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It has been long established that Reynolds number effects can lead to flow

instabilities and/or transition from laminar to turbulent flow regimes. The nature of

free shear jets is well understood and heavily covered in the fluid mechanics literature.

On the other hand, the study of confined nozzles presents some challenges and is still

a developing area of research. In this work, we focus on quasi-impinging jets, such as

the ones feeding into a virtual impactor. Virtual impactors are popular, inexpensive

aerosol collection devices capable of separating airborne solid particles. Recently they

found increased application in areas that require concentration of dilute aerosols,

such as biological-laden flows. In essence, this research is motivated by the need to

fundamentally understand the fluid-particle interaction mechanisms entailed during

virtual impaction. To this end, we rely on theoretical insight gained by numerical

analysis of the classical equations within a one-way coupled Lagrangian framework.

In the first part of this investigation we perform a direct transient simulation

of the two-dimensional incompressible Navier-Stokes equations for air as the carrier

phase. The momentum and continuity equations are solved by FLUENT. The solu-

tions of three separate computations with jet Reynolds numbers equal to 350, 2100,



and 3500 are analyzed. The 2-D time-mean results established the nature of the jet

potential core and clarifications about the role of the Reynolds number were proposed.

Transient analysis deciphered the characteristics of the mirrored Kelvin-Helmholtz in-

stability, along with particle-eddy interaction mechanisms.

In the second part we perform a large eddy simulation (LES) on a domain of

a real-life sampler. The Lagrangian dynamic residual stress model is implemented

and validated for two canonical turbulent flows. The newly contrived code is then

applied to the study of a prototype device. A three-dimensional growth mechanism

is proposed for the jet mixing layers. The Lagrangian dynamic model LES exhibited

significant regions of high subgrid turbulent viscosity, compared to the dynamic Lilly-

model simulation, and we were able to identify the origin, and learn the dynamics of

five key coherent structures dominant during transition. Comparison with preliminary

experimental data for the aerosol separation efficiency showed fairly good agreement.
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Chapter 1

Introduction

The systematic analysis of the fluid mechanics of engineering flow systems is

unequivocally critical for the successful design and operation of fluidic devices. This

research is mainly aimed at understanding the hydrodynamics of “virtual impactors”

which are widely used for aerosol collection and sampling. The problem lends itself to

the special class of multiphase flows where the particulate solid phase is transported

or suspended in the carrier gas phase. Naturally, the mechanisms and ideas initiated

and applied in this category of flows are closely tied with other similar fluid-particle

flows which range from large-scale environmental phenomena to bench-scale chemical

processing.

The collection and characterization of chemical or biological aerosols is essential

in areas such as toxicology, pollutant monitoring, and homeland security. The particle

capturing process is almost exclusively performed by virtual impaction at least in

one stage of the sampling experiment. Therefore, virtual impaction devices have

witnessed a tremendous evolution in terms of operability and complexity, from the

simple geometries constructed in the late seventies [1] to the intricate and bundled

incarnations present today [2]. Fortunately, the underlying fluid mechanical principles

governing all these systems are still the same, and this work introduces new insight
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into the fluid and particle behavior in a prototypical design.

The majority of studies that analyze the flow dynamics within virtual impactors

have been experimental where the main concern was to gather collection efficiency

information as a function of particle diameter. Such a classical approach ignores or

fails to address the fundamental interaction mechanisms that lead to the observed

macroscopic properties. To the extent where computer simulations have been used,

those investigations were limited in scope and accuracy. The purpose of the research

project presented herein is to conduct realistic time- and space-accurate calculations

to resolve the unsteady and energy containing fluid motions that inherently influence

the fate of the transported particles. In particular, the employment of direct and

large eddy simulation techniques allows us to thoroughly interrogate the mechanisms

affecting particle concentration and dispersion. Furthermore, Lagrangian computa-

tions of particle trajectories and dispersion functions have been made and interpreted

to determine the role of the dominant coherent structures.

One aspect of this study has also dealt with the evaluation and performance of

a prototype round-slit virtual impactor. Preliminary particle collection experiments

were performed in a wind tunnel for aerosol distributions ranging between 0.7 to

3.5 µm in aerodynamic particle diameter. The samples were analyzed with a digital

particle-sizer spectrometer and compared to the simulation’s predictions. The efficacy

of the prototype is thus demonstrated and a new scaling hypothesis is introduced to

properly quantify the real particulate penetration.

1.1 Literature Review

1.1.1 Virtual Impactors

The vitality of virtual impactors as effective means for sampling aerosols had

been recognized for quite some time. For this reason, many experimental and theoret-
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ical studies have been dedicated to evaluating and optimizing their performance. The

basic flow mechanism comprises the segregation of the moving aerosol from a noz-

zle into a relatively stagnant large-particle chamber (minor flow), and a high speed

small-particle cross stream (major flow). As depicted in figure 1.2, the converging

inlet creates a passage for the particle-laden air to a throat section which forms the

acceleration nozzle. The receiving end of the jet or minor flow constitutes a collection

probe which is slightly larger in width than the accelerating nozzle. Larger particles,

due to their inertia, deflect from the arched fluid streamlines and penetrate into the

collection chamber, while smaller particles follow the majority of the fluid as it is

forced to exit into the peripheral chambers or major flow. Typically, only a small

fraction (10 to 20%) of the inlet flow becomes the minor flow.

In reality, the aerosol characterization process begins when the particles in the

minor flow are gathered on a filter, in a liquid solution, or are passed through a

cyclone for further separation. Another possibility is to cascade a series of virtual

impactors to achieve even higher concentration factors [3, 4]. This methodology

became a sound replacement for solid-surface impactors because it eliminates particle

bounce and breakup, and allows for better control over the suspended aerosol.

The performance of a virtual impactor is assessed by a particle collection ef-

ficiency and wall loss curve as a function of particle size. The efficiency is defined

as the fraction of particles with a given diameter that accumulate in the minor flow.

For an ideal separator, the efficiency versus diameter is a sharp step function. It is

established, however, that due to the inevitable contamination of the collected aerosol

with the relatively smaller particles, the curve takes on an “S-shape” [5]. Figure 1.1,

for example, reveals the 50% cutpoint diameter which indicates that half the particles

whose size is equal to the cutpoint are collected, while the other half is forsaken to

the major flow. Wall losses are generally undesirable in virtual impactors, and are

mostly observed on the inner surfaces of the collection probe.
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Figure 1.1: Ideal vs. actual efficiency for a virtual impactor

Experimental parametric studies that dealt with the impact of geometrical and

flow configurations played a major role in steering the directions towards more efficient

virtual impactor designs. Before we review some of those contributions, it is helpful

to define the dimensionless groups pertaining to the problem. The Reynolds number

is defined as:

Re =
UjDh

ν
. (1.1)

When rectangular slot nozzles are considered in a two-dimensional sense, then Dh ≡

W . The Stokes number quantifies the ratio of the particle relaxation time to a

characteristic time scale in the flow. Hence,

St =
τp

τf

, (1.2)

is a measure of how responsive the particle is to changes in the fluid’s velocity field.
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As mentioned earlier, the flow separation ratio, Rs = Qm/QT , is also a factor that

determines the low-end asymptotic behavior of the collection efficiency function. In

the work of Chen et al. [6] on axis-symmetric jet nozzles, the authors found that

effects of the Reynolds number are manifested as a shift in the efficiency curve towards

lower cutpoints. This is naturally an outcome of the increased jet velocity causing

an increased particle stopping distance. An interesting finding, nonetheless, was

the collapse of all collection efficiency data onto a single chart when plotted against
√

St. Conclusions were made that for geometrically and dynamically similar virtual

impactors, prediction of the 50%
√

St is possible given an Re value in the 1000 to

8000 range. The same result was later confirmed by Ding and Koutrakis [7] for

a rectangular slit nozzle, where the
√

St50 remained in a narrow range of 0.68-0.71.

The effect of the minor-to-total flow ratio, on the other hand, has severe consequences

on the cutpoint as well as on the wall losses. As Rs is increased
√

St50 is decreased.

This can be explained by the fact that higher ratios allow more fine particles to pass

through to the collection probe. Moreover, since the efficiency curve is asymptotic

to Rs at the low end, its slope will accordingly be affected. The interpretation of

wall loss behavior, however, is not as palpable. For instance, Ding and Koutrakis [7]

distinguish between a “fine mode” (dp < 2.5µm) and a “coarse mode” (dp > 2.5µm)

behavior. For particles in the fine mode, losses were low when Re remained below

5000, but grew considerably for higher Reynolds numbers. The increase in particle

loss at high Re values was attributed to “flow instability” and “turbulence”. The

situation becomes even more difficult to comprehend for coarse particles. In this

mode, the same study revealed that low Re values (∼ 1500) yielded extremely high

losses (∼ 70%) which diminish drastically as the Reynolds number is pushed beyond

10,000. The influence of nozzle dimensions (W,Wc, S) was reported in a number of

studies [6, 7, 10]. The consensus is that a ratio Wc/W ∼ 1.5 is ideal for improved

collection and minimum lossses, whereas, the void gap ratio, S/W , when tested with
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Figure 1.2: Schematic of virtual impactor nozzle. W = 0.7 mm

values between 0.5 and 1.5 gave very negligible differences. Finally, Kim et al. [11]

assessed the performace of flat or square-shaped nozzles versus cut-out protrusions,

such as the one depicted in figure 1.2, and showed that the latter design is more

beneficial in terms of higher collection and lower losses.

Parallel to the experimental studies, a significant body of work focused on the-

oretical aspects. Marple and Chien [5] obtained solutions of the Navier-Stokes equa-

tions in terms of vorticity and stream function using a finite difference method. Solid

particles were then traced by solving the particle equation of motion governed by

Stokes drag. The authors analyzed the influence of flow and geometrical considera-

tions on the particle trajectory, collection, and loss. The numerical grid, however, was

too coarse by today’s standards to deliver accurate predictions. The approach was

later revised in a subsequent paper by Rader and Marple [8] where they applied the

technique to study solid surface impactors. The refinement focused on two main areas,

the discretization gird, and the use of a non-linear drag coefficient. In a more recent
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study, Asgharian and Godo [9] employed a commercial finite-element fluid dynamics

code to obtain the flow velocity in a two-dimensional “improved” virtual impactor.

An improved virtual impactor is one with a clean air core in the center of the inlet

to the impaction zone. The authors solved for the incompressible steady-state flow

field at a Reynolds number of 4000 using the standard k − ε turbulence model. The

computational mesh consisted of approximately 14,000 nodes. When compared to

experimental data, their calculations predicted a much steeper slope for the efficiency

curve, and failed to match the asymptotic behavior for small particles. Hari [12] uti-

lized a computational fluid dynamics package to optimize the operation of a virtual

impactor in the laminar regime. Only one-half of the real geometry was constructed

in two-dimensional space, with symmetry boundary conditions along the centerline

of the computational domain. Charrouf [13] simulated the turbulent flow inside a

three-dimensional device for which basic experimental data exists. The methodology

relied on modeling the steady-state Reynolds average Navier-Stokes equations for in-

compressible and compressible flow fields. The particle tracking results compared

well with experiment for the collection efficiency but not for wall losses.

One of the least covered topics in virtual impactors is the nature of the flow

instability and turbulence. The roles that such important physical phenomena play

in transporting or, for that matter, inhibiting the accumulation of particles is not

well understood. It is safe to say that a detailed presentation of the fluid mechanical

structures present during virtual impaction is not currently in existence, nevertheless,

some visualization experiments have confirmed the appearance of such structures. As

early as the 1980’s, Forney et al. [10], while trying to understand the effect of the

Reynolds number of the flow on the collection properties of their virtual impactor,

observed “jet-core instabilities” through the use of dye in a water experiment. The

authors spoke of “total breakdown of the fluid flow field”, and of “intermittent fluid

loss to the void”. The study conceded that an acceptable range of operation exists
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only between 700 < Re < 1600. Subsequently, Han and Moss [14] visualized the

streamlines also in a water model, but with a clean-core inflow. They described the

appearance of a counter-rotating vortex pair at Re ∼ 3000. In addition, they observed

a breakdown of the dye in the major flow for Re > 4000. Gotoh and Masuda [15]

performed laser-sheet visualizations in a rectangular jet virtual impactor at Re =

2000. They focused on eliminating the reversed flow from the collection nozzle, and

intentionally avoided higher Reynolds number values so as not to “disturb the flow

structure” which would then “mask” the effect of their proposed new nozzle.

1.1.2 Hydrodynamic Stability of Jets

The study of the stability characteristics of “free boundary layers”, such as those

present in laminar and turbulent jets, has been an active area of research for many

fluid dynamicists and theoreticians alike. From the early 1960’s, Sato and Sakao

[16] demonstrated the occurrence of periodic velocity fluctuations in their hot-wire

anemometer experiments with a two-dimensional laminar jet for 10 < Re < 50. Such

fluctuations “die out” as they travel downstream, however, for higher Reynolds num-

bers, they observed that the periodic fluctuations developed into irregular, turbulent

signals. Michalke and Freymuth [17] discussed the idea of a “separated flow” down-

stream of a nozzle issuing into a fluid at rest. Further downstream the jet boundary

layer becomes unstable and local concentrations of vorticity become conspicuous. One

interesting avenue of inquiry was the ability to artificially excite the naturally occur-

ring unstable disturbances in the free boundary layer by sound from a loudspeaker

(see also [18]). A continuation of such work, was carried out by Browand [19] to

investigate the non-linear mechanisms associated with transition to turbulence. The

main conclusion reached emphasized the growth of secondary instabilities in the sepa-

rated shear layer, as well as random spanwise structure before turbulence is attained.

During the 1970’s, the concept of orderly structure in turbulent flows began to gain
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acceptance. Crowe and Champagne [20] manipulated the frequency of large-scale

pattern formation in a round jet at Re ∼ 105 by external acoustic excitation. They

recorded their measurements at a point just four diameters away from the jet exit

plane. Later on, Petersen and Samet [21] conducted the same experiment to demon-

strate that the only instability is a shear layer one that is dependent on the streamwise

distance from the nozzle, and in turn, on the local shear layer thickness. Browand and

Laufer [22] visualized the flow in a circular water jet for 5000 < Re < 15000. Their

analysis distinguished between three regions. First, an initial shear layer instability

zone, second, a vortex-rings interaction zone, and third, a zone prone to turbulence

generation, thus order distortion. Davies and Yule [23] reviewed the contributions

made in deciphering the nature of large-scale coherent structures reported in a wide

range of shear flow turbulence, such as wakes, boundary & mixing layers, and jets. An

overwhelming basic commonality was educed based on the evident repetitive features

of those structures, albeit some unique characteristics that are only relevant to each

particular flow.

The essence of coherent structures in turbulent shear flows is indeed intriguing,

and far from being fully understood. Another interesting and related phenomenon

is the induction of self-sustained oscillations. We shall particularly review such pro-

cesses of impinging shear layers given their relevance to the study of virtual impaction.

Rockwell and Naudascher [24] summarized the multitude of configurations where flow

induced oscillations can come into play. The geometries range from jets impinging on

flat or sharp edges, to mixing layers over cavities or curved surfaces. The underlying

belief is that such flows exhibit an astounding set of common features namely, a high

degree of disturbance organization, a distinct frequency of oscillation, and amenabil-

ity to resonance. Ho and Nosseir [25] extensively analyzed the “feedback loop” in a

subsonic air jet impinging on a flat plate. Their experimental results suggest a mech-

anism by which the surface pressure fluctuations, caused by the convected coherent
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structures landing on the plate, produce upstream propagating waves which are phase

locked with the separated shear layers from the nozzle. In a recent two-dimensional

numerical study of the unsteady effects that an impinging slot jet flow has on the

heat transfer diagnostics of the receiving plate, Chiriac and Ortega [26] identified the

critical Reynolds number, that marks the onset of unsteadiness, to be ≈ 600. Their

calculation revealed an advantage in heat transfer coefficient at the wall compared to

the steady flow. Similarly, Akiyama et al. [27] performed a large eddy simulation on

a domain involving two planar impinging jets at Re = 500, with periodic boundary

conditions in the spanwise direction. The jet was periodically forced in time in order

to stimulate the emergence of coherent large-scale vortices from the nozzle shear lay-

ers. They also reported on structures with spanwise vorticity in the developing jet

near the impingement wall.

One final arena of exploration related to the topic of coherent structures in jet

flows, which also possesses common elements with virtual impaction, is the study

of jets in cross flow. The formidable nature of this flow lies in the complex three-

dimensional interaction between the main jet and the cross-stream which is generally

of a lower velocity. A number of researchers visualized and explained the structural

properties of this flow at high Reynolds numbers [28, 29, 30], but what is most interest-

ing to us is the instability processes and organized motions at relatively low Reynolds

numbers. Camussi et al. [31] obtained particle image velocimetry measurements in

a transverse jet at Re ≈ 100, along with visualizations by laser induced fluorescence.

They interpreted the change in the structural dynamics of the flow based on the effect

of the jet-to-crossflow velocity ratio, and concluded that the instability mechanisms

are different from those attributed to free uninhibited jets. Ironically, Megerian and

Karagozian [32] who conducted experimental recordings in a similar configuration for

a range of Reynolds number, 1500 < Re < 7000, identified from their spectra plots, a

shear layer mode instability at a moderate Reynolds number (∼ 2700) that is similar
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in nature to that of a free jet. Evidently, the characterization of the true instability

traits and the role of the Reynolds number is quite a controversial and non-trivial

matter.

1.1.3 Particles in Turbulence

Truly, one of the most captivating issues in engineering is the understanding of

fluid-particle interaction. Sadly, the most accurate numerical techniques for tackling

this problem are still very prohibitive because direct numerical simulations attempt

to resolve the full range of scales including the “wakes” behind each of the finite-size

particles [33]. Fortunately, the physics is quite manageable when the particle diameter

is much smaller than the smallest turbulent scale, i.e. the Kolmogorov length scale.

Furthermore, for dilute particulate systems, it is safe to assume that the only transfer

of momentum is from the fluid phase to the dispersed phase. Hence, a Lagrangian

one-way coupled equation of particle motion that accounts for hydrodynamic forces

on the particles is widely accepted [34]. Reviews for numerical methods that are suit-

able for computing particulate flows are numerous [35, 36, 37, 38]; we shall simply

focus on the more recent work involving large eddy simulation (LES). The merits

of large eddy simulation for complex engineering flows are very commendable. LES

is an intermediate approach between expensive but accurate direct numerical sim-

ulation (DNS) and the Reynolds ensemble-averaged approach, or Reynolds average

Navier-Stokes (RANS). Historically, the latter overture dealt with providing turbu-

lence closure models for the Reynolds stresses appearing in the RANS equations, in

order to solve for the mean properties of the fluid. Additional stochastic modeling, is

in fact needed to simulate the effects of turbulent particle dispersion. Such techniques

were highly prone to empirical arguments that frequently violated basic physical prin-

ciples [39]. The prize of LES, on the other hand, lies in its ability to resolve the time

dependent large scale fluid motions, while parameterizing the effect of the sub-grid
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scale (SGS) turbulent stresses. A strong justification for this framework lies in the fact

that SGS fluctuations are believed to be universal in character, and independent of

the specific boundary conditions imposed on the flow. This methodology is especially

useful for particle flows since the particle motion is intimately tied to the large-scale

fluid structures, and it eliminates any of the guess work needed to prescribe instanta-

neous velocities, as is the case for RANS methods. Wang and Squires [40] reported on

a large eddy simulation of a fully developed turbulent channel flow. They computed

solid particle trajectories and accumulated statistics for three distinct particle sizes.

