. In fact such a stopping time exists. From the

previous relation the last inequality becomes an equality if at the time of sampling τ

we have Vτ (xτ ) = x2
τ (1−τ). From (2.46) we conclude that this can happen iff |xτ | is

such that the rhs in (2.46) is exactly 0 which happens if x2
τ/
√

6 = (1− τ)/
√

2. This

suggests that the optimal threshold for the Wiener process is the following function

of time

λt =
4
√

3
√

1 − t.

The optimum performance measure, from (2.43) and letting a→ 0, becomes

J (τ) =
1

2
− E

[{
V0(x0) − x2

0

}
1|x0|≤λ0

]
,

where Vt(x) is defined in (2.44).

2.2.4 Comparisons

We have seen that the best sampling strategy is an event-triggered one. Below,

we will see graphically that a simpler event-triggered strategy based on a constant

threshold, provides almost as good performance compared to the time-triggered

one, thus providing more ammunition to the ideas of [1] Let us now compare the

performance of the three sampling schemes (deterministic, constant thresholding

and optimal) for values of the parameter a = 10, 1, 0,−1. Regarding threshold

sampling we apply the suboptimal version, which uses a constant threshold. For the

pdf of the initial value x0 we assume zero mean Gaussian with variance σ2 ranging

from 10−4 to 104. We depict the relative performances of the three schemes with the

graphs being normalized so that maximum is 1. In (a),(b) where a is positive (stable
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Figure 2.5: Relative performance of Optimum, Threshold and Deterministic sam-

plers as a function of initial variance σ2 and parameter values (a) a = 10, (b) a = 1,

(c) a = 0 and (d) a = −1.

process) the performance of the threshold policy is very close to the optimal and

the gain, compared to deterministic sampling, is more important. When however

we go to values of a that give rise to unstable processes, threshold sampling starts

diverging from the optimal, as in (c) and (d) and, although not shown here, when a

is less than -5 (strongly unstable process) deterministic sampling can even perform

better than threshold sampling.

In the rest of this chapter, we will address multiple sampling policies on a
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finite interval. Henceforth, we will assume that the initial value of the state is

known exactly to the supervisor.

2.3 Multiple samples for a Wiener process

We will now characterize the performance of the three sampling strategies for

the Wiener process when the allowed number of samples is more than one. The

material in the and the next section has been published in [30].

2.3.1 Deterministic sampling

We will show through induction that uniform sampling on the interval [0, T ]

is the optimal deterministic choice of N samples

{τ1, τ2, . . . , τN | 0 ≤ τi ≤ T, τi ≥ τi−1 for i = 1, 2, . . . , N}

given that the initial value of the signal is zero.

When the number of samples permitted is N , the distortion takes the form:

J[0,T ] ({τ1, τ2, . . . τN}) =

∫ τ1

0

E (xs − x̂s)
2ds

+

∫ τ2

τ1

E (xs − x̂s)
2ds+ . . .+

∫ T

τN

E (xs − x̂s)
2ds.

For the induction step, we assume that the optimal choice of N − 1 deterministic

samples over [T1, T2] is the uniform one:

{τ1, τ2, . . . τN−1} =

{
T1 + i

T2 − T1

N

∣∣∣i = 1, 2, . . . , N − 1

}
,

and then the corresponding minimum distortion becomes:

N
(T2 − T1)2

2N2
=

(T2 − T1)
2

2N
.
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Then, the minimum distortion over the set of N sampling times is:

min
{τ1,τ2,...τN}

J[0,T ] ({τ1, τ2, . . . τN})

= min
τ1

{∫ τ1

0

(xs − x̂s)
2ds+ min

{τ2,τ2,...τN}
J[τ1,T ] ({τ1, τ2, . . . τN})

}
,

= min
τ1

{
τ1

2

2
+

(T − τ1)
2

2N

}
,

= min
τ1

{
Nτ 2

1 + τ 2
1 − 2τ2T + T 2

2N

}
,

= min
τ1

{
(N + 1)(τ1 − T/(N + 1))2 + T 2 − T 2/(N + 1)

2N

}
,

=
T 2

2(N + 1)
,

the minimum being achieved for τ1 = T/(N + 1). This proves the assertion about

the optimality of uniform sampling.

2.3.2 Level triggered sampling

Here, the sampling times are defined through: For i = 1, 2, . . . , N

τ0 = 0,

ηi ≥ 0,

τi,ηi
= inf

{
t : t ≥ τi−1,

∣∣xt − xτi−1

∣∣ ≥ ηi

}
,

τi = min {τi,ηi
, T} .

Like in the single sample case, we will show that the expected distortion over [0, T ]

given at most N samples is of the form

cN
T 2

2
.
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Let τη be the level-crossing time of the last set of equations. Then, given a positive

real number α, the following minimal cost

min
η≥0

J (η) = min
η≥0

E

[∫ τη∧T

0

x2
sds+ α

[
(T − τη)+]2] (2.47)

turns out to be:

β
[
(T − τη)+]2,

where β > 0 depends only on α. We will now prove this useful fact.

Notice that:

d
[
(T − t)x2

t

]
= −x2

tdt+ 2(T − t)xtdxt + (T − t)dt,

and that,

E

[∫ τη∧T

0

x2
sds

]
= E

[
(T − τη ∧ T ) x2

τη∧T +
T 2

2
− 1

2
(T − τη ∧ T )2

]

=
T 2

2
− E

[
η2(T − τη)+ +

1

2

[
(T − τη)+]2] .

Thus, the cost (2.47) becomes:

J (η) =
T 2

2
− η2

E
[
(T − τη)+]− (

1

2
− α

)
E

[[
(T − τη)+]2] .

The above expression is convenient because, we can rewrite this in terms of T and

λ alone. We have:

J (η) =
T 2

2

[
ϕ(λ) +

(
1

2
− α

)
ψ(λ)

]
,

where, ϕ, ψ are defined through:

ϕ(λ) = 1 − π

λ2

∞∑
k=0

(−1)k e
−(2k+1)2λ − 1 + (2k + 1)2λ

(2k + 1)2

ψ(λ) =
16

πλ2

∞∑
k=0

(−1)k e
−(2k+1)2λ − 1 + (2k + 1)2λ− (1/2)(2k + 1)4x2

(2k + 1)5 .
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Then we have the optimal cost (2.47) as:

min
η≥0

J (η) =
T 2

2
inf
λ
{ϕ(λ) + (0.5 − α)ψ(λ)} .

The minimal distortion for the level-triggered scheme with a single sample allowed

is:

c1
T 2

2
= 0.3952

T 2

2
.

Based on the above discussion, we can define ck recursively as follows: For k ≥ 2,

ck = inf
λ
{ϕ(λ) + (0.5 − ck−1)ψ(λ)} ,

λ∗k = arg inf
λ
{ϕ(λ) + (0.5 − ck−1)ψ(λ)} ,

ρk =
π

2
√

2λ∗k
.

The optimal set of thresholds are given by:

η∗k = ρN−k+1

√
T − τk−1.

2.3.3 Optimal multiple sampling

Exactly like in the discussion of the previous section on multiple level-triggered

sampling, we will obtain a parametric expression for the minimal expected distortion

given at most k samples. Analogous to equation (2.47), consider the stopping cost:

J (τ) = E

[∫ τ∧T

0

x2
sds+

α

2

[
(T − τ)+]2] (2.48)

where α ≥ 0 is a given constant. We can rewrite this as:

1

2

{
T 2 − E

[
2x2

τ∧T (T − τ)+ + (1 − α)
[
(T − τ)+]2]} .
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Note that there is no change in optimality by permitting τ to take values bigger

than T . In fact the optimal τ even with this relaxation will a.s. be less than T . Like

in the single sample case, let us pay attention to the part of the above expression

which depends on τ and define the following optimal stopping problem:

min
τ

E
[
2x2

τ (T − τ) + (1 − α)(T − τ)2] .
Consider the candidate maximum expected reward function:

g(x, t) = A

{
(T − t)2 + 2x2 (T − t) +

x4

3

}
.

where A is a constant chosen such that g(x, t)−2x2(T −t)−(1−α)(T −t)2 becomes

a perfect square. The only possible value for A then is:

(5 + α) −
√

(5 + α)2 − 24

4
.

Then the optimal stopping time is given by:

τ ∗ = inf
t

{
t : g(xt, t) ≤ 2x2

t (T − t) + (1 − α)(T − t)2
}
,

= inf
t

{
t : x2

t ≥
√

3(A− 1 + α)

A
(T − t)

}
,

and the corresponding optimal distortion J becomes

J = (1 − A)
T 2

2
.

Now, we obtain the explicit stopping rules and the corresponding minimal distortions

for different values of the sample budget N by defining recursively κN , γN :

κN = 1 −
(5 + κN−1) −

√
(5 + κN−1)2 − 24

4
,

γN =

√
3(κN−1 − κN)

1 − κN
.
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The (k + 1)th sampling time is chosen as:

τk+1 = inf
t≥τk

{
t : (xt − xτk

)2 ≥ γN−k+1T − t
}
.

2.3.4 Comparisons

We now list a numerical comparison of the aggregate filtering distortions in-

curred by the three sampling strategies on the same time interval [0, T ]. We obtained

the distortions for all sampling strategies as product of T 2/2 and a positive coeffi-

cient. The numbers listed in the table are the values of these coefficients.

N 1 2 3 4

Deterministic 0.5 0.333 0.25 0.2

Level-triggered 0.3953 0.3471 0.3219 0.3078

Optimal 0.3660 0.2059 0.1388 0.1032

2.4 Sampling an Ornstein-Uhlenbeck process N -times

Now we turn to the case when the signal is an Ornstein-Uhlenbeck process:

dxt = axtdt+ dWt, t ∈ [0, T ], (2.49)

with x0 = 0 and Wt being a standard Brownian motion.Again, the sampling times S

= {τ1, . . . , τN} have to be an increasing sequence of stopping times with respect to

the x-process. They also have to lie within the interval [0, T ]. Based on the samples
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and the sample times, the supervisor maintains an estimate waveform x̂t given by

x̂t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ t < τ1,

xτi
ea(t−τi) if τi ≤ t < τi+1 ≤ τN ,

xτN
ea(t−τN ) if τN ≤ t ≤ T.

(2.50)

The quality of this estimate is measured by the aggregate squared error distortion:

J(S) = E

[∫ T

0

(xs − x̂s)
2ds

]

= E

[∫ τ1

0

(xs − x̂s)
2ds+

N∑
i=2

∫ τi

τi−1

(xs − x̂s)
2ds

+

∫ T

τN

(xs − x̂s)
2ds

]
.

