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The classic approach to the design of real time systems is to determine worst-

case scenarios for the system statically and manually and then build the system with 

sufficient resources to meet deadlines and goals. This approach has worked well for 

traditional real time systems which operate in relatively simple, well-characterized 

environments. However the emerging generation of complex, dynamic and uncertain 

real time application domains accentuates the growing need for flexible, adaptable 

design approaches for real time systems.  With the increasing complexity of real time 

systems, it is becoming infeasible to build systems with sufficient resources to meet 

the functional and timing requirements of all application tasks at all times. What is 

becoming increasingly important in the new paradigm of real time computing is the 

need to meet deadlines with sufficient system solution quality without having to 

design the system to support worst case program execution. In this thesis, we explore 

the possibility of exploiting “soft computing” properties of kernels to meet this 

objective. The chief characteristic of “soft computations” is the fact that they are able 



   

 

to provide cruder results before they complete, or they may execute for a long time 

refining an already adequate result. In other words, such computations are able to 

provide useful/incremental results before fully completing execution. More 

specifically they provide a trade-off between computation time and algorithm solution 

quality. 

  This thesis addresses the design issues involved in building a system that 

exploits the “soft computing” properties of kernels to optimize real time performance. 

In this context, we make the following contributions. Firstly we build a system 

prototype of a real time situational assessment scenario. We thereafter identify “soft 

computations” in the system and characterize the computation time/solution quality 

trade-off opportunities provided by them using performance profiles. Thirdly, we 

introduce a method to use performance profile based models at run time to determine 

the optimal composition of different “soft computations” in order to meet real time 

deadlines with sufficient system solution quality. We quantify the gains from our 

method both in terms of functional correctness of the system as well as CPU 

utilization as compared to conventional real time scheduling techniques. We observe 

that our dynamic scheduling scheme on an average is able to meet the system goals 

with 39% more accuracy with no missed deadlines as compared to conventional real 

time scheduling techniques for various design points that do not support worst case 

behavior. In addition, our method is able to meet the system objective while being 

highly utilized. Most importantly, our scheme exploits the soft computing properties 

of kernels to facilitate the design of the system at less aggressive design points while 

meeting deadlines and system goals at the same level as conventional real time design 



   

 

methodology. Finally, we perform an experimental study to understand the sensitivity 

of performance profiles to various input data parameters and identify the potential for 

online learning of performance profiles.  
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Chapter 1 

Introduction and Motivation 
 

Real time computing systems are defined as those systems in which the 

correctness of the system depends not only on the logical results of the computation, 

but also on the time at which they are produced [53]. The objective of real time 

computing is to meet the timing and functional requirements of individual tasks. 

Additionally it is also desirable that real-time systems achieve their functional 

correctness and timeliness while being highly utilized. 

Real time systems are specified by a set of timing constraints, called 

deadlines.  The objective of the system is to provide system solutions with requisite 

functional correctness by the specified deadlines. Based on the nature of the timing 

constraints that they need to satisfy, real-time applications and systems can be 

characterized as “hard” real time systems or “soft” real time systems. In a hard real-

time system, if one or more activities miss a deadline or timing constraint, the system 

fails. In contrast, a soft real-time system is one that does have timing requirements, 

but occasionally missing them has negligible effects, as application requirements as a 

whole continue to be met. 

When activities have timing constraints, as is typical of real time computing 

systems, scheduling these activities to meet their timing constraints is one major 

design issue that needs to be addressed. Traditional real time scheduling algorithms 

fall into two categories: static and dynamic. A static/pre-runtime approach calculates 

(or predetermines) schedules for the system off-line. It requires prior knowledge of all 
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task characteristics (arrival times, deadlines, release times and worst case execution 

times). In a dynamic or runtime approach, the order of execution of tasks is decided at 

runtime based on priorities attached to tasks. These priorities in turn may be 

determined off-line (like in the case of the Rate Monotonic Algorithm[1] where 

priorities are based on the frequency/periods of tasks) or online (like in the case of the 

Earliest Deadline First algorithm (EDF) [1], where a task with the earliest deadline is 

given highest priority). These scheduling techniques will be discussed in detail later 

in Chapter 2.  

1.1 Real time systems: The current paradigm 

Traditionally the real time computing paradigm has included applications 

from the arena of digital control, digital signal processing, multimedia and database 

transactions [53].  

Traditional real time systems like digital controllers operate in relatively 

simple, well-characterized environments. Such “traditional” real-time systems have a 

set of repeated tasks with known execution times and arrival patterns. The primary 

challenge in building such systems is to schedule these independent periodic tasks 

and ensure that they meet their deadlines. Classic real-time system approach is to 

determine worst-case scenarios statically and manually, then build systems with 

sufficient resources to meet goals.  

 This approach works well only under the following scenarios: 

� it is possible to develop an accurate workload model of the environment in which 

the real time system operates. This ensures that Worst Case Execution Time 
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(WCET) estimates for task execution times, arrival and release times are accurate 

and hence guarantees that all timing constraints of tasks are met. 

� the variance of actual execution times of  tasks with reference to the WCET 

estimates is low. This ensures that in addition to meeting the timing and 

functional constraints of the system, the real time system is not underutilized. 

However many complex real world applications such as real time database systems, 

agile manufacturing, robotics and various command and control systems work in 

unpredictable dynamic environments [3, 4, 11, 23, 26]. Accurate knowledge about the 

resource and data requirements of many of these tasks is not known apriori because 

the execution time and resource requirements of many of these tasks may be 

dependent on input data ( information and decision support system) or dependent on 

sensor values (manufacturing plant, command and control system). The application of 

dynamic priority driven scheduling algorithms like Earliest Deadline First (EDF) [1] 

have been shown to be amenable to be applied to such systems. However due to the 

unpredictably of dynamic schemes under overload conditions, current commercial 

real time applications executing in dynamic environments use static priority driven 

algorithms like Rate Monotonic (RMA) [1] and hence are generally over designed 

/underutilized. 

1.2 Real time computing: The next generation 

The next generation of real time systems will have much more complex 

system requirements and will work in uncertain dynamic environments [26, 27, 38, 

39, 40, 41 ]. Hence the need for adaptable, flexible behavior in such systems would 
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be of primary importance. This need is accentuated by the following emerging trends 

in this field: 

� Convergence of two major areas in computer science and engineering: Artificial 

Intelligence (AI) and real time systems. AI systems are moving towards more 

realistic domains requiring real time responses and real time systems are moving 

towards more complex applications requiring intelligent behavior [39, 41]. 

� The growing need for real time fusion of huge amounts of data  into synthesized 

information in domains like avionics, medicine, defense, integrated vision, 

robotics, finance/business  etc.[26, 41, 44, 45, 46, 48] to facilitate real time 

decision support and diagnosis. 

Figure 1 illustrates the general structure of an emerging/next generation real 

time computing system. In general, such a system would comprise a set of objects in 

a scenario being monitored and controlled in real time by a computing system. The 

computing system would be periodically provided with raw data about various 

aspects of the objects and the scenario; the objective of the system would be to 

process the plethora of data being supplied by various monitors and sensors, correlate 

the various forms of data into information and use this information to update plans/ 

diagnosis etc. In addition, the system may be required to provide the information so 

synthesized to the human operators the system interfaces with and also control 

various aspects of the objects in the world to improve the state of the system. 
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 Figure 1: General structure of the next generation real time computing system 
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world), the real time constraint would include the latency to control the objects in the 

world (wherever applicable) so as to ensure temporal consistency of actions taken 

based on processed data. If we look at the system illustrated in Figure 1, it comprises 

applications pertaining to different domains including digital control, signal 

processing, multimedia and artificial intelligence. Systems  like this have existed for a 

long time in the medical domain, defense and air traffic command and control 

systems, diagnosis and trouble shooting of devices of all kinds, manufacturing 

process planning, job-shop scheduling; the difference between the currently existing 

systems and systems that researchers envision for the future is the levels at which the 

system interfaces with human operators and the monitored/controlled world and 

hence the demarcation of work between the machine and the human operators. The 

scenario we discuss below will make this assertion more clear.  

     Let us consider the example of real time medical data fusion in the intensive 

care unit [41, 45] to understand the paradigm changes in the real time computing 

arena. In today’s Intensive Care Unit (ICU), patients are surrounded by a battery of 

instruments. Each performs a different monitoring task, generating masses of low-

level summary data and each device connected to the patient is separately controlled. 

The clinician must integrate the data they generate, decide what is important and what 

is irrelevant, and synthesize a high-level overview. If the patient goes into some type 

of trauma (like shock), alarms sound to summon medical personnel. During the time 

it takes for them to arrive, the patient’s condition deteriorates. Even worse, upon 

entering the room, medical personnel must waste precious time trying to figure out 

what has happened, why, and what to do about it.  Faced with overwhelming data, the 
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clinician may focus on a subset of the signals, ignoring other significant information 

and overlooking problems. A computer system, that could see the whole picture 

(integrating the results of many sensor readings), could initiate small actions (such as 

adjusting the feed rate on a respirator) that might prevent the patient from 

experiencing the trauma. In addition, if the patient did go into shock, the system could 

diagnose the cause and have diagnostic (and treatment) suggestions ready by the time 

medical personnel arrived. In cases where immediate steps must be taken, the system 

could initiate precursor actions such as reducing a particular gas in a ventilator, which 

should be done if emergency surgery may be required. Thus a system that integrates 

data from multiple sources could present a high-level synthesis, minimizing 

information overload and preventing fixation.  

  To build such a real time system, we must achieve predictable, real-time 

performance, accommodate heterogeneous approaches to the many separable sub 

problems, and design a useful interface. Substantial computing power is needed to 

process many continuous waveforms, convert them into a qualitative representation, 

correlate information to identify the intermediate-level physiological state, and finally 

produce high-level diagnoses and suggestions.    

  Figure 2a illustrates the components of the real time system we discussed 

above and also shows how each of the computing components pertaining to this 

system in the medical domain fits into the general structure of the next generation real 

time computing system we illustrated in Figure 1. Figure 2b shows the kind of 

specifications a real time computing system in the ICU, as described above, is likely 

to have. Firstly such a system would have a hybrid system model pertaining to a 
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mixture of time triggered (periodic) and event triggered (aperiodic tasks). In addition, 

the timing constraints of such a system would be hybrid, meaning the system would 

have to meet a mixture of hard and soft deadlines. 

 

  

 

Figure 2a: Components of a real time data fusion            Figure 2b: Specifications of                      

system in the Intensive Care Unit(ICU)                                            a real time data fusion              

                                                                                                              system in the ICU 

Figure 2: Components and specifications of a real time data fusion system in the ICU 

1.3   Reference scenario: Sensor fusion for situational assessment 

Another example of a complex real time scenario is sensor fusion for 

situational assessment and command and control [46, 56]. This is the reference 

scenario that we shall be considering in our evaluations in the rest of the thesis. 

Sensor fusion is the combining of sensory data or data derived from sensory data 

from disparate sources such that the resulting information is in some sense better than 

would be possible when these sources were used individually.  

 

System Model: 

 

� Hybrid model 

:Time and event 

triggered model 

 

Timing requirements: 

� Hybrid: Both soft 

and hard/deadlines 
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A situational assessment/surveillance scenario comprises a number of 

entities/objects with complex behaviors moving around in a region. Some platforms 

(in the case of our reference scenario, these correspond to Unmanned Aerial 

Vehicles) with sensors are placed across the region. The sensors sense different 

attributes/features pertaining to the entities/objects in the scenario. The objective of 

this system is to periodically fuse sensor reports from different platforms into a 

situational assessment. One connotation of the term “situational assessment” could be 

the determination of entity types/ identities at different locations in the region. This 

boils down to a real time tracking and data association problem. Another objective of 

such a system is to drive command and control platforms/sensors to optimize 

situational awareness over the region.  

Figure 3 illustrates the various components of such a system. The scenario 

under surveillance comprises a region of interest with a number of moving objects 

and sensor mounted platforms. One or more sensors are mounted on each platform 

and each of the sensors detects some feature pertaining to an entity. The platforms 

periodically deliver a set of sensor reports to a global fusion component, which 

processes and correlates the data delivered from various sources. Subsequently, based 

on the information so synthesized by the fusion component, a situational assessment 

is made. The situational assessment may be in terms of identifying tracks and data 

associations which are periodically fed back to the human operator or in more 

complex scenarios may involve updation of plans that drive a command and control 

algorithm which in turn redirects platforms based on the synthesized information. In 

either case, the fusion algorithm along with the situational assessment and command 
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and control components need to keep up with the rate at which sensor reports are 

periodically delivered to the system in order to ensure a temporally consistent 

assessment of the scenario. This requires a non-trivial amount of computing power. 

The system model in the case of this scenario is time triggered because it comprises a 

set of periodic tasks. The timing constraints are soft because no immediate 

catastrophe results if a deadline is missed. 
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1.4 Motivation: Soft computations and performance accuracy trade-

offs  

As discussed in earlier sections, with most current real-time systems, the 

implementation phase has little flexibility. A fixed set of `hard' services must be 

mapped on to the available resources, and pre run-time checks must be made to 

ensure that all timing constraints (typically, deadlines) are satisfied. In other words, in 

the current real time computing paradigm, the objective of the system designer is to 

ensure that each of the tasks involved in the system always completes execution 

before a deadline is reached. This, of course, requires a predictable (bounded) model 

of the environment's impact on the computer system. In the absence of a predictable 

(bounded) model of the environment, with the use of existing dynamic priority driven 

scheduling policies, deadlines can be met but not guaranteed and tasks that miss 

deadlines cannot be predicted.  

With the increasing complexity of real time systems, it is becoming infeasible 

to build systems with sufficient resources to meet the functional and timing 

requirements of all tasks at all times [39, 40, 41, and 45]. The good news however is 

that, a growing number of kernels [47, 48, 49], currently offer and several others can 

be structured to offer [50, 51, 52] a simple means of trading off computation time for 

the quality of results. A lot of such kernels are particularly prevalent in the domains 

of artificial intelligence, signal processing and multimedia.  We call such kernels 

“soft kernels” or “soft computations”. The chief characteristic of these computations 

is the fact that they are able to provide cruder results before they complete, or they 

may execute for a long time refining an already adequate result. In other words, such 
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computations may be able to provide useful/incremental results before fully 

completing execution. 

The idea that such a trade-off can be characterized and used at run time to 

optimize the performance of complex real time systems is the main motivation of this 

thesis. Essentially soft computations facilitate meeting real time system deadlines 

with sufficient system solution quality without having to design the system to support 

worst case program execution. This is facilitated by the fact that soft computations 

provide anytime solutions to problems. When designing a system with a number of 

soft computing kernels, the main issue is ensuring solution quality is sufficient when 

a deadline arrives rather than supporting the worst-case execution of the program. 

  The observation that soft computing kernels exist and that their properties can 

be exploited for real time performance was first made by Liu et. al in [24, 25] . They 

proposed the imprecise model of computation that uses the strategy of dividing every 

time-critical task into two logical subtasks: a mandatory subtask and an optional 

subtask. The mandatory subtask is required for an acceptable result and must be 

computed to completion before the task deadline. The optional subtask refines the 

result. It can be left unfinished and terminated at its deadline, if necessary, lessening 

the quality of the task result. We shall discuss the major differences between our 

work and the work done by Liu et.al [24, 25] in Chapter 3. 

In order to understand the opportunities provided by soft computing kernels to 

improve real time performance, let us look at Figures 4 and 5 more carefully. Figure 4 

shows typical computation time Vs quality (time-value) functions for different types 

of computations. Figure 4a shows the time-value function for a traditional algorithm. 
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What this curve essentially illustrates is the fact that a traditional algorithm has just 

one output /solution which can be obtained provided a sufficient amount of time is 

provided to the task for execution. If sufficient amount of time is not allocated to the 

algorithm, no output/solution is obtained. Figures 4b, 4c and 4d are examples of time-

value functions for soft computations. What these figures illustrate is that when using 

soft computing kernels, output/solutions of lesser quality/value are obtainable even if 

execution of the kernels is restricted to a fraction of the time required for the 

computation to deliver the best possible value/solution to the problem. 

                                              

  Figure 4a Traditional algorithm                                                           Figure 4b Soft computation: Type 1 

 

                                                             

Figure 4c Soft computation: Type 3                                                     Figure 4d Soft computation: Type 4 

Figure 4: Functions representing the variation of solution quality with computation time for 

traditional algorithms and those having soft computing properties 

 

Figure 5 illustrates how soft computing kernels can facilitate efficient design 

of real time systems by eliminating the need to design the system to support worst 

case program execution. Figure 5a shows a traditional algorithm that is unable to 
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produce a solution at the deadline (represented by the dotted line) in the absence of 

sufficient resources to meet its processing needs. It produces a solution beyond the 

deadline at which point of time the solution has lesser utility for the system(if the 

deadline is soft) or causes catastrophic results (if the deadline is hard). Figure 5b 

illustrates how a soft computing kernel would behave in a similar scenario. At the 

deadline, the soft computing kernel provides a solution/output with lesser quality than 

the maximum achievable by it. But the quality of the solution obtained at the deadline 

is sufficient to meet the system specifications. Thus by meeting the system deadline 

with a solution of sufficient quality, under resource constraints, the soft computation  

can avoid the catastrophic consequences/decreased system utility resulting from a 

traditional computation completing and providing an output beyond the deadline. 