It was shown that the particles experience an increase in mean velocity relative to the

fluid with increasing Stokes number. Moreover, the root mean square fluctuation lev-

els where higher for particles near the wall in the streamwise direction, but lower in the

wall-normal and spanwise direction when compared to fluid profiles. The authors also

quantify and demonstrate the “preferential concentration” behavior, in other words,

the biased arrangement of particles by streaky turbulence structures. Good agreement

with experiment was achieved, especially at moderate Reynolds number. Uijttewaal

and Oliemans [41] performed an LES on a vertical pipe flow to study the processes

of particle dispersion and deposition. Their calculations attest that small particles

whose time scales are comparable to the turbulence integral scale are dispersed in a

manner similar to fluid particles, if not slightly more, while larger particles exhibit

much less dispersion by turbulence. Armenio et al. [42] assessed the contribution of

small-scale velocity fluctuations on tracer and finite-inertia particle motions. With

the help of reference DNS data of a turbulent channel flow, these workers discovered

very limited effects on the statistics of particles with or without the incorporation of

the sub-grid velocity field into the particle equation of motion, granted that a “care-

ful” LES is performed, with regard to grid resolution and sub-grid scale model. Some

alternative and equally cogent schemes for LES are also in existence. Derksen [43], for

example, simulated the turbulent flow inside a stirred tank by large-eddy simulation
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using the Lattice-Boltzmann method. Solid particle dynamics were then studied by

considering particle-particle, and particle-impeller collisions. The analysis confirmed

prior findings about the minor influence of the sub-grid scales. Lastly, Bernard et

al. [44], using vortex methods, performed “grid-free” turbulent flow simulations of

the spatially developing mixing layer in order to study the mixing posture of inertial

particles relative to the organized roller structures.

1.1.4 Thesis Synopsis

Thus far, a general picture of virtual impaction flows has been portrayed, along

with a summary of the diverse relevant experimental and theoretical studies pertain-

ing to the problem. The remainder topics covered in this dissertation are outlined

below:

• In Chapter 2 we will present the fundamental equations of fluid and particle

motion along with the numerical schemes employed in their solution. The results

of the two-dimensional geometry at different flow conditions will be compared

and discussed, and a number of questions pertaining to the three-dimensional

problem will be raised.

• Chapter 3 deals with the details of large eddy simulation. It covers the basic

filtered equations and the closure models used for the determination of sub-grid

scale turbulent stresses. An implementation of an advanced model is nominated

along with its results from two validation cases.

• In Chapter 4, first we analyze the LES results of the round slit virtual impactor

from a statistical standpoint, and then attempt to reconstruct the flow dynamics

in conjunction with analyzing the particle tracking results. Mechanisms for

particle transport and loss are discussed.
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• Chapter 5 concludes with a summary of the main findings from each study.

Recommendations for future research are made in this chapter.
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Chapter 2

Two-dimensional Theoretical

Study

It is well known that the cost of conducting a direct numerical simulation of

the Navier-Stokes equations requires a number of grid points proportional to Re3/4

in each Cartesian direction, based on the adopted Kolmogorov theory for turbulent

flows [45]. Therefore, the computational expense for a transient three-dimensional

calculation at a relatively mild Reynolds number (∼ 2000), and in the presence of solid

boundaries, becomes quite intolerable connoting the scaling relationship of O(Re3).

For our particular case, given that such a scenario is prevailing, and the fact that we

are interested in learning about the fundamental mechanisms of virtual impaction jets,

we elect to conduct a two-dimensional direct simulation. In fact, two-dimensional flow

approximations can provide considerable insight to the analysis of the problem, and

the 2-D assumption is not very crude if the third dimension (spanwise) length scale

is significantly larger than the representative length scale of the flow, for example the

jet width. In the following sections, the governing theoretical equations are outlined,

and the numerical tools employed in their solution are presented. The remaining part

of the chapter deals with the analysis of both the fluid and discrete phase results.
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2.1 Equations of Fluid Motion

The treatment of the physics of fluid motion is justifiably perceived via the

continuum hypothesis, in other words, the world-size length and time scales important

to the study of most engineering flows exceed those of the molecular scales [46]. We

shall limit this examination to Newtonian fluids with constant density in an Eulerian

frame of reference. Therefore, we write the mass-conservation, known also as the

continuity equation:

∂ρ

∂t
+

∂(ρUi)

∂xi

= 0. (2.1)

The condition that ρ is independent of both x and t, reduces the continuity equation

to its solenoidal form:

∂Ui

∂xi

= 0. (2.2)

The momentum equation which is derived in a manner similar to Newton’s second

law of motion, is essentially a balance between the rate of change of momentum per

unit volume on one hand, and the pressure, viscous, and body forces on the other.

The differential form of the equation is given by:

∂Ui

∂t
+ Uj

∂Ui

∂xj

= −1

ρ

∂P

∂xi

+ ν
∂

∂xj

(
∂Ui

∂xj

) + gi. (2.3)

By convention, equations (2.3) in combination with equation (2.2) are referred to as

the Navier-Stokes equations.

2.2 Equation of Particle Motion

Before we discuss the form of the equation of particle motion, it is important

to establish the assumptions under which such an equation holds. There are two
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crucial elements related to the derivation of the Maxey and Riley theory. First, the

particle size is taken to be much smaller than a characteristic length scale of the

fluid velocity field, and second, the Reynolds number based on the sphere’s diameter

is small compared to unity. In nature, a suspension of dilute aerosols (low volume

fraction) is believed to be insensitive to inter-particle collisions [47]. Hence, when

viewed from this perspective, it becomes reasonable to derive an equation for the

particle motion based on the unsteady disturbed Stokes flow around the sphere:

mp
dV

dt
= 6πrpµ(U − V) +

1

2
mf

d(U − V)

dt
+ mf

DU

dt
(2.4)

+ 6r2
p(πµρ)

1

2

∫ t

0

d(U − V)/dτ

(t − τ)
1

2

dτ + (mp − mf )g,

where D/Dt is the substantial derivative. The terms in the above equation rep-

resent a balance between the inertia force due to the particle acceleration on the

left hand side, with the Stokes drag, inertia of virtual mass, fluid pressure gradient

and viscous stresses, the Basset memory term (unsteady form of viscous drag), and

gravity-buoyancy on the right hand side, respectively. A number of studies ascer-

tained the contribution of each of the individual terms in order to map their relative

importance [48, 49]. A major simplification occurs for aerosols due to their high par-

ticle density compared to that of the fluid (ρp/ρ ≈ 103), and it was found that the

steady state drag is the primary force. Thus, dividing both sides of equation (2.4) by

mp and discarding the negligible terms, we obtain:

dV

dt
=

18µ(U − V)

ρpd2
p

+ g, (2.5)

which has been empirically modified to incorporate non-creeping flow deviations of

the drag force from the steady Stokes solution. Therefore:
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dV

dt
=

CDRep

24

(U − V)

τp

+ g, (2.6)

where τp = ρpd
2
p/18µ, and Rep = dp|U−V|/ν. The choice of the drag coefficient, as we

found in a separate investigation [13], is utterly consequential especially during virtual

impaction. It was shown that minute changes in the magnitude of the drag force on

the particle during its “turn-negotiation”, or virtual impinging, makes the difference

between whether the particle will jump into the minor flow, or escape to the major

flow. For this reason, a best practice approach was devised to allow for adaptive drag

models that can respond to rather abrupt changes in the relative velocity (U − V).

Hence, the following criteria are used to prescribe the drag coefficient:

CD =
24

Rep

; Rep ≤ 0.1 (2.7)

=
24

Rep

(1 + 3/16Rep); 0.1 < Rep ≤ 5

=
24

Rep

(1 + 0.15Re0.687
p ); Rep ≥ 5

The above relations are commonly known as the Stokes, Oseen, and non-linear (ex-

perimental fit) drag model, respectively [50]. It should be noted that the Stokes flow

analysis relies on the presumption that the velocity of the gas right at the surface

of the moving sphere is zero. Aerosol particles, however, when their size becomes

comparable to the mean free path of the gas, experience what is commonly referred

to as “slip” [51]. Effectively, this implies a reduction in the Stokes drag force for

micron-size particles or less, which can be quantified by the Cunningham correction

factor

Cc = 1 +
2

Pdp

[
6.32 + 2.01e−0.1095Pdp

]
, (2.8)

which enters the denominator of the leading coefficient in equation (2.6). Note that

the pressure dependence of the previous relation is dynamically taken into account
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based on the particle’s surrounding fluid pressure.

2.3 Numerical Setup

2.3.1 Geometry & Flow Conditions

The computational domain utilized for the two-dimensional study is shown in

figure 2.1. The nozzle width is W = 0.7 mm. The inlet cone converges at a 45o angle

into a throat section approximately twice the length of the jet opening (T ∼ 2.1W ).

The gap distance to the collection probe is also S ∼ 2.1W . The probe width is

Wc = 1.5W . Such critical dimensions follow the literature recommendations, and

are also the outcome of our own preliminary “test runs” that looked at their effect

on the jet expansion characteristics. The axes in the insert of figure 2.1 are made

dimensionless to facilitate the discussion of the results:

x∗ =
x − xnozzle

S
(2.9)

y∗ =
y

W
.

An inflow boundary condition is specified at the cone inlet, which simply desig-

nates a uniform velocity across that plane. Three sets of simulations were performed

each with a different inflow velocity Uin, and thus a different jet Reynolds number

(Re ≡ WUj/ν). The simulations’ parameters are summarized in Table 2.1. The

Reynolds number Reδ = δUoo/ν, is defined based on the jet initial shear layer thick-

ness which is taken to be the distance from the wall to the point where the streamwise

velocity is 99% of its centerline value Uoo. The average time for virtual impaction

τvi is the ratio S/Uj. The last two columns of Table 2.1 point to the time step, and

number of grid cells used in the computations.
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Uin (m/s) Uj (m/s) Re Reδ τvi (s) ∆t Total Grid Cells
0.3 7.4 356 218 1.99e−4 τvi/20 135 × 103

1.9 44.6 2136 579 3.32e−5 τvi/33 663 × 103

3.3 74.3 3561 723 1.99e−5 τvi/20 663 × 103

Table 2.1: Summary of simulation conditions

A sample numerical mesh is shown in figure 2.2 for the low Reynolds number

case. More explicitly, in the area W × S, 60 × 148 non-uniform grid points were dis-

tributed. Similarly, 120×296 for the higher Re cases. Needless to say, care was taken

to cluster enough nodes near the walls and high shear regions. Grid independence

was established for the medium Reynolds number case by comparing the results from

a coarser mesh. In all cases, the first cell near any given wall in the domain lied

within the viscous sublayer. For the outflow boundary conditions, a specified mass

flow weighting is used in order to force the flow to undergo a 10 − 90% through-

put expansion to the minor and major flow, respectively. In addition, a convective

treatment is imposed on the outflow cell velocities in order to allow any flow distur-

bances to smoothly exit the domain [52]. Details about the implementation and its

validation can be found in the Appendix. If the location of the outflow boundary

condition (OBC) is too close to the jet, then it can be detrimental to the accuracy

of the simulation. For this reason, we extended the lateral position of the outflow

planes to y∗ ≈ 27W , after examining the results of a test calculation with OBC at

y∗ ≈ 13W .

2.3.2 FLUENT Code

FLUENT’s finite volume code is used to numerically solve the Navier-Stokes

equations. A brief description of the numerical algorithm will be outlined in this sec-

tion. A “segregated” methodology is undertaken to solve the mathematically coupled

nonlinear transport equations. This implies that each of the unknown variables is
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solved for sequentially starting with the momentum equation, and using the continu-

ity equation to enforce mass conservation implicitly on each control volume. Using

the divergence theorem, the conservation laws are transformed into integrals of flux

over the surfaces (F ) of each computational cell of volume V . Integrating the velocity

divergence, for instance, becomes:

∫∫∫

V

∇·U dV =

∫∫

S

U · n dF, (2.10)

where n is the unit vector normal to each face. The discretization of the continuity

equation (2.2) then yields:

Nf∑

f

Uf ·Af = 0, (2.11)

where Af & Nf are the area and number of faces (4 in 2-D, 6 in 3-D) associated with
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Figure 2.2: Low Re case numerical mesh - upper boundary marks jet centerline
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each control volume, respectively. The same procedure is applied to the conservation

of momentum, which when written for the entire lattice of grid cells in the domain

yields a set of algebraic equations with a sparse coefficient matrix. Consequently,

an iterative tool (Gauss-Seidel) is used to converge the equations on a global basis.

Further details on the intermediate steps of the solver can be found in the reference

manual [53]. It should be noted that proper measures and reliably proven algorithms

[54] were chosen in order to insure the accuracy of the results. The main concerns,

for example, relate to the residual numerics O(10−5), the discretization, and pressure-

velocity coupling schemes, which are summarized in Table 2.2 for both the 2-D Navier-

Stokes and Large Eddy simulation.

Time (backward) Pressure Momentum P-V Coupling
2-D NS 2nd order 2nd order QUICK∗ SIMPLEC

LES 2nd order 2nd order Central SIMPLEC

Table 2.2: Summary of discretization schemes. ∗hybrid upwind-central

2.3.3 Particle Tracking Code

In order to obtain Lagrangian particle statistics, equation (2.6) is integrated

twice to arrive at the particle position vector xp. For numerical analysis purposes, we

re-write the particle system of equations as:

dxp

dt
= V (2.12)

dV

dt
= β(U − V) + g (2.13)

where β = CDRep/(24τpCc). An in-house developed code reads in the fluid velocity

field at each time step, and employs the second order Adams-Bashforth marching
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scheme to advance the particles. The above equations are then explicitly progressed

forward in time as such:

xn+1
p = xn

p + ∆t
[
(1 + α)Vn − αVn−1

]
(2.14)

Vn+1 = Vn + ∆t
[
(1 + α)βn(Un − Vn) − αβn−1(Un−1 − Vn−1) + g

]
(2.15)

The parameter α = 0.5 corresponds to time steps proceeding the initial step (t0), for

which α = 0 due to the absence of the (n − 1)th velocity (i.e. Euler scheme). The

stability of explicit integration schemes is dependent on the finite size of ∆t, however,

for sufficiently small time steps (∆t � τp) the fidelity of the computation can be

ensured. Another more significant source of numerical error stems from interpolating

the fluid velocity at the meshpoints to the instantaneous particle position. A number

of techniques have been proposed and evaluated over the years (see for example

[55]), and it was found that this error can be alleviated with high order interpolation

schemes and fine grids. A versatile and accurate (2nd order in space) approach based

on weighted inverse-distance interpolation [56, 57] is used to allow effortless extension

of the code to unstructured grids. A thorough description and assessment of this

method can be found in a previous work [13].

2.4 Results

The discussion of the simulations’ results obtained for the three cases summa-

rized in Table 2.1 is undertaken in the following sections. The analysis is initiated

from two points of view. First, the mean or long-time averaged flow fields are in-

spected and compared. Second, the transient mechanistic properties of the flow are

accentuated and explained.
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2.4.1 Time Averaged Flow

For an unsteady problem, the mean flow is a mathematical artifact, but it serves

as an analytical tool for the base flow over which we may envision the transport of

rudimentary vortex structures. In addition, it facilitates the comparison of different

case data and other published results. For the sake of this study, namely the existence

of three flow conditions of interest, and the historical tradition of utilizing the base

mean flow as a sustainable measure of the performance of a virtual impactor, the

time-averaged results will be addressed. With reference to the virtual impaction time

unit τvi, a large number of flow realizations from each flow condition is recorded, as

listed in Table 2.3. First and second order statistics are then computed as such:

Uavg
i =

1

Nt

Nt∑

j=1

Ui(tj), (2.16)

U rms
i =

[
1

Nt

Nt∑

j=1

(Ui(tj) − Uavg
i )2

]1/2

. (2.17)

For the moment, case I, based on its low Reynolds number, can be safely considered

to be in the laminar regime, whereas case II and III, may be loosely referred to as

transition and turbulent, respectively. Such designated categories will become more

justified when we examine the unsteady flow.

Case # Uj (m/s) Re Nt Nt∆t/τvi

I 7.4 356 2000 100
II 44.6 2136 2311 70
III 74.3 3561 1380 70

Table 2.3: Flow realizations saved in each simulation

The flow in free (unbounded) jets is normally distinguished based on streamwise

distance from the issuing nozzle [58]. First, close to the nozzle, a “potential core”

region extends in the axial direction with an undiminished mean velocity equal to Uo.
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Surrounding this unweakened region, above and below, lies the mixing layers. Further

enough downstream, the strength of the core region is diffused, and the mixing layers

migrate to the centerline to mark the beginning of the “fully developed region”, which

conveniently has been shown to be self-preserving, that is, the cross-stream variation

of mean velocity takes on identical shapes at each subsequent axial location. This

behavior, of course, is not observed in a virtual impactor jet. First, the flow in

the immediate proximity of the nozzle is bounded. Second, hydrodynamic pressure

gradients are acting to decelerate the flow in the axial direction, and induce curvature

in the transverse direction. All of this is happening in an extremely short distance,

and fast time scales. For the sake of realizing the jet character, we plot the variation

of streamwise mean velocity at several x stations, marked in figure 2.3, in the virtual

impaction gap. The velocity profiles are normalized by the centerline velocity at the

corresponding x location. Figures 2.4, 2.5, and 2.6 show the U avg
x velocity profiles for

the three cases, respectively. In the laminar case, it is clear that a pseudo-parabolic

profile is predominant at all stages of the jet expansion. Moreover, the degree of self-

similarity is minimal, in other words, there is no fully developed region. Cases II & III,

exhibit quite similar behavior for the streamwise velocity during virtual impaction.

Most pronounced is the flat profile at the first two sampling stations compared to

the parabolic profile of case I. Slightly before the jet half point to collection, there

is strong distortion of this flatness, which results in a relative faster “leakage” above

and below the centerline. In figures 2.5, and 2.6, the appearance of local maxima

corresponds to the transverse location of the nozzle boundaries at y∗ ≈ ± 0.5, and

continues for several distances downstream. This implies, that the shear layers are,

on average, traveling faster than the centerline. Furthermore, it should be pointed

out that as the fluid approaches the minor flow entrance, the mean velocity quickly

adjusts to accommodate the re-laminarization process, as witnessed by the change in

shape of the streamwise velocity profile.
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Figure 2.4: Virtual impaction jet time averaged streamwise velocity - Case I
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Figure 2.6: Virtual impaction jet time averaged streamwise velocity - Case III
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The expansion characteristics of the jet can also be quantified by the half-

breadth measure (b), which is equal to the lateral distance from the jet axis to the

point where the streamwise velocity is one-half the centerline velocity. Figure 2.7

shows the variation of b with dimensionless downstream distance, x∗ = (x−xnozzle)/S,

for all three cases. It is shown that the initial development of breadth is constant

up to x∗ ≈ 0.5, but with a higher magnitude for case II & III. The final stages of

breadth development show a dramatic increase more so for the higher velocity cases.

This is naturally an outcome of the re-laminarization and widening of the velocity

profile near the entrance of the probe.

To investigate the existence of a potential core, we monitor the behavior of

the jet mean centerline velocity. Figure 2.8 shows the streamwise velocity at y = 0

for all three cases, normalized by Uoo, as a function of dimensionless axial distance.

