

ABSTRACT

Title of Thesis: EXPLOITING SOFT COMPUTING FOR

REAL TIME PERFORMANCE

 Priyanka Rajkhowa, Master of Science, 2006

Thesis directed by: Dr. Donald Yeung, Department of Electrical and

Computer Engineering

The classic approach to the design of real time systems is to determine worst-

case scenarios for the system statically and manually and then build the system with

sufficient resources to meet deadlines and goals. This approach has worked well for

traditional real time systems which operate in relatively simple, well-characterized

environments. However the emerging generation of complex, dynamic and uncertain

real time application domains accentuates the growing need for flexible, adaptable

design approaches for real time systems. With the increasing complexity of real time

systems, it is becoming infeasible to build systems with sufficient resources to meet

the functional and timing requirements of all application tasks at all times. What is

becoming increasingly important in the new paradigm of real time computing is the

need to meet deadlines with sufficient system solution quality without having to

design the system to support worst case program execution. In this thesis, we explore

the possibility of exploiting “soft computing” properties of kernels to meet this

objective. The chief characteristic of “soft computations” is the fact that they are able

to provide cruder results before they complete, or they may execute for a long time

refining an already adequate result. In other words, such computations are able to

provide useful/incremental results before fully completing execution. More

specifically they provide a trade-off between computation time and algorithm solution

quality.

 This thesis addresses the design issues involved in building a system that

exploits the “soft computing” properties of kernels to optimize real time performance.

In this context, we make the following contributions. Firstly we build a system

prototype of a real time situational assessment scenario. We thereafter identify “soft

computations” in the system and characterize the computation time/solution quality

trade-off opportunities provided by them using performance profiles. Thirdly, we

introduce a method to use performance profile based models at run time to determine

the optimal composition of different “soft computations” in order to meet real time

deadlines with sufficient system solution quality. We quantify the gains from our

method both in terms of functional correctness of the system as well as CPU

utilization as compared to conventional real time scheduling techniques. We observe

that our dynamic scheduling scheme on an average is able to meet the system goals

with 39% more accuracy with no missed deadlines as compared to conventional real

time scheduling techniques for various design points that do not support worst case

behavior. In addition, our method is able to meet the system objective while being

highly utilized. Most importantly, our scheme exploits the soft computing properties

of kernels to facilitate the design of the system at less aggressive design points while

meeting deadlines and system goals at the same level as conventional real time design

methodology. Finally, we perform an experimental study to understand the sensitivity

of performance profiles to various input data parameters and identify the potential for

online learning of performance profiles.

EXPLOITING SOFT COMPUTING FOR REAL TIME

PERFORMANCE

By

Priyanka Rajkhowa

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Master of Science

2006

Advisory Committee:

Dr. Donald Yeung (Chair and Advisor)

Dr. Bruce Jacob

Dr. Manoj Franklin

© Copyright by

Priyanka Rajkhowa

2006

 ii

Acknowledgements

The list of people who have played a part in enriching my research experience

and making this thesis a reality is long and I really hope that I do not leave anyone

out. First and foremost, I would like to thank my research advisor, Dr. Donald Yeung

for steering me in the direction of my topic and also providing endless guidance and

support to an inexperienced researcher like me throughout the research process. This

thesis would not have been possible without his valuable advice and the countless

hours he has spent discussing the issues and problems I have faced. I sincerely

appreciate his valuable contributions to my enriching experience as a graduate

student.

I would also like to extend my gratitude to Dr. Bruce Jacob and Dr. Manoj

Franklin for agreeing to be part of my Thesis committee.

I thank my research group members and the members of the Computer

Architecture laboratory who have served both as my colleagues in research and as my

friends. In addition, I would like to acknowledge and thank all the members of the

CEARCH team at the Information Sciences Institute, Stanford University and

Northrop Grumman for their help and support in the course of my thesis project work.

Without Northrop Grumman’s simulation framework, the work done as a part of this

thesis might not have been achievable in such a short duration.

I thank my husband, Dipanjan, for his constant love, support, patience and

encouragement and for being by my side at all times. I am indebted to my parents and

brother for their emotional support and prayers. Without their love and prayers, the

work done as a part of this thesis would not have been possible.

A very special note of thanks to my friends Bhuvan, Smitha, Amit, Alokika,

Ashish and Sebastian. Their love, help and support has really enriched my graduate

school experience.

Over and above everything else, I am really grateful to God for blessing me

with a number of opportunities, giving me the strength to reach this point, and for

providing me with great family and friends.

 iii

Table of Contents

List of Tables .. v

List of Figures .. vi

1. Introduction and Motivation ... 1

1.1 Real time systems: The current paradigm.. 2

1.2 Real time computing: The next generation.. 3

1.3 Reference Scenario: Sensor fusion for situation assessment 8

1.4 Motivation: Soft computations and performance accuracy trade-offs........... 11

1.5 Thesis contributions and organization ... 15

2. Background and Terminology: Real time Systems .. 19

2.1 Real time computing .. 19

2.2 Deadlines and Periods.. 20

2.3 Handling Aperiodic tasks... 21

2.4 System Models... 22

2.5 Hard and soft real time systems ... 23

2.6 Types of real time tasks ... 25

2.7 Predictability and Determinism ... 26

2.8 Real time scheduling.. 27

3. Related Work .. 28

4. Detailed Problem Formulation.. 35

4.1 Reference real time scenario: Northrop Grumman’s challenge problem for

sensor fusion and situational assessment .. 35

4.2 System prototype ... 37

 4.1.1 Information Form Data Association Algorithm (IDA)...................... 37

 4.2.2 Northrop Grumman’s cognitive test bed.. 42

 4.2.3 Application of IDA to the Northrop Grumman test bed 47

4.3 Real time problem formulation.. 51

5. Soft computations and their characterization.. 56

5.1 Properties of soft computations ... 57

5.2 Performance profiles.. 59

 5.2.1 Quality metrics for characterizing soft computations........................ 60

 5.2.2 Building performance profiles for individual soft kernels................. 62

 5.2.3 Representation of performance profiles of individual soft kernels.... 62

5.3 Identification and characterization of individual soft kernels in the reference

system prototype ... 63

 5.3.1 Observation update sub-kernel /task... 64

 iv

 5.3.2 Inference sub-kernel /task .. 71

5.4 Composing systems using performance profiles ... 74

 5.4.1 Deriving composite performance profiles for soft kernels 75

 5.4.2 Model for optimal composition of “soft computing” kernels 77

6. Scheduling Policies... 82

6.1 Static soft policy .. 84

6.2 Dynamic soft policy... 86

6.3 Conventional Dynamic Earliest Deadline First (EDF) policy 89

7. Experimental Results .. 91

7.1 Evaluation metrics ... 91

7.2 Experimental set up.. 93

 7.2.1 Data sets used... 94

 7.2.2 Simulation of real time sensor report delivery to the application...... 96

 7.2.3 Counting missed deadlines and measuring CPU idle time 97

 7.2.4 Measuring accuracy ... 98

7.3 Experimental results... 99

 7.3.1 Data set naming convention... 99

 7.3.2 Variation in tracking accuracy with different scheduling policies .. 100

 7.3.3 Variation in CPU utilization with different scheduling policies...... 104

 7.3.4 Variation in missed deadlines with different scheduling policies ... 107

7.4 Sensitivity study for performance profiles... 109

 7.4.1 Use of dynamic performance profiles across time steps for a data set

... 110

 7.4.2 Sensitivity to different number of entities 112

 7.4.3 Sensitivity to entity behaviors.. 117

8. Conclusion and Future Work .. 120

Bibliography ... 123

 v

List of Tables

1. Summary of the fit for the model derived from the performance profile………... 78

2. Interpretation of the correlation coefficient, Rsquare, in the context of goodness of

the fit…………………………………………………………………………………79

3. Task characteristics for the EDF formulation……………... ……………………..90

4. Hardware set up………………………………………………………………….. 94

5. Data set parameters………………………………………………………………..96

6. Datasets used for the evaluation of scheduling policies…………………………100

 7. Additional datasets used for sensitivity study…………………………………...100

 vi

List of Figures

1. General structure of the next generation real time computing system

…………………………………………………………………………………………5

2. Components and specifications of a real time data fusion system in the ICU

…………………………………………………………………………………………8

3. Real time sensor fusion and situational assessment scenario and system

specifications………………………………………………………………………... 10

4. Functions representing the variation of solution quality with computation time for

traditional algorithms and those having soft computing properties………………… 13

5. Time line diagrams showing how soft computations can facilitate meeting system

deadlines with sufficient system solution quality………………………………… 14

6. The real time spectrum…………………………………………………………… 26

7. Real time reference problem scenario: UAV sensor fusion for situational

assessment …………………………………………………………………………...37

8. Illustration of the data association problem for 4 objects and 4 tracks………….. 38

9. Representative mixing update of the Information Matrix ……………………….. 40

10. Representative update operation for an observation that links track 2 to object 4

………………………………………………………………………………………..41

11. Representative inference operation on the Information Matrix………………….42

12. The components of Northrop Grumman’s cognitive test bed……………………43

13. Two modes of operation of the NG test bed……………………………………..44

14. Example data association array obtained at the end of the inference step…….. 50

15. Computations to be performed on new sensor data every time step interval….. 52

16. Time line diagram for ideal scenario where the computations on each set of sensor

reports is always completed before the next set is delivered ……………………….53

17. Variation of computation time spent in each of the three tasks across time step

intervals…………………………………………………………………………….. 54

 vii

18. Typical performance profiles……………………………………………….........60

19. Variation in accuracy as amount of time spent in the Observation Update task is

changed……………………………………………………………………………. ..67

20. Variation in accuracy as a function of time spent in the Observation Update

sub-task when applying category based ordered updates……………………………70

21. Variation of accuracy as a function of time spent in the observation subtask when

applying category based ordered updates at a finer granularity……………………..71

22. Basic structure of a simulated annealing formulation…………………………... 73

24. Composition of soft tasks in terms of time allocated to each component is

dynamic……………………………………………………………………………... 75

25. Composite performance profile for Observation Update and Inference tasks.......78

26. Graph provides the following information: Given a specific limited amount of

time to perform updates and inference, what is the best composition of the two

tasks.………………………………………………………………………………… 80

27. This figure shows the fraction of remaining time allocated to the Observation

Update sub-kernel, given a specific amount of remaining time. This data has been

derived from the model obtained from the performance profile shown in Figure 25. 80

28. This figure shows the fraction of remaining time allocated to the Inference sub-

kernel, given a specific amount of remaining time. This data has been derived from

the model obtained from the performance profile shown in Figure 25……….. ……81

29. General real time problem formulation…………………………………………..84

30. Program structure in our system prototype……………………………………... 85

31. Inputs and Outputs of the static analyzer………………………………………...86

32. Static soft schedule obtained from the output of the static analyzer…………….86

33. Basic operations performed by the run time control after the completion of the

MIX task each time step interval…………………………………………………… 89

34. An EDF schedule for representative tasks in two consecutive time steps……… 91

35. Basic framework of the experimental set up…………………………………….95

37. Data set generation from the NG test bed …………………………………….. 96

 viii

38. Simulation of real time sensor report delivery to application …………………...97

39. Measuring CPU idle time and deadline misses…………………………………. 99

40. Graphs illustrating the impact of different scheduling policies on tracking

accuracy as time for completion of processing of each set of sensor reports is

increased ………………………………………………………………………….. 101

41. Graphs illustrating the effect of the 3 different scheduling policies on the CPU

utilization of the system…………………………………………………………… 105

42. Graphs illustrating the effect of the 3 different scheduling policies on the number

of missed deadlines of the system………………………………………………… 108

43. These figures show how tracking accuracy is affected when we use per time

performance profiles in place of performance profiles based on average case numbers.

………………………………………………………………………………………113

44. Performance profile for dataset 5000_1………………………………………...114

45. Performance profile for dataset 4000_1………………………………………...115

46. Performance profile for dataset 3000_1……………………………………….. 115

47. This figure shows the fraction of remaining time that gets allocated to the

Observation Update task when the numbers are derived from models pertaining

to datasets 3000_1, 4000_1 and 5000_1…………………………………………. 116

48. This figure shows the fraction of remaining time that gets allocated to the

Inference task when the numbers are derived from models pertaining to datasets

3000_1, 4000_1 and 5000_1…………………………………………………….. 116

49. This figure illustrates the effect of tracking accuracy when the composition of

tasks is based on performance profile models pertaining to another data set with

higher number of entities. The legend entry 3000_1_PP_3000 signifies that the

performance profile for the 3000_1 dataset is applied to the same dataset.

3000_1_PP_4000 signifies that the performance profile for the 4000_1 data set is

applied to the 3000_1 dataset and so on……………………………………………117

50. These figures show the fraction of remaining time that get allocated to the

Observation and Inference tasks when the numbers are derived from the models

pertaining to datasets 3000_1 and 3000_2 datasets………………………………...119

51. This figure illustrates the impact on tracking accuracy when applying the

performance profile for a data set with a specific set of behaviors to another with a

different set of behaviors. The legend entry 3000_1_PP_3000_1 signifies that the

performance profile for the 3000_1 dataset is applied to the same dataset.

 ix

3000_1_PP_3000_2 signifies that the performance profile for the 3000_2 data set is

applied to the 3000_1………………………………………………………………120

52. This figure illustrates the impact on tracking accuracy when applying the

performance profile for a data set with a specific set of behaviors to another with a

different set of behaviors. The legend entry 5000_1_PP_5000_1 signifies that the

performance profile for the 5000_1 dataset is applied to the same dataset.

5000_1_PP_5000_2 signifies that the performance profile for the 5000_2 data set is

applied to the 5000_1………………………………………………………………120

 1

Chapter 1

Introduction and Motivation

Real time computing systems are defined as those systems in which the

correctness of the system depends not only on the logical results of the computation,

but also on the time at which they are produced [53]. The objective of real time

computing is to meet the timing and functional requirements of individual tasks.

Additionally it is also desirable that real-time systems achieve their functional

correctness and timeliness while being highly utilized.

Real time systems are specified by a set of timing constraints, called

deadlines. The objective of the system is to provide system solutions with requisite

functional correctness by the specified deadlines. Based on the nature of the timing

constraints that they need to satisfy, real-time applications and systems can be

characterized as “hard” real time systems or “soft” real time systems. In a hard real-

time system, if one or more activities miss a deadline or timing constraint, the system

fails. In contrast, a soft real-time system is one that does have timing requirements,

but occasionally missing them has negligible effects, as application requirements as a

whole continue to be met.

When activities have timing constraints, as is typical of real time computing

systems, scheduling these activities to meet their timing constraints is one major

design issue that needs to be addressed. Traditional real time scheduling algorithms

fall into two categories: static and dynamic. A static/pre-runtime approach calculates

(or predetermines) schedules for the system off-line. It requires prior knowledge of all

 2

task characteristics (arrival times, deadlines, release times and worst case execution

times). In a dynamic or runtime approach, the order of execution of tasks is decided at

runtime based on priorities attached to tasks. These priorities in turn may be

determined off-line (like in the case of the Rate Monotonic Algorithm[1] where

priorities are based on the frequency/periods of tasks) or online (like in the case of the

Earliest Deadline First algorithm (EDF) [1], where a task with the earliest deadline is

given highest priority). These scheduling techniques will be discussed in detail later

in Chapter 2.

1.1 Real time systems: The current paradigm

Traditionally the real time computing paradigm has included applications

from the arena of digital control, digital signal processing, multimedia and database

transactions [53].

Traditional real time systems like digital controllers operate in relatively

simple, well-characterized environments. Such “traditional” real-time systems have a

set of repeated tasks with known execution times and arrival patterns. The primary

challenge in building such systems is to schedule these independent periodic tasks

and ensure that they meet their deadlines. Classic real-time system approach is to

determine worst-case scenarios statically and manually, then build systems with

sufficient resources to meet goals.

 This approach works well only under the following scenarios:

� it is possible to develop an accurate workload model of the environment in which

the real time system operates. This ensures that Worst Case Execution Time

 3

(WCET) estimates for task execution times, arrival and release times are accurate

and hence guarantees that all timing constraints of tasks are met.

� the variance of actual execution times of tasks with reference to the WCET

estimates is low. This ensures that in addition to meeting the timing and

functional constraints of the system, the real time system is not underutilized.

However many complex real world applications such as real time database systems,

agile manufacturing, robotics and various command and control systems work in

unpredictable dynamic environments [3, 4, 11, 23, 26]. Accurate knowledge about the

resource and data requirements of many of these tasks is not known apriori because

the execution time and resource requirements of many of these tasks may be

dependent on input data (information and decision support system) or dependent on

sensor values (manufacturing plant, command and control system). The application of

dynamic priority driven scheduling algorithms like Earliest Deadline First (EDF) [1]

have been shown to be amenable to be applied to such systems. However due to the

unpredictably of dynamic schemes under overload conditions, current commercial

real time applications executing in dynamic environments use static priority driven

algorithms like Rate Monotonic (RMA) [1] and hence are generally over designed

/underutilized.

1.2 Real time computing: The next generation

The next generation of real time systems will have much more complex

system requirements and will work in uncertain dynamic environments [26, 27, 38,

39, 40, 41]. Hence the need for adaptable, flexible behavior in such systems would

 4

be of primary importance. This need is accentuated by the following emerging trends

in this field:

� Convergence of two major areas in computer science and engineering: Artificial

Intelligence (AI) and real time systems. AI systems are moving towards more

realistic domains requiring real time responses and real time systems are moving

towards more complex applications requiring intelligent behavior [39, 41].

� The growing need for real time fusion of huge amounts of data into synthesized

information in domains like avionics, medicine, defense, integrated vision,

robotics, finance/business etc.[26, 41, 44, 45, 46, 48] to facilitate real time

decision support and diagnosis.

Figure 1 illustrates the general structure of an emerging/next generation real

time computing system. In general, such a system would comprise a set of objects in

a scenario being monitored and controlled in real time by a computing system. The

computing system would be periodically provided with raw data about various

aspects of the objects and the scenario; the objective of the system would be to

process the plethora of data being supplied by various monitors and sensors, correlate

the various forms of data into information and use this information to update plans/

diagnosis etc. In addition, the system may be required to provide the information so

synthesized to the human operators the system interfaces with and also control

various aspects of the objects in the world to improve the state of the system.

 5

 Human Operator

 Figure 1: General structure of the next generation real time computing system

 In an open loop system (where the system only interfaces with human

operators), the time constraint would be to keep up with the data produced by the

world and provide synthesized information in real time to the human operators. In the

closed loop system (where the system feedbacks synthesized information to the

 World

(with controlled/monitored

objects/entities/plants etc.)

 Raw Data

Data

filtering/signal

processing

Correlation

Plan/Diagnosis

Integrated

visualization of

synthesized

data/plan/diagnosis

 6

world), the real time constraint would include the latency to control the objects in the

world (wherever applicable) so as to ensure temporal consistency of actions taken

based on processed data. If we look at the system illustrated in Figure 1, it comprises

applications pertaining to different domains including digital control, signal

processing, multimedia and artificial intelligence. Systems like this have existed for a

long time in the medical domain, defense and air traffic command and control

systems, diagnosis and trouble shooting of devices of all kinds, manufacturing

process planning, job-shop scheduling; the difference between the currently existing

systems and systems that researchers envision for the future is the levels at which the

system interfaces with human operators and the monitored/controlled world and

hence the demarcation of work between the machine and the human operators. The

scenario we discuss below will make this assertion more clear.

 Let us consider the example of real time medical data fusion in the intensive

care unit [41, 45] to understand the paradigm changes in the real time computing

arena. In today’s Intensive Care Unit (ICU), patients are surrounded by a battery of

instruments. Each performs a different monitoring task, generating masses of low-

level summary data and each device connected to the patient is separately controlled.

The clinician must integrate the data they generate, decide what is important and what

is irrelevant, and synthesize a high-level overview. If the patient goes into some type

of trauma (like shock), alarms sound to summon medical personnel. During the time

it takes for them to arrive, the patient’s condition deteriorates. Even worse, upon

entering the room, medical personnel must waste precious time trying to figure out

what has happened, why, and what to do about it. Faced with overwhelming data, the

 7

clinician may focus on a subset of the signals, ignoring other significant information

and overlooking problems. A computer system, that could see the whole picture

(integrating the results of many sensor readings), could initiate small actions (such as

adjusting the feed rate on a respirator) that might prevent the patient from

experiencing the trauma. In addition, if the patient did go into shock, the system could

diagnose the cause and have diagnostic (and treatment) suggestions ready by the time

medical personnel arrived. In cases where immediate steps must be taken, the system

could initiate precursor actions such as reducing a particular gas in a ventilator, which

should be done if emergency surgery may be required. Thus a system that integrates

data from multiple sources could present a high-level synthesis, minimizing

information overload and preventing fixation.