                                                                         Deadline (No output available because computation has not completed execution)  

 

                       

 

                                  Computation completed but deadline has been missed 

Figure  5.a. A traditional algorithm in a resource constrained scenario does not provide a  

solution at the deadline . 

 

                                                 Deadline (Intermediate solution available that is of sufficient quality to meet system specification) 

                 

 

 

 

                      Computation completes with maximum achievable solution quality at this point of time 

Figure 5.b A “soft computation” under resource constraints provides solutions with  

sufficient quality at the deadline 

   Traditional computation 

           Soft computation 
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In addition to the fact that it is becoming infeasible to design complex real 

time systems with sufficient resources to meet all system deadlines, the motivation 

for incorporating computation utility/value based run-time decisions is further 

accentuated by the following two observations about the behavior of conventional 

static and dynamic real time scheduling schemes: 

� Static schemes use resources inefficiently. As there are sufficient resources to 

cope with the maximum possible load on the system (i.e. worst-case execution 

times, worst possible phasings, and worst-case arrival of work), the average 

resource utilization is low. Hence, there is considerable scope for value-added 

computation.  

� Though current dynamic schemes provide better resource utilizations, they react 

unpredictably to failures and overloads .Static schemes may be able to cope with 

certain failures (as defined in its failure model), but once the system moves 

outside its failure model , no level of service can be depended upon. Hence, it is 

desirable to allow graceful degradation (of service) when resources are scarce. 

1.5 Thesis contributions and organization 

In the presence of a conglomeration of traditional “non-soft” and “soft 

computing” kernels (as defined in section 1.4) in a real time system, one can envision 

adopting a completely different/novel approach to the design of real time systems. 

Instead of trying to design a system that would meet a specific set of timing 

constraints, the design problem can be divided into three orthogonal issues:  

� decomposition of the total system into performance components  

� implementation of  as many of these basic components as “soft kernels “ 
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� formulation of a  model of the quality of functional correctness of the system as a  

function of various compositions of the software components.  Such a model can 

subsequently be used to dynamically schedule tasks and decide the optimal 

composition of    basic tasks/components at run time. 

In this thesis, we try to answer a few questions pertaining to this design 

philosophy in the context of a specific complex real time scenario [56]. More 

specifically, we attempt to increase the flexibility of real-time systems by allowing 

certain decisions about the system's behavior like the composition of “soft” 

tasks/kernels to be made at run-time. This requires some form of dynamic scheduling. 

The need to support value-added computation and graceful degradation is necessarily 

complicated by the reality that not all services have equal utility at all times. We use 

models that characterize the performance accuracy trade-offs of kernels to control the 

run-time decision process and determine the optimal composition of soft tasks given a 

time constraint /deadline. 

The work done as a part of this thesis uses the real time system/scenario 

described in section 1.3 as the reference scenario. The system prototype of this 

scenario comprises the following: 

1. A parameterized simulation framework/ test bed [55] provided by Northrop  

Grumman Corporation that simulates a defense surveillance scenario with moving 

entities having complex behaviors and a number of platform mounted sensors 

monitoring them. 

2. The Information Matrix Data Association algorithm developed by Schumitsch 

et.al [58] to solve the complex tracking and data association problem in the 
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context of sensor fusion. The MATLAB version of the code provided by the 

authors was converted to C so that it could be used for our study. 

In this thesis, we try to demonstrate the usefulness of the design philosophy 

for real time systems described above through the following contributions: 

1. We build a system prototype of the real time scenario and application (real time  

sensor fusion and situational assessment) mentioned in section 1.3 and discussed in 

detail in Chapter 4. The development of this system prototype involved: 

a. Porting the MATLAB code of the Information Data Association algorithm 

provided by the authors of [58] to C. 

b. Integrating and applying the sensor fusion algorithm to a cognitive test bed, 

provided by Northrop Grumman that simulates a situational assessment scenario.  

c. Building a preliminary framework for investigating different real time scheduling 

policies in the context of the system prototype and the reference scenario. 

2.   We thereafter identify “soft computations” in the system prototype of the real 

time scenario under consideration. We subsequently characterize the performance-

accuracy tradeoffs of individual “soft kernels”/”soft computations” that form a part of 

the system using performance profiles. 

3.   We propose and demonstrate the benefits of a methodology of using performance  

profiles to build models that can be used at runtime by a dynamic scheduler for 

determining the optimal composition of tasks so as to maximize the utility of the 

system given a specific limited amount of time to meet the system objective. This 

answers the question about how much time should be allocated to each of the 

components of the real time system to maximize its overall utility. 
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4. We quantify the benefits of using a performance profile based model for  

scheduling a mixture of traditional “non-soft” and “soft computing” tasks as opposed 

to using conventional static scheduling and dynamic Earliest Deadline First (EDF) 

schemes. We quantify the gains both in terms of the functional correctness of the 

system, the CPU utilization and the number of missed deadlines. 

5. We quantify how the variance in the dynamics/performance of the “non-soft” 

kernels of the system justifies the use of run-time monitoring rather than determining 

a fixed running time/composition of “soft” tasks when the system is activated. We 

quantify the gains both in terms of the functional correctness of the system and the 

CPU utilization. 

6. We also perform a sensitivity study to determine how the models derived from 

 performance profiles change with changes in various input parameters of the datasets 

and identify the potential benefits of learning performance profiles online.  

 The rest of this thesis is organized as follows. Chapter 2 describes background 

on real time systems. Chapter 3 discusses related work in the area of real time 

scheduling. Chapter 4 describes the system prototype that has been built. This 

includes description of the reference real time problem scenario, the sensor fusion 

algorithm and the test bed /datasets used in the experiments. Chapter 5 explains the 

methodology used to characterize soft computations and performance-accuracy trade-

offs. Chapter 6 discusses the methodology for run-time scheduling of soft 

computations using models derived from performance profiles. It also describes the 

policies with which our scheme has been compared. Chapter 7 discusses our 

experimental results. Chapter 8 summarizes and concludes our work. 
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Chapter 2 

Background and Terminology: Real time Systems 

 In this chapter, we introduce and discuss the basic concepts and terminology 

in the real time systems domain.  

2.1 Real time computing 

Real time computing systems are defined as those systems in which the 

correctness of the system depends not only on the logical results of the computation, 

but also on the time at which they are produced [53]. The objective of real time 

computing is to meet the timing and functional requirements of individual tasks. 

Additionally it is also desirable that real-time systems achieve their functional 

correctness and timeliness while being highly utilized. 

As an example of a conventional real-time system, consider a computer-

controlled machine on the production line at a bottling plant. The machine's function 

is simply to cap each bottle as it passes within the machine's field of motion on a 

continuously moving conveyor belt. If the machine operates too quickly, the bottle 

won't be there yet. If the machine operates too slowly, the bottle will be too far along 

for the machine to reach it. Stopping the conveyor belt is a costly operation, because 

the entire production line must correspondingly be stopped. Therefore, the range of 

motion of the machine coupled with the speed of the conveyor belt establishes a 

window of opportunity for the machine to put the cap on the bottle. This window of 

opportunity imposes timing constraints on the operation of the machine. Applications 
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with these kinds of timing constraints are considered real time. In this case, the timing 

constraints are in the form of a period and deadline.  

2.2 Deadlines and Periods 

The period is the amount of time between instances of a regularly repeated 

task. Such repeated tasks are called periodic tasks. For instance in the context of the 

example mentioned earlier, suppose bottles pass under the machine at a rate of five 

per second. This means a new bottle shows up every 200ms. Thus, the period of the 

task is 200ms. Note that whether bottles pass once per second or 100 times per 

second, it doesn't change the fact that this is a real-time system. Real time does not 

mean fast; it means that a system has timing constraints that must be met to avoid 

failure.  

The deadline is a constraint on the latest time at which the operation must 

complete. Suppose the window of opportunity is 150ms. The deadline is then 150ms 

after the start time of the operation. In our example, the start time is defined as the 

moment the bottle enters the range of the machine. This bottle example has physical 

constraints, namely the speed of the conveyor belt and the machine's range of motion, 

that dictate the period and deadline of the task.  

In many real-time systems, the period is a design parameter. Consider a cruise 

control mechanism on an automobile. The basic operation of cruise control is to keep 

the speed of the vehicle constant. Suppose the driver selects 60mph as the desired 

speed. If the vehicle is going slower than 60mph, then the embedded computer sends 
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a signal to the engine controller to accelerate. If the vehicle is going faster than 

60mph, it sends a signal to decelerate. A question to ask is: how often does the 

computer check if the current speed is too slow or too fast? The answer is called the 

control rate (or frequency). It is defined by the control system designer, who will try 

to find a rate that is fast enough to meet specifications, but not so fast that it adds 

unnecessary cost to the system. The period is then the reciprocal of the rate (that is, 

period = 1/rate). The deadline is typically the beginning of the next cycle of a periodic 

task, because, to start the new cycle, it needs to be finished with the old one.  

Communication systems also have real-time constraints. Suppose a 

multimedia application needs to compress video data at a rate of 30 frames per 

second. Before it processes a new frame, it needs to finish processing the old frame, 

otherwise data might get lost in the form of dropped frames. The period of such a task 

is the frame rate. Processing the old frame must complete before processing on the 

new frame can begin. Therefore, the deadline is the beginning of the next frame. 

2.3 Handling Aperiodic tasks 

Not all real-time tasks are periodic. Aperiodic tasks, also called aperiodic 

servers, respond to randomly arriving events. Consider anti-lock braking. If the driver 

presses the brake pedal, the car must respond very quickly. The response time is the 

time between the moment the brake pedal is pressed, and the moment the anti-lock 

braking software actuates the brakes. If the response time was one second, an 

accident might occur. So the fastest possible response is desired. But, like the cruise 

control algorithm, fastest is not necessarily best, because it is also desirable to keep 
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the cost of parts down by using small microcontrollers. What is important is for the 

application requirements to specify a worst-case response time. The hardware and 

software is then designed to meet those specifications.  

Note that many aperiodic tasks can be converted to periodic tasks. This is 

basically the same transformation as converting an interrupt handler to a polling task. 

Instead of reacting to an external event the moment it occurs, the software polls the 

external input regularly, perhaps tens or hundreds of times per second. If the awaited 

event is detected, the appropriate computation is enacted.  

2.4 System Models 

There are two general paradigms for the design of real-time systems known as 

Time-Triggered (TT) and Event-Triggered (ET) architectures [53], both of which are 

explained next. 

� System activities in TT are initiated at predefined instants, and therefore TT  

architectures require the assessment of resource requirements and resource 

availability prior to the execution of each application task. Each task’s needed 

resources and the length of time over which these resources will be used can be 

computed off-line in a resource requirement matrix. If these requirements cannot be 

anticipated, then worst case resource and execution time estimates are used. Thus, TT 

is prone to wasted resources and lowered system utilization since resource 

requirement estimates are pessimistic. However, TT architecture can provide 

predictable behavior due to its pre-planned execution pattern. 

� System activities in ET are initiated in response to the occurrence of particular  
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events that are possibly caused by the environment. In ET architectures, an excessive 

number of possible behaviors must be carefully analyzed in order to establish their 

predictability, because resource needs and availability may vary at run-time. Thus, the 

resource-need assessment in ET architecture is usually probabilistic. Although, ET is 

not as reliable as TT architecture, it provides more flexibility and is ideal for more 

classes of applications, which do not lend themselves to predetermination of resource 

requirements. 

2.5 Hard and soft real time systems 

Real-time applications can be modeled as a set of tasks, where each task can 

be classified according to its timing requirements as hard or soft. A hard real-time 

task is the one whose timely and logically correct execution is considered to be 

critical for the operation of the entire system. In a hard real-time system, if one or 

more activities miss a deadline or timing constraint, the system fails. Failure includes 

damage to the equipment, major loss in revenues, or even injury or death to users of 

the system. One example of a hard real-time system is a flight controller. If action in 

response to new events is not taken within the allotted time, it could lead to an 

unstable aircraft, which could, in turn, lead to a crash.  

The deadline associated with a hard real-time task is conventionally termed a 

hard-deadline. Since missing a hard-deadline can result in catastrophic consequences; 

such systems are known as safety-critical. Thus, the design of a hard real-time system 

requires that a number of performance and reliability trade-off issues to be carefully 

evaluated. 
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In contrast, a soft real-time system is one that has timing requirements, but 

occasionally missing them has negligible effects, as application requirements as a 

whole continue to be met. Consider again the cruise control application. Suppose the 

software fails to measure current velocity in time for the control algorithm to use it. 

The control algorithm can still use the old value, because the amount that the velocity 

would have changed between the last sample and this sample is so small that it can 

still operate correctly. Missing several consecutive samples, on the other hand, could 

be a problem, as the cruise control would likely stop meeting application 

requirements because it is not able to maintain the desired speed within a proper error 

tolerance. Thus soft real-time application is characterized by a soft-deadline whose 

adherence is desirable, although not critical, for the functioning of the system. That is, 

missing a soft-deadline does not cause a system failure or compromise the system’s 

integrity. There may still be some (diminishing) value for completing an application 

after its deadline, without any catastrophic consequences resulting from missing such 

a deadline. 

The distinction between a soft and a hard real time system is however 

somewhat fuzzy [53]. As illustrated in Figure 6, the meaning of real-time spans a 

spectrum. At one end of the spectrum is non-real-time, where there are no important 

deadlines (meaning all deadlines can be missed). The other end is hard real-time, 

where no deadlines can be missed. Every application falls somewhere between the 

two endpoints.  
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                 Figure 6: The real time spectrum [53]. 

2.6 Types of real time tasks 

As a direct consequence of these timing requirements and the system models 

we mentioned earlier, real time application tasks can be classified as periodic, 

aperiodic, or sporadic tasks. 

1. Periodic tasks are those tasks that execute at regular intervals of time i.e. every ‘T’  

time units – corresponding to TT architectures. These tasks typically tend to have 

hard deadlines, characterized by their period(s) and their required execution time per 

period, which is usually given, by a worst-case execution time. 

2. Aperiodic tasks are those tasks whose execution time cannot be anticipated apriori. 

This means the activation of  aperiodic tasks is essentially a random event caused by 

a trigger – corresponding to ET architectures. Such a behavior does not allow for 

worst-case analysis, and therefore aperiodic tasks tend to have soft deadlines. 

3. Sporadic tasks are those tasks that are aperiodic in nature, but they have hard 

deadlines. Such tasks can be used to handle emergency conditions and/or exceptional 

situations. Due to the nature of hard deadlines, worst-case calculations may be 

facilitated by a schedulability-constraint [54, 57], which defines a minimum period 

between any two sporadic events from the same source. Such tasks are converted to 
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periodic tasks by basically using the same transformation as converting an interrupt 

handler to a polling task. 

2.7 Predictability and Determinism 

Two more terms often used to describe real-time systems are predictable and 

deterministic. These terms are related, but because they are often interchanged, they 

are often a source of confusion.  

Real-time systems researchers generally use the term predictable to refer to a 

system whose timing behavior is always within an acceptable range. The behavior is 

specified on a system-wide basis, such as "all tasks will meet all deadlines." 

Generally, the period, deadline, and worst-case execution time of each task need to be 

known to create a predictable system.  

A deterministic system is a special case of a predictable system. Not only is 

the timing behavior within a certain range, but that timing behavior can be pre-

determined. For example, a system can be designed with pre-allocated time slots for 

each task. Execution for each task occurs only during those time slots. Such a system 

must have execution time for every task known, as well as no anomalies that might 

cause deviation from the pre-determined behavior. That is, of course, difficult to 

achieve. Fortunately, determinism is not essential to build predictable real-time 

systems.  
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2.8 Real time scheduling 

When activities have timing constraints, as is typical of real time computing 

systems, scheduling these activities to meet their timing constraints is one major 

problem that comes to mind. Traditional real time scheduling algorithms fall into two 

categories: static and dynamic.  

� A static/pre-runtime approach calculates (or predetermines) schedules for the 

system off-line. It requires prior knowledge of all task characteristics (arrival 

times, deadlines, release times and worst case execution times).  

� In a dynamic or runtime approach, the order of execution of tasks is decided at 

runtime based on priorities attached to tasks. These priorities in turn may be 

determined off-line (like in the case of the rate monotonic algorithm [1] where 

priorities are based on the frequency/periods of tasks) or online ( like in the case 

of the Earliest Deadline First algorithm [1], where a task with the earliest deadline 

is given highest priority).  

Certainly in safety critical systems it is reasonable to argue that no event should be 

unpredicted and that schedulability should be guaranteed before execution [5]. This 

implies the use of a static scheduling algorithm or at least a static priority driven 

algorithm. Dynamic priority driven approaches do, nevertheless, have an important 

role particularly in soft real time systems or in applications where guaranteed worst 

case execution time /scenario is not possible. 
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Chapter 3 

3. Related Work 
 

In this chapter, we discuss prior research related to our work. Our work is 

primarily related to research in the area of real time scheduling. Within the context of 

real time scheduling, we discuss work in conventional real time scheduling 

techniques [1-23] as well as real time scheduling techniques based on imprecise 

computations [24, 25, 34, 36] . 