Evidently, the centerline velocity behavior for case II & III is identical, namely a

swift decadence of the potential core region in comparison to the laminar case which

exhibits an increased penetration with downstream distance. The dashed lines on the

figure indicate the location of the inflection points of the graphs. In all cases, however,

there seems to be an agreement on the overall reduction in centerline velocity by the

time the flow reaches the probe which is roughly 90% of the initial nozzle speed. An

overall picture of the jet penetration and deflection of its streamlines is depicted in

figures 2.9, and 2.10 for case I and III, respectively. It is shown, that despite the

higher nozzle velocity of case III, the penetration length is relatively shorter than

case I. Furthermore, the deflection or curvature profile of the two cases is achieved at

different angles of inclination with respect to the axial flow.

To further analyze this phenomenon, we plot the cross-stream time averaged

velocity at several y-stations within the virtual impaction gap, as drawn in figure

2.11. The magnitude of the cross-stream velocity U avg
y , is minuscule in the early

development of the jet near the issuing nozzle, but begins to gradually increase to
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reach a local maximum just before the entrance of the receiving nozzle. The graphs

in figure 2.12 are representative of this behavior, which is shown only for case I, and

normalized by the corresponding maximum velocity at each y-station. The remaining

two cases, not shown here, exhibit similar trends but obviously with a higher velocity

magnitude.

In order to obtain a comparative insight to the deflection mechanism of the

mean flow, we plot in figure 2.13 the locus of the (x, y) points where the maximum

cross-stream velocity is found for all three cases. The outcome plot is astonishingly

indicative of the role that the Reynolds number plays in steering the jet curvature.

It is seen that in the laminar case, in addition to the deeper axial jet penetration

revealed in figure 2.8, there is also an affinity to delay the growth of the lateral jet until

roughly 83% of the virtual impaction gap length, as shown in figure 2.13. Contrary to

common perception, the higher Reynolds number cases, despite their more vigorous

nozzle conditions are prone to start the deflection process earlier than the laminar

case, ∼ 79% & 77%, for case II and III, respectively. Moreover, the maximum cross-

stream velocity locus for the latter two cases remains narrowly banded, compared to

the laminar case which shows a preference to spread over a wider axial scale. The

natural bifurcation of a free jet into a cross flow is depicted in figure 2.14 for three

increasing ratios of the jet-to-cross flow velocity, and it can be easily discerned that

for stronger jets, the locus penetration is copious.

One important aspect of the mean flow in a virtual impactor is the pressure

drop (∆P ) incurred in “pushing”, or “pulling” the fluid across the nozzle. From

a preservation point of view, the pressure conditions may become critical to the

survival of some bioaerosols. From a practical standpoint, as well, the pressure drop

is directly proportional to the power consumption of the device in Watts. Hence,

figure 2.15 shows the gauge pressure variation along the jet axis for all three cases.

The corresponding total adverse pressure gradients between jet and collection planes,
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Figure 2.7: Half breadth of virtual impaction jets

reported in inches of water, are: 0.2, 6.1, and 16.2 for case I, II, and III, respectively.

The knowledge of the behavior of the mean velocity components is crucial in the

design of efficient and versatile virtual impactor jets, and indeed, there is a degree

of ambiguity among designers and builders of such systems, as to the role of the

Reynolds number on the mean characteristics of the jet. We have shown that once we

diverge from laminar conditions, the jet potential core is diminished, and at the same

time its cross-stream strength is invigorated which can lead to the counter effect of

less minor flow penetration. The fluid mechanical reasons why such behavior occurs

can be recognized by learning about the instability characteristics of the jet, which

we shall discuss in the unsteady flow section.
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2.4.2 Aerosol Collection & Loss

Having established some of the most influential properties of the carrier phase

mean flow in the virtual impactor for the three distinct flow conditions, we shift our

attention now to study the aerosol particle motion, and the consequences that the flow

conditions impose on the discrete phase transport properties. In choosing the aerosol

particle sizes two approaches are followed. First, we carry the trajectory calculations

with mono-dispersed injections in order to evaluate the collection efficiency and losses.

Second, a poly-disperse size distribution is assigned and sampled at different stages

within the virtual impactor in order to assess the aerosol enrichment. In both cases,

a large number of particles (close to 100, 000) is used for each injection. Trial runs

with 1 million particles showed unnoticeable differences. The starting positions are

randomly chosen within the inlet cone section of the device, and the particles are

assigned the same initial velocity as the surrounding fluid. Clearly, since the particle
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Figure 2.9: Mean velocity contours and virtual impaction streamlines - Case I
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Figure 2.10: Mean velocity contours and virtual impaction streamlines - Case III
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Figure 2.14: Free jet issuing into a cross stream flow. Effect of jet-to-crossflow velocity
ratio from [28]. (a) lowest to (c) highest
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inertia at the virtual impactor nozzle is the determining factor for classification, the

aerodynamic diameter range must be chosen differently for each flow rate (i.e. jet

velocity), so that we observe similar separation characteristics by each flow field.

Table 2.4 categorizes the diameters used for the particulate injections in each flow

simulation. The slip correction factor of equation (2.8), and particle Reynolds number

are also listed. The former tabulated values are computed based on ambient pressure

in the inlet. Naturally, the instantaneous Cc is bound to change along the particle

path as it experiences different pressure conditions, but it is shown to illustrate the

degree of drag reduction we can expect. The Rep tabulated values are estimated based

on 1% relative velocity magnitude, and are shown to merely portray an exemplary

range. The solid density of the spheres is ρp = 1047kg/m3. As can be seen, all three

cases share a common set of Stokes numbers, defined in equation 1.2.

The particle separation efficiency, which is a measure of the effectiveness of the

virtual impactor to separate particles, is calculated at the end of each Lagrangian

tracking simulation, and is defined as:
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Case I Case II Case III
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

St dp Cc Rep dp Cc Rep dp Cc Rep

0.05 1.75 1.095 1.02 0.72 1.233 0.42 0.55 1.301 0.32
0.10 2.48 1.067 1.45 1.01 1.164 0.59 0.78 1.212 0.46
0.15 3.03 1.055 1.77 1.24 1.134 0.72 0.96 1.173 0.56
0.20 3.50 1.047 2.05 1.43 1.116 0.84 1.11 1.150 0.65
0.25 3.92 1.042 2.29 1.60 1.104 0.94 1.24 1.134 0.72
0.50 5.54 1.030 3.24 2.26 1.074 1.32 1.75 1.095 1.02
0.75 6.78 1.025 3.97 2.77 1.060 1.62 2.14 1.078 1.26
1.00 7.83 1.021 4.58 3.20 1.052 1.87 2.48 1.067 1.45

Table 2.4: Particle diameters in µm used in each flow simulation

Eff =
# minor flow particles

# of minor + major flow particles
, (2.18)

whereas the losses due to particle deposition on the probe walls are simply accounted

for by the following ratio:

Loss =
# of deposited particles

total # of particles
. (2.19)

Figure 2.16 is a comprehensive plot of the collection efficiency as a function of particle

diameter for each flow simulation. Also shown are experimental data by Ding &

Koutrakis [7] from a geometrically similar virtual impactor under different velocity

conditions. Evidently, the overwhelming trend is the shift of the efficiency curve

towards lower cutpoints with increasing Reynolds number. The theoretical curves

exhibit the desirable properties of steep slopes, and sharp separation between fine

and coarser particles. The experimental data, obtained with larger nozzle dimensions

(Wexp ' 4.35W ), serve to demonstrate that the simulation predictions do indeed

resemble the correct shape and structure. Such plots also reveal that the Reynolds

number is not a universal dimensionless group for design, since the theoretical systems

consistently capture smaller particles even at lower Re values than the experiment.
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On the other hand, a more beneficial plot for design is figure 2.17, which plots the

same theoretical collection results as a function of the Stokes number. In addition,

the degree of particle losses on the virtual impactor walls is depicted. As can be seen,

the numerical data collapses onto a common curve. Despite the slight deviations for

the results of case I, namely the gradual rather than sudden increase in wall loss prior

to the peak which is due to the nature of the underlying laminar flow, the graphs

elucidate that the most active or sensitive orbit for classification occurs within the

0.10−0.25 range of Stokes numbers. Moreover, the 50% cutpoint is around St50 ≈ 0.15

(
√

St50 ≈ 0.39). The wall loss peak is etched at St = 0.20, with a maximum of ∼ 10%

which is well below the acceptable norm for most virtual impactors.

The information gained from figures 2.16 and 2.17 has been the classical quest

for the majority of virtual impactor investigations. Undoubtedly, it is relatively facile

to conduct experiments or computations with mono-dispersed samples of particles,

and the analysis of such data is consequently easier. However, it is essential to deal

with complex conditions, in order to realistically assess the performance of a proto-

typical design. To this end, we propound to study poly-disperse aerosol distributions.

First, the suspended particles in the inlet-cone are assumed to have diameters dis-

tributed in a log-normal fashion, using the following probability density function:

f(dp; dm, σ) =
1

dpσ
√

2π
e− ln2(dp/dm)/2σ2

(2.20)

where dm and σ are the mean and standard deviation, respectively. The resultant

discrete number density of the particles is shown in figure 2.18 for four different values

of σ. Lagrangian computations are then performed with each individual group using

the mean velocity vector field of case II, and the aerosol size-distribution is queried at

three vertical cross-sections: before, at, and after virtual impaction. Those sampling

stations are hereinafter referred to as ‘nozzle’, ‘collector’, and ‘minor flow’. Figure 2.19

presents the variation of the initial arrangements. First, we notice that the particle
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size-distribution is unaltered by the time it reaches the nozzle, which is expected since

no significant deposition occurs in the throat. Surprisingly, figure 2.19-a with the

narrow distribution centered around 2µm experiences very little separation of size

at the intermediate collection stage (i.e. probe entrance), and maintains its shape

at the minor flow exit. There is, however, a small reduction of number density for

particles with diameters less than 1.5µm, which is attributed to major flow evacuation.

Interestingly, this behavior is embellished in figures (b), (c), and (d), namely since

the size distribution is preferentially deviated towards smaller diameters. What is

so insightful in those particular plots is the unpredictable behavior of the sample

at the collection stage. Precisely, the particles smaller than 1.5µm and larger than

∼ 1µm are experiencing “backflow” from the probe to the major flow. It is shown

that a temporary increase in number density is achieved at the collection probe, which

eventually is lost as indicated by the lower final number density at the minor flow

outlet. A small band of those backward flowing particles are caused to collide with

the probe walls (recall the wall loss peak of figure 2.17 which occurs for dp ∼ 1.45µm),

while the smaller particles are able to escape back to the major flow. On the other

end, particles larger than 2µm are not affected by the flow separation, and their

distribution remains intact. To further analyze such newly discovered properties of

the aerosol transport mechanism, we construct another narrow size-distribution but

with a smaller mean diameter, shown in figure 2.20-a. The intermediate and final

distributions are shown in figure 2.20-b, and it is distinctly visible that the backflow

phenomenon associated with the temporary increase in number density at the probe

is restricted to particles around dp ' 1.25µm. In addition, it is observed that the

final shape of the size-distribution is not altered significantly, compared to the minor

flow distributions in figure 2.19-b-c-d.

The poly-disperse analysis initiated for this study, does not only help us under-

stand the number density variation during virtual impaction and its influence on the
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particle size separation, but can also be exploited to yield information about minor

flow enrichment, which is relevant in studies aiming at concentrating dilute aerosols.

Figure 2.21, shows the scaled number density, defined as the ratio of number of parti-

cles with a given size to the total number of particles in the distribution, as obtained

from Lagrangian simulations on flow fields of case II, and III. The same initial size

distribution is used in both calculations, as shown from the overlapping nozzle data

points.

With respect to the reference nozzle sample, the role of the flow separation is

seen to have two revolving effects on the minor flow enrichment, around a critical

diameter equal to 1.2µm. Depending on whether the particle is smaller or larger

than this critical size, the virtual impaction foot print will either reduce or increase

its density enrichment in the minor flow, respectively. Interpreting the intermediate

samples at the probe is not as straightforward, since the data is more disorganized.

Nonetheless, we can distinguish the particle sizes that are prone to experience back-

flow, and loss as discussed earlier. Another important observation that can be learned

from contrasting the distributions of case II and III, is that the higher jet velocity

does not necessarily provide better enrichment across the board. For instance, as a

result of the sharp enrichment of the critical diameter in case III, the final distribution

becomes narrower for the relatively larger particles, and the particles whose size is

greater than ∼ 1.4µm are more enriched in case II. Apparently, the imprint of the

change in Reynolds number is closely tied to a narrow band of particles whose time

scales are small enough to cope with the increasing velocity magnitude. The conse-

quence, as demonstrated, is a more focused concentration. Lastly, the trailing part

of the minor flow distribution warrants an explanation. Opposite to the trend below

the critical diameter, where the collector enrichment is higher than that of the minor

flow, due to the transitory overshoot of smaller particles, the final enrichment well

beyond the critical diameter is not only higher than that at the nozzle, but also that
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Figure 2.16: Mean separation efficiency as a function of particle diameter. Experi-
mental data from [7]

at the collector. This behavior is indicative of the particle-removal effect at the probe

walls. In the next section, after examining the transient fluid mechanical properties of

the flow, the unsteady particle tracking results will be presented, and the aerosol size

distribution will be revisited and discussed in light of its interplay with the coherent

fluid structures.

2.4.3 Unsteady Flow

The advantage of a time dependent solution lies in the ability to monitor and

study the evolution of unsteady flow phenomena. Historically, the most astounding

insight into the nature of turbulent flows came from the analysis of key sequential

events that dominate a particular flow. To the extent where this is applicable for

the virtual impaction regimes under study, we present some time-variable results in

order to gain an improved understanding of the role of the Reynolds number in this
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Figure 2.17: Mean separation efficiency and particle loss as a function of Stokes
number

type of flow, and to decipher its underlying transport mechanics. A revealing piece

of evidence concerning the transient nature of virtual impaction flows, which to the

knowledge of the author has been undetected in prior investigations, is the record

of the lift force exerted by the fluid on the minor flow walls. Recall that the minor

flow duct constitutes the receiving end of the jet, thus it is predisposed to “feel”

any disturbances generated during virtual impinging. Physically, this corresponds

to inherent vibrations, and may explain the source of puzzling noises or “ringing”

tones encountered in previous experiments [59]. Figures 2.22, 2.23, and 2.24 show the

history of the dimensionless lift force or lift coefficient CL defined as:

CL =
lift force

1
2
ρ(Lm × 1)U 2

m

(2.21)

where Lm ≡ 8.04 mm is the duct length, and Um is a characteristic duct-entrance
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Figure 2.18: Initial poly-disperse aerosol distributions. ‘Number Density’ indicates
the number of particles present in a given aerosol sample
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Figure 2.19: Sampled poly-disperse aerosol distributions - Case II
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Figure 2.21: Enrichment of poly-disperse aerosol distributions - Cases II & III

velocity. The lift force is taken as the sum of the pressure and normal viscous stresses

along the entire length Lm. The inserts in each figure indicate the window of statistics

sampling outlined in Table 2.3. It is clear that in case I, the lift signal undergoes a

smooth periodic cycle whereas the latter higher Re cases exhibit an immensely fluctu-

ating signal. In all cases, however, we notice that during the startup time the signal

is zero. It is well known that vorticity plays a major role in shaping the structure of

a free jet. Its influence in each of the virtual impactor flow cases can be appreciated

from figure 2.25 which shows the vorticity modulus, |Ω| ≡ |∇×U|, averaged in time

and scaled by Ωo = Uj/0.5W . The plots signify the extent of vorticity accumulation

in the jet shear layers extended from the nozzle boundaries. We observe that the vor-

ticity peaks at the first x-station downstream of the nozzle, and maintains the overall

thickness of the shear layer all the way into the mid-gap location. The thickness, of

course, diminishes as the Reynolds number is increased, thus, jeopardizing the stabil-
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ity of the free-boundary layers. The unsteady evolution of such layers is monitored

in figures 2.26 & 2.27 for case I and III, respectively. The time-series snapshots for

the laminar case are taken after a significant amount of passage from startup (i.e.

t1 >> t0). As can be seen, the structure of the shear layers extending from the jet

walls into the virtual impaction zone does not change considerably, and the ability

of the mixing layers to entrain surrounding fluid is deferred well into the major flow

chamber, where a weak but large circulation region is formed. Similarly, the concen-

trated vorticity regions generated by the tearing action of the sharp collector-nozzle

walls are convected to the major flow to form a mixing layer parallel to the original

jet shear layer. The two layers then become synchronized in their motion as they

undergo a meandering swing. This periodic oscillation, as we shall demonstrate later,

is the cause of the quasi-periodic lift signal.

A completely different picture is drawn from the higher Reynolds number cases.

Figure 2.27 shows a series of snapshots from the early development of the jet. The

same behavior, not shown here, is also observed for case II. Unlike case I, the character

of the virtual impaction region does not remain the same with the passage of time,

and in order to understand the subsequent instantaneous stages of the flow field, we

must first look at its origin. The vorticity dense layer migrates from the jet walls to

form circumferentially coherent concentrations. The rapid growth and entrainment

of the early vortices is coupled by a relatively mirrored process on the sharp edge side

of the nozzle. Eventually, the shear layers stretch and detach from the newly formed

vortices, and the cycle is repeated to produce a streak of alternating vortex shedding

reminiscent of the Kelvin-Helmholtz instability [60]. The question that arises then is:

what causes the lift signal to become profoundly disturbed or if possible turbulent? To

answer this question we will prove that the behavior of the lift signal is correlated with

the instability processes in the virtual impaction zone, which in their own right are

worthy of understanding. Our diagnosis suggests that there is a nonlinear interaction
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mechanism between two types of instabilities, namely a jet-axis mode and a shear-

layer mode. The former is associated with jet “flapping” or “buckling”, in other

words, the sporadic swinging of the bulk jet column, which incidentally has also been

reported for a transitional slot jet [26]. The latter mode is connected to the vortex

activity described earlier. We shall attempt to clarify these statements with the help

of some analytical tools.

The product of fluctuating signals at two separate points in the flow, also called

“correlations”, can lead to genuine insight about the interaction mechanisms of the

flow. Before we perform this type of analysis, it pays to make some definitions. First,

the instantaneous velocity signal, for example, is decomposed into a time average and

a fluctuating component. The same is done for pressure and lift:

Ux = Uavg
x + u ; Uy = Uavg

y + v (2.22)

P = P avg + p ; CL = Cavg
L + l

The aim is to compute the two-point correlation between the primitive fluctuating

variables (u, v, p) at several points in the flow and the reference lift signal, in order

to infer the nature of the agitating flow events. The correlation coefficient is defined

by [61]:

σ∗

ab =

1

Nt

Nt∑

j=1

(aj − aavg)(bj − bavg)

σaσb

(2.23)

where (a,b) are the two random variables being correlated, and (σa,σb) are the corre-

sponding standard deviations. We shall limit the discussion to the data of case III,

given its perceived turbulent conditions. Notwithstanding, the same analysis when

applied to case II data yielded very similar results. We begin by sampling the flow
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field from x∗ = 0 (jet nozzle) to x∗ = 1 (collector nozzle). The two meaningful y-

positions are the jet axis (y∗ = 0), and shear layer axis (y∗ = −0.5). An example

of the fluctuating velocity and pressure signals at the centerline in the middle of the

collector nozzle (x∗ = 1, y∗ = 0) is shown in figure 2.28. The two-point correlation

function is depicted in figure 2.29 for the two distinguished instability modes. First,

It appears that the role of the velocity oscillations surpasses that of the pressure given

the higher contribution that the velocity components produce in the correlation. Fur-

thermore, the change in the functional form of the correlation between the jet axis

and the shear layer is suggestive of a different evolutionary mechanism that resonates

its impact on the walls of the collection probe, specifically, the affinity for uni-modal

versus bi-modal distribution. The latter (see figure 2.29-b), we believe, is a conse-

quence of the dissociation of the boundary layers to form roller-type vortices. The

fact that the ul and vl correlations in the shear layer produce a bimodal function that

passes through the zero axis, can be understood as the passage of intermittent coher-

ent structures that are detected at two locations along the shear layer axis, namely

at the minimum (x∗ ≈ 0.39) and maximum (x∗ ≈ 0.63) of the ul correlation.