2.4.1 Optimal deterministic sampling

We will show through induction that uniform sampling on the interval [0, T ]

is the optimal deterministic choice of N samples

{τ1, τ2, . . . , τN | 0 ≤ τi ≤ T, τi ≥ τi−1 for i = 1, 2, . . . , N}

given that the initial value of the signal is zero.

When the number of samples permitted is N , the distortion takes the form:

J[0,T ] ({τ1, τ2, . . . τN}) =

∫ τ1

0

E (xs − x̂s)
2ds

+

∫ τ2

τ1

E (xs − x̂s)
2ds+ . . .+

∫ T

τN

E (xs − x̂s)
2ds.

For the induction step, we assume that the optimal choice of N − 1 deterministic

samples over [T1, T2] is the uniform one:

{τ1, τ2, . . . τN−1} =

{
T1 + i

T2 − T1

N

∣∣∣i = 1, 2, . . . , N − 1

}
.
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The corresponding minimum distortion becomes:

N

4a2

(
e2a

T2−T1
N − 1

)
− 1

2a
(T2 − T1)

The minimum distortion over the set of N sampling times is:

min
{τ1,τ2,...τN}

J[0,T ] ({τ1, τ2, . . . τN})

= min
τ1

{∫ τ1

0

(xs − x̂s)
2ds+ min

{τ2,τ2,...τN}
J[τ1,T ] ({τ1, τ2, . . . τN})

}

= min
τ1

{
1

4a2

(
e2aτ1 − 1

)
+

N

4a2

(
e2a

T−τ1
N − 1

)
− 1

2a
(T )

}

=
N + 1

4a2

(
e2a T

N+1 − 1
)
− 1

2a
(T ) ,

the minimum being achieved for τ1 = T/(N + 1). Thus, we have the uniform

sampling scheme being the optimal one here too.

2.4.2 Optimal Level-triggered sampling

Let us first address the single sample case. The performance measure then

takes the form

J (τ1) = E

[∫ τ1

0

x2
t +

∫ T

τ1

(xt − x̂t)
2 dt

]

= E

[∫ T

0

x2
t − 2

∫ T

τ1

xtx̂t dt+

∫ T

τ1

(x̂t)
2 dt

]
.

Now notice that the second term can be written as follows

E

[∫ T

τ1

xtx̂t dt

]
= E

[∫ T

τ1

E[xt|Fτ1]x̂t dt

]
= E

[∫ T

τ1

(x̂t)
2 dt

]
,

where we have used the strong Markov property of xt, and that for t > τ1 we have

E[xt|Fτ1] = xτe
−a(t−τ1) = x̂t. Because of this observation the performance measure
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J (τ1) takes the form

J (τ1) = E

[∫ T

0

x2
t dt−

∫ T

τ1

(x̂t)
2 dt

]

=
e2aT − 1 − 2aT

4a2
− E

[
x2

τ1

e2a(T−τ1) − 1

2a

]

= T 2

{
e2aT − 1 − 2aT

4(aT )2
− E

[
x2

τ1

T

e2(aT )(1−τ1/T ) − 1

2(aT )

]}

= T 2

{
e−2ā − 1 + 2ā

4ā2
− E

[
−x̄2

τ̄1

e2ā(1−τ̄1) − 1

2ā

]}

where

t̄ =
t

T
; ā = aT ; x̄t̄ =

x t
T√
T
. (2.51)

We have x̄ satisfying the following SDE:

dx̄t̄ = −āx̄t̄dt̄+ dwt̄.

This suggests that, without loss of generality, we can limit ourselves to the normal-

ized case T = 1 since the case T 
= 1 can be reduced to the normalized one by using

the transformations in (2.51). In fact, we can solve the multiple sampling problem

on [0, T ] without loss of generality.

We carry over the definitions for threshold sampling times from section 2.3.2.

We do not have series expansions like for the case of the Wiener process. Instead we

have a computational procedure that involves solving a PDE initial and boundary

value problem. We have a nested sequence of optimization problems. The choice at

each stage being the non-zero level ηi. For N = 1, the distortion corresponding to
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a chosen η1 is given by:

1

4a2

(
e2aT − 1

)
− 1

2a
T − η2

1

2a
E
[
e2a(T−τ1) − 1

]
=

1

4a2

(
e2aT − 1

)
− 1

2a
T − η2

1

2a

(
e2aT

(
1 + 2aU1(0, 0)

)
− 1

)
,

where the function U1(x, t) satisfies the PDE:

1

2
U1

xx + axUx + Ut + e−2at = 0,

along with the boundary and initial conditions:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
U1(−η1, t) = U1(η1, t) = 0 for t ∈ [0, T ],

U1(x, T ) = 0 for x ∈ [−η1, η1].

We choose the optimal η1 by computing the resultant distortion for increasing values

of η1 and stopping when the cost stops decreasing and starts increasing. Note that

the solution U(0, t) to the PDE furnishes us with the performance of the η1-triggered

sampling over [t, T ]. We will use this to solve the multiple sampling problem.

Let the optimal policy of choosing N levels for sampling over [T1, T ] be given

where 0 ≤ T1 ≤ T . Let the resulting distortion be also known as a function of T1.

Let this known distortion over [T1, T ] given N level-triggered samples be denoted

GN(T − T1). Then, the N + 1 sampling problem can be solved as follows. Let

UN+1
N+1 (x, t) satisfy the PDE:

1

2
Uxx + axUx + Ut = 0,

along with the boundary and initial conditions:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
UN+1(−η1, t) = UN+1(η1, t) = GN(T − t) for t ∈ [0, T ],

UN+1(x, T ) = 0 for x ∈ [−η1, η1].
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Then the distortion we are seeking to minimize over η1 is given by:

1

4a2

(
e2aT − 1

)
− 1

2a
T

− η2
1

2a
E

[
e2a(T−τ1) − 1 +

1

4a2

(
e2a(T−τ1) − 1

)
− 1

2a
(T − τ1)

]

+ E [GN (T − τ1)]

=
1

4a2

(
e2aT − 1

)
− 1

2a
T − η2

1

2a

(
e2aT

(
1 + 2aU1(0, 0)

)
− 1

)
− UN+1.

We choose the optimal η1 by computing the resultant distortion for increasing values

of η1 and stopping when the distortion stops decreasing.

2.4.3 Optimal Sampling

We do not have analytic expressions for the minimum distortion like in the

Brownian motion case. We have a numerical computation of the minimum distortion

by finely discretizing time and solving the discrete-time optimal stopping problems.

By discretizing time, we get random variables x1, . . . , xM , that satisfy the

AR(1) model below. For 1 ≤ n ≤M

xn = eaδxn−1 + wn, wn ∼ N
(

0,
e2aδ − 1

2a

)
; 1 ≤ n ≤M.

{wn} is an i.i.d. Gaussian sequence.

Sampling once in discrete time means selecting a sample xν from the set of

M+1 sequentially available random variables x0, . . . , xM , with the help of a stopping

time ν ∈ {0, 1, . . . ,M}. We can define the optimum cost to go which can be analyzed
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as follows. For n = M,M − 1, . . . , 0,

V 1
n (x) = sup

n≤ν≤M
E

[
x2

ν

e2aδ(M−ν) − 1

2a

∣∣∣xn = x

]

= max

{
x2 e

2aδ(M−n) − 1

2a
,E[V 1

n+1(xn+1)|xn = x]

}
.

The above equation provides a (backward) recurrence relation for the computation

of the single sampling cost function V 1
n (x). Notice that for values of x for which

the l.h.s. exceeds the r.h.s. we stop and sample, otherwise we continue to the next

time instant. We can prove by induction that the optimum policy is a time-varying

threshold one. Specifically for every time n there exists a threshold λn such that

if |xn| ≥ λn we sample, otherwise we go to the next time instant. The numerical

solution of the recursion presents no special difficulty if a ≤ 1. If V 1
n (x) is sampled

in x then this function is represented as a vector. In the same way we can see that

the conditional expectation is reduced to a simple matrix-vector product. Using this

idea we can compute numerically the evolution of the threshold λt with time. The

minimum expected distortion for this single sampling problem is:

e2aT − 1 − 2aT

4a2
− V 1

0 (0).

For obtaining the solution to the N + 1-sampling problem, we use the solution

to the N -sampling problem. For n = M,M − 1, . . . 0,

V N+1
n (x) = sup

n≤ν≤M
E

[
V N

ν (0) + x2
ν

e2aδ(M−ν) − 1

2a

∣∣∣xn = x

]

= max

{
V N

n (0) + x2 e
2aδ(M−n) − 1

2a
, V N

n+1(0) + E
[
V 1

n+1(xn+1)|xn = x
]}

.

We provide graphs describing the relative performances of the three sampling

schemes in Figures 2.6.
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Figure 2.6: Relative performance of Optimal, Threshold and Deterministic sampling

schemes as a function of initial variance σ2 and parameter values (a) a = 10, (b)

a = 1, (c) a = 0 and (d) a = −1.
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Chapter 3

Average Cost Repeated Sampling for Filtering

3.1 Introduction

A sensor makes continuous observations of a Gaussian signal process. It trans-

mits at times it chooses, samples of its observations to a Supervisor which uses this

stream of samples to maintain a filtered (real-time) estimate of the signal. We study

the tracking performance of an efficient sampling scheme which is event-triggered.

Such problems arise in sensor networks because of the limited capacity of a remote

sensor node to communicate to the supervisor. For simplicity of exposition, we take

the signal to be the scalar Ornstein-Uhlenbeck process. We will see that the constant

threshold sampling strategy will be optimal. In the presence of packet losses with

the loss events independent of the signal, we conjecture that the constant threshold

policy is still optimal.

The work of Sinopoli et.al. [31] discusses the filtering performance of a peri-

odic sampling policy when the samples could be lost according to an IID Bernoulli

sequence which is also independent of the signal process.

By establishing the optimality of threshold sampling schemes for the infinite

horizon filtering problem, we will also prove the optimality of Lebesgue sampling for

an the infinite horizon impulse control problem of Åström and Bernhardsson [15, 1].

We study the repeated sampling problem when the signal process we are inter-
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ested in is perfectly observed by the sensor. When the signal process is only partially

observed, the least-squares filtered estimate or a risk-sensitive filtered estimate can

take the role of the fully observed signal.