The landmark paper in the arena of real time scheduling has been from Liu 

et.al [1], where the authors theoretically prove the optimality of two priority driven 

scheduling algorithms for real time systems scheduling. They propose the Rate 

Monotonic (RM) algorithm, which is a static priority driven algorithm that assigns 

priorities to tasks based on the size of their periods. The tasks with smaller periods are 

assigned higher priorities. These task priorities are then used at run time to make a 

decision about which task is executed at a particular point of time.  The other 

algorithm the authors propose in [1] is the Earliest Deadline First (EDF) algorithm, 

which is a dynamic priority driven algorithm where the task with the earliest deadline 

is assigned the highest priority at any point of time and is chosen for execution. Both 

these proposed algorithms have been mathematically proven to be optimal under the 

following constraints of the task model: 

� All tasks under consideration are periodic 

� All tasks are preemptive 
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� Deadlines consist of run-ability constraints only-i.e. each task must be complete 

before the next request for it occurs. 

� The tasks are independent in that requests for a certain task do not depend on the 

initiation or completion of other tasks. 

� Run time for each task is constant work. 

This classical paper on real time scheduling was followed by various others 

which proposed algorithms /heuristics based on these two algorithms but differed in 

one of the following aspects: 

1. Priority assignment schemes: Liu et.al.[1] proposed an algorithm called  

Minimum Laxity First(MLF) that assigns a laxity to each task at run time. At any 

point of time, the scheduler selects the task with the minimum laxity to execute. 

Laxity is defined as: laxity = (deadline time - current time - CPU time needed). A 

laxity of ti means that even if the task is delayed for ti time units, it will still meet its 

deadline. A laxity of ‘0’ means that the task must be executed now or will fail to meet 

its deadline. Main difference between MLF and EDF is that MLF takes into 

consideration the execution time of a task. Like EDF, MLF has a schedule bound of 

100% and there is no way to guarantee which task(s) will fail in transient overload. 

The analysis of MLF is also based on the same task model as EDF and RM 

algorithms. In [22], Stewart et.al propose the Maximum Urgency First(MUF) 

heuristic which is a  combination of fixed and dynamic priority scheduling (a.k.a. 

mixed priority). Each task is assigned an urgency which is defined as a combination 

of two fixed priorities and one dynamic priority. One of the fixed priorities, the 

criticality, has precedence over the dynamic priority. Meanwhile, the dynamic 
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priority has precedence over the other fixed priority, called the user priority. The 

dynamic priority is inversely proportional to the laxity of a task. MUF consists of two 

parts. The assignment of the criticality and user priority (done apriori), and the 

actions of the MUF scheduler done at run-time. Note that static priorities are assigned 

once and do not change during execution. The dynamic priority is assigned at run-

time, inversely proportional to the laxity. The task model for the analysis of the MUF 

algorithm is the same as the one used by Liu et. al.[1]. In [21], Salmani et.al proposed 

the Modified Maximum Urgency First (MMUF) heuristic. In this scheme, they use 

earliest deadline first and modified least laxity first algorithms for calculating the 

dynamic priorities of the MUF algorithm. 

2. Assumed task model: In [16] , Li et.al propose group-EDF (gEDF), a heuristic  

for scheduling soft non-preemptive tasks and is based on dynamic grouping of tasks 

with deadlines that are very close to each other. They use Shortest Job First (SJF) 

technique to schedule tasks within the group.   They were motivated by the belief that 

grouping tasks dynamically with similar deadlines and utilizing a secondary criteria, 

such as minimizing the total execution time (or other metrics such as power or 

resource availability)  for scheduling tasks within a group, can lead to new and more 

efficient real-time scheduling algorithms. In [20], Buttazzo et.al propose a set of 

heuristics based on Earliest Deadline First for scheduling soft aperiodic tasks. In [54], 

Rajkumar et.al extend rate-monotonic scheduling theory to periodic tasks that are not 

independent, but must contend for exclusive access to shared resources. 

3. Handling  of overload conditions: In [8, 9, 12, 13, 18], variations of the rate  
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monotonic and earliest deadline first algorithms have been proposed for handling 

overload conditions in real time systems 

There have been a lot of other heuristics/algorithms [10, 14, 15, 16, 17, 19, 

20] proposed in the conventional real time scheduling paradigm. Unlike conventional 

real time scheduling techniques like Rate Monotonic and Earliest Deadline First, our 

dynamic scheduling scheme does not take scheduling decisions based on task 

priorities. Instead our scheduling scheme uses performance profile based models to 

determine the optimal composition of tasks at any point of time to maximize system 

utility at a deadline. 

  Our work is closest to the research on scheduling schemes based on the 

imprecise computation model. The imprecise computation model was proposed by 

Liu et.al in [24, 25] .The imprecise computation technique uses the strategy of 

dividing every time-critical task into two logical subtasks: a mandatory subtask and 

an optional subtask. The mandatory subtask is required for an acceptable result and 

must be computed to completion before the task deadline. The optional subtask 

refines the result. It can be left unfinished and terminated at its deadline, if necessary, 

lessening the quality of the task result. The result produced by a task when it 

completes is the desired precise result, which has an error of zero. If the task is 

terminated before completion, the intermediate result produced at that point is usable 

as long as the mandatory subtask is complete. Such a result is said to be imprecise. 

The system schedules and executes to completion all mandatory tasks before their 

deadline but may leave less important optional tasks unfinished if necessary. 
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In [36], Stankovic et.al have examined the performance of various scheduling 

policies for managing transient overload in an imprecise computation system. If the 

load on the computation system is low, the scheduler is designed to provide some 

prescribed balance of accuracy and response time. If the load is high, the scheduler is 

designed to keep response time bounded by sacrificing accuracy.  

The main differences between the scheduling approach proposed by us and 

researchers working on the imprecise computation model are: 

1. Objective characterization of the quality of soft computations: 

We objectively quantity the performance-accuracy trade-offs of “soft 

computations” in the form of performance profiles by  measuring a concrete, well-

defined aspect of the quality of the results of soft computations as a function of 

execution time. The performance profiles are obtained through calculations of 

concrete metrics rather than human intuition. To the best of our knowledge, the 

proposed “precision value” functions of the imprecise computation model are 

subjective [24, 25, 27, 38]. 

2. Composition of tasks 

 The imprecise computation model does not address the issue of optimal 

composition of tasks given a specific time constraint. Instead, it deals with individual, 

independent tasks. Since the problem definition imposes timing constraints on the 

tasks, it allows the tasks to be temporally dependent, but it assumes that the results of 

each task and their qualities are independent. This is a major simplification that 

cannot be made when dealing with a system where the goal is to achieve a system 
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objective (as in the case of complex real time systems) with a number of 

interdependent tasks.  

Our task model assumes that a real time application is composed of individual 

software modules/tasks, many of which may be interdependent. Tasks are a part of a 

single application with a system wide objective. Our objective is to maximize the 

value of a particular composition of tasks at a deadline so as to meet the system 

objective in the best possible way given time and resource constraints. In simple 

terms, our scheduling scheme addresses a decision problem involving the choice of a 

collection of services to execute so the `best possible' outcome ensues for the system. 

At various decision points (at run-time) there are a set of tasks/services that are 

available for execution. Unfortunately there may not be enough resources to execute 

all services to completion. And hence, a decision must be made. This decision may 

involve picking out the `extra' services to support when resources are spare, or which 

services to sacrifice and to what extent when resources are scarce.  The issue of 

determining the optimal composition of tasks so as to maximize the value of the 

system objective is addressed in our work. 

3. To the best of our knowledge, the benefits of conventional scheduling techniques 

as well as those based on the imprecise computational model have been demonstrated 

on randomly generated, periodic, independent task sets. We demonstrate our 

methodology on a real application and a real scenario. The downside of this is the fact 

that some of our assumptions become application specific. However, we believe that 

this is a reasonable first step for realistically demonstrating the benefits we claim 

from our work.  
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Another important area related to the work we’ve done is the arena of anytime 

algorithms. The derivation of performance profiles for individual “soft kernels” / 

”soft computations” used in our evaluations is based on similar techniques suggested 

by Zilberstein et.al in [50, 51, 52]. In these papers, Zilberstein et. al talk about various 

issues in the context of using anytime algorithms in intelligent systems.  
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Chapter 4 

4. Detailed Problem Formulation  

As mentioned in section 1.3, in this thesis we consider the real time sensor 

fusion and situational assessment challenge problem posed by Northrop Grumman 

Corporation as a part of an ongoing DARPA project. Here we provide a more detailed 

description of the problem scenario and the components of the system prototype we 

have built based on this scenario. First we describe the UAV sensor fusion challenge 

problem posed by Northrop Grumman. Thereafter, we describe the system prototype 

used for evaluating solutions to the challenge problem. In this context, we describe 

Northrop Grumman’s cognitive sensor fusion simulation test bed, the Information 

Data Association Algorithm and the application of this algorithm to the test bed data. 

Finally we discuss the real time problem formulation pertaining to this challenge 

problem. 

4.1 Reference real time scenario: Northrop Grumman’s challenge 

problem for sensor fusion and situational assessment  

The real time sensor fusion problem posed by Northrop Grumman ( 

introduced in section 1.3) [56] captures the general difficulty of processing the large 

number of reports from a distributed dynamic system and processing those reports to 

determine a unified situational assessment in real time. This class of problems 

stresses processing techniques with large numbers of reports to be processed and a 

strong variability in processing from one instance to the next. The difficulty in this 

process is to accurately fuse reports and satisfy real-time information needs. In most 
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scenarios, critical decisions must be made within seconds, not minutes or hours. The 

problem is further complicated by the high-speed feedback loop required to drive 

optimal sensing, based on the quality of the overall fused situational awareness.  

   The challenge problem posed has two parts to it. The sub problem we deal 

with comprises a system with a large number of entities (objects) with complex 

behaviors moving in a region. Some sensor mounted Unmanned Aerial Vehicle 

(UAV) platforms also move around in the region attempting to gather data about the 

entities. The problem is to fuse the large number of sensor reports into a situational 

assessment of the region in terms of tracking entity types and identities by solving the 

data association problem. Here the real time constraint as shown in Figure 7 is to 

periodically provide a situational assessment to a human operator in terms of 

associations of tracks with entity identities. This is the scenario we are dealing with in 

this thesis. In order to meet the user defined real time constraint and provide a 

temporally consistent situational assessment, the global fusion algorithm has to keep 

up with the rate at which sensor reports are delivered so as to maximize the utility of 

the system objective at each user defined deadline.  

                                                                                                                   

Situational                                                                  

                                                                               Assessment 

   

                                                                                                                                                                                                                 

Figure 7: Real time reference problem scenario: UAV sensor fusion for situational assessment 
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The system prototype of the scenario shown in Figure 7 comprises the following 

components: 

� The world is modeled by the Northrop Grumman’s cognitive test bed (described 

in detail in section 4.2.2) 

� The global fusion component is implemented using the C version of the 

Information Form Data Association algorithm [58] (described more in detail in 

section 4.2.1) 

4.2  System prototype 

In this section, we discuss the main components of the system prototype of the 

real time scenario described in section 4.1 

4.1.1 Information Form Data Association Algorithm (IDA) 

The Information Form Data Association algorithm [58], addresses the 

problem of data association in online object tracking. The data association problem 

arises in a large number of application domains, including computer vision, robotics, 

and sensor networks. This algorithm forms the core of the sensor fusion component of 

the real time scenario discussed in this thesis. 

               

        Figure 8 a. Tracking N objects poses N! possible            Figure 8.b A permutation matrix  

                           Associations                                                       representing one of 4! possible  

                                                                                                       associations when N=4 

                     Figure 8: Illustration of the data association problem for 4 objects and 4 tracks  
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Given the problem of associating N objects with N tracks as shown in Figure 8a, the 

standard probabilistic solution requires exponential update time and exponential 

memory. This is because each data association hypothesis is expressed by a 

permutation matrix as shown in Figure 8b that assigns computer-internal tracks to 

objects in the physical world. An optimal filter would therefore need to maintain a 

probability distribution over the space of all permutation matrices, which grows 

exponentially with N, the number of objects in the world. This essentially means that 

to do a full Bayesian solution, we must maintain the posterior probabilities p(A) of N! 

permutation matrices represented by A. 

The common remedy involves the selection of a small number K of likely 

hypotheses. This is the core of numerous widely used multi-hypothesis tracking 

algorithms [59]. More recent solutions involve particle filters [60], which maintain 

stochastic samples of hypotheses. Both of these techniques are very effective for 

small N, but the number of hypothesis they require grows exponentially with N. 

The Information Form Data Association algorithm (IDA) [58] is a filter 

algorithm that scales to much larger problems. This filter maintains an information 

matrix (henceforth represented by Ω) of size N × N (where N is the number of objects 

in the world), which relates tracks to physical objects in the world. The rows of Ω 

correspond to object identities, the columns to the tracks of the tracker. Ω is a matrix 

in information form, that is, it can be thought of as a normalized log-probability.  

 The key innovation is a representation of the data association posterior in 

information form, in which the “proximity” of objects and tracks are expressed by 
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numerical links. Updating these links requires linear time, compared to exponential 

time required for computing the exact posterior probabilities. 

This algorithm assumes an online tracking system that receives sensor data, 

conveying information about the identity or type of objects that are being tracked. 

The algorithm also models the uncertainty introduced through the tracker’s inability 

to reliably track individual objects over time due to mixing of tracks. 

As mentioned earlier, the central data structure in the Information Form Data 

Association algorithm is the information matrix (Ω). This matrix encodes the 

probability distribution across the different possible permutations/associations of 

objects with tracks. 

The three main subparts of the algorithm are: 

1. Mixing Updates: This part of the algorithm models the uncertainty in the system 

due to tracks being very close to each other 

 

Figure  9: Representative mixing update of the Information Matrix (Ω)Ω)Ω)Ω)    

Closeness/mixing of tracks causes a loss of information with respect to the 

data association. The tracker confusing two objects amounts to a random flip of two 

columns in the data association matrix/permutation matrix represented by A. Let {B1, 

B2,. . . ,Bm} be a set of permutation matrices, and  {β1,β2,β3,β4,...βm} be a set of 

associated probabilities. The “true” permutation matrix undergoes a random transition 
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from A to ABm with probability βm. This corresponds to the following update rule in 

the information matrix corresponding to the mixing of two tracks: 

 

 

 

Here the expression “exp” denotes a component-wise exponentiation of the matrix; 

the result is also a matrix. This update implements a “dual” of a geometric mean; here 

the exponentiation is applied to the individual elements of this mean, and the 

logarithm is applied to the result. It is important to notice that this update only affects 

elements in Ω that might be affected by a permutation Bm; all others remain the 

same. In other words, if affects only those columns corresponding to tracks that mix. 

2. Observation Update: This part of the algorithm updates the information matrix 

based on local observation data about objects. 

                  

Figure 10: Representative update operation for an observation that links track 2 to object 4                

The update rule employed by the algorithm for performing observation updates on the 

information matrix is as follows: 

If probability of object ‘i’ being track ‘j’ given sensor reading zj = zij i.e. 

   

then 
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Αfter each update, a normalization operation is performed to make sure that all 

elements in Ω are positive. 

3. Inference: This part of the algorithm infers the data associations of objects with 

tracks 

                          

              Figure 11a: Example Information Matrix            Figure 11b: Permutation matrix   

                 (Columns= tracks; Rows=objects)                          representing optimal data association 

 

Using the information matrix shown in Figure 11a, if we were to solve the 

data association problem using a maximum likelihood formulation, we would look at 

each column individually, pick the maximum value corresponding to that column and 

then consider the row index corresponding to the maximum value to be the correct 

data association to the track represented by the column under consideration. For 

instance, by looking at each of the four columns corresponding to the information 

matrix represented in Figure 11a in isolation, with a maximum likelihood formulation 

for inferring track-object associations, it would appear that track 1 should be 

associated with object 3, track 2 to object 1, track3 to object 2 and track 4 to object 3 

again. However this solution associates both tracks 1 and 4 to object 3, which is 
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incorrect.  Figure 11b represents the permutation matrix representing the optimal data 

association, where track 1 is associated with object 4, track 2 with object 1, track 3 

with object 2 and track 4 with object 3. The objective of the inference part of the 

algorithm is to obtain the optimal data association from the information matrix. This 

optimal data association can be performed using a simulated annealing formulation 

which is done in our system prototype.. 

