

ABSTRACT

Title of Document: STUDY OF THE IMPACT OF HARDWARE

FAILURES ON SOFTWARE RELIABILITY

 Bing Huang, Doctor of Philosophy, 2006

Directed By: Professor Joseph B. Bernstein

Professor Carol S. Smidts
Reliability Engineering

Software plays an increasingly important role in modern safety-critical systems.

Reliable software becomes desirable for all stakeholders. Typical software related

failures include software internal failures, input failures, output failures, support

failures and multiple interaction failures. This dissertation provides a methodology to

study the impact of hardware support failures on software reliability.

The hardware failures we are focusing on in this study are semiconductor device

intrinsic failures that are directly related to software execution during device

operation. The software execution on hardware devices, in essence, is a series of 0

and 1 signal alternations for the inputs of hardware components. Such signal

alternations lead to voltage changes and current flows in the microelectronic

hardware device, which serve as electrical stresses on the device and may lead to

physical failures. The failure mechanisms include Hot Carrier Injection (HCI),

Electromigration (EM), and Time Dependent Dielectric Breakdown (TDDB). During

device operation such hardware failures could propagate to circuit level in the form of

signal delays, changes of circuit functionality, and signals stuck at a logic value (0 or

1), which could further propagate into the software layer and affect the reliability of

the software.

The proposed methodology is divided into three parts: (i) analysis of the

manifestations of permanent failures on circuit elements (logic gates, flip-flops, etc.),

(ii) development of reliability models for the circuit elements as functions of the

software execution, and (iii) calculation of failure probability distributions of the

hardware circuit elements under the software execution.

The methodology is applied to a comprehensive case study, targeting all the

CPU registers and ALU logic gates of a computer system based on the Z80

microprocessor. About 120 different types of failure manifestations are observed, and

more than 250 reliability models for the different types of failure manifestations and

circuit elements are developed. Such models allow us to calculate the failure

probability distributions of the CPU registers and ALU gates of the Z80 computer

system under the software execution. We also extend the methodology and the case

study to the consideration of transient failures, also known as Single Event Upsets

(SEUs).

STUDY OF THE IMPACT OF HARDWARE FAILURES ON
SOFTWARE RELIABILITY

By

Bing Huang

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:
Professor Joseph B. Bernstein, Co-Chair/Advisor
Professor Carol S. Smidts, Co-Chair/Advisor
Professor Mohammad Modarres
Professor David L. Akin
Professor Patrick F. McCluskey

© Copyright by
Bing Huang

2006

 ii

Dedication

This dissertation is dedicated to my beautiful wife Hui. Her endless support

facilitated my work so much during the past six years. Especially in the final stage of

my PhD study, while taking care of our newborn son, she made great efforts to make

my research as smooth as possible.

I would also like to thank our son Raine, who entered the world while I worked

on this dissertation. His smile makes our life so much nicer.

 iii

Acknowledgements

I am grateful for the assistance of so many people in producing this work.

First of all, I would like to thank Dr. Bernstein and Dr. Smidts for their support

and guidance during my graduate studies. Their knowledge and wisdom guided me to

establish the framework of this dissertation work. Their patience with me when I was

struggling with some technical problems gave me great relief. They also taught me a

lot of things about everyday life during the past several years.

I would like to thank Dr. Manuel Rodriguez for his inspiring discussions, which

led to some important mathematical models in this work. He also worked with me on

many details of this dissertation.

I would also like to thank Dr. Ming Li and Dr. Xiaojun Li for their help during

the early stages of this work, and their insightful comments, which were invaluable

for the completion of this dissertation.

Furthermore, I would like to thank other talented researchers in our group, which

include Jin Qin, Xiaohu Zhang, Hu Huang, Yuan Wei, and Dongfeng Zhu, for their

help and support to this work.

Finally, I would like to thank Dr. Mohammad Modarres, Dr. David Akin, and Dr.

Patrick McCluskey for serving on my dissertation committee.

 iv

Table of Contents

Dedication ... ii

Acknowledgements.. iii

List of Tables .. vii

List of Figures .. viii

Chapter 1 Introduction... 1

1.1 Statement of Problem.. 1

1.2 Contents of the Dissertation.. 15

1.3 Summary of Contributions.. 17

Chapter 2 Hardware Failures... 19

2.1 Permanent Physical Failures ... 19

2.1.1 Hot Carrier Injection Failure Mechanism... 21

2.1.2 Electromigration Failure Mechanism ... 23

2.1.3 Time Dependent Dielectric Breakdown Failure Mechanism.................. 24

2.2 Impact on Higher Hardware Levels.. 25

Chapter 3 Methodology for the Analysis of Permanent Failure Manifestations..... 28

3.1 Analysis of Failure Manifestations ... 30

3.1.1 Calculation of Failure Rates and Characterization of Stress Patterns..... 30

3.1.2 Identification of Failure Manifestations.. 39

3.2 Development of Reliability Models.. 49

3.3 Calculation of Failure Probabilities .. 61

 v

3.3.1 Calculation of the Hardware Usage Profile .. 61

3.3.2 Calculation of the Hardware Failure Probability Distributions 64

Chapter 4 Calculation of Failure Probabilities .. 67

4.1 System Description ... 67

4.2 Analysis of Failure Manifestations ... 70

4.2.1 Analysis of the CPU Register Bits.. 70

4.2.2 Analysis of Fault Models for Combinational Logic Elements 75

4.3 Lifetime Model Parameters Calculation ... 80

4.3.1 TDDB Lifetime Model Prefactor.. 82

4.3.2 HCI Lifetime Model Prefactor.. 83

4.3.3 EM Lifetime Model Prefactor... 84

4.4 Usage and Failure Probability Distribution Profiles................................... 85

Chapter 5 Transient Failures and Models.. 101

5.1 Transient Failures.. 101

5.1.1 Transient Failure Introduction .. 101

5.1.2 Impact on Higher Hardware Levels.. 102

5.2 Failure Rate Calculation ... 103

5.2.1 Heavy Ions Induced SEUs .. 103

5.2.2 Protons Induced SEUs .. 107

5.2.3 Neutrons Induced SEUs.. 108

5.3 Extension of Permanent Failure Probability Results 111

Chapter 6 Summary and Future Research ... 116

6.1 Summary ... 116

 vi

6.2 Conclusions... 118

6.3 Future Work .. 120

Appendix A Failure Manifestations for Logic Gates .. 121

Glossary .. 128

Bibliography ... 130

 vii

List of Tables

Table 3.1 Notation of the failure manifestations .. 47

Table 3.2 Failure rate models of the AND2_1 gate per failure manifestation............ 59

Table 4.1 Reliability models for the flip-flop circuit element of the Z80 CPU.......... 74

Table 4.2 Different type of logic gates used in the ALU of the Z80 CPU 75

Table 4.3 Reliability models for logic gates used in the ALU.................................... 77

Table 4.4 Index of user programmable registers .. 86

Table 5.1 Parameters for the calculation of SEU rates for the HEO orbit profile 112

Table A.1 Z80 ALU logic gates – Results of SPICE simulations for HCI stress..... 121

Table A.2 Z80 ALU logic gates – Results of SPICE simulations for EM stress...... 122

Table A.3 Z80 ALU logic gates – Results of SPICE simulations for TDDB stress. 125

 viii

List of Figures

Figure 2.1 Different abstraction levels of circuit design... 25

Figure 2.2 Example of a RTL Design... 27

Figure 3.1 Methodology for the analysis of permanent failure manifestations 30

Figure 3.2 Circuit Layout of an AND2_1 logic gate .. 33

Figure 3.3 Schematic of the AND2_1 logic gate.. 33

Figure 3.4 Asynchronous input signals... 35

Figure 3.5 Asynchronous and synchronous (clock) input signals 35

Figure 3.6 Stress patterns examples for HCI, EM and TDDB in the AND2_1 gate .. 37

Figure 3.7 Relative HCI failure rates of transistors .. 40

Figure 3.8 Relative EM failure rates of interconnections ... 40

Figure 3.9 Percentage of time a transistor suffers from TDDB stress 41

Figure 3.10 Failure equivalent circuit model for HCI mechanism 42

Figure 3.11 Failure equivalent circuit model for EM mechanism.............................. 42

Figure 3.12 Failure equivalent circuit model for TDDB mechanism 43

Figure 3.13 AND2_1 layout with transistor M5 replaced by the TDDB failure

equivalent circuit model.. 45

Figure 3.14 Failure manifestations of the AND2_1 logic gate due to HCI, EM and

TDDB stresses in its circuit segments .. 46

Figure 3.15 Hardware serial model during software execution.................................. 53

Figure 3.16 Examples of the hardware serial model under a software execution using

the Standardized Inputs... 53

 ix

Figure 3.17 Stress patterns using the Standardized Inputs ... 55

Figure 3.18 Description of the VHDL simulation step of the methodology 62

Figure 3.19 Software-specific hardware usage profile – an example......................... 64

Figure 3.20 Combined software-specific hardware failure probability profile – an

example ... 66

Figure 4.1 The Example Z80 Computer System .. 67

Figure 4.2 Modified Z80 CPU script segment.. 70

Figure 4.3 Circuit layout for D flip-flop ... 70

Figure 4.4 Circuit schematic for D flip-flop ... 71

Figure 4.5 Transient response under normal operation .. 71

Figure 4.6 Z80 registers bits – Results of SPICE simulations.................................... 73

Figure 4.7 Standardized input signal stimuli for 3-inputs gates 76

Figure 4.8 Standardized input signal stimuli for 4-inputs gates 76

Figure 4.9 Usage profile for all the CPU registers for the division software program86

Figure 4.10 Failure probability distributions for all the CPU registers for the division

software program .. 88

Figure 4.11 Combined failure probability distribution for all the registers for the

division software program .. 90

Figure 4.12 ALU usage map for the division software program 92

Figure 4.13 ALU map of probability distributions of different failure manifestations

for the division program.. 93

Figure 4.14 ALU map of combined failure probability distribution for the division

program... 96

 x

Figure 4.15 ALU usage map for the bubble sorting program..................................... 98

Figure 4.16 ALU map of combined failure probability distribution for the bubble

sorting program... 98

Figure 5.1 Heavy ions SEU rate calculation... 104

Figure 5.2 Analytical modeling for heavy ions induced failure rate 107

Figure 5.3 Protons SEU rate calculation... 107

Figure 5.4 Analytical modeling for protons induced failure rate.............................. 108

Figure 5.5 Atmospheric neutron SEU rate calculation ... 109

Figure 5.6 Spacecraft nuclear reactor neutron SEU rate calculation 109

Figure 5.7 Analytical modeling for atmospheric neutrons induced failure rate 110

Figure 5.8 Analytical modeling for spacecraft nuclear reactor neutrons induced failure

rate... 110

Figure 5.9 Heavy ions and protons induced SEU rates along the HEO orbit as a

function of time... 113

Figure 5.10 Total SEU rates along the HEO orbit as a function of time 113

Figure 5.11 Transient and permanent failure probabilities along the orbit as a function

of time ... 114

Figure 5.12 Transient and permanent failure probabilities along the orbit as a function

of time, with radiation hardening techniques applied....................................... 115

 1

Chapter 1 Introduction

1.1 Statement of Problem

As human technologies advance, software plays an increasingly important role

in almost all systems (military, communication, transportation, space, energy, etc),

and the development of software and systems that are safe and reliable becomes

crucial. Ignoring software risks can lead to catastrophic consequences. About 430

people died in eight fatal accidents (1985-2003) where software was the root cause. A

study by the FAA revealed that 40% of the problems in large aircrafts (1984-1994)

were software related. In NASA, software has become a major risk factor in space

missions and projects. Software failures account for a large percentage of problem

reports for NASA projects. For one spacecraft, 33.9% of the total number of failures

found during ground testing was software related. This rate was higher than any other

category. Other missions, such as Magellan launched in 1989 and Voyager in 1977,

experienced software failures as 19–20% of all failures. Other examples of well-

known spacecraft accidents provoked by software malfunction include: the explosion

of the Ariane 5 launcher on its maiden flight in 1996, the loss of the Mars Climate

Orbiter in 1999, the destruction of the Mars Polar Lander in 2000, the placing of a

Milstar satellite in an incorrect and unusable orbit in 1999, and the loss of contact

with the Solar Heliospheric Observatory (SOHO) spacecraft in 1998 [1]. The use of

reliability methods and techniques can help significantly reduce the risk of these

kinds of disasters.

 2

Probabilistic Risk Assessment (PRA) is today the most significant and extended

technique from the reliability domain. It aims at assessing, predicting and reducing

the risk of failures in large technological systems such as nuclear power plants,

chemical plants and aerospace systems. In NASA, PRA is required for all manned

missions as well as for all missions with nuclear payload or nuclear fuel (e.g., such as

the Crew Exploration Vehicle and other Moon–Mars–Beyond missions). However,

current practice in PRA systematically neglects the contribution of software to the

risk of failure of the system. The classical PRA methodology accounts for hardware

and human interventions but does not account for software. In certain domains (such

as nuclear), software has been confined to some extent to non-safety related functions.

There also exists a reticence in the software safety community to use quantitative

estimates of software failures. It stems essentially from the fact that software is still a

new artifact. However, more and more vital functions, which in the past were

controlled by human operators or hardware components, are today implemented and

controlled by software. Thus, traditional PRA techniques are no longer valid and need

to be improved and extended to include software reliability. Ignoring the contribution

of software to system risk can lead to catastrophic consequences, such as the

examples described above.

Recently, important efforts have been undertaken to incorporate software risks

into the PRA technique [2, 3]. The work reported in [3] proposes a taxonomy of

software failures as a first step to integrate software risks into PRA. The software is

seen as an essential component of a system, which interacts with its environment

through input and output interfaces. The software being executed on a computer

 3

platform will take inputs from other subsystems (either software or hardware or

humans) and produce outputs that will be used by either humans, other software or

hardware. According to this view, a distinction is made between failures occurring

within the software component itself and failures occurring due to the interaction

between the software and its environment. This leads to the distinction of several

software-related failure modes: internal failures, input failures, output failures,

support failures and multiple interaction failures. Internal failures are due to the

presence of “bugs” within the software code. Input failures are those out-of-bound

values sent to the software that may drive correct software to provide incorrect

outputs. Output failures are actually the set of out-of-bound software output behaviors

that are neither due to out-of-bound input behavior nor due to internal software

malfunction. These are failures that occur because of inconsistencies between

specifications of the software and its downstream component. Multiple interaction

failures are related to synchronization/communication problems between software

processes and other system processes (software, hardware or human processes) that

execute concurrently. Support failures are those software failures induced by

malfunctions in the hardware support platform that the software resides on. They

include failures due to competition for computing resources (deadlock, lockout) and

computer platform physical failures (CPU failures, memory failures and I/O devices

failures). The research work proposed in this dissertation is one component of the

current work being done to characterize of this latter type of failure, i.e. computer

platform physical failures, also referred to as hardware failures.

 4

That hardware failures may lead to abnormal software behavior has been long

recognized. The very first bug report described a bug-related hardware failure (On

September 9, 1945, when Mark II, the Aiken Relay Calculator was experiencing

problems, an investigation showed that there was a moth trapped between the points

of Relay #70) [4]. More recently Iyer and Velardi [5] discovered that 35 percent of

software failures in MVS systems were determined to be hardware-failure-related.

Fault injection techniques have emerged as the major means to study the hardware

failure phenomenon and its impact on the system [6]. Fault injection techniques, as a

supplement to traditional software testing, are ideal for revealing the software and

system’s behaviors under abnormal hardware conditions, which may not be able to be

addressed by their counterparts (such as software testing). Fault injection aims at

assessing the system behavior in the presence of faults [7-9]. A key concern related to

fault injection is the representativeness of the injected faults, i.e., the plausibility of

the fault model with respect to actual faults [10]. In the majority of published works,

the fault location, the fault type, and the time at which the fault is injected are

randomly selected [7, 11]. Such a fault injection profile does not represent the actual

hardware conditions in system operation. Therefore software reliability due to

hardware support failures cannot be credibly assessed.

The impact of hardware failure on the software and on the system has attracted

substantial attention in the field:

Kumar et al. introduced a simulation-based software model for application-

specific dependability analysis of a system [12]. The model represents an application

program by decomposing it into a graph model consisting of a set of nodes, a set of

 5

edges and a mapping of the nodes to memory. The model simulates the execution of

the program while faults are injected into the program’s memory space. The authors

claim that all hardware-related faults can be mapped as memory faults, but do not

prove this formally. In addition, the authors do not clearly explain the types of faults

injected, and how the injection is accomplished.

Todd Delong et al conducted a similar study to estimate the dependability

parameters of computer systems [13]. The system hardware was modeled using a

VHDL script. Stuck-at-0 and stuck-at-1 faults were injected into all the visible

(programmable) processor registers. This work did not cover bit flipping or transient

hardware failures. Nor did it provide the location and frequency distribution of stuck-

at-0 and stuck-at-1 faults.

Amendola et al conducted a study to investigate the fault behavior of a

microprocessor system [14]. They studied the faults located in memory, internal

registers of the processor, and busses. Single bit-flipping faults were introduced into

the VHDL system model of busses, memory, and CPU. This work demonstrated

whether the system could tolerate faults, but could not provide reliability information

due to the lack of fault location and distribution information. Choi et al [15]

conducted a similar study with identical drawbacks.

D. Gil et al performed a fault injection experiment to analyze the “error

syndrome” of a microcomputer system [16]. The system under study was described

using VHDL. His experiment considered different types of faults with different

durations and injected them into different locations of the microcomputer system.

 6

However there was no prior knowledge of fault frequency or the distribution of fault

locations and types.

In these approaches, fault injection is used as an accelerated testing technique to

speed up the occurrence of errors and failures (e.g., likely and unlikely faults are

given the same probability over location and time), and so do not capture the actual

environmental conditions leading to the production of the faults impacting the

software. The set of real faults may not be completely covered by the injected faults.

More important, reliability estimates on software failures related to a particular

operational situation of the system cannot be obtained (e.g., probability that the

software of a spacecraft fails due to faults in the microelectronics devices when it will

be traveling to Mars following a particular trajectory). In order to use the fault

injection technique to calculate reliability estimates of software failures due to

hardware malfunction, it is first necessary to characterize the physical operating

conditions leading to a hardware malfunction from a probabilistic viewpoint. This

problem is related to the development of the so-called software operational profiles.

The operational profile (OP) is a quantitative characterization of the way in

which a system will be used [17]. It associates a set of probabilities to the system

input space, and therefore characterizes the input stimuli of the system in operation.

The determination of the OP can help guide managerial and engineering decisions

throughout the whole software development lifecycle [17]. For instance, the OP can

assist in the allocation of resources and optimization of reviews and code inspections

and act as a guideline for software testing. The OP of a system is also a major

deciding factor in assessing its reliability. The OP is used to measure software

 7

reliability by testing the software in a manner such that the OP represents the

system’s actual use. It is also used to quantify the propagation of defects (or

unreliability) through finite state machine models [2, 3]. However, determining the

OP of a system is a difficult part of software reliability assessment in general [18].

The OP is traditionally built by enumerating field inputs and evaluating their

occurrence frequencies. Musa pioneered a five-step approach to develop the OP [17].

His approach is based on collecting information on customers and users, identifying

the system modes, determining the functional profile and recording the input states

and their associated occurrence probabilities experienced in field operation. Expert

opinion is normally used to estimate the hardware components-related operational

profile due to the lack of field data. Musa’s approach has been widely utilized and

adapted in the literature to generate the operational profile. Some of these

applications are summarized hereafter:

Chruscielski and Tian applied Musa’s approach to a Lockheed Martin Tactical

Aircraft System’s cartridge support system [19]. User surveys which were generated

in the format of a Questionnaire for User Interface Satisfaction, were used instead of

the field data.

Elbaum and Narla refined Musa’s approach by addressing heterogeneous user

groups. They discovered that a single operational profile only “averages” the usage

and “obscures” the real information about the operational probabilities [20]. They

utilized clustering to identify groups of similar customers.

Gittens et al proposed an extended OP model composed of the process profile,

structural profile and data profile. The process profile addresses the processes and

 8

associated frequencies. The structural profile accounts for the system structure, the

configuration or structure of the actual application, while the data profile covers the

inputs to the application from different users [21].

Different values of the environment inputs will have major effects on processing.

So Musa’s [17] recommended approach for identifying the environmental variables is

to have several experienced system design engineers identify them by brainstorming a

list of those variables that might necessitate the program to respond in different ways.

Furthermore, Sandfoss [22] suggests that the estimation of occurrence probabilities

could be based on figures obtained from project documentation, engineering,

judgment and system development experience. According to Gittens [21], a specific

operational profile should include all users and all operating conditions that can affect

the system.

Musa’s approach and other extended approaches all require either field data or

historic usage data. They all use an assumption that field data or historic usage data

cover the entire input domain. This assumption is not always true and their

approaches are not always successful simply because some input data may not be

available, especially for safety critical systems. At least two reasons lead to the

unavailability of the entire input data spectrum. First, the system may not be widely

used (e.g., a reactor control system of a nuclear power plant). Therefore, very little

field and historic usage data can be obtained. Second, the field data does not cover the

entire spectrum of the input domain because some conditions may be extremely rare

(e.g., unexpected inputs such as hardware failures). Further, many inputs may not be

visible (e.g., inputs coming from the hardware platform of the computer system).

 9

None of the related research on OP addresses the problem of characterizing the

abnormal (or unexpected) software inputs delivered by the hardware devices

supporting the software execution. The main contributions of the methodology

proposed in this dissertation with respect to the related work on OP are the following:

 Consideration of the hardware platform. The majority of the related research

on OP focuses on the characterization of environmental system data from a

high-level perspective (e.g., physical data captured by sensors). This means

that the boundaries of the OP are external to the computer system executing

the software. Our work pushes those boundaries into the computer system

itself by considering the contribution of the computer hardware platform to

the OP.

 Characterization of unexpected inputs. Available methods and techniques

for building the OP normally consider functional software inputs. We focus

on nonfunctional inputs based on unexpected (or abnormal) data delivered

by the hardware platform to the software. In other words, our interest is in

hardware failures that may impact the behavior of the software components

of the computer system.

 Use of well-established reliability methods and techniques. Existing

approaches rely on expert opinion, field data or historical usage data to build

the OP. Our methodology is built from well-known and established

reliability methods and techniques from the microelectronics domain.

