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Software plays an increasingly important role in modern safety-critical systems. 

Reliable software becomes desirable for all stakeholders. Typical software related 

failures include software internal failures, input failures, output failures, support 

failures and multiple interaction failures. This dissertation provides a methodology to 

study the impact of hardware support failures on software reliability.  

The hardware failures we are focusing on in this study are semiconductor device 

intrinsic failures that are directly related to software execution during device 

operation. The software execution on hardware devices, in essence, is a series of 0 

and 1 signal alternations for the inputs of hardware components. Such signal 

alternations lead to voltage changes and current flows in the microelectronic 

hardware device, which serve as electrical stresses on the device and may lead to 

physical failures. The failure mechanisms include Hot Carrier Injection (HCI), 

Electromigration (EM), and Time Dependent Dielectric Breakdown (TDDB). During 



  

device operation such hardware failures could propagate to circuit level in the form of 

signal delays, changes of circuit functionality, and signals stuck at a logic value (0 or 

1), which could further propagate into the software layer and affect the reliability of 

the software. 

The proposed methodology is divided into three parts: (i) analysis of the 

manifestations of permanent failures on circuit elements (logic gates, flip-flops, etc.), 

(ii) development of reliability models for the circuit elements as functions of the 

software execution, and (iii) calculation of failure probability distributions of the 

hardware circuit elements under the software execution. 

The methodology is applied to a comprehensive case study, targeting all the 

CPU registers and ALU logic gates of a computer system based on the Z80 

microprocessor. About 120 different types of failure manifestations are observed, and 

more than 250 reliability models for the different types of failure manifestations and 

circuit elements are developed. Such models allow us to calculate the failure 

probability distributions of the CPU registers and ALU gates of the Z80 computer 

system under the software execution. We also extend the methodology and the case 

study to the consideration of transient failures, also known as Single Event Upsets 

(SEUs). 
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Chapter 1 Introduction 

1.1 Statement of Problem 

As human technologies advance, software plays an increasingly important role 

in almost all systems (military, communication, transportation, space, energy, etc), 

and the development of software and systems that are safe and reliable becomes 

crucial. Ignoring software risks can lead to catastrophic consequences. About 430 

people died in eight fatal accidents (1985-2003) where software was the root cause. A 

study by the FAA revealed that 40% of the problems in large aircrafts (1984-1994) 

were software related. In NASA, software has become a major risk factor in space 

missions and projects. Software failures account for a large percentage of problem 

reports for NASA projects. For one spacecraft, 33.9% of the total number of failures 

found during ground testing was software related. This rate was higher than any other 

category. Other missions, such as Magellan launched in 1989 and Voyager in 1977, 

experienced software failures as 19–20% of all failures. Other examples of well-

known spacecraft accidents provoked by software malfunction include: the explosion 

of the Ariane 5 launcher on its maiden flight in 1996, the loss of the Mars Climate 

Orbiter in 1999, the destruction of the Mars Polar Lander in 2000, the placing of a 

Milstar satellite in an incorrect and unusable orbit in 1999, and the loss of contact 

with the Solar Heliospheric Observatory (SOHO) spacecraft in 1998 [1]. The use of 

reliability methods and techniques can help significantly reduce the risk of these 

kinds of disasters.  
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Probabilistic Risk Assessment (PRA) is today the most significant and extended 

technique from the reliability domain. It aims at assessing, predicting and reducing 

the risk of failures in large technological systems such as nuclear power plants, 

chemical plants and aerospace systems. In NASA, PRA is required for all manned 

missions as well as for all missions with nuclear payload or nuclear fuel (e.g., such as 

the Crew Exploration Vehicle and other Moon–Mars–Beyond missions). However, 

current practice in PRA systematically neglects the contribution of software to the 

risk of failure of the system. The classical PRA methodology accounts for hardware 

and human interventions but does not account for software. In certain domains (such 

as nuclear), software has been confined to some extent to non-safety related functions. 

There also exists a reticence in the software safety community to use quantitative 

estimates of software failures. It stems essentially from the fact that software is still a 

new artifact. However, more and more vital functions, which in the past were 

controlled by human operators or hardware components, are today implemented and 

controlled by software. Thus, traditional PRA techniques are no longer valid and need 

to be improved and extended to include software reliability. Ignoring the contribution 

of software to system risk can lead to catastrophic consequences, such as the 

examples described above. 

Recently, important efforts have been undertaken to incorporate software risks 

into the PRA technique [2, 3]. The work reported in [3] proposes a taxonomy of 

software failures as a first step to integrate software risks into PRA. The software is 

seen as an essential component of a system, which interacts with its environment 

through input and output interfaces. The software being executed on a computer 
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platform will take inputs from other subsystems (either software or hardware or 

humans) and produce outputs that will be used by either humans, other software or 

hardware. According to this view, a distinction is made between failures occurring 

within the software component itself and failures occurring due to the interaction 

between the software and its environment. This leads to the distinction of several 

software-related failure modes: internal failures, input failures, output failures, 

support failures and multiple interaction failures. Internal failures are due to the 

presence of “bugs” within the software code. Input failures are those out-of-bound 

values sent to the software that may drive correct software to provide incorrect 

outputs. Output failures are actually the set of out-of-bound software output behaviors 

that are neither due to out-of-bound input behavior nor due to internal software 

malfunction. These are failures that occur because of inconsistencies between 

specifications of the software and its downstream component. Multiple interaction 

failures are related to synchronization/communication problems between software 

processes and other system processes (software, hardware or human processes) that 

execute concurrently. Support failures are those software failures induced by 

malfunctions in the hardware support platform that the software resides on. They 

include failures due to competition for computing resources (deadlock, lockout) and 

computer platform physical failures (CPU failures, memory failures and I/O devices 

failures). The research work proposed in this dissertation is one component of the 

current work being done to characterize of this latter type of failure, i.e. computer 

platform physical failures, also referred to as hardware failures.  
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That hardware failures may lead to abnormal software behavior has been long 

recognized. The very first bug report described a bug-related hardware failure (On 

September 9, 1945, when Mark II, the Aiken Relay Calculator was experiencing 

problems, an investigation showed that there was a moth trapped between the points 

of Relay #70) [4]. More recently Iyer and Velardi [5] discovered that 35 percent of 

software failures in MVS systems were determined to be hardware-failure-related. 

Fault injection techniques have emerged as the major means to study the hardware 

failure phenomenon and its impact on the system [6]. Fault injection techniques, as a 

supplement to traditional software testing, are ideal for revealing the software and 

system’s behaviors under abnormal hardware conditions, which may not be able to be 

addressed by their counterparts (such as software testing). Fault injection aims at 

assessing the system behavior in the presence of faults [7-9]. A key concern related to 

fault injection is the representativeness of the injected faults, i.e., the plausibility of 

the fault model with respect to actual faults [10]. In the majority of published works, 

the fault location, the fault type, and the time at which the fault is injected are 

randomly selected [7, 11]. Such a fault injection profile does not represent the actual 

hardware conditions in system operation. Therefore software reliability due to 

hardware support failures cannot be credibly assessed.  

The impact of hardware failure on the software and on the system has attracted 

substantial attention in the field: 

Kumar et al. introduced a simulation-based software model for application-

specific dependability analysis of a system [12]. The model represents an application 

program by decomposing it into a graph model consisting of a set of nodes, a set of 
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edges and a mapping of the nodes to memory. The model simulates the execution of 

the program while faults are injected into the program’s memory space. The authors 

claim that all hardware-related faults can be mapped as memory faults, but do not 

prove this formally. In addition, the authors do not clearly explain the types of faults 

injected, and how the injection is accomplished.  

Todd Delong et al conducted a similar study to estimate the dependability 

parameters of computer systems [13]. The system hardware was modeled using a 

VHDL script. Stuck-at-0 and stuck-at-1 faults were injected into all the visible 

(programmable) processor registers. This work did not cover bit flipping or transient 

hardware failures. Nor did it provide the location and frequency distribution of stuck-

at-0 and stuck-at-1 faults. 

Amendola et al conducted a study to investigate the fault behavior of a 

microprocessor system [14]. They studied the faults located in memory, internal 

registers of the processor, and busses. Single bit-flipping faults were introduced into 

the VHDL system model of busses, memory, and CPU. This work demonstrated 

whether the system could tolerate faults, but could not provide reliability information 

due to the lack of fault location and distribution information. Choi et al [15] 

conducted a similar study with identical drawbacks.  

D. Gil et al performed a fault injection experiment to analyze the “error 

syndrome” of a microcomputer system [16]. The system under study was described 

using VHDL. His experiment considered different types of faults with different 

durations and injected them into different locations of the microcomputer system. 
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However there was no prior knowledge of fault frequency or the distribution of fault 

locations and types.  

In these approaches, fault injection is used as an accelerated testing technique to 

speed up the occurrence of errors and failures (e.g., likely and unlikely faults are 

given the same probability over location and time), and so do not capture the actual 

environmental conditions leading to the production of the faults impacting the 

software. The set of real faults may not be completely covered by the injected faults. 

More important, reliability estimates on software failures related to a particular 

operational situation of the system cannot be obtained (e.g., probability that the 

software of a spacecraft fails due to faults in the microelectronics devices when it will 

be traveling to Mars following a particular trajectory). In order to use the fault 

injection technique to calculate reliability estimates of software failures due to 

hardware malfunction, it is first necessary to characterize the physical operating 

conditions leading to a hardware malfunction from a probabilistic viewpoint. This 

problem is related to the development of the so-called software operational profiles.  

The operational profile (OP) is a quantitative characterization of the way in 

which a system will be used [17]. It associates a set of probabilities to the system 

input space, and therefore characterizes the input stimuli of the system in operation. 

The determination of the OP can help guide managerial and engineering decisions 

throughout the whole software development lifecycle [17]. For instance, the OP can 

assist in the allocation of resources and optimization of reviews and code inspections 

and act as a guideline for software testing. The OP of a system is also a major 

deciding factor in assessing its reliability. The OP is used to measure software 
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reliability by testing the software in a manner such that the OP represents the 

system’s actual use. It is also used to quantify the propagation of defects (or 

unreliability) through finite state machine models [2, 3]. However, determining the 

OP of a system is a difficult part of software reliability assessment in general [18]. 

The OP is traditionally built by enumerating field inputs and evaluating their 

occurrence frequencies. Musa pioneered a five-step approach to develop the OP [17]. 

His approach is based on collecting information on customers and users, identifying 

the system modes, determining the functional profile and recording the input states 

and their associated occurrence probabilities experienced in field operation. Expert 

opinion is normally used to estimate the hardware components-related operational 

profile due to the lack of field data. Musa’s approach has been widely utilized and 

adapted in the literature to generate the operational profile. Some of these 

applications are summarized hereafter: 

Chruscielski and Tian applied Musa’s approach to a Lockheed Martin Tactical 

Aircraft System’s cartridge support system [19]. User surveys which were generated 

in the format of a Questionnaire for User Interface Satisfaction, were used instead of 

the field data.  

Elbaum and Narla refined Musa’s approach by addressing heterogeneous user 

groups. They discovered that a single operational profile only “averages” the usage 

and “obscures” the real information about the operational probabilities [20]. They 

utilized clustering to identify groups of similar customers.  