4.2.2 Northrop Grumman’s cognitive test bed 

Northrop Grumman’s UAV sensing cognitive test bed environment is a non-

real time simulation environment designed to allow the opportunity to flexibly test 

and characterize sensor fusion and command and control algorithms within the full 

context of the dynamic UAV sensing problem. The test bed contains functionality to 

wrap an algorithm with interfaces to sensors and platforms and to allow the algorithm 

to track its own situational awareness. Behind the scenes, a behavioral model of the 

physical entities, platforms, and sensors drive the simulation. The functional 

correctness of the various algorithms applied to this test bed is determined through 

comparison to the simulation truth over time. Logging capabilities allow the test bed 

to generate data sets for external testing and analysis. Figure 12 shows the main 

components of the test bed. 
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Figure 12: The components of the Northrop Grumman’s cognitive test bed 

 

The test bed supports two modes of internal algorithms, as shown in Figure 13. A 

default command and control (C2) module provides a simplistic path following 

behavior for the platforms to generate sensor reports for testing of a sensor fusion-

only algorithm. In addition, the default C2 behavior can be removed, and a combined 

C2-fusion algorithm can be used to not only generate the situational awareness, but 

also drive the positioning of the various UAV assets.  

 

Figure 13: The test bed provides a capability to test both algorithms which 

actively drive the UAV platforms and sensors and those that only process 

the reports as generated.  
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The test bed models a world specified by a map and a region of interest. 

Sensors reside on platforms, which move over a two-dimensional region of interest. 

Within this region of interest, entities with various movements and behaviors may 

reside. A sensor passing within range of an entity generates a report. The report 

includes estimates of the location and velocity of the detected entity; and it includes 

one reading of several possible components that make up the entity's signature. A 

single report may not uniquely identify an entity; but, an aggregate of reports 

provides a better picture of the total signature, increasing the likelihood of 

identification of the type of entity observed. 

Each entity type has a signature that is defined by some number of signature 

(feature) elements. Each feature element in the signature can be represented as a 

probability distribution function within a separable (but not necessarily independent) 

dimension in an N-dimensional space. For simplicity, the test bed assumes a Gaussian 

probability distribution function, represented by a mean and a standard deviation.  

  

where S
T 

is the mean signature of the T
th 

entity type;  

S
1T

, S
2T

, … S
NT 

are the N-dimensional mean signature (feature) elements of S
T
; 

and  

S
Tσ 

similarly represents the standard deviation component.  
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From these values, the probability distribution function (PDF) can be calculated by 

the following equation:  

 

where : S
nT

, S
nTσ 

are given as per equations 1 and 2; and PDF(v) is the PDF over the 

dimensions given by the vector v .Note that this PDF gives the probability that a 

specific type T will generate a signature at the N-dimensional signature location given 

by the vector v.  

Using a priori knowledge of these probability density functions, sensor reports 

can be processed with a number of algorithms to determine the classification of an 

entity. 

� Inputs to the test bed:  

The user interacts with the test bed by modifying two XML input files: 

1. dstb.xml: In this xml file , general parameters associated with the configuration of 

the world being simulated are specified. These parameters include types of entities, 

platforms, sensors, signatures, entity behaviors, time for which the world needs to be 

simulated, periodic sensor reporting interval etc.  

2. scenario.xml: In this xml file, scenario dependent parameters, such as the map of 

the region, size of the region of interest and the number of platforms, sensors and 

entities are specified.  
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These two files support a wide variety of flexibility in configuration. Additional 

command line flags may also be added to control the behavior of the test bed.  

� Outputs of the test bed : 

1. The test bed, written completely in C++,  provides three developer APIs : 

� The Sensor Report API allows a fusion algorithm to get sensor report and  

             truth report information at discrete intervals of simulation time. 

� The C2 API allows a Command and Control algorithm to command   

Platforms  

� The SA (situational awareness) API allows a fusion algorithm to register its 

awareness. 

When testing a fusion algorithm while using the default command and control 

algorithm, the fusion component uses the sensor report API to obtain sensor and truth 

reports every discrete interval of simulation time, processes the sensor reports and 

compares it to the provided truth information to determine the level of functional 

correctness. 

2. The sensor and truth report data over all time steps of the simulation are dumped 

into an xml file at the end of a simulation. This file provides an efficient means of 

testing fusion algorithms outside the test-bed simulation framework.  

A sensor report consists of the following: a value in one (or more) signature 

dimensions, a location and error ellipse, a velocity vector and error ellipse, time with 

error, the identification of the sensor generating the report . A truth report consists of 

the following: entity id, entity type, track id, true location, true velocity, true time 
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In addition to this, the test bed can also be configured to generate a track id for 

each sensor report. This track id corresponds to internally generated tracks created 

based on the Occam Razor’s principle [61]. Creation of internal tracks can be 

optionally turned on/off based on whether the fusion component creates tracks as well 

as performs data association or performs data association alone (like in the case of 

IDA). 

4.2.3 Application of IDA to the Northrop Grumman test bed  

       The original MATLAB code of the Information Matrix Data Association 

(IDA) algorithm was provided by the algorithm developers at Stanford University. 

This code was converted to C and applied to the data generated by the Northrop 

Grumman test bed simulations.  

        In addition to the truth and sensor report data, the IDA algorithm requires a 

means of correlating signature values pertaining to different signature dimensions to 

entity types modeled by the test bed. The test bed supports 50 types of entities each 

defined by a combination of 10 signature feature dimensions. Since signatures are 

assumed to be represented by a normal distribution in the test bed, they are 

characterized by a mean and standard deviation as described in the previous section. 

The mean and standard deviation of signature values in each signature dimension 

corresponding to various entity types is extracted from the test bed in order to 

facilitate correlation of signature values to unique entity types by the IDA algorithm.  

       The IDA C code has been integrated into the test bed in the fusion component. 

Each time, the test bed is run with the option for automatic generation of internal 

tracks .This ensures that each sensor report has an associated track id and this track id 
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is used to select the column of the information matrix that needs to be updated 

corresponding to an incoming sensor report .Every discrete time step interval, a chunk 

of sensor reports and truth reports is delivered to the fusion component as a part of the 

simulation. 

  Each time step, the following operations (explained in detail in section 3.2.1) 

are performed by the IDA algorithm using the sensor data: 

1. Mixing Updates: 

From the location data obtained from the sensor reports, the number of pair 

wise mixing updates is determined based on a predefined cartesian distance threshold. 

Subsequently the Information Matrix data structure is updated as per the rules 

mentioned in section 4.2.1 

2. Observation Updates: 

Each sensor report is classified and the probabilities of it corresponding to 

each of the 50 different entity types is determined.  This information along with the 

track id information in the sensor report is used to update the Information Matrix as 

per the rules described in section 4.2.1 

3. Inference: 

The data association of the previous time step (maintained in a single 

dimensional array of size N) and the updated information matrix for the current time 

step are used as inputs for the inference operation wherein based on the state of the 

current Information Matrix, using simulated annealing an attempt is made to 

determine the track-entity id associations for the current time step.  
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 4. Measuring accuracy: 

The data associations are maintained in a single dimensional array of size N, 

where the index of the array pertains to the track id and the value of the element 

pertains to the inferred entity id corresponding to the track for the particular time step. 

At the end of the inference step, an updated array of size N is obtained corresponding 

to the set of data associations in the current time step. 

E.g. If the data association array is as shown in Figure 14, it means that track 1 is 

associated with entity id 1 at the end of the inference step, track 2 with entity id 3, 

track 3 with entity id 2 and so on. To determine the accuracy of associations, the truth 

reports corresponding to the internally generated tracks are used. For example if the 

entity id in the truth report for track 1 is 1, it corresponds to a correct association for 

track 1 since the association obtained from the inference step is also the same. The 

total number of correct associations is determined through this correlation with truth 

reports every time step and a score is maintained. At the end of the simulation, the 

individual correct association scores pertaining to time steps is summed up and 

divided by the total number of time step intervals simulated to determine the average 

tracking accuracy value.        
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Figure 14: Example data association array obtained at the end of 

the inference step . Here the index into the array represents the 

track id, the value of the array element represents the entity id 

associated with the track at the end of the inference step. 
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        Since we are concerned only with the fusion component of the test bed, 

instead of running IDA as a part of the simulated test bed framework, it is much more 

efficient to generate datasets from the test bed using different input configuration files 

and simulation windows and then using these datasets as inputs to the IDA algorithm, 

running natively on a machine. The datasets generated by the test bed simulations 

comprise time stamped sensor and truth reports in xml format. These xml files are 

converted to text files and used as input to the IDA algorithm. In the rest of the thesis, 

whenever we refer to the NG test bed data, we would be referring to these datasets 

generated from test bed simulations with different input configuration files. 

5. Entity Behaviors 

 The Northrop Grumman test bed provides a parameterized framework to vary 

the behaviors of entity types by changing parameters like the start and end time of the 

entity’s movement, the start and end locations, the route taken, commute and pause 

time, maximum speed of the entity type etc. Changing the behaviors of entities in a 

data set affects the computation time spent in the Mixing Update and Observation 

Update sub-kernels of the IDA algorithm. This is due to the fact that change in 

behaviors result in change in the number and type of mixing events as well as sensor 

reports. In our study, we use data sets with two different sets of behaviors associated 

with the entity types. In addition to that, we vary the number of entities in the 

configuration files to generate new data sets. Varying the number of entities scales the 

problem size in terms of the size of the primary data structure (Information Matrix) 

involved in the computation. Also it changes the amount of mixing and the type and 

number of sensor reports delivered to the fusion component every time step. 
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 4.3 Real time problem formulation 

                                                       IDA 

                                      

     

Figure 15: Computations to be performed on new sensor data every time step interval 

Let ‘tint’ be the time step interval size/periodic interval at which sensor data is 

delivered to the fusion algorithm. 

Let ‘trefresh’ be the periodic interval at which the user expects tracking accuracy 

updates 

Figure 15 shows the computations that need to be performed on new sensor data 

every time step interval. The following points outline the salient features of the real 

problem formulation: 

� System objective: Maximize tracking accuracy value delivered to the user every 

‘trefresh’ seconds. 

� Task model: Three sets of periodic , dependent tasks initiated every period/time 

step interval given by ‘tint’ 

� Deadline:  To meet the system objective in the best possible way, each of the 

three tasks needs to be completed before the arrival of the next set of sensor 

reports. So deadline is ‘tint’ seconds after the arrival of the current set of sensor 

reports. 

Mixing Updates 

 

Observation Updates 

 

Inference 
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� Nature of deadline: Soft because no catastrophic failures result from missing a 

deadline. However utility of the system decreases as more and more deadlines are 

missed. 

                                                  tint                                 tint                                     tint 

 

  

                                                 tint                                 tint                                   tint          

 

       
  

 Figure 16: Ideal case where the computations on each set of sensor reports is always completed 

before the next set is delivered 

Figure 16 shows the ideal case scenario in which the computations to be 

performed on each set of sensor reports is completed before the next set arrives. 

However due to the dynamics of the environment in which the system works and the 

data dependent nature of the three tasks that need to be performed each time step, 

there is a high variance in the amount of time taken to complete these tasks from time 

step to time step. 

Let us consider a single dataset for 3000 entities with the default set of 

behaviors in the test bed and understand the variance in computation time of each of 

the tasks across time steps. Figure 17 shows how the computation time spent in each 

of the three tasks varies across time step intervals. The value of ‘tint’ in this case is 

1second i.e. a new set of sensor reports is delivered every second from the 

Mix            Observation           Inference   

Update        Update 

Mix                    Observation      Inference   

Update               Update 
Mix           Observation   Inference   

Update      Update 

         Process sensor reports Process sensor reports 

 
          Process sensor reports 
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simulations. The timing measurements pertain to single threaded performance    on a 

3GHz dual processor Xeon machine.  

Variation of time spent in the mixing task across 

timesteps
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Variation of time spent in sensor updates across timesteps
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Figure 17 Variation in computation time spent in each of the three tasks sacross time step 

intervals. 

From Figure 17, the following observations are made: 

� The computation time to perform all the three tasks varies from 1.8 secs to 4.5 

seconds. 

� There is a high variance in the amount of time spent in the mixing task across 

time steps. This is because this is dependent on the number of pair wise mixing 



 

    54 

  

 

events, which is dependent on the dynamics of the world being simulated and the 

behaviors of the entities being tracked. 

� There is also a significant variance in the amount of time spent in the observation 

update task across time steps. This is due to the fact that the number of sensor 

reports delivered for processing varies from time step to time step. 

� The variance in the amount of time spent on the inference component is not very 

high. This is because the number of iterations of simulated annealing  is fixed and 

the work done in each iteration is approximately proportional to the number of 

entities being tracked which determines the size of the Information Matrix, the 

main data structure involved in this computation. The slight variations we see in 

the graph are mainly due to measurement differences and do not reflect variations 

in computation time. 

The reasons why conventional real time systems design/scheduling techniques are 

unable to handle such applications efficiently are: 

� As mentioned earlier, static design methodologies would attempt to determine  

Worst Case Execution Times (WCET) for each of the tasks and design a system with 

enough processing power/resources to meet the deadlines. Since the computations 

associated with the tasks are input data dependent, in almost all cases, the WCET 

would be unbounded. Even if we assume that the WCET is bounded and determinable 

and design a system to meet WCET requirements using static scheduling policies, the   

resulting system would be underutilized during most phases of operation.  

� Use of dynamic scheduling policies like Earliest Deadline First might be more  



 

    55 

  

 

amenable to be applied to such an application, but again if designed for handling less 

than the Worst Case Execution Time(WCET) scenarios, missed deadlines and 

resulting domino effects would cause unpredictable dropping of tasks and hence 

adversely affect the tracking accuracy updates provided to the human user every 

‘trefresh’ time. 

Given the dynamics of the problem scenario, we propose a methodology of exploiting 

certain application features to ensure that the system objective is met with sufficient 

solution quality when a deadline arrives rather than supporting and designing for the 

worst-case execution of the program. 

In the next two chapters, we describe in detail how certain properties of the 

three types of tasks in our reference application (IDA) allow us to make performance 

accuracy trade-offs at run time, meet deadlines and meet the system objective in the 

best possible way given resource and time constraints. 
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Chapter 5 

5. Soft computations and their characterization 
 

 As mentioned in section 1.4, a growing number of kernels [47, 48, 49] 

currently offer and several others can be structured to offer [50, 51, 52] a simple 

means of trading off computation time for the quality of results. We call such kernels 

“soft kernels” or “soft computations.” The chief characteristic of these computations 

is the fact that they are able to provide cruder results before they complete, or they 

may execute for a long time refining an already adequate result. In other words, such 

computations may be able to provide useful, incremental results before completing 

execution and also ensure graceful degradation of the quality of results as the 

computation time decreases.  By providing opportunities for obtaining “anytime” 

solutions at deadlines, these computations allow us to meet a real time system 

objective with sufficient quality without having to support worst case program 

execution. 

 We demonstrate the benefits of exploiting soft computing properties of kernels in 

the context of our system prototype described in Chapter 4.  Two main design issues 

involved in trying to build a system where soft computations are exploited to meet 

deadlines with acceptable solution qualities are: 

1. Quantifying the gain in solution quality of the application as a function of 

time spent in soft computations. 

2. Determining the optimal composition of “tasks” given a specific amount of 

resources/ time to meet a deadline. 
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We address these design issues in this chapter. More specifically, we identify the 

presence/absence of soft computing properties in the tasks/software components of 

our reference application and characterize the soft computations using performance 

profiles. We then use these performance profiles to build models to determine the 

optimal composition of a group of tasks given a specific resource and timing 

constraint to meet the system objective in the best possible way.  

5.1 Properties of soft computations   

The desirable properties of computations for them to be classified as “soft 

computations” or “soft kernels” are as follows: 

1. Measurability: The quality of the system output should be measurable and the  

computation should have a measurable impact on the system objective or the quality 

of the system output. For example in the case of our system prototype, the system 

output is measured as the tracking accuracy, measured with respect to the ground 

truth, which is a measurable system objective. Measurability is important because 

without being able to objectively determine the impact of computations on the system 

solution quality, it is difficult to characterize them and understand computation time 

vs. solution quality trade-off opportunities that they might offer. 

2. Monotonicity: The impact of the computation on the system objective/quality  

of the system output should be a non-decreasing function of time. If a computation is 

non-monotonic, it cannot be guaranteed that spending more time in the computation 

would yield a better solution quality. Essentially it means that the computation does 

not offer a trade-off between computation time and system solution quality. 
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3. Consistency:  The impact of the computation on the system objective/quality of  

 the system output  should be correlated with computation time. In general,            

algorithms do not guarantee a deterministic output quality for a given amount            

of time, but it is important to have a narrow variance so that quality prediction           

can be   performed. 

4. Diminishing returns: The improvement in solution quality should be larger at  

the early stages of the computation, and it should diminish over time. It is desirable 

for a computation to provide diminishing returns for it to be characterized as a soft 

computation because the “diminishing returns” characteristic ensures graceful 

degradation of system solution quality as time allocated to the computation is 

decreased. 

5. Recognizability: This pertains to the ability to determine the impact of a  

computation on the quality of the system solution at run time. For example, when 

solving a combinatorial optimization problem (such as path planning), the quality of a 

result depends on how close it is to the optimal answer. In such a case, quality can be 

measurable but not recognizable. Similarly in the case of our system prototype, the 

quality of a data association solution depends on how close the associations are to the 

ground truth. Hence again though the quality is measurable, it is not recognizable. 