The proposed methodology thus constitutes a step forward in the OP research

field, in the sense that it contributes to the development of comprehensive OP models

 10

providing precise estimates of the actual system’s operating conditions. Such an OP is

referred to as software-specific hardware failure profile. For a given system with a

computer platform executing a particular application software, the software-specific

hardware failure profile is defined by tuple <p, i, f, t> denoting the probability p that a

hardware device i is affected by failure f at time t. The software-specific hardware

failure profile is thus the basis to extend the use of the fault injection technique to the

reliability prediction of the impact of hardware failures on software. The development

of the software-specific hardware failure profile requires that the mechanisms leading

to hardware failures in a computer platform be carefully considered. To calculate the

different variables of the software-specific hardware failure profile, we have

developed a set of analytical and simulation-based methods that account for the

underlying physics and environmental phenomena leading to the production of

hardware failures in computer platforms during system operation.

The software execution on hardware devices, in essence, is a series of 0 and 1

signal alternations for the inputs of hardware components. Such signal alternations

lead to voltage changes and current flows in the microelectronic hardware device.

The voltage and current act as electrical stresses on the device and may lead to

physical changes, also referred to as degradations. Failure occurs when degradation

reaches the point where the device can no longer perform its intended functions.

Hardware failures created during circuit operation can be categorized into

intrinsic and extrinsic failures. Extrinsic failures are the failures not related to the

device circuitry itself, but failures extrinsic to the chip, such as open wire bonds in

device packaging. Intrinsic failures are caused by intrinsic defects of semiconductor

 11

devices due to limitations of the material properties of the silicon chip or limitations

of the manufacturing process. Examples of manufacturing process defects are ion

contamination and atom gradients caused by mechanical stresses. Such non-lethal

defects can grow into lethal ones when stressed by different failure mechanisms. One

type of failure mechanism stresses the device through environmental conditions (e.g.

temperature and humidity), which are not related to the software execution during

device operation. Typical mechanisms of this type include Temperature Cycling [23,

24] and Corrosion [25, 26], and Stress Migration [27]. The other type of failure

mechanism degrades the circuitry during device operation when the device is put

under dynamic voltage and current stresses due to software execution. The primary

and most studied failure mechanism of this type are Hot Carrier Injection (HCI) [28-

31]; Electromigration (EM) [32-36] and Time Dependent Dielectric Breakdown

(TDDB) [37-42]. This work examines the hardware intrinsic failures caused by the

electronic stresses introduced by the execution of the software during device

operation.

During device operation such failure mechanisms could cause shifting of device

response parameters, such as voltage, capacitance, and resistance, to the point that

they will not meet the designed values. For example, HCI could lead to shifts of

threshold voltage, transconductance, mobility and saturation current of MOSFET

transistors, while EM could increase the resistance of metal interconnects.

The best way to model the failure mechanisms is from the physics-of-failure

point of view. If this can be accomplished, one could have a complete picture of how

a device might fail. However, limited knowledge of these failure mechanisms

 12

currently prevents us from completely modeling the physics-of-failure. Without

detailed knowledge of the device physics, the best option to represent device failures

is through probabilistic statistical models. Such models use observed relationships

between failure times and various input parameters, such as voltage and current, to

generate probabilistic assessments of when failures may occur [43]. Accelerated Life

Testing (ALT) techniques are used to model the relationship between device lifetime

and different electrical stresses [44].

Device failures due to such failure mechanisms will result in changes of circuit

functionality, which will affect the execution of software running on the hardware

platform. To study the impact of the hardware failures on software reliability, we

have to investigate the circuit behaviors under the presence of hardware failures

caused by these failure mechanisms. The connections between device failure

mechanisms and circuit functionality are the failure equivalent circuit models. The

underlying concept of the failure equivalent circuit models is to model device

degradation with some additional lumped circuit elements (transistors, resistors,

dependent current sources, etc.) to capture the behavior of a damaged circuit element

in the circuit operation environment. In the past years, several failure equivalent

circuit models have been developed for different failure mechanisms [45-51]. Most of

these circuit models are based on the SPICE simulation platform, which is the de

facto tool in circuit design.

Li et al adopted a one-dimensional HCI transistor degradation model, developed

by Leblebici [47], and built a two-transistor HCI degradation model. The model is

used to simulate the behavior of some benchmark circuits under the presence of Hot

 13

Carrier Injection [52]. The study showed that circuit delays induced by HCI cannot be

ignored in submicron devices.

Segura et al investigated the circuit functionality of CMOS gates with damaged

gate oxide due to TDDB failure mechanism. The failure equivalent circuit model

consists of a series connection of two transistors and a resistance between the gate

and the common terminal [53].

The above studies focused on only one particular type of failure mechanism.

Most similar works consider different failure mechanisms separately. However, in

order to conduct a system wide reliability estimation, all related failure mechanisms

should be accounted for.

Srinvasan et al developed an architecture-level microprocessor model that is

used to calculate processor lifetime reliability. Multiple failure mechanisms are

included in the model to investigate the hardware lifetime with the consideration of

some environment stresses (thermal cycling and mechanical stresses). The emphasis

of the work is to dynamically provide processor failure rate information under

different software applications and environmental stress conditions [54]. The software

applications are used to simulate hardware device operation. However, the work does

not provide a way to use the hardware reliability information for the evaluation of

software reliability due to hardware failures. The main contributions of the

methodology proposed in this dissertation with respect to the related work on

hardware reliability are the following:

 It systematically calculates the hardware reliability during device operation

as a function of the software execution. The interdependencies between

 14

hardware and software in the creation of hardware failures are thus taken

into account.

 We have considered all those failure mechanisms (HCI, EM, and TDDB)

that are activated as a result of hardware usage induced by software

execution. In other words, it accounts for a comprehensive set of hardware

device intrinsic failure mechanisms that are directly related to software

execution during device operation.

 It not only accounts for the failure probability of the circuit, but also

investigates the probability of all possible failure manifestations (delays,

stuck-at signals, changes of circuit functionalities, etc.) induced by the

different failure mechanisms considered.

 It provides software-specific hardware reliability information, which is the

basis for estimating the software reliability induced by hardware support

failures.

 Most related research focuses on hardware reliability [47, 52, 53], and does

not analyze the impact of hardware failures on software. The study by

Srinvasan [54] considers the software only as a means to simulate the

hardware operation, without systematic consideration of the influence of the

software on hardware failures. Therefore, none of the related work analyzes

the interactions and interdependencies between hardware and software with

respect to reliability. Thus, this work is a bridge between microelectronic

reliability and software reliability.

 15

1.2 Contents of the Dissertation

The contents of the dissertation are described as follows.

Chapter 2 analyzes the different types of permanent failures that impact

semiconductor devices. The analysis is performed at the different hardware design

levels: physical device level, logic level and register transfer level. In particular, we

first study permanent failures at the physical level (e.g., intrinsic and extrinsic failures,

electrical stress failures, etc.). In this dissertation, we focus on the intrinsic failure

induced by HCI, EM, and TDDB failure mechanisms during device operation. Then

the way in which the failures propagate and manifest at higher hardware levels (e.g.,

delay, stuck-at value, different functionality, etc.) is examined.

Chapter 3 describes the methodology proposed for the analysis of the impact of

permanent hardware failures on software reliability. The methodology is divided into

three parts: (i) analysis of the manifestations of permanent failures on circuit elements

(logic gates, flip-flops, etc.), (ii) development of reliability models as functions of the

software execution, and (iii) calculation of failure probability distributions of the

hardware circuit elements under the software execution. The analysis of the failure

manifestation is performed through the use of SPICE simulations and failure

equivalent circuit models. The reliability models take into account existing models for

the DC stress failure rates, and integrate new models for the corresponding duty

factors. These models also consider the way in which software executes through the

hardware circuit elements in a computer system. The calculation of the failure

probability distributions of the circuit elements is performed using Synopsys VCS

MX simulator.

 16

Chapter 4 consists of a comprehensive case study. The methodology is applied to all

the CPU registers and ALU logic gates of a computer system based on the Z80

microprocessor. About 120 different types of failure manifestations have been

observed, and more than 250 reliability models for the different types of failure

manifestation and circuit element developed. Several structures for the reliability

models and different notations for the failure manifestations are proposed in order to

handle the complexity of the reliability models and obtain a practical and reduced set

of models. Such models are used for the calculation of the failure probability

distributions of the CPU registers and ALU gates of the Z80 computer system under

the software execution.

Chapter 5 extends the methodology and the case study to the consideration of

transient failures or SEUs (Single Event Upsets). First, a study of the causes and

manifestations of transient failure in semiconductor devices is provided. Then, we

develop reliability models for transient failures, which integrate into the same

framework a set of well-known analytical models for the failure rate calculation of

Single Event Upsets (SEUs). These take into account SEUs induced by cosmic ray

particles (heavy ions and protons), neutrons present in the atmosphere, as well as

neutrons emitted by nuclear reactors such as the ones that will be used in future

nuclear-owered space missions from NASA. The models use design and technology

parameters of the IC hardware devices, the operational environment characteristics

(radiation particle fluxes) as well as the specifications of the system and mission (e.g.,

spacecraft shielding and orbit). The case study is then extended to the consideration

 17

of transient failures by calculating the failure probability distributions due to SEUs of

the hardware devices of the Z80 based computer system.

Chapter 6 provides the conclusions of the dissertation and proposes future research

directions.

1.3 Summary of Contributions

The main contributions of this dissertation are summarized as follows.

It takes into account the influence of the software execution, the operational

environment and the semiconductor design and technology in the creation and

activation phenomena of hardware failures.

It includes the whole spectrum of hardware failures that can arise during the

system operation, i.e. not only Single Event Upsets (SEUs), but also permanent

semiconductor device failures due to Hot Carrier Injection, Electromigration, and

Oxide Breakdown.

It considers all the possible locations for the hardware failures, i.e. not only

sequential logic circuits (registers, memory cells, etc.) but also combinational logic

circuits (logic gates)

It analyzes the propagation of failures under particular operational conditions

(including the software execution) and precisely determines the form under which

each hardware failure manifests (stuck-at-1, stuck-at-0, bit-flip, change of

functionality, etc.) at circuit level.

It takes into account the usage of the hardware circuit elements due to software

execution during the operational life of the system and provides the failure probability

distributions of the circuit elements. This information can facilitate both software and

 18

hardware reliability engineers to improve the system reliability more efficiently by

focusing on the most failure-prone circuit elements.

It can be used to extend the use of the fault injection technique to the software

reliability prediction under hardware failures and allows for precisely defining

representative fault models that can be used in fault injection techniques and tools. It

also provides the basis to develop testbeds based on software implemented fault

injection (SWIFI) to calculate the final failure probability of the software application.

As far as we know, this is the first time that such an extension has been proposed.

 19

Chapter 2 Hardware Failures

The term “hardware failures” refers to the malfunction of semiconductor devices

(Physical Device Level) and their impact (or propagation) on higher hardware levels,

namely the Logic Gate Level and the Register Transfer Level (RTL). In this work we

also use the term hardware faults as a synonym for hardware failures, since the latter

can also be the origin or cause of further errors and failures at higher layers of the

system (e.g., software layer). Irrespective of the level considered, hardware failures

can be classified according to their duration into permanent (remain indefinitely),

transient (have a limited duration) and intermittent (as transients, but manifest

repeatedly). In this work, we analyze the mechanisms and events leading to

permanent failures at the physical level as well as their impact on the higher hardware

levels. Intermittent failures are not addressed because they are produced by the same

mechanisms as permanent failures (moreover many of them eventually transform into

permanent failures). An analysis of the impact of transient failures on software

reliability will be conducted in Chapter 5.

2.1 Permanent Physical Failures

Permanent failures are irreversible physical defects in semiconductor devices

introduced during manufacturing or system operation. In general, permanent failures

can be divided into intrinsic, extrinsic and electrical stress failures [32].

Intrinsic failures are related to defects of semiconductor devices due to

limitations of material properties of the silicon chip or limitations of the

manufacturing processes. These defects may be small enough so that they are not

 20

lethal (e.g., material impurities), or result in a device being fatally defective (e.g., an

open in metal interconnect). Examples of manufacturing processes related defects

include ion contamination (Surface Inversion) and atom gradients caused by

mechanical stresses (Stress Migration). Semiconductor material properties are

stressed by both the environmental conditions (temperature and humidity) and the

operational usage (voltage and current). These stressors are called wear-out

mechanisms, and may cause non-lethal defects to become lethal. The environmental

wear-out mechanisms include Temperature Cycling (mechanical fatigue of the

devices due to the temperature) and Corrosion (due to humidity). The wear-out

mechanisms related to the operational usage are Hot Carrier Injection (HCI),

Electromigration (EM) and Time Dependent Dielectric Breakdown (TDDB) [55].

Extrinsic failures are identified with the interconnection and packaging of the

silicon chips. Typical failure mechanisms include die fracture, open bond joints, voids

at bonds, etc., which are external to the device circuitry itself.

Electrical stress failures are generally caused by discrete events introduced

during device handling in service. These damaging events include Electrostatic

Discharge (ESD) and Electrical Overstress (EOS).

The focus of this work is on hardware failures that are directly introduced during

the device operation, that is, intrinsic permanent failures due to operational usage

(HCI, EM and TDDB). Whenever software executes on hardware platform, the

hardware device is stressed by these failure mechanisms. The corresponding failures,

in turn, may cause software-execution errors, which means software reliability will be

affected. This work focuses on studying the probability of such hardware failures due

 21

to the execution of software. It also provides necessary information to evaluate

software reliability induced by these hardware failures.

Intrinsic failures caused by environmental stressors can impact how software

executes in a microprocessor. However, they are not induced by the execution of

software. For example, corrosion failures occur when the hardware device are in the

presence of moisture and contaminants. The lifetime of corrosion failures is expressed

as a function of relative humidity and temperature [25, 26]. Stress migration failures

are induced when the device is put under mechanical stresses. The lifetime of stress

migration failures is expressed as a function of mechanical stress load and

temperature [27]. Such environmental stresses are not introduced by software

execution, and they could cause hardware failures even when the device is operating.

They are not the focus of this work. The impact of such failures on software

reliability could be studied in future work.

Similarly, even though extrinsic and electrical stress permanent failures can also

impact the system in operation, they are not introduced directly due to software

execution. Therefore, these failures are not considered in this study.

2.1.1 Hot Carrier Injection Failure Mechanism

Hot Carrier Injection (HCI) refers to the phenomenon by which carriers

(electrons or holes) at the drain end of a MOSFET (Metal-Oxide Semiconductor

Field-Effect Transistor) transistor gain sufficient energy to be injected into the gate

oxide and cause shifts of some MOSFET parameters, such as threshold voltage,

transconductance, mobility and saturation current. This occurs as carriers move along

the channel of a MOSFET (the conductivity path between the source and drain of a

 22

field effect transistor) and experience impact ionization near the drain end of the

device due to a high lateral electric field. Some high-energy electrons and/or holes

produced by the impact ionization are redirected and accelerated to the interface of

the oxide and silicon surface. A few of these “lucky” carriers overcome the surface

energy barrier, inject into the oxide, and generate interface states and oxide charges.

The shifts of threshold voltage and transconductance are proportional to the average

density of “traps” (imperfections in a semiconductor material that can capture a free

electron or hole), which in turn is inversely proportional to the effective channel

length.

Due to the higher mobility and lower energy barrier, hot electrons are much

easier to be injected into the oxide than hot holes, which means that nMOSFET

transistors are more prone to HCI effects than pMOSFET transistors. Therefore,

pMOSFET transistors are seldom a limiting factor in the reliability of a CMOS

technology, and can be usually ignored from reliability estimates [28, 56].

The HCI lifetime of a transistor can be determined by:

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−

T
E

W
I

AMTTF aHCI

nsub

HCI
hci

κ
exp (2.1)

where

HCDA the model prefactor determined from life testing

subI the average substrate current

n a technology related constant

W the transistor channel width

aHCIE apparent activation energy for HCI

 23

κ Boltzmann’s constant

T the absolute temperature

2.1.2 Electromigration Failure Mechanism

Electromigration (EM) is the mass transport of a metal due to the momentum

exchange between the conducting electrons that move in the applied electric field and

the metal atoms that make up the interconnecting material. It exists wherever electric

current flows through metal wires. The EM failure lifetime model of a metal

interconnect is characterized as [36]:

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛= −

−

T
ET

A
IAMTTF aEMm

n

EM
em

κ
exp (2.2)

where

EMA the model prefactor

I the average current

A the cross section of the interconnects

T the absolute temperature

aEME the activation energy for EM failure mechanism

k Boltzmann’s constant

mn, material and failure mode dependent parameters

EM decreases the reliability of ICs. In the worst case, it leads to the eventual loss

of one or more connections and intermittent failure of the entire circuit. Since the

reliability of interconnects is not only of great interest for space travel and military

applications but also for civilian applications like the anti-lock braking system of cars,

high technological and economic values are attached to this effect.

http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Economic

 24

2.1.3 Time Dependent Dielectric Breakdown Failure Mechanism

When an electric field is applied to the dielectric-isolated gate of a MOSFET, the

progressive degradation of the dielectric material will result in the formation of

conductive paths in the oxide and a shortening of the anode and cathode. When this

happens, the continuous stress of the electric field on the gate oxide may lead to

excessive energy dissipation, or even thermal runaway, through breakdown paths.

The electrical after-effects of oxide breakdown are an abrupt increase in gate current

and a loss of gate voltage controllability on device current flowing between drain and

source. This kind of failure mechanism is known as Time Dependent Dielectric

Breakdown (TDDB) or oxide breakdown, and the degradation process will be

accelerated as the thickness of the gate oxide decreases with continued device scaling.

The TDDB lifetime of a transistor is given by [40-42]:

⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛= +

2

1

exp1
T
d

T
cV

A
AMTTF bTa

gsTDDB
tddb β

 (2.3)

where

TDDBA the model prefactor

dcba ,,, empirically determined constants

A the device gate oxide area of the transistor, equivalent to

 W (channel width) × L (channel length)

gsV the gate-to-source voltage

T the absolute temperature

β Weibull distribution slope parameter

 25

2.2 Impact on Higher Hardware Levels

Microelectronic hardware circuit design, especially digital IC design, can be

divided into four different abstraction levels, as shown in Figure 2.1.

 Behavioral Level: it describes the function (or behavior) components of the

system. It specifies the input and output of the component and the function

the component carries.

 Register Transfer Level (RTL): a behavioral component is decomposed into

combinational logic and storage elements. The storage element (flip flop,

latch) is normally controlled by the system clock. The combinational logic

provides access control to the storage element.

 Logic Level: the design is represented as a netlist (or combination) with

different logic gates (AND, OR, NOT, etc.) and storage elements. The

difference between this level and the RTL level is that one can observe the

individual gates at this level but only blocks that represent storage and

combinational logic at the RTL level.

 Layout Level: this level is the bottom of the hierarchy. This level describes

the layout of the actual transistors and their inter-connections.

Figure 2.1 Different abstraction levels of circuit design

 26

In the previous section, the analysis of permanent failures was described at the

physical device level of the hardware, that is, with respect to the transistor elements

and their physical interconnections, which are the building blocks of the circuit layout.

Usually, IC design process starts from the top level (i.e., behavioral level) and goes

down step-by-step to the layout level for the targeted semiconductor technology node.

RTL level consists of combinational logic circuits and storage elements, which

are further decomposed into discrete logic gates and flip-flops at the logic gate level,

as illustrated in an example of RTL design in Figure 2.2.

As explained in Section 2.1, a permanent failure at the physical level that

becomes lethal leads to a transistor stuck-on/stuck-off or an open/short in a metal

wire. At the logic and RT levels, these physical defects mainly manifest as stuck-at

values (the logic voltage of a signal is stuck either at 0 or 1), indeterminate values

(the logic voltage of a signal is neither 0 nor 1) and signal delays. Also, the

propagation of permanent failures may lead to a functionality change of a

combinational logic element, e.g., a transistor stuck-on failure in a NAND gate could

change the truth table of the gate, making it behave differently than desired [57].

Besides, permanent failures can also propagate from the combinational logic to the

storage elements in the form of bit-flips. Note that stuck-at values are not the only

possible manifestations of permanent hardware failures.

 27

RESET

IN_A
IN_B

Storage Elements

Flip
Flop

Flip
Flop

Flip
Flop

Flip
Flop

CLOCK

OUTCombinational
Logic

Figure 2.2 Example of a RTL Design

 28

Chapter 3 Methodology for the Analysis of Permanent Failure
Manifestations

This chapter describes the methodology for the analysis of permanent hardware

failure manifestations. The methodology consists of three phases, which are described

as follows.

During the first phase of the methodology (analysis of failure manifestations),

SPICE simulation is performed to investigate the behavior of the circuit elements

(logic gates and flip-flops) under study with a set of generic input stimuli, which

covers all possible combinations of logic levels and transitions of the input signals.

This allows for calculating the failure rates of different circuit elements. A set of

failure equivalent circuit models for different failure mechanisms, including HCI, EM

and TDDB is used to study the circuit failure manifestations under the presence of

hardware failures. The main outcome of this phase consists of the set of

manifestations of the permanent failures observed in the circuits’ output signals (e.g.,

signal delays, functionality changes or stuck-at failures).

During the second phase of the methodology (development of reliability models),

a set of reliability models are built that allow for calculating the occurrence rate of

each failure manifestation of a circuit as a function of the software execution profile

of a computer system. The models are based not only on existing expressions for the

constant stress failure rate of permanent failures, but also on specifically developed

models that account for the operational conditions of circuits (e.g., current and

voltages) and for the usage of the computer hardware devices as a consequence of the

 29

software execution. Different structures and notations are proposed for the reliability

models in order to reduce huge numbers of failure manifestations into practical sets of

expressions.

During the third phase of the methodology (calculation of failure probability

distributions), the reliability models developed in the previous phase are applied to a

particular computer platform. The usage of the hardware devices is obtained through

VHDL simulations of the computer system under the execution of the software

program of interest. This allows for solving the reliability models and calculating the

failure probability distributions (per failure manifestation) of the various hardware

devices of the computer platform (e.g., ALU gates, CPU registers, memories, etc.).

The methodology is divided into five steps, two steps for the first phase, one for

the second phase, and two for the third phase, as illustrated in Figure 3.1. Each step

will be described in detail in the following sections.