The correlations are best interpreted with a physical picture in mind. In figure

2.30-a we show a frozen snapshot of the vorticity field, after a sufficient passage of

time, that establishes the creation of a shear layer eddy on the lower nozzle side.

Figure 2.30-b depicts the velocity magnitude at the same instant of time. As can

be seen, the size of the eddy roughly spans the same x∗ range where the correlation

peaks are conspicuous. The earlier peak position, therefore, must mark the onset of

separation associated with slowly moving fluid (negative ul correlation), while the

proceeding one reflects the faster edge of the eddy undergoing strong deformation

and acceleration (positive correlation). By the same token, the vl correlation peaks,

which approximately appear at the same x∗ locations as the ul correlation but with

an opposite sign, indicate that as the eddy is being detached from the shear layer
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it is lifted laterally, thus causing an increase in the cross-stream velocity (positive

vl correlation), whereas at the opposite end downstream, the eddy is experiencing

deflection and strain. A closer examination of the transverse velocity contours of

figure 2.30-c at that same moment reveals the presence of a thin film of null y-

velocity separating the ejecting jet on the right hand side of the eddy, and the upward

traveling fluid on the left hand side, which gives rise to a maximum negative vl

correlation. On the other hand, the jet-axis instability (see figure 2.29-a) produces

its biggest contribution at the end of the potential core (x∗ ≈ 0.5) judging by the

appearance of a local minimum in the ul correlation, which marks the instances where

the jet penetration is challenged causing a deceleration in the streamwise direction

relative to the mean flow. The bimodal vl correlation on the jet axis can be viewed

as a consequence of the sinusoidal form of the instantaneous y-velocity due to the

alternating motion of the jet column. It is important to note that such nonlinear

interactions are not smoothed out by time-averaging.

To further understand the dynamics of the instabilities and to quantify their ef-

fects, we shall examine the spectral content of the time signals. The Fourier transform

of a function f(t) is defined as:

g(ω) =
1

2π

∫
∞

−∞

f(t)e−iwtdt, (2.24)

where g(ω) is the transform function in the frequency domain (ω). Clearly, due to

the finite amount of time-data available, a discrete analogue of the above integral is

computed. The frequency characteristics of the v signal are first examined. Figure

2.31 is a comparison of the Fourier transform of the lateral velocity sampled on the

jet, as well as shear layer axis, in the virtual impaction gap for case II and III.

Evidently, the spectral distribution on the jet axis is limited in the number of spikes,

with a fundamental frequency fd ≈ 13 & 9 KHz for case II and III, respectively.

The shear layer axis instability, in turn, shows remnants of flapping frequencies with
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higher amplitudes, and also other secondary frequencies which can not but belong to

a broad set of physical interactions rather than one repetitive event. It is interesting

to note, that the lower Re case undergoing ‘transition’ exhibits a rather distinct gross

amplitude shear layer event corresponding to a frequency of ∼ 24 KHz at which a

complementary smaller spike exists in the jet axis signal. The growth of multiple

harmonics in the frequency domain substantiates the outlook that the livelihood of

the free shear-layer instability in the virtual impactor is not completely due to the

origination of vortex shedding, or detachment of concentrated vorticity filaments.

The geometrical considerations, in fact, institute a medium favorable for feedback

propagation and other more complex interactions. Support for this argument can be

drawn from the identification of a string of events that nurture upstream feedback.

One such driver relates to the impinging shear layers on the major flow boundaries

which interact with the vorticity rich layers near the walls in order to breed new

incarnations of eddies that are able to stream with the large-scale circulations in the

major flow chambers, and find their way back to the impaction gap. Other phenomena

such as vortex coalescence and re-orientation engage to distort the basic structure of

the free boundary layers.

The Fourier transform analysis can also be invoked to study the one-dimensional

energy spectrum E11(ω), which is obtained from the transform of the time autocor-

relation coefficient, defined as [45]:

RE(τ) =
u(t)u(t + τ)

u2(t)
. (2.25)

An indicative behavior of RE(τ) for the free shear layer in the virtual impaction gap

(x∗ = 0.5, y∗ = −0.5) is given by figure 2.32. The autocorrelation coefficient is com-

puted for the fluctuating vorticity, as well as the two components of velocity. The

time axis is normalized by the relevant virtual impaction time τvi. It is interesting

to observe that within one throughput time unit, the transverse velocity autocorrela-
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tion with its quasi-periodic features decays at a faster rate than the longitudinal one

suggesting a more active role for the u-velocity component. Moreover, the fact that

the vorticity and longitudinal velocity autocorrelations remain positive suggests that

within the relatively steady correlation value, the sustainability of the shear layer is

maintained. At longer time scales (not shown in the plot), however, the autocor-

relation coefficient becomes zero and begins to exhibit periodic oscillations due to

the reorganization of the elongated shear layer into coherent eddies. As far as the

spectrum is concerned, it is computed at the shear layer position referred to earlier,

as well as the mid-jet-axis location. Hence, the two instability modes are vindicated

by figure 2.33 which clearly establishes the spectral content of u-velocity fluctuations

on the jet, and shear layer axis. The frequency domain is non-dimensionalized by the

Strouhal number Sth ≡ ωδ/Uoo. It is shown that there is indeed a cascade of energy

from long to short wavelengths. In addition, we can deduce that the higher spec-

tral content of the shear layer instability must be associated with higher frequency

harmonics, as alluded to in figure 2.31.

One remaining analytical tool that can enhance the comprehension of the turbu-

lence activity during virtual impaction and its shear layer dynamics is the “quadrant

analysis” technique first used by Wallace et al. [62] for the study of wall region

events in a turbulent channel flow. Recall that the Reynolds shear stress is −ρuv,

and understanding its behavior is key to realizing the role of the fluctuating velocity

field in transferring momentum. The categorizing process consists of classifying and

averaging the instantaneous product signal uv based on the sign of the individual

components. Table 2.5 below identifies the four constitutive groups of interest:

The u and v time signals are sampled from several y-stations spanning the lower

nozzle free-shear layer at the mid gap location (x∗ = 0.5), and then processed to

detect the instances where the velocity components contribute to each quadrant.

The classified signals, designated by uvc, are then averaged and normalized by the
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Quadrant u v flow event
Q1 + + ‘fast upward’
Q2 - + ‘slow upward’
Q3 - - ‘slow downward’
Q4 + - ‘fast downward’

Table 2.5: Types of classified Reynolds stresses

net stress uv, and plotted in figure 2.34. Note that the sum of data points from all

quadrants at each y-station amounts to unity. The results of figure 2.34 indicate that

the highest activity causing the production of Reynolds stress occurs in the naturally

perturbed free-boundary layer beyond the jet bottom plate, i.e. y∗ < −0.5. There is

however a significant level of Q2 contribution within the jet itself (y∗ = −0.4), which

is most likely an outcome of the separation events associated with the formation of

coherent eddies that experience clock-wise roll-up from the shear layer into the jet

column. As we move deeper or downwards into the shear layer, Q1 and Q4 types

of events dominate, with the latter taking the lead. Q4 mechanics suggest that the

eddies are composed of fluid traveling faster than the mean in both the axial and

transverse direction. This is reasonable since we have confirmed from transient flow

visualizations that the angle of vortex shedding is in fact inclined with respect to the

horizontal axis.

As for the two negative contributors, Q1 & Q3, they appear to play equal roles

slightly above and below the jet outer boundary, pointing towards one mechanism at

the mixing layer interface, where the interactions are coupled between the accelerated

regions on the jet side and the decelerated regions on the chamber side. Further

below the sheared interface, Q1 mechanisms take over which represents interactions

of high speed fluid being pushed upwards towards the nozzle. One possible physical

explanation for this property stems from the ability of the deformed eddies to fling

the fluid around its fast peripheral entity. Undoubtedly, it is perceivable that all of

these events are occurring simultaneously so that this analysis can only reconstruct
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some of the simplified dynamics based on one-point statistics. Nonetheless, from this

insight we are capable of exposing the balance of the different forces coming into play,

thus allowing us to ascertain the dominant inter-relationships of this complex flow.

With that in mind, we move now to contrast some of that physics with the

results of case I and II. The level of streamwise fluctuations, as we have seen, is crucial

in dictating the dynamics of the free shear layers. Figures 2.35 and 2.36 depict the

root mean square velocity U rms
x at the representative y-stations for the flow fields of

case I and II, respectively. The results of case III are similar to that of case II, so

the following comparison will discuss the differences between the laminar and non-

laminar regimes. First, to give a proper relative perspective as to the intensity of the

fluctuations, the r.m.s. velocity is scaled by the jet centerline velocity Uoo. As shown,

the intensity of the perturbations in the laminar case is ≈ 4% of the mean velocity,

which is accumulated exclusively near the jet exit plane. Because of the stability of

the jet shear layers the oscillations are weak in nature, and their effect is localized to

the immediate region outside the nozzle, where they begin to gradually grow as the

layers expand laterally. A completely discrepant image is observed for the non-laminar

cases. First, the intensity of fluctuations reaches a staggering 20% value relative to the

mean velocity, and this increased strength is more or less sustained across the width

of the shear layer. At the final two y-stations, there exists a dip or saddle point near

the mid gap location, which is indicative of the intermittent nature of the flow within

the eddy formation region. It is interesting to note that the main activity is centered

around x∗ = 0.5 which is where most of the previous analysis was conducted. As we

move further downstream into the collection probe, the fluctuation levels decay at an

equivalent rate regardless of the y-location which supports the argument concerning

the re-laminarization of the flow. Lastly, in figure 2.37 we present the overall shear

stress uv computed using the flow fields of case II. The normalized shear stress is

plotted at consecutive x-stations within the virtual impaction gap. As evidenced in
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Figure 2.22: Lift coefficient on minor flow walls - Case I. Insert window shows zoomed
view from red line to end time

the graph, the transfer of momentum by the fluctuating field is concentrated in the

jet mixing layer, and is augmented with axial distance. The peak again occurs at the

midpoint and begins to shift laterally away from the nozzle walls due to the deflection

and extraction of the impinging vorticity layers. This plot, in fact, complements the

discussion pertaining to the results of figure 2.34 since it provides an overall picture

of the total Reynolds shear stress behavior.

2.4.4 Particle-Eddy Interaction

In the previous section we examined the unsteady features of the flow in the

virtual impactor jet and characterized the nature of the two-dimensional coherent

structures originating from the jet mixing layers. The next logical endeavor, of course,

is to investigate the influence of such transient and chaotic phenomena on the trans-

port of aerosol particles. We shall utilize the transient flow fields of case II, since
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Figure 2.23: Lift coefficient on minor flow walls - Case II. Insert window shows zoomed
view from red line to end time
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Figure 2.24: Lift coefficient on minor flow walls - Case III. Insert window shows
zoomed view from red line to end time
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Figure 2.25: Jet shear layer mean vorticity (bottom nozzle side)

it possesses the unsteady flow structures of a high Reynolds number flow, and it

forms the basis for the three-dimensional study. The solid particle diameters, for this

particular analysis, are chosen such that they cover three Stokes number values. In

addition, the time scale of the jet and shear layer fluctuations, τλ, was used to calcu-

late another scaling parameter similar to the Stokes number. The flow microscale τλ

is marked by the point on the time axis of figure 2.38 where the jet axis cross-stream

autocorrelation coefficient first intersects the zero-axis. It was also found, that the

period during which the shear layer cross-stream autocorrelation coefficient changes

sign also corresponds to τλ. In essence, we wish to examine the ability of the particles

to respond to flow events attuned to this axiomatic time unit. It turns out, the two

dimensionless time units are not very different as shown in Table 2.6.

A definitive insight is gained from figure 2.39 which shows a contrast between the

behavior of massless fluid particles and the 1.01µm massed particles. The particles
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Figure 2.26: Evolution of concentrated vorticity layers in the virtual impactor at
t = t1, t1 + 100∆t, & t1 + 200∆t - Case I
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Figure 2.27: Evolution from rest of concentrated vorticity layers in the virtual im-
pactor at t = t0 + 10∆t, t0 + 50∆t, & t0 + 100∆t - Case III, showing creation of
coherent eddies
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Figure 2.28: Fluctuating signals for velocity and pressure at collector center point
(x∗ = 1, y∗ = 0) - Case III

dp (µm) ρp (kg/m3) τp (s) St ≡ τp/τvi τp/τλ

1.01 1047 3.3e−06 0.10 0.19
1.60 1047 8.3e−06 0.25 0.46
3.20 1047 3.3e−05 1.00 1.85

Table 2.6: Dimensionless time scales for solid particles released in the jet boundary
layer of Case II
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Figure 2.29: Two-point correlation between the primitive variables and the lift signal
- Case III

are released in the throat boundary layer and color coded based on vertical distance

from the wall. Three “tagged” layers are emphasized due to their distinct physical

behavior in the virtual impactor. The first innermost layer extends ≈ 0.2W above

the throat surface, whereas the middle and outermost rows are each ≈ 0.15W thick.

The fluid elements, as shown in 2.39-a, are undergoing a severe deformation, mixing,

and rotary arranging in a manner consistent with the Kelvin-Helmholtz instability.

Figure 2.39-b shows the disposition of the finite-size particles at the same moment in

order to elucidate the interaction mechanism with the aforementioned fluid structures.

It is clear that the role of the free boundary layers has now changed. The aerosols

traveling within the innermost layer will tend to cluster in the regions of low vorticity,

specifically in the thin regions separating the roller vortices. Some of the dense

finite-inertia particles, it appears, are capable of maneuvering away from the curved

streamlines with very limited circulation around the well defined roller units, while
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Figure 2.30: (a) frozen snapshot of vorticity field, (b) frozen snapshot of velocity field,
showing eddy detachment, (c) thin film interface from y-velocity contours: Case II -
all at the same instant of time
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Figure 2.31: Fourier transform of cross-stream velocity signal
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Figure 2.32: Auto-Correlation of vorticity, streamwise, and cross-stream fluctuations
in the jet shear layer - Case III
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Figure 2.33: Fourier transform of streamwise velocity autocovariance - Case III
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Figure 2.34: Classified Reynolds stresses in virtual impaction jet - Case III
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Figure 2.35: Jet shear layer root mean square axial velocity - Case I
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Figure 2.36: Jet shear layer root mean square axial velocity - Case II
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Figure 2.37: Virtual impaction jet shear stress - Case II

others are flung away from the vortex cores. Such phenomenon is also true for the

slightly larger particles (dp = 1.60µm) that are encountered in the major flow (see

figure 2.40). The median throat outer layer, whose fluid points showed an incapacity

to penetrate into the minor flow, is now beginning to reach the collection probe,

however, some of its particles are escaping in the form of a leakage flow. The motion

of particles whose Stokes number is of the order of unity, is shown in figure 2.41-b.

Note that figure 2.39 is extracted from the first time window, while figures 2.40 and

2.41 are taken from the second time window.

As can be seen, the particles are too heavy to interact with the curved jet, whose

local rollup behavior is shown in the same figure at the same instant. As a result, the

boundary layer St ≡ 1 particles are deposited on the side walls of the probe, while the

bulk particles are aggregated in the minor flow. Another fundamental aspect relates

to the level of dispersion of the particles traveling along the jet core. Qualitatively,
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the particles that cross into the minor flow channel are indeed expanding in a peculiar

fashion. This “selective clustering” behavior is enhanced for particles with a slightly

larger diameter than the one micron particles, as shown in figure 2.40-a. The wave-

front-like particle clusters being formed in the minor flow duct are an outcome of

the oscillatory response to the jet swinging motion. Their time scale τp/τλ is ≈ 0.5.

Similar behavior is also found for the biggest particles (dp = 3.20µm). To quantify

the dispersion characteristics, we compute the dispersion function defined as:

Y T =

(
1

Np

Np∑

i=1

(Yi(t) − Ym(t))2

)1/2

(2.26)

where Yi(t) designates the lateral displacement of each particle from the jet center-

line, and Ym(t) is the corresponding mean at time t. A similar conditioned function

Y c is computed on the fraction of the total number of particles that are accumulated

in the minor flow duct in order to quantify their dispersion as well. Figure 2.42

shows the dispersion functions with respect to time for the particles summarized in

Table 2.6. We conduct the calculations over 9τvi units within two non-overlapping

time windows. Our aim is to demonstrate that the virtual impaction jet as it goes

through cycles of “bursting” events alters the dispersion properties of the particles. It

can also affect the number concentration as shown in figure 2.43. Particularly, when

we examine the unsteadiness of the virtual impaction vortex shedding cycle during

the first time frame, we notice that it is relatively quiescent with very little feedback

interaction. On the other hand, the results sampled during the second time window

exhibit disrupting events, manifested as upstream traveling shear layers depicted in

figure 2.40-b, that cause a startling change in the dispersion and concentration of mi-

nor flow particles (compare figures 2.42:c-d & 2.43:a-b). It can be seen, for instance,

that those exasperated moments lead to a temporary but tremendous increase in the

number concentration (i.e. percentage of probed particles) in the minor flow, which

for longer times begin to settle to a constant value. Again, this is particularly true for
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the particles with small Stokes numbers (i.e. St < 1.0). The overall functions of fig-

ures 2.42:a-b, indicate that the small particles (St = 0.1) in the major flow disperse

in a manner similar to the massless fluid elements, if not more. The particles whose

Stokes number is somewhat intermediate, St = 0.25, are capable of playing a dual

role. In addition to accumulating in the minor flow duct, and undergoing “patterned”

dispersion, they can also propagate to the major flow chambers and cluster between

the roller vortices as shown in figure 2.40-a, and as confirmed by the rise of the corre-

sponding dispersion function Y T . Finally, we utilize the time windowing calculations

to compute a statistical particle propagation to the minor flow, and compare such

results with the previous approach of mean flow particle tracking. The plots shown

in figure 2.44 depict the comparison among the aforementioned approaches. As can

be seen, the two methods give very similar outcomes for smaller particles (St < 0.20).

The scattering activity described earlier for medium to large Stokes number particles,

it seems, prevent the particles whose St lies between 0.20 and 1.00 to accumulate as

high as predicted by the mean tracking calculations.