Recognizability becomes extremely important if the quality of the system solution as 

a function of time spent in soft computations needs to be monitored at run time for the 

purpose of adapting and learning performance profiles online. We discuss what 

performance profiles are in detail in the next section. 
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We initially look for the first four desirable characteristics of soft 

computations in the components of our system prototype (discussed in detail in 

section 5.3). We study how much benefit soft computations that do not possess the 

“recognizability” characteristic, can provide for real time performance. Subsequently, 

we perform a sensitivity study to determine how much more benefit can be accrued if 

the computation is “recognizable” and thus facilitates online learning and adaptation 

of performance profiles, that characterize soft computations. 

5.2 Performance profiles: 

Soft computations are characterized using performance profiles. Performance 

profiles quantitatively summarize the improvement in the quality of output as a 

function of the time spent in the computation. A performance profile of a soft 

computation can be represented as Q(t) where Q(t) represents the quality of the output 

when time ‘t’  is spent in executing the soft computation. 

Performance profiles are typically constructed empirically by collecting 

statistics on the performance of an algorithm. The raw data that are collected specify 

the particular quality of results as a function of computation time.  

 

 Figure 18: Typical performance profiles. Figure 18b shows the performance profile for a 

traditional algorithm. Figures 18a and 18c show performance profiles for soft computations 
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Figures 18b is the performance profile for a traditional algorithm, the x axis 

pertains to time spent in the computation and the y axis pertains to the corresponding 

quality of solution that can be expected. What this curve essentially illustrates is the 

fact that a traditional algorithm has just one output /solution which can be obtained 

provided a sufficient amount of time is provided to the task for execution. If sufficient 

amount of time is not allocated to the algorithm, no output/solution is obtained. 

Figures 18a and 18c are examples of performance profiles for soft computations. 

What these figures illustrate is that when using soft computing kernels, 

output/solutions of lesser quality/value are obtainable even if execution of the kernels 

are restricted to a fraction of the time required for the computation to deliver the best 

possible value/solution to the problem. As evident from Figures 18a and 18c, these 

two performance profiles illustrate “measurability,” “monotonicity” and “graceful 

degradation” for the computation they represent. Whether the computation possesses 

the “consistency” property can be evaluated only when the performance profile is 

used for quality prediction while the computation is being executed and the variance 

between the predicted quality and the actual quality obtained from the algorithm 

execution is determined. 

5.2.1 Quality metrics for characterizing soft computations: 

 In order to draw performance profiles, objective metrics for measuring the 

quality of the output must be defined. Such quality measures specify the difference 

between the approximate result and the exact result. They are “objective” in the sense 

that they are a property of the algorithm itself, independent of its possible 

applications. From a pragmatic point of view, it may seem useful to define a single 
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type of quality measure to be applied to all algorithms having soft computing 

properties. However quality measures must match the nature of the algorithm they 

describe. Soft computations are unique and every algorithm may have a different 

objective quality measure. However the following three metrics have been found 

useful and relevant in the context of many “soft” kernels [44]: 

1. Certainty: This metric reflects the degree of certainty that a result is correct. The  

degree of certainty can be expressed using probabilities, fuzzy set membership, or any 

other method of expressing uncertainty. For example, consider a “soft” diagnosis 

algorithm that is based on combining more and more evidence as computation time 

increases. The certainty that the diagnosis is correct increases as a function of run-

time. With this type of “soft” kernel, there is always a possibility that the correct 

results are completely different from the ones generated by the algorithm. 

2. Accuracy: This metric reflects how close  the approximate  result is to the exact  

answer.     

3. Specificity: This metric reflects the level of detail of the result. In this case, the   

“soft” algorithm always produces correct results, but the level of detail is       

increased over time. For example, consider a hierarchical planning algorithm that       

first returns a high level abstract plan. Each step in the abstract plan is a “macro”       

step that needs to be refined by further planning. As computation time increases,        

the level of detail is increased until the plan is composed of base-level steps only         

that can be easily followed. 
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5.2.2 Building performance profiles for individual soft kernels: 

Finding the performance profile of an individual /elementary soft kernel can 

be difficult and may require an extensive computation effort especially when it is 

based on simulation of the algorithm. In some cases, such as numerical analysis 

algorithms, the performance profile can be derived by direct analysis of the algorithm, 

but the general case is more complicated. For example, in many iterative algorithms, 

such as Newton’s method, the error in the result is bounded by a function that 

depends on the number of iterations. In such cases, the performance profile can be 

calculated once the run-time of a single iteration is determined. In general, however, 

such structural analysis of the code is hard because the improvement in quality in 

each iteration and its run-time may be unpredictable. A more general method is based 

on gathering statistics on the performance of the algorithm in many representative 

cases. Statistical performance profiles are the easiest to construct but take the most 

storage space and the longest amount of time to instantiate. A statistical profile uses a 

large number of samples to create a database of (computation time, output quality) 

entries. With this information the database can then be used to make predictions about 

the expected quality given time and input parameter information.  

 

5.2.3 Representation of performance profiles of individual soft 

computations: 

  

Performance profiles of individual soft computations can be represented either by 

a closed formula or as a table of discrete entries. 
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      Since performance profiles are normally monotone functions of time, they can be 

approximated using a certain family of functions. Once the quality map is known, the 

performance information can be derived by various curve fitting techniques[49] . 

     The discrete representation of performance profiles is based on a table that 

specifies the quality values for certain possible time allocations. The size of the table 

is a system parameter that controls the accuracy of performance information.  

 We discuss in detail how soft computations are characterized using 

performance profiles in the context of our reference real time scenario 

implementation in the next section. 

5.3 Identification and characterization of individual soft kernels in 

the reference application  

     We performed experiments to determine if the three tasks/ sub-kernels 

(Mixing Update, Observation Update and Inference) that form a part of our reference 

implementation possessed one or more of the properties mentioned in section 5.1 that 

characterize “soft” computations. We observed that all three sub-kernels satisfy the 

“quality measurability” property that is needed to characterize soft computations 

since the impact of time spent in each task on the accuracy of the application can be 

measured. The Observation Update and Inference sub-kernels /tasks also satisfy the 

other three desirable properties of   soft computations and hence are categorized as 

“soft” kernels. The Mixing Update sub-kernel updates the information matrix data 

structure based on the spatial state of entities in the scenario. It causes degradation in 

the state of the information matrix data structure based on the number of tracks that 

mix in the scenario in a particular time. This computation ensures that the state of the 
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world is appropriately reflected in the state of the Information Matrix. As a result, it is 

important to ensure that the Mixing sub-kernel always runs to completion. Since the 

Mixing Update sub-kernel causes degradation in state of the Information Matrix, the 

impact of the Mixing Update sub-kernel on the system solution quality is non-

monotonic, inconsistent and does not ensure graceful degradation of solution quality 

as time spent in the Mixing Update sub-kernel is decreased. So we conclude that 

since the Mixing Update sub-kernel does not satisfy the  three main desired properties 

of soft computations, it should be categorized as  a “non-soft”/“hard”/”mandatory” 

kernel which always needs to be executed to completion. We provide details of the 

methodology adopted by us for characterizing the “soft kernels” in the following 

sections. 

5.3.1 Observation Update sub-kernel /task 

 This sub-kernel performs updates of the information matrix of the IDA sensor 

fusion algorithm using local sensor report observations. Each incoming sensor report 

is first classified and the probability values so obtained are used to perform the update 

of the Information Matrix as described in Chapter 4. The amount of time spent in this 

task varies across time steps based on the number of incoming sensor reports. 

Another observation is that some sensor reports do not add much additional value to 

the final outcome/accuracy due the fact that either they are redundant (more than one 

sensor report per entity) or are not critical in the context of this specific application 

scenario. This notion of criticality will become clearer when we discuss the 

experiments we performed in the next few paragraphs.   
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Our observations indicated that it might be possible to trade-off computation 

time for accuracy in this sub kernel by performing critical sensor updates pertaining 

to the domain instead of performing all updates every time step.  In order to 

determine whether this sub kernel possesses the desirable “soft computing” 

properties, the following experiments were performed: 

� Experiment 1:  

We first varied the amount of time spent in the Observation Update sub-kernel and 

studied its impact on the accuracy of the application. We did this by varying the 

percentage of sensor updates applied in each time step from 0% to 100% in steps of 

5% and then determined the average accuracy value across the different time steps. In 

all cases, we executed the Mixing Update and Inference sub-kernels to completion.  

Figure 19 shows the variation of tracking accuracy as a function of time spent in 

sensor updates. This data pertains to the data set with 3000 entities and default 

behaviors. The tracking accuracy and execution time pertain to the average accuracy 

and execution time measured across all the 500 simulation time steps. As evident 

from the graph in Figure 19, we observed that the observation update computation is 

monotonic. We also realized that the order in which the sensor updates are applied is 

important. This was based on the observation that some updates applied could be 

more critical than others while other updates may be redundant due to the delivery of 

more than one sensor report per entity. 
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Figure 19: Variation in accuracy as amount of time spent in the ObservationUpdate task 

is changed 

� Experiment 2: 

Based on the intuition that determination of an order of applying updates 

based on sensor report criticality might help improve the consistency of the soft 

computation and also ensure more graceful degradation with decrease in computation 

time, we divided the sensor reports into 4 groups: 

1. Sensor reports pertaining to mixing events: This group comprises all the sensor 

reports pertaining to tracks that were involved in mixing. It is important to note here 

that there could be more than one sensor report pertaining to a track involved in 

mixing. All these sensor reports are included in this group. 

2. Sensor reports pertaining to similar entities: This group comprises all sensor 

reports pertaining to similar entity types. How similarity of entity types is determined 

is discussed later in this section. 
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3. First time sensor reports: After filtering out the above two categories of sensor 

reports, the reports pertaining to tracks that have not received a previous sensor 

update in the time step are included in this group 

4. Redundant sensor reports: All the remaining reports obtained after filtering out 

reports pertaining to the above three groups are put in this category. 

The grouping of sensor reports was based on the following observations: 

1. Sensor reports pertaining to mixing events are critical owing to the uncertainty 

introduced by the mixing of tracks. 

2. Sensor reports pertaining to similar types of entities are critical owing to the fact 

that without sufficient observation updates; it might become difficult to distinguish 

between two entities having similar signature values. The similarity between entity 

types is determined offline using the Mahalabonis distance metric. This is a very 

popular similarity/proximity metric used in statistical data mining techniques 

specifically in the arena of cluster analysis [61]. 

� Heuristic for assigning priorities to sensor updates: 

The following steps are followed to facilitate category based ordered updates of   

sensor reports: 

1. To each sensor report information data structure, one additional unsigned integer  

element is added which contains the category value. Also an additional array of size 

N is maintained which contains two bits of information  a. whether a particular track 

is involved in mixing and b. whether a sensor report pertaining to that track has 

already been processed.  

2. When the mixing updates are performed, the corresponding category related 
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 sensor report element is assigned a value of 3. Also the corresponding mixing bit 

entry in the array of size N is set to 1. 

3. As each report is classified, if the category is not set and corresponding value of  

the N dimensional array is set, the category element is set to a value of 3. Otherwise, 

based on the classification result, if the type of entity belongs to one of the 

predetermined similar types, the category value is set to 2 else if the bit in the N 

dimensional array for first time reports is not set, it is set to 1 and the category 

element is assigned a value of 1. The sensor reports are then sorted in descending 

order of category values. 

Using the above heuristic and category based ordering of sensor updates, we obtained 

a performance profile for the Observation Update task for coarse granularity sensor 

updates based on categories. This was done in the following manner. 

1.  The mixing update and inference tasks were performed every time step. 

2. We obtained 4 data points  by determining average accuracy values by 

performing updates for sensor reports pertaining to mixing events alone; 

mixing events and similar entities;  mixing events ,similar entities  and first 

time reports; all reports. 

In order to make sure that the order of updates based on the above mentioned 

order of categories is the best, the above curves were obtained for all possible 

permutations of the category based orderings. Figure 20 shows the average 

computation time vs normalized accuracy graphs for these 6 set of experiments. 

As evident from Figure 20, the following ordering of category based sensor 

updates provides, the best performance profiles for the Observation Update task .  
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-Updates pertaining to mixing entities 

-Updates pertaining to similar entities 

-First time sensor updates 

-Redundant sensor reports 

This was observed for all the data sets under consideration. Hence we adopted this 

heuristic to drive the order in which sensor updates were applied to the Information 

Matrix: 

 

Accuracy Vs Observation Update time 

(CategoryBasedOrderingOfUpdates)

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

Observation Update Time

N
o

rm
a
li

z
e
d

 A
c
c
u

ra
c
y

MIX_SIM_FIRST

MIX_FIRST_SIM

SIM_MIX_FIRST

SIM_FIRST_MIX

FIRST_MIX_SIM

FIRST_SIM_MIX

 

Figure 20: Variation of accuracy as a function of time spent in the observation subtask when 

applying category based ordered updates 

 

We thereafter obtained performance profiles for a finer granularity of sensor updates, 

more specifically; we obtained accuracy values by performing experiments by 

varying the granularity (number of sensor reports) of the Observation Update task 

using the following approach  

� Apply 5-100% mixing sensor updates each time step in steps of 5% 
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� Then apply 100% mixing sensor updates + (5-100%) sensor updates 

pertaining to similar entities in steps of 5% 

� Then apply 100% mixing sensor updates + 100% sensor updates 

pertaining to similar entities + (5-100%) first time sensor updates in steps 

of 5% 

� Then apply all updates. 

 Figure 21 shows the performance profile for the Observation Update so obtained. 

The results are pertaining to the same dataset with 3000 entities and default 

behaviors. 

        

Figure 21: Variation of accuracy as a function of time spent in the observation subtask when 

applying category based ordered updates at a finer granularity 

 

Based on the experiments performed by us pertaining to the Observation Update sub 

kernel, we observed that this kernel possessed all the four desirable properties for soft 

computations. Hence this task/sub-kernel was categorized as “soft” in the context of 

our reference real time scenario. 
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5.3.2 Inference sub-kernel /task 

This sub-kernel attempts to determine the best data association of tracks with 

entity ids in a time step by performing inference using a simulated annealing 

formulation.  

Simulated annealing is a technique that has been used in various 

combinatorial optimization problems. It is a technique to find a good solution to an 

optimization problem by trying random variations of the current solution. The slower 

the cooling schedule, or rate of decrease of the initial specified temperature for the 

annealing schedule, the more likely the algorithm is to find an optimal or near-

optimal solution. The chance of getting a good solution can be traded off with 

computation time by slowing down the cooling schedule. The slower the cooling, the 

higher the chances of finding the optimum solution, but the longer the run time.  By 

varying the number of iterations of Simulated Annealing, the rate of cooling can be 

changed and hence accuracy can be traded off for computation time. The original 

inference kernel worked with a fixed number of inference iterations. We try to exploit 

the potential for trading off computation time for accuracy by varying the number of 

inference iterations and hence varying the cooling schedule of the simulated 

annealing formulation. Figure 22 shows the basic formulation of a Simulated 

Annealing algorithm. The inputs to the formulation are an initial solution (in our case, 

data associations of the previous time step) and a cooling schedule specified by a start 

temperature (T), a stop temperature (T’) and the number of iterations (N). At each 

iteration, the temperature is decreased to T/N. Essentially this means that by varying 

N, we can change the cooling schedule and thus exploit a trade-off between the run 
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time of the inference step and the solution quality. In addition to this, the solution that 

is obtained for evaluation or assessment each iteration is based on the current state of 

the information matrix ( in the case of our system prototype) and is not randomly 

chosen. This ensures that we progressively obtain better solutions (data associations) 

as we perform more iterations. However the major changes in associations across 

time steps are identified in the first few iterations of the simulated annealing inference 

and hence after some number of iterations, for most time step intervals, the accuracy 

levels off. 

 

Figure 22: Basic structure of a simulated annealing formulation 
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In order to determine whether the inference sub-kernel possesses the desirable 

soft computing properties, we obtain average accuracy values for the application by 

performing the Observation Update and Mix Update sub-kernels to completion every 

time step and by varying the number of iterations of the simulated annealing 

formulation between 1 and MAX [MAX=maximum number of iterations originally 

used in the algorithm. The value of max iterations in the original algorithm is 30]. 

Figure 23 shows how accuracy of the system varies with time spent in the inference 

sub-kernel. The data in this figure corresponds to the dataset with 3000 entities and 

default behaviors. As evident from the figure, this sub-kernel possesses the soft 

computing properties of monotonicity and graceful degradation and hence is 

categorized as a “soft” kernel. 
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Figure 23: Performance profile of the inference task 
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5.4 Composing systems using performance profiles: 

Given a system composed of a combination of “hard” and “soft” kernels/tasks as 

in the case of our reference implementation (where the Mixing Update task has been 

identified as “hard” while the Observation Update and Inference tasks have been 

identified as “soft”) and given a specific program structure, it is important to 

determine the optimal allocation of time to the components for any given total time 

allocation so as to meet the system objective. This problem of optimal composition of 

such tasks is an NP complete problem [52]. 