 30

SPICE simulations
per element

Failure equivalent
circuit models

Failure rate
of segments

(transistors,
interconnections)

Failure
manifestations

SPICE simulations
per segment &

failure mechanism

Segments
selection

Hardware platform’s
VHDL description

Application
software’s

machine code

VHDL simulation
(Synopsys
Scirocco)

Model
resolution

Failure
probability

distributions

Reliability
modeling

Failure models

Development of
Reliability Models

Calculation of Failure Probabilities

Analysis of Failure Manifestations

HW failure models
at physical level

(HCI, EM, TDDB)

Schematics of
circuit elements
(gates, flip-flops)

Standardized input
signals stimuli

Stress patterns

Hardware
usage profile

Competing failure
mode model

+ Serial execution
behavior model

Figure 3.1 Methodology for the analysis of permanent failure manifestations

3.1 Analysis of Failure Manifestations

3.1.1 Calculation of Failure Rates and Characterization of Stress Patterns

This section describes step 1 of Figure 3.1.

As explained in Section 2.1, the hardware failures of interest in this study are

intrinsic failures that are directly related to software execution. The execution of the

software can be seen as a series of electrical signals based on logic 0s and 1s that

activate the circuits of the computer hardware platform following a particular profile.

 31

Of all the intrinsic failure mechanisms, the three most dominant mechanisms are

considered in this study. They are Hot Carrier Injection (HCI), Electromigration (EM),

and Time Dependent Dielectric Breakdown (TDDB).

Based on the lifetime models (2.1), (2.2) and (2.3) discussed in section 2.1, the

corresponding failure rates of a circuit element (transistor or metal interconnection)

are calculated as:

hci
i

hci
i MTTF

1
=λ (3.1)

em
i

em
i MTTF

1
=λ (3.2)

tddb
i

tddb
i MTTF

1
=λ (3.3)

Failure rates expressed in (3.1), (3.2) and (3.3) are referred to as constant (or DC)

stress failure rates, since lifetime models (2.1), (2.2) and (2.3) for the reliability

evaluation of the different failure mechanisms are obtained from accelerated testing

experiments under DC stress conditions. For example, to obtain the HCI lifetime

model (equation (2.1)), a series of accelerated life testing experiments are conducted

at several substrate current and temperature combinations for the transistors. For a

particular combination, the testing is performed by keeping the substrate current and

temperature constant during the total testing time. The failure data obtained from

testing are then used to extract parameters in the lifetime model by means of

maximum likelihood estimation techniques. The models for EM and TDDB

(equations (2.2) and (2.3)) are developed in a similar way.

 32

With the lifetime models, the failure rates of all the failure mechanisms can be

calculated if we have the device operation conditions, such as the gate to source

voltages (Vgs) and substrate currents of the transistors. The device operation

condition can be obtained through SPICE simulation.

SPICE stands for Simulation Program with Integrated Circuits Emphasis. It is a

general-purpose circuit simulation program for nonlinear dc, nonlinear transient, and

linear ac analyses. SPICE provides a detailed analysis of active components including

bipolar transistors, field effect transistors, and diodes, as well as lumped components,

such as resistors, capacitors and inductors. Note that SPICE is a circuit simulation

program, not a logic simulation program. Thus SPICE considers the voltages and

currents in a circuit to be continuous quantities, not quantized into high/low values.

Other constants, fitting parameters, and activation energies can be extracted from

experimental data (e.g., accelerated stress tests or industry data).

SPICE uses as main inputs the schematics of a circuit of the technology under

consideration (e.g. Figure 3.3), and the input signal stimuli (e.g., Figure 3.4 and

Figure 3.5).

 33

Figure 3.2 Circuit Layout of an AND2_1 logic gate

Figure 3.3 Schematic of the AND2_1 logic gate

As an example, consider an AND2_1 logic gate implementing logic operation

“And” of two input signals (i.e., given two inputs a and b , the output is ba ∧). The

 34

gate belongs to standard cell library vtvtlib25 developed by the Virginia Tech VLSI

for Telecommunication (VTVT) Group [58, 59], based on TSMC 0.25 µm

technology. The physical layout of this gate is shown in Figure 3.2. It is composed of

6 transistors (0M , 1M , 2M , 3M , 4M , and 5M) and 5 interconnections (1N , 2N ,

3N , 4N , 5N). The corresponding schematic is shown in Figure 3.3. The AND2_1

logic gate is used throughout this section to illustrate the methodology.

For the purposes of our analysis, the input signals to a circuit are designed

according to the following criteria:

The set of input signals includes all the possible combinations for logic levels

(1’s and 0’s) and transitions (rising and falling edges). We assume that two or more

transitions in different lines cannot happen at the same time.

The set of input signals leads to the same duration for every combination of logic

levels. The actual duration of a pulse is not important for our analysis, while the value

for the duration of a transition period will be given by the particular semiconductor

technology under analysis.

We refer to a set of input signals matching these criteria as Standardized Inputs.

Figure 3.4 and Figure 3.5 provide examples of Standardized Inputs.

 35

Figure 3.4 Asynchronous input signals

Figure 3.5 Asynchronous and synchronous (clock) input signals

Consider the 2-asynchronous input signals of Figure 3.4. The first criterion is

fulfilled since

 there is a rising transition in the first input when the second input is high or

low,

 there is a falling transition in the first input when the second input is high or

low,

 there is a rising transition in the second input when the first input is high or

low,

 36

 there is a falling transition in the second input when the first input is high or

low,

 all logic levels (‘00’, ‘01’, ‘10’, ‘11’) are present. The second criterion is

fulfilled since the percentage of time for each logic combination of the input

lines is the same (namely, a2 for combinations ‘01’, ‘10’, ‘11’, and cb +

for ‘00’, where cba +=2).

It can be shown in a similar way that the two inputs of Figure 3.5 (consisting of

an asynchronous signal and the clock line) also fulfill the criteria.

The criteria used for the design of the input signals allow for “capturing” all the

different patterns (including their relative time intervals) of the occurrence of the

failure mechanisms in a circuit. Indeed, transistors and interconnects suffer from HCI,

EM and TDDB stresses only for specific combinations and time intervals of logic

levels and transitions of the input signals. We refer to these combinations as stress

patterns. This is illustrated in Figure 3.6, where some stress patterns of the AND2_1

logic gate obtained with SPICE are displayed.

 37

I1

I2

1.2

M0
Isub

Isub

.250

M1
Isub

a) HCI effect in transistors M0 (instant 1.2μs) and M1 (instant 0.250μs) in terms

of Isub

N2
I

N2
I

I
N3

b) EM effect in interconnections N2 and N3 in terms of I

M2
Vgs

c) TDDB effect in transistor M2 in terms of Vgs

Figure 3.6 Stress patterns examples for HCI, EM and TDDB in the AND2_1

gate

 38

A transistor suffers from HCI stress only during transition periods, when both

gate voltage and drain voltage are high enough and there is current flowing through

the channel (parameter subI of equation (2.1)). For transistor 0M of the AND2_1 gate,

such conditions appear whenever there is a rising edge (‘↑’) in the first input (I1) and

the second input (I2) is high (‘1’) (i.e., instant 1.2µs in Figure 3.6a). For transistor

1M , it appears whenever the first input (I1) is high (‘1’) and there is a rising edge

(‘↑’) in the second input (I2) (i.e., instant 0.250µs in Figure 3.6a).

A metal wire suffers from EM whenever there is an electric current flowing

through it. For CMOS circuits, the current flow in an interconnection is negligible if

the circuits are in static condition. However, switching input signals may introduce

current pulses in the metal wires leading to EM. As shown in Figure 3.6b, EM arises

in interconnect 2N whenever there is a rising transition in input I2 while input I1 is

high, or there is a falling transition in input I2 while input I1 is high (i.e., instants

1.25µs and 1.45µs in Figure 3.6b). For interconnect 2N , it arises whenever there is a

transition in one line while the other is high (i.e., instants 0.25µs, 0.5µs, 1.2µs and

1.45µs in Figure 3.6b).

Unlike HCI, TDDB stresses the gate dielectrics of the transistors even when they

are in static state operations. As described in equation (2.3), the transistors lifetime

due to TDDB stress strongly depends on the gate to source voltage gsV . For CMOS

circuits, during normal device operation, most of the transistors experience certain

periods during which the gate to source voltage gsV value is equal to the power

supply voltage ddV . The higher the percentage of such periods, the higher the failure

rates of the transistors due to the TDDB stress. As shown in Figure 3.6c, gsV will

 39

systematically equal ddV in transistor 2M for logic levels ‘00’, ‘01’, and ‘10’ of

inputs I1 and I2 (i.e., time intervals [0, 0.25], [0.5, 1.2] and [1.45, 2.0] in Figure 3.6c),

leading to TDDB stress.

3.1.2 Identification of Failure Manifestations

This section describes step 2 of Figure 3.1.

The identification of fault models is divided into the following steps:

1) Development of a failure-equivalent-circuit model for the segments,

2) Independent simulations of the element by substituting each time one

segment by the failure-equivalent-circuit model,

3) Observation of the output signal in each simulation and determination of the

fault models.

Once the failure rates (hci
iλ , em

iλ , tddb
iλ) are calculated for every transistor Mi

and interconnection Ni of a circuit element, a selection is made based on the

elimination of those segments that are softly or not stressed by the failure

mechanisms, so their impact in the global failure probability of the circuit can be

neglected. This means that segment i under stress j will not be given any further

consideration in our analysis if 0≈j
iλ . This is for instance the case of the pMOSFET

transistors of a circuit, which as explained in Section 3.1.1 are barely impacted by the

HCI stress.

Figure 3.7, Figure 3.8 and Figure 3.9 show an example of a segments selection for

the AND2_1 logic gate.

 40

0

5

10

15

20

25

30

35

M0 M1 M2 M3 M4 M5
Transistors

R
e
la

ti
v
e
 F

a
il
u

re
 R

a
te

Figure 3.7 Relative HCI failure rates of transistors

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N1 N2 N3 N4 N5

Interconnections

R
e
la

ti
v
e
 F

a
il

u
re

 R
a
te

s

Figure 3.8 Relative EM failure rates of interconnections

 41

0

0.25

0.5

0.75

1

M0 M1 M2 M3 M4 M5

Transistors

St
re

ss
 T

im
e

Pe
rc

en
ta

ge

Figure 3.9 Percentage of time a transistor suffers from TDDB stress

Figure 3.7 shows the relative failure rates of the different transistors for HCI with

respect to transistor M0. Figure 3.8 illustrates the relative failure rates of the different

metal interconnects for EM with respect to N1. While Figure 3.9 displays the

percentage time transistors suffer from TDDB stress. In this case, the segments

selection simply leads to the elimination of the pMOSFET transistors under HCI

stress (i.e., transistors 3M , 4M and 5M), and interconnection 4N under EM stress.

In order to account for the effect of different failure mechanisms on circuit

functionality, several failure equivalent circuit models [51], one for each failure

mechanism, are adopted to obtain circuit level failure manifestations through SPICE

simulation (one per segment and failure mechanism). The underlying concept of the

failure equivalent circuit models is to model device degradation with some additional

lumped circuit elements (resistors, dependent current sources, etc.) to capture the

behavior of a damaged circuit element in circuit operation environment. The larger

 42

the magnitude of element values, such as the resistance of the lumped resistor, the

more severe the damage to circuit functionality. The failure equivalent circuit models

are provided in Figure 3.10, Figure 3.11, and Figure 3.12.

Figure 3.10 Failure equivalent circuit model for HCI mechanism

Figure 3.11 Failure equivalent circuit model for EM mechanism

 43

Figure 3.12 Failure equivalent circuit model for TDDB mechanism

The adopted HCI failure equivalent circuit model (Figure 3.10) is the Hot

Carrier Induced Series Resistance Enhancement Model (HISREM), also named dRΔ

model (proposed by Hwang [48] and improved in [51]). The model is composed of

the original nMOSFET transistor connected in series with a voltage dependent drain

resistor dRΔ , which reflects the process of hot carrier induced interface trap

generation and therefore accounts for the channel mobility reduction and threshold

voltage shift. The degree of circuit degradation is reflected by the value of resistor

dRΔ . The more severe the HCI damage to the circuit, the higher the resistance value.

The metal conductor used in current submicron CMOS technologies is

constructed of a composite layered structure with a refractory metal layer on top and

at the bottom of the aluminum alloy core metal. The effect of EM on the composite

metal conductor is the increase of line resistance. Usually the failure criteria used in

the EM lifetime test is an increase of the line resistance by 10 to 20 %, or a line

 44

resistance increase by a fixed value [60]. The EM failure equivalent circuit model for

a metal interconnect (Figure 3.11) is a resistor whose resistance value gets higher as

the degradation becomes worse.

The TDDB failure equivalent circuit model used (Figure 3.12) corresponds to

the Maryland Circuit Reliability Oriented (MaCRO) model [51]. The electrical effect

of TDDB is that it provides a conduction path to inject electrons from channel into

gate. Therefore, a voltage dependent current source OXI can be used to connect the

gate and channel of the damaged transistor to model the effect of TDDB. The circuit

model for nMOSFET is shown in Figure 3.12, in which two split transistors imitate

the channel separation by oxide breakdown path, and the voltage-dependent current

source OXI physically represents the conduction mechanism of hard breakdown path

across the oxide. The magnitude of OXI reflects the degree of degradation of the

TDDB failure mode. The model can be extended to pMOSFET by properly changing

current flowing direction in Figure 3.12.

The relation between the additional lumped circuit elements values used in the

failure equivalent circuit models (such as the resistance of the resistors) and the

lifetime models of the failure mechanisms (equations (2.1), (2.2) and (2.3)) is beyond

the scope of this work. Therefore, the values for the mean time to failure of the circuit

are calculated using equations (2.1), (2.2) and (2.3) irrespective of how high it is

necessary to increase the value of the lumped circuit elements to readily observe a

failure manifestation.

Assuming that the failure of a segment due to HCI, EM and TDDB damage

could lead to a circuit functional error, the failure equivalent circuit models are used

 45

to replace one segment at a time in the analysis. Each transistor of a circuit is to be

replaced by the HCI and TDDB failure equivalent circuit models (Figure 3.10 and

Figure 3.12), and each interconnection by the EM failure equivalent circuit model

(Figure 3.11). Accordingly, if a circuit contains M transistors and N

interconnections, NM +2 mutated versions of the same circuit are produced. A

“mutant” is thus a circuit in which a segment (transistor or interconnection)

considered to be faulty is replaced by a failure equivalent circuit model. An example

of one of such “mutants” for the AND2_1 gate circuit is provided in Figure 3.13,

where transistor 5M is replaced by the TDDB failure equivalent circuit model.

Figure 3.13 AND2_1 layout with transistor M5 replaced by the TDDB failure

equivalent circuit model

The next step consists of running one independent SPICE simulation per

mutated circuit. The objective is to determine whether the functional behavior of the

circuit is impacted by the faulty segment and leads to a failure manifestation. To do

 46

so, the waveform of the circuit’s output signal is logged and analyzed after every

simulation. The output waveforms obtained during this process for the AND2_1 gate

are provided in Figure 3.14.

Ip1

Ip2

Op

a) Correct behavior (Ip1 – input 1, Ip2 – input 2, Op – output)

HCI

EM

TDDB

M0, M1

M2

N1

N2, N3

N5

M0, M1, M5

M2

M3

M4

Delay-rise

Delay-fall

Delay-rise

Delay-fall

Stuck-at-0

Stuck-at-1

DiffFunc-b

DiffFunc-a

Delay-fall-Delay-fall-

b) Failure manifestations observed in the output (Op)

Figure 3.14 Failure manifestations of the AND2_1 logic gate due to HCI, EM and

TDDB stresses in its circuit segments

 47

Figure 3.14b displays the failure manifestations of the AND2_1 gate, i.e., those

output waveforms that differ from the correct output waveform (i.e., signal Op in

Figure 3.14a). As far as HCI is concerned, all the observed failure manifestations

consist of output delays. The circuit behavior with a faulty transistor 0M due to HCI

leads to a delay of the output signal whenever its logic level changes from ‘0’ to ‘1’

(referred to as Delay-rise). A similar behavior is observed for a faulty 1M transistor.

On the other hand, the output is delayed during ‘1’ to ‘0’ transitions when transistor

2M is faulty (Delay-fall). Regarding EM stress, the observed failure manifestations

correspond also to output delays: during ‘1’ to ‘0’ output transitions when there is a

falling edge in signal 1Ip and interconnection 1N is faulty (Delay-fall-↓1); during ‘0’

to ‘1’ output transitions when interconnection 2N (or 3N) is faulty (Delay-rise); and

during ‘1’ to ‘0’ output transitions when interconnection 5N is faulty (Delay-fall). As

far as TDDB is concerned, the observed failure manifestations are the following:

stuck-at-0 fault when transistor 0M , 1M or 5M is faulty; stuck-at-1 fault when

transistor 2M is faulty; and different-function fault when transistor 3M or 4M is

faulty. In this latter case, the different functions observed are respectively “stuck-at-

2Ip ” (DiffFunc-b) and “stuck-at- 1Ip ” (DiffFunc-a).

The notation used for the failure manifestation is described in Table 3.1.

Table 3.1 Notation of the failure manifestations

 Failure manifestation Description

Delay-a The output signal is always delayed, either

during rise or fall transitions.

“Detailed

manifestation”

notation Delay-{rise, fall}-{input The output signal is delayed for specific

 48

combinations} logic combinations and transitions of the

input signals (input combinations), either

during rise or fall transitions.

Stuck-at-{0, 1} The output signal is stuck at logic value 0

or 1

DiffFunc-{logic function} The circuit functionality changed to a

different logic function.

Delay-{value} The output signal is delayed either during

rise or fall transitions. The percentage of

rise or fall transitions affected is indicated

by value.

Stuck-at-{0, 1} The output signal is stuck at logic value 0

or 1

“Simplified

manifestation”

notation

DiffFunc-{value} The circuit functionality changed to a

different logic function. The percentage of

logic combinations of the input signals

leading to a different output logic level is

indicated by value.

The proposed methodology allows for obtaining very detailed information about

the failure manifestations of a circuit. For example, it allows for determining whether

a delay affects a rising or falling transition of the output signal, what the particular

status of each input signal is during a delay, or which new logical function the circuit

 49

implements after a failure. These characteristics can be captured by the detailed

manifestation notation proposed in Table 3.1. As an example, the failure

manifestations presented in Figure 3.14b are labeled using the detailed notation.

Table 3.1 also proposes a more compact notation for the failure manifestations,

referred to as simplified manifestation. In this notation, delays are characterized by

the number of deferred pulses of the output signal, while the different-function failure

manifestation is characterized by the number of changes in the truth table of the

circuit. As an example, failure manifestations Delay-rise and Delay-fall from Figure

3.14b would be under label Delay-1 using the simplified notation (i.e., 100% of the

pulses of the output signal are delayed), Delay-fall-↓1 under label Delay-0.5 (i.e.,

50% of the pulses of the output signal are delayed), and failure manifestations

DiffFunc-a and DiffFunc-b under label DiffFunc-0.25 (i.e., one out of the four entries

of the truth table of the AND2_1 gate is changed, namely entry “10” when the

different function is “a”, and entry “01” when the different function is “b”).

3.2 Development of Reliability Models

This section describes step 3 of Figure 3.1.

The development of reliability models is divided into the following steps:

1) Modeling of the failure probability following a competing failure mode

model.

2) Modeling of the reliability depending on the number of demands per

element issued during the software execution,

 50

The lifetime of an entire circuit results from a combination of the effects of the

different failure mechanisms across different segments (transistors and

interconnections). This requires information on the lifetime distribution of each

failure mechanism. In a complex integrated circuit, the whole system will be

extremely prone to failure if any segment fails. We can therefore approximate a

complex integrated circuit using a competing failure mode model. We apply the

standard sum-of-failure-rates (SOFR) model [44] widely used in industry to

determine a system’s failure rate from its individual failure mechanisms. Using the

SOFR model, the failure rate λ of a circuit (e.g., logic gate, flip-flop, etc.) can be

related to the lifetime of segments (equations (2.1), (2.2) and (2.3)) as shown in

expression (3.4):

∑∑
∈ ∈

=
Hj Si

ji
j

,λλ (3.4)

where

H the set of hardware failure mechanisms (e.g., HCI, EM, TDDB) that

impact the circuit,

jS the set of segments (transistors and interconnections) stressed by

failure mechanism j , and

ji,λ the dynamic stress failure rate of segment i under stress j .

The dynamic stress failure rate ji,λ can be calculated in different ways, for

example by means of quasi static values or duty factors. We use duty factors to

calculate the dynamic stress failure rate as follows:

 51

j
ijiji w λλ ,, = (3.5)

where

j
iλ the constant stress failure rate of segment i under stress j (i.e.,

equivalent to equations (3.1), (3.2) and (3.3)), and

jiw , the duty factor for j
iλ , which is equivalent to the percentage of time

that segment i is subjected to stress j during the circuit operation under a particular

software execution.

The SOFR model elevates the reliability from transistor and interconnection

levels to circuit level and is used to estimate lifetimes for various kinds of device

families.

The SOFR model described in (3.4) provides the value for the failure rate of a

circuit irrespective of the failure manifestation that impairs the circuit. In order to

calculate the failure rate Fλ of a particular manifestation F of a permanent failure

(e.g., stuck-at-0, stuck-at-1, delay, different function, etc.), we rewrite equation (3.4)

as follows:

∑ ∑ ∑∑
Γ∈ ∈ ∈Γ∈

==
F Hj Si

j
iji

F

F

F Fj

w
,

, λλλ (3.6)

∑ ∑
∈ ∈

=
F FjHj Si

j
iji

F w
,

, λλ (3.7)

where

Γ the set of failure manifestations F that impact the circuit,

FH the set of hardware failure mechanisms (e.g., HCI, EM, TDDB) that

impact the circuit leading to failure manifestation F ,

 52

FjS , the set of segments (transistors and interconnections) stressed by

failure mechanism j which lead to failure manifestation F ,

j
iλ the constant stress failure rate of segment i under stress j , and

jiw , the duty factor for j
iλ .

For example, expression Fλ for the AND2_1 gate is as follows:

{ } { } { }

()
()
()tddb

tddb
tddb

tddb
tddb

tddb
tddb

tddb
tddb

tddb
tddb

tddb

em
em

em
em

em
em

em
em

hci
hci

hci
hci

hci
hci

MMMMMMi

tddb
itddbi

NNNNi

em
iemi

MMMi

hci
ihcii

Si

tddb
itddbi

Si

em
iemi

Si

hci
ihcii

Hj Si

j
iji

F

wwwwww

wwww

www

www

www

w

FtddbFemFhci

F Fj

5,54,43,32,21,10,0

5,53,32,21,1

2,21,10,0

5,4,3,2,1,0
,

5,3,2,1
,

2,1,0
,

,,,

,

,,,

,

λλλλλλ

λλλλ

λλλ

λλλ

λλλ

λλ

++++++

++++

++=

++=

++=

=

∑∑∑

∑∑∑

∑ ∑

∈∈∈

∈∈∈

∈ ∈

(3.8)

Note that parameters Γ , FH and FjS , are determined as explained in Section

3.1.2. Also, as explained in Section 3.1.2, transistors 3M , 4M and 5M under HCI

and interconnection 4N under EM can be neglected for the reliability analysis of the

AND2_1 gate.