68



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
τ/τvi

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

R E

RE
u  (@ jet axis)

RE
v  (@ jet axis)

RE
u  (@ shear layer)

RE
v  (@ shear layer)

τλ
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- Case II
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Figure 2.39: (a) massless particles, (b) solid particles with dp = 1.01µm (St = 0.10):
Case II instantaneous still no. 1
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Figure 2.40: (a) solid particles with dp = 1.60µm (St = 0.25), (b) vorticity contours:
Case II instantaneous still no. 2
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Figure 2.41: (a) massless particles, (b) solid particles with dp = 3.20µm (St = 1.00):
Case II instantaneous still no. 3
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Chapter 3

Large Eddy Simulation

While the two-dimensional Navier-Stokes solutions presented in Chapter 2 are

indispensable for enhancing the understanding of the fundamental mechanisms that

come into play during virtual impaction, they are after all only representative of

situations where the two-dimensional flow approximation is valid. Thus, to study

the flow dynamics of a real life apparatus, such as the circumferential slit virtual

impactor, a large eddy simulation is undertaken. In the upcoming sections we will

establish the mathematical equations that comprise the core of the method, along

with the eminent turbulence closure paradigms that constitute the science of subgrid

scale modeling. Finally, two important flow configurations are analyzed to verify the

implementation of an ingenious model which is not part of the commercial FLUENT

code.

3.1 Overview of the Method

In an LES the three-dimensional unsteady energy containing motions are directly

obtained on the grid, whereas the small scale movements or eddies, that are unattain-

able by the grid are modeled. The latter, of course, are believed to be isotropic and

not affected by the flow geometry. The equations solved in LES govern the dynamics
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of the large scale eddies of the flow by “filtering” the Navier-Stokes equations. In a

direct numerical simulation (DNS), the velocity field U(x, t) must be computed on

length scales comparable to the Kolmogorov scale. Such a requirement dictates strict

and expensive rules on the numerical grid. Fortunately, LES alleviates some of that

burden and computes a filtered velocity field U(x, t), which is still highly capricious.

It should not be confused, however, that coarse grids are acceptable. In fact, in order

for the sub-grid scale model to adequately mimic the cascade of energy from the re-

solved large turbulent eddies to the residual motions, the cutoff filter size must lie in

the inertial subrange of turbulence. Further constraints arise when a solid boundary

is present, and the cost of an LES increases so that the viscous boundary layer is

properly computed.

3.2 Mathematical Formulation

A generic definition for a filter function G(x,y) that produces a filtered velocity

field is given by:

U(x, t) =

∫

<3

G(x,y)U(y, t) dy, (3.1)

with the constraint that

∫

<3

G(x,y) dy = 1. (3.2)

In a finite volume discretization it is practical to use the cell control volume as an

implicit filter [63]. Therefore, the filter commonly known as “top-hat” is simply for

the mono-dimensional case:
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G(x) =





1
∆

if |x| ≤ ∆
2

0 otherwise

(3.3)

where ∆ is the filter width. The filtered velocity then becomes a local average:

U(x, t) =

∫

V

U(x′, t) dx′, x′ ∈ V (3.4)

where V is the volume of a computational cell. The residual velocity is consequently

defined by

u′(x, t) ≡ U(x, t) − U(x, t), (3.5)

which is reminiscent of the classical Reynolds decomposition. It must be emphasized,

however, that U(x, t) represents an instantaneous rather than a mean quantity, and

u′ 6= 0. Applying the filtering operation to the equations of motion, the filtered

continuity equation for an incompressible flow becomes:

∂U i

∂xi

= 0, (3.6)

and the filtered momentum equation takes the form:

∂U i

∂t
+ U j

∂U i

∂xj

= −1

ρ

∂P

∂xi

+ ν
∂

∂xj

(
∂U i

∂xj

) − ∂τij

∂xj

+ gi, (3.7)

where P (x, t) is the filtered pressure, and τij ≡ UiUj −U iU j is the residual or subgrid-

scale stress tensor. The above equations are strikingly similar to the Navier-Stokes

equations, which means that the same well-established numerical methods can be

applied for their solution, if only the unknown stress term can somehow be related to

the primitive variables.
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3.3 Residual Stress Tensor Modeling

From a physical point of view, the residual stress τij should underscore the

influence that the unresolved part of the flow has on the computed field. A precise

theoretical explanation of such mechanism is not in existence, yet there are a number

of hypotheses that attempt to clarify this relationship (see for example [63, 64]).

With that in mind, a straightforward and efficient eddy-viscosity approach relates

the subgrid-scale deviatoric stress tensor to the resolved strain rate tensor:

τij −
1

3
τkkδij = −2νT Sij, (3.8)

Sij =
1

2
(
∂U i

∂xj

+
∂U j

∂xi

). (3.9)

where νT is a subgrid scale eddy viscosity. The first model to parametrize νT is known

after Smagorinski [65], in which the following assumption holds:

νT = (Cs∆)2|Sij|, (3.10)

where Cs is the Smagorinski coefficient, ∆ ≡ V 1/3 is the local filter length scale, and

|Sij| is the magnitude of the strain rate tensor defined via |S ij| ≡
√

2SijSij. It is

evident that a fixed value for Cs is unreasonable, and a more intelligent choice is by

far beneficial. Nonetheless, early attempts were able to determine a useful coefficient

(Cs ≈ 0.17) for the special case of forced, stationary, isotropic turbulence (see [66]

for a derivation and references), but it became clear later on that application to a

variety of flows is impossible. For instance, in flows with a prevalent mean shear,

like a channel, this value proved to be overly dissipative, and ad hoc adjustments

were required. Ideally, the coefficient ought to go to zero under laminar conditions,

and viscous wall-regions. Moreover, an ability to respond to events associated with
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transition to turbulence is highly desirable. To accommodate such complications that

are bound to arise in complex geometries, such as the round slit virtual impactor, a

dynamic eddy viscosity model is selected.

3.3.1 The Lagrangian Dynamic Subgrid Scale Model

In general, a dynamic model samples information from the resolved velocity field

in order to breed an optimum value for the Smagorinski coefficient. The basic idea

involves the use of filters with different filter widths. In addition to the original grid

filter ∆, a secondary test filter is explicitly invoked with a width ∆̂ ∼= 2∆. The filtering

operation on this hypothetically coarser mesh yields analogous equations as before,

and thus introduces what is referred to as the subtest-scale stress Tij = ÛiUj − Û iÛ j.

A pioneering insight into this procedure originated by Germano et al. [67] came from

the following algebraic identity:

Lij = Tij − τ̂ij, (3.11)

which relates the resolved and directly computable turbulent stress Lij ≡ Û iU j−Û iÛ j

to the subgrid-scale stresses at the two filtering levels. The usefulness of this identity

is seized by assuming a functional form to the stresses τij and Tij. Hence, expanding

Tij via the Smagorinski approximation analogous to (3.8), we get:

Tij −
1

3
Tkkδij = −2(Cs∆̂)2|Ŝij|Ŝij, (3.12)

where Ŝij is similarly defined as in equation (3.9). Substitution of equations (3.8) and

(3.12) into the identity (3.11) leads to an overdetermined system of five equations with

one unknown Cs. Lilly [68] proposed minimizing the error associated with the use

of the Smagorinski model in the Germano identity through a least-squares approach

which yields the following expression for computing Cs at each point in space:
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C2
s =

LmnMmn

MpqMpq

, (3.13)

where Mij = 2[∆2 ̂|Sij|Sij − ∆̂2|Ŝij|Ŝij]. Computations reported in the literature with

the above expression for the coefficient proved to be troublesome due to the excessive

variation of the eddy-viscosity field in both space and time. Possible remedies in-

cluded averaging the expression over homogeneous directions, and accurate results in

a channel flow were obtained [67, 69]. In another more complex flow problem around

an airfoil with spanwise homogeneity [70], the same technique rendered unrealistic

negative coefficients in regions where the flow is laminar, which required clipping (i.e.

setting Cs = 0) in order to conduct a stable calculation. As can be seen, for fully

inhomogeneous flows there is a necessity for a more robust approach.

The Lagrangian dynamic subgrid-scale model [71] performs an averaging oper-

ation along the trajectories of fluid-particles. In other words, the model coefficient at

a point x depends on the history of the flow pathlines leading up to x. Essentially,

the analysis attempts to minimize the error of the closure model in the “Germano

identity” over the trajectory of the fluid particle. This results in an expression for

the coefficient:

C2
s (x, t) =

=LM

=MM

, (3.14)

where

=LM(x, t) =

∫ t

−∞

LijMij(t
′)W (t − dt′) dt′, (3.15)

=MM(x, t) =

∫ t

−∞

MijMij(t
′)W (t − dt′) dt′, (3.16)

and W (t − t′) = T−1
m e−(t−t′)/Tm is an exponential weighting function that renders the
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above integrals as solutions to a set of relaxation-transport equations:

D=LM

Dt
=

1

Tm

(LijMij −=LM), (3.17)

D=MM

Dt
=

1

Tm

(MijMij −=MM ), (3.18)

where Tm = 1.5∆(=LM=MM)−1/8 is a “memory” time scale (see [71] for a discussion

and other options).

3.4 Model Validation

The Lagrangian dynamic model is implemented as a user defined function (UDF)

in FLUENT to complement the existing solver. In terms of numerics there are a

number of key issues that must be addressed. The primary concern is the solution

of the two additional transport equations (3.17 and 3.18). It turns out that an

approximate solution is sufficient to insure the workability of the model. Of course,

this is seen as an advantage given the already hefty cost of a standard LES protocol.

Following [71], we discretize equation (3.17) in time using a first order scheme:

=n+1
LM (x) −=n

LM(x − U
n
∆t)

∆t
=

1

T n
([LijMij]

n+1(x) −=n+1
LM (x)), (3.19)

where the superscript indicates the variable at the nth time step, similarly for equa-

tion (3.18). Surely, the value of =LM at the previous time step n and at a position

(x−U
n
∆t) will not necessarily coincide with an Eulerian meshpoint, which warrants

interpolation to time advance the equations. First the search for the “nearest neigh-

bors” of the upstream location must be completed, and then a suitable interpolation

scheme is invoked. The former task is accomplished by pre-processing the grid struc-
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ture information so that the neighbors of each computational cell are stored and ready

to be quickly accessed during the course of the simulation (i.e. O(1)). The latter task

is handled by the same second-order interpolation scheme used for particle tracking.

As mentioned before, the dynamic procedure requires an explicit test-filtering oper-

ation. The most suitable choice, of course, is the top-hat filter which is consistent

with the finite-volume discretization. Therefore, Û(x) is simply the local average of

U(x) involving the neighbor cells. Mathematically, given a grid filtered variable φ,

its corresponding test filtered variable is:

φ̂ =

∑Nc

i=1 φiVi∑Nc

i=1 Vi

(3.20)

where Nc is the number of neighboring cells. In the upcoming sections we will present

the results of this model in two canonical turbulent flow problems.

3.4.1 Fully Developed Turbulent Channel Flow

The cornerstone of wall bounded turbulent flows is the fully developed channel.

The clarity of this geometrical problem makes it a righteous ground to target the

understanding of fundamental concepts related to the mechanics of wall generated

turbulence. For obvious reasons, numerous experimental and theoretical studies were

dedicated to the analysis of a channel flow. Absolutely, the performance of any tur-

bulence closure model is first sought here since it can add strength to the model’s

capability of dealing with more complex configurations, which will undoubtedly share

some of those basic flow characteristics as the channel. It should be stated that the

original authors confirmed the correctness of the Lagrangian subgrid-scale dynamic

model in a fully developed turbulent channel flow at a Reynolds number Reτ ≈ 641,

based on friction velocity, Uτ ≡ (τw/ρ)1/2, and channel half-width δh. The numerical

method relied on a pseudo-spectral code [72]. Our aim is to demonstrate the ad-
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vantage of the model in a less specialized and multi-purpose code such as FLUENT.

The DNS results of Moser et al. [73] will be used to attest the accuracy of the im-

plementation using the standard numerical tools available in FLUENT. The channel

dimensions, relative to δh ≡ 1 m, are taken to be 2πδh × 2δh × πδh in the streamwise

(x), wall-normal (y), and spanwise (z) direction, respectively. The underlying mesh

consists of 98 × 66 × 66 cells. The non-uniform distribution of grid cells in the y

direction is shown in figure 3.1, for the half-width. Periodic boundary conditions are

prescribed in the x and z directions, with a constant streamwise pressure gradient to

drive the flow. The Reynolds number based on the mean centerline velocity and δh

is 3300, corresponding to Reτ = Uτδh/ν = 180, using ν ≡ µ
ρ

= 0.0025
1.0

m2/s.
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Figure 3.1: Nonuniform channel mesh normal to wall

The simulation is started from another LES calculation at a slightly higher

Reynolds number [74]. The initial velocity field is interpolated onto the current grid,

and the flow is evolved for a long period of time before reaching a statistical steady
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state. Acquisition of data begins and averaging is performed over a number of time

steps Nt∆t ∼ 3.6T+, where T+ ≡ δh/Uτ is a dimensionless wall-time unit. The

statistical mean velocity is then computed as the time average:

< Ui >=
1

Nt

Nt∑

j=1

U i(tj), (3.21)

and the root mean square (rms) velocity is:

U rms
i =

[
1

Nt

Nt∑

j=1

(U i(tj)− < Ui >)2

]1/2

. (3.22)

Figure 3.2 shows the time-mean streamwise velocity in the center of the channel,

averaged over a number of spanwise sampling locations and non-dimensionalized by

Uτ (i.e. < U >+≡< Ux > /Uτ , where Uτ = 0.45). It is clear that excellent agreement

is obtained between the DNS and LES predictions. The linear behavior up to y+ ≡

yUτ/ν of 5 is also shown, along with the log law near the centerline (dashed lines).

Figure 3.3 depicts the level of velocity fluctuations normalized by Uτ . The peak in

streamwise turbulence intensity is predicted very well, with a slight shift. There is

some disagreement near the centerline where the grid is relatively coarser. On the

other hand, exceptional accord in the wall-normal and spanwise intensity levels is

achieved.

3.4.2 Turbulent Flow Past a Square Cylinder

The flow around a bluff body is a “tough” test case to investigate the effectiveness

of the Lagrangian dynamic model. From a fluid dynamics point of view, the wake

flow at a high Reynolds number (Re ≈ 21, 400) exhibits quite complex features of

“coherent” vortex structures. Near the front end, of course, a stagnation region must

be properly resolved, as well as a highly deformed shear layer, with strong recirculation

on the back side. This problem has also captured the attention of many turbulence
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numericists [75, 76], and experimentalists [77, 78]. For the sake of this research, it

is presumed that similar flow characteristics will be present in the virtual impactor.

Figure 3.4 shows a cross section of the three dimensional computational domain. Flow

is from left to right. The origin lies at the center of the backside edge. The dimensions

relative to the short edge length ds = 1 m are: 7.4ds (upstream), 15.8ds (downstream),

9.35ds (top/bottom), and A = 4ds (depth). A stretched mesh with fine gridding near

the cylinder walls is designed based on recommendations established by Sohankar et

al. [76], but with a higher number of nodes. Explicitly, 288×192×32 control volumes

are assigned for this calculation compared to 185×105×25 used by the aforementioned

authors. Figure 3.5 is a representative plot of the cell center locations in the immediate

proximity of the cylinder. The free stream velocity U∞ = 0.32 m/s is chosen such

that for air, Re = U∞ds/ν = 21400. The boundary conditions prescribed a uniform

flow at the inlet (Ux = U∞, U y = U z = 0) with 1% turbulence intensity. This value
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Figure 3.3: Spanwise averaged root mean square velocity components; ‘colored lines’:
LES, ‘symbols’: DNS data from [73]

comes as a middle ground between the 2% value reported in the experiment [78],

and the completely laminar profile specified in the literature simulation. Lastly, the

convective boundary condition discussed in the Appendix is utilized for the outflow

plane. The flow is evolved from rest using the Smagorinski model for about 80 time

units, T ∗ ≡ ds/U∞, after which the Lagrangian model functions (equations 3.17, 3.18)

are initialized and the simulation is carried out for 43T ∗ more units. Data averaging

is then performed over approximately seven shedding cycles, or 60T ∗, as shown in

figures 3.6 and 3.7, which record the lift and drag coefficients, evaluated from the net

pressure and viscous forces on the cylinder walls in the y and x directions, respectively,

and defined by:

CL =
surface lift

1
2
ρ(A × ds)U 2

∞

(3.23)
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CD =
surface drag

1
2
ρ(A × ds)U 2

∞

(3.24)

The mean lift (CL) and drag (CD) coefficients are also drawn. This affords a com-

parison of the simulation global predictions with the reference experimental and nu-

merical data. Furthermore, it is customary to report on the Strouhal number, which

is a dimensionless measure of the wake shedding period Ts,

Sth =
ds

TsU∞

. (3.25)

Table 3.1 summarizes the different models’ predictions along with the results extracted

from the literature. The last two columns relate to the root mean square of the lift

and drag signals, respectively. The slight variations in the r.m.s. values for the drag

coefficient are somewhat expected because of the high frequency of the signal, and

changes in the length of the sampling time frame. The focus will now be on the ability

to predict velocity statistics in the turbulent wake. Figure 3.8 shows the spanwise-

and time-averaged streamwise velocity, normalized by U∞, downstream of the body

at its centerline. Also shown, are results from a dynamic version of the Smagorinski

model obtained by Sohankar et al. [76]. In their calculation, the authors resorted

to spatial averaging in the homogeneous z direction in order to solve for the model

coefficient using equation 3.13, as well as restricting the total viscosity to the positive

space (ν + νT ≥ 0). An important physical observation is the wake closure point,

which is the position behind the cylinder having a zero velocity. It appears that the

Lagrangian dynamic LES predictions for the mean velocity are very much in tune

with the experimental data [78], especially in the near wake. In addition, beyond

the closure point, the growth rate of the wake velocity is adequately captured up

to x ≈ 2, after which there is a slight increase in the restored velocity compared to

the experimental data. There are a number of reasons that can contribute to this

behavior which we will comment on after we present the results for the second order
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statistics. Figure 3.9 shows the root mean square streamwise velocity also averaged

in the spanwise plane. In this case, it seems the fluctuation peak predicted by the

simulation is somewhat higher than what is found in the experiment, but in the long

wake the agreement is excellent. Lastly, figure 3.10 depicts the behavior of the r.m.s.

wall-normal averaged velocity. Good agreement is witnessed in the near wake but the

simulation fluctuation levels experience a much faster decline in the far wake. The

trend that is educed by looking at the simulation results compared to the experiment,

suggests that generally in the near wake where the mesh resolution is highest, the

model performs well, whereas as we move further away from the cylinder the mesh

resolution is stretched which can lead to some error. It should be stated, however, that

not only numerical errors can be the reason for the observed discrepancies. In fact,

subtle differences exist between the flow conditions set in the simulation and those of

the real experiment, namely the laboratory investigators report that the presence of

the cylinder in their laboratory channel resulted in 5% to 10% deficit in the centerline

inflow velocity. In addition, the level of free stream turbulence was found to be ≈ 2%.

In the LES calculation, we only superimpose 1% perturbation on to the uniform

incoming flow. Finally, the length of the cylinder into the plane, or aspect ratio can be

a factor. Clearly, in the simulation it is not economical to construct a very long cyliner,

thus the use of periodic boundary conditions may prohibit the emergence of some

spanwise structures that develop for long aspect ratios (A = 9.75ds in experiment).

With regard to the results, however, we notice that the only potentially problematic

deviations are those of the wall-normal velocity fluctuations away from the cylinder.

We already alluded to the role of the grid in that region, but we can also recall the

LES results of the channel flow, particularly figure 3.3, where there was also a nominal

drop in the wall-normal intensity levels. This may very well be an inherent weakness

of the filtering procedure in elongated grids.