 To build such a real time system, we must achieve predictable, real-time

performance, accommodate heterogeneous approaches to the many separable sub

problems, and design a useful interface. Substantial computing power is needed to

process many continuous waveforms, convert them into a qualitative representation,

correlate information to identify the intermediate-level physiological state, and finally

produce high-level diagnoses and suggestions.

 Figure 2a illustrates the components of the real time system we discussed

above and also shows how each of the computing components pertaining to this

system in the medical domain fits into the general structure of the next generation real

time computing system we illustrated in Figure 1. Figure 2b shows the kind of

specifications a real time computing system in the ICU, as described above, is likely

to have. Firstly such a system would have a hybrid system model pertaining to a

 8

mixture of time triggered (periodic) and event triggered (aperiodic tasks). In addition,

the timing constraints of such a system would be hybrid, meaning the system would

have to meet a mixture of hard and soft deadlines.

Figure 2a: Components of a real time data fusion Figure 2b: Specifications of

system in the Intensive Care Unit(ICU) a real time data fusion

 system in the ICU

Figure 2: Components and specifications of a real time data fusion system in the ICU

1.3 Reference scenario: Sensor fusion for situational assessment

Another example of a complex real time scenario is sensor fusion for

situational assessment and command and control [46, 56]. This is the reference

scenario that we shall be considering in our evaluations in the rest of the thesis.

Sensor fusion is the combining of sensory data or data derived from sensory data

from disparate sources such that the resulting information is in some sense better than

would be possible when these sources were used individually.

System Model:

� Hybrid model

:Time and event

triggered model

Timing requirements:

� Hybrid: Both soft

and hard/deadlines

 9

A situational assessment/surveillance scenario comprises a number of

entities/objects with complex behaviors moving around in a region. Some platforms

(in the case of our reference scenario, these correspond to Unmanned Aerial

Vehicles) with sensors are placed across the region. The sensors sense different

attributes/features pertaining to the entities/objects in the scenario. The objective of

this system is to periodically fuse sensor reports from different platforms into a

situational assessment. One connotation of the term “situational assessment” could be

the determination of entity types/ identities at different locations in the region. This

boils down to a real time tracking and data association problem. Another objective of

such a system is to drive command and control platforms/sensors to optimize

situational awareness over the region.

Figure 3 illustrates the various components of such a system. The scenario

under surveillance comprises a region of interest with a number of moving objects

and sensor mounted platforms. One or more sensors are mounted on each platform

and each of the sensors detects some feature pertaining to an entity. The platforms

periodically deliver a set of sensor reports to a global fusion component, which

processes and correlates the data delivered from various sources. Subsequently, based

on the information so synthesized by the fusion component, a situational assessment

is made. The situational assessment may be in terms of identifying tracks and data

associations which are periodically fed back to the human operator or in more

complex scenarios may involve updation of plans that drive a command and control

algorithm which in turn redirects platforms based on the synthesized information. In

either case, the fusion algorithm along with the situational assessment and command

 10

and control components need to keep up with the rate at which sensor reports are

periodically delivered to the system in order to ensure a temporally consistent

assessment of the scenario. This requires a non-trivial amount of computing power.

The system model in the case of this scenario is time triggered because it comprises a

set of periodic tasks. The timing constraints are soft because no immediate

catastrophe results if a deadline is missed.

nininINInIninter
1. Region of Interest

E

E

E

E

E
E

E

E

2. Moving entities with complex

behaviors

3.Platforms with

sensors moving across the

P

P

P

P P

4. Fuse sensor reports into a

situational wareness. Fusion

AssAwareAwareness

E
E E

E

E

E

P

P

P

PP

5. Drive Command and

Control (C2) of Platforms /

Sensors to optimize the

situational awareness over

the region of interest over

Command /

Control

Region of Interest

Situational
Assessment

System Model: Time triggered

Timing constraints: Soft

Figure 3: Real time situational assessment scenario and system specifications

 11

1.4 Motivation: Soft computations and performance accuracy trade-

offs

As discussed in earlier sections, with most current real-time systems, the

implementation phase has little flexibility. A fixed set of `hard' services must be

mapped on to the available resources, and pre run-time checks must be made to

ensure that all timing constraints (typically, deadlines) are satisfied. In other words, in

the current real time computing paradigm, the objective of the system designer is to

ensure that each of the tasks involved in the system always completes execution

before a deadline is reached. This, of course, requires a predictable (bounded) model

of the environment's impact on the computer system. In the absence of a predictable

(bounded) model of the environment, with the use of existing dynamic priority driven

scheduling policies, deadlines can be met but not guaranteed and tasks that miss

deadlines cannot be predicted.

With the increasing complexity of real time systems, it is becoming infeasible

to build systems with sufficient resources to meet the functional and timing

requirements of all tasks at all times [39, 40, 41, and 45]. The good news however is

that, a growing number of kernels [47, 48, 49], currently offer and several others can

be structured to offer [50, 51, 52] a simple means of trading off computation time for

the quality of results. A lot of such kernels are particularly prevalent in the domains

of artificial intelligence, signal processing and multimedia. We call such kernels

“soft kernels” or “soft computations”. The chief characteristic of these computations

is the fact that they are able to provide cruder results before they complete, or they

may execute for a long time refining an already adequate result. In other words, such

 12

computations may be able to provide useful/incremental results before fully

completing execution.

The idea that such a trade-off can be characterized and used at run time to

optimize the performance of complex real time systems is the main motivation of this

thesis. Essentially soft computations facilitate meeting real time system deadlines

with sufficient system solution quality without having to design the system to support

worst case program execution. This is facilitated by the fact that soft computations

provide anytime solutions to problems. When designing a system with a number of

soft computing kernels, the main issue is ensuring solution quality is sufficient when

a deadline arrives rather than supporting the worst-case execution of the program.

 The observation that soft computing kernels exist and that their properties can

be exploited for real time performance was first made by Liu et. al in [24, 25] . They

proposed the imprecise model of computation that uses the strategy of dividing every

time-critical task into two logical subtasks: a mandatory subtask and an optional

subtask. The mandatory subtask is required for an acceptable result and must be

computed to completion before the task deadline. The optional subtask refines the

result. It can be left unfinished and terminated at its deadline, if necessary, lessening

the quality of the task result. We shall discuss the major differences between our

work and the work done by Liu et.al [24, 25] in Chapter 3.

In order to understand the opportunities provided by soft computing kernels to

improve real time performance, let us look at Figures 4 and 5 more carefully. Figure 4

shows typical computation time Vs quality (time-value) functions for different types

of computations. Figure 4a shows the time-value function for a traditional algorithm.

 13

What this curve essentially illustrates is the fact that a traditional algorithm has just

one output /solution which can be obtained provided a sufficient amount of time is

provided to the task for execution. If sufficient amount of time is not allocated to the

algorithm, no output/solution is obtained. Figures 4b, 4c and 4d are examples of time-

value functions for soft computations. What these figures illustrate is that when using

soft computing kernels, output/solutions of lesser quality/value are obtainable even if

execution of the kernels is restricted to a fraction of the time required for the

computation to deliver the best possible value/solution to the problem.

 Figure 4a Traditional algorithm Figure 4b Soft computation: Type 1

Figure 4c Soft computation: Type 3 Figure 4d Soft computation: Type 4

Figure 4: Functions representing the variation of solution quality with computation time for

traditional algorithms and those having soft computing properties

Figure 5 illustrates how soft computing kernels can facilitate efficient design

of real time systems by eliminating the need to design the system to support worst

case program execution. Figure 5a shows a traditional algorithm that is unable to

 14

produce a solution at the deadline (represented by the dotted line) in the absence of

sufficient resources to meet its processing needs. It produces a solution beyond the

deadline at which point of time the solution has lesser utility for the system(if the

deadline is soft) or causes catastrophic results (if the deadline is hard). Figure 5b

illustrates how a soft computing kernel would behave in a similar scenario. At the

deadline, the soft computing kernel provides a solution/output with lesser quality than

the maximum achievable by it. But the quality of the solution obtained at the deadline

is sufficient to meet the system specifications. Thus by meeting the system deadline

with a solution of sufficient quality, under resource constraints, the soft computation

can avoid the catastrophic consequences/decreased system utility resulting from a

traditional computation completing and providing an output beyond the deadline.

 Deadline (No output available because computation has not completed execution)

 Computation completed but deadline has been missed

Figure 5.a. A traditional algorithm in a resource constrained scenario does not provide a

solution at the deadline .

 Deadline (Intermediate solution available that is of sufficient quality to meet system specification)

 Computation completes with maximum achievable solution quality at this point of time

Figure 5.b A “soft computation” under resource constraints provides solutions with

sufficient quality at the deadline

 Traditional computation

 Soft computation

 15

In addition to the fact that it is becoming infeasible to design complex real

time systems with sufficient resources to meet all system deadlines, the motivation

for incorporating computation utility/value based run-time decisions is further

accentuated by the following two observations about the behavior of conventional

static and dynamic real time scheduling schemes:

� Static schemes use resources inefficiently. As there are sufficient resources to

cope with the maximum possible load on the system (i.e. worst-case execution

times, worst possible phasings, and worst-case arrival of work), the average

resource utilization is low. Hence, there is considerable scope for value-added

computation.

� Though current dynamic schemes provide better resource utilizations, they react

unpredictably to failures and overloads .Static schemes may be able to cope with

certain failures (as defined in its failure model), but once the system moves

outside its failure model , no level of service can be depended upon. Hence, it is

desirable to allow graceful degradation (of service) when resources are scarce.

1.5 Thesis contributions and organization

In the presence of a conglomeration of traditional “non-soft” and “soft

computing” kernels (as defined in section 1.4) in a real time system, one can envision

adopting a completely different/novel approach to the design of real time systems.

Instead of trying to design a system that would meet a specific set of timing

constraints, the design problem can be divided into three orthogonal issues:

� decomposition of the total system into performance components

� implementation of as many of these basic components as “soft kernels “

 16

� formulation of a model of the quality of functional correctness of the system as a

function of various compositions of the software components. Such a model can

subsequently be used to dynamically schedule tasks and decide the optimal

composition of basic tasks/components at run time.

In this thesis, we try to answer a few questions pertaining to this design

philosophy in the context of a specific complex real time scenario [56]. More

specifically, we attempt to increase the flexibility of real-time systems by allowing

certain decisions about the system's behavior like the composition of “soft”

tasks/kernels to be made at run-time. This requires some form of dynamic scheduling.

The need to support value-added computation and graceful degradation is necessarily

complicated by the reality that not all services have equal utility at all times. We use

models that characterize the performance accuracy trade-offs of kernels to control the

run-time decision process and determine the optimal composition of soft tasks given a

time constraint /deadline.

The work done as a part of this thesis uses the real time system/scenario

described in section 1.3 as the reference scenario. The system prototype of this

scenario comprises the following:

1. A parameterized simulation framework/ test bed [55] provided by Northrop

Grumman Corporation that simulates a defense surveillance scenario with moving

entities having complex behaviors and a number of platform mounted sensors

monitoring them.

2. The Information Matrix Data Association algorithm developed by Schumitsch

et.al [58] to solve the complex tracking and data association problem in the

 17

context of sensor fusion. The MATLAB version of the code provided by the

authors was converted to C so that it could be used for our study.

In this thesis, we try to demonstrate the usefulness of the design philosophy

for real time systems described above through the following contributions:

1. We build a system prototype of the real time scenario and application (real time

sensor fusion and situational assessment) mentioned in section 1.3 and discussed in

detail in Chapter 4. The development of this system prototype involved:

a. Porting the MATLAB code of the Information Data Association algorithm

provided by the authors of [58] to C.

b. Integrating and applying the sensor fusion algorithm to a cognitive test bed,

provided by Northrop Grumman that simulates a situational assessment scenario.

c. Building a preliminary framework for investigating different real time scheduling

policies in the context of the system prototype and the reference scenario.

2. We thereafter identify “soft computations” in the system prototype of the real

time scenario under consideration. We subsequently characterize the performance-

accuracy tradeoffs of individual “soft kernels”/”soft computations” that form a part of

the system using performance profiles.

3. We propose and demonstrate the benefits of a methodology of using performance

profiles to build models that can be used at runtime by a dynamic scheduler for

determining the optimal composition of tasks so as to maximize the utility of the

system given a specific limited amount of time to meet the system objective. This

answers the question about how much time should be allocated to each of the

components of the real time system to maximize its overall utility.

 18

4. We quantify the benefits of using a performance profile based model for

scheduling a mixture of traditional “non-soft” and “soft computing” tasks as opposed

to using conventional static scheduling and dynamic Earliest Deadline First (EDF)

schemes. We quantify the gains both in terms of the functional correctness of the

system, the CPU utilization and the number of missed deadlines.

5. We quantify how the variance in the dynamics/performance of the “non-soft”

kernels of the system justifies the use of run-time monitoring rather than determining

a fixed running time/composition of “soft” tasks when the system is activated. We

quantify the gains both in terms of the functional correctness of the system and the

CPU utilization.

6. We also perform a sensitivity study to determine how the models derived from

 performance profiles change with changes in various input parameters of the datasets

and identify the potential benefits of learning performance profiles online.

 The rest of this thesis is organized as follows. Chapter 2 describes background

on real time systems. Chapter 3 discusses related work in the area of real time

scheduling. Chapter 4 describes the system prototype that has been built. This

includes description of the reference real time problem scenario, the sensor fusion

algorithm and the test bed /datasets used in the experiments. Chapter 5 explains the

methodology used to characterize soft computations and performance-accuracy trade-

offs. Chapter 6 discusses the methodology for run-time scheduling of soft

computations using models derived from performance profiles. It also describes the

policies with which our scheme has been compared. Chapter 7 discusses our

experimental results. Chapter 8 summarizes and concludes our work.

 19

Chapter 2

Background and Terminology: Real time Systems

 In this chapter, we introduce and discuss the basic concepts and terminology

in the real time systems domain.

2.1 Real time computing

Real time computing systems are defined as those systems in which the

correctness of the system depends not only on the logical results of the computation,

but also on the time at which they are produced [53]. The objective of real time

computing is to meet the timing and functional requirements of individual tasks.

Additionally it is also desirable that real-time systems achieve their functional

correctness and timeliness while being highly utilized.

As an example of a conventional real-time system, consider a computer-

controlled machine on the production line at a bottling plant. The machine's function

is simply to cap each bottle as it passes within the machine's field of motion on a

continuously moving conveyor belt. If the machine operates too quickly, the bottle

won't be there yet. If the machine operates too slowly, the bottle will be too far along

for the machine to reach it. Stopping the conveyor belt is a costly operation, because

the entire production line must correspondingly be stopped. Therefore, the range of

motion of the machine coupled with the speed of the conveyor belt establishes a

window of opportunity for the machine to put the cap on the bottle. This window of

opportunity imposes timing constraints on the operation of the machine. Applications

 20

with these kinds of timing constraints are considered real time. In this case, the timing

constraints are in the form of a period and deadline.

2.2 Deadlines and Periods

The period is the amount of time between instances of a regularly repeated

task. Such repeated tasks are called periodic tasks. For instance in the context of the

example mentioned earlier, suppose bottles pass under the machine at a rate of five

per second. This means a new bottle shows up every 200ms. Thus, the period of the

task is 200ms. Note that whether bottles pass once per second or 100 times per

second, it doesn't change the fact that this is a real-time system. Real time does not

mean fast; it means that a system has timing constraints that must be met to avoid

failure.

The deadline is a constraint on the latest time at which the operation must

complete. Suppose the window of opportunity is 150ms. The deadline is then 150ms

after the start time of the operation. In our example, the start time is defined as the

moment the bottle enters the range of the machine. This bottle example has physical

constraints, namely the speed of the conveyor belt and the machine's range of motion,

that dictate the period and deadline of the task.

In many real-time systems, the period is a design parameter. Consider a cruise

control mechanism on an automobile. The basic operation of cruise control is to keep

the speed of the vehicle constant. Suppose the driver selects 60mph as the desired

speed. If the vehicle is going slower than 60mph, then the embedded computer sends

 21

a signal to the engine controller to accelerate. If the vehicle is going faster than

60mph, it sends a signal to decelerate. A question to ask is: how often does the

computer check if the current speed is too slow or too fast? The answer is called the

control rate (or frequency). It is defined by the control system designer, who will try

to find a rate that is fast enough to meet specifications, but not so fast that it adds

unnecessary cost to the system. The period is then the reciprocal of the rate (that is,

period = 1/rate). The deadline is typically the beginning of the next cycle of a periodic

task, because, to start the new cycle, it needs to be finished with the old one.

Communication systems also have real-time constraints. Suppose a

multimedia application needs to compress video data at a rate of 30 frames per

second. Before it processes a new frame, it needs to finish processing the old frame,

otherwise data might get lost in the form of dropped frames. The period of such a task

is the frame rate. Processing the old frame must complete before processing on the

new frame can begin. Therefore, the deadline is the beginning of the next frame.

2.3 Handling Aperiodic tasks

Not all real-time tasks are periodic. Aperiodic tasks, also called aperiodic

servers, respond to randomly arriving events. Consider anti-lock braking. If the driver

presses the brake pedal, the car must respond very quickly. The response time is the

time between the moment the brake pedal is pressed, and the moment the anti-lock

braking software actuates the brakes. If the response time was one second, an

accident might occur. So the fastest possible response is desired. But, like the cruise

control algorithm, fastest is not necessarily best, because it is also desirable to keep

 22

the cost of parts down by using small microcontrollers. What is important is for the

application requirements to specify a worst-case response time. The hardware and

software is then designed to meet those specifications.

Note that many aperiodic tasks can be converted to periodic tasks. This is

basically the same transformation as converting an interrupt handler to a polling task.

Instead of reacting to an external event the moment it occurs, the software polls the

external input regularly, perhaps tens or hundreds of times per second. If the awaited

event is detected, the appropriate computation is enacted.

2.4 System Models

There are two general paradigms for the design of real-time systems known as

Time-Triggered (TT) and Event-Triggered (ET) architectures [53], both of which are

explained next.

� System activities in TT are initiated at predefined instants, and therefore TT

architectures require the assessment of resource requirements and resource

availability prior to the execution of each application task. Each task’s needed

resources and the length of time over which these resources will be used can be

computed off-line in a resource requirement matrix. If these requirements cannot be

anticipated, then worst case resource and execution time estimates are used. Thus, TT

is prone to wasted resources and lowered system utilization since resource

requirement estimates are pessimistic. However, TT architecture can provide

predictable behavior due to its pre-planned execution pattern.

� System activities in ET are initiated in response to the occurrence of particular

 23

events that are possibly caused by the environment. In ET architectures, an excessive

number of possible behaviors must be carefully analyzed in order to establish their

predictability, because resource needs and availability may vary at run-time. Thus, the

resource-need assessment in ET architecture is usually probabilistic. Although, ET is

not as reliable as TT architecture, it provides more flexibility and is ideal for more

classes of applications, which do not lend themselves to predetermination of resource

requirements.

2.5 Hard and soft real time systems

Real-time applications can be modeled as a set of tasks, where each task can

be classified according to its timing requirements as hard or soft. A hard real-time

task is the one whose timely and logically correct execution is considered to be

critical for the operation of the entire system. In a hard real-time system, if one or

more activities miss a deadline or timing constraint, the system fails. Failure includes

damage to the equipment, major loss in revenues, or even injury or death to users of

the system. One example of a hard real-time system is a flight controller. If action in

response to new events is not taken within the allotted time, it could lead to an

unstable aircraft, which could, in turn, lead to a crash.

The deadline associated with a hard real-time task is conventionally termed a

hard-deadline. Since missing a hard-deadline can result in catastrophic consequences;

such systems are known as safety-critical. Thus, the design of a hard real-time system

requires that a number of performance and reliability trade-off issues to be carefully

evaluated.