To calculate duty factors jiw , , we need to use the Standardized Inputs and the

Stress Patterns described in Section 3.1.1, the Failure Manifestations described in

Section 3.1.2, and also a Hardware Serial Model which is described hereafter.

The software execution on hardware devices (normally includes CPU, memory,

busses etc.) is essentially a series of 0 and 1 signal alterations for hardware units. This

 53

model assumes that the software execution on hardware devices is divided into a

series of demand and idle intervals, as depicted in Figure 3.15.

Demand Idle Demand Idle Demand …… Idle

Figure 3.15 Hardware serial model during software execution

Thus the software execution in terms of a specific unit constitutes a series of

being-demanded and not-being-demanded (idle) combinations. As an example, Figure

3.16 shows this execution process for a logic gate and a flip-flop when the

Standardized Inputs considered in Section 3.1.1 are applied.

D1 I I I I I I I ID2 D3 D4 D5 D6 D7 D8

a) Demand (D) and idle (I) intervals of a logic gate

IDID D D I DIDIDID D D IDIDID D D DIDID D DIII I I I I I I

b) Demand (D) and idle (I) intervals of a flip-flop

Figure 3.16 Examples of the hardware serial model under a software

 54

execution using the Standardized Inputs

As shown in Figure 3.16, a demand interval is actually triggered by a logic

change of any of the input signals to the hardware device. We assume that the

duration of a demand interval is equivalent to the duration of a transition period of a

signal. Such a duration is symbolized by τ .

As stated above, coefficients jiw , can be calculated using the Hardware Serial

Model described above in combination with the Standardized Inputs, the Stress

Patterns and the Failure Manifestations. This is illustrated for the AND2_1 gate in

Figure 3.17.

 55

Figure 3.17 Stress patterns using the Standardized Inputs

As shown in Figure 3.17, the different current peaks of the stress patterns for the

HCI and EM effects can be matched to a particular demand transition of the hardware

serial model. For instance, transistor 0M is stressed by HCI only during demand 6D ,

and such a stress will lead to the Delay-rise failure manifestation. Then, coefficient

hciw ,0 can be calculated as
T

d τ6 , where T is the duration of the time window within

which the measurement is being performed, τ is the duration of a demand transition

iD , and 6d is the number of demands of type 6D that occurred within time window

T (e.g., in Figure 3.17, id is equal to 1 for all i). On the other hand, the different

voltage pulses of the stress patterns for the TDDB effect can be matched to a

particular logic combination of the input signals. For instance, transistor 0M is

stressed by TDDB only for logic combination 11 of the input signals, and such a

stress will lead to a stuck-at-0 failure manifestation. Then, coefficient tddbw ,0 can be

calculated as
T
t11 , where 11t is the duration of logic combination 11 (e.g., in Figure

3.17, ijt is equal to
4
T for all ji,).

In general, duty factor jiw , is given by the following expression:

() { }

() { }⎪
⎪
⎩

⎪
⎪
⎨

⎧

∈

∈
⋅

=
∑

∑

∈

∈

tddbj
T

t

emhcij
T

d

w
jiCc c

jiIk k

ji

,

,,

,

,

,

τ

 (3.9)

 56

where

T the duration of the time window where the measurement is being

performed,

()jiI , the set of sub-indexes y of those demand transition types yD for

which stress j impacts segment i (e.g., () { }7,6,3,2,3 =emI),

kd the number of demands of type kD that occurred within time window

T ,

τ the duration of a demand transition,

()jiC , the set of logic combinations of the input signals for which stress i

impacts segment j (e.g., () { }10,01,00,2 =tddbC), and

ct the duration of logic combination c of the input signals within time

window T .

Note that the value of parameters kd , ct and T is software dependent. In other

words, the execution of different software applications will lead to different values

for kd , ct and T .

For example, using equations (3.8) and (3.9), expressions riseDelay−λ and

0−−atStuckλ for the AND2_1 gate are as follows:

() ()

()
() () ememhcihci

tddbtddbtddbtddbtddbtddb

ememememem

hcihcihciriseDelay

T
dddd

T
dd

T
d

T
d

T
dddd

T
dd

T
d

T
d

3
7632

2
72

1
2

0
6

543210

543
7632

2
72

1

21
2

0
6

000000

000

0

λ
τ

λ
τ

λ
τ

λ
τ

λλλλλλ

λλλ
τ

λ
τ

λ

λλ
τ

λ
τ

λ

+++
+

+
++=

⋅+⋅+⋅+⋅+⋅+⋅+

⎟
⎠
⎞

⎜
⎝
⎛ ⋅+⋅+

+++
+

+
+⋅+

⎟
⎠
⎞

⎜
⎝
⎛ ⋅++=−

(3.10)

 57

()
()

()

()

() tddb

tddbtddbtddb

tddbtddbtddbtddbtddbtddb

ememememem

hcihcihciatStuck

T
ttc

T
t

T
tt

T
t

T
t

T
tt

T
t

λ

λλλ

λλλλλλ

λλλλλ

λλλλ

0111

5
11

1
0111

0
11

5
11

4321
0111

0
11

54321

210
0

2

000

00000

000

++
=

+
+

+=

⎟
⎠
⎞

⎜
⎝
⎛ +⋅+⋅+⋅+

+
++

⋅+⋅+⋅+⋅+⋅+

⋅+⋅+⋅=−−

(3.11)

In equation (3.11), we assume that in the same circuit element all the

nMOSFETs have the same channel width nW , and all the pMOSFETs have identical

channel width pW . From equation (2.3) and (3.3) we can see that the same type of

MOSFET transistors have the same failure rate if they are put under the same

constant voltage stress. The ratio of pMOSFET transistors failure rate to that of

nMOSFET transistors is a constant value c , which is calculated as:

β

λ
λ /1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

n

p
tddb
nMOSFET

tddb
pMOSFET

W
W

c (3.12)

where

np WW , channel width of pMOSFET and nMOSFET transistors, respectively

β Weibull slope parameter in (2.3)

Actually, in vtvtlib25 standard cell library used for this study, not only the above

assumption is true, but also all the cells of the same drive strength have identical

nMOSFET and pMOSFET dimension. Therefore, the above analysis is applicable to

other gates in the cell library. Based on this analysis, in (3.11), the failure rate of

nMOSFETs due to TDDB is denoted as tddbλ , and the failure rate of pMOSFETs is

tddbc λ⋅ .

 58

In practice, the measurement of parameters kd and ct might make the

calculation of the usage profile (i.e., last step of the methodology in Figure 3.1)

complex and time consuming. We thus propose an alternative simplified version for

expression jiw , , as described hereafter:

() { }

() { }⎪
⎪
⎩

⎪⎪
⎨

⎧

∈

∈
=

tddbj
C

jiC

emhcij
TI

djiI

w ji

,
,

,,
,

,

τ

 (3.13)

where

T the duration of the time window where the measurement is being

performed,

()jiI , the number of transition types xD for which stress j impacts segment

i (e.g., () { } 47,6,3,2,3 ==emI),

I the total number of demand transition types (e.g., in general, for a n-

asynchronous input signal circuit, I is equal to nn2),

d the number of demand transitions of any type, ∑∀
=

i idd , that

occurred during time window T (e.g., in Figure 3.17, d is equal to 8),

τ the duration of a demand transition jD ,

()jiC , the number of logic combinations of the input signals for which stress

j impacts segment i (e.g., () { } 310,01,00,2 ==tddbC),

C the total number of logic combinations of the input signals (e.g., in

general, for a n-asynchronous input signal circuit, C is equal to n2),

 59

Equation (3.13) is simplified since only parameters d and T are software

dependent, and the measurement of parameter d is easier in practice than the

measurement of kd and ct from equation (3.9).

Using equation (3.13), expression (3.10) for riseDelay−λ and (3.11) for 0−−atStuckλ

can be recalculated as follows:

ememhcihciriseDelay

T
d

T
d

T
d

T
d

3210 8
4

8
2

88
λτλτλτλτλ +++=− (3.14)

tddbtddbtddbtddbatStuck c
λλλλλ

4
3

4
1

4
2

4
1

510
0 +

=++=−− (3.15)

In expressions (3.14) and (3.15), only parameter d needs to be measured for the

calculation of the usage profile.

The failure rates (both the detailed and simplified version) for the other failure

manifestations of the AND2_1 gate can be calculated in a similar way using Figure

3.17 and equations (3.8), (3.9) and (3.13). These models are provided in Table 3.2.

Table 3.2 Failure rate models of the AND2_1 gate per failure manifestation

 Detailed models Simplified models

riseDelay−λ ()
() Tdddd

dddd
em

emhcihci τ
λ

λλλ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++++

+++

37632

2721206

T
dememhcihci τλλλλ ⎟

⎠
⎞

⎜
⎝
⎛ +++ 3210 2

1
4
1

8
1

8
1

fallDelay−λ ()
() Tdddd

dd
em

hci τ
λ

λ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++++

+

57632

273
T
demhci τλλ ⎟

⎠
⎞

⎜
⎝
⎛ + 52 2

1
4
1

D
et

ai
le

d
m

an
ife

st
at

io
n

1↓−− fallDelayλ () em

T
dd 163 λτ

+ em

T
d

14
1 λτ

 60

0−−atStuckλ () tddb

T
ttc

λ01112 ++ tddbc λ
4

3 +

1−−atStuckλ tddb

T
ttt

λ100100 ++ tddbλ
4
3

aDiffFunc−λ tddbc
T

tt
λ1000 + tddbcλ

2
1

bDiffFunc−λ tddbc
T

tt
λ0001 + tddbcλ

2
1

1−Delayλ ()
()
()
()

T

dddd

dddd

dd

dddd

em

em

em

hcihcihci

τ

λ

λ

λ

λλλ

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

++++

++++

++

+++

57632

37632

272

2731206

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++

+++
emem

emhcihcihci

T
d

53

2210

44

22
8
1

λλ

λλλλτ

5.0−Delayλ () em

T
dd 163 λτ

+ em

T
d

14
1 λτ

0−−atStuckλ () tddb

T
ttc

λ01112 ++ tddbc λ
4

3 +

1−−atStuckλ tddb

T
ttt

λ100100 ++ tddbλ
4
3 Si

m
pl

ifi
ed

 m
an

ife
st

at
io

n

25.0−DiffFuncλ tddbc
T

ttt
λ001001 2++ tddbcλ

 Fλ Failure rate of the circuit for failure manifestation F

 j
iλ Failure rate of segment i due to stress j

 tddbλ Failure rate due to TDDB stress

 id Number of demands of type jD that occurred within time

window T .

 61

 d Number of demand transitions of any type occurred during time

window T .

 c Relation between the TDDB failure rate of nMOSFET and

pMOSFET transistors.

 τ Duration of a demand transition iD .

 T Duration of the time window where the measurement is

performed.

 11100100 ,,, tttt

Durations of logic combinations 00, 01, 10, 11 of the input

signals within time window T .

3.3 Calculation of Failure Probabilities

3.3.1 Calculation of the Hardware Usage Profile

This section describes step 4 of Figure 3.1.

As discussed in Section 3.1, a device failure probability over time depends on

the number of times the unit is demanded. For digital devices, especially a CPU, the

way in which each unit is accessed depends heavily on the set of instructions

(collectively called the software) it executes. Using the tools Synopsys VCS MX [61]

and Synopsys Design Analyzer [62] makes it feasible to simulate the software

execution against the hardware device’s VHDL script.

Synopsys VCS MX is the industry’s most comprehensive RTL verification

solution in a single product, providing advanced bug-finding technologies, a built-in

debug and visualization environment and support for all popular design and

 62

verification languages including Verilog, VHDL, SystemVerilog and SystemC.

Synopsys VCS MX provides a high-performance, high-capacity full language VHDL

simulator. It is used to analyze, compile, and simulate design descriptions written in

IEEE VHDL 1076-1993 [63], and provides a set of VHDL simulation and debugging

features to validate the VHDL design descriptions. These features provide capabilities

for source level debugging and simulation result viewing. The tool supports all levels

of design descriptions but is optimized for the behavioral and register-transfer levels.

Synopsys Design Analyzer is a powerful analysis tool that provides synthesis

control, design management, and design analysis in a graphical environment. With

Synopsys Design Analyzer the user can perform various design set-up and analysis

functions, as well as view and interact with the synthesized schematic.

The procedure to obtain the hardware usage profile of the circuit elements is

described in Figure 3.18.

Hardware platform’s
VHDL description

(RTL level)

Verification
(Synopsys VCS MX)

& synthesis
(Synopsys Design

Analyzer)

Application Software

Standard cell library
for a technology node

VHDL code
(GATE level)

Simulation
(Synopsys
VCS MX)

Compiler Application Software’s
machine code

Hardware
usage profile

VHDL simulation

Extension

Extra VHDL code
for counting demands Extended

VHDL code
(GATE level)

Figure 3.18 Description of the VHDL simulation step of the methodology

First, the functionality of the VHDL RTL script that describes the hardware

platform (e.g., a basic platform including the CPU, the memory and the connection

 63

between them) is verified by means of the Synopsys VCS MX simulator. The VHDL

RTL script is then ready to be translated into an actual gate level netlist using

Synopsys Design Analyzer. The process of converting the RTL description into a

netlist for a given target technology is called logic synthesis. To produce the

synthesized netlist, the synthesis tool requires the RTL code of the hardware devices

and the cell libraries. The cell libraries provide information about all the available

cells, including connectivity and functionality, timing, area, and corresponding

symbol, among others. Some extra VHDL code is then inserted into the gate level

VHDL scripts which will count the number of demands to the circuit elements (e.g.,

gates, flip-flops) during the VHDL simulation. On the other hand, the application

software needs to be compiled into machine code. This code will be loaded into the

system memory during the VHDL simulation. The gate level’s VHDL scripts and the

machine code are thus used by the Synopsys VCS MX simulator to simulate the

execution of the application software on the computer system. The outcome of this

simulation will consist of the software-specific hardware usage profile in terms of

number of demands issued to the circuit elements under study.

An example of such a profile is provided in Figure 3.19. The “Circuit elements”

axis represents a set of circuit elements under analysis. The “Time” axis defines the

execution time of the system under a given software application (i.e., parameter T of

Section 3.2), and the “Demands” axis provides the number of demands of each circuit

element (i.e., parameter d of Section 3.2).

 64

0 1 2 3 4 5 6 7 8 9 t1

t3

t5

t7

t90
100

200

300

400

500

600

700

800

Demands

Circuit elements
Time

Figure 3.19 Software-specific hardware usage profile – an example

The number of demands of a circuit element will systematically increase

monotonically over time. However, the speed of the increase will differ for different

circuit elements and software applications [64].

3.3.2 Calculation of the Hardware Failure Probability Distributions

This section describes step 5 of Figure 3.1.

The software-specific hardware failure probability F
ip of a circuit element i

under failure manifestation F is calculated as follows:

Tep F
i

TF
i

F
i λλ ≈−= −1 (3.16)

where

F
iλ the failure rate of failure manifestation F

iλ of circuit element F
iλ

(equivalent to equation (3.7)),

T the duration of the time window where the measurement is being

performed.

 65

A hardware device of a computer system is composed of a set of circuit elements.

For example, a register consists of a series of register bits (or flip-flops), and an ALU

is composed of a netlist of logic gates. Therefore, the software-specific hardware

failure probability distribution (or profile) F
iP under failure manifestation F of a

hardware device i composed of n circuit elements is as follows:

{ }F
n

FFF
i pppP ,...,, 21=

(3.17)

where

F
n

F pp ,...,1 the failure probabilities of circuit elements n,...,2,1 under

failure manifestation F (equivalent to equation (3.16)).

Finally, the combined software-specific hardware failure probability distribution

(or profile) iP of a hardware device i under any failure manifestation is as follows:

⎭
⎬
⎫

⎩
⎨
⎧

= ∑∑∑
Γ∈Γ∈Γ∈ nF

F
n

F

F

F

F
i pppP ,...,,

21

21 (3.18)

where

F
n

F pp ,...,1 the failure probabilities of circuit elements n,...,2,1 under

failure manifestation F (equivalent to equation (3.16)),

nΓΓΓ ,...,, 21 the sets of all failure manifestations F of circuit elements

n,...,2,1

An example of the combined software-specific hardware failure probability

profile over time is provided in Figure 3.20. The “Hardware device” axis contains the

set of circuit elements of the hardware device under analysis. The “Time” axis defines

 66

the execution time of the system under a given software application (i.e., parameter

T of equation (3.16)), and the Z-axis provides the software-specific hardware failure

probability of each circuit element of the hardware device under any failure

manifestation (i.e., parameter ∑
Γ∈ 1F

F
ip of equation (3.18)).

0 1 2 3 4 5 6 7 8 9

t1

t5

t9
0E+00

1E-03

2E-03

3E-03

4E-03

5E-03

6E-03

7E-03

Combined
Software-
specific

Hardware
Failure

Probability
Profile

Hardware device
Time

Figure 3.20 Combined software-specific hardware failure probability profile – an

example

As in the case of the number of demands (see Figure 3.19), the failure

probability of each circuit element of a hardware device will increase monotonically

over time, while the speed of the increase will differ for different circuit elements

[64].

 67

Chapter 4 Calculation of Failure Probabilities

The methodology developed in Chapter 3 has been applied to an example system.

The microprocessor considered in this system is the Zilog Z80 CPU, a CPU whose

VHDL description was publicly available. There are no theoretical barriers to extend

the proposed approach to other CPUs and devices such as memory or busses as long

as their VHDL scripts are available.

4.1 System Description

The example system is configured as shown in Figure 4.1. The system consists

of a Zilog Z80 microprocessor, and a RAM module. A set of control signals plus the

data and address busses are also included to constitute a minimum system. The Z80

CPU is the pilot processor we used to demonstrate the methodology. The RAM

module is used to store software program in machine code format.

Figure 4.1 The Example Z80 Computer System

 68

The Zilog Z80 microprocessor has been designed and manufactured by Zilog

since 1976. It was widely used both in desktop and embedded computer designs and

is one of the most popular CPUs of all time. Z80 was the heart of many computers

like Spectrum, Partner, TRS703, Z-3. The Z80 microprocessor is an 8-bit CPU with a

16-bit address bus capable of direct access to 64k of memory space. The Z80 CPU

can execute 158 different instructions.

The Z80 CPU contains 208 bits of read/write memory that are available to the

programmer. The registers include two sets of six pairs of general-purpose registers

(B, C, D, E, H, L, Bp, Cp, Dp, Ep, Hp, Lp) that may be used individually as 8-bit

registers or in pairs as 16-bit registers. There are also two sets of accumulator and flag

registers and six special-purpose registers. The special-purpose registers include

Program Counter (PC), Stack Pointer (SP), Index Registers (IX and IY), Interrupt

Page Address Register (I), and Memory Refresh Register (R). The other important but

nonprogrammable register is the Instruction Register (IR) [65].

The Z80 VHDL script used in the case study was obtained from the T80 project

at opencores.org [66]. The T80 is a configurable CPU core that supports Z80, 8080

and Gameboy instruction sets. The original T80 VHDL code is written in RTL level.

The VHDL code is tailored to support the Z80 microprocessor instruction set only.

Besides the 22 user-programmable registers described above, the Z80 VHDL

model has another 31 hidden registers, including the Instruction Register (IR), which

are not visible to the programmer. The hidden registers are used by the CPU to store

intermediate data during instruction execution.

 69

Then the RTL level code is synthesized to logic gate level through Synopsys

Design Analyzer using the vtvtlib25 standard cell library [58, 59]. The gate level

netlist consists of about 5000 logic gates and flip-flops. The total number of

transistors is on the order of 30000. The number of metal interconnects is in the

neighborhood of 40000.

The gate level VHDL script is further modified to fit the simulation requirements.

For example, as shown in Figure 4.2, the four new signals n2543, n2544, n2545,

n2546 are introduced for the purpose of counting the number of demands for the logic

gate U1250, which is of type ab_or_c_or_d.

architecture SYN_rtl of Z80_ALU is

-- original signal in the Z80 ALU gate level VHDL code

 signal n2543, n2544, n2545, n2546, …: std_logic;

 …

begin

 ALU_n2543 <= n2543;

 ALU_n2544 <= n2544;

 ALU_n2545 <= n2545;

 ALU_n2546 <= n2546;

-- ALU_n2543, ALU_n2543, ALU_n2543, ALU_n2543 are probes introduced to

monitor the n2543, n2544, n2545, n2546 signals, which are connected to the inputs

of gate ab_or_c_or_d.

 …

 U1250 : ab_or_c_or_d port map(ip1 => n2543, ip2 => n2544, ip3 => n2545, ip4

 70

=> n2546, op => Q(0));

 …

end SYN_rtl;

Figure 4.2 Modified Z80 CPU script segment

4.2 Analysis of Failure Manifestations

The failure manifestations of different circuit elements, including D flip-flop

used as CPU register bits and all the logic gates used by the ALU of the Z80 CPU are

analyzed.

4.2.1 Analysis of the CPU Register Bits

The logic synthesis result indicates that D flip-flops from the vtvtlib25 standard

cell library is used to represent the register bits of the Z80 CPU. The layout of the D

flip-flop is shown in Figure 4.3. The corresponding schematic with input stimuli is

illustrated in Figure 4.4.

Figure 4.3 Circuit layout for D flip-flop

 71

Figure 4.4 Circuit schematic for D flip-flop

The operation of the D flip-flop under a standardized input stimulus is shown in

Figure 4.5, where the value of the output signal Op will be updated with the value of

the input signal 1Ip at the rising edge of the clock signal.