3.2 Real-time Estimation

Our signal process x(·) is defined on [0,∞) and is governed by

dx(t) = ax(t)dt + bdW (t), x(0) = x0, (3.1)

where W (t) is a standard Brownian motion process. A sensor observes this process

perfectly. It has to pick an increasing sequence of sampling times

Θ(x0) = {τi|i = 0, 1, 2, 3, . . .} ,

such that

τ0 = 0,

τi < τi+1 a.s. for i ≥ 0, and

τi is measurable w.r.t. Fx
t .

At these times, the sensor transmits the value of the x-process to the supervisor

which receives these samples reliably and with negligible delay. The supervisor

maintains the estimate waveform x̂(t) based upon the point process of received

samples.

The performance of the sampling scheme will be measured by its communica-

tion cost - the average sampling rate Rav (Θ) and the resultant average distortion
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Dav (Θ) of the supervisor’s estimate. We seek a sampling policy that minimizes

the average distortion while not exceeding a prescribed average sample rate. The

average sampling rate is computed as

Rav (Θ) = lim sup
T→∞

1

T
E

[
#ofSamplesIn(0, T ]

]
= lim sup

T→∞

1

T
E

[ ∞∑
i=1

1{τi≤T}

]
.

We will exclusively deal with the squared error distortion and so

Dav (Θ) = lim sup
T→∞

1

T
E

[∫ T

0

(x(s) − x̂(s))2ds

]
.

Define the Last Sample Count l(t), which is Fx
t -adapted, through

l(t) = max {i ≥ 0|τi ≤ t} for t ∈ [0,∞).

Then, the least-squares estimate x̂(t) is computed by the formulae:

x̂(τl(t)) = x(τl(t)),

x̂(t) = es(t−τl(t))x(τl(t)).

The error process εt which is defined as xt − x̂t is a jump diffusion process governed

by the equations:

dεt = aεtdt+ bdWt, on [τi, τi+1), ∀ i ≥ 0,

ετi
= 0.

Notice that the x-process can be reconstructed causally from the trajectory of the

error process using the exact values of the jumps in ε· as in:

x(t) = εt +

∞∑
i=1

1{τi≤t}

(
lim
δ↓0

ετi−δ

)
. (3.2)

Hence,

Fx
t = F ε

t .
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3.3 Optimal repeated sampling

Stated in terms of the error process, the optimal sampling problem is to pick

a sequence of stopping times Θ, adapted to the ε-process such that the Lagrangian

J(Θ) = λRav (Θ) +Dav (Θ)

= λ× lim sup
T→∞

1

T
E

[ ∞∑
i=1

1{τi≤T}

]
+ lim sup

T→∞

1

T
E

[∫ T

0

ε2(s)ds

]
,

is minimized. Here λ > 0 is a Lagrange multiplier. The sampling problem can be

viewed as one of resetting the new state process ε(·) at stopping times to minimize

an average cost. In what follows, we will restrict our attention to Markov times that

are time-homogeneous:

τi+1 = τi + δi (ετi
) ,

= τi + δi (0) for ∀i ≥ 1,

= τi + δi,

where, {δi}∞1 is an IID sequence. The condition that the average sample rate be

finite implies

E[δi] <∞.

This makes the error process ergodic. However, we don’t need to use (and hence

prove) this ergodicity explicitly. Notice that

lim sup
T→∞

1

T
E

[ ∞∑
i=1

(τi − τi−1)1{τi≤T}

]
≤ 1 ≤ lim sup

T→∞

1

T
E

[
δ +

∞∑
i=1

(τi − τi−1)1{τi≤T}

]
,
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where δ has the same law as any individual random variable in the IID sequence

{δi}. This leads us to:

lim sup
T→∞

1

T
E

[ ∞∑
i=1

δi−11{τi≤T}

]
≤ 1 ≤ lim sup

T→∞

1

T
E

[
δ +

∞∑
i=1

δi−11{τi≤T}

]
,

giving us

lim sup
T→∞

1

T
E

[ ∞∑
i=1

δi−11{τi≤T}

]
= 1,

lim sup
T→∞

1

T
E

⎡
⎣#ofSamplesIn(0,T ]∑

i=1

δi−1

⎤
⎦ = 1,

lim sup
T→∞

1

T
E [δ] × E

[
#ofSamplesIn(0, T ]

]
= 1,

Rav (Θ) = lim sup
T→∞

1

T
E

[
#ofSamplesIn(0, T ]

]
=

1

E [δ]
. (3.3)

Similarly,

Dav (Θ) = lim sup
T→∞

1

T
E

[∫ T

0

ε2(s)ds

]
=

E

[∫ δ

0
ε2sds

]
E [δ]

. (3.4)

Now the solution to the stopping problem is obtained by picking a stopping time

(adapted to the ε-process) δ∗ which minimizes the cost

J̃(δ) =
E

[∫ δ

0
ε2sds

]
E [δ]

+
λ

E [δ]
.

This cost has the interpretation that by picking a positive value for λ, we hold

the average packet rate at a corresponding fixed value and minimize the average

distortion. If δ∗ is such that

J̃(δ) ≥ J̃(δ∗) = γ(λ) > 0, (3.5)

then, it follows that,

E

[∫ δ

0

ε2sds

]
+ λ− γ(λ)E [δ] ≥ E

[∫ δ∗

0

ε2sds

]
+ λ− γ(λ)E [δ∗] = 0. (3.6)
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In fact, the existence of a δ∗ satisfying

E [δ∗] > 0,

and (3.6) supplies us with one satisfying (3.5).

3.3.1 Solving the single stopping problem

Here, we carry-out the calculations needed to find a candidate δ∗ satisfying

equation (3.6). For positive γ, let

H(δ, γ) = λ+ ess infδ E

[∫ δ

0

(
ε2s − γ

)
ds

]
.

To solve this optimal stopping problem, we introduce its Snell envelope. We seek a

twice differentiable function g(x) : R → R, which satisfies the following PDE:

b2

2
g′′(x) + axg′(x) + x2 − γ = 0, (3.7)

Then, by the results of A we have:

E [g (ετ ) − g (ε0)] = E

[∫ τ

0

dg(εs)

]

= E

[∫ τ

0

{
b2

2
g′′ (εs) + aεsg′ (εs)

}
ds

]

= E

[∫ τ

0

−
{
ε2s − γ

}
ds

]
.

Notice that the general solution to (3.7) has two parameters. If we can select the

parameters on which g depends so that

g(·) ≤ 0; g(±η) = 0 (3.8)
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for some η (dependent on λ), then for any stopping time τ we can conclude that for

any stopping time τ ,

E

[∫ τ

0

{
ε2s − γ

}
ds

]
≥ E

[
g(eτ ) +

∫ τ

0

{
ε2s − γ

}
ds

]
= g(0). (3.9)

Hence, if we can find a solution g(·) to (3.7) that satisfies (3.8), the above relation

suggests that the performance of any stopping time will be lower bounded by g(0).

We have equality iff the first inequality in (3.9) becomes an equality. This happens

when the stopping time τ stops only when εt hits either of the two values ±η. Denote

this (optimal ) stopping time as τ0. To complete the proof, we need to the existence

of a nonpositive function g(·) which is a solution to (3.7) and the existence of a

constant η that satisfies (3.8).

The general solution to (3.7)cannot be found in closed form. Because of the

symmetry of the process εt, we must look for an even symmetric function g(·). We

can then verify that

g(x) =
b2

2a

{
2

(
1 + 2a

λ

b2

)(∫ x
b

η
b

e−az2

∫ z

0

eaw2

dwdz

)
−
(
x2

b2

)
+ A

}
,

is the general, even symmetric solution to (3.7). In order to satisfy (3.8), we have

two parameters namely, A and η, and two equations

g(η) = g′(η) = 0.

The second equation is needed because g(·) must “touch” the value 0 at e = η

(otherwise, due to continuity, g(·) will assume positive values).

Consider the first equation g′(η) = 0. Due to symmetry, we limit ourselves to
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η ≥ 0. We then obtain

0 = −ag′(η) =
η

b
−
(

1 +
2aλ

b2

)
e−aη2

∫ η
b

0

eaw2

dw (3.10)

which is the equation that defines η as a function of λ. It is easy to show that when

0 ≤ 1 + 2aλ
b2

< 1 and g′(·) is convex and the equation g′(η) = 0 has a unique positive

solution η > 0. Note that 0 is also a solution to this equation but not a positive

one. Using this uniqueness of η and the convexity of g′(·), we can verify that for

x ≥ 0, the derivative g′(x) has the same sign as η− x. this suggests that g(e) has a

maximum at x = η (and a local minimum at x = 0) meaning that g(x) ≤ g(η).

We now produce the desired function g(·) which satisfies the conditions of (3.7)

and permits the existence of the stopping time τ ∗ with bounded expectation: where

η ≥ 0 is determined by γ.

It is easy to see that g(η) = 0 and g(x) > 0 when x 
= η. Hence, the stopping

time:

τ ∗ = inf
{
t
∣∣∣g(x(t)) = 0

}

= inf
{
t
∣∣∣|x(t)| = η

} (3.11)

is optimal.

3.3.2 Performance gains

Without loss of generality, we can assume that b = 1. The average distortion

(3.4) and sampling rate (3.3) incurred by using threshold η can be found by solving

ODEs [32]:

Rav (η) =
1

E [τ ∗]
=

1

h(0)
,
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where h(·) satisfies (see chapter 9, page 175 of [32]):

ax
dh

dx
+

1

2

d2h

dx2
= −1,

with the boundary conditions:

h (η) = 0, h (−η) = 0.

Similarly,

Dav (η) = RavE

[∫ τ∗

0

ε2sds

]
= Ravf(0),

where f(·) satisfies [32]:

ax
df

dx
+

1

2

d2f

dx2
= −x2,

with the boundary conditions:

f (η) = 0, f (−η) = 0.

Solving for the functions h(·), f(·) gives us the performance parameters for

optimal sampling to be:

Rav(η) =
1∫ η

0
e−az2

∫ z

0
eay2dydz

,

Dav(η) =

∫ η

0
e−az2 ∫ z

0
y2eay2

dydz∫ η

0
e−az2

∫ z

0
eay2dydz

.

For periodic sampling with a sampling period of Δ, we get:

Rper
av (Δ) =

1

Δ
,

Dper
av (Δ) =

1

Δ

(
e2aΔ − 1

4a2
− Δ

2a

)
.