 24

In contrast, a soft real-time system is one that has timing requirements, but

occasionally missing them has negligible effects, as application requirements as a

whole continue to be met. Consider again the cruise control application. Suppose the

software fails to measure current velocity in time for the control algorithm to use it.

The control algorithm can still use the old value, because the amount that the velocity

would have changed between the last sample and this sample is so small that it can

still operate correctly. Missing several consecutive samples, on the other hand, could

be a problem, as the cruise control would likely stop meeting application

requirements because it is not able to maintain the desired speed within a proper error

tolerance. Thus soft real-time application is characterized by a soft-deadline whose

adherence is desirable, although not critical, for the functioning of the system. That is,

missing a soft-deadline does not cause a system failure or compromise the system’s

integrity. There may still be some (diminishing) value for completing an application

after its deadline, without any catastrophic consequences resulting from missing such

a deadline.

The distinction between a soft and a hard real time system is however

somewhat fuzzy [53]. As illustrated in Figure 6, the meaning of real-time spans a

spectrum. At one end of the spectrum is non-real-time, where there are no important

deadlines (meaning all deadlines can be missed). The other end is hard real-time,

where no deadlines can be missed. Every application falls somewhere between the

two endpoints.

 25

 Figure 6: The real time spectrum [53].

2.6 Types of real time tasks

As a direct consequence of these timing requirements and the system models

we mentioned earlier, real time application tasks can be classified as periodic,

aperiodic, or sporadic tasks.

1. Periodic tasks are those tasks that execute at regular intervals of time i.e. every ‘T’

time units – corresponding to TT architectures. These tasks typically tend to have

hard deadlines, characterized by their period(s) and their required execution time per

period, which is usually given, by a worst-case execution time.

2. Aperiodic tasks are those tasks whose execution time cannot be anticipated apriori.

This means the activation of aperiodic tasks is essentially a random event caused by

a trigger – corresponding to ET architectures. Such a behavior does not allow for

worst-case analysis, and therefore aperiodic tasks tend to have soft deadlines.

3. Sporadic tasks are those tasks that are aperiodic in nature, but they have hard

deadlines. Such tasks can be used to handle emergency conditions and/or exceptional

situations. Due to the nature of hard deadlines, worst-case calculations may be

facilitated by a schedulability-constraint [54, 57], which defines a minimum period

between any two sporadic events from the same source. Such tasks are converted to

 26

periodic tasks by basically using the same transformation as converting an interrupt

handler to a polling task.

2.7 Predictability and Determinism

Two more terms often used to describe real-time systems are predictable and

deterministic. These terms are related, but because they are often interchanged, they

are often a source of confusion.

Real-time systems researchers generally use the term predictable to refer to a

system whose timing behavior is always within an acceptable range. The behavior is

specified on a system-wide basis, such as "all tasks will meet all deadlines."

Generally, the period, deadline, and worst-case execution time of each task need to be

known to create a predictable system.

A deterministic system is a special case of a predictable system. Not only is

the timing behavior within a certain range, but that timing behavior can be pre-

determined. For example, a system can be designed with pre-allocated time slots for

each task. Execution for each task occurs only during those time slots. Such a system

must have execution time for every task known, as well as no anomalies that might

cause deviation from the pre-determined behavior. That is, of course, difficult to

achieve. Fortunately, determinism is not essential to build predictable real-time

systems.

 27

2.8 Real time scheduling

When activities have timing constraints, as is typical of real time computing

systems, scheduling these activities to meet their timing constraints is one major

problem that comes to mind. Traditional real time scheduling algorithms fall into two

categories: static and dynamic.

� A static/pre-runtime approach calculates (or predetermines) schedules for the

system off-line. It requires prior knowledge of all task characteristics (arrival

times, deadlines, release times and worst case execution times).

� In a dynamic or runtime approach, the order of execution of tasks is decided at

runtime based on priorities attached to tasks. These priorities in turn may be

determined off-line (like in the case of the rate monotonic algorithm [1] where

priorities are based on the frequency/periods of tasks) or online (like in the case

of the Earliest Deadline First algorithm [1], where a task with the earliest deadline

is given highest priority).

Certainly in safety critical systems it is reasonable to argue that no event should be

unpredicted and that schedulability should be guaranteed before execution [5]. This

implies the use of a static scheduling algorithm or at least a static priority driven

algorithm. Dynamic priority driven approaches do, nevertheless, have an important

role particularly in soft real time systems or in applications where guaranteed worst

case execution time /scenario is not possible.

 28

Chapter 3

3. Related Work

In this chapter, we discuss prior research related to our work. Our work is

primarily related to research in the area of real time scheduling. Within the context of

real time scheduling, we discuss work in conventional real time scheduling

techniques [1-23] as well as real time scheduling techniques based on imprecise

computations [24, 25, 34, 36] .

The landmark paper in the arena of real time scheduling has been from Liu

et.al [1], where the authors theoretically prove the optimality of two priority driven

scheduling algorithms for real time systems scheduling. They propose the Rate

Monotonic (RM) algorithm, which is a static priority driven algorithm that assigns

priorities to tasks based on the size of their periods. The tasks with smaller periods are

assigned higher priorities. These task priorities are then used at run time to make a

decision about which task is executed at a particular point of time. The other

algorithm the authors propose in [1] is the Earliest Deadline First (EDF) algorithm,

which is a dynamic priority driven algorithm where the task with the earliest deadline

is assigned the highest priority at any point of time and is chosen for execution. Both

these proposed algorithms have been mathematically proven to be optimal under the

following constraints of the task model:

� All tasks under consideration are periodic

� All tasks are preemptive

 29

� Deadlines consist of run-ability constraints only-i.e. each task must be complete

before the next request for it occurs.

� The tasks are independent in that requests for a certain task do not depend on the

initiation or completion of other tasks.

� Run time for each task is constant work.

This classical paper on real time scheduling was followed by various others

which proposed algorithms /heuristics based on these two algorithms but differed in

one of the following aspects:

1. Priority assignment schemes: Liu et.al.[1] proposed an algorithm called

Minimum Laxity First(MLF) that assigns a laxity to each task at run time. At any

point of time, the scheduler selects the task with the minimum laxity to execute.

Laxity is defined as: laxity = (deadline time - current time - CPU time needed). A

laxity of ti means that even if the task is delayed for ti time units, it will still meet its

deadline. A laxity of ‘0’ means that the task must be executed now or will fail to meet

its deadline. Main difference between MLF and EDF is that MLF takes into

consideration the execution time of a task. Like EDF, MLF has a schedule bound of

100% and there is no way to guarantee which task(s) will fail in transient overload.

The analysis of MLF is also based on the same task model as EDF and RM

algorithms. In [22], Stewart et.al propose the Maximum Urgency First(MUF)

heuristic which is a combination of fixed and dynamic priority scheduling (a.k.a.

mixed priority). Each task is assigned an urgency which is defined as a combination

of two fixed priorities and one dynamic priority. One of the fixed priorities, the

criticality, has precedence over the dynamic priority. Meanwhile, the dynamic

 30

priority has precedence over the other fixed priority, called the user priority. The

dynamic priority is inversely proportional to the laxity of a task. MUF consists of two

parts. The assignment of the criticality and user priority (done apriori), and the

actions of the MUF scheduler done at run-time. Note that static priorities are assigned

once and do not change during execution. The dynamic priority is assigned at run-

time, inversely proportional to the laxity. The task model for the analysis of the MUF

algorithm is the same as the one used by Liu et. al.[1]. In [21], Salmani et.al proposed

the Modified Maximum Urgency First (MMUF) heuristic. In this scheme, they use

earliest deadline first and modified least laxity first algorithms for calculating the

dynamic priorities of the MUF algorithm.

2. Assumed task model: In [16] , Li et.al propose group-EDF (gEDF), a heuristic

for scheduling soft non-preemptive tasks and is based on dynamic grouping of tasks

with deadlines that are very close to each other. They use Shortest Job First (SJF)

technique to schedule tasks within the group. They were motivated by the belief that

grouping tasks dynamically with similar deadlines and utilizing a secondary criteria,

such as minimizing the total execution time (or other metrics such as power or

resource availability) for scheduling tasks within a group, can lead to new and more

efficient real-time scheduling algorithms. In [20], Buttazzo et.al propose a set of

heuristics based on Earliest Deadline First for scheduling soft aperiodic tasks. In [54],

Rajkumar et.al extend rate-monotonic scheduling theory to periodic tasks that are not

independent, but must contend for exclusive access to shared resources.

3. Handling of overload conditions: In [8, 9, 12, 13, 18], variations of the rate

 31

monotonic and earliest deadline first algorithms have been proposed for handling

overload conditions in real time systems

There have been a lot of other heuristics/algorithms [10, 14, 15, 16, 17, 19,

20] proposed in the conventional real time scheduling paradigm. Unlike conventional

real time scheduling techniques like Rate Monotonic and Earliest Deadline First, our

dynamic scheduling scheme does not take scheduling decisions based on task

priorities. Instead our scheduling scheme uses performance profile based models to

determine the optimal composition of tasks at any point of time to maximize system

utility at a deadline.

 Our work is closest to the research on scheduling schemes based on the

imprecise computation model. The imprecise computation model was proposed by

Liu et.al in [24, 25] .The imprecise computation technique uses the strategy of

dividing every time-critical task into two logical subtasks: a mandatory subtask and

an optional subtask. The mandatory subtask is required for an acceptable result and

must be computed to completion before the task deadline. The optional subtask

refines the result. It can be left unfinished and terminated at its deadline, if necessary,

lessening the quality of the task result. The result produced by a task when it

completes is the desired precise result, which has an error of zero. If the task is

terminated before completion, the intermediate result produced at that point is usable

as long as the mandatory subtask is complete. Such a result is said to be imprecise.

The system schedules and executes to completion all mandatory tasks before their

deadline but may leave less important optional tasks unfinished if necessary.

 32

In [36], Stankovic et.al have examined the performance of various scheduling

policies for managing transient overload in an imprecise computation system. If the

load on the computation system is low, the scheduler is designed to provide some

prescribed balance of accuracy and response time. If the load is high, the scheduler is

designed to keep response time bounded by sacrificing accuracy.

The main differences between the scheduling approach proposed by us and

researchers working on the imprecise computation model are:

1. Objective characterization of the quality of soft computations:

We objectively quantity the performance-accuracy trade-offs of “soft

computations” in the form of performance profiles by measuring a concrete, well-

defined aspect of the quality of the results of soft computations as a function of

execution time. The performance profiles are obtained through calculations of

concrete metrics rather than human intuition. To the best of our knowledge, the

proposed “precision value” functions of the imprecise computation model are

subjective [24, 25, 27, 38].

2. Composition of tasks

 The imprecise computation model does not address the issue of optimal

composition of tasks given a specific time constraint. Instead, it deals with individual,

independent tasks. Since the problem definition imposes timing constraints on the

tasks, it allows the tasks to be temporally dependent, but it assumes that the results of

each task and their qualities are independent. This is a major simplification that

cannot be made when dealing with a system where the goal is to achieve a system

 33

objective (as in the case of complex real time systems) with a number of

interdependent tasks.

Our task model assumes that a real time application is composed of individual

software modules/tasks, many of which may be interdependent. Tasks are a part of a

single application with a system wide objective. Our objective is to maximize the

value of a particular composition of tasks at a deadline so as to meet the system

objective in the best possible way given time and resource constraints. In simple

terms, our scheduling scheme addresses a decision problem involving the choice of a

collection of services to execute so the `best possible' outcome ensues for the system.

At various decision points (at run-time) there are a set of tasks/services that are

available for execution. Unfortunately there may not be enough resources to execute

all services to completion. And hence, a decision must be made. This decision may

involve picking out the `extra' services to support when resources are spare, or which

services to sacrifice and to what extent when resources are scarce. The issue of

determining the optimal composition of tasks so as to maximize the value of the

system objective is addressed in our work.

3. To the best of our knowledge, the benefits of conventional scheduling techniques

as well as those based on the imprecise computational model have been demonstrated

on randomly generated, periodic, independent task sets. We demonstrate our

methodology on a real application and a real scenario. The downside of this is the fact

that some of our assumptions become application specific. However, we believe that

this is a reasonable first step for realistically demonstrating the benefits we claim

from our work.

 34

Another important area related to the work we’ve done is the arena of anytime

algorithms. The derivation of performance profiles for individual “soft kernels” /

”soft computations” used in our evaluations is based on similar techniques suggested

by Zilberstein et.al in [50, 51, 52]. In these papers, Zilberstein et. al talk about various

issues in the context of using anytime algorithms in intelligent systems.

 35

Chapter 4

4. Detailed Problem Formulation

As mentioned in section 1.3, in this thesis we consider the real time sensor

fusion and situational assessment challenge problem posed by Northrop Grumman

Corporation as a part of an ongoing DARPA project. Here we provide a more detailed

description of the problem scenario and the components of the system prototype we

have built based on this scenario. First we describe the UAV sensor fusion challenge

problem posed by Northrop Grumman. Thereafter, we describe the system prototype

used for evaluating solutions to the challenge problem. In this context, we describe

Northrop Grumman’s cognitive sensor fusion simulation test bed, the Information

Data Association Algorithm and the application of this algorithm to the test bed data.

Finally we discuss the real time problem formulation pertaining to this challenge

problem.

4.1 Reference real time scenario: Northrop Grumman’s challenge

problem for sensor fusion and situational assessment

The real time sensor fusion problem posed by Northrop Grumman (

introduced in section 1.3) [56] captures the general difficulty of processing the large

number of reports from a distributed dynamic system and processing those reports to

determine a unified situational assessment in real time. This class of problems

stresses processing techniques with large numbers of reports to be processed and a

strong variability in processing from one instance to the next. The difficulty in this

process is to accurately fuse reports and satisfy real-time information needs. In most

 36

scenarios, critical decisions must be made within seconds, not minutes or hours. The

problem is further complicated by the high-speed feedback loop required to drive

optimal sensing, based on the quality of the overall fused situational awareness.

 The challenge problem posed has two parts to it. The sub problem we deal

with comprises a system with a large number of entities (objects) with complex

behaviors moving in a region. Some sensor mounted Unmanned Aerial Vehicle

(UAV) platforms also move around in the region attempting to gather data about the

entities. The problem is to fuse the large number of sensor reports into a situational

assessment of the region in terms of tracking entity types and identities by solving the

data association problem. Here the real time constraint as shown in Figure 7 is to

periodically provide a situational assessment to a human operator in terms of

associations of tracks with entity identities. This is the scenario we are dealing with in

this thesis. In order to meet the user defined real time constraint and provide a

temporally consistent situational assessment, the global fusion algorithm has to keep

up with the rate at which sensor reports are delivered so as to maximize the utility of

the system objective at each user defined deadline.

Situational

 Assessment

Figure 7: Real time reference problem scenario: UAV sensor fusion for situational assessment

 World
(Entities with

complex

behaviors and

UAV platform

mounted sensors

mving in a region)

Global sensor fusion
Periodic sensor

Situational assessment

User defined soft

deadline

 37

The system prototype of the scenario shown in Figure 7 comprises the following

components:

� The world is modeled by the Northrop Grumman’s cognitive test bed (described

in detail in section 4.2.2)

� The global fusion component is implemented using the C version of the

Information Form Data Association algorithm [58] (described more in detail in

section 4.2.1)

4.2 System prototype

In this section, we discuss the main components of the system prototype of the

real time scenario described in section 4.1

4.1.1 Information Form Data Association Algorithm (IDA)

The Information Form Data Association algorithm [58], addresses the

problem of data association in online object tracking. The data association problem

arises in a large number of application domains, including computer vision, robotics,

and sensor networks. This algorithm forms the core of the sensor fusion component of

the real time scenario discussed in this thesis.

 Figure 8 a. Tracking N objects poses N! possible Figure 8.b A permutation matrix

 Associations representing one of 4! possible

 associations when N=4

 Figure 8: Illustration of the data association problem for 4 objects and 4 tracks

 38

Given the problem of associating N objects with N tracks as shown in Figure 8a, the

standard probabilistic solution requires exponential update time and exponential

memory. This is because each data association hypothesis is expressed by a

permutation matrix as shown in Figure 8b that assigns computer-internal tracks to

objects in the physical world. An optimal filter would therefore need to maintain a

probability distribution over the space of all permutation matrices, which grows

exponentially with N, the number of objects in the world. This essentially means that

to do a full Bayesian solution, we must maintain the posterior probabilities p(A) of N!

permutation matrices represented by A.

The common remedy involves the selection of a small number K of likely

hypotheses. This is the core of numerous widely used multi-hypothesis tracking

algorithms [59]. More recent solutions involve particle filters [60], which maintain

stochastic samples of hypotheses. Both of these techniques are very effective for

small N, but the number of hypothesis they require grows exponentially with N.

The Information Form Data Association algorithm (IDA) [58] is a filter

algorithm that scales to much larger problems. This filter maintains an information

matrix (henceforth represented by Ω) of size N × N (where N is the number of objects

in the world), which relates tracks to physical objects in the world. The rows of Ω

correspond to object identities, the columns to the tracks of the tracker. Ω is a matrix

in information form, that is, it can be thought of as a normalized log-probability.

 The key innovation is a representation of the data association posterior in

information form, in which the “proximity” of objects and tracks are expressed by

 39

numerical links. Updating these links requires linear time, compared to exponential

time required for computing the exact posterior probabilities.

This algorithm assumes an online tracking system that receives sensor data,

conveying information about the identity or type of objects that are being tracked.

The algorithm also models the uncertainty introduced through the tracker’s inability

to reliably track individual objects over time due to mixing of tracks.

As mentioned earlier, the central data structure in the Information Form Data

Association algorithm is the information matrix (Ω). This matrix encodes the

probability distribution across the different possible permutations/associations of

objects with tracks.

The three main subparts of the algorithm are:

1. Mixing Updates: This part of the algorithm models the uncertainty in the system

due to tracks being very close to each other

Figure 9: Representative mixing update of the Information Matrix (Ω)Ω)Ω)Ω)

Closeness/mixing of tracks causes a loss of information with respect to the

data association. The tracker confusing two objects amounts to a random flip of two

columns in the data association matrix/permutation matrix represented by A. Let {B1,

B2,. . . ,Bm} be a set of permutation matrices, and {β1,β2,β3,β4,...βm} be a set of

associated probabilities. The “true” permutation matrix undergoes a random transition

 40

from A to ABm with probability βm. This corresponds to the following update rule in

the information matrix corresponding to the mixing of two tracks:

Here the expression “exp” denotes a component-wise exponentiation of the matrix;

the result is also a matrix. This update implements a “dual” of a geometric mean; here

the exponentiation is applied to the individual elements of this mean, and the

logarithm is applied to the result. It is important to notice that this update only affects

elements in Ω that might be affected by a permutation Bm; all others remain the

same. In other words, if affects only those columns corresponding to tracks that mix.

2. Observation Update: This part of the algorithm updates the information matrix

based on local observation data about objects.

Figure 10: Representative update operation for an observation that links track 2 to object 4

The update rule employed by the algorithm for performing observation updates on the

information matrix is as follows:

If probability of object ‘i’ being track ‘j’ given sensor reading zj = zij i.e.

then

 41

Αfter each update, a normalization operation is performed to make sure that all

elements in Ω are positive.

3. Inference: This part of the algorithm infers the data associations of objects with

tracks

 Figure 11a: Example Information Matrix Figure 11b: Permutation matrix

 (Columns= tracks; Rows=objects) representing optimal data association

Using the information matrix shown in Figure 11a, if we were to solve the

data association problem using a maximum likelihood formulation, we would look at

each column individually, pick the maximum value corresponding to that column and

then consider the row index corresponding to the maximum value to be the correct

data association to the track represented by the column under consideration. For

instance, by looking at each of the four columns corresponding to the information

matrix represented in Figure 11a in isolation, with a maximum likelihood formulation

for inferring track-object associations, it would appear that track 1 should be

associated with object 3, track 2 to object 1, track3 to object 2 and track 4 to object 3

again. However this solution associates both tracks 1 and 4 to object 3, which is

 42

incorrect. Figure 11b represents the permutation matrix representing the optimal data

association, where track 1 is associated with object 4, track 2 with object 1, track 3

with object 2 and track 4 with object 3. The objective of the inference part of the

algorithm is to obtain the optimal data association from the information matrix. This

optimal data association can be performed using a simulated annealing formulation

which is done in our system prototype..