Gittens et al proposed an extended OP model composed of the process profile, 

structural profile and data profile. The process profile addresses the processes and 
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associated frequencies. The structural profile accounts for the system structure, the 

configuration or structure of the actual application, while the data profile covers the 

inputs to the application from different users [21]. 

Different values of the environment inputs will have major effects on processing. 

So Musa’s [17] recommended approach for identifying the environmental variables is 

to have several experienced system design engineers identify them by brainstorming a 

list of those variables that might necessitate the program to respond in different ways. 

Furthermore, Sandfoss [22] suggests that the estimation of occurrence probabilities 

could be based on figures obtained from project documentation, engineering, 

judgment and system development experience. According to Gittens [21], a specific 

operational profile should include all users and all operating conditions that can affect 

the system.  

Musa’s approach and other extended approaches all require either field data or 

historic usage data. They all use an assumption that field data or historic usage data 

cover the entire input domain. This assumption is not always true and their 

approaches are not always successful simply because some input data may not be 

available, especially for safety critical systems. At least two reasons lead to the 

unavailability of the entire input data spectrum. First, the system may not be widely 

used (e.g., a reactor control system of a nuclear power plant). Therefore, very little 

field and historic usage data can be obtained. Second, the field data does not cover the 

entire spectrum of the input domain because some conditions may be extremely rare 

(e.g., unexpected inputs such as hardware failures). Further, many inputs may not be 

visible (e.g., inputs coming from the hardware platform of the computer system).  
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None of the related research on OP addresses the problem of characterizing the 

abnormal (or unexpected) software inputs delivered by the hardware devices 

supporting the software execution. The main contributions of the methodology 

proposed in this dissertation with respect to the related work on OP are the following: 

 Consideration of the hardware platform. The majority of the related research 

on OP focuses on the characterization of environmental system data from a 

high-level perspective (e.g., physical data captured by sensors). This means 

that the boundaries of the OP are external to the computer system executing 

the software. Our work pushes those boundaries into the computer system 

itself by considering the contribution of the computer hardware platform to 

the OP.  

 Characterization of unexpected inputs. Available methods and techniques 

for building the OP normally consider functional software inputs. We focus 

on nonfunctional inputs based on unexpected (or abnormal) data delivered 

by the hardware platform to the software. In other words, our interest is in 

hardware failures that may impact the behavior of the software components 

of the computer system.  

 Use of well-established reliability methods and techniques. Existing 

approaches rely on expert opinion, field data or historical usage data to build 

the OP. Our methodology is built from well-known and established 

reliability methods and techniques from the microelectronics domain.  

The proposed methodology thus constitutes a step forward in the OP research 

field, in the sense that it contributes to the development of comprehensive OP models 
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providing precise estimates of the actual system’s operating conditions. Such an OP is 

referred to as software-specific hardware failure profile. For a given system with a 

computer platform executing a particular application software, the software-specific 

hardware failure profile is defined by tuple <p, i, f, t> denoting the probability p that a 

hardware device i is affected by failure f at time t. The software-specific hardware 

failure profile is thus the basis to extend the use of the fault injection technique to the 

reliability prediction of the impact of hardware failures on software. The development 

of the software-specific hardware failure profile requires that the mechanisms leading 

to hardware failures in a computer platform be carefully considered. To calculate the 

different variables of the software-specific hardware failure profile, we have 

developed a set of analytical and simulation-based methods that account for the 

underlying physics and environmental phenomena leading to the production of 

hardware failures in computer platforms during system operation.  

The software execution on hardware devices, in essence, is a series of 0 and 1 

signal alternations for the inputs of hardware components. Such signal alternations 

lead to voltage changes and current flows in the microelectronic hardware device. 

The voltage and current act as electrical stresses on the device and may lead to 

physical changes, also referred to as degradations. Failure occurs when degradation 

reaches the point where the device can no longer perform its intended functions. 

Hardware failures created during circuit operation can be categorized into 

intrinsic and extrinsic failures. Extrinsic failures are the failures not related to the 

device circuitry itself, but failures extrinsic to the chip, such as open wire bonds in 

device packaging. Intrinsic failures are caused by intrinsic defects of semiconductor 
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devices due to limitations of the material properties of the silicon chip or limitations 

of the manufacturing process. Examples of manufacturing process defects are ion 

contamination and atom gradients caused by mechanical stresses. Such non-lethal 

defects can grow into lethal ones when stressed by different failure mechanisms. One 

type of failure mechanism stresses the device through environmental conditions (e.g. 

temperature and humidity), which are not related to the software execution during 

device operation. Typical mechanisms of this type include Temperature Cycling [23, 

24] and Corrosion [25, 26], and Stress Migration [27]. The other type of failure 

mechanism degrades the circuitry during device operation when the device is put 

under dynamic voltage and current stresses due to software execution. The primary 

and most studied failure mechanism of this type are Hot Carrier Injection (HCI) [28-

31]; Electromigration (EM) [32-36] and Time Dependent Dielectric Breakdown 

(TDDB) [37-42]. This work examines the hardware intrinsic failures caused by the 

electronic stresses introduced by the execution of the software during device 

operation. 

During device operation such failure mechanisms could cause shifting of device 

response parameters, such as voltage, capacitance, and resistance, to the point that 

they will not meet the designed values. For example, HCI could lead to shifts of 

threshold voltage, transconductance, mobility and saturation current of MOSFET 

transistors, while EM could increase the resistance of metal interconnects. 

The best way to model the failure mechanisms is from the physics-of-failure 

point of view. If this can be accomplished, one could have a complete picture of how 

a device might fail. However, limited knowledge of these failure mechanisms 
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currently prevents us from completely modeling the physics-of-failure. Without 

detailed knowledge of the device physics, the best option to represent device failures 

is through probabilistic statistical models. Such models use observed relationships 

between failure times and various input parameters, such as voltage and current, to 

generate probabilistic assessments of when failures may occur [43]. Accelerated Life 

Testing (ALT) techniques are used to model the relationship between device lifetime 

and different electrical stresses [44]. 

Device failures due to such failure mechanisms will result in changes of circuit 

functionality, which will affect the execution of software running on the hardware 

platform. To study the impact of the hardware failures on software reliability, we 

have to investigate the circuit behaviors under the presence of hardware failures 

caused by these failure mechanisms. The connections between device failure 

mechanisms and circuit functionality are the failure equivalent circuit models. The 

underlying concept of the failure equivalent circuit models is to model device 

degradation with some additional lumped circuit elements (transistors, resistors, 

dependent current sources, etc.) to capture the behavior of a damaged circuit element 

in the circuit operation environment. In the past years, several failure equivalent 

circuit models have been developed for different failure mechanisms [45-51]. Most of 

these circuit models are based on the SPICE simulation platform, which is the de 

facto tool in circuit design.  

Li et al adopted a one-dimensional HCI transistor degradation model, developed 

by Leblebici [47], and built a two-transistor HCI degradation model. The model is 

used to simulate the behavior of some benchmark circuits under the presence of Hot 
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Carrier Injection [52]. The study showed that circuit delays induced by HCI cannot be 

ignored in submicron devices. 

Segura et al investigated the circuit functionality of CMOS gates with damaged 

gate oxide due to TDDB failure mechanism. The failure equivalent circuit model 

consists of a series connection of two transistors and a resistance between the gate 

and the common terminal [53]. 

The above studies focused on only one particular type of failure mechanism. 

Most similar works consider different failure mechanisms separately. However, in 

order to conduct a system wide reliability estimation, all related failure mechanisms 

should be accounted for. 

Srinvasan et al developed an architecture-level microprocessor model that is 

used to calculate processor lifetime reliability. Multiple failure mechanisms are 

included in the model to investigate the hardware lifetime with the consideration of 

some environment stresses (thermal cycling and mechanical stresses). The emphasis 

of the work is to dynamically provide processor failure rate information under 

different software applications and environmental stress conditions [54]. The software 

applications are used to simulate hardware device operation. However, the work does 

not provide a way to use the hardware reliability information for the evaluation of 

software reliability due to hardware failures. The main contributions of the 

methodology proposed in this dissertation with respect to the related work on 

hardware reliability are the following: 

 It systematically calculates the hardware reliability during device operation 

as a function of the software execution. The interdependencies between 
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hardware and software in the creation of hardware failures are thus taken 

into account. 

 We have considered all those failure mechanisms (HCI, EM, and TDDB) 

that are activated as a result of hardware usage induced by software 

execution. In other words, it accounts for a comprehensive set of hardware 

device intrinsic failure mechanisms that are directly related to software 

execution during device operation. 

 It not only accounts for the failure probability of the circuit, but also 

investigates the probability of all possible failure manifestations (delays, 

stuck-at signals, changes of circuit functionalities, etc.) induced by the 

different failure mechanisms considered. 

 It provides software-specific hardware reliability information, which is the 

basis for estimating the software reliability induced by hardware support 

failures. 

 Most related research focuses on hardware reliability [47, 52, 53], and does 

not analyze the impact of hardware failures on software. The study by 

Srinvasan [54] considers the software only as a means to simulate the 

hardware operation, without systematic consideration of the influence of the 

software on hardware failures. Therefore, none of the related work analyzes 

the interactions and interdependencies between hardware and software with 

respect to reliability. Thus, this work is a bridge between microelectronic 

reliability and software reliability. 



 

 15 
 

1.2 Contents of the Dissertation 

The contents of the dissertation are described as follows. 

Chapter 2 analyzes the different types of permanent failures that impact 

semiconductor devices. The analysis is performed at the different hardware design 

levels: physical device level, logic level and register transfer level. In particular, we 

first study permanent failures at the physical level (e.g., intrinsic and extrinsic failures, 

electrical stress failures, etc.). In this dissertation, we focus on the intrinsic failure 

induced by HCI, EM, and TDDB failure mechanisms during device operation. Then 

the way in which the failures propagate and manifest at higher hardware levels (e.g., 

delay, stuck-at value, different functionality, etc.) is examined. 

Chapter 3 describes the methodology proposed for the analysis of the impact of 

permanent hardware failures on software reliability. The methodology is divided into 

three parts: (i) analysis of the manifestations of permanent failures on circuit elements 

(logic gates, flip-flops, etc.), (ii) development of reliability models as functions of the 

software execution, and (iii) calculation of failure probability distributions of the 

hardware circuit elements under the software execution. The analysis of the failure 

manifestation is performed through the use of SPICE simulations and failure 

equivalent circuit models. The reliability models take into account existing models for 

the DC stress failure rates, and integrate new models for the corresponding duty 

factors. These models also consider the way in which software executes through the 

hardware circuit elements in a computer system. The calculation of the failure 

probability distributions of the circuit elements is performed using Synopsys VCS 

MX simulator. 
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Chapter 4 consists of a comprehensive case study. The methodology is applied to all 

the CPU registers and ALU logic gates of a computer system based on the Z80 

microprocessor. About 120 different types of failure manifestations have been 

observed, and more than 250 reliability models for the different types of failure 

manifestation and circuit element developed. Several structures for the reliability 

models and different notations for the failure manifestations are proposed in order to 

handle the complexity of the reliability models and obtain a practical and reduced set 

of models. Such models are used for the calculation of the failure probability 

distributions of the CPU registers and ALU gates of the Z80 computer system under 

the software execution. 