Ip1

Op

Clk

Figure 4.5 Transient response under normal operation

Figure 4.6 shows the results of the SPICE simulations performed on the D flip-flop to

study its failure manifestations. The X-axis contains the different segments of the

flip-flop (,...2,1,...2,1 NNMM). For HCI and EM (Figure 4.6a and Figure 4.6b), the

Y-axis represents the percentage of demand transitions of a segment either with

respect to the asynchronous input signal (() IjiI /,) or the clock signal controlling

 72

the flip-flop (() clkclk IjiI /,). For TDDB (Figure 4.6c), it is shown instead the

percentage of logic combinations of the asynchronous input signal under which the

TDDB effect impacts a segment (() CjiC ,). On the top of each column, we have

included the failure manifestation observed for a segment (using the “detailed

manifestation” notation). When nothing is indicated, it means that the failure of a

segment has no effect on the circuit (i.e., the circuit behaves normally).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M0 M5 M7 M11 M16 M18 M24 M26 M27

|I(i,hci)|/I
|Iclk(i,hci)|/Iclk

Stuck-at-1 Stuck-at-1

a) HCI stress

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
1

N
2

N
3

N
4

N
5

N
6

N
7

N
8

N
9

N
10

N
11

N
12

N
13

N
14

N
15

N
16

N
17

N
18

N
19

N
20

N
21

N
22

N
23

N
24

N
25

|I(i,em)|/I
|Iclk(i,em)|/Iclk

St
uc

k-
at

-1

St
uc

k-
at

-1

St
uc

k-
at

-1

St
uc

k-
at

-1

St
uc

k-
at

-1

St
uc

k-
at

-1

St
uc

k-
at

-0

St
uc

k-
at

-0

St
uc

k-
at

-0

St
uc

k-
at

-0

St
uc

k-
at

-0

St
uc

k-
at

-0

St
uc

k-
at

-0

St
uc

k-
at

-0

St
uc

k-
at

-0
St

uc
k-

at
-0

St
uc

k-
at

-0

D
el

ay
-r

is
e

D
el

ay
-fa

ll

b) EM stress

 73

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27

|C(i,tddb)|/C

St
uc

k-
at

-0

St
uc

k-
at

-0

St
uc

k-
at

-0

St
uc

k-
at

-0

St
uc

k-
at

-0

St
uc

k-
at

-0

St
uc

k-
at

-0
St

uc
k-

at
-0

St
uc

k-
at

-0

St
uc

k-
at

-0

St
uc

k-
at

-0

St
uc

k-
at

-0
St

uc
k-

at
-0

St
uc

k-
at

-0

St
uc

k-
at

-1

St
uc

k-
at

-1
St

uc
k-

at
-1

St
uc

k-
at

-1

St
uc

k-
at

-1

St
uc

k-
at

-1

St
uc

k-
at

-1

St
uc

k-
at

-1

St
uc

k-
at

-1

St
uc

k-
at

-1

St
uc

k-
at

-1

c) TDDB stress

Figure 4.6 Z80 registers bits – Results of SPICE simulations.

The information provided by the SPICE simulations allows us to build the

failure rate models of the flip-flop for each failure manifestation. Let’s first focus on

Figure 4.6a. The only failure manifestation observed at the circuit level is stuck-at-1,

due to the failure of transistors 16M and 26M under the HCI effect. Using equations

(3.7) and (3.13) and the demand percentages on Figure 4.6a, the failure rate for

stuck-at-1 type of failure is

()
T
dhcihciatstuck τλλλ 2616

1

2
1

+=−− .

However, this expression is incomplete since we still need to include the

contributions to the stuck-at-1 failure rate from the other failure mechanisms. In

Figure 4.6b, the failure of interconnections 1N , 6N , 12N , 16N , 18N and 19N

under EM lead to stuck-at-1. Consequently, the contribution of the EM effect to the

stuck-at-1 failure rate is given by expression

 74

T
demememememem τλλλλλλ ⎟

⎠
⎞

⎜
⎝
⎛ +++++ 1918161261 4

3
4
3

2
1

4
3 . Finally, according to Figure 4.6c, the

stuck-at-1 failure manifestation under TDDB stress is provoked by nMOS transistors

5M , 16M and 26M (for a time percentage equivalent to 23) and pMOS

transistors 1M , 6M , 8M , 10M , 12M , 17M , 19M and 23M (for a time

percentage equivalent to 431). The contribution of the TDDB stress to the stuck-at-1

failure rate is tddbc λ
4
136 + . Combining these three partial results, the final expression

for the stuck-at-1 failure rate of the flip-flop is as follows:

() tddbememememememhcihciatstuck c
T
d λτλλλλλλλλλ

4
136

4
3

4
3

2
1

4
3

2
1

19181612612616
1 +

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +++++++=−− (4.1)

The stuck-at-0 failure rate can be calculated in a similar way (see Table 4.1).

Also, as shown in Figure 4.6b, transistors 8M and 14M lead to the delay-rise and

delay-fall manifestations, respectively. The corresponding failure rates are given by

expressions Td emriseDelay
8τλλ =− and Td emfallDelay

14τλλ =− .

The reliability models for the flip-flop are summarized in Table 4.1 using the

“simplified manifestation” notation.

Table 4.1 Reliability models for the flip-flop circuit element of the Z80 CPU

[]1,0−Delayλ 0−−atStuckλ 1−−atStuckλ

()
T
demem τλλ 148 +

()
tddb

clk
ememem

emememem

emememem

c

T

d

d

λ

τ

λλλ

λλλλ

λλλλ

⎟
⎠
⎞

⎜
⎝
⎛ +

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+++

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

++++

+++

4
1310

2
1

4
3

4
3

4
3

4
3

23103

25242217

151395 ()

tddb

ememem

ememem

hcihci

c

T
d

λ

τ

λλλ

λλλ

λλ

4
136

4
3

4
3

2
1

4
3

2
1

191816

1261

2616

+
+

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+++

++
+

+

 75

4.2.2 Analysis of Fault Models for Combinational Logic Elements

In Z80 CPU, all the arithmetic and logical instructions are executed in the

Arithmetic Logic Unit (ALU). The logic synthesis results indicate that ALU is

composed of pure combinational logic gates. There are no registers used in the ALU.

In this work, all the combinational logic gates in the ALU are analyzed. The analysis

can be extended to other combinational logic circuits of the microprocessor.

The logic synthesis results show that the ALU contains 461 logic gates of

different types. These types are listed in Table 4.2.

Table 4.2 Different type of logic gates used in the ALU of the Z80 CPU

 # of Input Signals Logic function
INV_1 1 a

NOR2_1 2 ba +
OR2_1 2 ba +

NAND2_1 2 ab
AND2_1 2 ab
XOR2_1 2 baba +

XNOR2_1 2 baba +
ABorC 3 cab +

MUX2_1 3 acba +
NOR3_1 3 cba ++

NAND3_1 3 abc
NAND4_1 4 abcd
NOR4_1 4 dcba +++
OR4_1 4 dcba +++

ABorCorD 4 dcab ++
NOT (ABorCorD) 4 dcab ++

Figure 4.7 and Figure 4.8 illustrate the standardized input signal stimuli used for the

3- and 4-inputs gates. The signal stimulus for the 2-inputs gates appears in Figure 3.6.

Note that the various input signal stimuli follow the criteria stated in Section 3.1.1.

 76

Figure 4.7 Standardized input signal stimuli for 3-inputs gates

Figure 4.8 Standardized input signal stimuli for 4-inputs gates

The reliability models for the logic gates are developed in a similar way as

explained in 3.2 for the AND2_1 gate. The results of the SPICE simulations for the

logic gates are provided in Appendix A.

A total of 120 different types of failure manifestations have been observed for

the ALU gates (see Appendix A):

66 types correspond to delays of the transitions of the output signal triggered at

specific combinations of the inputs. From them, 32 impact the falling transitions of

the output, while 34 impact the rising transitions.

 77

51 types correspond to behavioral changes of the gates leading to different logic

functions.

Two types correspond to the stuck-at-0 and stuck-at-1 manifestation types.

In order to cover all these different types of failure manifestations, we have

developed more than 250 reliability models for the ALU gates. Using the “simplified

manifestation” notation, it is possible to combine them and reduce these figures to 90

models for 19 manifestation types (namely, 1−Delay , 17.0−Delay , 25.0−Delay , 33.0−Delay ,

38.0−Delay , 4.0−Delay , 5.0−Delay , 6.0−Delay , 67.0−Delay , 75.0−Delay , 0−− atStuck , 1−− atStuck ,

06.0−DiffFunc , 13.0−DiffFunc , 19.0−DiffFunc , 25.0−DiffFunc , 38.0−DiffFunc , 5.0−DiffFunc , 63.0−DiffFunc).

Further, we have merged the various types of delays and different functions into a

single category. It leads to 49 models for four manifestation types, as shown in Table

4.3.

Table 4.3 Reliability models for logic gates used in the ALU

Delayλ 0−−atStuckλ

1−−atStuckλ DiffFuncλ

INV_1 ()emememhci

T
d

3210 222
2
1 λλλλτ

+++

tddbcλ
2
1 tddbλ

2
1

NOR2_1 ()emem

T
d

212
1 λλτ

+

()ememhcihci

T
d

4310 22
8
1 λλλλτ

+++

tddbcλ
4
3

 tddbλ

OR2_1 ()emememhci

T
d

5212 22
4
1 λλλλτ

+++

()emhcihci

T
d

410 2
8
1 λλλτ

++

tddbcλ
4
3 tddbc λ

4
13 +

tddbλ

NAND2_
1 ()ememhcihci

T
d

4310 44
8
1 λλλλτ

+++

()emem

T
d

214
1 λλτ

+

 tddbλ
4
3

tddbcλ

 78

Delayλ 0−−atStuckλ

1−−atStuckλ DiffFuncλ

XOR2_1
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++

++
emem

ememhci

T
d

75

413

22

22
4
1

λλ

λλλτ

em

T
d

62
1 λτ

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

++

+++

++

emem

emhcihci

hcihcihci

T
d

83

2119

750

62

2

2

8
1

λλ

λλλ

λλλ
τ

 tddbc λ
4
109 +

NOR3_1
⎟
⎠
⎞

⎜
⎝
⎛ + emem

T
d

14 4
1

6
1 λλτ

+

()emhcihcihci

T
d

3530 2
24
1 λλλλτ

+++

+ em

T
d

24
1 λτ

tddbcλ
8
7

 tddbλ
2
3

MUX2_1 ()emhci

T
d

511 53
12
1 λλτ

+

+
T
demhci τλλ ⎟

⎠
⎞

⎜
⎝
⎛ + 40 3

1
6
1

+

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+

+++

++

em

ememhci

hcihcihci

T
d

8

219

753

4

612

22

24
1

λ

λλλ

λλλ
τ

+ em

T
d

72
1 λτ

tddbcλ
2
1 tddbλ

2
1 tddbc λ

2
21+

+ tddbλ
+

tddbc λ⎟
⎠
⎞

⎜
⎝
⎛ +

2
11

+ tddbcλ
2
1

+ tddbcλ
2
1

ABorC ()emememhci

T
d

7537 5435
24
1 λλλλτ

+++

+

()ememhcihci

T
d

2130 2
24
1 λλλλτ

+++

+ hci

T
d

524
3 λτ

tddbcλ
8
5 tddbλ

8
3 tddbc λ⎟

⎠
⎞

⎜
⎝
⎛ +

2
1

+ tddbλ
8
7

+ tddbcλ
8
3

 79

Delayλ 0−−atStuckλ

1−−atStuckλ DiffFuncλ

NAND3_
1

T
d

ememhci

hcihci

τ

λλλ

λλ

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+++

+

432

10

4
1

4
1

24
1

24
1

24
1

+ em

T
d

112
1 λτ

+ em

T
d

26
1 λτ

 tddbλ
8
7 tddbcλ

2
3

XNOR2_1 ()emhci

T
d

7132
1 λλτ

+

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+++

+
ememem

hcihci

T
d

961

30

2224
1

λλλ

λλτ

+ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+++

++
ememhci

hcihcihci

T
d

3211

975

268
1

λλλ

λλλτ

tddbcλ
2
1 tddbλ

2
1 tddbc λ

2
910 +

NAND4_
1

T
d

ememhci

hcihcihci

τ

λλλ

λλλ

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+++

++

543

210

8
1

8
1

64
1

32
1

64
1

64
3

+ ()emem

T
d

3132
1 λλτ

+

+ em

T
d

216
1 λτ

 tddbλ
16
15

tddbcλ2

NOR4_1 em

T
d

18
1 λτ

+ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+++

++
ememhci

hcihcihci

T
d

537

530

264
1

λλλ

λλλτ

+ em

T
d

416
1 λτ

+ em

T
d

28
1 λτ

tddbcλ
16
15 tddbλ2

OR4_1 ()ememhci

T
d

219 22
16
1 λλλτ

++

+
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

++

+++

+

emem

emhcihci

hcihci

T
d

65

475

30

24

2
64
1

λλ

λλλ

λλ
τ

tddbcλ
16
15 tddbc λ

16
151+

tddbλ2

 80

Delayλ 0−−atStuckλ

1−−atStuckλ DiffFuncλ

NOT
(ABorCor
D)

()emem

T
d

434
1 λλτ

+

+
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

++

++

+

emem

emem

hcihci

T
d

76

21

75

56

1010

32

64
1

λλ

λλ

λλ
τ

+

T
demhcihci τλλλ ⎟

⎠
⎞

⎜
⎝
⎛ ++ 530 16

1
64
1

64
1

 tddbc λ
16
178 +

+ tddbcλ
2
1

+ tddbλ
16
23

ABorCor
D ()ememhci

T
d

539 22
8
1 λλλτ

++

+

T
demhcihci τλλλ ⎟

⎠
⎞

⎜
⎝
⎛ ++ 730 16

1
64
1

64
1

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+++

++
ememem

emhcihci

T
d

982

175

5610

1032
64
1

λλλ

λλλτ

tddbcλ
16
13 tddbλ

16
3 tddbc λ⎟

⎠
⎞

⎜
⎝
⎛ +

2
1

+ tddbcλ
16
9

+ tddbλ
16
19

4.3 Lifetime Model Parameters Calculation

In order to calculate the failure rates of the reliability models developed in the

previous section, we need to obtain all the lifetime model parameters, especially the

model prefactors for all three failure mechanisms.

The parameters in the lifetime models of different failure mechanisms are

estimated from accelerated testing experiments. For example, for the EM failure

mechanism, the current density exponent and thermal activation energy in equation

(2.2) can be estimated by testing the metal interconnect at different current and

temperature level, respectively. These parameter values usually remain unchanged at

different foundries if the manufacturing processes are almost identical.

 81

However, the lifetime model prefactors will depend on the quality control and

the material properties. Even though they can also be obtained from accelerated

testing, the actual value varies from one foundry to another. The values of the

prefactors are set by each semiconductor foundry to keep the lifetime of

semiconductor devices within a specific reliability target. A general assumption is

that the foundry will do their best to make sure there is no dominating failure

mechanism, which indicates that the failure rates for different mechanisms are

roughly the same. Without conducting device life testing, we can estimate the model

prefactors from the above assumption.

The reliability target for a semiconductor chip is usually about 30 years [60],

which translates to a FIT value of around 3,800. This FIT value is for the device

nominal operating conditions, which means the device is operating under dynamic

stress conditions. With the assumption of no dominant failure mechanism, the FIT

value is evenly distributed for the three failure mechanisms, which means each failure

mechanism has a FIT value of about 1,300.

The lifetime model prefactors of all three failure mechanisms can be calculated

based on the above conditions for the case of the Z80 microprocessor. The results of

logic synthesis with the vtvtlib25 standard cell library show that the total number of

logic gates and flip-flops is on the order of 5,000. The total number of transistors is

about 30,000. The number of metal interconnects is in the neighborhood of 40,000.

The nominal voltage bias is 2.5V, and the temperature is 300K.

 82

4.3.1 TDDB Lifetime Model Prefactor

Based on the above assumption, the total failure rate for the TDDB mechanism

is

16103.11300 −−×== hrFITTDDBλ

From the standard inputs pattern simulation, the average duty factor for the

TDDB effect is about 0.5, which means that a transistor is stressed by the TDDB

mechanism about 50% of the time during circuit operation. However, in the TDDB

lifetime model, the failure rate is calculated assuming the gate oxide is stressed

constantly. Therefore, the failure rate we should use in the lifetime model is the

failure rate at operating condition divided by the average duty factor. The adjusted

failure rate is

λ'TDDB =
λTDDB

0.5
= 2.6 ×10−6 hr−1

The total lifetime for TDDB is

t f '(TDDB) =
1

λ'TDDB

= 3.85 ×105 hr

The channel length of a MOSFET in the vtvtlib25 cell library is 240nm. The

channel width of a nMOSFET is 840nm, while the pMOSFET channel width is

1680nm. The average area of the gate oxide of a MOSFET is the average of a

nMOSFET and pMOSFET gate area.

AMOSFET = 240 ×
840 +1680

2
×10−18 m2 = 3.02 ×10−13 m2

 83

At nominal operating conditions, with the typical value β =1.64 , a = −78 ,

b = 0.081, c = 8.81×103, and d = −7.75 ×105 in the lifetime model [51], the model

prefactor is

ATDDB =
t f '(TDDB) × 30000

1
AMOSFET

⎛

⎝
⎜

⎞

⎠
⎟

1
β
Vgs

a +bT exp c
T

+
d

T 2

⎛
⎝
⎜

⎞
⎠
⎟

= 6.06 ×1014

4.3.2 HCI Lifetime Model Prefactor

With the same assumptions as before, the total failure rate for the HCI effect is

λHCI =1.3×10−6 hr−1

The average duty factor for HCI effect is about 0.01. Based on an analysis

similar to the one conducted for the TDDB failure rate, the adjusted total failure rate

for the HCI mechanism is

λ'HCI =
λHCI

0.01
=1.3 ×10−4 hr−1

The total lifetime for HCI is

t f '(HCI) =
1

λ'HCI

= 7.69 ×103 hr

The nMOSFET transistor channel width is

W = 8.4 ×10−7 m

The average substrate current is about

AIsub
8107.1 −×=

With the typical value of 5.1=n and eVEaHCI 15.0−= in the lifetime model [51],

The lifetime prefactor is

 84

AHCI =
t f '(HCI) ×15000
Isub

W
⎛
⎝
⎜

⎞
⎠
⎟

−n

exp EaHCI

κT
⎛
⎝
⎜

⎞
⎠
⎟

=1.10 ×108

4.3.3 EM Lifetime Model Prefactor

The total failure rate for the EM effect is

λEM =1.3×10−6 hr−1

The average duty factor for the EM mechanism is about 0.03 as observed from

the input pattern simulation. Similarly, the adjusted total failure rate for EM is

λ'EM =
λEM

0.03
= 4.33 ×10−5 hr−1

The total lifetime for EM is

t f '(EM) =
1

λ'EM

= 2.31×104 hr

The interconnect cross section area is

2131088.2 mA −×=

The average value of current flow in the interconnect is

I = 6.5 ×10−5 A

With the typical value of 2=n and eVEaEM 8.0= in the lifetime model [51],

The EM lifetime model prefactor is

AEM =
t f '(EM) × 40000
I
A

⎛
⎝
⎜

⎞
⎠
⎟

−n

exp EaEM

κT
⎛
⎝
⎜

⎞
⎠
⎟

=1.73 ×1012

With the actual values of the lifetime model prefactors, the failure rates for all

the reliability models can be calculated.

 85

4.4 Usage and Failure Probability Distribution Profiles

The calculation of the hardware failure probability of hardware components

using the reliability models developed in Section 4.2 requires hardware usage

information for the software under consideration. Once the usage profile is obtained,

we can build the hardware failure probability distribution profile, which can be used

to study the software reliability induced by hardware failures.

The software code used here is a 32-bit floating point division program that does

the division of two single precision floating point numbers and returns the quotient

also as a single precision floating point number. Division is the most complicated

operation compared with other elemental operations, such as addition, subtraction and

multiplication. Since Z80 is an 8-bit CPU, a 32-bit floating point division operation is

quite complex to implement on this microprocessor. The software code is first written

in C language and compiled into Z80 assembly code using SDCC compiler, which is

a retargettable, optimizing ANSI - C compiler that targets the Intel 8051, Maxim

80DS390 and the Zilog Z80 based MCUs [67]. The assembly program contains 968

lines of code.

Figure 4.9 shows the usage profile of the registers of the Z80 CPU at the end of the

execution of the floating point division program with a particular operational profile

used. The X axis denotes the index of all the Z80 registers, including the user

programmable registers and the hidden ones. The indexes of all the user

programmable registers are listed in Table 4.4. The hidden registers are indexed from

23 to 53. The Y axis denotes the indexes of register bits in the registers. The number

of demands at the end of the software execution is displayed in the Z axis.

 86

Table 4.4 Index of user programmable registers

Name ACC Ap F Fp B Bp C Cp D Dp E

Index 1 2 3 4 5 6 7 8 9 10 11

Name Ep H Hp L Lp I R IX IY SP PC

Index 12 13 14 15 16 17 18 19 20 21 22

1

16
S1 S11 S21 S31 S41 S51

0

2000

4000

6000

8000

10000

12000

N
u

m
b

e
r

o
f

D
e
m

a
n

d
s

Bit Index

Register Index

Figure 4.9 Usage profile for all the CPU registers for the division software program

We can see that the usage varies for different registers. Some of them are used

quite frequently, while there are several registers not used at all during software

execution. Some of the hidden register bits have higher demand than the user

programmable ones. The usage of different register bits within a particular register

also varies. For registers that are used to store data information, the usage is roughly

 87

randomly distributed. But for the registers storing address information, for example

the program counter (PC) register, the lower bits are used more often than the higher

bits.

Quantitatively, the total number of demands to the registers at the end of the

software execution is about 200000. Out of the 53 registers, 8 registers (e.g., PC, R)

are demanded within [31000, 10001], 11 registers (e.g., F, ACC, L, SP, H) within

[10000, 1001], 9 registers (e.g., E, C, B, D) within [1000, 101], 3 registers (e.g., IX,

IY) within [100, 1], and 22 registers (e.g., Ap, Fp, Bp, Cp, Dp, Ep, Hp, Lp, I) are not

used. The coefficients of variation (i.e. the ratio of the standard deviation to the mean)

for the usage of different register bits within the registers are also calculated. The user

programmable registers with the highest coefficients of variation are SP (2.17) and

PC (1.92), and the lowest are E (0.08), and H (0.01).

Figure 4.10 shows the failure probability distributions of the registers of the Z80

CPU at the end of the execution of the division application with the particular

operational profile used.

 88

1

16
S1 S11 S21 S31 S41 S51

0

1E-13

2E-13

3E-13

4E-13

5E-13

6E-13

F
a
il

u
re

 p
ro

b
a
b

il
it

y

Bit Index

Register Index

a) Delay failure manifestation.

1

16
S1 S11 S21 S31 S41 S51

0

2E-11

4E-11

6E-11

8E-11

1E-10

1.2E-10

F
a
il
u

re
 P

ro
b

a
b

il
it

y

Bit Index

Register Index

b) Stuck-at failure manifestation.