In Figure 3.1, we have a graphical comparison of the performance gains of using the

optimal sampling scheme:
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Figure 3.1: Relative performance of Optimal (Threshold) and Periodic samplers as

a function of average sampling rate Rav and parameter values (a) a = 1, (b) a = 10,
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Chapter 4

Average Cost Control with Level-triggered Sampling

4.1 Introduction

For the single sensor configuration used in the previous chapters, we focus on

Average cost optimal control in this chapter. The methods of this chapter apply only

Linear Plant

xt

Piece-wise constant
Control signal

ut

ut =
∑∞

n=0 Un (xτn) · 1{τn<t≤τn+1}

SupervisorIdeal Noiseless Sensor

Figure 4.1: Sample and hold control

to scalar systems. Although the plant we stabilize will be linear, extension to the

nonlinear case is straightforward albeit computationally much more burdensome.

On an infinite horizon, the sensor sends samples to the supervisor which issues

a piece-wise constant control signal. The values of the control signal are allowed to

change only at times when the supervisor receives samples. The control objective is

to minimize the average power of the state signal. The sensor’s objective is to aid in

the control task and send samples as often as it can while also respecting a bound
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on the average sampling rate.

The problem of jointly optimal sampling and control for the Linear System is

much more difficult than the jointly optimal sampling and filtering problem tackled

in the preceding chapter. In the estimation problem, the error signal was reset to

zero at sampling times and so, the repeated sampling problem was reduced to the

problem of choosing a single sampling policy to be repeated. In the control problem

however, the state signal does not get reset to zero like the error signal does for the

estimation problem. Thus, no reduction to repeating the same sampling policy is

possible. In practical terms, this means that the feedback control signal as well as

the sampling policy should be ‘aggressive’ when the state wanders away from the

origin.

This problem differs in its information pattern from similar ones addressed

in the Stochastic Control literature. The works [20, 37, 19] seek combined control

and stopping policies with both of these adapted to the same signal process. In

our problem on the other hand, the stopping policy is allowed to depend on the

x-signal process while the control signal is adapted to the sampled sequence. The

work of [38] discusses the LQG control performance under Poisson sampling. A

deterministic version of control for event-triggered sampling is presented in [16].

In this chapter, we will seek optimal control policies corresponding to a chosen

sampling strategy. We will study the performances of the optimal controls corre-

sponding to two types of level-triggered sampling strategies.
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4.2 Average cost control problem

The state signal obeys:

dxt = axtdt+ dWt + utdt, x(0) = x0, (4.1)

where Wt is a standard Brownian motion process and the control signal is piecewise

constant and adapted to the sampled stream. Let T be the sequence of sampling

times:

T = {τ0, τ1, τ2, . . .} ,

with

τ0 = 0,

τi < τi+1 a.s. for i ≥ 0, and

τi is measurable w.r.t. Fx
t .

Then the (stationary feedback) control policy U should be adapted to the sample

sequence. Define the process {Ψt} describing information available at the controller

from the last received data packet:

Ψt =

⎛
⎜⎜⎝χt

νt

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
∑∞

n=0 1{τn<t≤τn+1} · xτn∑∞
n=0 1{τn<t≤τn+1} · τn

⎞
⎟⎟⎠ .

Let U stand for the set of control policies U that are adapted to the Ψ-process.

The actual control signal generated by U is given by:

ut =
∞∑

n=0

1{τn<t≤τn+1} · Un(xτn),
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where Un(xτn) is the value of the control signal after the sample at time τn has been

received.

Stabilization performance is measured through the average power of the state

signal:

Ju = lim sup
T→∞

1

T
E

[∫ T

0

x2
sds

]
,

while the average sampling rate:

R = lim sup
T→∞

1

T
E

[∫ T

0

∞∑
n=0

1{τn≤T}δ (s− τn) ds

]

is kept less than or equal to a desired bound. Here, δ(·) is the Dirac-delta function.

Since we use stationary feedback controls, the sampled stream forms a con-

trolled Markov chain in discrete-time. We will translate the continuous-time optimal

control problem into one in discrete time and seek solutions. In the next section,

we do this for the case of periodic sampling.

4.3 Optimal control under periodic sampling

Under periodic sampling, the sample times are given by

τn = nΔ for n ≥ 0.

The sampled state takes the form of a discrete time linear system:

Xn+1 = eaTXn +

∫ (n+1)Δ

nΔ

ea((n+1)Δ−s)dWs +

∫ (n+1)Δ

nΔ

ea((n+1)Δ−s)usds (4.2)

= eaTXn +

√
μ2 − 1

2a
Vn +

μ− 1

a
Un, (4.3)

where {Vn} is an IID sequence of standard Gaussian random variables and μ = eaΔ.
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It is easy to find feedback control policies {Un} that stabilize (in the mean

square sense) the sampled linear system. For example, linear feedback controls of

the form

Un = kXn, n ≥ 0,

with −1 < k + μ2−1
2a

< 1 will stabilize {Xn}. It can also be seen that stability of

the sampled state sequence implies stability of the original continuous time system.

We shall restrict our attention to mean-square stabilizing control policies that also

make the controlled process (4.3) ergodic with a p.d.f such that the fourth moment

at steady state is finite. We will need this restriction to translate the continuous

time optimization problem into an equivalent one in discrete time. The class of

linear feedback policies which are described above are included in our restricted

policy space. Let ρ
U

be the steady state p.d.f. corresponding to the control policy

{Un}. When the sampled state sequence is ergodic, so is the actual continuous time

state waveform.

4.3.1 Equivalent discrete time ergodic control problem

The expected integral cost of (4.2) is the sum of expected integrals over the

inter-sample intervals. We want to be able to write the expected integral costs

during such intervals as functions of the state of the chain at the beginning (or end)

of the interval instead of being functions of the chain states at both end-points.

Because of the assumed ergodicity, we can replace the average cost (4.2) with

the long run average cost (ergodic cost). Then, along the lines of lemma 3.4 of [39],
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we have:

Ju
a.s.
= lim sup

T→∞

1

T

∫ T

0

x2
sds

= lim sup
N→∞

1

NΔ

N−1∑
n=0

∫ τn+1

τn

x2
sds

= lim sup
N→∞

1

NΔ

N−1∑
n=0

{∫ τn+1

τn

x2
sds− E

[∫ τn+1

τn

x2
sds

∣∣∣Xn

]}

+ lim sup
N→∞

1

NΔ

N−1∑
n=0

E

[∫ τn+1

τn

x2
sds

∣∣∣Xn

]
.

The first part of the last expression is zero according to the Martingale stability

theorem (page 105 of [40]). We are able to use this theorem because of the finiteness

of the fourth moment of the state signal.

Let δ(·) denote the Dirac-delta function. We have:

Ju
a.s.
= lim sup

N→∞

1

NΔ

N−1∑
n=0

E

[∫ τn+1

τn

x2
sds

∣∣∣Xn

]

= lim sup
N→∞

1

NΔ

N−1∑
n=0

∫
R

E

[∫ τn+1

τn

x2
sds

]
δ(x−Xn)dx

=
1

Δ

∫
R

E

[∫ Δ

0

x2
sds

∣∣∣X0 = x

]
ρ

U
(x)dx

=
1

Δ

∫
R

{
AX2

n + 2BXnUn + CU2
n

}
ρ

U
(x)dx,

where,

A =
μ2 − 1

2a
,

B =
1

a

{
μ2 − 1

2a
− μ− 1

a

}
,

C =
1

a2

{
μ2 − 1

2a
− 2

μ− 1

a
+ T

}
.
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In fact, we can write:

Ju
a.s.
= lim sup

N→∞

1

NΔ

N−1∑
n=0

AX2
n + 2BXnUn + CU2

n

Δ
= GU .

The solution to this fully observed, average cost (≡ ergodic cost) control problem

is well known [41]. The optimal controls are linear feedback controls. To find the

optimal feedback gain, we use the Average Cost optimality equation:

α∗ + h(x) = inf
u∈R

{
Ax2 + 2Bux+ Cu2 + E

[
h

(
μx+

μ− 1

a
u+

√
μ2 − 1

2a
W0

)]}
.

Here, α∗ is the minimum cost and a quadratic choice for h(·) verifies the optimality

of linear feedback. The optimal control is given by:

U∗
n = − a(μ2 − 1)2 + 2a2θμ(μ− 1)

(μ− 2)2 − 1 + 2aΔ + 2aθ(μ− 1)2
Xn,

where,

θ =
D

2
+

√
D

2

2

+
D

2a
,

D =
μ+ 1

μ− 1

(
μ2 − 1

2a
− 2

μ− 1

a
+ Δ

)
− (μ− 1)2

2a
.

The minimum average cost is:

α∗ =
θ

Δ

(μ2 − 1)2

2a
.

The sampling rate is of course equal to 1
Δ

.

4.4 Level-triggered sampling

Let L be a given infinite set of levels:

L = {. . . , l−2, l−1, l0, l1, l2, . . .} ,
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with,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

li ∈ R ∀ i ∈ Z,

li < li+1 ∀ i ∈ Z,

l0 = 0.

If we want a set of levels all non-zero, we just remove l0 from the set L. We need

an infinite set in order to be able to stabilize unstable plants

t

l3

l2

l1

l−1

l−2

xt

l3

l2

l1

l−1

l−2

x0

Figure 4.2: Level-triggered sampling and the associated Markov chain. All levels

are non-zero. The initial state does not belong to the set of levels L. This gives rise

to the only transient state ‘x0’.

The sampling times triggered by L are defined through fresh crossings of levels:

τ = 0,

τ = inf
{
τ
∣∣τ > τi, xτ ∈ L, xτ /∈ xτi

}
.
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We have to use fresh crossings instead of arbitrary crossings to keep the sampling

rate finite. The expected inter-sample times depend on the state at the beginning

of the interval as well as the control policy. We shall assume that the levels in L as

well as the control policy are such that the expected inter-sample times are finite

and bounded away from zero. When the plant is unstable, this means that the levels

in L go up to ∞ and −∞.

4.4.1 Equivalent Discrete-time Markov chain

As with periodic sampling, the sequence

{
Xn

∣∣n = 0, 1, 2, . . . ;Xn = xτn

}

forms a discrete-time controlled Markov chain. Here, it takes values in the finite set

L. As before, we will assume that the discrete-time control sequence {Un} is such

that the resultant Markov chain is ergodic and also stable in the following sense:

E
[
h4 (X)

]
<∞,

where, h : L → R is defined by

h(l) = |l|.

Like in section 4.3.1, we can express the average quantities for the continuous time

problem in terms of the ones for a related discrete-time controlled Markov chain

{xn}.

The average sampling rate is given by [39]:

RL,U =
1∑

li∈L πU(li)ζ (li, U(li))
,
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where, ζ : L × R → R
+ is the expected first exit time defined by:

ζ (li, U(li)) = E [τ1 |τ0 = 0, x0 = li ∈ L, U0 = U(li) ] ,

and {πU(li)}∞i=−∞ is the steady state distribution for {xn}.