87



LES/EXP Sth CD C ′

L C ′

D

Smagorinski 0.126 2.23 1.26 0.27
Dynamic Lagrangian 0.129 2.18 1.28 0.34

Experiment [78] 0.130 2.10 — —
Smagorinski [76] 0.127 2.22 1.50 0.16

Dynamic Smagorinski [76] 0.126 2.03 1.23 0.20

Table 3.1: Comparison of Strouhal number, mean drag, r.m.s. lift, & r.m.s. drag for
flow past a square cylinder. ‘Dynamic Lagrangian’ is the adopted simulation result

Figure 3.4: Slice of computational domain of flow past a square cylinder
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Figure 3.5: Nonuniform mesh around square cylinder. (a) Horizontal; (b) Vertical
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Figure 3.8: Normalized streamwise velocity averaged in z and t. Cylinder wake: y = 0

90



0 1 2 3 4 5 6 7 8
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
1* 

rm
s

LES: Lagrangian Dynamic
Sohankar et al. 00 [78]
Lyn et al. 95 [80]

Figure 3.9: Normalized streamwise r.m.s. velocity averaged in z and t. Cylinder
wake: y = 0

91



0 1 2 3 4 5 6 7 8
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
2* 

rm
s

LES: Lagrangian dynamic
Lyn et al. 95 [80]
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Chapter 4

LES of Round Slit Virtual

Impactor

In this chapter we shall examine and discuss the results of the large eddy sim-

ulation performed on a real virtual impaction device. A representative image of a

complex geometry cylindrical slit design is shown in figure 4.1. For our purposes, a

computer model based on the dimensions of a prototype apparatus is generated along

with a structured internal mesh of the flow domain. A number of turbulence closure

models for the residual stresses are evaluated, and their performance in terms of CPU

time and accuracy will be compared. The final analysis will focus on the behavior of

aerosol particles and their interplay with the coherent eddy dynamics. We conclude

by interpreting the simulation predictions in light of preliminary particulate collection

experimental data.

4.1 Geometry & Flow Conditions

The prototype device is pictured in figure 4.2 as it stands in a wind tunnel

experiment. The device functions by pulling particle-laden air through a narrow

cylindrical slit (red arrows). The mixture then separates internally when it reaches
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the virtual impactor jet which is hidden from view. The major flow in the top and

bottom annulus is exhausted through pipes connected to vacuum pumps. The minor

flow, on the other hand, is diverted radially to the focal center tube. The outer

diameter of the entire compartment is 12.70 cm. A computer generated design of

the sampler is shown in figure 4.3, and a sample grid used in the LES computation

is shown in figure 4.4. Note that we are only simulating a π/4 sector of the full

circle. Hence, the planar dimensions are identical to the two-dimensional geometry

studied earlier (see figure 2.1). The numerical mesh is first applied to a single vertical

plane in the domain, and then rotated to produce hexahedral or six-faced cells. Two

computational grids with increasing levels of clustering are constructed. The first

mesh consists of 4.08 million cells. The critical region formed by W ×S ×C contains

35× 60× 170 control volumes, where W = 0.70 mm, S = 1.47 mm, & C = 8.26 mm

designates the length of the jet arc joining the border planes where rotational periodic

boundary conditions are applied. Surely, the node distribution near the no-slip walls

of the jet and its expansion bays is non-uniformly spaced, as was done in the 2-D

study. The finer mesh lattice holds 6.01 million cells. The refinement focused on areas

near sharp edges as well as denser radial allocation, specifically 220 vs. 170 cells along

the arced jet extension. In terms of wall units, there is no straightforward location

where the friction velocity can be defined. Instead, we probe the wall region of the

major flow jet as it shears past the inclined expansion bay in order to quantify the

grid spacing relative to the local velocity gradient near the wall. The dimensionless

grid size (∆x+, ∆y+, ∆z+) of the first cell is (4.2, 0.6, 1.8), and (3.1, 0.6, 1.3) for each

mesh, respectively. Similar inflow and outflow boundary conditions as in case II of

Chapter 2 are set. The flow parameters correspond to a total sampling rate QT =

600 liters/min, at a Reynolds number Re ≡ 2WUo/ν = 4744, based on average jet

centerline velocity and hydraulic diameter. The minor flow on the opposite end of

the jet is consistently fixed at Qm = 0.10 QT .
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In the upcoming sections, we shall interpret the results obtained from three

separate calculations. Initially, the velocities in the cells are set to zero, and the sim-

ulation is conducted using the Smagorinski model (equation 3.10 with Cs = 0.1). The

calculation time step remained ∆t = 1.0 × 10−6 s. The flow is evolved for approxi-

mately 45τvi time units, after which the Lagrangian model functions (equations 3.17,

3.18) are initialized and the simulation is progressed for additional 168τvi units before

statistics are accumulated. A secondary computation involving the Lilly dynamic

model (equation 3.13) is also analyzed. The third and final calculation is computed

on the finer mesh from an interpolated coarser solution using the Lagrangian dynamic

model in order to assess the influence of the grid on the results. As mentioned earlier,

the refinement enhanced the grid resolution in areas near the jet shear layers, as well

as the azimuthal spacing. Table 4.1 outlines the numerical parameters for all the large

eddy simulations performed in this study. The LES equations are solved by the same

second-order implicit scheme (see Section 2.3.2 for details). Table 4.2 summarizes

the computational expense associated with each run. The figures in Table 4.2 are

obtained by measuring the CPU time in seconds of eight AMD Opteron270 parallel

processors. The wall-clock-time ideally should correspond to 1/8th the total CPU

time, however it is slightly more due to the message passing cost, which is quantified

as a percentage of actual/ideal time, in the last column. It is demonstrated, therefore,

that the newly implemented Lagrangian dynamic model is only 35% more expensive

than the standard Smagorinski model, and merely 4% more than the dynamic Lilly,

which is built-in with the commercial FLUENT code.
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Case Model Mesh Size ∆t (s) Uin m/s Re Qm/QT
∗

I Smagorinski 4.08 × 106 1.0 × 10−6 1.07 4744 10.0 %
II Lilly 4.08 × 106 1.0 × 10−6 1.07 4744 10.0 %
III Lagrangian 4.08 × 106 1.0 × 10−6 1.07 4744 10.0 %
IV Lagrangian refined 6.01 × 106 1.0 × 10−6 1.07 4744 10.0 %

Table 4.1: Summary of models and numerical parameters used in each large eddy
simulation. *setting ratio (not necessarily constant with time)

Case Model CPU Time (s) Wall-Clock Time (s) Comm.(%)
I Smagorinski 1580.0 246.4 24.8
II Lilly 2005.8 321.1 28.1
III Lagrangian 2211.6 333.1 20.5
IV Lagrangian refined 3307.6 494.8 19.7

Table 4.2: CPU usage and parallel communication overhead per LES time-step

4.2 Virtual Impaction Statistics

In order to understand the general characteristics of the flow, it is important to

probe its time-averaged behavior. In the current context, as was initiated in the 2-D

study, statistics of the fluid velocity and pressure are accumulated for a significant

number of jet throughput times. Table 4.3 identifies the span of dimensionless time

units stored for each model. Note that the examined flow fields are saved after

considerable passage from startup, and the time-averaged results are believed to be

statistically converged. As mentioned earlier, we shall first examine the effect of the

underlying mesh on the flow statistics. We choose a vertical plane in the middle of

the computational domain (i.e. π/8 rotation), and sample the time-averaged velocity

magnitude and root mean square velocity components. Figure 4.5 is a representative

plot of the time-mean velocity, < U >=
√

< Ux >2 + < Uy >2 + < Uz >2, and out-

of-plane r.m.s velocity components as obtained from solutions using the Lagrangian

dynamic model on the two aforementioned grids. The profiles are recorded at x∗ = 0.5,

in other words half-way between jet and collection. As can be seen, the influence of the

grid is negligible on the mean velocity. There is a slight shift in the peak of the U rms
x
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Figure 4.1: Rendering of a multi-stage circumferential slit virtual impactor from [59]

profile at the outer jet mixing layer. The most pronounced effect lies in the U rms
z

profile. Recall that the finer grid resolution is enhanced along the circumference.

For this reason, the influence of the refinement is manifested as a dampening of

the fluctuation levels, primarily in the mixing layer regions above and below the jet

column. Henceforward, in the discussions pertaining to second-order statistics we

shall utilize the solutions of the finer grid.

The current three-dimensional large eddy simulation is indeed the preferred

approach for mimicking the flow dynamics inside the prototype sampler, however,

having invested in a direct two-dimensional simulation, it is natural to question the

suitability of such an approach. Figure 4.6 shows a comparison between a 3-D and

the 2-D solution. We limit this interrogation to the mean velocity behavior in the

Case Model Nt∆t/τvi

II Dynamic Lilly 36
III Dynamic Lagrangian 62
IV Dynamic Lagrangian refined 57

Table 4.3: Number of jet throughput time-units included in the LES statistics
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Figure 4.2: Prototype circumferential personal aerosol sampler
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Figure 4.3: LES computational domain with rotational periodic boundary conditions
representing the circumferential virtual impactor. (a) full view, (b) nozzle view
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Figure 4.4: Sample mesh outline around radial virtual impaction nozzle
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virtual impaction gap. The LES data points are consequently normalized by the

same centerline velocity Uo, and plotted along with the two-dimensional numerical

data which is taken from figure 2.5 for the same x∗ position. Evidently, the compli-

ance of the LES solution is remarkable. The areas where the mismatch occurs seem

to be isolated to the jet mixing layers above and below the jet axis. It is natural

to expect the three-dimensional mixing layers to exchange momentum in all three

directions, which may explain the reason for the slight gain in velocity compared to

the planar solution. To get an overall intuition about the mean velocity behavior,

we show in figure 4.7 the time-averaged velocity contours in the π/8 cross-sectional

plane of the device. It is substantial to realize the nature of the secondary jets feeding

into the major flow chambers. We already alluded to the fact that the main axial

jet carries similar characteristics as the two dimensional case since the preponderant

length scale affecting the mean flow is the jet width. The major flow jets, however,

are more likely to exhibit unique features due to their exposure to energetic three di-

mensional interactions that are no longer governed by a universal macro-scale. First,

we will interpret the time-averaged profiles undergoing expansion in the bottom shear

layer as a building block for understanding the transient evolution. Analogous to the

two-dimensional analysis of section 2.4.1, figure 4.8 illustrates the vertical velocity

< Uy > as obtained from both the LES and 2-D simulations, at three lateral loca-

tions extending from the nozzle to the minor flow probe. It can be seen that there

are considerable discrepancies between the two solutions. The same reasoning used

to explain the streamwise growth of the mixing layers is also applicable here. Of

course, we do not believe that the LES predictions in the sliced plane should exactly

resemble those of the 2-D simulation. Support for this argument lies in the evidential

presence of x- and z-velocity components, not included in the given profiles. Hence,

the differences are more likely an outcome of the physics rather than of numerical

or model errors in the 3-D calculation. One interesting observation concerning the
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Figure 4.5: Effect of grid refinement on the mean and rms Ux and Uz velocity profiles

major flow jets is the degree of deflection which leads to their impingement once they

reach the chamber walls. It is learned from figure 4.7 that a significant amount of

velocity magnitude is present in the boundary layers rebounding from those walls. A

closer look at this phenomenon and its consequence on the particle transport will be

presented in a later section.

The role of the subgrid scale turbulence model in the large eddy simulation

of this genre of flow warrants an inquiry. Obviously with the absence of certified

experimental data on the fluid phase statistics, it will be difficult to judge the accuracy

of any given model. Nevertheless, in the following discussion we shall present some

prognostic results concerning the performance of the Lagrangian dynamic and Lilly

models. The objective is to demonstrate that the mechanism by which the eddy-

viscosity coefficient is computed, is directly responsible for the outcome of the results.

Therefore, forecast on the superiority of a certain model will be made based on first
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Case II

principles and physical arguments. Previously, we previewed the behavior of the

Lagrangian model at virtual impaction in relation to the “no-model” two-dimensional

solution. Figure 4.9 is a comprehensive representation of the LES time-mean velocity

profiles as they transform from the nozzle to the collection probe. The solutions of

the two turbulence models are normalized by the same nozzle centerline velocity Uoo.

It is shown that despite the initial identical lateral footprint at x∗ = 0.25, the two

models predict rather discordant profiles as the flow approaches the collection nozzle.

Undoubtedly, the dissipation of the turbulent kinetic energy which is influenced by

the magnitude of the dynamic coefficient is not the same. Recall that in the Lilly

model Cs is computed via equation (3.13), whereas in the Lagrangian model, equation

(3.14) is employed. Figure 4.10 is a clear indicator of the relative scales of Cs at the

re-laminarization stage. The constant value used in some LES calculations with

the “static” Smagorinski model is also shown for reference. Fortunately, the two
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Figure 4.7: Lagrangian dynamic model LES-case III: Mean velocity contours mapped
to π/8 plane
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Figure 4.8: Statistical mean expansion velocity profile at nozzle boundary layer: LES-
case III vs. 2D-Case II

dynamic models predict correct levels of near zero magnitude in the pseudo-laminar

jet column (i.e. −0.5 < y∗ < 0.5), however, in the mixing layers the maximum

value of the coefficient predicted by the Lagrangian model exceeds that of the Lilly

formulation by a factor of 4.5, and that of the traditional Smagorinski constant by

1.8. Evidently, the Lagrangian model is more responsive to the dynamics of the

flow. Not only is it capable of intersecting with the theoretical constant of 0.1,

but it is also mindful of different flow regions that require perhaps lower or higher

eddy-viscosity (note equation 3.10). The proper prediction of model constant during

transition to turbulence in boundary layers has proved to be a challenging problem

[79]. It was shown by other researchers that simple models relying mainly on the

Smagorinski relationship with empirical modifications to the model coefficient are not

very suitable. One allegation, however, is clear; during the late stages of transition

it is commendable that the residual stress model provide some energy dissipation to
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replenish the cascade process.

We continue to focus on this issue as we address another section of the device

where interesting mechanics are present. The following discussion considers the flow

dynamics that accompany the major flow ejection jet. In order to assess the level of

turbulence fluctuations and its relation to the model coefficient we approximate the

turbulent kinetic energy as

K ≈ 1

2
< (ur

i )
2 >, (4.1)

where ur
i is the velocity fluctuation vector of the resolved LES field. Formally, as

pointed out in [45], the true turbulent kinetic energy contains additional terms that

are inaccessible by LES. Albeit, in an effort to estimate the energy residing in the

subgrid scales, we have confirmed that the error in maximum K between the finer

and base grid over the entire domain is: κ = (Kmax
finer −Kmax

coarser)/U
2
oo ≈ 0.01. In other

words, the maximum unresolved energy in the base grid amounts to only 2% of the

mean kinetic energy of the main jet. Three sampling locations perpendicular to the

inclined expansion bay are monitored, as marked in figure 4.11. Figure 4.12 shows

the turbulent kinetic energy profiles at the three designated locations. It is clear that

the Lilly model consistently provides higher turbulent kinetic energy levels than the

Lagrangian model. Moreover, there appears to be two lateral positions or peaks away

from the wall where the turbulent kinetic energy is mostly concentrated. Before we

examine the physical reasons for this behavior, we show in figure 4.13 the magnitude

of the eddy-viscosity coefficient at the same sampling stations from instantaneous

LES fields. It is believed that the modest or relatively low values of the dynamic

coefficient in the Lilly model are causing the overshoot witnessed in the turbulent

kinetic energy profiles. Essentially, the magnitude of the eddy-viscosity in the Lilly

model is too low to provide any significant sub-grid-scale stresses that can effectively

diffuse the energy being generated above the grid-filter scale. The Lagrangian model,
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on the other hand, can sustain higher values of Cs that soar as high as four times the

classical constant. To further decipher the mechanistic differences between the two

closure models, we compute the turbulent viscosity using equation 3.10, and the same

LES fields whose dynamic coefficients were shown in figure 4.13. Figures 4.14 and 4.15

show instantaneous iso-surfaces of the turbulent viscosity ratio νT /ν = 2 for the Lilly

and Lagrangian models, respectively. It is discernible that the instantaneous LES field

in the Lilly simulation is poor in its resolution of the eddy-viscosity “blobs”, which is

strictly an outcome of the insignificant contributions of the SGS dynamic model, since

the same grid and numerical algorithms are used for each calculation. Meanwhile,

wide regions of the major flow in the Lagrangian computation exhibit such blobs,

which signify the extent of the turbulent viscosity relative to the molecular viscosity.

Clearly, a favorable advantage is gained from the Lagrangian model, especially if we

wish to educe the nature and role of the coherent structures. The time-averaged

turbulent kinetic energy field from the Lagrangian LES is mapped in figure 4.16 for

the π/8 plane. As mentioned earlier, the behavior of the secondary jets is of concern,

due to the centralization of the highest kinetic energy near the wall. A sampled profile

in the middle of the expansion edge is shown in figure 4.17, for the mean velocity as

well as the kinetic energy. In light of such results, and recalling the contours of

figure 4.7, it is evident that the turbulent kinetic energy is distributed around the

maximum velocity inclined-jet-axis. This, in fact, leads to the dual stream of kinetic

energy concentration witnessed in the contours of figure 4.16. Incidentally, it is also

the location where the highest r.m.s. vorticity fluctuations are present. It is presumed

that such a peculiar deportment is an outcome of the shear layer vortical structures,

and the consequential turbulence interactions near the wall, which in turn feed back

to the bulk flow in the chambers. For reasons mentioned above, and to guarantee

proper resolution of the coherent structures, the upcoming discussion of large eddy

dynamics will be performed using the results of the Lagrangian dynamic model.
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Figure 4.9: Statistical mean velocity profile during virtual impaction: LES-
Lagrangian-case III vs. LES-Lilly-case II

4.3 Free Boundary Layer Properties

The structural features of the three-dimensional shear layers issuing from the

secondary jets of the major flow are analyzed in this section. In section 2.4.3 we

performed a rigorous analysis on the evolution of the two-dimensional vortical struc-

tures. In retrospect, the 2-D visualizations allowed us to identify the mirrored Kelvin-

Helmholtz instability associated with the detachment and growth of coherent eddies

in the separating shear layers. The next logical step, of course, is to seek an under-

standing of this mechanism in three dimensions. Hence, using the LES fields of the

Lagrangian model (case III), the fluid mechanical properties of the ‘free boundary

layer’ are examined. It is imperative, however, to realize that the large eddy simu-

lation field does not resolve all the scales of motion, which means that some of the

small-scale fluctuations, or certain types of eddies described in the 2-D study will
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flow jet on sample lines 1 to 3 in figure 4.11 from left to right

not be present. Nevertheless, the discussion will focus on the nature of the resolved

motions. The premise of any complex flow analysis lies in deciphering its vorticity

dynamics. Figure 4.18 is a visualization of the 3-D vortex sheets created by the cross-

flow jet, in an average sense. The iso-surface is computed from the regions of the

time-mean field possessing ∼ 55% of the reference jet value Ωo ≡ Uj

W/2
. As shown,

there are two distinguished types of shear layers. The upper layer is an outcome of the

deflecting jet, and its origin can be traced to the boundary layer in the throat of the

nozzle. The lower shear layer is a child of the leading edge boundary on the opposite

end of the nozzle. To further characterize this behavior, we plot in figure 4.19 the

non-dimensionalized vorticity and velocity profiles at the same oncoming sampling

line of figure 4.11. Evidently, the vorticity rich layers are not aligned with the core

of the emerging jet, but are segregated on either side of its main thrust axis. This

result leads us to believe that the coherent structures of the unsteady realizations,
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Figure 4.13: Instantaneous eddy-viscosity coefficient of major flow jet on sample lines
1 to 3 in figure 4.11 from left to right

which are paraded by the so called wake vortices, are not shed from the jet but are

foiled from vorticity brought to bear by the free boundary layers. In fact a similar

finding by Fric & Roshko [28] is documented for the unbounded jet-in-crossflow. It is

also interesting to note the difference in vorticity magnitude and thickness among the

distinct shear layers. The upper agglomeration has a thickness that is comparable

with the jet width (δ ≈ .95W ), and its maximum magnitude does not exceed Ωo,

whereas the lower layer’s thickness is δ′ ≈ 0.8W , thus admitting higher maximum

vorticity. Before we consider some instantaneous revelations of the vorticity field, we

shall attempt to address the degree of turbulence anisotropy. Figure 4.20 depicts the

root mean square x-velocity fluctuations in the lower shear layer extended between

the nozzle lip and the minor flow entry point. A similar plot for the rms z-velocity

is shown in figure 4.21. The three vertical positions where the profiles are sampled

cover the π/16, π/8, & 3π/16 rotated planes of the cylindrical domain. As can be
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Figure 4.14: Lilly model LES:case II isosurfaces of instantaneous subgrid turbulent
viscosity ratio = 2.0
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Figure 4.15: Lagrangian model LES:case III isosurfaces of instantaneous subgrid tur-
bulent viscosity ratio = 2.0
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Figure 4.16: Lagrangian model LES: case IV time-averaged kinetic energy contours
mapped to π/8 plane and normalized by U 2

oo
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seen, the growth of the turbulent activity across all angles begins modestly in the

most inner shear layer at y∗ = −0.5 (height of nozzle wall). The fluctuations then

in turn increase substantially as we go further down to y∗ = −0.6 and y∗ = −0.7, in

other words deeper into the separated shear layer. Surely, the mixing between the

high speed jet and the low speed fluid in the cavity is the breeding ground for such

turbulent intensities. Concerning the anisotropy of the turbulence, which quantita-

tively amounts to roughly 2% of the mean jet velocity in the x and z directions, it

is apparently dependent on the angular location within the flow. It must be pointed

out that the maximum fluctuation levels in the y-direction are negligible (≈ 0.6% of

Uoo). It is observed that in the middle plane at π/8, the rms velocities are slightly less

than their counterparts near the periodic boundaries. As a consequence, the variation

among the individual rms velocity components at the different angles is a testament

to the hetrogeneous nature of the separation events, and eddy formation sequences

that give rise to the observed turbulence.