Figure 4.10 Failure probability distributions for all the CPU registers for the division

software program

 89

The software-specific hardware failure profile of the Z80 registers for the delay

manifestation is shown in Figure 4.10a. The total delay probability of all registers at

the end of the software execution is about 9E-12. Out of the 53 registers, 2 registers

(all hidden registers) have probability within [2E-12, 1E-12], 14 registers (e.g., PC, R,

F, ACC) within [10E-13, 1E-13], 10 registers (e.g., L, SP, H, E, C, B) within [10E-14,

1E-14], 3 registers (e.g., D, IX) within [10E-15, 1E-15], 2 registers (e.g., IY) within

[10E-16, 1E-16], and 22 registers (e.g., Ap, Fp, Bp, Cp, Dp, Ep, Hp, Lp, I) are not

affected. The user programmable registers with the highest coefficients of variation of

delay probability are SP (2.17) and PC (1.92), and the lowest are E (0.08), H (0.01).

The software-specific hardware failure profile of the Z80 registers for the stuck-

at manifestation is shown in Figure 4.10b. The total stuck-at probability of all

registers at the end of the software execution is about 1E-08. Out of the 53 registers,

32 registers (including all the user programmable registers in the following order: PC,

SP, IX, IY, R, F, ACC, L, H, E, C, B, Ap, Fp, Bp, Cp, Dp, Ep, Hp, Lp, I, D) have

failure probability within [7E-10, 1E-10], and the other 21 registers (all hidden)

within [10E-11, 3E-11]. The user programmable registers with the highest

coefficients of variation of stuck-at probability are PC (0.37) and R (0.34), and the

lowest are registers Lp (1.48E-08) and I (1.48E-08).

As can be seen, the results for the delay manifestations follow the same pattern

as the number of demands (Figure 4.9). This means the delay failure probability is

highly dependent on the hardware usage induced by the software execution. On the

contrary, the stuck-at failure probability is always positive even when the register bits

are not used. This is due to the fact that the stuck-at manifestation is partly triggered

 90

by the TDDB effect, and the latter is stressing the semiconductor devices even when

the device is under static usage conditions (as explain in Section 3.1.1).

Figure 4.11 illustrates the combined failure probability distribution profile of the Z80

CPU registers. The failure profile is similar to the stuck-at failure profile in Figure

4.10b, since the stuck-at manifestation is dominant over the delay manifestation by a

difference of several orders of magnitude.

1

16
S1 S11 S21 S31 S41 S51

0

2E-11

4E-11

6E-11

8E-11

1E-10

1.2E-10

F
a
il
u

re
 P

ro
b

a
b

il
it

y

Bit Index

Register Index

Figure 4.11 Combined failure probability distribution for all the registers for the

division software program

Figure 4.12 shows the usage information of the ALU gates of the Z80 CPU for the

division application software. All the gates are included in a possible ALU layout in

the 2-D map. We use a gray scale to indicate usage information: the deeper the colors

in the map, the higher the number of demands during the software execution. It can

be seen that the usage varies for different gates in the ALU.

 91

The total number of demands for all the gates is about 4E10. Out of the 461

logic gates, 128 are demanded within [6E4, 1E4], 294 gates within [10E3, 1E3], 27

gates within [10E2, 1E2], and 12 are not demanded. Per type, the most demanded

gate types are mux2_1 and nor2_1 with the number of demands within [75000,

80000], and the less demanded are or2_1 and or4_1 (less than 30,000). For the gates

of the same type, the highest demand variance is experimented by types nor4_1 and

inv_1, while the lowest variance is experienced by nand2_1 and xnor2_1 (with

coefficients of variation of 1.45, 1.02, 0.42 and 0.06, respectively). Per individual

gates of the same type, the gates with the maximum number of demands are of type

nor4_1 (with one gate with 55,681 demands) and mux2_1 (with one gate with 45,271

demands), and the minimum number of demands are of type ABorC, inv_1, nor2_1

and or2_1 (with at least one gate with 0 demand). The highest demand average are

observed in gates of type or4_1 (15,460 demands) and not_ab_or_c_or_d (15,454

demands), while the lowest in types inv_1 (4,070 demands) and nand2_1 (3,150

demands).

 92

Figure 4.12 ALU usage map for the division software program

Figure 4.13 shows the failure probability information for the ALU gates of the Z80

CPU after one run of the division application software.

a) Delay failure manifestation.

 93

b) Different-Function failure manifestation.

c) Stuck-at failure manifestation.

Figure 4.13 ALU map of probability distributions of different failure

manifestations for the division program

 94

The software-specific hardware failure profile of the Z80 ALU gates for the

delay manifestation is shown in Figure 4.13a. The total delay failure probability of

the ALU gates at the end of the software execution is 2.6E-09. Out of the 461 gates,

86 have probabilities within [8E-11, 1E-11], 92 gates within [10E-12, 1E-12], 247

gates within [10E-13, 1E-13], 24 gates within [10E-14, 1E-14], and 12 are not

affected. Per gate type, the highest failure probability types are mux2_1 (1.33E-09)

and xor_1 (5.55E-10), and the lowest are of type or2_1 (3.45E-12) and nor4_1

(2.10E-12). Among the gates of a same type, the highest probability variance is

experienced by gates of type nor4_1 and inv_1, while the lowest variance is

experienced by nand2_1 and xnor2_1 gates (with coefficient variations of 1.45, 1.02,

0.42 and 0.06, respectively). Per individual gates within a type, the gates with the

maximum failure probability are of type mux2_1 (with one gate with probability

7.6E-11) and xnor2_1 (with one gate with probability 7.3E-11), and gates with the

minimum failure probability are of type ABorC, inv_1 nor2_1, and or2_1 (with at

least one gate with 0 probability). The highest probability averages are observed in

gates of type xnor2_1 (6.97E-11) and xor2_1 (2.13E-11), while the lowest in types

nand2_1 (2.74E-13) and nor4_1 (2.10E-13).

The failure probability profile of the Z80 ALU gates for the different function

manifestation is displayed in Figure 4.13b. The total failure probability of the

different function manifestation of the ALU gates at the end of the software execution

is 1.12E-09. Of all the gates in the ALU, 2 gates have probabilities within [1E-11, 2E-

11], 312 gates within [10E-12, 1E-12], 70 gates within [10E-13, 9E-13], 77 gates (the

inv_1 type) are not affected. Per gate type, the highest failure probability types are

 95

xor2_1 (2.36E-10) and nor2_1 (1.99E-10), and the lowest are or4_1 (2.99E-12) and

inv_1 (0). Among the gates of the same type, the highest probability variance is

experienced by gates of type nor2_1 and nand2_1 (with coefficients of variation of

8.07E-08, 2.93E-08), while the lowest variance is experienced by gates of type

ab_or_c_or_d, mux2_1, nor3_1, nor4_1, or2_1, xnor2_1 and xor2_1 (0 variation

coefficient). Per individual gates of the same type, the gates with the maximum

failure probability are of type xnor2_1 (with one gate with probability 1.8E-11) and

xor2_1 (with one gate with probability 9.1E-12), and the minimum are types inv_1

(with at least one gate with 0 probability). The highest probability averages are

observed in gates of type xnor2_1 (1.78E-11) and xor2_1 (9.09E-12), while the

lowest in types nor2_1 (1.50E-12) and mux2_1 (9.46E-13).

The failure probability profile for all the gates in the ALU for the stuck-at

manifestation is shown in Figure 4.13c. The total stuck-at failure probability of all the

ALU gates at the end of the software execution is 7.65E-10. Out of the 461 gates, 417

have probabilities within [4.5E-12, 1E-12], while 44 gates (of types

not_ab_or_c_or_d and xor2_1) are not affected. Per gate type, the highest failure

probability types are nor2_1 (2.28E-10) and inv_1 (1.46E-10), and the lowest are

or4_1 (2.99E-12) and not_ab_or_c_or_d and xor2_1 (0). Within the gates of a same

type, the highest probability variance is experienced by gates of type nor2_1,

ab_or_c_or_d, nor4_1 and nand2_1 (with coefficients of variation within [8.53E-08

1.46E-08], while the lowest variance is experienced by gate type ABorC, and2_1,

inv_1, mux2_1, nand3_1, nand4_1, nor3_1, or2_1 and xnor2_1 (0 variation). Per

individual gates of the same type, the gates with the maximum failure probability are

 96

of type or4_1 (with one gate with probability 4.40E-12) and or2_1 (with one gate

with probability 3.80E-12), and gates with the minimum probability are types

not_ab_or_c_or_d and xor2_1 (with at least one gate with 0 probability). The highest

probability averages are observed in gates of type or4_1 (4.37E-12) and or2_1

(3.79E-12), while the less in types nand3_1 (1.31E-12) and nand2_1 (1.15E-12).

Figure 4.14 shows the combined failure probability distribution of the ALU gates of

the Z80 CPU for the division application software (i.e., Delay+DiffFunc+Stuck-at in

Figure 4.13).

Figure 4.14 ALU map of combined failure probability distribution for the

division program

The total failure probability of all the ALU gates at the end of the software

execution is 4.48E-09. Out of the 461 gates, 115 gates have probabilities within [10E-

11, 1E-11], and 346 gates within [10E-12, 1E-12]. Per gate type, the highest failure

probability types are mux2_1 (1.53E-09) and xor2_1 (7.91E-10), and the lowest are

 97

or2_1 (2.46E-11) and or4_1 (1.35E-11). For the gates of the same type, the highest

probability variance is experienced by gates of type mux2_1 and xor2_1, while the

lowest variance is experienced by gates of type xnor2_1 and nand2_1 (with

coefficient variations of 0.82, 0.48, 0.05 and 0.03, respectively). Per individual gates

of the same type, the gates with the maximum failure probability are of type xnor2_1

(with one gate with probability 9.2E-11) and mux2_1 (with one gate with probability

7.8E-11), and the minimum are of types nor2_1 (with one gate with probability 3E-12)

and inv_1 (with at least one gate with probability 2E-12). The highest probability

averages are observed in gates of type xnor2_1 (8.94E-11) and xor2_1 (3.04E-11),

while the lowest occur in types nor2_1 (3.70E-12) and inv_1 (2.73E-12).

The hardware failure probability distributions discussed before is based on the

execution of the division software program with a particular set of input values. The

probability distribution profile is not constant for different software programs. Figure

4.15 shows the ALU gates usage map for a 16-bit bubble sorting software program.

The program sorts an array of integer numbers in descending order. The assembly

language program contains 342 lines of code. The corresponding failure probability

distribution map of all the gates in the ALU is illustrated in Figure 4.16.

 98

Figure 4.15 ALU usage map for the bubble sorting program

Figure 4.16 ALU map of combined failure probability distribution for the bubble

sorting program

 99

By comparing the ALU gate usage map of the bubble sorting program to that of

the division program (Figure 4.12), we can see that the maximum number of demands

is higher in the division program. The usage distributions for all the gates are

different as shown in the difference of gray areas on the usage map. However, there

are also similarities between the two maps. The most frequently demanded gates are

located roughly in the same spots, which means that even though these are two

different software programs, the most demanded hardware components are almost the

same. Similar conclusions can be made for the comparison of the failure probability

distribution maps of the two programs (Figure 4.14 and Figure 4.16).

This information is useful for both software and hardware reliability engineers,

especially when working on developing embedded systems, where the software

programs used are more or less fixed. For software reliability engineers, they should

put more emphasis on studying the hardware components with high failure

probabilities during the execution of the software program, rather than assuming that

all the hardware components have the same probability of failure. For hardware

reliability engineers, they should work with the hardware designer to decrease the

failure probability of failure by making proper adjustments for the highly stressed

hardware components. This will be the most efficient way to increase both the

hardware reliability and the reliability of the software running on the hardware device.

The effects of different software input values and different compilers on the

hardware failure probability distribution are also analyzed in [68]. The analyses

indicate that while different inputs may yield slightly different failure probability

values, the shape of the failure distribution is roughly the same. Different compilers

 100

could also lead to different failure distributions. Compilers that tend to use more

registers to store intermediate data will result in shorter execution time.

 101

Chapter 5 Transient Failures and Models

The impact of hardware failures on software reliability is discussed in detail in

the previous three chapters, where only permanent failures are considered. However,

for some systems, such as those used for space applications, transient failures caused

by external radiation become an important factor, which could impact the reliability

of the system. In this chapter, transient failures from different sources of radiation are

studied. Then the case study used in Chapter 4 is extended to consider the transient

failure probability distributions of the same hardware devices in a satellite application

environment.

5.1 Transient Failures

5.1.1 Transient Failure Introduction

Transient failures, also called soft errors or Single Event Upsets (SEUs) [69],

appear in semiconductor devices during system operation due to electrical noise (e.g.,

noisy power supply) or external radiation such as α-particles, cosmic rays or nuclear

reactions. SEUs mainly consist of the generation of electron-hole pairs due to the

collision of energetic particles with the silicon atoms, which in turn can lead to

temporal voltage and current peaks in the circuit. So, contrary to permanent failures,

SEUs do not introduce physical defects in the circuit.

Electrical noise may come from well-known sources such as a noisy power

supply or radiation from lightning. Extensive design efforts have been made during

the last decades to make electronics immune to such noise.

 102

The α-particles are emitted by radioactive impurities (e.g., uranium) present in

packaging materials and the interconnect wires of integrated circuits [70]. Nowadays,

the SEU rate induced by α-particles can be drastically reduced by the use of highly

purified materials (e.g., α-particle emission from chip metallization can be reduced

by a factor of approximately 1000 by using a highly purified aluminum with an

impurity concentration of the order of 2ppb [71]).

Cosmic rays are the main the source of radiation in deep space leading to SEUs

in microelectronic devices, in particular due to proton and heavy ion particles [72].

Within the earth’s atmosphere the major causes of SEUs are the neutron particles

from spallation reactions occurring when the galactic cosmic rays collide with the

oxygen and nitrogen atoms in the air. At sea level, about 97% percent of the

remaining cosmic ray particles are neutrons. Neutrons are expected to cause upsets in

microelectronic devices within 18km in the atmosphere. Energetic protons are also

abundant in the near-Earth Van Allen belts.

Nuclear reactions (e.g., from spacecrafts or nuclear power-plant reactors) also

lead to an important emission of neutrons [72]. In particular, in future nuclear-

powered space missions from NASA, neutrons induced from space nuclear reactors

will have an important impact on the reliability of microelectronic devices used in the

spacecraft.

5.1.2 Impact on Higher Hardware Levels

SEUs mainly manifest themselves in the form of pulses in combinational logic (a

temporal peak of current or voltage in a signal) and bit-flips in storage elements (the

stored bit changes from 0 to 1 or vice-versa) [73]. However, unlike the case of

 103

permanent failures, SEUs in combinational logic are less likely to propagate to the

storage elements due to a set of well-known masking mechanisms (i.e., logical

masking, electrical masking and latching-window masking [73]).

Therefore, this chapter focuses on investigating the impact of SEUs on hardware

storage elements, such as flip-flops. The failure rates of bit-flips from different

radiation sources are introduced in the following section.

5.2 Failure Rate Calculation

5.2.1 Heavy Ions Induced SEUs

Due to their high Linear Energy Transfer (LET) values, heavy ions can cause

direct ionization when passing through microelectronic devices and leading to SEUs.

The LET corresponds to the amount of energy lost by the radiation particles per unit

of distance traveled, which is deposited into the device. The fundamental assumption

of the upset mechanism is that there is a Sensitive Volume (SV) within a

semiconductor device that can be upset by the passage of the radiation particles. The

SV is thus independent from the radiation particles considered. The SV is generally

modeled as a right Rectangular Parallelepiped (RPP) shape with lateral dimensions x

and y and thickness z. Associated with the SV is a Cross Section (CS) that can be

interpreted as the projection of the SV in the direction of the movement of the

radiation particles.

The data needed to calculate the heavy ions induced failure rate is shown in

Figure 5.1.

 104

shieldingθSpacecraft shielding thickness ()shieldingθSpacecraft shielding thickness ()

Radiation elements range ()elementsRRadiation elements range ()elementsR
IC saturation cross section (CSm)

IC cross section fitting parameters (Lo, W, S)

IC sensitive volume thickness (z)

Environment model (EM)

Spacecraft orbit (O)

Analytical
modeling

for heavy ions
induced

failure rate
Hλ

Figure 5.1 Heavy ions SEU rate calculation

According to Figure 5.1, three different types of data are necessary to calculate

the heavy ions induced failure rate:

 Data dependent upon the design and technology of the IC storage elements

(z, Lo, W, S, CSm),

 Data dependent upon the operational space environment of the spacecraft

(Relements, EM),

 Data dependent upon the particular characteristics of the mission and the

spacecraft design (θshielding, O).

The physical meaning of each parameter is described as follows:

 IC sensitive volume thickness (z) is the thickness of the Sensitive Volume

(SV).

 IC cross section fitting parameters (Lo, W, S) are a set of values used to

approximate the Cross Section (CS) curve as a function of the Linear

Energy Transfer (LET). They correspond to the onset threshold LET (Lo),

width (W) and shape (S) of a Weibull distribution.

 105

 IC saturation cross section (CSm) is the value that CS approaches as LET

gets very large. It is equivalent to area xy of the SV.

 Radiation elements range (Relements) refers to the range of radiation elements

present in the environment (e.g., heavy ions He+2 to Ni+28).

 Environment model (EM) corresponds to the operational environment of the

spacecraft. It considers long-term average and worst case particle fluxes.

 Spacecraft shielding thickness (θshielding) corresponds to the thickness of the

spacecraft shielding.

 Spacecraft orbit (O) corresponds to the spacecraft orbit, including Near-

Earth Interplanetary orbits (e.g., earth to mars) and orbits inside the

magnetosphere.

Experimental data for the (saturation) cross section (CS, CSm) and the fitting

parameters (Lo, W, S) are available from on-ground based radiation tests. These tests

are performed by subjecting the device to radiation particles of a range of LETs. The

sensitive volume thickness (z) is given by the semiconductor technology

specifications. The radiation elements range (Relements), environmental model (EM),

spacecraft shielding thickness (θshielding) and orbit (O) can be determined from the

spacecraft and mission specifications.

The analytical modeling for the heavy ions induced failure rate is shown in

Figure 5.2, and is based on the IRPP model [74-76]. The model has been

implemented by CREME96 program [77, 78]. CREME96 (Cosmic Ray Effects on

Micro-Electronics) is a suite of computer program developed at the Naval Research

 106

Laboratory. It has become a widely used design tool in the aerospace industry for

SEU rate calculation.

() () ()()LF
dL
dLfEf ==

∫Φ= dssfLAER p)()()(

() S

W
LL

eLF
⎟
⎠
⎞

⎜
⎝
⎛ −

−
−=

0,0max

1)(

∫= dEEfERH)()(λ

),(TRANS)(shieldingfluxL θ=Φ

),,(FLUX OEMRflux elements=

shieldingθ

CSm, z

Lo, W, S

elementsR , EM, OelementsR , EM, O

Hλ
()),(HUP, zCSsfA mp =

E, ∫dE Variable E is the threshold energy for generating a device critical

charge, whose integration range is provided by the CREME96

FLUX module.

flux Heavy ions flux spectra outside of the spacecraft, calculated using

the CREME96 FLUX module.

Φ(L) Integral flux over ion LET for the environment of concern,

calculated using the CREME96 TRANS module.

Ap Average projected area of the right rectangular parallelepiped

shaped sensitive volume.

f(s) Distribution of path lengths through the sensitive volume.

R(E) The upset rate for a particular threshold energy.

F(L) The integral Weibull distribution describing the shape of the CS

versus LET curve.

L Threshold LET

f(E) Probability density function converted from the CS versus LET

curve.

 107

Figure 5.2 Analytical modeling for heavy ions induced failure rate

5.2.2 Protons Induced SEUs

The basic physics of the upset interaction for protons is the same as for heavy

ions. Both types of upsets are caused by the ionization of a device after it collects

charge produced by the ionization of a passing radiation particle. The difference is

that heavy ions can produce SEUs directly due to the high LET values, while proton

upsets are caused by the ionization of secondary particles produced by a nuclear

reaction in the vicinity of the sensitive volume.

The data needed to calculate the protons induced failure rate is shown in Figure

5.3.

IC cross section fitting parameters (A, B, Eo, W, S)

Environment model (EM)

Spacecraft orbit (O)

Analytical
modeling

for protons
induced

failure rate
Pλ

shieldingθSpacecraft shielding thickness ()shieldingθSpacecraft shielding thickness ()

IC saturation cross section (CSm)

Figure 5.3 Protons SEU rate calculation

The environment model (EM), the spacecraft shielding thickness (θshielding), the

spacecraft orbit (O), and the saturation cross section (CSm) are defined in Section

5.2.1. Parameters A, B, Eo, W, S are used to adjust the cross section curve. The

analytical modeling for the proton induced failure rate is shown in Figure 5.4, and is

based on the Bendel and Petersen models [79] and the Weibull distribution.

 108

∫= dEEJEP)()(σλ
[]418.0

14
5.0

124)(Ye
A

E −−⎟
⎠
⎞

⎜
⎝
⎛=σ

)(18 5.0

AE
A

Y −⎟
⎠
⎞

⎜
⎝
⎛=

[]418.0
14

5.0

1)(Ye
A
BE −−⎟

⎠
⎞

⎜
⎝
⎛=σ

),,protons(OSMFLUXflux =

OR

Pλ
A, B

EM, O

),()(shieldingfluxTRANSEJ θ=shieldingθ

()

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

⎟
⎠
⎞

⎜
⎝
⎛ −

−
S

W
EE

m eCSE
0,0max

1)(σEo, W, S, CSm

E, ∫dE Variable E is the proton energy, whose integration range is provided

by the CREME96 FLUX module.

σ(E) Proton cross section as a function of proton energy.

J(E) Differential proton flux at the sensitive volume.

Figure 5.4 Analytical modeling for protons induced failure rate

5.2.3 Neutrons Induced SEUs

Similar to the protons induced SEUs, neutron upsets are caused by the ionization

of secondary particles produced by a nuclear reaction around the sensitive volume.

We distinguish between the upset rate caused by neutrons present in the earth’s

atmosphere (Figure 5.5) and neutrons emitted by spacecrafts nuclear reactors (Figure

5.6).