The average stabilization error is given by [39]:

JL,U =

∑
li∈L πU(li)g (li, U(li))∑
li∈L πU(li)ζ (li, U(li))

,

where, g : L× R → R
+ is defined by:

g(l) = E

[∫ τ1

0

x2
sds

∣∣∣τ0 = 0, x0 = li ∈ L, U0 = U(li)

]
.

Both the numerator and the denominator in the last expression for the average

stabilization error are dependent on U . But the denominator is just the reciprocal

of the average sampling rate which is constrained. Define the cost J̃L,U by:

J̃L,U =
∑
li∈L

πU (li)g (li, U(li)).

Then, minimizing JL,U while respecting the constraint on the average sampling rate

is the same as minimizing

J̃L,U∑
li∈L πU(li)ζ (li, U(li))

while ensuring that

RL,U =
1∑

li∈L πU(li)ζ (li, U(li))
≤ Rdesired.

It is clear from the problem setup that under optimal U , both J̃L,U and RL,U are

finite, positive and non-zero. If Γ∗ > 0 is the minimum value of JL,U , then, while
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respecting the constraint on average sampling rate (average inter-sample interval),⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J̃L,UP
li∈L πU (li)ζ(li,U(li))

≥ Γ∗ > 0, ∀ U ∈ U

J̃L,U∗P
li∈L πU∗(li)ζ(li,U∗(li))

= Γ∗.

⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
J̃L,U − Γ∗∑

li∈L πU(li)ζ (li, U(li)) ≥ 0, ∀ U ∈ U

J̃L,U∗ − Γ∗∑
li∈L πU∗(li)ζ (li, U

∗(li)) = 0.

This means we only have to worry about minimizing J̃L,U subject to the sampling

rate constraint. This is the same as minimizing the Lagrangian:

J̃L,U − Γ
∑
li∈L

πU(li)ζ (li, U(li)).

Denote the second sum in the above Lagrangian, the average inter-sample time, by

SL,U .

We will now turn to the calculation of the transition probability kernel of {xn},

and the average quantities J̃L,U , SL,U . To do so, we will appeal to the results of A.

Because the state signal is scalar, there are only two possible transitions from any

state in L. The transition probabilities

p (l′, l, U) = P
[
Xn+1 = l′

∣∣Xn = l, Un = U(l)
]
, ∀ (l′, l, U) ∈ L × L× U ,

are found by solving an ODE [32]:

p (li+1, li, U) = η(li),

where η(·) satisfies:

(u+ ax)
dη

dx
+

1

2

d2η

dx2
= 0,
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with the boundary conditions:

η (li+1) = 1, η (li−1) = 0.

Then we have ∀ li ∈ L:

p (l, li, U) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R li
li−1

e−2us−as2ds
R i+1
li−1

e−2ur−ar2dr
if l = li+1,

R i+1
li

e−2us−as2ds
R i+1
li−1

e−2ur−ar2dr
if l = li−1,

0 otherwise.

The steady-state occupation measure πU can be calculated using the equations:

πU (li) = πU (li−1) p (li−1, li, U) + πU (li+1) p (li+1, li, U) ∀ li ∈ L

The expected stabilization error starting at level li up to the first exit time

out of (li−1, li+1) is given by:

g (li, U) = η(li),

where η(·) satisfies the ODE:

(u+ ax)
dη

dx
+

1

2

d2η

dx2
= −x2,

with the boundary conditions:

η (li+1) = 0, η (li−1) = 0.

Let

q1(x) =

∫ x

0

e−az2−2uzdz, and,

q1(x) =

∫ x

0

e−az2−2uz

∫ z

0

y2eay2+2uydydz.
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Then we have ∀ li ∈ L:

g (li, U) =
q1 (li) q2 (li+1) − q1 (li) q2 (li−1) − q1 (li+1) q2 (li)

q1 (li+1) − q1 (li−1)

+
q1 (li−1) q2 (li) − q1 (li+1) q2 (li+1) + q1 (li+1) q2 (li−1)

q1 (li+1) − q1 (li−1)
.

The expected first exit time E (li, U) is given by :

E (li, U) = η(li),

where η(·) satisfies the ODE:

(u+ ax)
dη

dx
+

1

2

d2η

dx2
= −1,

with the boundary conditions:

η (li+1) = 0, η (li−1) = 0.

Let

q3(x) =

∫ x

0

e−az2−2uz

∫ z

0

eay2+2uydydz.

Then we have ∀ li ∈ L:

E (li, U) =
q1 (li) q3 (li+1) − q1 (li) q3 (li−1) − q1 (li+1) q3 (li)

q1 (li+1) − q1 (li−1)

+
q1 (li−1) q3 (li) − q1 (li+1) q3 (li+1) + q1 (li+1) q3 (li−1)

q1 (li+1) − q1 (li−1)
.

4.4.2 Existence of Optimal Controls and their Computation

The Markov chain {Xn} has the property that, independent of U , only a finite

number of elements of L can be reached from any member of L in one step. The
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per stage cost in the average cost formulation is an unbounded function of the state.

For such situations, Borkar [42] shows the existence of optimal (non-randomized)

stationary policies and proves the validity of the Average Cost optimality equations:

α∗ = inf
ui∈R

{
g (li, ui) − ΓE (li, ui) − vi + p (li+1, li, ui) vi+1 + p (li−1, li, ui) vi−1

}

∀ li ∈ L

We will use value iteration based on the above equations to determine the optimal

controls and their performance for fixed L. We will next consider some natural

classes of level-triggered sampling schemes.

4.5 Comparisons

We will consider two level-triggered sampling schemes. One will be the Lattice-

triggered sampling scheme. Let

Latt0 = {. . . ,−2κ,−κ, 0, κ, 2κ, . . .} .

Choosing L to be be Latt0 gives a set of equi-spaced levels. Choosing L to be

Latt1 = {. . . ,−2κ,−κ, κ, 2κ, . . .} ,

which does not have zero as a level leads to a variant of the equi-spaced set.

On the other hand, choosing L to be

Log0 = {. . . ,− log(1 + 2κ),− log(1 + κ), 0, log(1 + κ), log(1 + 2κ), . . .}

gives us a logarithmic set of levels and choosing L to be

Log1 = {. . . ,− log(1 + 2κ),− log(1 + κ), log(1 + κ), log(1 + 2κ), . . .}
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gives us a variant.

Below(fig.4.3), we have sketched the performances of level-triggered schemes

with these levels as well as the periodic sampling scheme:
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Figure 4.3: Relative performance of Threshold and Periodic sampling as a function

of initial variance σ2 and parameter values (a) a = 1, (b) a = 10, (c) a = −1 and

(d) a = −10.

Remark: In the optimal control problems dealt so far, we could relax the

restriction to controls that render the system ergodic with a finite steady state

fourth moment. But doing so forces us to modify the state space. The new Markov
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chain to be worked with has the state:

Zn =

⎛
⎜⎜⎝Xn

Yn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ Xn

Xn−1

⎞
⎟⎟⎠ , ∀ n ≥ 1, S0 =

⎛
⎜⎜⎝X0

x

⎞
⎟⎟⎠ ,

where, x is any valid element of the chain’s state space that can have X0 as a suc-

cessor state. Now the expected integral running cost over the inter-sample interval

[τn−1, τn) is purely a function of Zn. However, the computation of the parameters

of the Markov chain and the solution of the average cost control problem are more

involved.
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Chapter 5

Sampling in Teams for Sequential Hypothesis Testing

5.1 Event-triggered sampling in a team of sensors

We have a team of sensors deployed to gather measurements for a Sequential

Binary Hypothesis Testing problem in continuous time. For ease of exposition, we

will restrict the size of the team to be two. There is also a supervisor to whom

the two agents communicate over a common medium. Under the null hypothesis,

each sensor observes independent Wiener processes. Under the other hypothesis,

each sensor observes the Wiener process with a constant drift. The objective of the

supervisor is to pick a hypothesis in reasonable time. To capture this objective, we

will use a Bayesian performance measure consisting of a sum of the probability of

error in deciding for a hypothesis and the expected time taken to make a decision.

The crux of the problem is a stringent constraint on communications from

the sensors to the supervisor. Each sensor is permitted to transmit exactly one

data packet to the supervisor. Because the packet link is a medium shared between

the two sensors, a packet transmitted by either sensor will be heard by the other.

This link has the idealized property that it delivers data packets reliably and with

negligible delay. The packets are also of sufficient bit-width so that quantization

noise of the low dimensional variables represented in them can be ignored. We will

discuss subsequently what kind of variables will need to be packetized. From that
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Figure 5.1: The two-sensor sequential detection set-up.

discussion, it will be clear the we need to packetize only likelihoods or likelihood

ratios. In the remainder of this section, we will assume that the payloads for data

packets will be likelihood ratios.

The information available to the supervisor to make its decision vas well as to

choose the decision time consists of the two received data packets with their time-

stamps. The ability of each sensor to ‘listen’ to the packet transmitted by the other

provides scope for cooperation in transmission of the packets.

The best time for the supervisor to make a decision is immediately after the

second packet has arrived. If any earlier time were to be optimal, we could find a

new sampling policy that ensures that the second packet arrives before that time

and perform no worse. Also, the sensor that transmits last has the information

privy to the supervisor and more. So, a decision made by the supervisor at the time

of reception of the second packet can be no better than one reached by the sensor

that transmits last. However, we will show that the best decision that can be made
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at the latter sensor is also based on the likelihood ratio, which is what is available

to the supervisor as well.

Our contribution through this work is to describe some natural event-triggered

sampling strategies and to graph their relative performances. There are four event-

triggered sampling strategies and one simple deterministic sampling strategy in this

study.

5.1.1 Related Works

Multi-agent decentralized sequential detection with information constraints is

usually cast as a single-shot hypothesis testing problem with constraints on the

amount of information shipped from each sensor to the supervisor (fusion-center)

[43, 44]. In such problems times of transmission of information from sensors is not

subject to design. Instead, it is prescribed to be a periodic sequence. The time to

be chosen is a decision time at the supervisor, For the sensors, the emphasis is on

how to best satisfy the quantization constraint at each transmission time.