Chapter 5 extends the methodology and the case study to the consideration of 

transient failures or SEUs (Single Event Upsets). First, a study of the causes and 

manifestations of transient failure in semiconductor devices is provided. Then, we 

develop reliability models for transient failures, which integrate into the same 

framework a set of well-known analytical models for the failure rate calculation of 

Single Event Upsets (SEUs). These take into account SEUs induced by cosmic ray 

particles (heavy ions and protons), neutrons present in the atmosphere, as well as 

neutrons emitted by nuclear reactors such as the ones that will be used in future 

nuclear-owered space missions from NASA. The models use design and technology 

parameters of the IC hardware devices, the operational environment characteristics 

(radiation particle fluxes) as well as the specifications of the system and mission (e.g., 

spacecraft shielding and orbit). The case study is then extended to the consideration 
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of transient failures by calculating the failure probability distributions due to SEUs of 

the hardware devices of the Z80 based computer system. 

Chapter 6 provides the conclusions of the dissertation and proposes future research 

directions. 

1.3 Summary of Contributions 

The main contributions of this dissertation are summarized as follows. 

It takes into account the influence of the software execution, the operational 

environment and the semiconductor design and technology in the creation and 

activation phenomena of hardware failures.  

It includes the whole spectrum of hardware failures that can arise during the 

system operation, i.e. not only Single Event Upsets (SEUs), but also permanent 

semiconductor device failures due to Hot Carrier Injection, Electromigration, and 

Oxide Breakdown.  

It considers all the possible locations for the hardware failures, i.e. not only 

sequential logic circuits (registers, memory cells, etc.) but also combinational logic 

circuits (logic gates) 

It analyzes the propagation of failures under particular operational conditions 

(including the software execution) and precisely determines the form under which 

each hardware failure manifests (stuck-at-1, stuck-at-0, bit-flip, change of 

functionality, etc.) at circuit level. 

It takes into account the usage of the hardware circuit elements due to software 

execution during the operational life of the system and provides the failure probability 

distributions of the circuit elements. This information can facilitate both software and 
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hardware reliability engineers to improve the system reliability more efficiently by 

focusing on the most failure-prone circuit elements. 

It can be used to extend the use of the fault injection technique to the software 

reliability prediction under hardware failures and allows for precisely defining 

representative fault models that can be used in fault injection techniques and tools. It 

also provides the basis to develop testbeds based on software implemented fault 

injection (SWIFI) to calculate the final failure probability of the software application. 

As far as we know, this is the first time that such an extension has been proposed. 
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Chapter 2 Hardware Failures 
 

The term “hardware failures” refers to the malfunction of semiconductor devices 

(Physical Device Level) and their impact (or propagation) on higher hardware levels, 

namely the Logic Gate Level and the Register Transfer Level (RTL). In this work we 

also use the term hardware faults as a synonym for hardware failures, since the latter 

can also be the origin or cause of further errors and failures at higher layers of the 

system (e.g., software layer). Irrespective of the level considered, hardware failures 

can be classified according to their duration into permanent (remain indefinitely), 

transient (have a limited duration) and intermittent (as transients, but manifest 

repeatedly). In this work, we analyze the mechanisms and events leading to 

permanent failures at the physical level as well as their impact on the higher hardware 

levels. Intermittent failures are not addressed because they are produced by the same 

mechanisms as permanent failures (moreover many of them eventually transform into 

permanent failures). An analysis of the impact of transient failures on software 

reliability will be conducted in Chapter 5.  

2.1 Permanent Physical Failures 

Permanent failures are irreversible physical defects in semiconductor devices 

introduced during manufacturing or system operation. In general, permanent failures 

can be divided into intrinsic, extrinsic and electrical stress failures [32].  

Intrinsic failures are related to defects of semiconductor devices due to 

limitations of material properties of the silicon chip or limitations of the 

manufacturing processes. These defects may be small enough so that they are not 
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lethal (e.g., material impurities), or result in a device being fatally defective (e.g., an 

open in metal interconnect). Examples of manufacturing processes related defects 

include ion contamination (Surface Inversion) and atom gradients caused by 

mechanical stresses (Stress Migration). Semiconductor material properties are 

stressed by both the environmental conditions (temperature and humidity) and the 

operational usage (voltage and current). These stressors are called wear-out 

mechanisms, and may cause non-lethal defects to become lethal. The environmental 

wear-out mechanisms include Temperature Cycling (mechanical fatigue of the 

devices due to the temperature) and Corrosion (due to humidity). The wear-out 

mechanisms related to the operational usage are Hot Carrier Injection (HCI), 

Electromigration (EM) and Time Dependent Dielectric Breakdown (TDDB) [55]. 

Extrinsic failures are identified with the interconnection and packaging of the 

silicon chips. Typical failure mechanisms include die fracture, open bond joints, voids 

at bonds, etc., which are external to the device circuitry itself. 

Electrical stress failures are generally caused by discrete events introduced 

during device handling in service. These damaging events include Electrostatic 

Discharge (ESD) and Electrical Overstress (EOS). 

The focus of this work is on hardware failures that are directly introduced during 

the device operation, that is, intrinsic permanent failures due to operational usage 

(HCI, EM and TDDB). Whenever software executes on hardware platform, the 

hardware device is stressed by these failure mechanisms. The corresponding failures, 

in turn, may cause software-execution errors, which means software reliability will be 

affected. This work focuses on studying the probability of such hardware failures due 
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to the execution of software. It also provides necessary information to evaluate 

software reliability induced by these hardware failures. 

Intrinsic failures caused by environmental stressors can impact how software 

executes in a microprocessor. However, they are not induced by the execution of 

software. For example, corrosion failures occur when the hardware device are in the 

presence of moisture and contaminants. The lifetime of corrosion failures is expressed 

as a function of relative humidity and temperature [25, 26]. Stress migration failures 

are induced when the device is put under mechanical stresses. The lifetime of stress 

migration failures is expressed as a function of mechanical stress load and 

temperature [27]. Such environmental stresses are not introduced by software 

execution, and they could cause hardware failures even when the device is operating. 

They are not the focus of this work. The impact of such failures on software 

reliability could be studied in future work. 

Similarly, even though extrinsic and electrical stress permanent failures can also 

impact the system in operation, they are not introduced directly due to software 

execution. Therefore, these failures are not considered in this study. 

2.1.1 Hot Carrier Injection Failure Mechanism 
 

Hot Carrier Injection (HCI) refers to the phenomenon by which carriers 

(electrons or holes) at the drain end of a MOSFET (Metal-Oxide Semiconductor 

Field-Effect Transistor) transistor gain sufficient energy to be injected into the gate 

oxide and cause shifts of some MOSFET parameters, such as threshold voltage, 

transconductance, mobility and saturation current. This occurs as carriers move along 

the channel of a MOSFET (the conductivity path between the source and drain of a 



 

 22 
 

field effect transistor) and experience impact ionization near the drain end of the 

device due to a high lateral electric field. Some high-energy electrons and/or holes 

produced by the impact ionization are redirected and accelerated to the interface of 

the oxide and silicon surface. A few of these “lucky” carriers overcome the surface 

energy barrier, inject into the oxide, and generate interface states and oxide charges. 

The shifts of threshold voltage and transconductance are proportional to the average 

density of “traps” (imperfections in a semiconductor material that can capture a free 

electron or hole), which in turn is inversely proportional to the effective channel 

length.  

Due to the higher mobility and lower energy barrier, hot electrons are much 

easier to be injected into the oxide than hot holes, which means that nMOSFET 

transistors are more prone to HCI effects than pMOSFET transistors. Therefore, 

pMOSFET transistors are seldom a limiting factor in the reliability of a CMOS 

technology, and can be usually ignored from reliability estimates [28, 56].  

The HCI lifetime of a transistor can be determined by: 
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where  

HCDA  the model prefactor determined from life testing 

subI  the average substrate current 

n  a technology related constant 

W  the transistor channel width 

aHCIE  apparent activation energy for HCI 
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κ   Boltzmann’s constant 

T   the absolute temperature 

2.1.2 Electromigration Failure Mechanism 
 

Electromigration (EM) is the mass transport of a metal due to the momentum 

exchange between the conducting electrons that move in the applied electric field and 

the metal atoms that make up the interconnecting material. It exists wherever electric 

current flows through metal wires. The EM failure lifetime model of a metal  

interconnect is characterized as [36]: 
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where 

EMA   the model prefactor 

I   the average current 

A   the cross section of the interconnects 

T   the absolute temperature 

aEME   the activation energy for EM failure mechanism  

k   Boltzmann’s constant 

mn,  material and failure mode dependent parameters 

EM decreases the reliability of ICs. In the worst case, it leads to the eventual loss 

of one or more connections and intermittent failure of the entire circuit. Since the 

reliability of interconnects is not only of great interest for space travel and military 

applications but also for civilian applications like the anti-lock braking system of cars, 

high technological and economic values are attached to this effect. 

http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Economic
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2.1.3 Time Dependent Dielectric Breakdown Failure Mechanism 
 

When an electric field is applied to the dielectric-isolated gate of a MOSFET, the 

progressive degradation of the dielectric material will result in the formation of 

conductive paths in the oxide and a shortening of the anode and cathode. When this 

happens, the continuous stress of the electric field on the gate oxide may lead to 

excessive energy dissipation, or even thermal runaway, through breakdown paths. 

The electrical after-effects of oxide breakdown are an abrupt increase in gate current 

and a loss of gate voltage controllability on device current flowing between drain and 

source. This kind of failure mechanism is known as Time Dependent Dielectric 

Breakdown (TDDB) or oxide breakdown, and the degradation process will be 

accelerated as the thickness of the gate oxide decreases with continued device scaling. 

The TDDB lifetime of a transistor is given by [40-42]: 
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where 

TDDBA   the model prefactor 

dcba ,,,   empirically determined constants 

A   the device gate oxide area of the transistor, equivalent to  

  W (channel width) × L (channel length)  

gsV   the gate-to-source voltage 

T   the absolute temperature  

β   Weibull distribution slope parameter 
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2.2 Impact on Higher Hardware Levels 

Microelectronic hardware circuit design, especially digital IC design, can be 

divided into four different abstraction levels, as shown in Figure 2.1.  

 Behavioral Level: it describes the function (or behavior) components of the 

system. It specifies the input and output of the component and the function 

the component carries. 

 Register Transfer Level (RTL): a behavioral component is decomposed into 

combinational logic and storage elements. The storage element (flip flop, 

latch) is normally controlled by the system clock. The combinational logic 

provides access control to the storage element. 

 Logic Level: the design is represented as a netlist (or combination) with 

different logic gates (AND, OR, NOT, etc.) and storage elements. The 

difference between this level and the RTL level is that one can observe the 

individual gates at this level but only blocks that represent storage and 

combinational logic at the RTL level.   

 Layout Level: this level is the bottom of the hierarchy. This level describes 

the layout of the actual transistors and their inter-connections.  

 

Figure 2.1 Different abstraction levels of circuit design 
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In the previous section, the analysis of permanent failures was described at the 

physical device level of the hardware, that is, with respect to the transistor elements 

and their physical interconnections, which are the building blocks of the circuit layout. 

Usually, IC design process starts from the top level (i.e., behavioral level) and goes 

down step-by-step to the layout level for the targeted semiconductor technology node.  

RTL level consists of combinational logic circuits and storage elements, which 

are further decomposed into discrete logic gates and flip-flops at the logic gate level, 

as illustrated in an example of RTL design in Figure 2.2.  