 109

Atmospheric neutron flux (F)

IC sensitive volume (V)

Neutron induced error (X)

Analytical
modeling

for neutrons
induced

failure rate

(atmosphere)

'
Nλ

Figure 5.5 Atmospheric neutron SEU rate calculation

Nuclear reactor source neutron flux (Fs)

IC sensitive volume (V)

Neutron induced error (X)
Analytical
modeling

for neutrons
induced

failure rate

(spacecrafts
nuclear

reactors)

''
Nλ

shieldingθReactor shielding thickness ()shieldingθReactor shielding thickness ()

IC - reactor distance (Dst)

shieldingMReactor shielding material ()shieldingMReactor shielding material ()

Figure 5.6 Spacecraft nuclear reactor neutron SEU rate calculation

The concept of IC sensitive volume (parameter V) has already been described in

Section 5.2.1. Parameter X is the value of the neutron-induced error (NIE) as a

function of the device critical charge [80]. F is the integral flux of neutrons present in

the atmosphere with energy above 1MeV. Regarding spacecraft nuclear reactors, Fs

represents the neutron flux emitted by the reactor, Dst is the distance between the

reactor and the target semiconductor devices, Mshielding is the shielding material of the

reactor, and θshielding is the reactor shielding thickness.

 110

Letaw and Normand calculated the neutron-induced error (NIE) as a function of

the device critical charge for different environments [80]. They proposed a simple

analytical model for the neutron induced SEU rate as the product of parameters F, V

and X, as shown in Figure 5.7 and Figure 5.8.

XVFN ⋅⋅=λF, V, X '
Nλ

Figure 5.7 Analytical modeling for atmospheric neutrons induced failure rate

XVFN ⋅⋅=λ

),,,(stshieldingshieldings DMFfF θ=stshieldingshieldings DMF ,,, θ

V, X
''
Nλ

Figure 5.8 Analytical modeling for spacecraft nuclear reactor neutrons induced

failure rate

Value F for the neutron flux depends on the environment. For atmospheric

neutrons (Figure 5.7), a typical neutron flux above 1 MeV is 1cm-2s-1. For nuclear

reactor induced neutrons, the neutron flux at the surface of the microelectronic

devices F is inversely proportional to the square of the distance to the neutron source

Dst. The flux value can also be reduced by the shielding material. The effectiveness of

the shielding should be obtained through radiation testing. For example, the neutron

flux can be reduced by 1 magnitude with LiH shielding of 7.8cm thickness [81].

Therefore, the final flux value F can be calculated as a function of Fs, Mshielding,

θshielding and Dst, as shown in Figure 5.8.

 111

5.3 Extension of Permanent Failure Probability Results

With the information on transient failures above, the study of the hardware

failure probability distribution can be extended to include the case for transient

failures. We now consider the computer system described in the last chapter is used in

a satellite application. The orbit considered here is a Highly Elliptical Orbit (HEO)

with an inclination of 27 degrees around the earth (with an apogee of 35449 km and

perigee of 3997 km). The period of the orbit is 11 hr 39 min. The environment model

corresponds to a solar quiet condition with long-term average SEU rates. Assume the

shielding thickness for the satellite is 100 mils (which equals to 0.25cm). The range

of radiation elements includes all possible heavy ions (atomic number from 2 to 92)

and protons. We assume that a nuclear reactor will not be used for the satellite orbit,

which means there will be no neutron in this orbit environment.

To calculate the SEU rates for different radiation sources, the parameters in

Figure 5.2 and Figure 5.4 have to be obtained. The environment and mission orbit

related parameters can be chosen based on the above description. The IC storage

elements related parameters should be extracted from radiation testing. Since we do

not have such testing data available for the flip-flops in the vtvtlib25 cell library, the

radiation testing data of similar technology is used, assuming they have similar SEU

rates. Ground based radiation tests have been performed on the registers of the

PPC750 microprocessor by IBM and Motorola [82], The PPC750 microprocessor is

also based on the CMOS 0.25μm technology. The Weibull fitting parameters are

extracted from the test data of the PPC750 registers. All the parameters needed are

summarized in Table 5.1.

 112

Table 5.1 Parameters for the calculation of SEU rates for the HEO orbit profile

Parameters Heavy ions Protons

z 2μm

Lo 3.6 MeV-cm2/mg

W 30.82 MeV-cm2/mg 88.98 MeV

S 0.92 0.95

CSm 10 μm2 0.1×10-12 cm2

Relements atomic number 2 to

92

EM long-term average fluxes

θshielding 100 mils

O Highly Elliptical Orbit

Eo 8.0 MeV

The average SEU rates induced by heavy ions and protons for each orbit

segment are calculated and illustrated in Figure 5.9. The Y axis denotes the SEU rate

in the unit of SEUs/Bit/Hour. The X axis denotes the time along an orbit period. The

total SEU rates for the orbit as a function of time are shown in Figure 5.10.

 113

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

0 0.2 0.4 0.6 0.8 1

time (Orbit period)

S
E
U

 r
a
te

s
 (

S
E
U

s
/

B
it

/
H

o
u

r) Protons

Heavy ions

Figure 5.9 Heavy ions and protons induced SEU rates along the HEO orbit as a

function of time

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

0 0.2 0.4 0.6 0.8 1

Time (Orbit period)

S
E
U

 r
a

te
s

(S
E

U
s/

B
it

/
H

o
u

r)

Figure 5.10 Total SEU rates along the HEO orbit as a function of time

High SEU rates appear when the satellite is close to Earth, where trapped

protons are mainly responsible for the transient failures. When the satellite is far from

Earth, the SEU rates induced by heavy ions and protons are about the same order.

 114

Figure 5.11 shows a comparison of transient and permanent failure probabilities for

several register bits along the orbiting period, assuming the CPU is executing the

division program described in Section 4.4 repetitively. The transient failure

probability increases rapidly during the time when the satellite is close to Earth due to

the high SEU rates. On the other hand, the permanent failure probabilities increase in

a stable style regardless of the satellite’s possition. In this case, the SEU is the

dominant failure mechanism in the satellite orbit environment.

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

0 2 4 6 8 10 12

Time (Hour)

F
a
i
l
u
r
e

P
r
o
b
a
b
i
l
i
t
y

Transient

ACC(0)

F(0)

R(0)

PC(0)

Figure 5.11 Transient and permanent failure probabilities along the orbit as a

function of time

However, the transient SEU rate can be reduced through radiation hardening

techniques. Ground-based tests show that the SEU rate of a radiation hardened

microprocessor, such as the RAD750 developed by BAE system based on the

PPC750 microprocessor, can be reduced by up to six orders of magnitude [83, 84]. If

the registers in the Z80 microprocessor are hardened using such techniques, the SEU

dominance could disappear. Assuming the SEU rate can be reduced by two orders of

 115

magnitude, the probabilities for transient and permanent failures along the satellite

orbit would be of the same order, as illustrated in Figure 5.12. If this is the case, both

transient and permanent failures should be considered to study their impact on

software reliability.

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

0 2 4 6 8 10 12

Time (Hour)

F
a
i
l
u
r
e

P
r
o
b
a
b
i
l
i
t
y

Transient

ACC(0)

F(0)

R(0)

PC(0)

Figure 5.12 Transient and permanent failure probabilities along the orbit as a

function of time, with radiation hardening techniques applied

 116

Chapter 6 Summary and Future Research

6.1 Summary

In this dissertation, we have developed a methodology for the reliability analysis

of the manifestations of permanent hardware failures in the hardware devices of

computer systems operating under a particular execution profile of application

software. An analysis of the different types of manifestations of permanent failure in

semiconductor devices was performed at different hardware levels (physical, logic

and register transfer levels). We have focused on intrinsic failures (HCI, EM, TDDB),

which propagate to higher hardware levels in the form of signal delays, changes of

circuit functionality, and signals stuck at a logic value (0 or 1). We then proposed a

methodology for the analysis of the manifestations of permanent hardware failures on

software reliability. The methodology is divided into three parts: (i) analysis of the

manifestations of permanent failures on circuit elements (logic gates, flip-flops, etc.),

(ii) development of reliability models as functions of the software execution, and (iii)

calculation of failure probability distributions of the hardware devices of a computer

system under a particular software execution.

In the first part of this methodology (analysis of failure manifestations), SPICE

simulation is performed to investigate the behavior of the circuit elements (logic gates

and flip-flops) under study with a set of generic input stimuli, which covers all

possible combinations of logic levels and transitions of the input signals. This allows

for calculating the failure rates of different circuit elements. A set of Failure

equivalent circuit models for different failure mechanisms, including HCI, EM, and

 117

TDDB is used to study the circuit failure manifestations in the presence of hardware

failures. The main outcome of this phase consists of the set of manifestations of the

permanent failures observed in the circuits’ output signals (e.g., signal delays,

functionality changes or stuck-at failures).

In the second part of the methodology (development of reliability models), a set

of reliability models are built that allow for calculating the occurrence rate of each

failure manifestation of a circuit as a function of the software execution profile of a

computer system. The models are based not only on existing expressions for the

constant stress failure rate of permanent failures, but also on specifically developed

models that account for the operational conditions of circuits (e.g., current and

voltages) and for the usage of the computer hardware devices as a consequence of the

software execution. Different structures and notations are proposed for the reliability

models in order to process huge numbers of failure manifestations into reduced and

practical sets of expressions.

In the third part of the methodology (calculation of failure probability

distributions) the reliability models developed in the previous phase are applied to a

particular computer platform. The usage of the hardware devices is obtained through

VHDL simulations of the computer system under the execution of the software

program of interest. This allows for solving the reliability models and calculating the

failure probability distributions (per failure manifestation) of the various hardware

devices of the computer platform (e.g., ALU gates, CPU registers, memories, etc.).

We have then extended the methodology to the consideration of transient

failures, also known as Single Event Upsets (SEUs). We studied the causes and

 118

manifestations of transient failures in semiconductor devices, and developed

reliability models that integrate into the same framework well-known analytical

models for the failure rate calculation of Single Event Upsets (SEUs). These take into

account SEUs induced by cosmic ray particles (heavy ions and protons), neutrons

present in the atmosphere, as well as neutrons emitted by nuclear reactors such as the

ones that will be used in the spacecrafts of the future nuclear powered space missions

from NASA. The models use design and technology parameters of the IC hardware

devices, the operational environment characteristics (radiation particle fluxes) as well

as the specifications of the system and mission (e.g., spacecraft shielding and orbit).

The case study was then extended to the consideration of transient failures, by

calculating the failure probability distributions due to SEUs of the hardware devices

of the Z80 based computer system.

6.2 Conclusions

The contribution of this dissertation is to propose a simulation-based method to

determine the software-specific hardware usage profile and failure probability profile

that can be used to determine the likelihood, location, and the time of hardware

failures in computer systems in operation. The main features and contributions of the

methodology are summarized hereafter:

 It takes into account the influence of the software execution, the operational

environment and the semiconductor design and technology in the creation

and activation phenomena of hardware failures.

 It includes the whole spectrum of hardware failures that can arise during the

system operation, i.e. not only Single Event Upsets (SEUs), but also

 119

permanent semiconductor defects due to Hot Carrier Injection,

Electromigration, and Time Dependent Dielectric Breakdown.

 It considers all the possible locations for the hardware failures, i.e. not only

sequential logic circuits (registers, memory cells, caches, etc.) but also

combinational logic circuits (logic gates).

 It analyzes the propagation of failures under particular operational

conditions (including the software execution) and precisely determines the

form under which each hardware failure manifests (stuck-at-1, stuck-at-0,

bit-flip, circuit delay, change of functionality, etc.).

 It takes into account the usage of the hardware circuit elements due to the

software execution during the operational life of the system and provides the

failure probability distributions of the circuit elements. This information can

facilitate both software and hardware reliability engineers to improve the

system reliability more efficiently by focusing on the most failure-prone

circuit elements.

 It can be used to extend the use of the fault injection technique to software

reliability prediction under hardware failures and allows for precisely

defining representative fault models that can be used in fault injection

techniques and tools. It also sets the basis to develop testbeds based on

software implemented fault injection (SWIFI) to calculate the final failure

probability of the software application. As far as we know, this is the first

time that such an extension has been proposed.

 120

6.3 Future Work

We have focused on permanent and transient failures that directly impact the

storage elements and logic gates in a computer system. One of the future directions of

this work will be to extend the approach to account for the impact of permanent and

transient failures that propagate from combinational logic circuit elements of a

microprocessor to its storage elements. We also plan to extend the proposed

reliability models to account for the effect of the hardware detection and recovery

mechanisms (e.g., error detection and correction codes) used in most modern

computer systems. Finally, the results of this research will be integrated into PRA

frameworks and will be used for the calculation by fault injection of the software

reliability of software-intensive safety critical systems.

 121

Appendix A Failure Manifestations for Logic Gates

Table A.1 Z80 ALU logic gates – Results of SPICE simulations for HCI stress

 Mi () IhciiI /, F
INV_1 M0 1/2 fallDelay −
NOR2_1 M0

M1
1/8
1/8

0↑−− fallDelay
↑−− 0fallDelay

OR2_1 M0
M1
M2

1/8
1/8
2/8

0↑−− riseDelay
1↑−− riseDelay

fallDelay −
NAND2_1 M0

M1
1/8
1/8

fallDelay −
fallDelay −

XOR2_1 M0
M3
M5
M7
M9
M11

2/8
2/8
1/8
1/8
1/8
1/8

↑−↓−− 01riseDelay
0↑−− riseDelay

11 ↑−↑−− fallDelay
11 ↑−↑−− fallDelay

00 ↓−↓−− fallDelay

00 ↓−↓−− fallDelay
NOR3_1 M0

M3
M5

1/16
1/16
1/16

00↑−− fallDelay
00 ↑−− fallDelay

↑−− 00fallDelay
MUX2_1 M0

M3
M5
M7
M9
M11

4/8
1/8
2/8
2/8
1/8
6/8

↓−− 10fallDelay
↑−↑−− XriseDelay 101
↑−↑−− XriseDelay 101
100 ↓−↑−− XriseDelay
100 ↓−↑−− XriseDelay

fallDelay −
ABorC M0

M3
M5
M7

1/16
1/16
3/16
5/16

↑−↑−− 1101riseDelay
↑−↑−− 1101riseDelay

↑−− XXriseDelay
fallDelay −

NAND3_1 M0
M1
M2

1/16
1/16
1/16

fallDelay −
fallDelay −
fallDelay −

XNOR2_1 M0
M3
M5
M7
M9
M11
M13

2/8
2/8
1/8
1/8
1/8
1/8
4/8

↑−− 0fallDelay
0↑−− fallDelay

11 ↑−↑−− riseDelay
11 ↑−↑−− riseDelay

00 ↓−↓−− riseDelay
00 ↓−↓−− riseDelay

fallDelay −

 122

 Mi () IhciiI /, F
NAND4_1 M0

M1
M2
M3

3/32
1/32
2/32
1/32

fallDelay −
fallDelay −
fallDelay −
fallDelay −

NOR4_1 M0
M3
M5
M7

1/32
1/32
1/32
1/32

000↑−− fallDelay
000 ↑−− fallDelay
000 ↑−− fallDelay
↑−− 000fallDelay

OR4_1 M0
M3
M5
M7
M9

1/32
1/32
1/32
1/32
4/32

000↑−− riseDelay
000 ↑−− riseDelay

000 ↑−− riseDelay
↑−− 000riseDelay

fallDelay −
NOT
(ABorCorD)

M0
M3
M5
M7

1/32
1/32
2/32
3/32

100001 ↑−↑−− fallDelay
100001 ↑−↑−− fallDelay

00100 ↑−↑−− XfallDelay
↑−↑−− 01000XfallDelay

ABorCorD M0
M3
M5
M7
M9

1/32
1/32
2/32
3/32
8/32

100001 ↑−↑−− riseDelay
100001 ↑−↑−− riseDelay

00100 ↑−↑−− XriseDelay
↑−↑−− 01000XriseDelay

fallDelay −
AND2_1 M0

M1
M2

1/8
1/8
2/8

riseDelay −
riseDelay −
fallDelay −

Table A.2 Z80 ALU logic gates – Results of SPICE simulations for EM stress

 Ni () IemiI /, F
INV_1 N1

N2
N3

2/2
2/2
2/2

riseDelay −
fallDelay −
fallDelay −

NOR2_1 N1
N2
N3
N4

4/8
4/8
2/8
2/8

riseDelay −
riseDelay −

0↑−− fallDelay
↑−− 0fallDelay

OR2_1 N1
N2
N3
N4
N5

4/8
4/8
0
2/8
2/8

fallDelay −
fallDelay −

-
0↑−− riseDelay

fallDelay −

 123

 Ni () IemiI /, F
NAND2_1 N1

N2
N3
N4

2/8
2/8
4/8
4/8

1↓−− riseDelay
↓−− 1riseDelay

fallDelay −
fallDelay −

XOR2_1 N1
N2
N3
N4
N5
N6
N7
N8
N9

4/8
6/8
2/8
4/8
4/8
4/8
4/8
6/8
0

↓−− 0fallDelay
↓−↑−− 10riseDelay
↑−↓−− 01riseDelay

↓−− 0fallDelay
0↓−− fallDelay

fallDelay −
↑−− 0riseDelay

11 ↑−↑−− fallDelay
-

NOR3_1 N1
N2
N3
N4

6/16
6/16
2/16
4/16

riseDelay −
0000 ↑−↑−− fallDelay

00↑−− fallDelay
fallDelay −

MUX2_1 N1
N2
N3
N4
N5
N6
N7
N8
N9

12/8
6/8
0
8/8
10/8
0
12/8
4/8
0

↓−↑−− XfallDelay 110
XfallDelay ↓−↓−− 001

-
10 ↑−− riseDelay

fallDelay −
-

↑−↑−− 1001riseDelay
100 ↓−↑−− XriseDelay

-
ABorC N1

N2
N3
N4
N5
N6
N7
N8

6/16
6/16
10/16
0
10/16
0
10/16
0

1001 ↓−↓−− fallDelay
↓−↓−− 1001fallDelay

fallDelay −
-

riseDelay −
-

riseDelay −
-

NAND3_1 N1
N2
N3
N4

2/16
4/16
6/16
6/16

11↓−− riseDelay
1111 ↓−↓−− riseDelay

fallDelay −
fallDelay −

XNOR2_1 N1
N2
N3
N4
N5
N6
N7

4/8
6/8
2/8
0
4/8
4/8
4/8

↓−− 0riseDelay
↓−↑−− 10fallDelay
↑−↓−− 01fallDelay

-
0↓−− riseDelay
0↓−− riseDelay

riseDelay −

 124

 Ni () IemiI /, F
N8
N9
N10
N11
N12

0
4/8
6/8
0
0

-
↑−− 0fallDelay

11 ↑−↑−− riseDelay
-
-

NAND4_1 N1
N2
N3
N4
N5

2/32
4/32
2/32
8/32
8/32

111↓−− riseDelay
111111 ↓−↓−− riseDelay

↓−− 111riseDelay
fallDelay −
fallDelay −

NOR4_1 N1
N2
N3
N4
N5

8/32
8/32
2/32
4/32
2/32

riseDelay −
000000000 ↑−↑−↑−− fallDelay

000↑−− fallDelay
000000 ↑−↑−− fallDelay

↑−− 000fallDelay
OR4_1 N1

N2
N3
N4
N5
N6

8/32
8/32
0
2/32
4/32
2/32

fallDelay −
fallDelay −

-
000↑−− riseDelay
000 ↑−− riseDelay

↑−− 000riseDelay
NOT
(ABorCorD)

N1
N2
N3
N4
N5
N6
N7

10/32
10/32
16/32
16/32
4/32
6/32
5/32

001011010 ↓−↓−↓−− riseDelay

010100001 ↓−↓−↓−− riseDelay

riseDelay −
fallDelay −

100001 ↑−↑−− fallDelay
00100 ↑−↑−− XfallDelay

↑−↑−− 01000XfallDelay
ABorCorD N1

N2
N3
N4
N5
N6
N7
N8
N9
N10

10/32
10/32
16/32
0
16/32
0
4/32
6/32
5/32
0

001100010 ↓−↓−↓−− fallDelay

010100001 ↓−↓−↓−− fallDelay

fallDelay −
-

riseDelay −
-

100001 ↑−↑−− riseDelay
00100 ↑−↑−− XriseDelay

↑−↑−− 01000XriseDelay
-

AND2_1 N1
N2
N3
N4
N5

2/8
2/8
4/8
0
4/8

1↓−− fallDelay
riseDelay −
riseDelay −

-
fallDelay −

 125

Table A.3 Z80 ALU logic gates – Results of SPICE simulations for TDDB stress

 Mi ()tddbiC , F
INV_1 M0

M1
0.5
0.5

1−− atStuck
0−− atStuck

NOR2_1 M0
M1
M2
M3

0.5
0.5
0.5
0.25

bDiffFunc →
aDiffFunc →
0−− atStuck
0−− atStuck

OR2_1 M0
M1
M2
M3
M4
M5

0.5
0.5
0.25
0.25
0.5
0.75

bDiffFunc →
aDiffFunc →
1−− atStuck
1−− atStuck
1−− atStuck
0−− atStuck

NAND2_1 M0
M1
M2
M3

0.5
0.25
0.5
0.5

1−− atStuck
1−− atStuck
bDiffFunc →
aDiffFunc →

XOR2_1 M0
M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11

0.5
0.5
0.5
0.5
0.5
0.5
0.25
0.25
0.25
0.25
0.5
0.5

baDiffFunc →
abDiffFunc →
abDiffFunc →

baDiffFunc →
baDiffFunc →

baDiffFunc +→
baDiffFunc →

baDiffFunc +→
baDiffFunc →

abDiffFunc →
baDiffFunc →

abDiffFunc →
NOR3_1 M0

M1
M2
M3
M4
M5

0.5
0.5
0.25
0.5
0.125
0.5

cbDiffFunc →
0−− atStuck
0−− atStuck

caDiffFunc →
0−− atStuck

baDiffFunc →

 126

 Mi ()tddbiC , F
MUX2_1 M0

M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

cabacbaDiffFunc ++→
bcacDiffFunc +→
baDiffFunc +→

baDiffFunc →
cbaDiffFunc ++→

cbaDiffFunc →
cbaDiffFunc ++→

cbaDiffFunc →
caDiffFunc +→

acDiffFunc →
0−− atStuck
1−− atStuck

ABorC M0
M1
M2
M3
M4
M5
M6
M7

0.375
0.5
0.5
0.5
0.375
0.5
0.625
0.375

bccaDiffFunc +→
cbDiffFunc +→
caDiffFunc +→

cDiffFunc →
cbaDiffFunc ++→

abDiffFunc →
0−− atStuck
1−− atStuck

NAND3_1 M0
M1
M2
M3
M4
M5

0.5
0.25
0.125
0.5
0.5
0.5

1−− atStuck
1−− atStuck
1−− atStuck
bcDiffFunc →
acDiffFunc →
abDiffFunc →

XNOR2_1 M0
M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11
M12
M13

0.5
0.5
0.5
0.5
0.5
0.5
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5

baDiffFunc +→
abDiffFunc →
abDiffFunc →

baDiffFunc +→
baDiffFunc +→

baDiffFunc →
baDiffFunc +→

baDiffFunc →
baDiffFunc +→

abDiffFunc →
baDiffFunc +→

abDiffFunc →
0−− atStuck
1−− atStuck

NAND4_1 M0
M1
M2
M3
M4

0.5
0.25
0.125
0.0625
0.5

1−− atStuck
1−− atStuck
1−− atStuck
1−− atStuck
bcdDiffFunc →

 127

 Mi ()tddbiC , F
M5
M6
M7

0.5
0.5
0.5

acdDiffFunc →
abdDiffFunc →
abcDiffFunc →

NOR4_1 M0
M1
M2
M3
M4
M5
M6
M7

0.5
0.5
0.25
0.5
0.125
0.5
0.0625
0.5

dcbDiffFunc →
0−− atStuck
0−− atStuck

dcaDiffFunc →
0−− atStuck

dbaDiffFunc →
0−− atStuck

cbaDiffFunc →
OR4_1 M0

M1
M2
M3
M4
M5
M6
M7
M8
M9

0.5
0.0625
0.125
0.5
0.25
0.5
0.5
0.5
0.9375
0.0625

dcbDiffFunc ++→
1−− atStuck
1−− atStuck

dcaDiffFunc ++→
1−− atStuck

dbaDiffFunc ++→
1−− atStuck

cbaDiffFunc ++→
0−− atStuck
1−− atStuck

NOT
(ABorCorD)