Notably, the time-averaged results of the large eddy simulation can illuminate

some of the dominant physics of the flow, however, the fascinating insight provided

by the unsteady phenomena is uniquely rich. To this end, we focus our attention

hereinafter to the developmental attributes of the coherent structures which can only

be educed from instantaneous fields. Figure 4.22 shows instantaneous contours of

the x-vorticity magnitude mapped to the π/8 slice, and normalized by Ωo. Similarly,

figures 4.23 and 4.24 are of the y- and z- vorticity component at the same timestep,

respectively. To facilitate the identification and role of the different interactive events,

we categorize five key structures as the main drivers of vortex maneuvering. Based

on the labels shown in figure 4.22, table 4.4 summarizes the critical structures:

The primary sources of vorticity as alluded to previously are the curved shear layers

emanating from the virtual impaction jets. First, the upper free boundary layer ‘A’ is
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Label Name
A upper free boundary layer vorticity source
B lower free boundary layer tearing-edge vorticity source
C circulatory wall-born vortices
D wake vortices
E rebound wall-born vortices

Table 4.4: Critical vortical structure identification

an extension of the originally thin vorticity layer in the throat. This consistent fluid

structure contains significant contributions of both x- and z-components of vorticity.

Recall that we also symbolized the mean thickness of this layer by δ in figure 4.19.

Obviously, the same behavior is observed in the lower section of the main jet (also

labeled ‘A’), where the parallel layer possesses equal vorticity magnitude but opposite

in sign. Using the right hand rule, the top layer ‘A’ undergoes rotation in the counter-

clockwise direction, while negative vorticity in the bottom layer ‘A’ implies clockwise

rotation. Second, the free boundary layer ‘B’ occurs on the lower brink of the major

flow jet on either side of the nozzle due to the tearing or slashing action of the sharp

wall-edge. These layers whose mean thickness was characterized by δ ′, rotate in a

direction that is opposite to their companion ‘A’ layers.

In an unsteady oscillatory motion, the free boundary layers begin to deform,

twist, and bend, thus producing a streak of centrifugal concentrations of vorticity

called wake vortices, that carry the ‘D’ label. These eddy like structures seem to

captivate higher magnitudes of z-vorticity, judging by the scale of the contour levels.

The convection of the wake vortices away from their roots leads eventually to their

impact on the side walls of the major flow chamber. Evidently, the complex mechanics

by which this occurs is difficult to describe, however, a clear outcome of such events is

the emergence of tube like structures that are aligned with the vertical axis. The fact

that we observe high concentrations of y-vorticity near the wall in figure 4.23 attests

to the cogency of this argument. Moreover, the structure labeled ‘E’ in figure 4.22 is
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a byproduct of the wall impaction event. Finally, the last type of primordial vortices

‘C’ are the ones generated near the expansion bays beneath the ‘B’ shear layers.

The circulation bubble formed on the bayside of the expansion slot is highlighted in

figure 4.25, which shows the velocity vectors in the plane at the same instant as the

vorticity contour plots. The wall-born eddies take on the task of disrupting the ‘B’

layers, which can result in a more forcible shedding activity. The velocity vectors plot

also reflects the rebound nature of the type ‘E’ vortex. It is shown that the eruptions

of ‘E’ structures are forcing a breakup in the streamlines of the major flow jet.

To investigate the three-dimensional characteristics of the coherent structures,

a new mathematical quantity must be introduced. A well-known eduction scheme

based on the second invariant of the velocity gradient tensor is employed [80]. The

Q-criterion is defined by

Q =
1

2
(ΥijΥij − SijSij), (4.2)

where Υij and Sij are respectively the resolved rate-of-rotation, and rate-of-strain

tensors. It is then straightforward to argue that the regions of the turbulent flow

where Q is positive must mark the fluid elements whose rotation outweighs their

strain. Figure 4.26 is a representative picture of the types of eddies that can be

visualized by the Q-criterion. We set the iso-surfaces value to be 20% of Ωo
2, in order

to isolate the ‘D’ type wake vortices extruding from the ‘B’ layer. Note that Q can

also be recast in terms of the vorticity modulus:

Q =
1

4
(|Ω|2 − |S|2). (4.3)

Using the illustration in figure 4.26, we are able to educe the shape and size of the

tube-like structures emanating from the lower free boundary layer ‘B’. Evidently, such

structures possess higher rotation strength than the ones emanating from the upper
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free boundary layer ‘A’, since the latter is not visible. If we reduce the iso-surface

threshold value to 10% of Ωo
2, as depicted in figure 4.27, the type ‘A’ structures begin

to appear. It is remarkably clear that the eddies of the wake vortices originate as thin

straight tubes, but quickly become amenable to re-orientation as they travel down-

stream in the major flow chamber. This is particularly visible in the helical “piped”

structures which grow extensionally along the spanwise direction. The vertical align-

ment which is caused by the stretching of the vortices near the walls is also evident.

Figure 4.28 is another manifestation of the same structures but colored with pressure

so that to accurately mark the core of the vortical agglomerations. From this figure

we are able to ascertain that the eddies, despite their similar physical characteristics,

can still be associated with asymmetrical regions of the flow that possess different

magnitudes of pressure and velocity. The inspection of transient animations also al-

lows us to identify a new set of processes that are hard to capture from still images.

For instance, the ability to coagulate two smaller longitudinal tubes to form a larger

paired structure is witnessed near the impaction area of the major flow jet. Naturally,

the occurrence of such events is closely tied, at least in their earliest stage, to the type

‘E’ vortices identified earlier. In the next section, we will consider the motion of the

discrete particles, and accordingly scrutinize the influence of the discovered coherent

structures on their transport mechanics.

4.4 Particle Transport

4.4.1 Description of Wind Tunnel Experiment

Before we interpret the outcome predictions of each model, a brief description

of the experimental facility is chartered. The device was tested in a laboratory wind

tunnel having a 3′ × 3′ cross-section. The blower parameters were set to produce a

wind velocity of 5.0 MPH (or 2.24 m/s). The aerosol was generated from a “multi-jet”

119



Figure 4.18: Lagrangian model LES:case III isosurface of time-averaged vorticity
modulus |Ω| = 0.55|Ωo|, shown for the nozzle section
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Figure 4.20: Lagrangian model LES:case IV U rms
x profiles at three rotated angles

within the free boundary layer

collision nebulizer that is fed from an oleic acid solution, and positioned roughly 25

feet upstream of the device. The shooting stream of the nebulizer was focused onto

a household fan blowing in the opposite direction of the wind in order to maximize

the degree of perfusion. Some quantitative attempts were made to insure uniform

distribution of the aerosol downstream. The device, on the other hand, was connected

to vacuum motors controlled by electronic knobs that alter the flow rates of each of

the minor and major flow, and monitored by pressure drop gauges. The pressure

drop of the major flow predicted by the simulation amounted to ∼ 1500 Pa, which is

very close to what the experiment utilized. The minor flow tube was also connected

to a digital aerodynamic particle sizer (APS) (see figure 4.31), the measurements

of which constitute the data sets presented herein. Basically, the APS acts as a

particle counter, thus displaying the number of sampled particles for each size bin.

The separation efficiency is then computed as the ratio of number concentration in
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Figure 4.21: Lagrangian model LES:case IV U rms
z profiles at three rotated angles

within the free boundary layer

the minor flow relative to a reference ambient reading.

4.4.2 Efficiency Characterization

The aim of analyzing the fluid mechanical properties of the complex flow inside

the virtual impactor is strongly conjugated by the need to understand the behavioral

properties of the aerosol particles being transmitted by this flow. As a first step in that

direction, we shall consider the ability of the LES fields to relay the particles across the

virtual impaction gap, and consequently assess the separation efficiency. Analogous

to the routine of section 2.4.2, we compute the trajectories of mono-disperse samples

of particles released in the circumferential throat section. Approximately 276,000

particles were used for each size injection. Compared to the 2-D simulation, the

randomization algorithm that assigns the starting positions is modified such that

less particles are distributed in a given plane, and more particles are packed in the
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Figure 4.22: Lagrangian model LES:case III instantaneous x-vorticity (Ωx) contours
mapped to π/8 plane, normalized by Ωo
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Figure 4.23: Lagrangian model LES:case III instantaneous y-vorticity (Ωy) contours
mapped to π/8 plane, normalized by Ωo
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Figure 4.24: Lagrangian model LES:case III instantaneous z-vorticity (Ωz) contours
mapped to π/8 plane, normalized by Ωo
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Figure 4.25: Lagrangian model LES:case III instantaneous velocity vectors mapped
to π/8 plane, normalized by Uoo, shown for the lower major flow chamber
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Figure 4.26: Lagrangian model LES:case III instantaneous isosurfaces of Q = 0.2Ωo
2,

shown for the lower major flow chamber

128



Figure 4.27: Front view: instantaneous isosurfaces of: Q = 0.1Ωo
2 (left), and Q =

0.2Ωo
2 (right), shown from an outer perspective of the entire domain (inflow is into

the paper, separation occurs laterally)

Figure 4.28: Top view: instantaneous isosurfaces of: Q = 0.1Ωo
2 (left), and Q =

0.2Ωo
2 (right) colored by gauge pressure, zoomed view of the upper nozzle issuing

into the major flow
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spanwise direction. Using the time-averaged field of the Lagrangian model LES (case

III), and that of the Lilly model (case II), the particle equation of motion is integrated

forward in time until the particles exit the major flow outlets. A sample pictorial

of the individual mean paths followed by the particles is shown in figure 4.29 for

two representative initial stations. At the end of each run, the separation efficiency

(equation 2.18) is recorded. The results obtained from this calculation are then

plotted for each discrete particle diameter and shown in figure 4.30, along with the

prior 2-D results, and the preliminary experimental data [81].

The experimental data points in figure 4.30 were obtained for a minor-to-total

flow ratio of 0.10, and 0.15, and were accumulated over trials that sample air for a

number of minutes. Granted that the experiment conveys the real trends of particle

collection, it can be argued that the LES results attained by the Lagrangian dynamic

model are the most suited to reflect such behavior. First, we can see that the 2-D

simulation predicts rather unrealistic or excessive penetration for the larger particles.

This is most reasonably an outcome of the idealized and constrained two-dimensional

flow field. The efficiency curve given by the Lilly model LES, appears to also exag-

gerate the separation. We believe that the increase in velocity prediction witnessed

in figure 4.9, is the primary factor that leads to this disparity. Concerning the slight

discrepancies among the Lagrangian model predictions and those of the experiment,

we can think of two reasons that can explain the mismatch. First, aside from the

lack of confidence or error levels that quantify the aerosol distribution measurements,

it seems that the simulation data points resemble an experiment that could have

been performed at a different Qm/QT ratio. The justification stems from the fact

that, to a large extent, we observe the numerical data points to lie in between the

two experimental curves. It is highly plausible that inconsistencies in the laboratory

equipment affected the setting of the fractional ratio. Second, the density of oleic

acid is reported to lie between 0.895 − 0.947 g/cm3, and no attempt was made to
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measure the density of the aerosolized droplets in the wind tunnel. The simulation,

however, is conducted with a constant density equating that of Polystyrene Latex par-

ticles (1.047 g/cm3). The slightly larger value of the theoretical calculations, gives

the same size particles additional inertia, thus increasing their penetration capacities,

which may explain the reason for the vertical shift in the simulation plot relative to

the Qm/QT = 0.1 experimental data points. Furthermore, wettability considerations

that are presumably present in the experiment, are not taken into account by the

simulation. Another possible explanation for the disparity in the results of the two

LES models is presented in the following paragraph.

The remaining discussion of this section will focus on the influence of the un-

steady LES fields on the collection of solid particles. In order to circumvent the high

cost of computing the trajectories of mono-disperse clouds of particles, we elect to

perform the transient particle tracking calculations using a poly-disperse distribu-

tion. A similar analysis was presented for the two-dimensional study, and we shall

rely on the same initial diameter-distribution shown in figure 2.20. The number of

particles, however, was increased to approximately 600, 000 so as to inject a consid-

erable stock from each size bin. Figure 4.33 shows the cloud of particles a few time

steps after their release from the throat. It can be seen that the larger diameter

particles (dp ∼ 1.8 µm) are leading to the front of the issuing jet, while the medium

size particles (dp ∼ 1.0 µm) are primarily migrating to the peripheral layers of the

jet. A subsequent snapshot is taken in figure 4.34, which shows the posture of the

same injection as it undergoes virtual impinging. The influence of inertia is clearly

depicted. Remarkably, we are able to discern the interaction mechanism between

the particles of different size, and the jet shear layers. It appears that the “upper

free boundary layer” (structure ‘A’ in Table 4.4) is a sink for the particles of size

one micro-meter. The largest particles of course, are inclined to penetrate into the

minor flow, and begin to adjust to the laminar profile. The particle transport be-
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havior from the LES results seems to be consistent with the analysis concocted in

section 2.4.4. An unprecedented stance, nonetheless, that was not inferred from the

two-dimensional calculations, is learned from figure 4.34. This is particularly related

to the escapade of some of the large particles (dp > 1.5 µm) into the major flow.

As shown, a considerable portion of the largest particles are subject to accumulation

in the “lower free boundary layer” (structure ‘B’ in Table 4.4), which may very well

explain the loss or reduced efficiency witnessed in figure 4.30, compared to the 2-D

predictions. Additional support for this argument can be leveraged from figure 4.32

which shows the expansion profile of the secondary jet from the time-averaged LES of

case II, and III. It can be seen that the Lilly simulation predicts a “contracted” profile

relative to the Lagrangian model. The implications of the stronger major flow jet on

particle transport, manifest as reduction in the separation efficiency as witnessed in

figure 4.30.

Finally, we attempt to theoretically quantify the concentration per unit volume

achieved by the prototype virtual impactor. A new cloud is generated with multiple

groups each with an equal number of particles (Ni = 138, 000) but different particle

diameter, as shown in figure 4.35. The number concentration (≡ Ni/
∑

Ni) is then

equal by design. At the end of the tracking calculation, the concentration in the minor

flow is interrogated and plotted along with the initial concentration. As can be seen,

the benefit is only attained for particles whose diameter is greater than 2.0 microns.

The relative concentration level continues to gradually increase for larger particles,

and the maximum that is gained for the 3.2 µm particles is about 7% with respect

to the concentration in the throat prior to flow assorting. This finding is important

for field studies that intend to intensify the ambient concentration of dilute aerosols.
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Figure 4.29: Solid particle traces from two starting locations tracked using the
Lagrangian model LES mean field:case III. Particle diameters from Table 2.4:
0.72 − 3.20 µm
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Figure 4.30: Separation efficiency from LES and experiment

Figure 4.31: Model 3321 Aerodynamic Particle Sizer (picture borrowed from [82])
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case II vs. case III

4.4.3 Segregation and Preferential Concentration

In section 2.4.4 we analyzed the fluid and particle interaction mechanisms present

in the unsteady 2-D vortical structures. It was found that depending on the entry

point to the jet (i.e. boundary layer, bulk centerline, etc.), and the magnitude of

the particle dimensionless relaxation time (or Stokes number), the collective behavior

of the particle cloud is affected. With regard to the particle propagation to the

minor flow, we have shown that there exists a patterning sequence of jet events that

cause the particles to selectively accumulate in the collection duct (i.e. braiding,

or dancing). In this section, the focus will be primarily on the particle and fluid

mixing in the major flow. This is particularly important for studying preferential

concentration, segregation, and “streaking”, and can help in improving the designs

of multi-stage systems. In the context of the current large eddy simulation, there is

sufficient resolution to educe the three-dimensional coherent structures, and to learn
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Figure 4.33: Injection of poly-dispersed particles colored by diameter and tracked
using instantaneous LES fields-case III
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Figure 4.34: Separation of poly-dispersed particles colored by diameter and tracked
using instantaneous LES fields-case III. Note transparent walls
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Figure 4.35: Particle number concentration before and after virtual impaction using
the Lagrangian model LES:case III

about the influence of such structures on the dispersion of solid particles. It should

be noted, however, that the highly resolved two-dimensional simulations of Chapter

2, indicated more vigorous activity near the main virtual impaction jet, than what

the LES fields are showing. Nonetheless, the following calculations are conducted

using the instantaneous LES velocity fields of the Lagrangian dynamic model (case

III), with 575, 000 particles possessing a diameter dp = 1.01 µm. The corresponding

Stokes number as listed in Table 2.6 is St = 0.10. The purpose for selecting this

particular value serves to allow the particles to be responsive to changes in the local

fluid velocity field, and from a practical standpoint, sheds insight on the behavior

of some biological aerosols of interest in that range. As shown in figure 4.36, the

particles are released in the throat boundary layer (0 < y∗ < 0.2), and after turning

with the secondary jet, they begin to experience the rippling effects of the coherent

structures, as emphasized in figure 4.37.
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The most interesting dynamics begin to occur at the shedding phase of the

secondary jet, and near the wall section of the major flow chamber. Recall from

Table 4.4, the prominence of type ‘D’ and ‘E’ structures. It is believed that the

interaction of the particles with the flow is dictated by the nature of the evolution

of these two types of coherent eddies, and their surrogates. Figure 4.38 shows a

series of consecutive instantaneous depictions of the segregation and disruption of

the originally uniform particle cloud. In the next set of images, we show the same

particle locations superimposed on the fluid structures as educed by the Q-criterion

of equation (4.3). Figure 4.39 shows two views from the first picture of the series in

figure 4.38. As can be seen, the turbulent activity is restricted to the near wall region,

where the coherent eddies are abundant. The subsequent images in figures 4.40 and

4.41 attempt to clarify the organized events that lead to the observed posture of the

particles. Evidently, we can recognize that the coherent eddies play several roles.