As explained in Section 2.1, a permanent failure at the physical level that 

becomes lethal leads to a transistor stuck-on/stuck-off or an open/short in a metal 

wire. At the logic and RT levels, these physical defects mainly manifest as stuck-at 

values (the logic voltage of a signal is stuck either at 0 or 1), indeterminate values 

(the logic voltage of a signal is neither 0 nor 1) and signal delays. Also, the 

propagation of permanent failures may lead to a functionality change of a 

combinational logic element, e.g., a transistor stuck-on failure in a NAND gate could 

change the truth table of the gate, making it behave differently than desired [57]. 

Besides, permanent failures can also propagate from the combinational logic to the 

storage elements in the form of bit-flips. Note that stuck-at values are not the only 

possible manifestations of permanent hardware failures.  
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Figure 2.2 Example of a RTL Design 
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Chapter 3 Methodology for the Analysis of Permanent Failure 
Manifestations 

 
 

This chapter describes the methodology for the analysis of permanent hardware 

failure manifestations. The methodology consists of three phases, which are described 

as follows. 

During the first phase of the methodology (analysis of failure manifestations), 

SPICE simulation is performed to investigate the behavior of the circuit elements 

(logic gates and flip-flops) under study with a set of generic input stimuli, which 

covers all possible combinations of logic levels and transitions of the input signals. 

This allows for calculating the failure rates of different circuit elements. A set of 

failure equivalent circuit models for different failure mechanisms, including HCI, EM 

and TDDB is used to study the circuit failure manifestations under the presence of 

hardware failures. The main outcome of this phase consists of the set of 

manifestations of the permanent failures observed in the circuits’ output signals (e.g., 

signal delays, functionality changes or stuck-at failures). 

During the second phase of the methodology (development of reliability models), 

a set of reliability models are built that allow for calculating the occurrence rate of 

each failure manifestation of a circuit as a function of the software execution profile 

of a computer system. The models are based not only on existing expressions for the 

constant stress failure rate of permanent failures, but also on specifically developed 

models that account for the operational conditions of circuits (e.g., current and 

voltages) and for the usage of the computer hardware devices as a consequence of the 
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software execution. Different structures and notations are proposed for the reliability 

models in order to reduce huge numbers of failure manifestations into practical sets of 

expressions. 

During the third phase of the methodology (calculation of failure probability 

distributions), the reliability models developed in the previous phase are applied to a 

particular computer platform. The usage of the hardware devices is obtained through 

VHDL simulations of the computer system under the execution of the software 

program of interest. This allows for solving the reliability models and calculating the 

failure probability distributions (per failure manifestation) of the various hardware 

devices of the computer platform (e.g., ALU gates, CPU registers, memories, etc.).  

The methodology is divided into five steps, two steps for the first phase, one for 

the second phase, and two for the third phase, as illustrated in Figure 3.1. Each step 

will be described in detail in the following sections. 
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Figure 3.1 Methodology for the analysis of permanent failure manifestations 

 

3.1 Analysis of Failure Manifestations 

3.1.1 Calculation of Failure Rates and Characterization of Stress Patterns 
 

This section describes step 1 of Figure 3.1.  

As explained in Section 2.1, the hardware failures of interest in this study are 

intrinsic failures that are directly related to software execution. The execution of the 

software can be seen as a series of electrical signals based on logic 0s and 1s that 

activate the circuits of the computer hardware platform following a particular profile. 
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Of all the intrinsic failure mechanisms, the three most dominant mechanisms are 

considered in this study. They are Hot Carrier Injection (HCI), Electromigration (EM), 

and Time Dependent Dielectric Breakdown (TDDB). 

Based on the lifetime models (2.1), (2.2) and (2.3) discussed in section 2.1, the 

corresponding failure rates of a circuit element (transistor or metal interconnection) 

are calculated as: 

hci
i

hci
i MTTF

1
=λ  (3.1) 

em
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em
i MTTF

1
=λ  (3.2) 

tddb
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Failure rates expressed in (3.1), (3.2) and (3.3) are referred to as constant (or DC) 

stress failure rates, since lifetime models (2.1), (2.2) and (2.3) for the reliability 

evaluation of the different failure mechanisms are obtained from accelerated testing 

experiments under DC stress conditions. For example, to obtain the HCI lifetime 

model (equation (2.1)), a series of accelerated life testing experiments are conducted 

at several substrate current and temperature combinations for the transistors. For a 

particular combination, the testing is performed by keeping the substrate current and 

temperature constant during the total testing time. The failure data obtained from 

testing are then used to extract parameters in the lifetime model by means of 

maximum likelihood estimation techniques. The models for EM and TDDB 

(equations (2.2) and (2.3)) are developed in a similar way.  
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With the lifetime models, the failure rates of all the failure mechanisms can be 

calculated if we have the device operation conditions, such as the gate to source 

voltages (Vgs) and substrate currents of the transistors. The device operation 

condition can be obtained through SPICE simulation. 

SPICE stands for Simulation Program with Integrated Circuits Emphasis. It is a 

general-purpose circuit simulation program for nonlinear dc, nonlinear transient, and 

linear ac analyses. SPICE provides a detailed analysis of active components including 

bipolar transistors, field effect transistors, and diodes, as well as lumped components, 

such as resistors, capacitors and inductors. Note that SPICE is a circuit simulation 

program, not a logic simulation program. Thus SPICE considers the voltages and 

currents in a circuit to be continuous quantities, not quantized into high/low values. 

Other constants, fitting parameters, and activation energies can be extracted from 

experimental data (e.g., accelerated stress tests or industry data).  

SPICE uses as main inputs the schematics of a circuit of the technology under 

consideration (e.g. Figure 3.3), and the input signal stimuli (e.g., Figure 3.4 and 

Figure 3.5).  
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Figure 3.2 Circuit Layout of an AND2_1 logic gate 

 

 

Figure 3.3 Schematic of the AND2_1 logic gate 

 

As an example, consider an AND2_1 logic gate implementing logic operation 

“And” of two input signals (i.e., given two inputs a  and b , the output is ba ∧ ). The 
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gate belongs to standard cell library vtvtlib25 developed by the Virginia Tech VLSI 

for Telecommunication (VTVT) Group [58, 59], based on TSMC 0.25 µm 

technology. The physical layout of this gate is shown in Figure 3.2. It is composed of 

6 transistors ( 0M , 1M ,  2M , 3M , 4M , and 5M ) and 5 interconnections ( 1N , 2N , 

3N , 4N , 5N ). The corresponding schematic is shown in Figure 3.3. The AND2_1 

logic gate is used throughout this section to illustrate the methodology.  

For the purposes of our analysis, the input signals to a circuit are designed 

according to the following criteria:  

The set of input signals includes all the possible combinations for logic levels 

(1’s and 0’s) and transitions (rising and falling edges). We assume that two or more 

transitions in different lines cannot happen at the same time.  

The set of input signals leads to the same duration for every combination of logic 

levels. The actual duration of a pulse is not important for our analysis, while the value 

for the duration of a transition period will be given by the particular semiconductor 

technology under analysis.  

We refer to a set of input signals matching these criteria as Standardized Inputs. 

Figure 3.4 and Figure 3.5 provide examples of Standardized Inputs.  
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Figure 3.4 Asynchronous input signals 

 

 

Figure 3.5 Asynchronous and synchronous (clock) input signals 

 

Consider the 2-asynchronous input signals of Figure 3.4. The first criterion is 

fulfilled since  

 there is a rising transition in the first input when the second input is high or 

low,  

 there is a falling transition in the first input when the second input is high or 

low,  

 there is a rising transition in the second input when the first input is high or 

low,  
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 there is a falling transition in the second input when the first input is high or 

low,  

 all logic levels (‘00’, ‘01’, ‘10’, ‘11’) are present. The second criterion is 

fulfilled since the percentage of time for each logic combination of the input 

lines is the same (namely, a2  for combinations ‘01’, ‘10’, ‘11’, and cb +  

for ‘00’, where cba +=2 ).  

It can be shown in a similar way that the two inputs of Figure 3.5 (consisting of 

an asynchronous signal and the clock line) also fulfill the criteria.  

The criteria used for the design of the input signals allow for “capturing” all the 

different patterns (including their relative time intervals) of the occurrence of the 

failure mechanisms in a circuit. Indeed, transistors and interconnects suffer from HCI, 

EM and TDDB stresses only for specific combinations and time intervals of logic 

levels and transitions of the input signals. We refer to these combinations as stress 

patterns. This is illustrated in Figure 3.6, where some stress patterns of the AND2_1 

logic gate obtained with SPICE are displayed.  
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Figure 3.6 Stress patterns examples for HCI, EM and TDDB in the AND2_1 

gate 
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A transistor suffers from HCI stress only during transition periods, when both 

gate voltage and drain voltage are high enough and there is current flowing through 

the channel (parameter subI  of equation (2.1)). For transistor 0M of the AND2_1 gate, 

such conditions appear whenever there is a rising edge (‘↑’) in the first input (I1) and 

the second input (I2) is high (‘1’) (i.e., instant 1.2µs in Figure 3.6a). For transistor 

1M , it appears whenever the first input (I1) is high (‘1’) and there is a rising edge 

(‘↑’) in the second input (I2) (i.e., instant 0.250µs in Figure 3.6a). 

A metal wire suffers from EM whenever there is an electric current flowing 

through it. For CMOS circuits, the current flow in an interconnection is negligible if 

the circuits are in static condition. However, switching input signals may introduce 

current pulses in the metal wires leading to EM. As shown in Figure 3.6b, EM arises 

in interconnect 2N  whenever there is a rising transition in input I2 while input I1 is 

high, or there is a falling transition in input I2 while input I1 is high (i.e., instants 

1.25µs and 1.45µs in Figure 3.6b). For interconnect 2N , it arises whenever there is a 

transition in one line while the other is high (i.e., instants 0.25µs, 0.5µs, 1.2µs and 

1.45µs in Figure 3.6b).  

Unlike HCI, TDDB stresses the gate dielectrics of the transistors even when they 

are in static state operations. As described in equation (2.3), the transistors lifetime 

due to TDDB stress strongly depends on the gate to source voltage gsV . For CMOS 

circuits, during normal device operation, most of the transistors experience certain 

periods during which the gate to source voltage gsV  value is equal to the power 

supply voltage ddV . The higher the percentage of such periods, the higher the failure 

rates of the transistors due to the TDDB stress. As shown in Figure 3.6c, gsV  will 
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systematically equal ddV  in transistor 2M  for logic levels ‘00’, ‘01’, and ‘10’ of 

inputs I1 and I2 (i.e., time intervals [0, 0.25], [0.5, 1.2] and [1.45, 2.0] in Figure 3.6c), 

leading to TDDB stress.  

3.1.2 Identification of Failure Manifestations 
 

This section describes step 2 of Figure 3.1.  

The identification of fault models is divided into the following steps:  

1) Development of a failure-equivalent-circuit model for the segments,  

2) Independent simulations of the element by substituting each time one 

segment by the failure-equivalent-circuit model,  

3) Observation of the output signal in each simulation and determination of the 

fault models.  

Once the failure rates ( hci
iλ , em

iλ , tddb
iλ ) are calculated for every transistor Mi  

and interconnection Ni  of a circuit element, a selection is made based on the 

elimination of those segments that are softly or not stressed by the failure 

mechanisms, so their impact in the global failure probability of the circuit can be 

neglected. This means that segment i  under stress j  will not be given any further 

consideration in our analysis if 0≈j
iλ . This is for instance the case of the pMOSFET 

transistors of a circuit, which as explained in Section 3.1.1 are barely impacted by the 

HCI stress.  