 

 Sufficient time always                                                                                 Sufficient time always 

allocated for ‘hard’ tasks                         tint                       allocated to ‘hard’ tasks   

 

                       

 

 

                                                                                    Remaining time for performing ‘soft’ tasks 

           

   Remaining time for performing ‘soft’ tasks                        

Figure 24: Composition of soft tasks in terms of time allocated to each component is dynamic 

Given a specific program structure, it is essential to always allocate sufficient 

time to execute to completion all identified “hard” components. Having done that, we 

need a mechanism to determine the optimal allocation of the remaining time among 

the “soft tasks”. Figure 24 illustrates this scenario in the context of our system 

prototype. The figure shows that there is always sufficient amount of time allocated to 

execute the Mixing Update task to completion. However based on the actual time 
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Update  
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taken by the Mixing Update task each interval, the remaining time before the deadline 

varies. The problem is to determine the optimal composition of “soft tasks” so that 

the remaining time before a deadline can be utilized in the best possible way to 

maximize the system solution quality at the deadline. Since we can independently 

choose the amount of time to be given to each of the soft tasks (Observation Update 

and Inference), the performance profile that we need to make the decision as to how 

best to utilize the remaining time is a multidimensional performance profile that 

indicates how the system solution quality changes for different allocations of time to 

the two “soft” sub-kernels. 

We determine these multi-dimensional performance profiles for the two “soft 

kernels” in our reference implementation, based on various interleavings (time 

allocation/resources) of the ‘soft’ tasks.  These composite performance profiles can 

subsequently be used to derive models that provide a means to determine the optimal 

composition of “soft” tasks given a specific resource/time constraint. We use this 

methodology of determining composite performance profiles for the “soft” kernels 

pertaining to our reference application.  

5.4.1 Obtaining Composite performance profiles for soft kernels: 

 In order to determine performance profiles for various interleavings of time 

allocation (resources) provided to the “Observation Update” and “Inference” tasks,  

we decompose the tasks into the following granularities: 

� Granularity of decomposition of the inference task:  The grain size for an  
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inference corresponds to an iteration of simulated annealing. We vary the number of 

iterations from 1 to MAX (MAX= maximum number of iterations of simulated 

annealing in the original code) 

� Granularity of decomposition of the update task: Considering one sensor update  

as the grain size for the interleaving experiments becomes intractable due to the huge 

number of sensor reports coming in each time step. Hence the grain size of sensor 

updates is at a coarser level. Here is how the interleaving points for time (resource 

allocation) are obtained:  

1. Apply 5-100% mixing sensor updates each time step in steps of 5% 

2. Then apply 100% mixing sensor updates + (5-100%) sensor updates 

pertaining to similar entities in steps of 5% 

3. Then apply 100% mixing sensor updates + 100% sensor updates pertaining 

to similar entities + (5-100%) first time sensor updates in steps of 5% 

4. Then apply all updates. 

This corresponds to 61x25=1525 sample points /inter leavings of sensor updates and 

inference for which we run the IDA algorithm (the Mix Update task is always 

executed to completion).  Each of the experiments is run for a simulation window of 

500 time steps. We determine the average accuracy and execution time values for 

each of the sample points to obtain the composite performance profile for the 

Observation Update and Inference tasks. Figure 25 shows the performance profile so 

obtained for a dataset of 3000 entities simulated over 500 time steps. 
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Figure 25: Composite performance profile for inter leavings of the update and inference 

task 

5.4.2 Model for optimal composition of “soft” tasks: 

     Having derived the composite performance profile for the “Observation 

Update” and the “Inference” tasks, we derive a model that provides the optimal time 

allocation to these individual tasks given a specific amount of time in which to 

perform both so as to maximize the accuracy. 

     To derive this model we use a statistical analysis tool called “JMP”, which 

is a widely used statistical analysis tool both in academia and industry[61].  We use 
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the curve fitting facility provided by JMP to build an appropriate model for our 

performance profile. 

The model thus derived for the performance profile in Figure 25 is a fourth degree 

polynomial given by: 

         z  = -0.36515 + 1.0464*x + 1.3283*y  - 0.3151*x*x  - 0.6955*y*y +0.99209625*(y-  
                  0.60192)*(x-0.84122) -0.3448163*(x*x-0.94611)*(y*y-0.49439)                          (1)   

 

Where z = Tracking Accuracy 

            x = Observation Update Time 

            y = Inference Time 

             Having obtained the model, we evaluate the goodness of the fit provided by 

the model. The tool output, in addition to providing us the model parameters also 

provides a summary of the fit. The summary of the fit pertaining to the above model 

is given below: 

    

Table 1: Summary of the fit for the model derived from the performance profile 

From the above summary, the goodness of the fit is evaluated as per the evaluation 

methodology outlined in [61]. The RSquare value in the fit summary in statistical 

terms is called the correlation coefficient and it represents the goodness of the fit. The 

table below obtained from [61] provides an overview for interpreting the meaning of 

the RSquare value 
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Correlation 

Coefficient 
Descriptor  

0.0-0.1 trivial, very small, insubstantial, tiny, practically zero  

0.1-0.3 small, low, minor  

0.3-0.5 moderate, medium  

0.5-0.7 large, high, major  

0.7-0.9 very large, very high, huge  

0.9-1 nearly, practically, or almost: perfect, distinct, infinite 

Table 2: Interpretation of the correlation coefficient,Rsquare in the context ,of goodness of  the 

fit  

The following optimization problem is then solved using the standard solver in Excel 

to obtain the optimal allocation of time to the Inference and Update Tasks given a 

specific remaining amount of time. 

Maximize z : 

subject to x+y <= R; x>0; y>0    (R= total time available for allocation between the  

Observation Update and Inference tasks. This 

essentially represents the remaining time to a 

deadline after the completion of the Mix Update 

task each time step interval. Henceforth in all the 

graphs this time is referred to as “Remaining time”) 

For the model represented by (1), Figure 26 is the three dimensional plot that shows 

the optimal time allocations to Inference and Observation Update tasks given specific 

time constraints. Interpretation of this plot in 2-D would be two graphs that represent 

the fraction of time allocated to the Observation Update and Inference tasks 

respectively,  for various total time allocations/remaining time. Figures 27 and 28 

illustrate these two dimensional graphs that represent how the fraction of time 

allocated to the Observation Update and Inference tasks vary as a function of the 
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remaining time. These graphs are based on data points obtained from the model 

derived from the composite performance profile shown in Figure 25. 

 
 

Figure 26: The projection of this plot on the x-y plane provides the optimal composition of 

Observation Update and Inference tasks given a specific total amount of time/resources to 

complete both. 
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 Figure 27. This figure shows the fraction of remaining time allocated to the Observation Update 

sub-kernel , given a specific amount of remaining time. This data has been derived from the 

model obtained from the performance profile shown in Figure 25. 
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Figure 28. This figure shows the fraction of remaining time allocated to the Inference Update 

sub-kernel , given a specific amount of remaining time. This data has been derived from the 

model obtained from the performance profile shown in Figure 25. 
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Chapter 6 

6. Scheduling Policies  

            As evident from our discussions and experiments described in the previous 

chapters, soft computations provide the flexibility to trade off accuracy for 

computation time in order to facilitate meeting real time deadlines with sufficient 

solution quality instead of designing a system to support worst case program 

execution. To exploit such opportunities in a real time system, some form of run time 

scheduling support is important. The run time component/scheduler needs to address 

a decision problem involving the choice of a collection of tasks to execute so the `best 

possible' outcome ensues for the system. At various decision points (at run-time), 

there are a set of tasks that are available for execution. In the absence of enough 

resources to execute all tasks to completion, a decision must be made as to the 

optimal composition of the set of tasks ready for execution at that point of time. This 

decision may involve picking out the `extra' tasks to support when resources are 

spare, or which services to sacrifice and to what extent when resources are scarce.   

             The models for optimal composition of soft tasks that we discussed in the 

previous section could be one form of input to the run time scheduler that facilitates 

decision making. However there are design issues in this context that need to 

addressed. More specifically,  

� the decision points when the run time component needs to be invoked should 

be identified so as to ensure minimal scheduling overhead and optimal system 

utility. 
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� it is also essential to identify enough variance in the system to justify runtime 

support as opposed to determining a fixed composition of tasks pre run time 

that provides a sufficiently good system solution . 

 In this chapter, we address these issues and describe a dynamic scheme to schedule 

soft computations in the context of our real time system prototype. In our scheme, we 

use models derived as per the methodology outlined in the previous chapter to drive 

decisions about the optimal composition of tasks at specific decision points at run 

time. In Chapter 7, we shall present experimental results comparing our scheme to a 

“static soft” scheme and the conventional Earliest Deadline First scheme. Both these 

schemes are also described in detail in this Chapter. 

Just to recapitulate, Figure 29 shows the basic problem formulation in case of 

our reference real time scenario. Every ‘tint’ units of time, a new set of sensor reports 

needs to be processed . The objective is to be able to maximize the accuracy of the 

system at the user refresh interval. Figure 30 shows the basic program structure of our 

application that processes the sensor reports.                                                                                               

 

                                                                                                                                                              maximize  accuracy at 

                                                                                                                                                                user refresh interval 

                                                    tint                                                  tint                                                tint                                            

tint      

 

 

 

Figure 29: General problem formulation 

 

 

 

Process reports Process reports Process Reports Process reports 
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Figure 30: Program structure in our system prototype. The “Mix Update” task has been 

identified as “hard” while the “Observation Update” and “Inference” tasks have been identified 

as soft. Each of these tasks need to be performed every time step. 

6.1 Static soft policy 

 We call the first scheduling policy that we apply to our system the “static soft 

policy.” This scheme assumes that a detailed timing analysis of all “non-soft” tasks 

has been done so that we can ensure that all “non-soft” tasks (in our case the Mixing 

Update/ MIX  task) always run to completion. This scheme uses the models derived 

from performance profiles for soft tasks off-line to determine the optimal composition 

of soft tasks assuming the remaining time available for execution after scheduling the 

hard components and before the deadline will always be fixed for a given time step 

interval size, ’tint’ . In other words, this scheme works under the assumption that the 

variance in the “non-soft”/”hard” components of the system is very small with 

reference to it’s estimated maximum estimated execution time (we use the term 

Mix 

Update 

Observa

tion 

Update 

Inference 
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maximum execution time here in place of worst case execution time because our 

timing analysis is based on statistics collected from application runs and no 

methodological worst case analysis has been done taking into account other important 

factors like the environment model). The objective of applying this policy is to 

understand if the dynamics in our reference implementation, more specifically the 

variance in the execution time of the “MIX” task, justifies run time monitoring or is it 

sufficient to exploit the trade-off opportunities provided by the “soft tasks” off-line. 

Figure 31 illustrates the inputs and outputs of the off-line analysis component. The 

scheduler uses the composition of “hard” and “soft” tasks obtained from this analysis 

to schedule the tasks every time step. This is illustrated in the Figure 32.  

 

         Model derived from PP 

             Program structure       

        Maximum time to be allocated  

            to hard components 

   

 

 

                                                                                                                                                    Becomes input to the scheduler 

                                        Figure 31 Inputs and Outputs of the static analyzer                                                                              

                    Time allocated to the Mixing Update task fixed irrespective of actual time 

                     spent in the task      

                                                                                   

 

 

        Fixed composition of soft tasks       ‘tint’ deadline  

 

Figure 32 Same schedule shown in the figure is repeated every interval once optimal composition 

of soft tasks is determined offline based on maximum expected time spent  in the MIX task. 

 

 
         Static/Offline analysis Obtain optimal 

composition of   

tasks for different 

values of ‘tint’ 

Mix              Obs                 Inf 

In all timeline diagrams: 

Mix: Pertains to Mixing Update/MIX task 

 

Obs: Pertains to OBSERVATION UPDATE task 

 

Inf: Pertains to INFERENCE task 
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6.2 Dynamic soft policy 

This policy aims to exploit the dynamics of the system better by monitoring 

the execution time of the “non-soft” MIX task in the system prototype while 

exploiting the soft computing properties of the “OBSERVATION UPDATE” and 

“INFERENCE” tasks.  The run time component is initialized with two inputs: the 

model obtained from the performance profile of soft tasks pertaining to the dataset (as 

described in Chapter 5), and the cost of executing each soft task at its finest 

granularity (in our case that pertains to the cost of a sensor update and the cost of an 

inference iteration). The model is fed into the run time component in the form of a 

table. Each entry of the table has two entries pertaining to the optimal time allocation 

to the update and inference tasks corresponding to a given total time allocation. Each 

entry in the table corresponds to a specific total time allocation.  

One design issue is to make a decision about how big the table should be in 

terms of number of entries. The other design issue is to determine the granularity of 

the discrete intervals of total time for which we have entries in the table. We adopted 

the following approach to handle these issues. The granularity of time allocation is 

obtained (discretization of time is done) by starting with a total time allocation 

corresponding to the  larger of the two values  of the cost of a sensor update and the 

cost of an inference iteration and then increasing it by the same value for 

corresponding entries of the table. For example:  if the cost of an inference iteration is 

0.05 and that of a sensor update is 0.009, the starting total time allocation for the first 

table entry is 0.05 and thereafter corresponding entries  are incremented by the same 

value. The size of the table is determined by using the performance profile curve fit to 
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determine the total time allocation required to achieve maximum accuracy. This total 

time allocation is then divided by the smallest discrete time allocation unit to 

determine the total number of table entries. This methodology works well because the 

complexity of indexing the table is an O(1) operation and this also makes sure that the 

size of the table does not increase beyond what’s needed to keep the run time 

overhead minimal.   We also tried using as the time granularity the smaller of the two 

values of the cost of a sensor update and the cost of inference iteration. However, the 

corresponding benefits were not significant; hence we stuck to our original, more 

efficient design parameter.  

Another design decision that needs to be made is regarding the decision point 

for the run time control to determine the optimal allocation of remaining time before a 

deadline to different tasks. This decision point in the context of our reference scenario 

is when a ‘MIX’ task is completed every time step. At that point of time, the run time 

component determines the time remaining before the deadline, accesses the table 

mentioned above to determine allocation of time to the ‘OBSERVATION UPDATE’ 

and ‘INFERENCE’ tasks, and by using the cost factors for each task, determines the 

number of sensor updates and inference iterations to be performed. This design 

decision is made based on the program structure of our application. 

The other factor that needs to be taken care of is determination of a “safety 

margin” while making a decision regarding the composition of a set of tasks in the 

time remaining before a deadline. In our case, for all the datasets the safety margin is 

equal to the sum of the average execution time of inference iteration and the average 

execution time of a sensor update pertaining to that dataset. This has been observed to 
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suffice in all our experiments to avoid deadline misses due to uncertainty in 

measurements. We also measured the average time spent in the run time component 

across various time steps, but the time so measured was miniscule compared to the 

sum of the average execution times of sensor update and inference iteration. Hence 

the run time overhead factor was not taken into account while determining the safety 

margin. However there has not been any detailed statistical analysis done to 

determine this margin. In the literature survey we carried out, we did not come across 

any methodological way of determining safety margins for systems (most of the 

methods we came across were ad-hoc and very domain specific [57]). Figure 33 

illustrates the operations performed by the run time control each time step as soon as 

the ‘MIX’ task completes.  

 

                    Model from PP    

                    Cost of an inference iteration 

                        

                   Cost of a sensor update 

 

 

 

                                     Tint 

     

 

               Optimal composition of 

               Observation Update and Inference task 

Figure 33 Basic operations performed by the run time control after the completion of the MIX 

task  each time step interval 

       Run time control: 
1. Calculate remaining time 

till deadline 

2. Access PP Model table to 

get optimal time 

allocation values for 

inference and observation 

update tasks 

3. Calculate optimal number 

of sensor updates and 

inference iterations. 

4. Schedule Observation 

Update and Inference 

tasks 

Mix        Obs         Inference     
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6.3 Conventional Dynamic Earliest Deadline First (EDF) policy 

 The Earliest Deadline First (EDF) scheduling policy dynamically assigns 

priorities to tasks as they arrive based on their absolute deadline values. We perform 

an execution trace based analysis of a non preemptive version of the Earliest Deadline 

First scheme as applied to the tasks in our real time scenario. 

 The EDF formulation for our scenario is done as follows: All three tasks 

arrive every time step ; the deadline of MIX and OBSERVATION UPDATE tasks is 

equal to the time step interval but the deadline of the INFERENCE task is equal to the 

average case execution time of (MIX+UPDATE+INFERENCE). By having a 

separate deadline for INFERENCE, we can ensure that an UPDATE task that 

completes  beyond the time step interval deadline(becomes tardy) does not prevent an 

INFERENCE from being performed as long as the UPDATE completes before the 

deadline for the INFERENCE task for the corresponding time step. This formulation 

ensures better system solution quality rather than formulating the problem with all 

three tasks having the same deadline. All tasks are either run to completion (we allow 

tasks to be tardy) or  if their deadlines have been crossed before they are provided 

CPU execution time, the tasks are dropped. 