The papers [45, 46] treat a two agent sequential detection problem close in

spirit to ours. A key difference in our problem setup, one that is appropriate for

the Networked Decision problems arising in sensor networks, is the listening among

sensors and cooperative communication [7]. Another difference is in the way the

decision performance is measured. In our work, the expectation of the true delay

is what is penalized as opposed to a sum of the expectations of the two transmit

times.
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The use of a common communication medium is typical in sensor networks

and in Networked Control/Monitoring systems. Some motivation for this two agent

problem comes from a video surveillance using a couple of cameras or acoustic

monitoring vehicle sounds using a couple of microphone nodes. The signal model

we use is perhaps more appropriate for the microphone outputs. On the other hand,

we can use telegraph signal-like models for the output for a video processing and

object recognition system. The qualitative results we obtain for our simple signal

model would assist us in the case of Markov chain models such as the random

telegraph signal.

5.2 The Optimal Sampling Problem

On the probability space (Ω,F ,P) there are defined a {0, 1}-valued random

variable H and two independent standard Wiener processes Vt and Wt. The hy-

pothesis H is described statistically:

H =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 with probability π

0 with probability 1 − π

The two sensors, labelled as sensor #1 and sensor #2, have observation processes

{xt} and {yt} respectively. Under the null hypothesis (H = 0), these observations

are just the Wiener processes with some scaling.

dxt = σ1dVt, x0 = 0, and, (5.1)

dyt = σ2dWt, y0 = 0. (5.2)
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Under the other hypothesis, the sensor observations obey the equations for Brownian

motion with unit drift:

dxt = dt+ σ1dVt, x0 = 0, and, (5.3)

dyt = dt+ σ2dWt, y0 = 0. (5.4)

Let τ1, τ2 be the packet transmit times of the sensors # 1, 2 respectively. Let F be

the earlier of the two times and S the latter.

F = min {τ1, τ2}, (5.5)

S = max {τ1, τ2}. (5.6)

Let e, l denote the indices of the sensors that transmits earlier and later respectively.

We will discuss ties later on. In fact, ties for choice of e do no present any conceptual

issue at all.

e, l ∈ {1, 2}.

5.2.1 The Likelihood ratio processes

Let {λi,t} denote the local likelihood ratio process computed at sensor # i.

λi,t =
dPH=1

dPH=0

(
F Information at sensor#i

t

)
,

where PH=1 is the conditional probability measure given that hypothesis 1 is true.

Because of the possible information sharing, the likelihood ratio process at one

sensor could be altered after the other has transmitted its packet. At sensor # 1, its

likelihood ratio process {λ1,t} obeys over the intervals [0, F ) and (F, S) the SDE[21]:

dλ1,t =
1

σ2
1

λ1,tdxt. (5.7)
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At t = 0, we have the initial condition: λ1,0 = 1. At time F+ we have the modifica-

tion:

λ1,F+ = λ1,F− ×
(
1{e=1} + λ2,F− · 1{e=2}

)
. (5.8)

This gives the expressions:

λ1,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
{

1
σ2
1

(
xt − t

2

)}
for t ∈ [0, F ),

exp
{

1
σ2
1

(
xt − t

2

)}
for t ∈ [F, S) if e = 1,

exp
{

1
σ2
1

(
xt − t

2

)
+ 1

σ2
2

(
yF − F

2

)}
for t ∈ [F, S) if e = 2.

We have a similar set of expressions for λ1,t.

Likelihood ratio used by Supervisor

The likelihood ratio(λSup) used by the supervisor is just that of the sensor that

transmits last, at it transit time.

λSup = λe,S

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
{

1
σ2
1

(
xF − F

2

)}
× exp

{
1
σ2
2

(
yS − S

2

)}
if e = 1,

exp
{

1
σ2
1

(
xS − S

2

)}
× exp

{
1
σ2
2

(
yF − F

2

)}
if e = 2.

(5.9)

Suppose for a moment that there was no sharing of samples amongst the two sen-

sors. Then the likelihood ratio used by the supervisor will still be given by the

product expression of eqn. (5.9). The sharing of samples does not change the form

of the sufficient statistic for the supervisor’s decision. However, it provides more

information at the disposal of the sensor that transmits last. That sensor can use

83



the extra information to choose its transmit time so as to improve the efficiency of

the team.

5.2.2 Sampling strategies allowed

The signal model and the prior probabilities are known to the two sensors as

well as to the supervisor. This means that the values of the parameters π, σ1, σ2

are available at all three agents. In addition, each sensor and the supervisor is also

aware of the policy employed by the other sensor to choose the packet transmit time.

The measured information available at a sensor consists of the sensed observa-

tions and any data heard over the common communication medium. So, a sensor’s

decision at a time instant to transmit or to wait is made using different informa-

tion depending on whether or not the other sensor has already transmitted. If the

other sensor has not transmitted yet, the decision is based on the local observations

and the fact that the other sensor has not transmitted yet. If the other sensor has

already transmitted, the decision is made based on the local observations as well

as the likelihood ratio transmitted by the other sensor and the time-stamp of that

transmission. Let {∇t} be the random process defined through:

∇t = 1{t≥F}.

Then, τ1 is a stopping time with respect to the filtration

F( xt, ∇t, ∇t·λe,F , ∇t·F )
t .

Similarly, τ2 is a stopping time with respect to the filtration

F( yt, ∇t, ∇t·λe,F , ∇t·F )
t .
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5.2.3 Detection performance

Given sampling policies SP1, SP2 at the two sensors, the detection perfor-

mance is measured through a linear combination of the expected time taken by the

supervisor to arrive at a decision (Ĥ) and the probability of error in that decision.

J (SP1,SP2) = E [cS] + P

[
Ĥ 
= H

]
,

where c is a positive constant.

The best decision by the supervisor at time S can be no better than that

of the sensor that transmits second. Using the line of argument of Lemma 1 in

chapter 4 (page 160) of [21], it can be shown that the optimal decision at the latter

sensor is dependent only on its likelihood ratio at the time S. In fact, once the first

packet has been transmitted, the optimal policy of the latter sensor is to implement

a SPRT-like sampling policy to determine its transmit time and decision.

Before we seek good event-triggered sampling strategies, we will note down

the performance provided by deterministic ones.

Deterministic sampling

When the transmit times are to be chosen deterministically, the best strategy

is to choose the same time for both sensors. This is because the optimal decision is

based on the following likelihood ratio at time S:

λSup = exp

{
1

σ2
1

(
xτ1 −

τ1
2

)}
× exp

{
1

σ2
2

(
yτ2 −

τ2
2

)}
.

The above product is the same as what we get when each sensor ignores the other’s

transmission and merely relays its likelihood ratio to the supervisor. The supervisor
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just has to form the product of the two likelihood ratios and uses the threshold rule:

Ĥ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if λSup ≥ 1−π
π
,

0 if λSup ≥ 1−π
π
.

Intuitively, by increasing the earlier transmit time to equal the other, we can only

improve the SNR of the earlier likelihood ratio because it is now based on longer

measurement. So, the optimal deterministic strategy consists of using the same

deterministic sampling policy DP(T ) which when applied to sensor # i produces:

τi = Δ.

Thus the expected decision time is Δ. The resulting detection error is:

1 − π

2

{
1 − erf

(
Δ (σ2

1 + σ2
2) + 2σ2

1σ
2
2 ln

(
1−π

π

)
2
√

2Δσ2
1σ

2
2 (σ2

1 + σ2
2)

)}

+
π

2

{
1 − erf

(
Δ (σ2

1 + σ2
2) − 2σ2

1σ
2
2 ln

(
1−π

π

)
2
√

2Δσ2
1σ

2
2 (σ2

1 + σ2
2)

)}
.

The expression simplifies when we specialize to the case π = 1
2
. We will use this

specialization in the next section to gain a lot of mileage in our calculations. The

case of unequal priors is not any more difficult conceptually.

5.3 Threshold sampling policies

By a threshold strategy, we mean a set of sampling policies where both sam-

pling times are chosen as threshold-crossing times for likelihood ratio process. Let

us introduce some notation which will be useful in describing the performances of

the threshold sampling policies.
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5.3.1 Useful notation

Assume for a moment that sensor #1 acts in isolation without any information

from sensor #2. Given λ1 > 1, let the time for sampling the sensor’s likelihood ratio

be the first exit time from the interval ( 1
λ1
, λ1). Assume also that its likelihood ratio

process at time zero is not 1 but an arbitrary λ0 such that:

1

λ1

< λ0 < λ1.

Then following the calculations of [21] the expected value of the sampling time and

the expected probability of error at that sampling time are:

E [τ(λ0)] =
1

2

[
σ2

1 ln (λ0) −
4σ2

1λ1λ0 lnλ1

λ2
1 − 1

+
2σ2

1(λ2
1 + 1) lnλ1

λ2
1 − 1

]

+
1

2

[
−σ2

1 ln (λ0) −
4σ2

1λ1 lnλ1

(λ2
1 − 1)λ0

+
2σ2

1(λ2
1 + 1) lnλ1

λ2
1 − 1

]
Δ
= TTSλ1 (λ0) ,

(5.10)

E [τ(λ0)] =
1

2

[
λ1λ0 − 1

λ2
1 − 1

]
+

1

2

[
λ1 − λ0

(λ2
1 − 1)λ0

]
Δ
= PErrλ1 (λ0) . (5.11)

We will describe four different threshold sampling policies starting with the simplest

generalization of the deterministic sampling policy DP.

5.3.2 Synchronous threshold sampling

For i ∈ {1, 2}, sensor # i is given two threshold values: αi, βi such that

0 ≤ αi ≤ 1 ≤ βi. (5.12)

In the synchronized threshold sampling policy(ST P), the two transmissions are

synchronized forcibly. The transmissions are triggered by the sensor # i whose
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likelihood ratio λi,t exceeds the interval (αi, βi) first. Immediately after, the other

sensor is forced to transmit its likelihood for hypothesis 1 as well. In formal terms,

τ1 = min
{
τ+
2 , inf {s|λ1,s /∈ (α1, β1)}

}
,

τ2 = min
{
τ+
1 , inf {s|λ2,s /∈ (α2, β2)}

}
.

Let λ̃i,t denote the likelihood ratio at sensor # i based solely upon the observations

process at that sensor and ignoring any packets transmitted by the other sensor.

This quantity obeys an SDE identical to equation(5.7) over the entire time horizon:

[0,∞). Define the first exit times τ̃1, τ̃2 through:

τ̃1 = inf
{
s|λ̃1,s /∈ (α1, β1)

}
,

τ̃2 = inf
{
s|λ̃2,s /∈ (α2, β2)

}
.

The common sampling time τST P is nothing else than min {τ̃1, τ̃2}. The decision is

based on the product of the two likelihood ratios. The supervisor computes

λSup = exp

{
1

σ2
1

(
xτ1 −

τ1
2

)}
× exp

{
1

σ2
2

(
yτ2 −

τ2
2

)}
,

and uses the threshold rule:

Ĥ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if λSup ≥ 1−π
π

= 1,

0 if λSup ≥ 1−π
π

1.