Figure 3.7, Figure 3.8 and Figure 3.9 show an example of a segments selection for 

the AND2_1 logic gate.  
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Figure 3.7 Relative HCI failure rates of transistors 
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Figure 3.8 Relative EM failure rates of interconnections 
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Figure 3.9 Percentage of time a transistor suffers from TDDB stress 

 

Figure 3.7 shows the relative failure rates of the different transistors for HCI with 

respect to transistor M0. Figure 3.8 illustrates the relative failure rates of the different 

metal interconnects for EM with respect to N1. While Figure 3.9 displays the 

percentage time transistors suffer from TDDB stress. In this case, the segments 

selection simply leads to the elimination of the pMOSFET transistors under HCI 

stress (i.e., transistors 3M , 4M  and 5M ), and interconnection 4N  under EM stress.  

In order to account for the effect of different failure mechanisms on circuit 

functionality, several failure equivalent circuit models [51], one for each failure 

mechanism, are adopted to obtain circuit level failure manifestations through SPICE 

simulation (one per segment and failure mechanism). The underlying concept of the 

failure equivalent circuit models is to model device degradation with some additional 

lumped circuit elements (resistors, dependent current sources, etc.) to capture the 

behavior of a damaged circuit element in circuit operation environment. The larger 
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the magnitude of element values, such as the resistance of the lumped resistor, the 

more severe the damage to circuit functionality. The failure equivalent circuit models 

are provided in Figure 3.10, Figure 3.11, and Figure 3.12. 

 

Figure 3.10 Failure equivalent circuit model for HCI mechanism 

 

 

Figure 3.11 Failure equivalent circuit model for EM mechanism 
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Figure 3.12 Failure equivalent circuit model for TDDB mechanism 

 

The adopted HCI failure equivalent circuit model (Figure 3.10) is the Hot 

Carrier Induced Series Resistance Enhancement Model (HISREM), also named dRΔ  

model (proposed by Hwang [48] and improved in [51]). The model is composed of 

the original nMOSFET transistor connected in series with a voltage dependent drain 

resistor dRΔ , which reflects the process of hot carrier induced interface trap 

generation and therefore accounts for the channel mobility reduction and threshold 

voltage shift. The degree of circuit degradation is reflected by the value of resistor 

dRΔ . The more severe the HCI damage to the circuit, the higher the resistance value. 

The metal conductor used in current submicron CMOS technologies is 

constructed of a composite layered structure with a refractory metal layer on top and 

at the bottom of the aluminum alloy core metal. The effect of EM on the composite 

metal conductor is the increase of line resistance. Usually the failure criteria used in 

the EM lifetime test is an increase of the line resistance by 10 to 20 %, or a line 
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resistance increase by a fixed value [60]. The EM failure equivalent circuit model for 

a metal interconnect (Figure 3.11) is a resistor whose resistance value gets higher as 

the degradation becomes worse.  

The TDDB failure equivalent circuit model used (Figure 3.12) corresponds to 

the Maryland Circuit Reliability Oriented (MaCRO) model [51]. The electrical effect 

of TDDB is that it provides a conduction path to inject electrons from channel into 

gate. Therefore, a voltage dependent current source OXI  can be used to connect the 

gate and channel of the damaged transistor to model the effect of TDDB. The circuit 

model for nMOSFET is shown in Figure 3.12, in which two split transistors imitate 

the channel separation by oxide breakdown path, and the voltage-dependent current 

source OXI  physically represents the conduction mechanism of hard breakdown path 

across the oxide. The magnitude of OXI  reflects the degree of degradation of the 

TDDB failure mode. The model can be extended to pMOSFET by properly changing 

current flowing direction in Figure 3.12. 

The relation between the additional lumped circuit elements values used in the 

failure equivalent circuit models (such as the resistance of the resistors) and the 

lifetime models of the failure mechanisms (equations (2.1), (2.2) and (2.3)) is beyond 

the scope of this work. Therefore, the values for the mean time to failure of the circuit 

are calculated using equations (2.1), (2.2) and (2.3) irrespective of how high it is 

necessary to increase the value of the lumped circuit elements to readily observe a 

failure manifestation.  

Assuming that the failure of a segment due to HCI, EM and TDDB damage 

could lead to a circuit functional error, the failure equivalent circuit models are used 
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to replace one segment at a time in the analysis. Each transistor of a circuit is to be 

replaced by the HCI and TDDB failure equivalent circuit models (Figure 3.10 and 

Figure 3.12), and each interconnection by the EM failure equivalent circuit model 

(Figure 3.11). Accordingly, if a circuit contains M  transistors and N  

interconnections, NM +2  mutated versions of the same circuit are produced. A 

“mutant” is thus a circuit in which a segment (transistor or interconnection) 

considered to be faulty is replaced by a failure equivalent circuit model. An example 

of one of such “mutants” for the AND2_1 gate circuit is provided in Figure 3.13, 

where transistor 5M  is replaced by the TDDB failure equivalent circuit model.  

 

Figure 3.13 AND2_1 layout with transistor M5 replaced by the TDDB failure 

equivalent circuit model 

 

The next step consists of running one independent SPICE simulation per 

mutated circuit. The objective is to determine whether the functional behavior of the 

circuit is impacted by the faulty segment and leads to a failure manifestation. To do 
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so, the waveform of the circuit’s output signal is logged and analyzed after every 

simulation. The output waveforms obtained during this process for the AND2_1 gate 

are provided in Figure 3.14.  

Ip1

Ip2

Op
 

a) Correct behavior (Ip1 – input 1, Ip2 – input 2, Op – output) 

HCI

EM

TDDB

M0, M1

M2

N1

N2, N3

N5

M0, M1, M5

M2

M3

M4

Delay-rise

Delay-fall

Delay-rise

Delay-fall

Stuck-at-0

Stuck-at-1

DiffFunc-b

DiffFunc-a

Delay-fall-Delay-fall-

b) Failure manifestations observed in the output (Op) 

Figure 3.14 Failure manifestations of the AND2_1 logic gate due to HCI, EM and 

TDDB stresses in its circuit segments 
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Figure 3.14b displays the failure manifestations of the AND2_1 gate, i.e., those 

output waveforms that differ from the correct output waveform (i.e., signal Op  in 

Figure 3.14a). As far as HCI is concerned, all the observed failure manifestations 

consist of output delays. The circuit behavior with a faulty transistor 0M  due to HCI 

leads to a delay of the output signal whenever its logic level changes from ‘0’ to ‘1’ 

(referred to as Delay-rise). A similar behavior is observed for a faulty 1M  transistor. 

On the other hand, the output is delayed during ‘1’ to ‘0’ transitions when transistor 

2M  is faulty (Delay-fall). Regarding EM stress, the observed failure manifestations 

correspond also to output delays: during ‘1’ to ‘0’ output transitions when there is a 

falling edge in signal 1Ip  and interconnection 1N  is faulty (Delay-fall-↓1); during ‘0’ 

to ‘1’ output transitions when interconnection 2N  (or 3N ) is faulty (Delay-rise); and 

during ‘1’ to ‘0’ output transitions when interconnection 5N  is faulty (Delay-fall). As 

far as TDDB is concerned, the observed failure manifestations are the following: 

stuck-at-0 fault when transistor 0M , 1M  or 5M  is faulty; stuck-at-1 fault when 

transistor 2M  is faulty; and different-function fault when transistor 3M  or 4M  is 

faulty. In this latter case, the different functions observed are respectively “stuck-at-

2Ip ” (DiffFunc-b) and “stuck-at- 1Ip ” (DiffFunc-a).  

The notation used for the failure manifestation is described in Table 3.1.  

Table 3.1 Notation of the failure manifestations 

 Failure manifestation Description 

Delay-a The output signal is always delayed, either 

during rise or fall transitions. 

“Detailed 

manifestation”

notation Delay-{rise, fall}-{input The output signal is delayed for specific 
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combinations} logic combinations and transitions of the 

input signals (input combinations), either 

during rise or fall transitions. 

Stuck-at-{0, 1} The output signal is stuck at logic value 0 

or 1 

DiffFunc-{logic function} The circuit functionality changed to a 

different logic function. 

Delay-{value} The output signal is delayed either during 

rise or fall transitions. The percentage of 

rise or fall transitions affected is indicated 

by value. 

Stuck-at-{0, 1} The output signal is stuck at logic value 0 

or 1 

“Simplified 

manifestation”

notation 

DiffFunc-{value} The circuit functionality changed to a 

different logic function. The percentage of 

logic combinations of the input signals 

leading to a different output logic level is 

indicated by value. 

 

The proposed methodology allows for obtaining very detailed information about 

the failure manifestations of a circuit. For example, it allows for determining whether 

a delay affects a rising or falling transition of the output signal, what the particular 

status of each input signal is during a delay, or which new logical function the circuit 
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implements after a failure. These characteristics can be captured by the detailed 

manifestation notation proposed in Table 3.1. As an example, the failure 

manifestations presented in Figure 3.14b are labeled using the detailed notation. 

Table 3.1 also proposes a more compact notation for the failure manifestations, 

referred to as simplified manifestation. In this notation, delays are characterized by 

the number of deferred pulses of the output signal, while the different-function failure 

manifestation is characterized by the number of changes in the truth table of the 

circuit. As an example, failure manifestations Delay-rise and Delay-fall from Figure 

3.14b would be under label Delay-1 using the simplified notation (i.e., 100% of the 

pulses of the output signal are delayed), Delay-fall-↓1 under label Delay-0.5 (i.e., 

50% of the pulses of the output signal are delayed), and failure manifestations 

DiffFunc-a and DiffFunc-b under label DiffFunc-0.25 (i.e., one out of the four entries 

of the truth table of the AND2_1 gate is changed, namely entry “10” when the 

different function is “a”, and entry “01” when the different function is “b”).  

 

3.2 Development of Reliability Models 

This section describes step 3 of Figure 3.1.  

The development of reliability models is divided into the following steps:  

1) Modeling of the failure probability following a competing failure mode 

model.  

2) Modeling of the reliability depending on the number of demands per 

element issued during the software execution,  
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The lifetime of an entire circuit results from a combination of the effects of the 

different failure mechanisms across different segments (transistors and 

interconnections). This requires information on the lifetime distribution of each 

failure mechanism. In a complex integrated circuit, the whole system will be 

extremely prone to failure if any segment fails. We can therefore approximate a 

complex integrated circuit using a competing failure mode model. We apply the 

standard sum-of-failure-rates (SOFR) model [44] widely used in industry to 

determine a system’s failure rate from its individual failure mechanisms. Using the 

SOFR model, the failure rate λ  of a circuit (e.g., logic gate, flip-flop, etc.) can be 

related to the lifetime of segments (equations (2.1), (2.2) and (2.3)) as shown in 

expression (3.4):  

∑∑
∈ ∈

=
Hj Si

ji
j

,λλ  (3.4) 

where 

H   the set of hardware failure mechanisms (e.g., HCI, EM, TDDB) that 

impact the circuit,  

jS   the set of segments (transistors and interconnections) stressed by 

failure mechanism j , and 

ji,λ  the dynamic stress failure rate of segment i  under stress j .  