M0
M1
M2
M3
M4
M5
M6
M7

0.5
0.5
0.5
0.4375
0.375
0.5
0.1875
0.5

dcDiffFunc →
dcbDiffFunc →
dcaDiffFunc →
() dcdcbaDiffFunc ++→

dcbaDiffFunc →
dbdaDiffFunc +→

dcbaDiffFunc →
cbcaDiffFunc +→

ABorCorD M0
M1
M2
M3
M4
M5
M6
M7
M8
M9

0.5
0.5
0.5
0.4375
0.375
0.5
0.1875
0.5
0.8125
0.1875

dcDiffFunc +→
dcbDiffFunc ++→
dcaDiffFunc ++→

()() cddcbaDiffFunc +++→
dcbaDiffFunc +++→

()()dbdaDiffFunc ++→
dcbaDiffFunc +++→

()()cbcaDiffFunc ++→
0−− atStuck
1−− atStuck

AND2_1 M0
M1
M2
M3
M4
M5

0.25
0.5
0.75
0.5
0.5
0.25

0−− atStuck
0−− atStuck
1−− atStuck

bDiffFunc −
aDiffFunc −
0−− atStuck

 128

Glossary

ALU Arithmetic Logic Unit

CS Cross Section

EM Electromigration

EOS Electrical Overstress

ESD Electrostatic Discharge

FIT Failure In Time

HCI Hot Carrier Injection

HEO Highly Elliptical Orbit

HISREM Hot Carrier Induced Series Resistance Enhancement Model

IC Integrated Circuit

IRPP Integral Rectangular Parallelpiped

LET Linear Energy Transfer

MaCRO Maryland Circuit Reliability-Oriented SPICE simulation method

MOSFET Metal-Oxide Semiconductor Field-Effect Transistor

MTTF Mean Time To Failure

RTL Register Transfer Level

RPP Rectangular Parallelpiped

SOFR Sum-of-failure-rates

SPICE Simulation Program Integrated Circuits Emphasis

SV Sensitive Volume

SWIFI Software Implemented Fault Injection

TDDB Time Dependent Dielectric Breakdown

 129

VHDL Very High Speed Integrated Circuit Hardware Description Language

 130

Bibliography

[1] N. G. Levenson, "Role of Software in Spacecraft Accidents," Journal of

spacecraft and Rockets, vol. 41, 2004.

[2] M. Li, Y. Wei, D. Desovski, H. Najad, S. Ghose, B. Cukic, and C. Smidts,

"Validation of a Methodology for Assessing Software Reliability," presented

at the 15th IEEE International Symposium on Software Reliability

Engineering, 2004.

[3] M. Li and C. Smidts, "Validation of a Methodology for Assessing Software

Quality," Nuclear Regulatory Commission, Office of Nuclear Regulatory

Research, Washington DC NUREG/CR-6848, 2004.

[4] F. R. Shapiro, "Entomology of the Computer Bug: History and Folklore,"

American Speech, vol. 62, pp. 376-378, 1987.

[5] R. K. Iyer and P. Velardi, "Hardware-Related Software Errors: Measurement

and Analysis," IEEE Transactions on Software Engineering, vol. SE-11, pp.

223-231, 1985.

[6] J. Laprie, "Dependable Computing and Fault Tolerance: Concepts and

Terminology," in IEEE FTCS-15. Ann Arbor, Michigan, 1985.

[7] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, and J. Laprie, "Fault Injection for

Dependability Validation: A methodology and Some Applications," IEEE

Transactions on Software Engineering, vol. 16, pp. 166-182, 1990.

 131

[8] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo, "Using

Heavy-Ion Radiation to Validate Fault-Handling Mechanisms," IEEE Micro,

vol. 14, pp. 8-23, 1994.

[9] M. C. Hsueh, T. K. Tsai, and R. K. Iyer, "Fault Injection Techniques and

Tools," Computer, vol. 30, pp. 75-82, 2001.

[10] DBench, "Fault Representativeness," deliverable from Dependability

Benchmarking (DBench) European IST project (project IST-2000-25425),

2002.

[11] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, "FERRARI: A Flexible

Software-Based Fault and Error Injection System," IEEE Transactions on

Computers, vol. 44, pp. 248-260, 1995.

[12] K. K. Goswami and R. K. Iyer, "Simulation of Software Behavior under

Hardware Faults," in IEEE FTCS-23, 1993.

[13] T. A. Delong, "A Fault Injection Technique for VHDL Behavioral-Level

Models," IEEE Design and Test of Computers, vol. 13, pp. 24-33, 1996.

[14] A. M. Amendola, "Fault Behavior Observation of a Microprocessor System

through a VHDL Simulation-Based Fault Injection Experiment," in EURO-

DAC'96, 1996.

[15] G. S. Choi, "FOCUS: An experimental environment for Validation of Fault

Tolerance Systems: A Case Study of a Jet Engine Controller," in IEEE

International Conference on Computer Design. Hamburg, Germany, 1989.

[16] D. Gil, "Fault Injection into VHDL Models: Analysis of the Error Syndrome

of a Microcomputer System," in 24th Euromicro Conference, 1998.

 132

[17] J. Musa, "The operational profile in software reliability engineering: an

overview," presented at the 3rd International Symposium on Software

Reliability Engineering, 1992.

[18] R. Shukla, D. Carrington, and P. Strooper, "Systematic Operational Profile

Development for Software Components," presented at 11th Asia-Pacific

Software Engineering Conference, 2004.

[19] K. Chruscielski and J. Tian, "An operational profile for the Cartridge Support

Software," presented at the 8th International Symposium on Software

Reliability Engineering, 1997.

[20] S. Elbaum and S. Narla, "A Methodology for Operational Profile

Refinement," presented at Annual Reliability and Maintainability Symposium,

2001.

[21] M. Gittens, H. Lutfiyya, and M. Bauer, "An Extended Operational Profile

Model," presented at the 15th International Symposium on Software

Reliability Engineering, 2004.

[22] R. V. Sandfoss and S. A. Meyer, "Input Requirementsneeded to Produce an

Operational Profile for a New Telecommunications System," presented at the

8th International Symposium on Software Reliability Engineering, 1997.

[23] C. Dunn and J. McPherson, "Temperature Cycling Acceleration Factors in

VLSI Applications," presented at IEEE International Reliability Physics

Symposium Proceedings, 1990.

 133

[24] R. Blish, "Temperature Cycling and Thermal Shock Failure Rate Modeling,"

presented at IEEE International Reliability Physics Symposium Proceedings,

1997.

[25] J. Gunn, R. CAMENGA, and S. MALIK, "Rapdi Assessment of the Humidity

Dependence of IC Failure Modes by Use of HAST," presented at IEEE

International Reliability Physics Symposium Proceedings, 1983.

[26] D. Peck, "Comprehensive Model for Humidity Testing Correlation,"

presented at IEEE International Reliability Physics Symposium Proceedings,

1986.

[27] J. Yue, ULSI Technology: McGraw-Hill, 1996.

[28] A. Acovic, G. Rosa, and Y. Sun, "A Review of Hot-Carrier Degradation

Mechanism in MOSFETs," Microelectron. Relib., vol. 36, pp. 845-869, 1996.

[29] E. Snyder, D. Campbell, S. Swanson, and D. Pierce, "Novel self-stressing test

structures for realistic high-frequency reliability characterization," presented

at IEEE International Reliability Physics Symposium Proceedings, 1993.

[30] J. Wang-Ratkovic, R. Lacoe, K. MacWilliams, S. Miryeong, S. Brown, and G.

Yabiku, "New understanding of LDD CMOS hot-carrier degradation and

device lifetime at cryogenic temperatures," presented at IEEE International

Reliability Physics Symposium Proceedings, 1997.

[31] E. Takeda, C. Y. Yang, and A. Miura-Hamada, Hot-Carrier Effects in MOS

Devices: Academic Press, 1995.

[32] M. Ohring, Reliability and Failure of Electronic Materials and Devices:

Academic Press, 1998.

 134

[33] D. G. Pierce and P. G. Brusius, "Electromigration: A Review," Microelectron.

Reliab., vol. 37, pp. 1053-1-72, 1997.

[34] A. Scorzoni, B. Neri, C. Caprile, and F. Fantini, "Electromigration in Thin-

Film Interconnection Lines: Models, Methods and Results," Materials Science

Reports, vol. 7, pp. 143-220, 1991.

[35] D. Young and A. Christou, "Failure Mechanism Models for

Electromigration," IEEE Transactions on Reliability, vol. 43, pp. 186-192,

1994.

[36] J. R. Lloyd, "Reliability Modeling For Electromigration Faulire," Quality and

Reliability Engineering International, vol. 10, pp. 303-308, 1999.

[37] J. F. Verweij and J. H. Klootwijk, "Dielectric Breakdown I: A Review of

Oxide Breakdown," Microelectronics, vol. 27, 1996.

[38] J. S. Suehle, "Ultrathin Gate Oxide Reliability: Physical Models, Statistics,

and Characterization," IEEE Trans. Electron Devices, vol. 49, pp. 958-971,

2002.

[39] R. Degraeve, B. Kaczer, and G. Groesenken, "Degradation and Breakdown in

Thin Oxide Layers: Mechanisms, Models and Reliability Prediction,"

Microelectron. Reliab., vol. 39, pp. 1445-1460, 1999.

[40] E. Y. Wu, E. J. Nowak, A. Vayshenker, W. L. Lai, and D. L. Harmon,

"CMOS Scaling Beyond the 100-nm Node with Silicon-Dioxide-Based Gate

Dielectrics," IBM J. RES & DEV, vol. 46, 2002.

[41] E. Wu, J. Sune, W. Lai, E. Nowark, L. McKenna, A. Vayshenker, and D.

Harmon, "Interplay of Voltage and Temperature Acceleration of Oxide

 135

Breakdown for Ultra-Thin Gate Oxides," Solid-State Electronics, vol. 46, pp.

1787-1798, 2002.

[42] E. Wu and J. Sune, "Power-Law Voltage Acceleration: A Key Element for

Ultra-thin Gate Oxide Reliability," Invited paper in special issue of

Microelectronics Reliability, 2005.

[43] J. D. Walter, "Methods to Account for Accelerated Semiconductor Device

Wearout in Longlife Aerospace Applications," University of Maryland, 2003.

[44] W. Nelson, Accelerated Testing: Statistical Models, Test Plans, and Data

Analyses. New York: John Wiley & Sons, 1990.

[45] H. Yang, J. S. Yuan, Y. Liu, and E. Xiao, "Effect of Gate Oxide Breakdown

on RF Performance," IEEE Transactions on Device and Materials Reliability,

vol. 3, pp. 93-97, 2003.

[46] R. H. Tu, E. Rosenbaum, W. Y. Chan, C. C. Li, E. Minami, K. Quader, P. K.

Ko, and C. Hu, "Berkeley Reliability Tools - BERT," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 12, pp. 1524-

1534, 1993.

[47] Y. Leblebici and S. M. Kang, "A One-Dimensional MOSFET Model for

Simulation of Hot-Carrier Induced Device and Circuit Degradation,"

presented at IEEE International Symposium on Circuits and Systems, 1990.

[48] N. Hwang and L. Forbes, "Hot-Carrier Induced Series Resistance

Enhancement Model (HISREM) of nMOSTFET's for Circuit Simulation and

Reliability Projections," Microelectron. Reliab., vol. 35, pp. 225-239, 1995.

 136

[49] J. H. Stathis, R. Rodriguez, and B. P. Linder, "Circuit Implications of Gate

Oxide Breakdown," Microelectron. Reliab., vol. 43, pp. 1193-1197, 2003.

[50] B. Kaczer, R. Degraeve, M. Rasras, A. De Keersgieter, K. Van De Mieroop,

and G. Groeseneken, "Analysis and Modeling of a Digital CMOS Circuit

Operation and Reliability after Gate Oxide Breakdown: a Case Study,"

Microelectron. Reliab., vol. 42, pp. 555-564, 2002.

[51] X. Li, J. Qin, B. Huang, X. Zhang, and J. B. Bernstein, "A New SPICE

Reliability Simulation Method for Deep Submicron CMOS VLSI Circuits,"

IEEE Transactions on Device and Materials Reliability, vol. 6, 2006.

[52] P. C. Li, G. I. Stamoulis, and I. N. Hajj, "iProbe-d: a Hot-Carrier and Oxide

Reliability Simulator," presented at IEEE Proceedings of International

Reliability Physics Symposium, 1994.

[53] J. Segura, C. De Benito, A. Rubio, and C. F. Hawkins, "A Detailed Analysis

of GOS Defects in MOS Transistors: Testing Implications at Circuit Level,"

presented at IEEE International Test Conference, 1995.

[54] J. Srinivasan, S. V. Adve, P. Bose, J. A. Rivers, and C. K. Hu, "RAMP: A

Model for Reliability Aware MicroProcessor Design," IBM Research Report

RC23048, 2003.

[55] JEDEC, "Failure Mechanisms and Models for Semiconductor Devices,"

JEDEC Publication No. 122B 2003.

[56] M. Brox, E. Wohlrab, and W. Weber, "A Physical Lifetime Prediction Method

for Hot-Carrier Stressed P-MOS Transistors," presented at IEDM’91 Tech.

Dig, 1991.

 137

[57] R. R. Fritzemeier, H. T. Nagle, and C. F. Hawkins, "Fundamentals of

Testability – A Tutorial," IEEE Transactions on Industrial Electronics, vol.

36, pp. 117-128, 1989.

[58] J. B. Sulistyo and D. S. Ha, "A New Characterization Method for Delay and

Power Dissipation of Standard Library Cells," VLSI Design, vol. 15, pp. 667-

678, 2002.

[59] J. B. Sulistyo, J. Perry, and D. S. Ha, "Developing Standard Cells for TSMC

0.25um Technology under MOSIS DEEP Rules," Department of Electrical

and Computer Engineering, Virginia Polytechnic Institute and State

University, Blacksburg, VA Technical Report VISC-2003-01, 2003.

[60] "Reliability in CMOS IC Design: Physical Failure Mechanisms and their

Modeling," MOSIS Technical Notes, http://www.mosis.org/support/technical-

notes.html.

[61] "VCS MX Reference Guide," Synopsys Inc. 2006.

[62] "Synopsys Design Analyzer Reference Manual," Synopsys Inc. 2002.

[63] "IEEE Standard VHDL Language Reference Manual," IEEE Std 1076-1993

1993.

[64] B. Huang, X. Li, M. Li, J. B. Bernstein, and C. S. Smidts, "Study of the

Impact of Hardware Fault on Software Reliability," presented at IEEE

International Symposium on Software Reliability Engineering, 2005.

[65] Zilog, "Z80 Family CPU User Manual."

[66] D. Wallner: http://www.opencores.org/projects.cgi/web/t80/overview, 2002.

[67] "SDCC compiler," http://sdcc.sourceforge.net/.

http://www.mosis.org/support/technical-notes.html
http://www.mosis.org/support/technical-notes.html
http://www.opencores.org/projects.cgi/web/t80/overview
http://sdcc.sourceforge.net/

 138

[68] B. Huang, X. Li, M. Li, J. B. Bernstein, and C. S. Smidts, "Software-Specific

Hardware Failure Profile," presented at AIAA/ASME/SAE/ASEE Joint

Propulsion Conference and Exhibit, 2005.

[69] T. Karnik, P. Hazucha, and J. Patel, "Characterization of Soft Errors Caused

by Single Event Upsets in CMOS Processes," IEEE Transactions On

Dependable and Secure Computing, vol. 1, 2004.

[70] T. C. May and M. H. Woods, "Alpha-Particle-Induced Soft Error in Dynamic

Memories," IEEE Trans. Electron Devices, vol. ED-26, pp. 2-9, 1979.

[71] T. Juknke and H. Klar, "Calculation of the Soft Error Rate of Submicron

CMOS Logic Circuits," IEEE Journal of Solid-State Circuits, vol. 30, pp.

830-834, 1995.

[72] J. Ziegler, "Terrestrial Cosmic Rays," IBM Journal of Research and

Development, vol. 42, pp. 117-139, 1998.

[73] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi, "Modeling

the Effect of Technology Trends on the Soft Error Rate of Combinational

Logic," presented at International Conference of Dependable Systems and

Networks, 2002.

[74] E. L. Peterson, J. B. Langworthy, and S. E. Diehl, "Suggested Single Event

Upset Figure of Merit," IEEE Transactions on Nuclear Science, vol. NS-30,

pp. 448, 1983.

[75] E. L. Peterson, J. C. Pickel, J. H. Adams, Jr., and E. C. Smith, "Rate

Prediction for Single Event Effects –A Critique," IEEE Transactions on

Nuclear Science, vol. 39, pp. 1577, 1992.

 139

[76] J. C. Pickel, "Single-Event Effects Rate Prediction," IEEE Transactions on

Nuclear Science, vol. 43, pp. 483, 1996.

[77] "CREME96," https://creme96.nrl.navy.mil.

[78] A. J. Tylka, J. H. Adams, P. R. Boberg, B. Brownstein, and W. F. Dietrich,

"CREME96: A Revision of the Cosmic Ray Effects on Micro-Electronics

Code," IEEE Transactions on Nuclear Science, vol. 44, pp. 2150-2160, 1997.

[79] W. L. Bendel and E. L. Petersen, "Proton upsets in orbit," IEEE Transactions

on Nuclear Science, vol. NS-30, pp. 4481, 1983.

[80] J. R. Letaw and E. Normand, "Guidelines for Predicting Single-Event Upsets

in Neutron Environments," IEEE Transactions on Nuclear Science, vol. 38,

1991.

[81] E722-94, "Standard Practice for Characterizing Neutron Energy Spectra in

terms of an Equivalent Monoenergetic Neutron Fluence for Rediation-

Hardness Testing of Electronics," Journal of ASTM International, vol. 12.02,

2003.

[82] G. M. Swift, F. F. Farmanesh, S. M. Guertin, F. Irom, and D. G. Millward,

"Single-Event Upset in the PowerPC750 Microprocessor," IEEE Transactions

on Nuclear Science, vol. 48, pp. 1822, 2001.

[83] R. W. Berger, D. Bayles, R. Brown, S. Doyle, A. Kazemzadeh, K. Knowles,

D. Moser, J. Rodgers, B. Saari, D. Stanley, and B. Grant, "The RAD750 - a

Radiation Hardened PowerPC Processor for High Performance Spaceborne

Applications," presented at IEEE Aerospace Conference, 2001.

 140

[84] D. Rea, D. Bayles, P. Kapcio, S. Doyle, and D. Stanley, "PowerPC RAD750 -

A Microprocessor for Now and the Future," presented at IEEE Aerospace

Conference, 2005.

	Bing Huang, Doctor of Philosophy, 2006
	Dedication
	 Acknowledgements
	List of Tables
	 List of Figures
	Chapter 1 Introduction
	1.1 Statement of Problem
	1.2 Contents of the Dissertation
	1.3 Summary of Contributions
	Chapter 2 Hardware Failures
	2.1 Permanent Physical Failures
	2.1.1 Hot Carrier Injection Failure Mechanism
	2.1.2 Electromigration Failure Mechanism
	2.1.3 Time Dependent Dielectric Breakdown Failure Mechanism

	2.2 Impact on Higher Hardware Levels

	Chapter 3 Methodology for the Analysis of Permanent Failure Manifestations
	3.1 Analysis of Failure Manifestations
	3.1.1 Calculation of Failure Rates and Characterization of Stress Patterns
	3.1.2 Identification of Failure Manifestations

	3.2 Development of Reliability Models
	3.3 Calculation of Failure Probabilities
	3.3.1 Calculation of the Hardware Usage Profile
	3.3.2 Calculation of the Hardware Failure Probability Distributions

	Chapter 4 Calculation of Failure Probabilities
	4.1 System Description
	4.2 Analysis of Failure Manifestations
	4.2.1 Analysis of the CPU Register Bits
	4.2.2 Analysis of Fault Models for Combinational Logic Elements

	4.3 Lifetime Model Parameters Calculation
	4.3.1 TDDB Lifetime Model Prefactor
	4.3.2 HCI Lifetime Model Prefactor
	4.3.3 EM Lifetime Model Prefactor

	4.4 Usage and Failure Probability Distribution Profiles

	Chapter 5 Transient Failures and Models
	5.1 Transient Failures
	5.1.1 Transient Failure Introduction
	5.1.2 Impact on Higher Hardware Levels

	5.2 Failure Rate Calculation
	5.2.1 Heavy Ions Induced SEUs
	5.2.2 Protons Induced SEUs
	5.2.3 Neutrons Induced SEUs

	5.3 Extension of Permanent Failure Probability Results

	Chapter 6 Summary and Future Research
	6.1 Summary
	6.2 Conclusions
	6.3 Future Work

	Appendix A Failure Manifestations for Logic Gates
	 Glossary
	 Bibliography