First, the instantaneous stills suggest that the particles preferentially accumulate

on the outer boundaries of the tube-like eddies, which seem to engage the particle

cloud in a penetrating fashion to create gaps or streaks. Second, certain eddies,

conceivably the ones with strong rotational strength, are capable of twisting the

particle agglomeration causing radial distributions that appear as hollow bindings of

particles. Lastly, we observe that the streaking tendency eventually transforms into

wider disconnectivity, therefore leading to increased dispersion and scattering of the

original particle cloud.
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Figure 4.36: Snapshots of solid particles (St = 0.10) released from the throat bound-
ary layer, and tracked by LES fields of case III. (a) side view of particles after release,
(b) back view of particles entering major flow
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Figure 4.37: LES:case III - Enlarged view of figure 4.36-(b). Solid particles (St =
0.10) experiencing rippling in the major flow
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Figure 4.38: LES:case III - Enlarged view of solid particles (St = 0.10) dispersing in
the major flow. Snapshots taken at: t1, t2 = t1 + τvi, & t3 = t1 + 2τvi
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Figure 4.39: LES:case III - solid particles (St = 0.10) interacting with eddies of
Q = 0.15Ωo

2. Different views taken at t1 of figure 4.38-(a)
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Figure 4.40: LES:case III - solid particles (St = 0.10) interacting with eddies of
Q = 0.1Ωo

2. Snapshot taken at t2 of figure 4.38-(b)
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Figure 4.41: LES:case III - solid particles (St = 0.10) interacting with eddies of
Q = 0.1Ωo

2. Snapshot taken at t3 of figure 4.38-(c)
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Chapter 5

Summary, Conclusions, &

Recommendations

5.1 Summary of Two-dimensional Study

The flow of air inside the virtual impactor was modeled using a two dimensional

cross-section of the cylindrical apparatus. The complete incompressible Navier-Stokes

equations were integrated numerically on a fine mesh using second order methods.

This approach is novel and fundamental to the study of virtual impaction jets since

it permits the analysis and characterization of the transient small-scale eddies that

are essential for particle transport. Antecedent theoretical studies of this type of flow

only dealt with steady-state solutions. In this work, three sets of time-dependent

flow fields were obtained by changing the inflow velocity of the sampler in order to

arrive at different values for the jet Reynolds number. The results allowed for the

comparison of stable and unstable flow regimes. The geometrical considerations for

the nozzle design relied on experimental evidence from the literature concerning the

superiority of protruded configurations. Certain aspect ratio adjustments were made

based on numerical analysis, particularly for the virtual impaction gap width in order
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to achieve proper flow separation. For all the reported studies, the width of the jet

remained W = 0.7mm, S = 2.1W , and Wc = 1.5W .

The fluid equations of motion were advanced from a stationary field using the

finite-volume code of FLUENT complemented by a user defined function for the out-

flow convective boundary conditions. Sufficiently small time steps were used in each

case in order to capture the relatively rapid evolution of the organized fluid structures

(see Table 2.1 for exact values). The aerosol motion was modeled by solving the parti-

cle equation of motion for a sphere including the drag and gravitational acceleration.

A custom code that invokes the second order Adams-Bashforth integration scheme

was employed in conjunction with dynamic drag coefficients. The results were divided

and interpreted within two categories: (i) a time-averaged flow, and (ii) an unsteady

flow. The main findings and conclusions are outlined in the following section.

5.1.1 Conclusions

• The 2-D time-mean results of the virtual impactor established the nature of the

jet potential core. It was found through successive profiling of the mean velocity

that a non-laminar jet exhibits a shorter piercing region where the centerline

velocity decays faster than that of a laminar jet.

• A phenomenon termed “shear layer leakage” was discovered under unsteady jet

conditions, by which the adverse pressure gradient acts to reduce the centerline

velocity, hence causing a local acceleration for the off-axis fluid, coupled with

an increase in jet-breadth.

• The re-laminarization behavior prior to minor flow mitigation was clearly demon-

strated for the high Reynolds number jets.

• One-way coupled Lagrangian particle tracking with mono-dispersed samples of

100, 000 solid non-interacting spheres was used to query the separation efficiency
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and particle loss properties of the virtual impaction and collection nozzles’ de-

sign.

• The separation efficiency curve versus Reynolds number showed significant re-

duction in the 50% cut-point diameter. Specifically, the cutpoint particle di-

ameter was 2.80, 1.25, & 0.97µm for case I, II, and III, respectively. The

corresponding
√

St50 was equivalent to 0.39.

• The steepness and asymptotic attributes of the separation efficiency curves from

the two-dimensional analysis reflected that of the literature experimental results

gathered from a similar virtual impactor with a larger nozzle width.

• The study pioneered in tracking the variations of poly-dispersed aerosol size

distributions. This type of analysis revealed a unique picture concerning the

behavior of particle distributions during virtual impaction. It was found that

a high degree of disruption is instigated for particles close to the cutpoint di-

ameter. The effect of backflow from the collection probe was clearly targeted

by the “before” and “after” properties of the size distribution.

• The study investigated the role of the jet Reynolds number in altering the final

minor flow particle size distribution. It was shown that for the flow conditions

understudy, there exists a critical size around 1.2 microns that distinguishes

among response mechanisms by which the polydisperse distribution modulates

to virtual impaction.

• Transient flow realizations identified the origins of the instability for non-laminar

regimes. In the laminar case, the fluctuations were limited to smooth oscilla-

tions by the attached vorticity rich layers in the major flow chambers.

• At transition and turbulent conditions, it was observed that the free boundary

layers begin to separate from the vorticity rich layers extending from the nozzle
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throat as well as the leading edge of the probe. The shear layers between the

high speed fluid and the relatively motionless fluid cause the materialization of

the mirrored Kelvin-Helmholtz instability.

• At mild to high Reynolds numbers, it was discovered that the flow instability

is self-sustained due to the generated disturbances and descendant eddies

emerging from the impaction of disintegrated shear layers onto the chamber

walls.

• Quantitative analysis based on correlations of the fluctuating velocity compo-

nents asserted between two types of instabilities inherent to the virtual im-

paction jet. First, a jet-axis destabilization mode is believed to be natively an

outcome of jet-column swinging. Second, a more potent shear-layer mode is

stimulated by eddy interaction events, and vortex shedding.

• The theoretical study presented an insightful discussion on the classified Reynolds

shear stress components, and pinpointed the location and strength of its most

influential contributors within the bent mixing layer.

• Unsteady particle tracking for particles with three Stokes numbers between 0.1

and 1.0 were performed in order to study the particle-eddy interaction mecha-

nism.

• Particles with dimensionless relaxation times less than 0.5 are capable of fol-

lowing the fluid curvatures if they enter the jet near the throat boundary layer,

and are consequently flung outwards by the roller vortices. If the particles are

traveling above the boundary layer, they will accumulate in a “braided” fash-

ion in the minor flow due to the resonance of the jet core fluctuations. The

dispersion level within the probe duct is highest for particles whose St = 0.10.

• Particles whose dimensionless relaxation times are greater than or equal to unity
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are inclined to aggregate in the minor flow experiencing minimal interaction with

the jet dynamics. Those particles ejecting from the throat boundary layer are

primarily deposited on the probe walls.

5.2 Summary of LES Studies

The merits of Large Eddy Simulation in engineering fields that require flow prediction

and judgment are countless. Ever since its inception as a viable means for understand-

ing transitional and turbulent flows, there has been a tremendous effort to provide

accurate and effective models for the closure of subgrid scale stresses. Needless to say,

despite the existence of a number of approaches that can fulfill such requirements,

very few models in fact are successful in complex geometries, and multi-regimen

flows. For this reason, we embarked on implementing and proving the suitability of

the Lagrangian dynamic subgrid scale (SGS) turbulence model. After presenting the

mathematical framework for conducting large eddy simulation, and highlighting the

conventional methodologies sought in modeling the residual stresses, we conceded that

for the virtual impactor study an advanced and physically sound scheme is acutely

needed, in order to guarantee the proper representation of the coherent structures dis-

covered by the two-dimensional investigation. Hence, the Lagrangian dynamic model

was deemed as a felicitous candidate. In summary, the strength of such a model lies

in its ability to procure an eddy-viscosity coefficient that is in tune with the dynamics

of the flow, particularly the history of the flow leading up to the current state.

The first LES study focused on validating the model implementation and its

numerical algorithm for a fully developed turbulent channel flow. Undoubtedly, this

allowed us to gain confidence in the capabilities of the newly developed code, as well

as gauge the performance and accuracy of the numerical schemes in this fundamental

flow framework. The results were obtained for a Reynolds number equal to 3300 based
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on mean centerline velocity and channel half-width. The prediction of first and second

order statistics compared exceptionally well to direct numerical simulation data. The

second validation case was carried out for a turbulent flow past a square cylinder. The

bluff body was engulfed in a computational domain with spanwise periodic boundary

conditions, and lateral symmetry conditions. The Reynolds number based on free

stream velocity and edge length was equal to 21, 400. The exhibition of organized

vortex shedding was well captured by the simulation. Global quantities such as the

Strouhal number, lift, and drag coefficients concerted favorably with the referenced

experimental data and other computations. The Lagrangian dynamic model excelled

in the prediction of the time-averaged velocity profile in the wake of the cylinder com-

pared to the standard, and even dynamic Smagorinski model. Furthermore, turbulent

intensities in the near wake were positively represented. In the far wake, reasonable

agreement of second order statistics was obtained. Several influential factors that can

cause disparity between the numerical and experimental results were addressed.

The newly contrived code was then applied to the study of a prototype aerosol

sampling device. Solution strategies that can deal with the challenges associated with

simulating a real-life geometry while maintaining numerical accuracy were crafted.

First, to balance between grid requirements and available computer memory, a 45

degree pie-section was meshed with hexahedral elements which are superior to tetra-

hedral elements in terms of alleviating the numerical discretization errors. The base

grid consisted of approximately 4 million cells, and a refined analogue consisted of

∼ 6 million control volumes. Rotational periodic boundary conditions were put in

place to mimic the cylindrical periodicity of the flow. In addition to the Lagrangian

dynamic sub-grid scale model, we evaluated the operation and results obtained by the

algebraic Lilly model. The inflow and outflow conditions shadowed one of the cases

studied by direct solution. The total sampling capability of the device amounted to

600 liters/min, at a Reynolds number of ≈ 4700. The LES equations were advanced
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by a second-order implicit time marching scheme, using the same time step as the

direct simulation. The algorithmic details are summarized in Table 2.2. The results

focused on assessing the performance and adequacy of each turbulence closure model,

and aimed to explain the characteristics of the prominent resolved eddy structures

vis-a-vis particle transport mechanics. The main findings and conclusions are outlined

in the following section.

5.2.1 Conclusions

• This research demonstrated the feasibility to conduct very accurate large eddy

simulation of a fully developed channel flow at Reτ = 180, with the Lagrangian

dynamic turbulence closure model, using FLUENT’s widely available commer-

cial code.

• This research improved on the results of a large eddy simulation of a high

Reynolds number flow past a square cylinder. The Lagrangian dynamic subgrid

scale model testified to its resourcefulness in dealing with complex & unsteady

flow behavior.

• Equipped with a robust residual stress model, this research pioneered in its

pursuit of investigating the dynamics of coherent structures present in three

dimensional virtual impactors.

• The computational expense ensued by the large eddy simulation of the circum-

ferential slit virtual impactor with the Lagrangian dynamic SGS model proved

to be within a surplus of 4% relative to the cost of the Lilly model LES, on the

same grid.

• The LES first order statistics of jet velocity proved to be identical on the two

grid resolutions. Some deviations were detected in the spanwise root mean
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square velocity component whereby the fluctuation level differed in the mixing

layers of the jet.

• The estimated turbulent kinetic energy of the sub-grid scales did not exceed 2%

of the mean kinetic energy of the feeding jet.

• The LES results in the middle plane of the domain suggest a three-dimensional

growth mechanism for the jet mixing layers, since the mean velocity profiles

consistently exceeded the profiles predicted by the two-dimensional calculation.

• Comparisons among the virtual impaction velocity profiles of the Lagrangian

dynamic and Lilly models showed that despite the agreement at the nozzle

exit plane, the former model predictions are relatively receded near the probe

entrance.

• Comparisons among the dynamic Smagorinski coefficient between the Lagrangian

and Lilly model showed that the former predicts higher magnitudes in the areas

of flow deflection/ejection, and transition to turbulence.

• The turbulent kinetic energy predictions of the secondary jets were slightly more

restrained in the Lagrangian LES, relative to the dynamic Lilly simulation.

• The Lagrangian dynamic model LES exhibited significant regions of high sub-

grid turbulent viscosity, compared to the dynamic Lilly simulation.

• The large eddy simulation results allowed us to identify the origin of five key

coherent structures that dominate the physics of the major flow evolution. The

vortical structures are: (i) extended-throat free boundary layer, (ii) leading-edge

free boundary layer, (iii) circulatory wall-born vortices, (iv) wake vortices, and

(v) rebound vortices.
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• Three dimensional vortex rings and longitudinal vorticity filaments were educed

using the Q-criterion.

• The time-mean velocity field of the Lagrangian dynamic model large eddy simu-

lation provided the best ground to conduct particle tracking calculations. Com-

parison with preliminary experimental data for the aerosol separation efficiency

showed fairly good agreement.

5.3 Recommendations

The work presented in this thesis elucidated some of the interesting mechanics of

virtual impaction. As with any modeling enterprise there is always the question of

precision, which warrants careful examination of the undertaken assumptions and

methodologies. Future endeavors that aim to explore and advance the research con-

cepts engaged in this study must focus on the following:

• The two-dimensional direct solutions of the Navier-Stokes equations provided a

wealth of information concerning the evolution, interaction, and sustainability

of the coherent eddies. For this reason, it is believed that a three-dimensional

direct numerical simulation, which must be done on a supercomputer, will help

in understanding the true intricate features of the transient coherent structures.

• The study did not pinpoint exactly the onset of transition to turbulence. In

fact, a number of calculations with gradual variations in the Reynolds number

are needed in order to learn the value of Re at which the free boundary layers

become unstable.

• A detailed look at the physics of aerosol particles’ interaction must be done in

order to ascertain the level of uncertainty endured by neglecting inter-particle

collisions. In fact, a numerical study with two-way coupling and models that
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simulate breakup and coalescence can shed some insight on the effects of particle

loading on the flow. The reader is referred to a fundamental article on this topic

[83].

• In order to unambiguously judge the credibility of the large eddy simulation

residual stress models, a posteriori tests against experimental data in a similar

jet configuration must be checked. An assessment of LES results in an “edge

tone” flow problem is highly endorsed.

• The LES study of the round slit virtual impactor did not address the influence

that the approximate rotational periodic boundary condition has on the char-

acteristics of the flow. Future computations must be done with larger sectors

to insure the fidelity of the results.

• According to Pope [84], the scale similarity notion is intractable in transitional

and viscous near-wall regions. Hence, since the current LES study can not

escape such circumstances, it is perhaps beneficial to quantify the dependence

of the dynamic coefficient on the filter ∆.

• With regard to building virtual impactors with cascaded jets, it is constructive

to manipulate the shape of the expansion bays so as to limit the propagation

of feedback effects.

155



Appendix A

User Defined Function (UDF) for

the Convective Boundary

Condition

An outflow boundary condition in the traditional sense is in most cases chosen to be

far away from the region of interest in the flow. Indeed, the outflow boundary condi-

tion is an artificial way of mimicking or imposing a certain behavior on the flow, that

is generally hard to predict. The simplest technique, of course, is to assign a fixed

value for the primitive variables being solved, which is known as “Dirichlet”. A more

suitable alternative, after “Neumann”, assumes that the primitive variable, for exam-

ple velocity, has a zero-diffusion flux in the direction normal to the outflow interface.

The latter approach physically reflects a fully-developed state. For certain flows, how-

ever, it is perceivable that a fully developed state will not be achieved at a reasonable

distance from the “high activity” region of the flow. For unsteady flow phenomena,

therefore, more felicitous boundary conditions have been devised. Orlanski [52] first

proposed a non-reflecting condition for one dimensional wave propagation in hyper-

bolic equations. The technique has since been successfully used in solutions of the
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Navier-Stokes equations in several computational fluid dynamics problems [85, 86].

The fluid velocity at the outflow plane is obtained by solving the following first-order

partial differential equation:

∂Ui

∂t
+ Uc

∂Ui

∂x
= 0 (A.1)

where Uc is a characteristic convective velocity at the plane of exit. In the context

of the FLUENT simulations, Uc is sampled from the plane-normal face velocities

provided by the solver subsequent to the mass balance correction step performed at

each time step.

A.1 Validation

The unsteady incompressible laminar wake behind a circular cylinder was chosen as a

test case for the newly implemented outflow boundary condition. This problem pos-

sesses very interesting flow features especially the alternating wake vortices, and their

unsteady propagation away from the surface of the cylinder. The results of a prior

numerical investigation using cylindrical coordinates, and well documented in the lit-

erature [87] will be used to validate the results of the simulation presented herein. Two

calculations were carried out in FLUENT using the same discretization and numer-

ical schemes described in Chapter 2 for the two-dimensional virtual impactor study.

The first calculation was performed on a domain with Neumann boundary conditions

specified 20 diameters away from the center of the cylinder. The second run, was

performed on a shorter domain, with the convective boundary condition applied only

14 diameters away from the cylinder’s center. A uniform inflow velocity was assigned

5 diameters upstream of the cylinder. The corresponding Reynolds number based on

the cylinder diameter (D) and free stream velocity (U∞) is 100. The top and bottom

domain boundaries were modeled as frictionless walls spanning 10 diameters apart.

Figure A.1 shows a comparison of the instantaneous velocity at the same moment

157



in time from both computations. Qualitatively, it is evident that the characteristic

features of the wake are well matched. Thus, the flow dynamics upstream of the out-

flow boundary condition are undistorted. Quantitatively, the y-component of velocity

one diameter away from the cylinder’s center is recorded and plotted in Figure A.2.

Clearly, the periodic nature of the wake is manifested as a sinusoidal variation in the

cross-stream velocity. The period of fluctuations is measured and quantified via the

dimensionless Strouhal number defined as:

Sth =
D

TsU∞

= 0.174 (A.2)

which is in reasonable agreement with the 0.16 value reported in the original numerical

study [87]. The experimental data, referenced therein, contend a range between

0.18-0.20. It should be noted that the present computation excels in the number

of gridpoints used ≈ 118000, and in the length of the domain. Therefore, it is no

surprise that the current Sth value is closer to the experiment.
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Figure A.1: Unsteady laminar wake - instantaneous velocity contours (m/s)
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Figure A.2: Recorded y-velocity component in the wake of the cylinder
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