The dynamic stress failure rate ji,λ  can be calculated in different ways, for 

example by means of quasi static values or duty factors. We use duty factors to 

calculate the dynamic stress failure rate as follows: 
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j
ijiji w λλ ,, =  (3.5) 

where 

j
iλ   the constant stress failure rate of segment i  under stress j  (i.e., 

equivalent to equations  (3.1), (3.2) and (3.3)), and  

jiw ,   the duty factor for j
iλ , which is equivalent to the percentage of time 

that segment i  is subjected to stress j  during the circuit operation under a particular 

software execution.  

The SOFR model elevates the reliability from transistor and interconnection 

levels to circuit level and is used to estimate lifetimes for various kinds of device 

families.  

The SOFR model described in (3.4) provides the value for the failure rate of a 

circuit irrespective of the failure manifestation that impairs the circuit. In order to 

calculate the failure rate Fλ  of a particular manifestation F  of a permanent failure 

(e.g., stuck-at-0, stuck-at-1, delay, different function, etc.), we rewrite equation (3.4) 

as follows:  

∑ ∑ ∑∑
Γ∈ ∈ ∈Γ∈

==
F Hj Si

j
iji

F

F

F Fj

w
,

, λλλ  (3.6) 

∑ ∑
∈ ∈

=
F FjHj Si

j
iji

F w
,

, λλ  (3.7) 

where 

Γ   the set of failure manifestations F  that impact the circuit,  

FH   the set of hardware failure mechanisms (e.g., HCI, EM, TDDB) that 

impact the circuit leading to failure manifestation F ,  
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FjS ,   the set of segments (transistors and interconnections) stressed by 

failure mechanism j  which lead to failure manifestation F ,  

j
iλ   the constant stress failure rate of segment i  under stress j , and 

jiw ,   the duty factor for j
iλ .  

For example, expression Fλ  for the AND2_1 gate is as follows:  
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(3.8) 

 

Note that parameters Γ , FH  and FjS ,  are determined as explained in Section 

3.1.2. Also, as explained in Section 3.1.2, transistors 3M , 4M  and 5M  under HCI 

and interconnection 4N  under EM can be neglected for the reliability analysis of the 

AND2_1 gate.  

To calculate duty factors jiw , , we need to use the Standardized Inputs and the 

Stress Patterns described in Section 3.1.1, the Failure Manifestations described in 

Section 3.1.2, and also a Hardware Serial Model which is described hereafter.  

The software execution on hardware devices (normally includes CPU, memory, 

busses etc.) is essentially a series of 0 and 1 signal alterations for hardware units. This 
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model assumes that the software execution on hardware devices is divided into a 

series of demand and idle intervals, as depicted in Figure 3.15.  

Demand Idle Demand Idle Demand …… Idle

Figure 3.15 Hardware serial model during software execution 

 

Thus the software execution in terms of a specific unit constitutes a series of 

being-demanded and not-being-demanded (idle) combinations. As an example, Figure 

3.16 shows this execution process for a logic gate and a flip-flop when the 

Standardized Inputs considered in Section 3.1.1 are applied.  

D1 I I I I I I I ID2 D3 D4 D5 D6 D7 D8  

a) Demand (D) and idle (I) intervals of a logic gate 

IDID D D I DIDIDID D D IDIDID D D DIDID D DIII I I I I I I  

b) Demand (D) and idle (I) intervals of a flip-flop 

Figure 3.16 Examples of the hardware serial model under a software 
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execution using the Standardized Inputs 

 

As shown in Figure 3.16, a demand interval is actually triggered by a logic 

change of any of the input signals to the hardware device. We assume that the 

duration of a demand interval is equivalent to the duration of a transition period of a 

signal. Such a duration is symbolized by τ .  

As stated above, coefficients jiw ,  can be calculated using the Hardware Serial 

Model described above in combination with the Standardized Inputs, the Stress 

Patterns and the Failure Manifestations. This is illustrated for the AND2_1 gate in 

Figure 3.17.  
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Figure 3.17 Stress patterns using the Standardized Inputs 

 

As shown in Figure 3.17, the different current peaks of the stress patterns for the 

HCI and EM effects can be matched to a particular demand transition of the hardware 

serial model. For instance, transistor 0M  is stressed by HCI only during demand 6D , 

and such a stress will lead to the Delay-rise failure manifestation. Then, coefficient 

hciw ,0  can be calculated as 
T

d τ6 , where T  is the duration of the time window within 

which the measurement is being performed, τ  is the duration of a demand transition 

iD , and 6d  is the number of demands of type 6D  that occurred within time window 

T  (e.g., in Figure 3.17, id  is equal to 1 for all i ). On the other hand, the different 

voltage pulses of the stress patterns for the TDDB effect can be matched to a 

particular logic combination of the input signals. For instance, transistor 0M  is 

stressed by TDDB only for logic combination 11 of the input signals, and such a 

stress will lead to a stuck-at-0 failure manifestation. Then, coefficient tddbw ,0  can be 

calculated as 
T
t11 , where 11t  is the duration of logic combination 11 (e.g., in Figure 

3.17, ijt  is equal to 
4
T  for all ji, ). 

In general, duty factor jiw ,  is given by the following expression:  
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where  

T   the duration of the time window where the measurement is being 

performed, 

( )jiI ,   the set of sub-indexes y  of those demand transition types yD  for 

which stress j  impacts segment i  (e.g., ( ) { }7,6,3,2,3 =emI ),  

kd   the number of demands of type kD  that occurred within time window 

T , 

τ   the duration of a demand transition,  

( )jiC ,   the set of logic combinations of the input signals for which stress i  

impacts segment j  (e.g., ( ) { }10,01,00,2 =tddbC ), and 

ct   the duration of logic combination c  of the input signals within time 

window T .  

Note that the value of parameters kd , ct  and T  is software dependent. In other 

words, the execution of different software applications will lead to different values 

for kd , ct  and T .  

For example, using equations (3.8) and (3.9), expressions riseDelay−λ  and 

0−−atStuckλ  for the AND2_1 gate are as follows: 
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(3.10) 



 

 57 
 

( )
( )

( )

( )

( ) tddb

tddbtddbtddb

tddbtddbtddbtddbtddbtddb

ememememem

hcihcihciatStuck

T
ttc

T
t

T
tt

T
t

T
t

T
tt

T
t

λ

λλλ

λλλλλλ

λλλλλ

λλλλ

0111

5
11

1
0111

0
11

5
11

4321
0111

0
11

54321

210
0

2

000

00000

000

++
=

+
+

+=

⎟
⎠
⎞

⎜
⎝
⎛ +⋅+⋅+⋅+

+
++

⋅+⋅+⋅+⋅+⋅+

⋅+⋅+⋅=−−

 

(3.11) 

 

In equation (3.11), we assume that in the same circuit element all the 

nMOSFETs have the same channel width nW , and all the pMOSFETs have identical 

channel width pW . From equation (2.3) and (3.3) we can see that the same type of 

MOSFET transistors have the same failure rate if they are put under the same 

constant voltage stress. The ratio of pMOSFET transistors failure rate to that of 

nMOSFET transistors is a constant value c , which is calculated as:  

β

λ
λ /1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

n

p
tddb
nMOSFET

tddb
pMOSFET

W
W

c  (3.12) 

where 

np WW ,   channel width of pMOSFET and nMOSFET transistors, respectively 

β   Weibull slope parameter in (2.3) 

Actually, in vtvtlib25 standard cell library used for this study, not only the above 

assumption is true, but also all the cells of the same drive strength have identical 

nMOSFET and pMOSFET dimension. Therefore, the above analysis is applicable to 

other gates in the cell library. Based on this analysis, in (3.11), the failure rate of 

nMOSFETs due to TDDB is denoted as tddbλ , and the failure rate of pMOSFETs is 

tddbc λ⋅ . 
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In practice, the measurement of parameters kd  and ct  might make the 

calculation of the usage profile (i.e., last step of the methodology in Figure 3.1) 

complex and time consuming. We thus propose an alternative simplified version for 

expression jiw , , as described hereafter: 
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where 

T   the duration of the time window where the measurement is being 

performed, 

( )jiI ,   the number of transition types xD  for which stress j  impacts segment 

i  (e.g., ( ) { } 47,6,3,2,3 ==emI ),  

I   the total number of demand transition types (e.g., in general, for a n-

asynchronous input signal circuit, I  is equal to nn2 ),  

d   the number of demand transitions of any type, ∑∀
=

i idd , that 

occurred during time window T  (e.g., in Figure 3.17, d  is equal to 8),  

τ   the duration of a demand transition jD ,  

( )jiC ,   the number of logic combinations of the input signals for which stress 

j  impacts segment i  (e.g., ( ) { } 310,01,00,2 ==tddbC ),  

C   the total number of logic combinations of the input signals (e.g., in 

general, for a n-asynchronous input signal circuit, C  is equal to n2 ),  
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Equation (3.13) is simplified since only parameters d  and T  are software 

dependent, and the measurement of parameter d  is easier in practice than the 

measurement of kd  and ct  from equation (3.9).  

Using equation (3.13), expression (3.10) for riseDelay−λ  and (3.11) for 0−−atStuckλ  

can be recalculated as follows: 
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In expressions (3.14) and (3.15), only parameter d  needs to be measured for the 

calculation of the usage profile. 

The failure rates (both the detailed and simplified version) for the other failure 

manifestations of the AND2_1 gate can be calculated in a similar way using Figure 

3.17 and equations (3.8), (3.9) and (3.13). These models are provided in Table 3.2. 

Table 3.2 Failure rate models of the AND2_1 gate per failure manifestation 

  Detailed models Simplified models 
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 Fλ  Failure rate of the circuit for failure manifestation F  

 j
iλ  Failure rate of segment i  due to stress j  

 tddbλ  Failure rate due to TDDB stress 

 id  Number of demands of type jD  that occurred within time 

window T . 
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 d  Number of demand transitions of any type occurred during time 

window T . 

 c  Relation between the TDDB failure rate of nMOSFET and 

pMOSFET transistors.  

 τ  Duration of a demand transition iD . 

 T  Duration of the time window where the measurement is 

performed. 

 11100100 ,,, tttt
 

Durations of logic combinations 00, 01, 10, 11 of the input 

signals within time window T . 

 

3.3 Calculation of Failure Probabilities 

3.3.1 Calculation of the Hardware Usage Profile 

This section describes step 4 of Figure 3.1.  

As discussed in Section 3.1, a device failure probability over time depends on 

the number of times the unit is demanded. For digital devices, especially a CPU, the 

way in which each unit is accessed depends heavily on the set of instructions 

(collectively called the software) it executes. Using the tools Synopsys VCS MX [61] 

and Synopsys Design Analyzer [62] makes it feasible to simulate the software 

execution against the hardware device’s VHDL script.  

Synopsys VCS MX is the industry’s most comprehensive RTL verification 

solution in a single product, providing advanced bug-finding technologies, a built-in 

debug and visualization environment and support for all popular design and 
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verification languages including Verilog, VHDL, SystemVerilog and SystemC. 

Synopsys VCS MX provides a high-performance, high-capacity full language VHDL 

simulator. It is used to analyze, compile, and simulate design descriptions written in 

IEEE VHDL 1076-1993 [63], and provides a set of VHDL simulation and debugging 

features to validate the VHDL design descriptions. These features provide capabilities 

for source level debugging and simulation result viewing. The tool supports all levels 

of design descriptions but is optimized for the behavioral and register-transfer levels.  