4.2.2 Northrop Grumman’s cognitive test bed

Northrop Grumman’s UAV sensing cognitive test bed environment is a non-

real time simulation environment designed to allow the opportunity to flexibly test

and characterize sensor fusion and command and control algorithms within the full

context of the dynamic UAV sensing problem. The test bed contains functionality to

wrap an algorithm with interfaces to sensors and platforms and to allow the algorithm

to track its own situational awareness. Behind the scenes, a behavioral model of the

physical entities, platforms, and sensors drive the simulation. The functional

correctness of the various algorithms applied to this test bed is determined through

comparison to the simulation truth over time. Logging capabilities allow the test bed

to generate data sets for external testing and analysis. Figure 12 shows the main

components of the test bed.

 43

Figure 12: The components of the Northrop Grumman’s cognitive test bed

The test bed supports two modes of internal algorithms, as shown in Figure 13. A

default command and control (C2) module provides a simplistic path following

behavior for the platforms to generate sensor reports for testing of a sensor fusion-

only algorithm. In addition, the default C2 behavior can be removed, and a combined

C2-fusion algorithm can be used to not only generate the situational awareness, but

also drive the positioning of the various UAV assets.

Figure 13: The test bed provides a capability to test both algorithms which

actively drive the UAV platforms and sensors and those that only process

the reports as generated.

 44

The test bed models a world specified by a map and a region of interest.

Sensors reside on platforms, which move over a two-dimensional region of interest.

Within this region of interest, entities with various movements and behaviors may

reside. A sensor passing within range of an entity generates a report. The report

includes estimates of the location and velocity of the detected entity; and it includes

one reading of several possible components that make up the entity's signature. A

single report may not uniquely identify an entity; but, an aggregate of reports

provides a better picture of the total signature, increasing the likelihood of

identification of the type of entity observed.

Each entity type has a signature that is defined by some number of signature

(feature) elements. Each feature element in the signature can be represented as a

probability distribution function within a separable (but not necessarily independent)

dimension in an N-dimensional space. For simplicity, the test bed assumes a Gaussian

probability distribution function, represented by a mean and a standard deviation.

where S
T

is the mean signature of the T
th

entity type;

S
1T

, S
2T

, … S
NT

are the N-dimensional mean signature (feature) elements of S
T
;

and

S
Tσ

similarly represents the standard deviation component.

 45

From these values, the probability distribution function (PDF) can be calculated by

the following equation:

where : S
nT

, S
nTσ

are given as per equations 1 and 2; and PDF(v) is the PDF over the

dimensions given by the vector v .Note that this PDF gives the probability that a

specific type T will generate a signature at the N-dimensional signature location given

by the vector v.

Using a priori knowledge of these probability density functions, sensor reports

can be processed with a number of algorithms to determine the classification of an

entity.

� Inputs to the test bed:

The user interacts with the test bed by modifying two XML input files:

1. dstb.xml: In this xml file , general parameters associated with the configuration of

the world being simulated are specified. These parameters include types of entities,

platforms, sensors, signatures, entity behaviors, time for which the world needs to be

simulated, periodic sensor reporting interval etc.

2. scenario.xml: In this xml file, scenario dependent parameters, such as the map of

the region, size of the region of interest and the number of platforms, sensors and

entities are specified.

 46

These two files support a wide variety of flexibility in configuration. Additional

command line flags may also be added to control the behavior of the test bed.

� Outputs of the test bed :

1. The test bed, written completely in C++, provides three developer APIs :

� The Sensor Report API allows a fusion algorithm to get sensor report and

 truth report information at discrete intervals of simulation time.

� The C2 API allows a Command and Control algorithm to command

Platforms

� The SA (situational awareness) API allows a fusion algorithm to register its

awareness.

When testing a fusion algorithm while using the default command and control

algorithm, the fusion component uses the sensor report API to obtain sensor and truth

reports every discrete interval of simulation time, processes the sensor reports and

compares it to the provided truth information to determine the level of functional

correctness.

2. The sensor and truth report data over all time steps of the simulation are dumped

into an xml file at the end of a simulation. This file provides an efficient means of

testing fusion algorithms outside the test-bed simulation framework.

A sensor report consists of the following: a value in one (or more) signature

dimensions, a location and error ellipse, a velocity vector and error ellipse, time with

error, the identification of the sensor generating the report . A truth report consists of

the following: entity id, entity type, track id, true location, true velocity, true time

 47

In addition to this, the test bed can also be configured to generate a track id for

each sensor report. This track id corresponds to internally generated tracks created

based on the Occam Razor’s principle [61]. Creation of internal tracks can be

optionally turned on/off based on whether the fusion component creates tracks as well

as performs data association or performs data association alone (like in the case of

IDA).

4.2.3 Application of IDA to the Northrop Grumman test bed

 The original MATLAB code of the Information Matrix Data Association

(IDA) algorithm was provided by the algorithm developers at Stanford University.

This code was converted to C and applied to the data generated by the Northrop

Grumman test bed simulations.

 In addition to the truth and sensor report data, the IDA algorithm requires a

means of correlating signature values pertaining to different signature dimensions to

entity types modeled by the test bed. The test bed supports 50 types of entities each

defined by a combination of 10 signature feature dimensions. Since signatures are

assumed to be represented by a normal distribution in the test bed, they are

characterized by a mean and standard deviation as described in the previous section.

The mean and standard deviation of signature values in each signature dimension

corresponding to various entity types is extracted from the test bed in order to

facilitate correlation of signature values to unique entity types by the IDA algorithm.

 The IDA C code has been integrated into the test bed in the fusion component.

Each time, the test bed is run with the option for automatic generation of internal

tracks .This ensures that each sensor report has an associated track id and this track id

 48

is used to select the column of the information matrix that needs to be updated

corresponding to an incoming sensor report .Every discrete time step interval, a chunk

of sensor reports and truth reports is delivered to the fusion component as a part of the

simulation.

 Each time step, the following operations (explained in detail in section 3.2.1)

are performed by the IDA algorithm using the sensor data:

1. Mixing Updates:

From the location data obtained from the sensor reports, the number of pair

wise mixing updates is determined based on a predefined cartesian distance threshold.

Subsequently the Information Matrix data structure is updated as per the rules

mentioned in section 4.2.1

2. Observation Updates:

Each sensor report is classified and the probabilities of it corresponding to

each of the 50 different entity types is determined. This information along with the

track id information in the sensor report is used to update the Information Matrix as

per the rules described in section 4.2.1

3. Inference:

The data association of the previous time step (maintained in a single

dimensional array of size N) and the updated information matrix for the current time

step are used as inputs for the inference operation wherein based on the state of the

current Information Matrix, using simulated annealing an attempt is made to

determine the track-entity id associations for the current time step.

 49

 4. Measuring accuracy:

The data associations are maintained in a single dimensional array of size N,

where the index of the array pertains to the track id and the value of the element

pertains to the inferred entity id corresponding to the track for the particular time step.

At the end of the inference step, an updated array of size N is obtained corresponding

to the set of data associations in the current time step.

E.g. If the data association array is as shown in Figure 14, it means that track 1 is

associated with entity id 1 at the end of the inference step, track 2 with entity id 3,

track 3 with entity id 2 and so on. To determine the accuracy of associations, the truth

reports corresponding to the internally generated tracks are used. For example if the

entity id in the truth report for track 1 is 1, it corresponds to a correct association for

track 1 since the association obtained from the inference step is also the same. The

total number of correct associations is determined through this correlation with truth

reports every time step and a score is maintained. At the end of the simulation, the

individual correct association scores pertaining to time steps is summed up and

divided by the total number of time step intervals simulated to determine the average

tracking accuracy value.

1

2

4

7

6

5

8

10

9

3

11

12

Figure 14: Example data association array obtained at the end of

the inference step . Here the index into the array represents the

track id, the value of the array element represents the entity id

associated with the track at the end of the inference step.

 50

 Since we are concerned only with the fusion component of the test bed,

instead of running IDA as a part of the simulated test bed framework, it is much more

efficient to generate datasets from the test bed using different input configuration files

and simulation windows and then using these datasets as inputs to the IDA algorithm,

running natively on a machine. The datasets generated by the test bed simulations

comprise time stamped sensor and truth reports in xml format. These xml files are

converted to text files and used as input to the IDA algorithm. In the rest of the thesis,

whenever we refer to the NG test bed data, we would be referring to these datasets

generated from test bed simulations with different input configuration files.

5. Entity Behaviors

 The Northrop Grumman test bed provides a parameterized framework to vary

the behaviors of entity types by changing parameters like the start and end time of the

entity’s movement, the start and end locations, the route taken, commute and pause

time, maximum speed of the entity type etc. Changing the behaviors of entities in a

data set affects the computation time spent in the Mixing Update and Observation

Update sub-kernels of the IDA algorithm. This is due to the fact that change in

behaviors result in change in the number and type of mixing events as well as sensor

reports. In our study, we use data sets with two different sets of behaviors associated

with the entity types. In addition to that, we vary the number of entities in the

configuration files to generate new data sets. Varying the number of entities scales the

problem size in terms of the size of the primary data structure (Information Matrix)

involved in the computation. Also it changes the amount of mixing and the type and

number of sensor reports delivered to the fusion component every time step.

 51

 4.3 Real time problem formulation

 IDA

Figure 15: Computations to be performed on new sensor data every time step interval

Let ‘tint’ be the time step interval size/periodic interval at which sensor data is

delivered to the fusion algorithm.

Let ‘trefresh’ be the periodic interval at which the user expects tracking accuracy

updates

Figure 15 shows the computations that need to be performed on new sensor data

every time step interval. The following points outline the salient features of the real

problem formulation:

� System objective: Maximize tracking accuracy value delivered to the user every

‘trefresh’ seconds.

� Task model: Three sets of periodic , dependent tasks initiated every period/time

step interval given by ‘tint’

� Deadline: To meet the system objective in the best possible way, each of the

three tasks needs to be completed before the arrival of the next set of sensor

reports. So deadline is ‘tint’ seconds after the arrival of the current set of sensor

reports.

Mixing Updates

Observation Updates

Inference

 52

� Nature of deadline: Soft because no catastrophic failures result from missing a

deadline. However utility of the system decreases as more and more deadlines are

missed.

 tint tint tint

 tint tint tint

 Figure 16: Ideal case where the computations on each set of sensor reports is always completed

before the next set is delivered

Figure 16 shows the ideal case scenario in which the computations to be

performed on each set of sensor reports is completed before the next set arrives.

However due to the dynamics of the environment in which the system works and the

data dependent nature of the three tasks that need to be performed each time step,

there is a high variance in the amount of time taken to complete these tasks from time

step to time step.

Let us consider a single dataset for 3000 entities with the default set of

behaviors in the test bed and understand the variance in computation time of each of

the tasks across time steps. Figure 17 shows how the computation time spent in each

of the three tasks varies across time step intervals. The value of ‘tint’ in this case is

1second i.e. a new set of sensor reports is delivered every second from the

Mix Observation Inference

Update Update

Mix Observation Inference

Update Update
Mix Observation Inference

Update Update

 Process sensor reports Process sensor reports

 Process sensor reports

 53

simulations. The timing measurements pertain to single threaded performance on a

3GHz dual processor Xeon machine.

Variation of time spent in the mixing task across

timesteps

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120

Simulation timestep interval number

T
im

e
 s

p
e

n
t

in
 t

h
e
 m

ix
in

g

u
p

d
a
te

 t
a

s
k

Variation of time spent in sensor updates across timesteps

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120

Simulation timestep interval number

T
im

e
 p

e
n

t
in

 t
h

e

O
b

s
e

rv
a

ti
o

n
 U

p
d

a
te

 t
a

s
k

Variation of time spent in inference across

timesteps

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Simulation timestep interval number

T
im

e
 s

p
e

n
t

in
 t

h
e

in

fe
re

n
c

e
 t

a
s

k

Variation of total execution across timesteps

0

1

2

3

4

5

0 20 40 60 80 100 120

Simulation timestep interval number

O
v

e
ra

ll
 e

x
e

c
u

ti
o

n
 t

im
e

Figure 17 Variation in computation time spent in each of the three tasks sacross time step

intervals.

From Figure 17, the following observations are made:

� The computation time to perform all the three tasks varies from 1.8 secs to 4.5

seconds.

� There is a high variance in the amount of time spent in the mixing task across

time steps. This is because this is dependent on the number of pair wise mixing

 54

events, which is dependent on the dynamics of the world being simulated and the

behaviors of the entities being tracked.

� There is also a significant variance in the amount of time spent in the observation

update task across time steps. This is due to the fact that the number of sensor

reports delivered for processing varies from time step to time step.

� The variance in the amount of time spent on the inference component is not very

high. This is because the number of iterations of simulated annealing is fixed and

the work done in each iteration is approximately proportional to the number of

entities being tracked which determines the size of the Information Matrix, the

main data structure involved in this computation. The slight variations we see in

the graph are mainly due to measurement differences and do not reflect variations

in computation time.

The reasons why conventional real time systems design/scheduling techniques are

unable to handle such applications efficiently are:

� As mentioned earlier, static design methodologies would attempt to determine

Worst Case Execution Times (WCET) for each of the tasks and design a system with

enough processing power/resources to meet the deadlines. Since the computations

associated with the tasks are input data dependent, in almost all cases, the WCET

would be unbounded. Even if we assume that the WCET is bounded and determinable

and design a system to meet WCET requirements using static scheduling policies, the

resulting system would be underutilized during most phases of operation.

� Use of dynamic scheduling policies like Earliest Deadline First might be more

 55

amenable to be applied to such an application, but again if designed for handling less

than the Worst Case Execution Time(WCET) scenarios, missed deadlines and

resulting domino effects would cause unpredictable dropping of tasks and hence

adversely affect the tracking accuracy updates provided to the human user every

‘trefresh’ time.

Given the dynamics of the problem scenario, we propose a methodology of exploiting

certain application features to ensure that the system objective is met with sufficient

solution quality when a deadline arrives rather than supporting and designing for the

worst-case execution of the program.

In the next two chapters, we describe in detail how certain properties of the

three types of tasks in our reference application (IDA) allow us to make performance

accuracy trade-offs at run time, meet deadlines and meet the system objective in the

best possible way given resource and time constraints.

 56

Chapter 5

5. Soft computations and their characterization

 As mentioned in section 1.4, a growing number of kernels [47, 48, 49]

currently offer and several others can be structured to offer [50, 51, 52] a simple

means of trading off computation time for the quality of results. We call such kernels

“soft kernels” or “soft computations.” The chief characteristic of these computations

is the fact that they are able to provide cruder results before they complete, or they

may execute for a long time refining an already adequate result. In other words, such

computations may be able to provide useful, incremental results before completing

execution and also ensure graceful degradation of the quality of results as the

computation time decreases. By providing opportunities for obtaining “anytime”

solutions at deadlines, these computations allow us to meet a real time system

objective with sufficient quality without having to support worst case program

execution.

 We demonstrate the benefits of exploiting soft computing properties of kernels in

the context of our system prototype described in Chapter 4. Two main design issues

involved in trying to build a system where soft computations are exploited to meet

deadlines with acceptable solution qualities are:

1. Quantifying the gain in solution quality of the application as a function of

time spent in soft computations.

2. Determining the optimal composition of “tasks” given a specific amount of

resources/ time to meet a deadline.

 57

We address these design issues in this chapter. More specifically, we identify the

presence/absence of soft computing properties in the tasks/software components of

our reference application and characterize the soft computations using performance

profiles. We then use these performance profiles to build models to determine the

optimal composition of a group of tasks given a specific resource and timing

constraint to meet the system objective in the best possible way.

5.1 Properties of soft computations

The desirable properties of computations for them to be classified as “soft

computations” or “soft kernels” are as follows:

1. Measurability: The quality of the system output should be measurable and the

computation should have a measurable impact on the system objective or the quality

of the system output. For example in the case of our system prototype, the system

output is measured as the tracking accuracy, measured with respect to the ground

truth, which is a measurable system objective. Measurability is important because

without being able to objectively determine the impact of computations on the system

solution quality, it is difficult to characterize them and understand computation time

vs. solution quality trade-off opportunities that they might offer.

2. Monotonicity: The impact of the computation on the system objective/quality

of the system output should be a non-decreasing function of time. If a computation is

non-monotonic, it cannot be guaranteed that spending more time in the computation

would yield a better solution quality. Essentially it means that the computation does

not offer a trade-off between computation time and system solution quality.

 58

3. Consistency: The impact of the computation on the system objective/quality of

 the system output should be correlated with computation time. In general,

algorithms do not guarantee a deterministic output quality for a given amount

of time, but it is important to have a narrow variance so that quality prediction

can be performed.

4. Diminishing returns: The improvement in solution quality should be larger at

the early stages of the computation, and it should diminish over time. It is desirable

for a computation to provide diminishing returns for it to be characterized as a soft

computation because the “diminishing returns” characteristic ensures graceful

degradation of system solution quality as time allocated to the computation is

decreased.

5. Recognizability: This pertains to the ability to determine the impact of a

computation on the quality of the system solution at run time. For example, when

solving a combinatorial optimization problem (such as path planning), the quality of a

result depends on how close it is to the optimal answer. In such a case, quality can be

measurable but not recognizable. Similarly in the case of our system prototype, the

quality of a data association solution depends on how close the associations are to the

ground truth. Hence again though the quality is measurable, it is not recognizable.

Recognizability becomes extremely important if the quality of the system solution as

a function of time spent in soft computations needs to be monitored at run time for the

purpose of adapting and learning performance profiles online. We discuss what

performance profiles are in detail in the next section.

 59

We initially look for the first four desirable characteristics of soft

computations in the components of our system prototype (discussed in detail in

section 5.3). We study how much benefit soft computations that do not possess the

“recognizability” characteristic, can provide for real time performance. Subsequently,

we perform a sensitivity study to determine how much more benefit can be accrued if

the computation is “recognizable” and thus facilitates online learning and adaptation

of performance profiles, that characterize soft computations.

5.2 Performance profiles:

Soft computations are characterized using performance profiles. Performance

profiles quantitatively summarize the improvement in the quality of output as a

function of the time spent in the computation. A performance profile of a soft

computation can be represented as Q(t) where Q(t) represents the quality of the output

when time ‘t’ is spent in executing the soft computation.

Performance profiles are typically constructed empirically by collecting

statistics on the performance of an algorithm. The raw data that are collected specify

the particular quality of results as a function of computation time.

 Figure 18: Typical performance profiles. Figure 18b shows the performance profile for a

traditional algorithm. Figures 18a and 18c show performance profiles for soft computations

 60

Figures 18b is the performance profile for a traditional algorithm, the x axis

pertains to time spent in the computation and the y axis pertains to the corresponding

quality of solution that can be expected. What this curve essentially illustrates is the

fact that a traditional algorithm has just one output /solution which can be obtained

provided a sufficient amount of time is provided to the task for execution. If sufficient

amount of time is not allocated to the algorithm, no output/solution is obtained.

Figures 18a and 18c are examples of performance profiles for soft computations.

What these figures illustrate is that when using soft computing kernels,

output/solutions of lesser quality/value are obtainable even if execution of the kernels

are restricted to a fraction of the time required for the computation to deliver the best

possible value/solution to the problem. As evident from Figures 18a and 18c, these

two performance profiles illustrate “measurability,” “monotonicity” and “graceful

degradation” for the computation they represent. Whether the computation possesses

the “consistency” property can be evaluated only when the performance profile is

used for quality prediction while the computation is being executed and the variance

between the predicted quality and the actual quality obtained from the algorithm

execution is determined.

5.2.1 Quality metrics for characterizing soft computations:

 In order to draw performance profiles, objective metrics for measuring the

quality of the output must be defined. Such quality measures specify the difference

between the approximate result and the exact result. They are “objective” in the sense

that they are a property of the algorithm itself, independent of its possible

applications. From a pragmatic point of view, it may seem useful to define a single

 61

type of quality measure to be applied to all algorithms having soft computing

properties. However quality measures must match the nature of the algorithm they

describe. Soft computations are unique and every algorithm may have a different

objective quality measure. However the following three metrics have been found

useful and relevant in the context of many “soft” kernels [44]:

1. Certainty: This metric reflects the degree of certainty that a result is correct. The

degree of certainty can be expressed using probabilities, fuzzy set membership, or any

other method of expressing uncertainty. For example, consider a “soft” diagnosis

algorithm that is based on combining more and more evidence as computation time

increases. The certainty that the diagnosis is correct increases as a function of run-

time. With this type of “soft” kernel, there is always a possibility that the correct

results are completely different from the ones generated by the algorithm.