 Let ‘tint’ be the time step interval size/deadline for OBSERVATION 

UPDATE and MIX task and let ‘infdeadline’ be the periodic deadline for 

INFERENCE. Table 3 shows the task characteristics assumed in our EDF 

formulation. 
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Tasks Arrival Period Deadline 

        

MIX T1,t1+tint,t1+2*tint,t1+3*tint,…. Tint t1+tint,t1+2*tint,t1+3*tint,…. 

UPDATE T1,t1+tint,t1+2*tint,t1+3*tint,…. Tint t1+tint,t1+2*tint,t1+3*tint,…. 

INFERENCE T1,t1+tint,t1+2*tint,t1+3*tint,…. Tint t1+infdeadline,t1+2*infdeadline,t1+3*infdeadline,….
 
 
Table 3: This table shows the tasks characteristics for the EDF formulation 

 

 

 For each dataset, we obtain a trace of the execution times for the different 

tasks in the different time steps. Based on this execution trace, for different values of 

‘tint’, we perform an analysis as to what tasks cannot be executed owing to the tardy 

completion of earlier tasks. Even if a task misses a deadline, we assume that the task 

runs to completion .The set of tasks obtained after excluding the tasks that get 

dropped are then executed in time step order to obtain corresponding accuracy values.  

Figure 34 illustrates an EDF schedule obtained using this methodology when the 

tasks have deadlines and execution times as shown at the top of Figure 34. 

 
Exec 
Times Deadlines   

        

MIX1 0.3 1.5 Meets deadline 

UPDATE1 1.5 1.5 Tardy 

INFERENCE1 1.2 2.4 Meets deadline 

MIX2 0.4 3 Tardy 

UPDATE2 1.3 3 Dropped 

INFERENCE2 1.2 4.8 Dropped 

 

                            1.5                          2.4    3.0 

                           

MIX 1 UPDATE1 INFERENCE1 MIX 2 MIX3 

 

Figure 34. An EDF schedule for representative tasks in two consecutive time steps 
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Chapter 7 
 

7. Experimental Results 
 

 In this chapter, we discuss the experimental results obtained by applying the 

scheduling policies described in Chapter 6 to our reference scenario. We first discuss 

the metrics we use for our evaluations. Thereafter, we explain our experimental set up 

and finally we present the experimental results obtained on various data sets. In 

addition to this, we present the results of the sensitivity study we carried out in order 

to determine the sensitivity of the performance profiles we use to two different input 

data parameters. 

7.1 Evaluation metrics 

In order to quantify the benefits of our scheduling methodology, we use the following 

three metrics (We shall discuss how they are measured in our experimental 

framework in section 7.2): 

� Tracking accuracy measured at each user defined refresh interval  

� CPU utilization 

� Fraction of missed deadlines 

Our aim is to determine how the tracking accuracy of the system, the CPU utilization 

and the fraction of missed deadlines vary as we increase the time/resources provided 

to the application to complete a given amount of work using the scheduling policies 

discussed in Chapter 6. Note that when deadlines are missed, the most recent tracking 

solution and data associations are used. This adversely affects the tracking accuracy. 
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So tracking accuracy is related to missed deadlines in addition to being related to the 

number and type of sensor reports that are processed each time step.  

In the context of our reference scenario and system prototype, we explore the 

impact of different scheduling policies on the three metrics defined above as we 

increase the size of the time step interval without affecting the number and type of 

reports generated in each time interval.   For each data set obtained from the NG test 

bed, we perform a set of experiments by progressively relaxing the ‘tint’ deadline 

constraint across experiments, keeping the amount of work needed to be done each 

‘tint’ interval the same as the original dataset. Varying the time interval size in this 

manner can be considered equivalent to varying the speed of the CPU given the fact 

that since our setup is running on fixed piece of hardware, there is no other simple 

means of emulating variation in CPU speed. By measuring the tracking accuracy and 

missed deadlines as a function of time interval size, we evaluate how aggressive a 

real time constraint our reference CPU can meet across different schedulers. A 

scheduler is better than another if it can meet a tighter real time constraint at an 

equivalent level of functional correctness.  

When we adopt this methodology to evaluate our scheduling policies, keeping 

the user defined refresh interval fixed at an absolute value of wall clock time creates a 

problem. If we keep ‘trefresh’ fixed at an absolute value, as we increase ‘tint’ the 

total amount of work needed to be done by the processor ( in terms of sensor report 

processing) before hitting the ‘trefresh’ deadline decreases since the  ratio of 

‘trefresh’ to ‘tint’ decreases. Hence in order to make a fair comparison, instead of 

making ‘trefresh’ a deadline in terms of absolute time, we consider it to be a deadline 
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in terms of an interval number. Now the system objective changes to maximizing the 

tracking accuracy at the end of every‘t’ intervals instead of ‘trefresh’ units of time. 

This translates to maximizing the tracking accuracy every‘t’ intervals of time by 

meeting each of the ‘tint’ deadlines corresponding to the sensor report arrival rate in 

the best possible way. This is the framework within which we evaluate the three 

scheduling policies discussed in Chapter 6. 

7.2 Experimental set up 

All our experiments have been performed on a 3GHz dual processor Xeon 

machine on a Linux platform. All execution time numbers are single thread 

performance numbers on this machine, so we make use of only one CPU. Table 4 

provides a full description of the hardware set up we use. 

Processor 3GHz Xeon 

L1 cache size 16kB 

L2 cache size 2MB 

Main memory 3GB 

Front Side Bus 800 MHz 

Operating System Red Hat Linux Ent V4.0 

Kernel V2.6 

 

Table 4: Hardware set up 
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 The customized scheduler /run time control component in our framework has 

been developed as a component of the application and hence is a part of the same 

process/address space as the application tasks. Details about the run time control 

component/scheduler have been discussed in Chapter 6            Manages task compositions             

 

                                    Sensor Reports 

                       Every ‘tint’ time units 

 

 

 

Figure 35: Basic framework of the experimental set up 

7.2.1 Data sets used 

 The scheduling policies are evaluated on 6 different data sets generated from 

the Northrop Grumman test bed by performing simulations using different 

configuration files. Another two additional data sets are used for the sensitivity study. 

The 6 data sets used for the scheduling policy evaluations differ in terms of number 

of entities and have the default behaviors as defined in the NG test bed corresponding 

to the entity classes to which they belong. The additional two data sets that we use for 

the sensitivity study differ in terms of the behaviors associated with the entity types. 

All other parameters in the configuration files are kept the same while generating 

these data sets. Figure 37 shows the dataset generation framework. Table 5 shows the 

different parameters pertaining to the datasets. 
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Configuration files specifying scenario 

 parameters like map of region,  simulation window, 

number/type of entities being tracked, number  

and type of platforms and sensors, entity behaviors 

 

Figure 37: Data set generation from the NG test bed 

 

Data set parameters Value 

Number of types of entities 50 

Number of attributes / features per entity 

type 

10 

Number of platforms 55 

Number of sensors / platform 3 

 

Number of entities 1000, 1500, 2000, 3000, 4000, 5000 

Behavior sets Each entity type has an associated behavior 

specified by start time, end time, start 

location, end location and one of several 

routes from start location to end location 

which includes the number of route points 

where the entity stops en route to the 

destination. The commute time and the 

pause time are also specified. We use a set 

of behaviors that are default and another 

synthetically generated set of behaviors for 

our sensitivity study. 

 

Table 5 Parameters pertaining to the data sets 

 
NG test   bed 

simulation 

 

 

Xml dump of  

time stamped 

sensor/truth 

reports  

Converted to 

.txt files 

extracting 

sensor data 

relevant to 

IDA  
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7.2.2 Simulation of real time sensor report delivery to the application 

The real time sensor report delivery to the application is simulated using 

UNIX timers and signals. At initialization, the application reads the input .txt file 

containing the sensor reports and dumps them into a linear array in memory. Initially 

only the set of sensor reports pertaining to the first time step interval is accessible to 

the tasks. Once all other application initializations are completed, just before calling 

the scheduler  to start the scenario simulation, the application sets a timer with an 

interval equal to the time step interval size ‘tint’ pertaining to the experiment. 

Thereafter every ‘tint’ units of time, the application is asynchronously interrupted by 

a SIGALRM signal. The signal handler in the application corresponding to this signal 

updates a global time stamp value each time the SIGALRM signal is caught. This 

update of the timestamp value signifies the arrival of a new set of sensor reports 

corresponding to a new time step that now becomes available to the tasks in the 

application.  Since signals work like software interrupts, immediately after returning 

from the signal handler, the application/task resumes operation at the point where it 

was interrupted.  

 

 

 

                                                                                                                                   

                                                                    

 

  
     Linear array of sensor reports corresponding to the entire NG test bed simulation window dumped in memory at initialization 

 

    Figure 38: Simulation of real time sensor report delivery to application 

ApplicationI
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SensorRep1:Timestep1 

 
SensorRep2:Timestep1 

 
SensorRep1:Timestep2 

 

SensorRep2:Timestep2 

 

SensorRep3:Timestep2 

 

 

Sensor reports initially available to tasks 

On timer interrupt another set corresponding to new time step 

becomes available                        
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In this framework of simulation of real time sensor data delivery to the 

application, we consider the availability of an infinite buffer for the sensor reports. 

However as will become apparent in later discussions, it will suffice to buffer two 

sets of sensor reports at a time, one pertaining to the current time step interval and the 

other pertaining to the previous time step interval. This is to facilitate “tardy” tasks 

corresponding to the previous time step to complete successfully when using our 

dynamic scheduling scheme. In our current set of results, using our dynamic 

scheduling scheme, there are no deadline misses because we use a “safety margin” 

while scheduling tasks to minimize the chances of tasks becoming tardy. Even if tasks 

do become tardy, the likelihood of them crossing more than two time step boundaries 

is nominal using our scheme.  

7.2.3. Counting missed deadlines and measuring CPU idle time  

If the SIGALRM signal interrupts the application when one of the three 

application tasks is running, on return from the signal handler, the current task and 

subsequent tasks pertaining to that time step are run to completion. Once the set of 

tasks is completed, the time stamp associated with the completed task set is compared 

to the most recent timestamp updated by the signal handler. If the timestamps differ, a 

deadline miss is recorded. If the timestamps are the same, the time remaining for the 

timer to expire is obtained from the system and that becomes the CPU idle time for 

that time step. Figure 39 illustrates this methodology. 

CPU utilization is calculated at the end of the simulation as: 

   ‘tint’*num_sim_timesteps - ΣCPU Idle Time  

 

          ‘tint’*num_sim_timesteps 
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                             Timer interrupt indicating                Deadline miss recorded here               No deadline miss/no idle time 

                                                    arrival of new data at tint                  Timer interrupt 

                                                                                                                     Timer interrupt 

                                                                                                                                         Cpu Idle time based on remaining 

                                                                                                                                           time to expiry  

                                                                                                                                                
 

                  Figure 39. Measuring CPU idle time and deadline misses 

7.2.4. Measuring accuracy 

The updated data associations obtained at the end of each inference task are 

dumped into a file at the end of the simulation. Off-line, we compare the data 

associations corresponding to the user defined refresh intervals to the ground truth 

corresponding to that interval. A score is obtained for the number of correct 

associations at each such interval. The scores are summed across all intervals 

pertaining to user refresh intervals and the average accuracy is so obtained. 
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7.3 Experimental results 

7.3.1 Data set naming convention  

We use the data sets mentioned in the Table 6 for the evaluation of our scheduling 

policies. Table 7 shows the additional two data sets used in the sensitivity study 

which we shall discuss in detail in section 7.4 

 

Data set name Number of entities Behavior set 

1000_1 1000 Default 

1500_1 1500 Default 

2000_1 2000 Default 

3000_1 3000 Default 

4000_1 4000 Default 

5000_1 5000 Default 

 

Table 6 Datasets used for the evaluation of our scheduling policies 

 

 

Data set name Number of entities Behavior set 

3000_2 3000 Changes made in default 

behaviors in terms of start 

time, end time, start 

location and end location 

5000_2 5000 Changes made in default 

behaviors in terms of start 

time, end time, start 

location and end location 

 
Table 7 Additional datasets used for sensitivity study 
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7.3.2 Variation in tracking accuracy with different scheduling policies 

In this section we discuss our experimental results that show the impact of the 

different scheduling policies on the system solution quality /tracking accuracy 
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Figure 40 Graphs illustrating the impact of different scheduling policies on the tracking 

accuracy as time for completion of processing of each set of sensor reports i.e. the time 

step interval size (‘tint’) is increased for each dataset. 
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                  The graphs in Figure 40 illustrate the impact of the three scheduling policies 

discussed in Chapter 6 on the tracking accuracy of our application for different 

datasets as we vary the value of ‘tint’, the time step interval size, from a minimum 

value (pertaining to the maximum estimated time for mixing for that dataset)  to  a 

maximum value (pertaining to the maximum estimated time to perform all 3 tasks to 

completion every time step). The x-axis in all these graphs pertains to time step 

interval sizes and the y-axis pertains to tracking accuracy values.  

We observe that the tracking accuracy obtained using our dynamic soft 

scheduling policy is on an average 26% better than the static soft policy and 39 % 

better than our implementation of the conventional Earliest Deadline First policy. The 

static soft policy on an average provides 13% better accuracy values than the 

conventional Earliest Deadline First policy. As evident from the figure, the tracking 

accuracy for all three scheduling techniques level off at higher values of time step 

interval sizes. This is owing to the fact that independent of what scheduling policy we 

use, the time pertaining to those time step intervals is high enough to ensure 

completion of all three application tasks every time step without missing the deadline. 

These points at which the three policies level off are included in the numbers we 

report above. If we do not include these points in our analysis, the difference in 

average tracking accuracies between the three policies is much higher. 

 The Earliest Deadline First policy does not perform well in the context of our 

reference application due to the fact that this policy tries to schedule each of the three 

tasks to completion every time step. This results in unpredictable missed deadlines, 

domino effects, tardy tasks and consequently a huge number of tasks need to be 



 

    102 

  

 

dropped at the admission control level due to the fact that their deadlines get crossed 

even before they are allocated CPU execution time. This dropping of complete tasks 

at the admission controller results in older and hence less accurate data associations 

(lower tracking accuracy) at the user defined refresh intervals. 

 The static soft policy performs better than the Earliest Deadline First because 

of the fact that instead of trying to execute all tasks to completion, this policy makes 

sure that the MIX task always runs to completion every time step but instead of trying 

to execute all soft tasks to completion before the deadline, it intelligently uses a 

predefined optimal composition of the OBSERVATION UPDATE and INFERENCE 

tasks to meet each deadline in the best possible way. However because the optimal 

composition of tasks is determined pre run time and the same composition is used 

every time step, this policy is unable to exploit the variance in the execution of the 

MIX task to get better solution quality.  

The dynamic soft policy not only exploits the soft computing properties of the 

OBSERVATION UPDATE and INFERENCE tasks, but also monitors the execution 

time of the MIX task at run time. By doing so, for each time step, this policy is able to 

determine the optimal composition of INFERENCE and OBSERVATION UPDATE 

tasks at run time to meet the time step interval deadline .This ensures higher tracking 

accuracies at the user defined refresh intervals. The design point pertaining to the 

highest time step interval size in all the graphs is the design point corresponding to a 

conventional real time system design approach. Though the accuracy is maximum for 

this design point, the corresponding CPU utilization is very low as will become 

evident from the results in the next section. 
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 Most importantly, the results for all the data sets illustrate the fact that using 

the dynamic soft scheduler; a much tighter real time constraint can be met than 

possible with conventional real time scheduling schemes for equivalent levels of 

functional correctness. For instance, for a data set 1500_1, the dynamic scheduler is 

able to achieve the same level of functional correctness at a time step interval size of 

2 units (seconds) as opposed to a time step interval size of 4 units (seconds) required 

when scheduling tasks with a conventional scheduler. We conclude that with a 

dynamic soft scheduler, the tightest real time constraint (same as time step interval 

size) that can be met on our reference system and scenario is on an average 1.65 times 

smaller than what can be achieved by a conventional real time scheduling scheme at 

comparable levels of functional correctness.  
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7.3.3 Variation of CPU utilization with different scheduling policies 

 In this section we discuss our experimental results that show the impact of the  

 three scheduling policies on the CPU utilization of the system. 
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Figure 41: Graphs illustrating the effect of the 3 different scheduling policies on the CPU 

utilization of the system 
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Figure 41 shows the graphs that illustrate the impact of the three scheduling 

policies on the percentage CPU utilization of the system. In all the graphs, the x-axis 

pertains to the time step interval size and the y axis pertains to the corresponding 

CPU utilization.  

For all the data sets, we observe that the CPU utilization for the static soft 

scheme is low at the beginning (smaller values of time step interval size), then starts 

increasing and finally decreases and tapers off again. Let us explain this with the 

example of the CPU utilization of the curve corresponding to dataset 2000_1. For this 

dataset, the CPU utilization initially is 68% corresponding to a time step interval size 

of 1 second. Since in the static soft scheme, the time allocated to the MIX task is 

always fixed (pertaining to the maximum estimated execution time for this task), the 

initial CPU idle time and low CPU utilization can be attributed to the variance in the 

actual execution time of the MIX task as compared to the time allocated to it.   