Synopsys Design Analyzer is a powerful analysis tool that provides synthesis 

control, design management, and design analysis in a graphical environment. With 

Synopsys Design Analyzer the user can perform various design set-up and analysis 

functions, as well as view and interact with the synthesized schematic. 

The procedure to obtain the hardware usage profile of the circuit elements is 

described in Figure 3.18.  

Hardware platform’s 
VHDL description

(RTL level)

Verification
(Synopsys VCS MX) 

& synthesis
(Synopsys Design

Analyzer)

Application Software

Standard cell library
for a technology node

VHDL code 
(GATE level)

Simulation
(Synopsys
VCS MX)

Compiler Application Software’s
machine code

Hardware
usage profile

VHDL simulation

Extension

Extra VHDL code
for counting demands Extended

VHDL code 
(GATE level)

Figure 3.18 Description of the VHDL simulation step of the methodology 

 

First, the functionality of the VHDL RTL script that describes the hardware 

platform (e.g., a basic platform including the CPU, the memory and the connection 
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between them) is verified by means of the Synopsys VCS MX simulator. The VHDL 

RTL script is then ready to be translated into an actual gate level netlist using 

Synopsys Design Analyzer. The process of converting the RTL description into a 

netlist for a given target technology is called logic synthesis. To produce the 

synthesized netlist, the synthesis tool requires the RTL code of the hardware devices 

and the cell libraries. The cell libraries provide information about all the available 

cells, including connectivity and functionality, timing, area, and corresponding 

symbol, among others. Some extra VHDL code is then inserted into the gate level 

VHDL scripts which will count the number of demands to the circuit elements (e.g., 

gates, flip-flops) during the VHDL simulation. On the other hand, the application 

software needs to be compiled into machine code. This code will be loaded into the 

system memory during the VHDL simulation. The gate level’s VHDL scripts and the 

machine code are thus used by the Synopsys VCS MX simulator to simulate the 

execution of the application software on the computer system. The outcome of this 

simulation will consist of the software-specific hardware usage profile in terms of 

number of demands issued to the circuit elements under study.  

An example of such a profile is provided in Figure 3.19. The “Circuit elements” 

axis represents a set of circuit elements under analysis. The “Time” axis defines the 

execution time of the system under a given software application (i.e., parameter T  of 

Section 3.2), and the “Demands” axis provides the number of demands of each circuit 

element (i.e., parameter d  of Section 3.2).  
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Figure 3.19 Software-specific hardware usage profile – an example 

 

The number of demands of a circuit element will systematically increase 

monotonically over time. However, the speed of the increase will differ for different 

circuit elements and software applications [64].  

3.3.2 Calculation of the Hardware Failure Probability Distributions 

This section describes step 5 of Figure 3.1.  

The software-specific hardware failure probability F
ip  of a circuit element i  

under failure manifestation F  is calculated as follows: 

Tep F
i

TF
i

F
i λλ ≈−= −1  (3.16) 

where 

F
iλ   the failure rate of failure manifestation F

iλ  of circuit element F
iλ  

(equivalent to equation (3.7)), 

T   the duration of the time window where the measurement is being 

performed. 
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A hardware device of a computer system is composed of a set of circuit elements. 

For example, a register consists of a series of register bits (or flip-flops), and an ALU 

is composed of a netlist of logic gates. Therefore, the software-specific hardware 

failure probability distribution (or profile) F
iP  under failure manifestation F  of a 

hardware device i  composed of n  circuit elements is as follows: 

{ }F
n

FFF
i pppP ,...,, 21=   

(3.17) 

where 

F
n

F pp ,...,1   the failure probabilities of circuit elements n,...,2,1  under 

failure manifestation F  (equivalent to equation (3.16)). 

Finally, the combined software-specific hardware failure probability distribution 

(or profile) iP  of a hardware device i  under any failure manifestation is as follows: 

⎭
⎬
⎫

⎩
⎨
⎧

= ∑∑∑
Γ∈Γ∈Γ∈ nF

F
n

F

F

F

F
i pppP ,...,,

21

21  (3.18) 

where 

F
n

F pp ,...,1   the failure probabilities of circuit elements n,...,2,1  under 

failure manifestation F  (equivalent to equation (3.16)), 

nΓΓΓ ,...,, 21  the sets of all failure manifestations F  of circuit elements 

n,...,2,1  

An example of the combined software-specific hardware failure probability 

profile over time is provided in Figure 3.20. The “Hardware device” axis contains the 

set of circuit elements of the hardware device under analysis. The “Time” axis defines 
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the execution time of the system under a given software application (i.e., parameter 

T  of equation (3.16)), and the Z-axis provides the software-specific hardware failure 

probability of each circuit element of the hardware device under any failure 

manifestation (i.e., parameter ∑
Γ∈ 1F

F
ip  of equation (3.18)).  
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Figure 3.20 Combined software-specific hardware failure probability profile – an 

example 

 

As in the case of the number of demands (see Figure 3.19), the failure 

probability of each circuit element of a hardware device will increase monotonically 

over time, while the speed of the increase will differ for different circuit elements 

[64].  
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Chapter 4 Calculation of Failure Probabilities 

The methodology developed in Chapter 3 has been applied to an example system. 

The microprocessor considered in this system is the Zilog Z80 CPU, a CPU whose 

VHDL description was publicly available. There are no theoretical barriers to extend 

the proposed approach to other CPUs and devices such as memory or busses as long 

as their VHDL scripts are available.  

4.1 System Description 

The example system is configured as shown in Figure 4.1. The system consists 

of a Zilog Z80 microprocessor, and a RAM module. A set of control signals plus the 

data and address busses are also included to constitute a minimum system. The Z80 

CPU is the pilot processor we used to demonstrate the methodology. The RAM 

module is used to store software program in machine code format. 

 

 

Figure 4.1 The Example Z80 Computer System 
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The Zilog Z80 microprocessor has been designed and manufactured by Zilog 

since 1976. It was widely used both in desktop and embedded computer designs and 

is one of the most popular CPUs of all time. Z80 was the heart of many computers 

like Spectrum, Partner, TRS703, Z-3. The Z80 microprocessor is an 8-bit CPU with a 

16-bit address bus capable of direct access to 64k of memory space. The Z80 CPU 

can execute 158 different instructions.  

The Z80 CPU contains 208 bits of read/write memory that are available to the 

programmer. The registers include two sets of six pairs of general-purpose registers 

(B, C, D, E, H, L, Bp, Cp, Dp, Ep, Hp, Lp) that may be used individually as 8-bit 

registers or in pairs as 16-bit registers. There are also two sets of accumulator and flag 

registers and six special-purpose registers. The special-purpose registers include 

Program Counter (PC), Stack Pointer (SP), Index Registers (IX and IY), Interrupt 

Page Address Register (I), and Memory Refresh Register (R). The other important but 

nonprogrammable register is the Instruction Register (IR) [65]. 

The Z80 VHDL script used in the case study was obtained from the T80 project 

at opencores.org [66]. The T80 is a configurable CPU core that supports Z80, 8080 

and Gameboy instruction sets. The original T80 VHDL code is written in RTL level. 

The VHDL code is tailored to support the Z80 microprocessor instruction set only. 

Besides the 22 user-programmable registers described above, the Z80 VHDL 

model has another 31 hidden registers, including the Instruction Register (IR), which 

are not visible to the programmer. The hidden registers are used by the CPU to store 

intermediate data during instruction execution. 
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Then the RTL level code is synthesized to logic gate level through Synopsys 

Design Analyzer using the vtvtlib25 standard cell library [58, 59]. The gate level 

netlist consists of about 5000 logic gates and flip-flops. The total number of 

transistors is on the order of 30000. The number of metal interconnects is in the 

neighborhood of 40000. 

The gate level VHDL script is further modified to fit the simulation requirements. 

For example, as shown in Figure 4.2, the four new signals n2543, n2544, n2545, 

n2546 are introduced for the purpose of counting the number of demands for the logic 

gate U1250, which is of type ab_or_c_or_d.  

architecture SYN_rtl of Z80_ALU is 

-- original signal in the Z80 ALU gate level VHDL code 

      signal n2543, n2544, n2545, n2546, …: std_logic;  

   … 

begin 

   ALU_n2543 <= n2543; 

   ALU_n2544 <= n2544; 

   ALU_n2545 <= n2545; 

   ALU_n2546 <= n2546; 

-- ALU_n2543, ALU_n2543, ALU_n2543, ALU_n2543 are probes introduced to 

monitor the n2543, n2544, n2545, n2546 signals, which are connected to the inputs 

of gate ab_or_c_or_d. 

   … 

   U1250 : ab_or_c_or_d port map( ip1 => n2543, ip2 => n2544, ip3 => n2545, ip4 
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=> n2546, op => Q(0)); 

   … 

end SYN_rtl; 

Figure 4.2 Modified Z80 CPU script segment 

 

4.2 Analysis of Failure Manifestations 

The failure manifestations of different circuit elements, including D flip-flop 

used as CPU register bits and all the logic gates used by the ALU of the Z80 CPU are 

analyzed.  

4.2.1 Analysis of the CPU Register Bits 

The logic synthesis result indicates that D flip-flops from the vtvtlib25 standard 

cell library is used to represent the register bits of the Z80 CPU. The layout of the D 

flip-flop is shown in Figure 4.3. The corresponding schematic with input stimuli is 

illustrated in Figure 4.4. 

 

Figure 4.3 Circuit layout for D flip-flop 
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Figure 4.4 Circuit schematic for D flip-flop 

 

The operation of the D flip-flop under a standardized input stimulus is shown in 

Figure 4.5, where the value of the output signal Op  will be updated with the value of 

the input signal 1Ip  at the rising edge of the clock signal.  

Ip1

Op

Clk

 

Figure 4.5 Transient response under normal operation 

 

Figure 4.6 shows the results of the SPICE simulations performed on the D flip-flop to 

study its failure manifestations. The X-axis contains the different segments of the 

flip-flop ( ,...2,1,...2,1 NNMM ). For HCI and EM (Figure 4.6a and Figure 4.6b), the 

Y-axis represents the percentage of demand transitions of a segment either with 

respect to the asynchronous input signal ( ( ) IjiI /, ) or the clock signal controlling 
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the flip-flop ( ( ) clkclk IjiI /, ). For TDDB (Figure 4.6c), it is shown instead the 

percentage of logic combinations of the asynchronous input signal under which the 

TDDB effect impacts a segment ( ( ) CjiC , ). On the top of each column, we have 

included the failure manifestation observed for a segment (using the “detailed 

manifestation” notation). When nothing is indicated, it means that the failure of a 

segment has no effect on the circuit (i.e., the circuit behaves normally).  
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b) EM stress 
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c) TDDB stress 

Figure 4.6 Z80 registers bits – Results of SPICE simulations. 

 

The information provided by the SPICE simulations allows us to build the 

failure rate models of the flip-flop for each failure manifestation. Let’s first focus on 

Figure 4.6a. The only failure manifestation observed at the circuit level is stuck-at-1, 

due to the failure of transistors 16M  and 26M  under the HCI effect. Using equations 

(3.7) and (3.13)  and the demand percentages on Figure 4.6a, the failure rate for 

stuck-at-1 type of failure is 

( )
T
dhcihciatstuck τλλλ 2616

1

2
1

+=−− .  