2. Accuracy: This metric reflects how close the approximate result is to the exact

answer.

3. Specificity: This metric reflects the level of detail of the result. In this case, the

“soft” algorithm always produces correct results, but the level of detail is

increased over time. For example, consider a hierarchical planning algorithm that

first returns a high level abstract plan. Each step in the abstract plan is a “macro”

step that needs to be refined by further planning. As computation time increases,

the level of detail is increased until the plan is composed of base-level steps only

that can be easily followed.

 62

5.2.2 Building performance profiles for individual soft kernels:

Finding the performance profile of an individual /elementary soft kernel can

be difficult and may require an extensive computation effort especially when it is

based on simulation of the algorithm. In some cases, such as numerical analysis

algorithms, the performance profile can be derived by direct analysis of the algorithm,

but the general case is more complicated. For example, in many iterative algorithms,

such as Newton’s method, the error in the result is bounded by a function that

depends on the number of iterations. In such cases, the performance profile can be

calculated once the run-time of a single iteration is determined. In general, however,

such structural analysis of the code is hard because the improvement in quality in

each iteration and its run-time may be unpredictable. A more general method is based

on gathering statistics on the performance of the algorithm in many representative

cases. Statistical performance profiles are the easiest to construct but take the most

storage space and the longest amount of time to instantiate. A statistical profile uses a

large number of samples to create a database of (computation time, output quality)

entries. With this information the database can then be used to make predictions about

the expected quality given time and input parameter information.

5.2.3 Representation of performance profiles of individual soft

computations:

Performance profiles of individual soft computations can be represented either by

a closed formula or as a table of discrete entries.

 63

 Since performance profiles are normally monotone functions of time, they can be

approximated using a certain family of functions. Once the quality map is known, the

performance information can be derived by various curve fitting techniques[49] .

 The discrete representation of performance profiles is based on a table that

specifies the quality values for certain possible time allocations. The size of the table

is a system parameter that controls the accuracy of performance information.

 We discuss in detail how soft computations are characterized using

performance profiles in the context of our reference real time scenario

implementation in the next section.

5.3 Identification and characterization of individual soft kernels in

the reference application

 We performed experiments to determine if the three tasks/ sub-kernels

(Mixing Update, Observation Update and Inference) that form a part of our reference

implementation possessed one or more of the properties mentioned in section 5.1 that

characterize “soft” computations. We observed that all three sub-kernels satisfy the

“quality measurability” property that is needed to characterize soft computations

since the impact of time spent in each task on the accuracy of the application can be

measured. The Observation Update and Inference sub-kernels /tasks also satisfy the

other three desirable properties of soft computations and hence are categorized as

“soft” kernels. The Mixing Update sub-kernel updates the information matrix data

structure based on the spatial state of entities in the scenario. It causes degradation in

the state of the information matrix data structure based on the number of tracks that

mix in the scenario in a particular time. This computation ensures that the state of the

 64

world is appropriately reflected in the state of the Information Matrix. As a result, it is

important to ensure that the Mixing sub-kernel always runs to completion. Since the

Mixing Update sub-kernel causes degradation in state of the Information Matrix, the

impact of the Mixing Update sub-kernel on the system solution quality is non-

monotonic, inconsistent and does not ensure graceful degradation of solution quality

as time spent in the Mixing Update sub-kernel is decreased. So we conclude that

since the Mixing Update sub-kernel does not satisfy the three main desired properties

of soft computations, it should be categorized as a “non-soft”/“hard”/”mandatory”

kernel which always needs to be executed to completion. We provide details of the

methodology adopted by us for characterizing the “soft kernels” in the following

sections.

5.3.1 Observation Update sub-kernel /task

 This sub-kernel performs updates of the information matrix of the IDA sensor

fusion algorithm using local sensor report observations. Each incoming sensor report

is first classified and the probability values so obtained are used to perform the update

of the Information Matrix as described in Chapter 4. The amount of time spent in this

task varies across time steps based on the number of incoming sensor reports.

Another observation is that some sensor reports do not add much additional value to

the final outcome/accuracy due the fact that either they are redundant (more than one

sensor report per entity) or are not critical in the context of this specific application

scenario. This notion of criticality will become clearer when we discuss the

experiments we performed in the next few paragraphs.

 65

Our observations indicated that it might be possible to trade-off computation

time for accuracy in this sub kernel by performing critical sensor updates pertaining

to the domain instead of performing all updates every time step. In order to

determine whether this sub kernel possesses the desirable “soft computing”

properties, the following experiments were performed:

� Experiment 1:

We first varied the amount of time spent in the Observation Update sub-kernel and

studied its impact on the accuracy of the application. We did this by varying the

percentage of sensor updates applied in each time step from 0% to 100% in steps of

5% and then determined the average accuracy value across the different time steps. In

all cases, we executed the Mixing Update and Inference sub-kernels to completion.

Figure 19 shows the variation of tracking accuracy as a function of time spent in

sensor updates. This data pertains to the data set with 3000 entities and default

behaviors. The tracking accuracy and execution time pertain to the average accuracy

and execution time measured across all the 500 simulation time steps. As evident

from the graph in Figure 19, we observed that the observation update computation is

monotonic. We also realized that the order in which the sensor updates are applied is

important. This was based on the observation that some updates applied could be

more critical than others while other updates may be redundant due to the delivery of

more than one sensor report per entity.

 66

Figure 19: Variation in accuracy as amount of time spent in the ObservationUpdate task

is changed

� Experiment 2:

Based on the intuition that determination of an order of applying updates

based on sensor report criticality might help improve the consistency of the soft

computation and also ensure more graceful degradation with decrease in computation

time, we divided the sensor reports into 4 groups:

1. Sensor reports pertaining to mixing events: This group comprises all the sensor

reports pertaining to tracks that were involved in mixing. It is important to note here

that there could be more than one sensor report pertaining to a track involved in

mixing. All these sensor reports are included in this group.

2. Sensor reports pertaining to similar entities: This group comprises all sensor

reports pertaining to similar entity types. How similarity of entity types is determined

is discussed later in this section.

 Accuracy Vs Observation Update Time

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

Observation Update time

Normalized
 accuracy

 67

3. First time sensor reports: After filtering out the above two categories of sensor

reports, the reports pertaining to tracks that have not received a previous sensor

update in the time step are included in this group

4. Redundant sensor reports: All the remaining reports obtained after filtering out

reports pertaining to the above three groups are put in this category.

The grouping of sensor reports was based on the following observations:

1. Sensor reports pertaining to mixing events are critical owing to the uncertainty

introduced by the mixing of tracks.

2. Sensor reports pertaining to similar types of entities are critical owing to the fact

that without sufficient observation updates; it might become difficult to distinguish

between two entities having similar signature values. The similarity between entity

types is determined offline using the Mahalabonis distance metric. This is a very

popular similarity/proximity metric used in statistical data mining techniques

specifically in the arena of cluster analysis [61].

� Heuristic for assigning priorities to sensor updates:

The following steps are followed to facilitate category based ordered updates of

sensor reports:

1. To each sensor report information data structure, one additional unsigned integer

element is added which contains the category value. Also an additional array of size

N is maintained which contains two bits of information a. whether a particular track

is involved in mixing and b. whether a sensor report pertaining to that track has

already been processed.

2. When the mixing updates are performed, the corresponding category related

 68

 sensor report element is assigned a value of 3. Also the corresponding mixing bit

entry in the array of size N is set to 1.

3. As each report is classified, if the category is not set and corresponding value of

the N dimensional array is set, the category element is set to a value of 3. Otherwise,

based on the classification result, if the type of entity belongs to one of the

predetermined similar types, the category value is set to 2 else if the bit in the N

dimensional array for first time reports is not set, it is set to 1 and the category

element is assigned a value of 1. The sensor reports are then sorted in descending

order of category values.

Using the above heuristic and category based ordering of sensor updates, we obtained

a performance profile for the Observation Update task for coarse granularity sensor

updates based on categories. This was done in the following manner.

1. The mixing update and inference tasks were performed every time step.

2. We obtained 4 data points by determining average accuracy values by

performing updates for sensor reports pertaining to mixing events alone;

mixing events and similar entities; mixing events ,similar entities and first

time reports; all reports.

In order to make sure that the order of updates based on the above mentioned

order of categories is the best, the above curves were obtained for all possible

permutations of the category based orderings. Figure 20 shows the average

computation time vs normalized accuracy graphs for these 6 set of experiments.

As evident from Figure 20, the following ordering of category based sensor

updates provides, the best performance profiles for the Observation Update task .

 69

-Updates pertaining to mixing entities

-Updates pertaining to similar entities

-First time sensor updates

-Redundant sensor reports

This was observed for all the data sets under consideration. Hence we adopted this

heuristic to drive the order in which sensor updates were applied to the Information

Matrix:

Accuracy Vs Observation Update time

(CategoryBasedOrderingOfUpdates)

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

Observation Update Time

N
o

rm
a
li

z
e
d

 A
c
c
u

ra
c
y

MIX_SIM_FIRST

MIX_FIRST_SIM

SIM_MIX_FIRST

SIM_FIRST_MIX

FIRST_MIX_SIM

FIRST_SIM_MIX

Figure 20: Variation of accuracy as a function of time spent in the observation subtask when

applying category based ordered updates

We thereafter obtained performance profiles for a finer granularity of sensor updates,

more specifically; we obtained accuracy values by performing experiments by

varying the granularity (number of sensor reports) of the Observation Update task

using the following approach

� Apply 5-100% mixing sensor updates each time step in steps of 5%

 70

� Then apply 100% mixing sensor updates + (5-100%) sensor updates

pertaining to similar entities in steps of 5%

� Then apply 100% mixing sensor updates + 100% sensor updates

pertaining to similar entities + (5-100%) first time sensor updates in steps

of 5%

� Then apply all updates.

 Figure 21 shows the performance profile for the Observation Update so obtained.

The results are pertaining to the same dataset with 3000 entities and default

behaviors.

Figure 21: Variation of accuracy as a function of time spent in the observation subtask when

applying category based ordered updates at a finer granularity

Based on the experiments performed by us pertaining to the Observation Update sub

kernel, we observed that this kernel possessed all the four desirable properties for soft

computations. Hence this task/sub-kernel was categorized as “soft” in the context of

our reference real time scenario.

Normalized
Accuracy

 Accuracy Vs Observation Update time

 (Fine grained category based ordering of

updates)

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

Observation Update Time

 71

5.3.2 Inference sub-kernel /task

This sub-kernel attempts to determine the best data association of tracks with

entity ids in a time step by performing inference using a simulated annealing

formulation.

Simulated annealing is a technique that has been used in various

combinatorial optimization problems. It is a technique to find a good solution to an

optimization problem by trying random variations of the current solution. The slower

the cooling schedule, or rate of decrease of the initial specified temperature for the

annealing schedule, the more likely the algorithm is to find an optimal or near-

optimal solution. The chance of getting a good solution can be traded off with

computation time by slowing down the cooling schedule. The slower the cooling, the

higher the chances of finding the optimum solution, but the longer the run time. By

varying the number of iterations of Simulated Annealing, the rate of cooling can be

changed and hence accuracy can be traded off for computation time. The original

inference kernel worked with a fixed number of inference iterations. We try to exploit

the potential for trading off computation time for accuracy by varying the number of

inference iterations and hence varying the cooling schedule of the simulated

annealing formulation. Figure 22 shows the basic formulation of a Simulated

Annealing algorithm. The inputs to the formulation are an initial solution (in our case,

data associations of the previous time step) and a cooling schedule specified by a start

temperature (T), a stop temperature (T’) and the number of iterations (N). At each

iteration, the temperature is decreased to T/N. Essentially this means that by varying

N, we can change the cooling schedule and thus exploit a trade-off between the run

 72

time of the inference step and the solution quality. In addition to this, the solution that

is obtained for evaluation or assessment each iteration is based on the current state of

the information matrix (in the case of our system prototype) and is not randomly

chosen. This ensures that we progressively obtain better solutions (data associations)

as we perform more iterations. However the major changes in associations across

time steps are identified in the first few iterations of the simulated annealing inference

and hence after some number of iterations, for most time step intervals, the accuracy

levels off.

Figure 22: Basic structure of a simulated annealing formulation

 73

In order to determine whether the inference sub-kernel possesses the desirable

soft computing properties, we obtain average accuracy values for the application by

performing the Observation Update and Mix Update sub-kernels to completion every

time step and by varying the number of iterations of the simulated annealing

formulation between 1 and MAX [MAX=maximum number of iterations originally

used in the algorithm. The value of max iterations in the original algorithm is 30].

Figure 23 shows how accuracy of the system varies with time spent in the inference

sub-kernel. The data in this figure corresponds to the dataset with 3000 entities and

default behaviors. As evident from the figure, this sub-kernel possesses the soft

computing properties of monotonicity and graceful degradation and hence is

categorized as a “soft” kernel.

Accuracy Vs Inference time

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Inference Time

N
o

rm
a
li

z
e
d

 a
c
c
u

ra
c
y

Figure 23: Performance profile of the inference task

 74

5.4 Composing systems using performance profiles:

Given a system composed of a combination of “hard” and “soft” kernels/tasks as

in the case of our reference implementation (where the Mixing Update task has been

identified as “hard” while the Observation Update and Inference tasks have been

identified as “soft”) and given a specific program structure, it is important to

determine the optimal allocation of time to the components for any given total time

allocation so as to meet the system objective. This problem of optimal composition of

such tasks is an NP complete problem [52].

 Sufficient time always Sufficient time always

allocated for ‘hard’ tasks tint allocated to ‘hard’ tasks

 Remaining time for performing ‘soft’ tasks

 Remaining time for performing ‘soft’ tasks

Figure 24: Composition of soft tasks in terms of time allocated to each component is dynamic

Given a specific program structure, it is essential to always allocate sufficient

time to execute to completion all identified “hard” components. Having done that, we

need a mechanism to determine the optimal allocation of the remaining time among

the “soft tasks”. Figure 24 illustrates this scenario in the context of our system

prototype. The figure shows that there is always sufficient amount of time allocated to

execute the Mixing Update task to completion. However based on the actual time

Mix Obs Update Inference

Update

Mix Obs Inference

Update Update

Update

Mix Obs Update Inf

Update

 75

taken by the Mixing Update task each interval, the remaining time before the deadline

varies. The problem is to determine the optimal composition of “soft tasks” so that

the remaining time before a deadline can be utilized in the best possible way to

maximize the system solution quality at the deadline. Since we can independently

choose the amount of time to be given to each of the soft tasks (Observation Update

and Inference), the performance profile that we need to make the decision as to how

best to utilize the remaining time is a multidimensional performance profile that

indicates how the system solution quality changes for different allocations of time to

the two “soft” sub-kernels.

We determine these multi-dimensional performance profiles for the two “soft

kernels” in our reference implementation, based on various interleavings (time

allocation/resources) of the ‘soft’ tasks. These composite performance profiles can

subsequently be used to derive models that provide a means to determine the optimal

composition of “soft” tasks given a specific resource/time constraint. We use this

methodology of determining composite performance profiles for the “soft” kernels

pertaining to our reference application.

5.4.1 Obtaining Composite performance profiles for soft kernels:

 In order to determine performance profiles for various interleavings of time

allocation (resources) provided to the “Observation Update” and “Inference” tasks,

we decompose the tasks into the following granularities:

� Granularity of decomposition of the inference task: The grain size for an

 76

inference corresponds to an iteration of simulated annealing. We vary the number of

iterations from 1 to MAX (MAX= maximum number of iterations of simulated

annealing in the original code)

� Granularity of decomposition of the update task: Considering one sensor update

as the grain size for the interleaving experiments becomes intractable due to the huge

number of sensor reports coming in each time step. Hence the grain size of sensor

updates is at a coarser level. Here is how the interleaving points for time (resource

allocation) are obtained:

1. Apply 5-100% mixing sensor updates each time step in steps of 5%

2. Then apply 100% mixing sensor updates + (5-100%) sensor updates

pertaining to similar entities in steps of 5%

3. Then apply 100% mixing sensor updates + 100% sensor updates pertaining

to similar entities + (5-100%) first time sensor updates in steps of 5%

4. Then apply all updates.

This corresponds to 61x25=1525 sample points /inter leavings of sensor updates and

inference for which we run the IDA algorithm (the Mix Update task is always

executed to completion). Each of the experiments is run for a simulation window of

500 time steps. We determine the average accuracy and execution time values for

each of the sample points to obtain the composite performance profile for the

Observation Update and Inference tasks. Figure 25 shows the performance profile so

obtained for a dataset of 3000 entities simulated over 500 time steps.

 77

Figure 25: Composite performance profile for inter leavings of the update and inference

task

5.4.2 Model for optimal composition of “soft” tasks:

 Having derived the composite performance profile for the “Observation

Update” and the “Inference” tasks, we derive a model that provides the optimal time

allocation to these individual tasks given a specific amount of time in which to

perform both so as to maximize the accuracy.

 To derive this model we use a statistical analysis tool called “JMP”, which

is a widely used statistical analysis tool both in academia and industry[61]. We use

 78

the curve fitting facility provided by JMP to build an appropriate model for our

performance profile.

The model thus derived for the performance profile in Figure 25 is a fourth degree

polynomial given by:

 z = -0.36515 + 1.0464*x + 1.3283*y - 0.3151*x*x - 0.6955*y*y +0.99209625*(y-
 0.60192)*(x-0.84122) -0.3448163*(x*x-0.94611)*(y*y-0.49439) (1)

Where z = Tracking Accuracy

 x = Observation Update Time

 y = Inference Time

 Having obtained the model, we evaluate the goodness of the fit provided by

the model. The tool output, in addition to providing us the model parameters also

provides a summary of the fit. The summary of the fit pertaining to the above model

is given below:

Table 1: Summary of the fit for the model derived from the performance profile

From the above summary, the goodness of the fit is evaluated as per the evaluation

methodology outlined in [61]. The RSquare value in the fit summary in statistical

terms is called the correlation coefficient and it represents the goodness of the fit. The

table below obtained from [61] provides an overview for interpreting the meaning of

the RSquare value

 79

Correlation

Coefficient
Descriptor

0.0-0.1 trivial, very small, insubstantial, tiny, practically zero

0.1-0.3 small, low, minor

0.3-0.5 moderate, medium

0.5-0.7 large, high, major

0.7-0.9 very large, very high, huge

0.9-1 nearly, practically, or almost: perfect, distinct, infinite

Table 2: Interpretation of the correlation coefficient,Rsquare in the context ,of goodness of the

fit

The following optimization problem is then solved using the standard solver in Excel

to obtain the optimal allocation of time to the Inference and Update Tasks given a

specific remaining amount of time.

Maximize z :

subject to x+y <= R; x>0; y>0 (R= total time available for allocation between the

Observation Update and Inference tasks. This

essentially represents the remaining time to a

deadline after the completion of the Mix Update

task each time step interval. Henceforth in all the

graphs this time is referred to as “Remaining time”)

For the model represented by (1), Figure 26 is the three dimensional plot that shows

the optimal time allocations to Inference and Observation Update tasks given specific

time constraints. Interpretation of this plot in 2-D would be two graphs that represent

the fraction of time allocated to the Observation Update and Inference tasks

respectively, for various total time allocations/remaining time. Figures 27 and 28

illustrate these two dimensional graphs that represent how the fraction of time

allocated to the Observation Update and Inference tasks vary as a function of the

 80

remaining time. These graphs are based on data points obtained from the model

derived from the composite performance profile shown in Figure 25.

Figure 26: The projection of this plot on the x-y plane provides the optimal composition of

Observation Update and Inference tasks given a specific total amount of time/resources to

complete both.