Subsequently as the time step interval size is increased, the CPU idle time 

remains the same till a time step interval size of 2.8seconds. This means that there are 

always sufficient numbers of observation updates and inference iterations to be 

performed in each time step interval. This explains the increase in the CPU utilization 

values for the static policy from a time step interval size of 1second-2.8seconds. 

However as the time step interval size is further increased beyond 2.8 seconds, the 

variance in the number of sensor reports coming in causes the CPU idle time to 

increase further. This essentially means that when the time step interval time is higher 

than 2.8 seconds, there are some time steps where there are not enough sensor 

observation updates and inference iterations to keep the CPU busy for the allocated 
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time. This is the cause of the subsequent decrease in CPU utilization of the static soft 

scheme.  

For the same dataset, the dynamic soft scheme on the other hand starts with 

almost 100% CPU utilization, remains at this level till around the 2.7 second time 

step interval size and subsequently the utilization starts going down owing to the fact 

that for higher allocations of time, there are not always enough sensor observation 

updates and inference iterations to be performed in the allocated time. The dynamic 

soft policy essentially utilizes resources much more efficiently than the static policy 

and ensures that the system objective /solution value is maximized given a set of 

resources/time. 

 The other interesting fact in these graphs is that the CPU utilization 

pertaining to the EDF policy for all the datasets is also very high. However, the 

corresponding accuracy values for the EDF policy are not encouraging. This can be 

attributed to the fact that since EDF tries to schedule all tasks to completion, for a 

major part of time , the CPU is executing tasks that are tardy i.e. tasks that do not add 

much value to the  final system solution by causing the unpredictable  dropping of 

later tasks . Tardy tasks/dropped tasks and domino effects caused by EDF result in 

lower accuracies at the user defined refresh intervals. Thus with regards to handling 

the dynamics of the system, the important difference between the EDF policy and the 

dynamic soft policy is that the dynamic soft policy composes and schedules tasks 

“intelligently” by exploiting the soft computing properties of tasks to meet deadlines 

and hence maximizes the system utility while EDF does not. The design point 
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pertaining to the highest time step interval size for each experiment is the design point 

corresponding to a conventional real time system design approach. 

7.3.4 Variation in missed deadlines with different scheduling policies 
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Figure 42: These graphs illustrate how the fraction of missed deadlines for each of the tasks 

varies across the scheduling policies 
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Figure 42 illustrates how the fraction of missed deadlines varies across the 

scheduling policies. In the figures, the x-axis pertains to the size of the time step 

interval and the y-axis pertains to the fraction of missed deadlines.  

As evident from the graphs, for both “static soft” and “dynamic soft” policies, 

the number of missed deadlines is zero. This is because in both the static and dynamic 

policies, the decision about the composition of soft tasks is taken based on the 

remaining time to reach a deadline. Each time step interval is big enough to 

accommodate the worst case execution time for the “MIX” task, and the remaining 

time is allocated to a composition of the soft “OBSERVATION UPDATE” and 

“INFERENCE” tasks taking into account a safety margin so that the deadline is not 

missed.  

In EDF however, the decision to schedule a task is solely made based on its 

absolute deadline and the remaining time to meet the deadline is not taken into 

account for scheduling tasks. Moreover each task runs to completion, even if it is 

tardy. As a result, the three tasks pertaining to the three sub-kernels “MIX”, 

“OBSERVATION_UPDATE” and “INFERENCE” miss deadlines unpredictably. 

Though the fraction of missed deadlines goes down for each of the tasks as we 

increase the time step interval, the missed deadlines cause later tasks to get dropped at 

the admission control level and hence tracking accuracy is adversely affected because 

the tardy and dropped tasks cause older data associations to be provided to the human 

operator at each refresh interval.  
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7.4 Sensitivity study for performance profiles 

So far, in all our discussions, we have derived and used performance profiles 

pertaining to a specific data set by using average case numbers for the tracking 

accuracy and execution time across a large number (500) of simulation time steps. 

Subsequently, these performance profiles have been used for dynamic scheduling of 

tasks pertaining to the data set to meet various real time constraints. As evident from 

the results discussed in the previous section, the benefits are considerable. However it 

is important to explore the sensitivity of performance profiles to input data for a 

couple of reasons.  Firstly we need to identify if the performance profiles we obtain 

based on average case accuracy and execution time numbers are representative for the 

entire dataset across all time steps or do we need per time step performance profiles 

to get more benefits from using the dynamic scheduler. Secondly, a sensitivity study 

also indicates if online learning of performance profiles is essential as opposed to 

using performance profiles that are determined off-line on a representative data set. 

In this section, we discuss the experiments performed by us to understand the 

sensitivity of the performance profiles of the soft tasks in our reference 

implementation to various data set parameters. We study the sensitivity of 

performance profiles to input data in two phases: First we explore how the 

performance profiles for a single data set varies across the time step intervals. 

Secondly, we study how performance profiles vary across data sets as we change the 

number of entities and the behaviors associated with the entities. The effects of 
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varying the number of entities and behaviors associated with them on the 

computations performed by IDA have been discussed in section 4.2.3 

7.4.1 Use of dynamic performance profiles across time steps for a single 

data set  

The aim of this experiment is to determine how per time step dynamic 

performance profiles vary from performance profiles obtained by considering average 

case execution time and accuracy values across time steps. For two of the data sets, 

we obtain per time step performance profiles for the first 100 time steps and then 

derive models from them as per the methodology outlined in Chapter 5.  We observe 

that the variance in the dynamic per time step models and the model derived from the 

performance profile pertaining to average case numbers is not significant.  We use 

these per step models as input to the run time control and compare the corresponding 

accuracy results with the results obtained using performance profiles pertaining to 

average case numbers. We find that for smaller values of time step interval size, there 

is around 5-6% gain in accuracy, but as we increase the time step interval size further, 

we observe diminishing returns in accuracy improvement. Figure 43 illustrates these 

results for two of the data sets: 3000_1 and 4000_1. 
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Figure 43. These figures show how tracking accuracy is affected when we use per time step 

performance profiles in place of performance profiles based on average case numbers. 

  We can tentatively conclude from the   results that the performance profile 

derived by considering average accuracy and execution time numbers for various 

compositions of sensor updates and inference is a reasonable representative 

performance profile at least for this application. 
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7.4.2 Sensitivity to different number of entities 

 In this experiment, we apply performance profiles obtained for a data set with 

a specific number of entities on other datasets with smaller number of entities. The 

range of values in a model pertaining to a data set with smaller number of entities is a 

subset of the range in models pertaining to data sets with larger number of entities. 

Hence  it is  feasible to apply a performance profile pertaining to a dataset with larger 

number of entities to a dataset having smaller number of entities but not vice versa. 

 

Figure 44: Performance profile for dataset 5000_1                 
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Figure 45: Performance profile for dataset 4000_1 

 

 

 

Figure 46: Performance profile for dataset 3000_1                
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Figure 47. This figure shows the fraction of 

 remaining time that    gets allocated to the 

 Observation Update task  when       

the numbers   are derived from the  

models pertaining to   datasets 3000_1,  

4000_1   and 5000_1                                                                                                                                                                                              

                                                                                                      

Figures 44, 45 and 46 are the graphical representations of the performance 

profiles pertaining to datasets 5000_1, 4000_1 and 3000_1 respectively. Models for 

optimal composition of tasks are derived from these performance profiles in the range 

of time allocation units pertaining to the 3000_1 dataset. 

Figures 47 and 48 show how the optimal compositions for Observation 

Update and Inference tasks vary for a given total time allocation when the models are 

derived from performance profiles pertaining to datasets 5000_1, 4000_1 and 3000_1 

respectively. 

We then perform experiments to study the effect on tracking accuracy for the 

3000_1 dataset where the run time control uses the performance profile pertaining to 

the three different datasets mentioned above. Figure 48 illustrates the results so 

Figure 48. This figure shows the fraction of remaining time                                                                                        

that gets allocated to the Inference task  when the numbers  

are derived from the models pertaining to datasets 

3000_1,4000_1  and 5000_1  
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obtained. We perform a similar set of experiments on the data set 1500_1  using 

performance profiles pertaining to datasets 1500_1, 2000_1,3000_1 and 4000_1.  
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Figure 49. This figure illustrates the effect of tracking accuracy when the composition of tasks is 

based on performance profile models pertaining to another data set with higher number of 

entities. The legend entry 3000_1_PP_3000 signifies that the performance profile for the 3000_1 

dataset  is applied to the same dataset. 3000_1_PP_4000 signifies that the performance profile for 

the 4000_1 data set is applied to the 3000_1 dataset and so on. 

In both the cases, we make the following observations. There is a significant 

difference between the models obtained for datasets having different number of 

entities. This variance becomes more significant as the difference between the 

number of entities grows i.e. the difference between models obtained for datasets with 

3000 and 5000 entities is higher than that between 3000 and 4000 entities. The 
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difference between tracking accuracies obtained on the dataset 3000_1 by using the 

performance profiles for 4000_1 and 5000_1 respectively is approximately 7% and 

12% respectively. Similarly the difference between tracking accuracies obtained on 

the dataset 1500_1 by using performance profiles for 2000_1, 3000_1 and 4000_1 is 

on an average is 4.5 %, 10% and 13% respectively. 

The conclusions we draw from this experiment is that the performance 

profiles for our reference implementation are sensitive to the number of  entities in a 

data set .This leads to a potential need to learn these performance profiles on line. 

Instead of having to incur the run time cost of online learning, another approach to 

handle this sensitivity would be to have a library of “context specific” performance 

profiles pertaining to different number of entities (the context being the number of 

entities in the case of our system prototype) and then using these performance profiles 

to predict the allocation of resources for smaller number of entities (context specific 

performance profiles are a group of performance profiles derived as a function of 

some critical input data parameter to which the performance profile is found to be 

sensitive). This method might suffice and eliminate the need for online learning of 

performance profiles provided we have enough “context specific” performance 

profiles to circumvent the degradation in solution quality which we observe in our 

results. This is essentially a design decision that needs to be addressed .The choice 

between maintaining a library of “context specific” performance profiles and online 

learning of performance profiles has to be based on  the trade-offs between the 

cost/benefits of learning and  use “context specific” performance profiles. 
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7.4.3 Sensitivity to entity behaviors 

In this section, we discuss the sensitivity of performance profiles to the 

behaviors associated with entity types in a dataset. We generate two new datasets 

(3000_2 and 5000_2) with a new set of behaviors for the various entity types. The 

behaviors associated with the entity types differ from the baseline behaviors in terms 

of start and end times and start and end positions on the scenario map (for more 

details please refer to Section 4.2). 

Figure 50 shows the optimal allocation of time to Inference and Observation 

Update tasks based on models derived from the performance profiles pertaining to 

data sets 3000_1 and 3000_2. These two data sets differ in the set of behaviors 

associated with the different types of entity types. As evident from the figure, there is 

a significant difference between the two models. The effect on tracking accuracy of 

applying the performance profile of the dataset 3000_2 to the dataset 3000_1 is 

illustrated in Figure 51 and that of applying the performance profile of the dataset 

5000_2 to the dataset 5000_1 is illustrated in Figure 52. The tracking accuracy 

degrades on an average by 13% across the two data sets when using the performance 

profile pertaining to a dataset with different behaviors.  
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Figure  50 These figures show the fraction of remaining time that  get allocated to the 

Observation and Inference tasks  when the numbers  are derived from the models pertaining to 

datasets 3000_1 and 3000_2 datasets 
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Figure 51. This figure illustrates the impact on tracking accuracy when applying the 

performance profile for a data set with a specific set of behaviors to another with a different  set 

of behaviors. The legend entry 3000_1_PP_3000_1 signifies that the performance profile for the 

3000_1 dataset  is applied to the same dataset. 3000_1_PP_3000_2 signifies that the performance 

profile for the 3000_2 data set is applied to the 3000_1. 
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Figure 52. This figure illustrates the impact on tracking accuracy when applying the 

performance profile for a data set with a specific set of behaviors to another with a different set 

of behaviors. The legend entry 5000_1_PP_5000_1 signifies that the performance profile for the 

5000_1 dataset  is applied to the same dataset. 5000_1_PP_3000_2 signifies that the performance 

profile for the 5000_2 data set is applied to the 5000_1. 

Though these are preliminary results, we tentatively conclude that the 

performance profiles are sensitive to the behavior parameters of the entities in a data 

set.  

Sensitivity of performance profiles to different input data parameters opens up 

other important questions pertaining to research in the area of  soft computing and it’s 

applications to  real time system design. One important issue is the online learning of 

performance profiles and the analysis of the cost-benefit trade-off of on line learning. 

Whenever we have a system in which performance profiles are sensitive to input data 

parameters, the first question that needs to be answered is whether maintaining 

“context specific” performance profiles (for critical input data parameter values) will 

suffice to meet the system objective. If not, one needs to look at ways to learn the 

performance profiles online. One of the main issues in on line learning is to ensure 

recognizability of the soft kernels, a desirable property of soft computations that we 

have not addressed in this thesis. As defined in Chapter 5, “recognizability” of a soft 

computation pertains to the ability of determining the impact of the computations on 

the system solution at run time and hence facilitates the learning of performance 

profiles online.  Determination and evaluation of the degree of recognizability of the 

soft kernels in our system prototype is a part our planned future research in this area. 
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Chapter 8 

8. Conclusion and Future Work 
 

In this thesis, we address the design issues involved in exploiting “soft 

computing” properties of kernels to improve real time performance of systems. We 

build a system prototype of a real time scenario and application (real time sensor 

fusion and situational assessment) described in detail in Chapter 4. The development 

of this system prototype involved the porting of the MATLAB code of the 

Information Data Association algorithm to C, integrating and applying the algorithm 

to a cognitive test bed (simulates a surveillance and situational assessment scenario) 

provided by Northrop Grumman and developing a preliminary framework for 

investigating different real time scheduling policies. In the context of this system 

prototype and reference scenario, we demonstrate the benefits that soft computations 

provide to optimize real time system performance by enabling the meeting of system 

goals and deadlines with sufficient system solution quality without having to design 

the system to support worst case program execution. There are a number of 

conclusions that we draw from our work. 

The first conclusion that we make is that identifying soft computations in 

applications and quantifying the gain in solution quality of the application and system 

as a function of time spent in soft computations (using individual and composite 

performance profiles) is an important first step to analyzing the opportunities that 

these computations provide to meet system goals with sufficient solution quality at a 

deadline. 
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 Secondly, we propose a methodology of using models derived from 

composite performance profiles pertaining to two or more “soft computing” kernels 

to determine optimal allocation of resources/ time  to these kernels at run time in 

order to be able to meet deadlines with sufficient system solution quality. We 

experimentally demonstrate that the use of these models by a dynamic scheduler 

provide on an average 39% improvement in system solution quality without missing 

any deadlines as compared to solution qualities obtained by using conventional real 

time scheduling techniques when designing the system for supporting less than worst 

case program execution. This improvement in solution quality is achievable while 

keeping the CPU highly utilized. We observed that with our dynamic scheduler, the 

tightest real time constraint that can be met on our reference CPU (3GHz Xeon) is on 

an average 1.65 times smaller than what can be achieved by a conventional real time 

scheduling scheme at comparable levels of functional correctness. Though the 

numbers by themselves cannot be considered representative of all real time systems 

and scenarios, we conclude that our scheme can provide significant benefits and 

facilitate real time system design at less aggressive design points than what is 

achievable through conventional real time scheduling and design techniques. 

 Thirdly, through a series of experiments, we identify the sensitivity of 

performance profiles to different input data parameters in the case of our reference 

real time scenario implementation. We conclude that in the context of our system 

prototype, assuming no constraints on input parameters, having a library of “context 

specific” or adaptive performance profiles and online learning of performance 

profiles has the potential of providing more performance benefits than achievable by 
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our scheme, which uses a single performance profile determined off-line (prior to 

application execution), to make run time decisions about task compositions. 

However, using our scheme the improvements we have claimed earlier are achievable 

assuming some constraints in the problem formulation with reference to different 

input data parameters. 

In a broader context, our work is a very preliminary step towards the 

realization of a new methodology for designing systems pertaining to certain real time 

application domains. The experimental results and analysis done as a part of this 

thesis, though preliminary and specific to our reference real time system scenario and 

prototype, point towards a possible new paradigm of real time systems design. The 

classical approach to the design of real time systems is to design a system with 

sufficient resources to meet worst case program execution given an application and a 

set of timing constraints. What our results demonstrate is that it might be possible to 

design a real time system to support less than worst case scenarios and still achieve 

the system goals predictably by exploiting soft computing properties of kernels using 

models derived from their composite performance profiles to dynamically schedule 

tasks at run time. 

As a part of our future work in this area, we plan to address the design issues 

pertaining to the online learning of performance profiles. In addition to this, we plan 

to analyze the applicability of our methodology to other real time scenarios with more 

“soft computing” kernels. By doing so, we hope to be able to determine the feasibility 

of using our approach in the context of the design of real time systems in general. 
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