Note that since we have assumed the prior probabilities to be equal, we can choose

for i ∈ {1, 2}:

βi =
1

αi
, (5.13)
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Performance computation

The performance of the scheme is computed through solving some PDEs. The

expected sampling time is give through:

E [τST P ] =
1

2
f(1, 1) +

1

2
g(1, 1),

where,

−1 =
x2

2σ2
1

∂2f

∂x2
+

y2

2σ2
2

∂2f

∂y2
,

−1 =
x

σ2
1

∂g

∂x
+

y

σ2
2

∂g

∂y
+

x2

2σ2
1

∂2g

∂x2
+

y2

2σ2
2

∂2g

∂y2
,

with both the PDEs satisfying the boundary conditions:

f(x, y) = g(x, y) = 0, on the boundary of

[
α1,

1

α1

]
×
[
α2,

1

α2

]
.

Similarly, the probability of error is computed as:

P

[
Ĥ 
= H

]
=

1

2
f(1, 1) +

1

2
[1 − g(1, 1)] ,

where,

0 =
x2

2σ2
1

∂2f

∂x2
+

y2

2σ2
2

∂2f

∂y2
,

0 =
x

σ2
1

∂g

∂x
+

y

σ2
2

∂g

∂y
+

x2

2σ2
1

∂2g

∂x2
+

y2

2σ2
2

∂2g

∂y2
,

with both the PDEs satisfying the boundary conditions:

f(x, y) = g(x, y) = 1{xy>1}, on the boundary of

[
α1,

1

α1

]
×
[
α2,

1

α2

]
.
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5.3.3 Tandem Threshold sampling

We now consider the set of strategies where the sensors transmit in a fixed

sequence with the inter sampling times being chosen through threshold crossings.

First the sensor slated to go early samples according to a threshold crossing time

and passes its sample of the likelihood ratio to the other supervisor (and the other

sensor). The sensor transmitting second modifies its likelihood ratio using the packet

from its neighbour and samples next based on a different set of thresholds. Without

loss of generality, let us assume that the first sensor has observations with higher

SNR:

σ2
1 ≤ σ2

2.

Then, we have two possible orders for the sequence of transmissions. In one (name

it CT ANDP), we let the coarser sensor (the one with higher σ2) sample first and

pass its likelihood ratio to the other sensor. In the other (call it FT ANDP), let

the finer sensor sample first. As in the previous section (eqns.(5.12,5.13)) let the

sensors #1, 2 choose α1, α2 respectively.
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Calculations of peformances

Without any loss of generality, assume that σ2
2 ≤ σ2

1 . Under CT ANDP, we

have:

e = 1, l = 2,

F = inf

{
t ≥ 0

∣∣∣∣λ1,t /∈
(
α2,

1

α2

)}

S = inf

{
t ≥ F

∣∣∣∣λ1,t /∈
(
α1,

1

α1

)}

The the performance of CT ANDP is obtained by solving PDEs boundary value

problems which are more complicated the ones we have met before. We have to

make use of the notation in eqns. (5.10,5.11). The expected sampling time is given

by:

E [SCT ANDP ] =
1

2
f(1, 1) +

1

2
g(1, 1),

where,

−1 =
x2

2σ2
1

∂2f

∂x2
+

y2

2σ2
2

∂2f

∂y2
,

−1 =
x

σ2
1

∂g

∂x
+

y

σ2
2

∂g

∂y
+

x2

2σ2
1

∂2g

∂x2
+

y2

2σ2
2

∂2g

∂y2
,

with both the PDEs satisfying the boundary conditions:

f(x, y) = g(x, y) = TTS 1
α1

(xy)1n
α1<xy< 1

α1

o,

on the boundary of (0,+∞) ×
[
α2,

1

α2

]
.

Similarly, the probability of error is given by:

P

[
Ĥ 
= H

]
=

1

2
f(1, 1) +

1

2
[1 − g(1, 1)] ,
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where,

0 =
x2

2σ2
1

∂2f

∂x2
+

y2

2σ2
2

∂2f

∂y2
,

0 =
x

σ2
1

∂g

∂x
+

y

σ2
2

∂g

∂y
+

x2

2σ2
1

∂2g

∂x2
+

y2

2σ2
2

∂2g

∂y2
,

with both the PDEs satisfying the boundary conditions:

f(x, y) = g(x, y) = PErr 1
α1

(xy)1n
α1<xy< 1

α1

o + 1n
xy>1,xy/∈

“
α1, 1

α1

”o,

on the boundary of (0,+∞) ×
[
α2,

1

α2

]
.

The performance of FT ANDP is computed by the same calculation as above but

with the roles of the two sensors reversed.

5.3.4 Optimal Threshold Sampling

In the optimal threshold sampling scheme, we have no control over the order

of sampling. Lets name this asynchronous sampling scheme ASP . Each sensor has

to choose two sets of thresholds. (αi,
1
αi

) is for determining the first sampling time

and (μi,
1
μi

) is for determining the second sampling time. Define the first exit times

τ̃1, τ̃2 through:

τ̃1 = inf

{
s

∣∣∣∣λ̃1,s /∈ (α1,
1

α1
)

}
,

τ̃2 = inf

{
s

∣∣∣∣λ̃2,s /∈ (α2,
1

α2
)

}
.
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We have:

F = min {τ̃1, τ̃2},

e = arg min { i ∈ {1, 2}| τ̃i},

S = inf

{
t ≥ F

∣∣∣∣λl,t /∈
(
μl,

1

μl

)}
.

Then the performance of ASP can be computed exactly like for the tandem policies.

The expected sampling time is given by:

E [SASP ] =
1

2
f(1, 1) +

1

2
g(1, 1),

where,

−1 =
x2

2σ2
1

∂2f

∂x2
+

y2

2σ2
2

∂2f

∂y2
,

−1 =
x

σ2
1

∂g

∂x
+

y

σ2
2

∂g

∂y
+

x2

2σ2
1

∂2g

∂x2
+

y2

2σ2
2

∂2g

∂y2
,

with both the PDEs satisfying the boundary conditions:

f(x, y) = g(x, y) =

{
TTS 1

μ2

(xy)1n
xy∈

“
μ2, 1

μ2

”
,x/∈

“
α1, 1

α1

”o
}

+

{
TTS 1

μ1

(xy)1n
xy∈

“
μ1, 1

μ1

”
,y /∈

“
α2, 1

α2

”o
}
,

on the boundary of

[
α1,

1

α1

]
×
[
α2,

1

α2

]
.

Similarly, the probability of error is given by:

P

[
Ĥ 
= H

]
=

1

2
f(1, 1) +

1

2
[1 − g(1, 1)] ,

where,

0 =
x2

2σ2
1

∂2f

∂x2
+

y2

2σ2
2

∂2f

∂y2
,

0 =
x

σ2
1

∂g

∂x
+

y

σ2
2

∂g

∂y
+

x2

2σ2
1

∂2g

∂x2
+

y2

2σ2
2

∂2g

∂y2
,
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with both the PDEs satisfying the boundary conditions:

f(x, y) = g(x, y) =

{
PErr 1

μ2

(xy)1n
xy∈

“
μ2, 1

μ2

”
,x/∈

“
α1, 1

α1

”o
}

+

{
1n

xy>1,xy/∈
“
μ2, 1

μ2

”
,x/∈

“
α1, 1

α1

”o
}

+

{
PErr 1

μ1

(xy)1n
xy∈

“
μ1, 1

μ1

”
,y /∈

“
α2, 1

α2

”o
}

+

{
1n

xy>1,xy/∈
“
μ1, 1

μ1

”
,y /∈

“
α2, 1

α2

”o
}
,

on the boundary of

[
α1,

1

α1

]
×
[
α2,

1

α2

]
.

f(x, y) = g(x, y) = PErr 1
α1

(xy)1n
α1<xy< 1

α1

o + 1n
xy>1,xy/∈

“
α1, 1

α1

”o,

on the boundary of (0,+∞) ×
[
α2,

1

α2

]
.

We should note the none of the threshold sampling policies are person-by-

person optimal in the parlance of team theory [45, 46].

5.4 Relative Performances and Conclusion

Here, we present graphs (fig:5.2) detailing the relative performances of the

various sampling schemes.

Even though we have a sequential detection problem in infinite horizon, the

optimal sampling schemes are not threshold-triggered. The sharing of data packets

brings a time dependence on the cost structure. Loosely speaking, from the point

of view a sensor in this team, the transmission by the other sensor is an event

which affects the overall cost through the time of its occurrence. That is why the

asynchronous sampling scheme ASP does not even possess the person-by-person

94



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

plots for Optimal deterministic and threshold sampling when σ
2
2=4σ

1
24

Average decision time

P
ro

ba
bi

lit
y 

er
ro

r

 

 
Optimal deterministic sampling
TSP
CTANP
FTANP
ASP

Figure 5.2: Plots of Probability of error vs. expected time taken to decide when the

priors are equal. The asynchronous scheme performs well but the other threshold

schemes are not clearly distinguishable.
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optimality property it does in the context of [45, 46].
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Chapter 6

Conclusions

This thesis provides solutions to some key design problems for event-triggered

control. The design of good event-triggered sampling schemes answers the question:

What events should be reported and acted on for good control performance ? On

the other hand it also extends the work of Lazar and Tóth [24] on deterministic

event-triggered sampling. It also provides a generalization of the works of Åström

and Bernhardsson [1] and of Kushner [2].

6.1 Finite horizon estimation

In chapter 2 we have furnished methods to obtain good sampling policies for

the finite horizon filtering problem. When the signal to be kept track of is a Wiener

process, we have analytic solutions. When the signal is an Ornstein-Uhlenbeck

process, we have provided computational recipes to determine the best sampling

policies and their performance.

We will report elsewhere on the solution to the case when the sensor has

access only to noisy observations of the signal instead of perfect observations. The

approach leads us to also consider some simple multi-sensor sampling and filtering

problems which can be solved in the same way.

The case where the samples are not reliably transmitted but can be lost in
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transmission is computationally more involved. There, the relative performances of

the three sampling strategies is unknown. However, in principle, the best policies

and their performances can be computed using nested optimization routines like we

have used in this chapter.

Another set of unanswered questions involve the performance of these sampling

policies when the actual objective is not filtering but control or signal detection

based on the samples. It will be very useful to know the extent to which the

overall performance is decreased by using sampling designs that achieve merely

good filtering performance.