Fraction of remaining time allocated to the

Observation Update task Vs Remaining time

0

0.2

0.4

0.6

0.8

0 0.5 1 1.5 2 2.5 3

Remaining time

F
ra

c
ti

o
n

 o
f

re
m

a
in

in
g

ti
m

e
 a

ll
o

c
a
te

d
 t

o
 t

h
e

O
b

s
e
rv

a
ti

o
n

 U
p

d
a
te

ta
s
k

 Figure 27. This figure shows the fraction of remaining time allocated to the Observation Update

sub-kernel , given a specific amount of remaining time. This data has been derived from the

model obtained from the performance profile shown in Figure 25.

 81

Fraction of remaining time allocated to the

Inference task Vs Remaining time

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

Remaining time

F
ra

c
ti

o
n

 o
f

re
m

a
in

in
g

ti
m

e
 a

ll
o

c
a
te

d
 t

o
 t

h
e

In
fe

re
n

c
e
 t

a
s
k

Figure 28. This figure shows the fraction of remaining time allocated to the Inference Update

sub-kernel , given a specific amount of remaining time. This data has been derived from the

model obtained from the performance profile shown in Figure 25.

 82

Chapter 6

6. Scheduling Policies

 As evident from our discussions and experiments described in the previous

chapters, soft computations provide the flexibility to trade off accuracy for

computation time in order to facilitate meeting real time deadlines with sufficient

solution quality instead of designing a system to support worst case program

execution. To exploit such opportunities in a real time system, some form of run time

scheduling support is important. The run time component/scheduler needs to address

a decision problem involving the choice of a collection of tasks to execute so the `best

possible' outcome ensues for the system. At various decision points (at run-time),

there are a set of tasks that are available for execution. In the absence of enough

resources to execute all tasks to completion, a decision must be made as to the

optimal composition of the set of tasks ready for execution at that point of time. This

decision may involve picking out the `extra' tasks to support when resources are

spare, or which services to sacrifice and to what extent when resources are scarce.

 The models for optimal composition of soft tasks that we discussed in the

previous section could be one form of input to the run time scheduler that facilitates

decision making. However there are design issues in this context that need to

addressed. More specifically,

� the decision points when the run time component needs to be invoked should

be identified so as to ensure minimal scheduling overhead and optimal system

utility.

 83

� it is also essential to identify enough variance in the system to justify runtime

support as opposed to determining a fixed composition of tasks pre run time

that provides a sufficiently good system solution .

 In this chapter, we address these issues and describe a dynamic scheme to schedule

soft computations in the context of our real time system prototype. In our scheme, we

use models derived as per the methodology outlined in the previous chapter to drive

decisions about the optimal composition of tasks at specific decision points at run

time. In Chapter 7, we shall present experimental results comparing our scheme to a

“static soft” scheme and the conventional Earliest Deadline First scheme. Both these

schemes are also described in detail in this Chapter.

Just to recapitulate, Figure 29 shows the basic problem formulation in case of

our reference real time scenario. Every ‘tint’ units of time, a new set of sensor reports

needs to be processed . The objective is to be able to maximize the accuracy of the

system at the user refresh interval. Figure 30 shows the basic program structure of our

application that processes the sensor reports.

 maximize accuracy at

 user refresh interval

 tint tint tint

tint

Figure 29: General problem formulation

Process reports Process reports Process Reports Process reports

 84

Figure 30: Program structure in our system prototype. The “Mix Update” task has been

identified as “hard” while the “Observation Update” and “Inference” tasks have been identified

as soft. Each of these tasks need to be performed every time step.

6.1 Static soft policy

 We call the first scheduling policy that we apply to our system the “static soft

policy.” This scheme assumes that a detailed timing analysis of all “non-soft” tasks

has been done so that we can ensure that all “non-soft” tasks (in our case the Mixing

Update/ MIX task) always run to completion. This scheme uses the models derived

from performance profiles for soft tasks off-line to determine the optimal composition

of soft tasks assuming the remaining time available for execution after scheduling the

hard components and before the deadline will always be fixed for a given time step

interval size, ’tint’ . In other words, this scheme works under the assumption that the

variance in the “non-soft”/”hard” components of the system is very small with

reference to it’s estimated maximum estimated execution time (we use the term

Mix

Update

Observa

tion

Update

Inference

 85

maximum execution time here in place of worst case execution time because our

timing analysis is based on statistics collected from application runs and no

methodological worst case analysis has been done taking into account other important

factors like the environment model). The objective of applying this policy is to

understand if the dynamics in our reference implementation, more specifically the

variance in the execution time of the “MIX” task, justifies run time monitoring or is it

sufficient to exploit the trade-off opportunities provided by the “soft tasks” off-line.

Figure 31 illustrates the inputs and outputs of the off-line analysis component. The

scheduler uses the composition of “hard” and “soft” tasks obtained from this analysis

to schedule the tasks every time step. This is illustrated in the Figure 32.

 Model derived from PP

 Program structure

 Maximum time to be allocated

 to hard components

 Becomes input to the scheduler

 Figure 31 Inputs and Outputs of the static analyzer

 Time allocated to the Mixing Update task fixed irrespective of actual time

 spent in the task

 Fixed composition of soft tasks ‘tint’ deadline

Figure 32 Same schedule shown in the figure is repeated every interval once optimal composition

of soft tasks is determined offline based on maximum expected time spent in the MIX task.

 Static/Offline analysis Obtain optimal

composition of

tasks for different

values of ‘tint’

Mix Obs Inf

In all timeline diagrams:

Mix: Pertains to Mixing Update/MIX task

Obs: Pertains to OBSERVATION UPDATE task

Inf: Pertains to INFERENCE task

 86

6.2 Dynamic soft policy

This policy aims to exploit the dynamics of the system better by monitoring

the execution time of the “non-soft” MIX task in the system prototype while

exploiting the soft computing properties of the “OBSERVATION UPDATE” and

“INFERENCE” tasks. The run time component is initialized with two inputs: the

model obtained from the performance profile of soft tasks pertaining to the dataset (as

described in Chapter 5), and the cost of executing each soft task at its finest

granularity (in our case that pertains to the cost of a sensor update and the cost of an

inference iteration). The model is fed into the run time component in the form of a

table. Each entry of the table has two entries pertaining to the optimal time allocation

to the update and inference tasks corresponding to a given total time allocation. Each

entry in the table corresponds to a specific total time allocation.

One design issue is to make a decision about how big the table should be in

terms of number of entries. The other design issue is to determine the granularity of

the discrete intervals of total time for which we have entries in the table. We adopted

the following approach to handle these issues. The granularity of time allocation is

obtained (discretization of time is done) by starting with a total time allocation

corresponding to the larger of the two values of the cost of a sensor update and the

cost of an inference iteration and then increasing it by the same value for

corresponding entries of the table. For example: if the cost of an inference iteration is

0.05 and that of a sensor update is 0.009, the starting total time allocation for the first

table entry is 0.05 and thereafter corresponding entries are incremented by the same

value. The size of the table is determined by using the performance profile curve fit to

 87

determine the total time allocation required to achieve maximum accuracy. This total

time allocation is then divided by the smallest discrete time allocation unit to

determine the total number of table entries. This methodology works well because the

complexity of indexing the table is an O(1) operation and this also makes sure that the

size of the table does not increase beyond what’s needed to keep the run time

overhead minimal. We also tried using as the time granularity the smaller of the two

values of the cost of a sensor update and the cost of inference iteration. However, the

corresponding benefits were not significant; hence we stuck to our original, more

efficient design parameter.

Another design decision that needs to be made is regarding the decision point

for the run time control to determine the optimal allocation of remaining time before a

deadline to different tasks. This decision point in the context of our reference scenario

is when a ‘MIX’ task is completed every time step. At that point of time, the run time

component determines the time remaining before the deadline, accesses the table

mentioned above to determine allocation of time to the ‘OBSERVATION UPDATE’

and ‘INFERENCE’ tasks, and by using the cost factors for each task, determines the

number of sensor updates and inference iterations to be performed. This design

decision is made based on the program structure of our application.

The other factor that needs to be taken care of is determination of a “safety

margin” while making a decision regarding the composition of a set of tasks in the

time remaining before a deadline. In our case, for all the datasets the safety margin is

equal to the sum of the average execution time of inference iteration and the average

execution time of a sensor update pertaining to that dataset. This has been observed to

 88

suffice in all our experiments to avoid deadline misses due to uncertainty in

measurements. We also measured the average time spent in the run time component

across various time steps, but the time so measured was miniscule compared to the

sum of the average execution times of sensor update and inference iteration. Hence

the run time overhead factor was not taken into account while determining the safety

margin. However there has not been any detailed statistical analysis done to

determine this margin. In the literature survey we carried out, we did not come across

any methodological way of determining safety margins for systems (most of the

methods we came across were ad-hoc and very domain specific [57]). Figure 33

illustrates the operations performed by the run time control each time step as soon as

the ‘MIX’ task completes.

 Model from PP

 Cost of an inference iteration

 Cost of a sensor update

 Tint

 Optimal composition of

 Observation Update and Inference task

Figure 33 Basic operations performed by the run time control after the completion of the MIX

task each time step interval

 Run time control:
1. Calculate remaining time

till deadline

2. Access PP Model table to

get optimal time

allocation values for

inference and observation

update tasks

3. Calculate optimal number

of sensor updates and

inference iterations.

4. Schedule Observation

Update and Inference

tasks

Mix Obs Inference

 89

6.3 Conventional Dynamic Earliest Deadline First (EDF) policy

 The Earliest Deadline First (EDF) scheduling policy dynamically assigns

priorities to tasks as they arrive based on their absolute deadline values. We perform

an execution trace based analysis of a non preemptive version of the Earliest Deadline

First scheme as applied to the tasks in our real time scenario.

 The EDF formulation for our scenario is done as follows: All three tasks

arrive every time step ; the deadline of MIX and OBSERVATION UPDATE tasks is

equal to the time step interval but the deadline of the INFERENCE task is equal to the

average case execution time of (MIX+UPDATE+INFERENCE). By having a

separate deadline for INFERENCE, we can ensure that an UPDATE task that

completes beyond the time step interval deadline(becomes tardy) does not prevent an

INFERENCE from being performed as long as the UPDATE completes before the

deadline for the INFERENCE task for the corresponding time step. This formulation

ensures better system solution quality rather than formulating the problem with all

three tasks having the same deadline. All tasks are either run to completion (we allow

tasks to be tardy) or if their deadlines have been crossed before they are provided

CPU execution time, the tasks are dropped.

 Let ‘tint’ be the time step interval size/deadline for OBSERVATION

UPDATE and MIX task and let ‘infdeadline’ be the periodic deadline for

INFERENCE. Table 3 shows the task characteristics assumed in our EDF

formulation.

 90

Tasks Arrival Period Deadline

MIX T1,t1+tint,t1+2*tint,t1+3*tint,…. Tint t1+tint,t1+2*tint,t1+3*tint,….

UPDATE T1,t1+tint,t1+2*tint,t1+3*tint,…. Tint t1+tint,t1+2*tint,t1+3*tint,….

INFERENCE T1,t1+tint,t1+2*tint,t1+3*tint,…. Tint t1+infdeadline,t1+2*infdeadline,t1+3*infdeadline,….

Table 3: This table shows the tasks characteristics for the EDF formulation

 For each dataset, we obtain a trace of the execution times for the different

tasks in the different time steps. Based on this execution trace, for different values of

‘tint’, we perform an analysis as to what tasks cannot be executed owing to the tardy

completion of earlier tasks. Even if a task misses a deadline, we assume that the task

runs to completion .The set of tasks obtained after excluding the tasks that get

dropped are then executed in time step order to obtain corresponding accuracy values.

Figure 34 illustrates an EDF schedule obtained using this methodology when the

tasks have deadlines and execution times as shown at the top of Figure 34.

Exec
Times Deadlines

MIX1 0.3 1.5 Meets deadline

UPDATE1 1.5 1.5 Tardy

INFERENCE1 1.2 2.4 Meets deadline

MIX2 0.4 3 Tardy

UPDATE2 1.3 3 Dropped

INFERENCE2 1.2 4.8 Dropped

 1.5 2.4 3.0

MIX 1 UPDATE1 INFERENCE1 MIX 2 MIX3

Figure 34. An EDF schedule for representative tasks in two consecutive time steps

 91

Chapter 7

7. Experimental Results

 In this chapter, we discuss the experimental results obtained by applying the

scheduling policies described in Chapter 6 to our reference scenario. We first discuss

the metrics we use for our evaluations. Thereafter, we explain our experimental set up

and finally we present the experimental results obtained on various data sets. In

addition to this, we present the results of the sensitivity study we carried out in order

to determine the sensitivity of the performance profiles we use to two different input

data parameters.

7.1 Evaluation metrics

In order to quantify the benefits of our scheduling methodology, we use the following

three metrics (We shall discuss how they are measured in our experimental

framework in section 7.2):

� Tracking accuracy measured at each user defined refresh interval

� CPU utilization

� Fraction of missed deadlines

Our aim is to determine how the tracking accuracy of the system, the CPU utilization

and the fraction of missed deadlines vary as we increase the time/resources provided

to the application to complete a given amount of work using the scheduling policies

discussed in Chapter 6. Note that when deadlines are missed, the most recent tracking

solution and data associations are used. This adversely affects the tracking accuracy.

 92

So tracking accuracy is related to missed deadlines in addition to being related to the

number and type of sensor reports that are processed each time step.

In the context of our reference scenario and system prototype, we explore the

impact of different scheduling policies on the three metrics defined above as we

increase the size of the time step interval without affecting the number and type of

reports generated in each time interval. For each data set obtained from the NG test

bed, we perform a set of experiments by progressively relaxing the ‘tint’ deadline

constraint across experiments, keeping the amount of work needed to be done each

‘tint’ interval the same as the original dataset. Varying the time interval size in this

manner can be considered equivalent to varying the speed of the CPU given the fact

that since our setup is running on fixed piece of hardware, there is no other simple

means of emulating variation in CPU speed. By measuring the tracking accuracy and

missed deadlines as a function of time interval size, we evaluate how aggressive a

real time constraint our reference CPU can meet across different schedulers. A

scheduler is better than another if it can meet a tighter real time constraint at an

equivalent level of functional correctness.

When we adopt this methodology to evaluate our scheduling policies, keeping

the user defined refresh interval fixed at an absolute value of wall clock time creates a

problem. If we keep ‘trefresh’ fixed at an absolute value, as we increase ‘tint’ the

total amount of work needed to be done by the processor (in terms of sensor report

processing) before hitting the ‘trefresh’ deadline decreases since the ratio of

‘trefresh’ to ‘tint’ decreases. Hence in order to make a fair comparison, instead of

making ‘trefresh’ a deadline in terms of absolute time, we consider it to be a deadline

 93

in terms of an interval number. Now the system objective changes to maximizing the

tracking accuracy at the end of every‘t’ intervals instead of ‘trefresh’ units of time.

This translates to maximizing the tracking accuracy every‘t’ intervals of time by

meeting each of the ‘tint’ deadlines corresponding to the sensor report arrival rate in

the best possible way. This is the framework within which we evaluate the three

scheduling policies discussed in Chapter 6.

7.2 Experimental set up

All our experiments have been performed on a 3GHz dual processor Xeon

machine on a Linux platform. All execution time numbers are single thread

performance numbers on this machine, so we make use of only one CPU. Table 4

provides a full description of the hardware set up we use.

Processor 3GHz Xeon

L1 cache size 16kB

L2 cache size 2MB

Main memory 3GB

Front Side Bus 800 MHz

Operating System Red Hat Linux Ent V4.0

Kernel V2.6

Table 4: Hardware set up

 94

 The customized scheduler /run time control component in our framework has

been developed as a component of the application and hence is a part of the same

process/address space as the application tasks. Details about the run time control

component/scheduler have been discussed in Chapter 6 Manages task compositions

 Sensor Reports

 Every ‘tint’ time units

Figure 35: Basic framework of the experimental set up

7.2.1 Data sets used

 The scheduling policies are evaluated on 6 different data sets generated from

the Northrop Grumman test bed by performing simulations using different

configuration files. Another two additional data sets are used for the sensitivity study.

The 6 data sets used for the scheduling policy evaluations differ in terms of number

of entities and have the default behaviors as defined in the NG test bed corresponding

to the entity classes to which they belong. The additional two data sets that we use for

the sensitivity study differ in terms of the behaviors associated with the entity types.

All other parameters in the configuration files are kept the same while generating

these data sets. Figure 37 shows the dataset generation framework. Table 5 shows the

different parameters pertaining to the datasets.

Application
Runtime

Control

Mix

Update

Obs

Update

Infere

nce

NG test bed

data

 95

Configuration files specifying scenario

 parameters like map of region, simulation window,

number/type of entities being tracked, number

and type of platforms and sensors, entity behaviors

Figure 37: Data set generation from the NG test bed

Data set parameters Value

Number of types of entities 50

Number of attributes / features per entity

type

10

Number of platforms 55

Number of sensors / platform 3

Number of entities 1000, 1500, 2000, 3000, 4000, 5000

Behavior sets Each entity type has an associated behavior

specified by start time, end time, start

location, end location and one of several

routes from start location to end location

which includes the number of route points

where the entity stops en route to the

destination. The commute time and the

pause time are also specified. We use a set

of behaviors that are default and another

synthetically generated set of behaviors for

our sensitivity study.

Table 5 Parameters pertaining to the data sets

NG test bed

simulation

Xml dump of

time stamped

sensor/truth

reports

Converted to

.txt files

extracting

sensor data

relevant to

IDA

 96

7.2.2 Simulation of real time sensor report delivery to the application

The real time sensor report delivery to the application is simulated using

UNIX timers and signals. At initialization, the application reads the input .txt file

containing the sensor reports and dumps them into a linear array in memory. Initially

only the set of sensor reports pertaining to the first time step interval is accessible to

the tasks. Once all other application initializations are completed, just before calling

the scheduler to start the scenario simulation, the application sets a timer with an

interval equal to the time step interval size ‘tint’ pertaining to the experiment.

Thereafter every ‘tint’ units of time, the application is asynchronously interrupted by

a SIGALRM signal. The signal handler in the application corresponding to this signal

updates a global time stamp value each time the SIGALRM signal is caught. This

update of the timestamp value signifies the arrival of a new set of sensor reports

corresponding to a new time step that now becomes available to the tasks in the

application. Since signals work like software interrupts, immediately after returning

from the signal handler, the application/task resumes operation at the point where it

was interrupted.

 Linear array of sensor reports corresponding to the entire NG test bed simulation window dumped in memory at initialization

 Figure 38: Simulation of real time sensor report delivery to application

ApplicationI

nitialization

SensorRep1:Timestep1

SensorRep2:Timestep1

SensorRep1:Timestep2

SensorRep2:Timestep2

SensorRep3:Timestep2

Sensor reports initially available to tasks

On timer interrupt another set corresponding to new time step

becomes available

 97

In this framework of simulation of real time sensor data delivery to the

application, we consider the availability of an infinite buffer for the sensor reports.

However as will become apparent in later discussions, it will suffice to buffer two

sets of sensor reports at a time, one pertaining to the current time step interval and the

other pertaining to the previous time step interval. This is to facilitate “tardy” tasks

corresponding to the previous time step to complete successfully when using our

dynamic scheduling scheme. In our current set of results, using our dynamic

scheduling scheme, there are no deadline misses because we use a “safety margin”

while scheduling tasks to minimize the chances of tasks becoming tardy. Even if tasks

do become tardy, the likelihood of them crossing more than two time step boundaries

is nominal using our scheme.

7.2.3. Counting missed deadlines and measuring CPU idle time

If the SIGALRM signal interrupts the application when one of the three

application tasks is running, on return from the signal handler, the current task and

subsequent tasks pertaining to that time step are run to completion. Once the set of

tasks is completed, the time stamp associated with the completed task set is compared

to the most recent timestamp updated by the signal handler. If the timestamps differ, a

deadline miss is recorded. If the timestamps are the same, the time remaining for the

timer to expire is obtained from the system and that becomes the CPU idle time for

that time step. Figure 39 illustrates this methodology.

CPU utilization is calculated at the end of the simulation as:

 ‘tint’*num_sim_timesteps - ΣCPU Idle Time

 ‘tint’*num_sim_timesteps

 98

 Timer interrupt indicating Deadline miss recorded here No deadline miss/no idle time

 arrival of new data at tint Timer interrupt

 Timer interrupt

 Cpu Idle time based on remaining

 time to expiry

 Figure 39. Measuring CPU idle time and deadline misses

7.2.4. Measuring accuracy

The updated data associations obtained at the end of each inference task are

dumped into a file at the end of the simulation. Off-line, we compare the data

associations corresponding to the user defined refresh intervals to the ground truth

corresponding to that interval. A score is obtained for the number of correct

associations at each such interval. The scores are summed across all intervals

pertaining to user refresh intervals and the average accuracy is so obtained.

Mix Update Inference Mix Update Inf

nf

Mix Update Inf

 99

7.3 Experimental results

7.3.1 Data set naming convention

We use the data sets mentioned in the Table 6 for the evaluation of our scheduling

policies. Table 7 shows the additional two data sets used in the sensitivity study

which we shall discuss in detail in section 7.4

Data set name Number of entities Behavior set

1000_1 1000 Default

1500_1 1500 Default

2000_1 2000 Default

3000_1 3000 Default

4000_1 4000 Default

5000_1 5000 Default

Table 6 Datasets used for the evaluation of our scheduling policies

Data set name Number of entities Behavior set

3000_2 3000 Changes made in default

behaviors in terms of start

time, end time, start

location and end location

5000_2 5000 Changes made in default

behaviors in terms of start

time, end time, start

location and end location

Table 7 Additional datasets used for sensitivity study

 100

7.3.2 Variation in tracking accuracy with different scheduling policies

In this section we discuss our experimental results that show the impact of the

different scheduling policies on the system solution quality /tracking accuracy

1000_1

0

20

40

60

80

100

120

0 1 2 3 4

Timestep interval size

T
ra

c
k

in
g

 a
c

c
u

ra
c

y

Dynamic_soft

Static_soft

EDF

1500_1

0

20

40

60

80

100

0 1 2 3 4 5

Timestep interval size

T
ra

c
k

in
g

 a
c

c
u

ra
c

y

Dynamic_soft

Static_soft

EDF

3000_1

0

20

40

60

80

100

0 1 2 3 4 5

Timestep Interval size

T
ra

c
k

in
g

 a
c

c
u

ra
c

y

Dynamic_Soft

Static_Soft

EDF

4000_1

0

20

40

60

80

100

0 1 2 3 4 5 6 7

Timestep interval size

T
ra

c
k

in
g

 a
c

c
u

ra
c

y

Dynamic_soft

Static_soft

EDF

5000_1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

Timestep interval size

T
ra

c
k

in
g

 a
c

c
u

ra
c

y

Dynamic_Soft

Static Soft

EDF

Figure 40 Graphs illustrating the impact of different scheduling policies on the tracking

accuracy as time for completion of processing of each set of sensor reports i.e. the time

step interval size (‘tint’) is increased for each dataset.

2000_1

0

20

40

60

80

100

0 1 2 3 4 5

Timestep Interval Size

T
ra

c
k

in
g

 A
c

c
u

ra
c

y

Dynamic_soft

Static_soft

EDF

 101

 The graphs in Figure 40 illustrate the impact of the three scheduling policies

discussed in Chapter 6 on the tracking accuracy of our application for different

datasets as we vary the value of ‘tint’, the time step interval size, from a minimum

value (pertaining to the maximum estimated time for mixing for that dataset) to a

maximum value (pertaining to the maximum estimated time to perform all 3 tasks to

completion every time step). The x-axis in all these graphs pertains to time step

interval sizes and the y-axis pertains to tracking accuracy values.

We observe that the tracking accuracy obtained using our dynamic soft

scheduling policy is on an average 26% better than the static soft policy and 39 %

better than our implementation of the conventional Earliest Deadline First policy. The

static soft policy on an average provides 13% better accuracy values than the

conventional Earliest Deadline First policy. As evident from the figure, the tracking

accuracy for all three scheduling techniques level off at higher values of time step

interval sizes. This is owing to the fact that independent of what scheduling policy we

use, the time pertaining to those time step intervals is high enough to ensure

completion of all three application tasks every time step without missing the deadline.

These points at which the three policies level off are included in the numbers we

report above. If we do not include these points in our analysis, the difference in

average tracking accuracies between the three policies is much higher.

 The Earliest Deadline First policy does not perform well in the context of our

reference application due to the fact that this policy tries to schedule each of the three

tasks to completion every time step. This results in unpredictable missed deadlines,

domino effects, tardy tasks and consequently a huge number of tasks need to be

 102

dropped at the admission control level due to the fact that their deadlines get crossed

even before they are allocated CPU execution time. This dropping of complete tasks

at the admission controller results in older and hence less accurate data associations

(lower tracking accuracy) at the user defined refresh intervals.

 The static soft policy performs better than the Earliest Deadline First because

of the fact that instead of trying to execute all tasks to completion, this policy makes

sure that the MIX task always runs to completion every time step but instead of trying

to execute all soft tasks to completion before the deadline, it intelligently uses a

predefined optimal composition of the OBSERVATION UPDATE and INFERENCE

tasks to meet each deadline in the best possible way. However because the optimal

composition of tasks is determined pre run time and the same composition is used

every time step, this policy is unable to exploit the variance in the execution of the

MIX task to get better solution quality.

The dynamic soft policy not only exploits the soft computing properties of the

OBSERVATION UPDATE and INFERENCE tasks, but also monitors the execution

time of the MIX task at run time. By doing so, for each time step, this policy is able to

determine the optimal composition of INFERENCE and OBSERVATION UPDATE

tasks at run time to meet the time step interval deadline .This ensures higher tracking

accuracies at the user defined refresh intervals. The design point pertaining to the

highest time step interval size in all the graphs is the design point corresponding to a

conventional real time system design approach. Though the accuracy is maximum for

this design point, the corresponding CPU utilization is very low as will become

evident from the results in the next section.

 103

 Most importantly, the results for all the data sets illustrate the fact that using

the dynamic soft scheduler; a much tighter real time constraint can be met than

possible with conventional real time scheduling schemes for equivalent levels of

functional correctness. For instance, for a data set 1500_1, the dynamic scheduler is

able to achieve the same level of functional correctness at a time step interval size of

2 units (seconds) as opposed to a time step interval size of 4 units (seconds) required

when scheduling tasks with a conventional scheduler. We conclude that with a

dynamic soft scheduler, the tightest real time constraint (same as time step interval

size) that can be met on our reference system and scenario is on an average 1.65 times

smaller than what can be achieved by a conventional real time scheduling scheme at

comparable levels of functional correctness.

 104

7.3.3 Variation of CPU utilization with different scheduling policies

 In this section we discuss our experimental results that show the impact of the

 three scheduling policies on the CPU utilization of the system.

1000_1

50

60

70

80

90

100

0 1 2 3 4

Timestep interval size

%
 C

P
U

 u
ti

li
z

a
ti

o
n

Dynamic_soft

EDF

Static_soft

1500_1

50

55

60

65

70

75

80

85

90

95

100

0 1 2 3 4

Timestep interval size

%
 C

P
U

 u
ti

li
z

a
ti

o
n

Dynamic_soft

Static_soft

EDF

2000_1

50

60

70

80

90

100

0 2 4 6

Timestep interval size

%
 C

P
U

 u
ti

li
z

a
ti

o
n

Dynamic_soft

EDF

Static_soft

3000_1

50

60

70

80

90

100

0 2 4 6

Timestep interval size

 %
C

P
U

 u
ti

li
z

a
ti

o
n

Dynamic_soft

EDF

Static_soft

4000_1

50

60

70

80

90

100

1 3 5 7

Timestep_interval size

%
 C

P
U

 u
ti

li
z

a
ti

o
n

Dynamic_soft

EDF

Static_soft

5000_1

50

60

70

80

90

100

0 1 2 3 4 5 6 7

Timestep interval size

%
 C

P
U

 u
ti

li
z

a
ti

o
n

Dynamic soft

EDF

Static_soft

Figure 41: Graphs illustrating the effect of the 3 different scheduling policies on the CPU

utilization of the system

 105

Figure 41 shows the graphs that illustrate the impact of the three scheduling

policies on the percentage CPU utilization of the system. In all the graphs, the x-axis

pertains to the time step interval size and the y axis pertains to the corresponding

CPU utilization.

For all the data sets, we observe that the CPU utilization for the static soft

scheme is low at the beginning (smaller values of time step interval size), then starts

increasing and finally decreases and tapers off again. Let us explain this with the

example of the CPU utilization of the curve corresponding to dataset 2000_1. For this

dataset, the CPU utilization initially is 68% corresponding to a time step interval size

of 1 second. Since in the static soft scheme, the time allocated to the MIX task is

always fixed (pertaining to the maximum estimated execution time for this task), the

initial CPU idle time and low CPU utilization can be attributed to the variance in the

actual execution time of the MIX task as compared to the time allocated to it.

Subsequently as the time step interval size is increased, the CPU idle time

remains the same till a time step interval size of 2.8seconds. This means that there are

always sufficient numbers of observation updates and inference iterations to be

performed in each time step interval. This explains the increase in the CPU utilization

values for the static policy from a time step interval size of 1second-2.8seconds.

However as the time step interval size is further increased beyond 2.8 seconds, the

variance in the number of sensor reports coming in causes the CPU idle time to

increase further. This essentially means that when the time step interval time is higher

than 2.8 seconds, there are some time steps where there are not enough sensor

observation updates and inference iterations to keep the CPU busy for the allocated

 106

time. This is the cause of the subsequent decrease in CPU utilization of the static soft

scheme.

For the same dataset, the dynamic soft scheme on the other hand starts with

almost 100% CPU utilization, remains at this level till around the 2.7 second time

step interval size and subsequently the utilization starts going down owing to the fact

that for higher allocations of time, there are not always enough sensor observation

updates and inference iterations to be performed in the allocated time. The dynamic

soft policy essentially utilizes resources much more efficiently than the static policy

and ensures that the system objective /solution value is maximized given a set of

resources/time.

 The other interesting fact in these graphs is that the CPU utilization

pertaining to the EDF policy for all the datasets is also very high. However, the

corresponding accuracy values for the EDF policy are not encouraging. This can be

attributed to the fact that since EDF tries to schedule all tasks to completion, for a

major part of time , the CPU is executing tasks that are tardy i.e. tasks that do not add

much value to the final system solution by causing the unpredictable dropping of

later tasks . Tardy tasks/dropped tasks and domino effects caused by EDF result in

lower accuracies at the user defined refresh intervals. Thus with regards to handling

the dynamics of the system, the important difference between the EDF policy and the

dynamic soft policy is that the dynamic soft policy composes and schedules tasks

“intelligently” by exploiting the soft computing properties of tasks to meet deadlines

and hence maximizes the system utility while EDF does not. The design point

 107

pertaining to the highest time step interval size for each experiment is the design point

corresponding to a conventional real time system design approach.

7.3.4 Variation in missed deadlines with different scheduling policies

1000_1

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

Time step interval size

F
ra

c
ti

o
n

 o
f

m
is

s
e

d

d
e

a
d

li
n

e
s

EDF_MIX

EDF_OBS_UPDATE

EDF_INFERENCE

Dynamic_soft

Static_soft

1500_1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1 2 3 4

Timestep interval size

F
ra

c
ti

o
n

 o
f

m
is

s
e
d

d
e
a
d

li
n

e
s

EDF_MIX

EDF_OBS_UPDATE

EDF_INFERENCE

Dynamic_soft

Static_soft

2000_1

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6

Timestep interval size

F
ra

c
ti

o
n

 o
f

m
is

s
e
d

d
e
a
d

li
n

e
s

EDF_MIX

EDF_OBS_UPDATE

EDF_INFERENCE

Dynamic_soft

Static_soft

3000_1

0

0.1

0.2

0.3

0.4

0.5

0 2 4

Time step invertal size

F
ra

c
ti

o
n

 o
f

m
is

s
e

d

d
e

a
d

li
n

e
s

EDF_MIX

EDF_OBS_UPDATE

EDF_INFERENCE

Dynamic_soft

Static_soft

4000_1

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8

Time step interval size

F
ra

c
ti

o
n

 o
f

m
is

s
e

d

d
e

a
d

li
n

e
s

EDF_MIX

EDF_OBS_UPDATE

EDF_INFERENCE

Dynamic_soft

Static_soft

5000_1

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8

Timestep interval size

F
ra

c
ti

o
n

 o
f

m
is

s
e

d

d
e

a
d

li
n

e
s

EDF_MIX

EDF_OBS_UPDATE

EDF_INFERENCE

Dynamic_soft

Static_soft

Figure 42: These graphs illustrate how the fraction of missed deadlines for each of the tasks

varies across the scheduling policies

 108

Figure 42 illustrates how the fraction of missed deadlines varies across the

scheduling policies. In the figures, the x-axis pertains to the size of the time step

interval and the y-axis pertains to the fraction of missed deadlines.

As evident from the graphs, for both “static soft” and “dynamic soft” policies,

the number of missed deadlines is zero. This is because in both the static and dynamic

policies, the decision about the composition of soft tasks is taken based on the

remaining time to reach a deadline. Each time step interval is big enough to

accommodate the worst case execution time for the “MIX” task, and the remaining

time is allocated to a composition of the soft “OBSERVATION UPDATE” and

“INFERENCE” tasks taking into account a safety margin so that the deadline is not

missed.

In EDF however, the decision to schedule a task is solely made based on its

absolute deadline and the remaining time to meet the deadline is not taken into

account for scheduling tasks. Moreover each task runs to completion, even if it is

tardy. As a result, the three tasks pertaining to the three sub-kernels “MIX”,

“OBSERVATION_UPDATE” and “INFERENCE” miss deadlines unpredictably.

Though the fraction of missed deadlines goes down for each of the tasks as we

increase the time step interval, the missed deadlines cause later tasks to get dropped at

the admission control level and hence tracking accuracy is adversely affected because

the tardy and dropped tasks cause older data associations to be provided to the human

operator at each refresh interval.

 109

7.4 Sensitivity study for performance profiles

So far, in all our discussions, we have derived and used performance profiles

pertaining to a specific data set by using average case numbers for the tracking

accuracy and execution time across a large number (500) of simulation time steps.

Subsequently, these performance profiles have been used for dynamic scheduling of

tasks pertaining to the data set to meet various real time constraints. As evident from

the results discussed in the previous section, the benefits are considerable. However it

is important to explore the sensitivity of performance profiles to input data for a

couple of reasons. Firstly we need to identify if the performance profiles we obtain

based on average case accuracy and execution time numbers are representative for the

entire dataset across all time steps or do we need per time step performance profiles

to get more benefits from using the dynamic scheduler. Secondly, a sensitivity study

also indicates if online learning of performance profiles is essential as opposed to

using performance profiles that are determined off-line on a representative data set.

In this section, we discuss the experiments performed by us to understand the

sensitivity of the performance profiles of the soft tasks in our reference

implementation to various data set parameters. We study the sensitivity of

performance profiles to input data in two phases: First we explore how the

performance profiles for a single data set varies across the time step intervals.

Secondly, we study how performance profiles vary across data sets as we change the

number of entities and the behaviors associated with the entities. The effects of

 110

varying the number of entities and behaviors associated with them on the

computations performed by IDA have been discussed in section 4.2.3

7.4.1 Use of dynamic performance profiles across time steps for a single

data set

The aim of this experiment is to determine how per time step dynamic

performance profiles vary from performance profiles obtained by considering average

case execution time and accuracy values across time steps. For two of the data sets,

we obtain per time step performance profiles for the first 100 time steps and then

derive models from them as per the methodology outlined in Chapter 5. We observe

that the variance in the dynamic per time step models and the model derived from the

performance profile pertaining to average case numbers is not significant. We use

these per step models as input to the run time control and compare the corresponding

accuracy results with the results obtained using performance profiles pertaining to

average case numbers. We find that for smaller values of time step interval size, there

is around 5-6% gain in accuracy, but as we increase the time step interval size further,

we observe diminishing returns in accuracy improvement. Figure 43 illustrates these

results for two of the data sets: 3000_1 and 4000_1.

 111

3000_1

0

20

40

60

80

100

0 1 2 3 4 5

Timestep Interval size

T
ra

c
k
in

g
 a

c
c
u
ra

c
y PerTimestep_

DynamicSoft

Dynamic_soft

Static_soft

EDF

4000_1

0

20

40

60

80

100

0 1 2 3 4 5 6 7

Timestep interval size

T
ra

c
k
in

g
 a

c
c
u

ra
c
y

PerTimeStep_Dyna

micSoft

Dynamic_soft

Static_soft

EDF

Figure 43. These figures show how tracking accuracy is affected when we use per time step

performance profiles in place of performance profiles based on average case numbers.

 We can tentatively conclude from the results that the performance profile

derived by considering average accuracy and execution time numbers for various

compositions of sensor updates and inference is a reasonable representative

performance profile at least for this application.

 112

7.4.2 Sensitivity to different number of entities

 In this experiment, we apply performance profiles obtained for a data set with

a specific number of entities on other datasets with smaller number of entities. The

range of values in a model pertaining to a data set with smaller number of entities is a

subset of the range in models pertaining to data sets with larger number of entities.

Hence it is feasible to apply a performance profile pertaining to a dataset with larger

number of entities to a dataset having smaller number of entities but not vice versa.

Figure 44: Performance profile for dataset 5000_1

 113

Figure 45: Performance profile for dataset 4000_1

Figure 46: Performance profile for dataset 3000_1

 114

Fraction of remaining time allocated to update Vs

Remaining Time

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

Remaining Time

F
ra

c
ti

o
n

 o
f

re
m

a
in

in
g

ti

m
e

 a
ll

o
c

a
te

d
 t

o

u
p

d
a

te

3000_1_PP_3000

3000_1_PP_4000

3000_1_PP_5000

Fraction of remaining time allocated to Inference Vs

Remaining Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3

Remaining time

F
ra

c
ti

o
n

 o
f

re
m

a
in

in
g

ti

m
e

 s
p

e
n

t
in

 I
n

fe
re

n
c

e

3000_1_PP_4000

3000_1_PP_3000

3000_1_PP_5000
s

Figure 47. This figure shows the fraction of

 remaining time that gets allocated to the

 Observation Update task when

the numbers are derived from the

models pertaining to datasets 3000_1,

4000_1 and 5000_1

Figures 44, 45 and 46 are the graphical representations of the performance

profiles pertaining to datasets 5000_1, 4000_1 and 3000_1 respectively. Models for

optimal composition of tasks are derived from these performance profiles in the range

of time allocation units pertaining to the 3000_1 dataset.

Figures 47 and 48 show how the optimal compositions for Observation

Update and Inference tasks vary for a given total time allocation when the models are

derived from performance profiles pertaining to datasets 5000_1, 4000_1 and 3000_1

respectively.

We then perform experiments to study the effect on tracking accuracy for the

3000_1 dataset where the run time control uses the performance profile pertaining to

the three different datasets mentioned above. Figure 48 illustrates the results so

Figure 48. This figure shows the fraction of remaining time

that gets allocated to the Inference task when the numbers

are derived from the models pertaining to datasets

3000_1,4000_1 and 5000_1

 115

obtained. We perform a similar set of experiments on the data set 1500_1 using

performance profiles pertaining to datasets 1500_1, 2000_1,3000_1 and 4000_1.

Effect on tracking accuracy when using

performance profiles of datasets pertaining to

larger entities

0

20

40

60

80

100

0 1 2 3 4 5

Time step interval size

T
ra

c
k
in

g
 A

c
c
u
ra

c
y

1500_1_PP_1500

1500_1_PP_2000

1500_1_PP_3000

1500_1_PP_4000

Effect on tracking accuracy when using

performance profiles of data sets pertaining to

larger entities

0

20

40

60

80

100

0 1 2 3 4 5

Time step interval size

T
ra

c
k
in

g
 a

c
c
u

ra
c
y

3000_1_PP_3000

3000_1_PP_4000

3000_1_PP_5000

Figure 49. This figure illustrates the effect of tracking accuracy when the composition of tasks is

based on performance profile models pertaining to another data set with higher number of

entities. The legend entry 3000_1_PP_3000 signifies that the performance profile for the 3000_1

dataset is applied to the same dataset. 3000_1_PP_4000 signifies that the performance profile for

the 4000_1 data set is applied to the 3000_1 dataset and so on.