6.2 Estimation on an infinite horizon

In chapter 3 we solved the repeated sampling problem over an infinite horizon

when the signal has a scalar linear model. Åström and Bernhardsson [1], treat an

average cost repeated resetting problem similar to the one we have solved. In fact,

it is the same problem couched in different terms. The estimation error signal we

have in our problem corresponds to a state process in [1], which needs to reset to

zero by means of a resetting impulse control. The sampling rate of our problem

corresponds to the rate at which the zero-resetting impulse control is invoked. By

establishing the optimality of the symmetric threshold-triggered sampling policy, we

have proved the optimality of the so-called Lebesgue sampling scheme discussed in

[1] and shown to be superior to a periodic sampling scheme.

The problem we have solved has important extensions which need to be solved
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for direct applicability to practical designs. One extension involves finding the op-

timal or near-optimal strategies when the samples generated by the sensor get lost

during transmission to the supervisor. Another direction involves non-Gaussian

signals.

The estimation problem with multiple sensors which measure different noisy

versions of the signal and ‘listen’ to each other’s samples is also important for many

sensor networks.

Problems of optimal repeated sampling with an average cost have been con-

sidered in [33, 34]. The survey [35] on optimal stochastic control contains some

pointers to the literature on such average cost problems. The works [23, 36] discuss

optimal single stopping problems with constraints like we have investigated in this

chapter.

6.3 Average cost Control

In chapter 4 we have solved an average cost feedback control problem with

reliable delivery of samples. We need to find ways of obtaining the optimal set of

levels for event-triggered sampling. We need to see how the performances of the

various sampling schemes compare when the signal is nonlinear. Extension to the

case of a vector signal is non-trivial.

On the other hand, using multiple sensors for estimating a scalar state signal

leads to a tractable analysis of level-triggered sampling. We could sample when

the local conditional mean for the state at a sensor freshly crosses levels. The
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performance of such a sampling scheme can be analyzed with or without mutual

listening of sensor samples. In principle, incorporating packet losses is possible but

not transmission delays. This of course adds to the computational burden.

A hybrid sampling scheme based on level-triggered and time triggered sam-

pling lets us stabilize unstable plants using only a finite set. The scheme depends on

deterministic sampling when the state is beyond the last level in the finite L. This

sort of scheme is needed in practice in order to combat unreliable delivery of pack-

ets. However, analyzing and designing such a scheme gets more computationally

burdensome.

Extension of the level-triggered scheme to the case of vector state signal is

somewhat tricky. On the one hand, levels could be replaced by concentric spherical

shells of the form,

∣∣�x∣∣ = li > 0.

Of course, one could use ellipsoidal shells or other non-symmetrical and non-concentric

shells. But this would differ from a scheme which samples based on threshold cross-

ings of the magnitude of the estimation error signal. The latter scheme would be

optimal for the average cost filtering problem when the state signal is scalar and

linear.

6.4 Sequential detection in teams

In chapter 5 even though we have a sequential detection problem in infinite

horizon, the optimal sampling schemes are not threshold-triggered. The sharing of
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data packets brings a time dependence on the cost structure. Loosely speaking, from

the point of view a sensor in this team, the transmission by the other sensor is an

event which affects the overall cost through the time of its occurrence. That is why

the asynchronous sampling scheme ASP does not even possess the person-by-person

optimality property it does in the context of [45, 46].

On the other hand, the mere numerical comparison of performances of the var-

ious threshold sampling schemes is not enough to develop design principles. Perhaps

a different formulation of the multi-agent problems is needed to obtain insights.

Taking an overall view of the thesis in the context of [24], we need to explore

connections with the familiar Shannon sampling theorem for bandlimited functions.
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Appendix A

Expectations of some variables at hitting time

The purpose of this appendix is to provide a partial derivation of the expres-

sions for expected time of a diffusion process to exit a regular set in R
n. We will

also sketch the similar result for computing the expected values of other quantities

at first exit.

Now, we recall some basic results from the book of Øksendal (Theorem 5.2.1

in page 66 of [32]). Suppose that the diffusion process xt is governed by the SDE:

dxt = f(xt)dt+ g(xt)dWt,

where, xt ∈ R
n and Wt is a standard Brownian motion process in R

n. Let f(·), g(·)

be such that

|f(x) − f(y)| + |g(x) − g(y)| ≤ K |x− y| , ∀ x, y ∈ R
n,

for some positive K. This condition ensures that the SDE above has a strong

solution. The Brownian motion process and the Ornstein-Uhlenbeck process that

we use in this thesis clearly satisfy the above conditions. The two dimensional

process defined by the vector of likelihood ratios in chapter 5 also satisfies these

conditions.

LetD be a regular set in R
n (section 9.2 in [32]). In the level-triggered sampling

problems in this thesis, D is either a finite interval in R (3.3.2, 5.3.1), a finite, axes
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parallel rectangle in R
2 (5.3.2, 5.3.4) or a semi-infinite axes-parallel rectangle in R

2

(5.3.3). All of these sets are regular.

Let τ be the first exit time of xt from D:

D = inf {t ≥ 0 |xt /∈ D} .

Let Ex [·] denote the conditional expectation given that x0 = x, ∀ x ∈ D. Then, if

h, φ are integrable scalar functions,

Ex

[∫ τ

0

h (xs) ds

]
+ Ex [φ (xτ ) ds] = ψ (x) .

where, ψ(·) satisfies the PDE (chapter 9 of [32]):

Lφ = −h, with the boundary conditions,

lim
x→y

x∈D

= φ(y), ∀y ∈ ∂D,

where L is given by:

L =

n∑
i=1

fi(x)
∂

∂xi
+

1

2

n∑
i=1

n∑
j=1

gi(x)gj(x)
∂2

∂xi∂xj
.

A rigorous proof is available in chapter 9 of [32]. In what follows, we will sketch

how the result comes about.

By the Ito rule, we have:

dφ(xt) =

{
n∑

i=1

∂ψ

∂xi

}
dxi,t +

{
1

2

n∑
i=1

n∑
j=1

gi(x)gj(x)
∂2φ

∂xi∂xj

}
dWi,tdWj,t

=

{
n∑

i=1

fi(x)
∂ψ

∂xi
+

1

2

n∑
i=1

n∑
j=1

gi(x)gj(x)
∂2φ

∂xi∂xj

}
dt+

{
n∑

i=1

gi(x)
∂φ

∂xi

}
dWi,t.
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Now,

Ex

[∫ τ

0

h (xs) ds

]
= Ex

[∫ τ

0

−L (φ(x)) ds

]

= Ex

[∫ τ

0

−L (φ) ds

]
− Ex

[∫ τ

0

{
n∑

i=1

gi(x)
∂φ(x)

∂xi

}
dWi,s

]

= Ex

[∫ τ

0

−dφ(xs)

]

= −Ex [φ (xτ ) − φ (x0)]

= −Ex [ψ (xτ )] + φ (x0) .

Rearranging the last equation above gives us:

Ex

[∫ τ

0

h (xs) ds

]
+ Ex [ψ (xτ )] = φ (x0) .

By choosing h(·) = 1 and ψ ≡ 0, we can compute the expected first exit time

Ex [τ ]. By choosing h(x) = x2 and ψ ≡ 0, we can compute the quantity:

Ex

[∫ τ

0

x2
sds

]
.

And by choosing h ≡ 0, and

ψ(x) = 1{x∈C},

for some C ⊂ ∂D, we get the probability that the first exit occurs through C:

Ex

[
1{xτ∈C}

]
= P [xτ ∈ C] .
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[24] Aurel A. Lazar and László T. Tóth. Perfect recovery and sensitivity analysis
of time encoded bandlimited signals. IEEE Trans. Circuits Syst. I Regul. Pap.,
51(10):2060–2073, 2004.

[25] Abhay G. Bhatt, Amarjit. Budhiraja, and Rajeeva L. Karandikar. Markov
property and ergodicity of the nonlinear filter. SIAM J. Control Optim.,
39(3):928–949 (electronic), 2000.

106



[26] Maben Rabi and John S. Baras. Sampling of diffusion processes for real-time
estimation. In Proceedings of the 43rd IEEE conference on Decision and Control
(Paradise Island Bahamas, 2004), pages 4163–4168. IEEE Control Systems
Society, 2004.

[27] Ioannis Karatzas and Steven E. Shreve. Methods of mathematical finance, vol-
ume 39 of Applications of Mathematics (New York). Springer-Verlag, New York,
1998.

[28] Roland Glowinski. Numerical methods for nonlinear variational problems.
Springer Series in Computational Physics. Springer-Verlag, New York, 1984.

[29] Maben Rabi, John S. Baras, and George V. Moustakides. Efficient sampling for
keeping track of a gaussian process. In Proceedings of the 14th Mediterranean
Conferences on Control and Automation (Ancona, 2006). IEEE Control Sys-
tems Society, 2006.

[30] Maben Rabi, George V. Moustakides, and John S. Baras. Multiple sampling
for estimation on a finite horizon. In forthcoming Proceedings of the 45rd IEEE
conference on Decision and Control (San Diego, CA, 2006), pages xxxx–xxxx.
IEEE Control Systems Society, 2006.

[31] Bruno Sinopoli, Luca Schenato, Massimo Franceschetti, Kameshwar Poolla,
Michael I. Jordan, and Shankar S. Sastry. Kalman filtering with intermittent
observations. IEEE Trans. Automat. Control, 49(9):1453–1464, 2004.

[32] Bernt Øksendal. Stochastic differential equations. Universitext. Springer-
Verlag, Berlin, sixth edition, 2003. An introduction with applications.

[33] Dariusz G
‘
atarek. Ergodic impulsive control of Feller processes with costly

information. Systems Control Lett., 15(3):247–257, 1990.

[34] 
Lukasz Stettner. On impulsive control with long run average cost criterion.
Studia Math., 76(3):279–298, 1983.

[35] Vivek S. Borkar. Controlled diffusion processes. Probability Surveys, 2:213–244
(electronic), 2005.

[36] Monique Pontier and Jacques Szpirglas. Optimal stopping with constraint. In
Analysis and optimization of systems, Part 2 (Nice, 1984), volume 63 of Lecture
Notes in Control and Inform. Sci., pages 82–91. Springer, Berlin, 1984.

[37] Ioannis Karatzas and Hui Wang. Utility maximization with discretionary stop-
ping. SIAM J. Control Optim., 39(1):306–329 (electronic), 2000.

[38] Michel Adès, Peter E. Caines, and Roland P. Malhamé. Stochastic optimal
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