In both the cases, we make the following observations. There is a significant

difference between the models obtained for datasets having different number of

entities. This variance becomes more significant as the difference between the

number of entities grows i.e. the difference between models obtained for datasets with

3000 and 5000 entities is higher than that between 3000 and 4000 entities. The

 116

difference between tracking accuracies obtained on the dataset 3000_1 by using the

performance profiles for 4000_1 and 5000_1 respectively is approximately 7% and

12% respectively. Similarly the difference between tracking accuracies obtained on

the dataset 1500_1 by using performance profiles for 2000_1, 3000_1 and 4000_1 is

on an average is 4.5 %, 10% and 13% respectively.

The conclusions we draw from this experiment is that the performance

profiles for our reference implementation are sensitive to the number of entities in a

data set .This leads to a potential need to learn these performance profiles on line.

Instead of having to incur the run time cost of online learning, another approach to

handle this sensitivity would be to have a library of “context specific” performance

profiles pertaining to different number of entities (the context being the number of

entities in the case of our system prototype) and then using these performance profiles

to predict the allocation of resources for smaller number of entities (context specific

performance profiles are a group of performance profiles derived as a function of

some critical input data parameter to which the performance profile is found to be

sensitive). This method might suffice and eliminate the need for online learning of

performance profiles provided we have enough “context specific” performance

profiles to circumvent the degradation in solution quality which we observe in our

results. This is essentially a design decision that needs to be addressed .The choice

between maintaining a library of “context specific” performance profiles and online

learning of performance profiles has to be based on the trade-offs between the

cost/benefits of learning and use “context specific” performance profiles.

 117

7.4.3 Sensitivity to entity behaviors

In this section, we discuss the sensitivity of performance profiles to the

behaviors associated with entity types in a dataset. We generate two new datasets

(3000_2 and 5000_2) with a new set of behaviors for the various entity types. The

behaviors associated with the entity types differ from the baseline behaviors in terms

of start and end times and start and end positions on the scenario map (for more

details please refer to Section 4.2).

Figure 50 shows the optimal allocation of time to Inference and Observation

Update tasks based on models derived from the performance profiles pertaining to

data sets 3000_1 and 3000_2. These two data sets differ in the set of behaviors

associated with the different types of entity types. As evident from the figure, there is

a significant difference between the two models. The effect on tracking accuracy of

applying the performance profile of the dataset 3000_2 to the dataset 3000_1 is

illustrated in Figure 51 and that of applying the performance profile of the dataset

5000_2 to the dataset 5000_1 is illustrated in Figure 52. The tracking accuracy

degrades on an average by 13% across the two data sets when using the performance

profile pertaining to a dataset with different behaviors.

Fraction of time to be allocated to Observation

Update task Vs Remaining Time

0

0.2

0.4

0.6

0.8

1

0 1 2 3

Remaining Time

T
im

e
 a

ll
o

c
a

te
d

 t
o

 t
h

e

O
b

s
e

rv
a

ti
o

n
 U

p
d

a
te

ta

s
k 3000_1_PP_Model

3000_2_PP_Model

Fraction of time to be allocated to Inference task

Vs Remaining Time

0

0.2

0.4

0.6

0.8

1

0 1 2 3

Remaining time

T
im

e
 a

ll
o

c
a

ti
o

n
 t

o
 t

h
e

In

fe
re

n
c

e
 t

a
s

k

3000_1_PP_Model

3000_2_PP_Model

 118

Figure 50 These figures show the fraction of remaining time that get allocated to the

Observation and Inference tasks when the numbers are derived from the models pertaining to

datasets 3000_1 and 3000_2 datasets

Effect on tracking accuracy using performance profiles

pertaining to a dataset with a different behavior set

0

20

40

60

80

100

0 1 2 3 4 5

Timestep interval size

T
ra

c
k
in

g
 a

c
c
u
ra

c
y

3000_1_PP_30001

3000_1_PP_3000_2

Figure 51. This figure illustrates the impact on tracking accuracy when applying the

performance profile for a data set with a specific set of behaviors to another with a different set

of behaviors. The legend entry 3000_1_PP_3000_1 signifies that the performance profile for the

3000_1 dataset is applied to the same dataset. 3000_1_PP_3000_2 signifies that the performance

profile for the 3000_2 data set is applied to the 3000_1.

Effect on tracking accuracy when using a

performance profile pertaining to a data set with

a different set of behaviors

0

20

40

60

80

100

0 2 4 6 8

Time step interval size

T
ra

c
k
in

g
 a

c
c
u
ra

c
y

5000_1_PP_5000_1

5000_1_PP_5000_2

 119

Figure 52. This figure illustrates the impact on tracking accuracy when applying the

performance profile for a data set with a specific set of behaviors to another with a different set

of behaviors. The legend entry 5000_1_PP_5000_1 signifies that the performance profile for the

5000_1 dataset is applied to the same dataset. 5000_1_PP_3000_2 signifies that the performance

profile for the 5000_2 data set is applied to the 5000_1.

Though these are preliminary results, we tentatively conclude that the

performance profiles are sensitive to the behavior parameters of the entities in a data

set.

Sensitivity of performance profiles to different input data parameters opens up

other important questions pertaining to research in the area of soft computing and it’s

applications to real time system design. One important issue is the online learning of

performance profiles and the analysis of the cost-benefit trade-off of on line learning.

Whenever we have a system in which performance profiles are sensitive to input data

parameters, the first question that needs to be answered is whether maintaining

“context specific” performance profiles (for critical input data parameter values) will

suffice to meet the system objective. If not, one needs to look at ways to learn the

performance profiles online. One of the main issues in on line learning is to ensure

recognizability of the soft kernels, a desirable property of soft computations that we

have not addressed in this thesis. As defined in Chapter 5, “recognizability” of a soft

computation pertains to the ability of determining the impact of the computations on

the system solution at run time and hence facilitates the learning of performance

profiles online. Determination and evaluation of the degree of recognizability of the

soft kernels in our system prototype is a part our planned future research in this area.

 120

Chapter 8

8. Conclusion and Future Work

In this thesis, we address the design issues involved in exploiting “soft

computing” properties of kernels to improve real time performance of systems. We

build a system prototype of a real time scenario and application (real time sensor

fusion and situational assessment) described in detail in Chapter 4. The development

of this system prototype involved the porting of the MATLAB code of the

Information Data Association algorithm to C, integrating and applying the algorithm

to a cognitive test bed (simulates a surveillance and situational assessment scenario)

provided by Northrop Grumman and developing a preliminary framework for

investigating different real time scheduling policies. In the context of this system

prototype and reference scenario, we demonstrate the benefits that soft computations

provide to optimize real time system performance by enabling the meeting of system

goals and deadlines with sufficient system solution quality without having to design

the system to support worst case program execution. There are a number of

conclusions that we draw from our work.

The first conclusion that we make is that identifying soft computations in

applications and quantifying the gain in solution quality of the application and system

as a function of time spent in soft computations (using individual and composite

performance profiles) is an important first step to analyzing the opportunities that

these computations provide to meet system goals with sufficient solution quality at a

deadline.

 121

 Secondly, we propose a methodology of using models derived from

composite performance profiles pertaining to two or more “soft computing” kernels

to determine optimal allocation of resources/ time to these kernels at run time in

order to be able to meet deadlines with sufficient system solution quality. We

experimentally demonstrate that the use of these models by a dynamic scheduler

provide on an average 39% improvement in system solution quality without missing

any deadlines as compared to solution qualities obtained by using conventional real

time scheduling techniques when designing the system for supporting less than worst

case program execution. This improvement in solution quality is achievable while

keeping the CPU highly utilized. We observed that with our dynamic scheduler, the

tightest real time constraint that can be met on our reference CPU (3GHz Xeon) is on

an average 1.65 times smaller than what can be achieved by a conventional real time

scheduling scheme at comparable levels of functional correctness. Though the

numbers by themselves cannot be considered representative of all real time systems

and scenarios, we conclude that our scheme can provide significant benefits and

facilitate real time system design at less aggressive design points than what is

achievable through conventional real time scheduling and design techniques.

 Thirdly, through a series of experiments, we identify the sensitivity of

performance profiles to different input data parameters in the case of our reference

real time scenario implementation. We conclude that in the context of our system

prototype, assuming no constraints on input parameters, having a library of “context

specific” or adaptive performance profiles and online learning of performance

profiles has the potential of providing more performance benefits than achievable by

 122

our scheme, which uses a single performance profile determined off-line (prior to

application execution), to make run time decisions about task compositions.

However, using our scheme the improvements we have claimed earlier are achievable

assuming some constraints in the problem formulation with reference to different

input data parameters.

In a broader context, our work is a very preliminary step towards the

realization of a new methodology for designing systems pertaining to certain real time

application domains. The experimental results and analysis done as a part of this

thesis, though preliminary and specific to our reference real time system scenario and

prototype, point towards a possible new paradigm of real time systems design. The

classical approach to the design of real time systems is to design a system with

sufficient resources to meet worst case program execution given an application and a

set of timing constraints. What our results demonstrate is that it might be possible to

design a real time system to support less than worst case scenarios and still achieve

the system goals predictably by exploiting soft computing properties of kernels using

models derived from their composite performance profiles to dynamically schedule

tasks at run time.

As a part of our future work in this area, we plan to address the design issues

pertaining to the online learning of performance profiles. In addition to this, we plan

to analyze the applicability of our methodology to other real time scenarios with more

“soft computing” kernels. By doing so, we hope to be able to determine the feasibility

of using our approach in the context of the design of real time systems in general.

 123

Bibliography

1. C. L. Liu and J. Layland, "Scheduling algorithms for multiprogramming in a hard-

real-time environment". Journal of the ACM, 20(1):46--61, Jan. 1973.

2. Kang G. Shin and P.Ramanathan, "Real-time computing: A new discipline of

computer science and engineering". Proc. IEEE, vol.82, no.1, pp.6-24, Jan. 1994.

3. Stankovic J. A., "Misconceptions about real-time computing: a serious problem for

the next-generation systems". IEEE Computer., V21 N10, Oct. 1988, pp 10-19.

4. K. Ramamritham and J. Stankovic. "Scheduling algorithms and operating systems

support for real-time systems". Proceedings of the IEEE, 82(1):55-67, 1994.

5. N. Audsley, A. Burns. "Real-Time System Scheduling". Technical Report YCS

134, University of York, UK.

6. F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-Vincentelli. "Scheduling of

embedded real-time systems.” IEEE Design and Test of Computers, 1998.

7. J. A. Stankovic, M. Sprui, M. DiNatale, and G. C. Buttazzo. "Implications of

classical scheduling results for real-time systems.” IEEE Computer, 28:16--25, June

1995.

8. D.B. Stewart and P.K. Khosla, "Real-Time Scheduling of Sensor-Based Control

Systems," in Real-Time Programming (W. Halang and K. Ramamritham, eds.),

Tarrytown, NY: Pergamon Press, 1992.

9. D. Sero, et. al., "On Task Schedulability in Real-Time Control Systems", 1EEE

RTSS, December 1996.

10. W. Zhao, K. Ramamritham and J. Stankovic, "Preemptive Scheduling Under

Time and Resource Constraints," IEEE Trans. on Computers, Vol. C-36,No.8

11. J. Stankovic and K. Ramamrithm. "The Spring Kernel: A New Paradigm for Real-

Time Systems.” IEEE Software, 8(3), May 1991.

12. G. Beccari, et. al., "Rate Modulation of Soft Real-Time Tasks in Autonomous

Robot Control Systems," EuroMicro Conference on Real-Time Systems, June 1999.

13. S. Baruah and J. Haritsa. "Scheduling for overload in realtime systems". IEEE

Trans. on Computers, 46(9), Sep 1997.

14. G. Buttazzo, and John A. Stankovic, "RED: Robust Earliest Deadline

scheduling," in Proc. 3rd Intl. Workshop on Responsive Computing Systems, pp.

100-111, Sep. 1993.

 124

15. K. Jeay, D.F. Stanat, and C.U. Martel. "On non-preemptive scheduling of periodic

and sporadic tasks". In Proc. of the Twelfth IEEE Real-Time Systems Symposium,

pages 129--139. IEEE Computer Society Press, 1991.

16. Winming Li,Krishna Kavi and Robert Akl."A Non-preemptive scheduling

algorithm for Soft Real-time Systems".In Proc. of the Twelfth IEEE Real-Time

Systems Symposium, pages 129--139. IEEE Computer Society Press,1991.

17. Wei Kuan Shih, J. W.-S. Liu, and C. L. Liu. "Modified rate-monotonic algorithm

for scheduling periodic jobs with deferred deadlines". IEEE Transactions on Software

Engineering, 19(12):1171--1179, December 1993.

18. Mahmoud Naghibzadeh." A modified Version of Rate-Monotonic Scheduling

Algorithm and its efficiency Assessment, Seventh IEEE International Workshop on

Object-Oriented Real-time Dependable Systems". San Diego, USA, January 7-9,

2002.

19. Peng Li, Binoy RAvindran,"Fast,best effort real time scheduling

algorithms",IEEE Transactions on Software Engineering,19(12):1171--1179,

December 2004.

20. M. Spuri and G. Buttazzo, "Scheduling Aperiodic Tasks in Dynamic Priority

Systems", Real-Time Systems, vol. 10, pp. 179--210, 1996.

21. Vahid Salmani, Saman Taghavi Zargar, and Mahmoud Naghibzadeh,"A Modified

Maximum Urgency First Scheduling Algorithm for Real-Time Tasks",Transactions

on Engineering, Computing and Technology V9 November 2005 ISSN 1305-5313

22. D.B. Stewart and P. Khosla, "Real-Time Scheduling of Dynamically

Reconfigurable Systems," IEEE International Conference on Systems Engineering,

August, 1991, pp. 139-142.

23. Stankovic, JA., "Distributed Real-time Computing: The Next Generation," Jnl. of

the Society of Instrument and Control Engineers of Japan, 1992.

24. J.W.S. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, "Imprecise

Computations," Proc. IEEE, vol. 82, Jan. 1994.

25. J. W.-S. Liu, K.-J. Lin, W.-K. Shih, A. C.-S. Yu, C. Chung, J. Yao, and W. Zhao,

"Algorithms for scheduling imprecise computations". IEEE Computer, 24(5):58--68,

1991.

26. C. McElhone, "Soft Computations within Integrated Avionics Systems," in

Proceedings of the IEEE National Aerospace and Electronics Conference (NAECON

2000.

 125

27. Chen, I.R., "On Applying Imprecise Computation To Real-Time AI Systems,"

The Computer Journal, vol. 38, no.6, 1995.

28. S. Baruah and J. Haritsa. Scheduling for overload in realtime systems. IEEE

Trans. on Computers, 46(9), Sep 1997.

29. A. Burns and D. Prasad, "Value-Based Scheduling of Flexible Real-Time Systems

for Intelligent Autonomous Vehicle Control", Proceedings of the 3rd. IFAC

Symposium on Intelligent Autonomous VehiclesMarch 1998.

31. T. Schwarzfischer, "Using Value Dependencies to Schedule Complex Soft-Real-

Time Applications with Precedence Constraints". Proceedings of the 1st

Multidisciplinary International Conference on Scheduling: Theory and Applications

(MISTA), Nottingham (England), August 2003, ISBN: 0-9545821-0-1

32. F. Daoud,"Coordination factors in adaptive scheduling for soft real-time

cooperative tasks: a performance

study",1996 IEEE International Joint Symposia on Intelligence and

Systems (IJSIS '96)

33. J. R. Haritsa, M. Livny, and M. J. Carey. Earliest deadline scheduling for real-

time database systems. In Proc. of Real-Time Systems Symposium, pages 232--242,

1991.

34. S. K. Baruah and M. E. Hickey. Competitive on-line scheduling of imprecise

computations. IEEE Transactions on Computers, 47(7): 1027-1033, September 1998.

35. C. McElhone, "Adapting and Evaluating Algorithms for Dynamic Schedulability

Testing," Tech. Rep. YCS 225, Department of Computer Science, University of York,

England, 1994.

36. O. Gonz alez, H. Shrikumar, J. A. Stankovic, and K. Ramamritham. Adaptive

fault tolerance and graceful degradation under dynamic hard real-time scheduling. In

Proceedings of the Eighteenth Real-Time Systems Symposium, pages 79--89, Dec.

1997.

37. C. McElhone and A. Burns. Scheduling optional computations for adaptive real-

time systems. Journal of Systems Architectures, 46:46--77, 2000.

38. J.-Y. Chun, J. W.-S. Liu, and K.-J. Lin. Scheduling periodic jobs that allow

imprecise results. IEEE Trans. on Computers, 19(9):1156--1173, 1990.

39. Stankovic, J., K. Ramamritham, and D. Niehaus, "On Using the Spring Kernel to

Support Real-Time AI Applications," Proc. Euromicro Workshop on Real-Time

Systems, June 1989.

 126

40. Stankovic, JA., "Distributed Real-time Computing: The Next Generation," Jnl. of

the Society of Instrument and Control Engineers of Japan, 1992.

41. D. J. Musliner, et al. The Challenge of Real-TIme AI. Computer (January): 58-66,

1995.

 42. T. Schwarzfischer: Quality and Utility - Towards a Generalization of Deadline

and Anytime Scheduling. Proceedings of the 13th International Conference on

Automated Planning and Scheduling (ICAPS), Trento (Italy), June 2003, ISBN: 1-

57735-187-8

43. Chen, I.R., "On Applying Imprecise Computation To Real-Time AI Systems,"

The Computer Journal, vol. 38, no.6, 1995.

44. D. W. McMichael, "Data fusion for vehicleborne mine detection," in MD98 [24],

pp. 167--171.

45. M. Factor. Real-Time Data Fusion in the Intensive Care Unit. IEEE Computer,

1991, 24(11) : 45-54.

46. Will Meilander, Johnnie Baker, and Mingxian Jin,"Predictable Real-Time

Scheduling for Air Traffic Control", in Proc. of the 15th International Conference of

Systems Engineering, pages 533-539, August 2002

47. Xuanhua Li and Donald Yeung,"Exploiting Soft Computing for Increased Fault

Tolerance,Appears in Workshop on Architectural Support for Gigascale Integration",

Boston, MA. June

2006.

48. P. Dubey, “Recognition, Mining and Synthesis Moves Computers to the Era of

Tera,” Technology @ Intel Magazine, pp. 1–10,February 2005.

49. M. A. Breuer, “Multi-media Applications and Imprecise Computation,” in

Proceedings of the 8th Euromicro Conference on Digital System Design, pp. 2–7,

September 2005.

50. S. Zilberstein. ,"Operational Rationality through Compilation of Anytime

Algorithms",Ph.D. dissertation, Computer Science Division, University of California

at Berkeley, 1993.

51. S.J. Russell and S. Zilberstein,"Composing Real time systems", Proceedings of

the Twelfth International Joint Conference on Artificial Intelligence, pp. 212-217,

Sydney, Australia, 1991

 127

52. S. Zilberstein,, "Using Anytime Algorithms in Intelligent Systems", AI Magazine,

17(3):73-83, 1996.

53. Jane W. S. Liu,"Real-Time Systems",Prentice Hall Inc,2000

54. Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. “Priority inheritance

protocols: An approach to real-time synchronization.” IEEE Transactionson

Computers, 39(9):1175– 1185, September 1990.

55.Chris Archer(Northrop Grumman), “Distributed Sensing Cognitive test bed

conceptual design”, January, 2005 .

56. Chris Archer(Northrop Grumman), ”Distributed UAV Sensing Challenge

Problem Test Bed Theoretical Basis Document”, Version 0.3 for the Cognitive

Enabled Architectures Program under the DARPA Architectures for Cognitive

Information Processing. January, 2004.

57. Stewart Frederick Edgar, "Estimation of Worst Case Execution Time Using

Statistical Analysis", Ph.D Dissertation, University of York Department of Computer

Science September 2002

58. Brad Schumitsch, Sebastian Thrun, Gary Bradski and Kunle Olukotun, “The

Information-Form Data Association Filter.” Advances in Neural Information

Processing Systems 18, Page 1193-1200, 2005

59. Y. Bar-Shalom and X.-R. Li, “Estimation and Tracking: Principles, Techniques,

and Software.” YBS, Danvers, MA, 1998.

60. D.B. Reid., ”An algorithm for tracking multiple targets. IEEE Transactions on

Aerospace and Electronic Systems,” AC-24:843–854, 1979.

61. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, ”Introduction to Data

Mining,” Pearson, Addison Wesley, 2006.

 128

 129