However, this expression is incomplete since we still need to include the 

contributions to the stuck-at-1 failure rate from the other failure mechanisms. In 

Figure 4.6b, the failure of interconnections 1N , 6N , 12N , 16N , 18N  and 19N  

under EM lead to stuck-at-1. Consequently, the contribution of the EM effect to the 

stuck-at-1 failure rate is given by expression 
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3 . Finally, according to Figure 4.6c, the 

stuck-at-1 failure manifestation under TDDB stress is provoked by nMOS transistors 

5M , 16M  and 26M  (for a time percentage equivalent to 23 ) and pMOS 

transistors 1M , 6M , 8M , 10M , 12M , 17M , 19M  and 23M  (for a time 

percentage equivalent to 431 ). The contribution of the TDDB stress to the stuck-at-1 

failure rate is tddbc λ
4
136 + . Combining these three partial results, the final expression 

for the stuck-at-1 failure rate of the flip-flop is as follows:  
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The stuck-at-0 failure rate can be calculated in a similar way (see Table 4.1). 

Also, as shown in Figure 4.6b, transistors 8M  and 14M  lead to the delay-rise and 

delay-fall manifestations, respectively. The corresponding failure rates are given by 

expressions Td emriseDelay
8τλλ =−  and Td emfallDelay

14τλλ =− .  

The reliability models for the flip-flop are summarized in Table 4.1 using the 

“simplified manifestation” notation.  

Table 4.1 Reliability models for the flip-flop circuit element of the Z80 CPU 
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4.2.2 Analysis of Fault Models for Combinational Logic Elements 
 

In Z80 CPU, all the arithmetic and logical instructions are executed in the 

Arithmetic Logic Unit (ALU). The logic synthesis results indicate that ALU is 

composed of pure combinational logic gates. There are no registers used in the ALU. 

In this work, all the combinational logic gates in the ALU are analyzed. The analysis 

can be extended to other combinational logic circuits of the microprocessor. 

The logic synthesis results show that the ALU contains 461 logic gates of 

different types. These types are listed in Table 4.2.  

Table 4.2 Different type of logic gates used in the ALU of the Z80 CPU 
 

 # of Input Signals Logic function 
INV_1 1 a  

NOR2_1 2 ba +  
OR2_1 2 ba +  

NAND2_1 2 ab  
AND2_1 2 ab  
XOR2_1 2 baba +  

XNOR2_1 2 baba +  
ABorC 3 cab +  

MUX2_1 3 acba +  
NOR3_1 3 cba ++  

NAND3_1 3 abc  
NAND4_1 4 abcd  
NOR4_1 4 dcba +++  
OR4_1 4 dcba +++  

ABorCorD 4 dcab ++  
NOT (ABorCorD) 4 dcab ++  

 

Figure 4.7 and Figure 4.8 illustrate the standardized input signal stimuli used for the 

3- and 4-inputs gates. The signal stimulus for the 2-inputs gates appears in Figure 3.6. 

Note that the various input signal stimuli follow the criteria stated in Section 3.1.1.  
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Figure 4.7 Standardized input signal stimuli for 3-inputs gates 

 

 

Figure 4.8 Standardized input signal stimuli for 4-inputs gates 

 

The reliability models for the logic gates are developed in a similar way as 

explained in 3.2 for the AND2_1 gate. The results of the SPICE simulations for the 

logic gates are provided in Appendix A. 

A total of 120 different types of failure manifestations have been observed for 

the ALU gates (see Appendix A):  

66 types correspond to delays of the transitions of the output signal triggered at 

specific combinations of the inputs. From them, 32 impact the falling transitions of 

the output, while 34 impact the rising transitions.  
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51 types correspond to behavioral changes of the gates leading to different logic 

functions.  

Two types correspond to the stuck-at-0 and stuck-at-1 manifestation types.  

In order to cover all these different types of failure manifestations, we have 

developed more than 250 reliability models for the ALU gates. Using the “simplified 

manifestation” notation, it is possible to combine them and reduce these figures to 90 

models for 19 manifestation types (namely, 1−Delay , 17.0−Delay , 25.0−Delay , 33.0−Delay , 

38.0−Delay , 4.0−Delay , 5.0−Delay , 6.0−Delay , 67.0−Delay , 75.0−Delay , 0−− atStuck , 1−− atStuck , 

06.0−DiffFunc , 13.0−DiffFunc , 19.0−DiffFunc , 25.0−DiffFunc , 38.0−DiffFunc , 5.0−DiffFunc , 63.0−DiffFunc ). 

Further, we have merged the various types of delays and different functions into a 

single category. It leads to 49 models for four manifestation types, as shown in Table 

4.3.  

Table 4.3 Reliability models for logic gates used in the ALU 
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4.3 Lifetime Model Parameters Calculation 

In order to calculate the failure rates of the reliability models developed in the 

previous section, we need to obtain all the lifetime model parameters, especially the 

model prefactors for all three failure mechanisms. 

The parameters in the lifetime models of different failure mechanisms are 

estimated from accelerated testing experiments. For example, for the EM failure 

mechanism, the current density exponent and thermal activation energy in equation 

(2.2) can be estimated by testing the metal interconnect at different current and 

temperature level, respectively. These parameter values usually remain unchanged at 

different foundries if the manufacturing processes are almost identical.  
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However, the lifetime model prefactors will depend on the quality control and 

the material properties. Even though they can also be obtained from accelerated 

testing, the actual value varies from one foundry to another. The values of the 

prefactors are set by each semiconductor foundry to keep the lifetime of 

semiconductor devices within a specific reliability target. A general assumption is 

that the foundry will do their best to make sure there is no dominating failure 

mechanism, which indicates that the failure rates for different mechanisms are 

roughly the same. Without conducting device life testing, we can estimate the model 

prefactors from the above assumption. 

The reliability target for a semiconductor chip is usually about 30 years [60], 

which translates to a FIT value of around 3,800. This FIT value is for the device 

nominal operating conditions, which means the device is operating under dynamic 

stress conditions. With the assumption of no dominant failure mechanism, the FIT 

value is evenly distributed for the three failure mechanisms, which means each failure 

mechanism has a FIT value of about 1,300.  

The lifetime model prefactors of all three failure mechanisms can be calculated 

based on the above conditions for the case of the Z80 microprocessor. The results of 

logic synthesis with the vtvtlib25 standard cell library show that the total number of 

logic gates and flip-flops is on the order of 5,000. The total number of transistors is 

about 30,000. The number of metal interconnects is in the neighborhood of 40,000. 

The nominal voltage bias is 2.5V, and the temperature is 300K. 
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4.3.1 TDDB Lifetime Model Prefactor  

Based on the above assumption, the total failure rate for the TDDB mechanism 

is 

16103.11300 −−×== hrFITTDDBλ  

From the standard inputs pattern simulation, the average duty factor for the 

TDDB effect is about 0.5, which means that a transistor is stressed by the TDDB 

mechanism about 50% of the time during circuit operation. However, in the TDDB 

lifetime model, the failure rate is calculated assuming the gate oxide is stressed 

constantly. Therefore, the failure rate we should use in the lifetime model is the 

failure rate at operating condition divided by the average duty factor. The adjusted 

failure rate is 

λ'TDDB =
λTDDB

0.5
= 2.6 ×10−6 hr−1 

The total lifetime for TDDB is 

t f '(TDDB) =
1

λ'TDDB

= 3.85 ×105 hr  

The channel length of a MOSFET in the vtvtlib25 cell library is 240nm. The 

channel width of a nMOSFET is 840nm, while the pMOSFET channel width is 

1680nm. The average area of the gate oxide of a MOSFET is the average of a 

nMOSFET and pMOSFET gate area. 

AMOSFET = 240 ×
840 +1680

2
×10−18 m2 = 3.02 ×10−13 m2  
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At nominal operating conditions, with the typical value β =1.64 , a = −78 , 

b = 0.081, c = 8.81×103, and d = −7.75 ×105  in the lifetime model [51], the model 

prefactor is 

ATDDB =
t f '(TDDB) × 30000

1
AMOSFET

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
β
Vgs

a +bT exp c
T

+
d

T 2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

= 6.06 ×1014  

4.3.2 HCI Lifetime Model Prefactor  

With the same assumptions as before, the total failure rate for the HCI effect is 

λHCI =1.3×10−6 hr−1 

The average duty factor for HCI effect is about 0.01. Based on an analysis 

similar to the one conducted for the TDDB failure rate, the adjusted total failure rate 

for the HCI mechanism is 

λ'HCI =
λHCI

0.01
=1.3 ×10−4 hr−1  

The total lifetime for HCI is 

t f '(HCI) =
1

λ'HCI

= 7.69 ×103 hr  

The nMOSFET transistor channel width is 

W = 8.4 ×10−7 m  

The average substrate current is about 

AIsub
8107.1 −×=  

With the typical value of 5.1=n  and eVEaHCI 15.0−= in the lifetime model [51], 

The lifetime prefactor is 
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AHCI =
t f '(HCI) ×15000
Isub

W
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

−n

exp EaHCI

κT
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

=1.10 ×108 

4.3.3 EM Lifetime Model Prefactor  

The total failure rate for the EM effect is 

λEM =1.3×10−6 hr−1 

The average duty factor for the EM mechanism is about 0.03 as observed from 

the input pattern simulation. Similarly, the adjusted total failure rate for EM is 

λ'EM =
λEM

0.03
= 4.33 ×10−5 hr−1 

The total lifetime for EM is 

t f '(EM) =
1

λ'EM

= 2.31×104 hr  

The interconnect cross section area is 

2131088.2 mA −×=   

The average value of current flow in the interconnect is 

I = 6.5 ×10−5 A 

With the typical value of 2=n  and eVEaEM 8.0= in the lifetime model [51], 

The EM lifetime model prefactor is 

AEM =
t f '(EM) × 40000
I
A

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

−n

exp EaEM

κT
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

=1.73 ×1012 

With the actual values of the lifetime model prefactors, the failure rates for all 

the reliability models can be calculated. 
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4.4 Usage and Failure Probability Distribution Profiles 

The calculation of the hardware failure probability of hardware components 

using the reliability models developed in Section 4.2 requires hardware usage 

information for the software under consideration. Once the usage profile is obtained, 

we can build the hardware failure probability distribution profile, which can be used 

to study the software reliability induced by hardware failures. 

The software code used here is a 32-bit floating point division program that does 

the division of two single precision floating point numbers and returns the quotient 

also as a single precision floating point number. Division is the most complicated 

operation compared with other elemental operations, such as addition, subtraction and 

multiplication. Since Z80 is an 8-bit CPU, a 32-bit floating point division operation is 

quite complex to implement on this microprocessor. The software code is first written 

in C language and compiled into Z80 assembly code using SDCC compiler, which is 

a retargettable, optimizing ANSI - C compiler that targets the Intel 8051, Maxim 

80DS390 and the Zilog Z80 based MCUs [67]. The assembly program contains 968 

lines of code. 

Figure 4.9 shows the usage profile of the registers of the Z80 CPU at the end of the 

execution of the floating point division program with a particular operational profile 

used. The X axis denotes the index of all the Z80 registers, including the user 

programmable registers and the hidden ones. The indexes of all the user 

programmable registers are listed in Table 4.4. The hidden registers are indexed from 

23 to 53. The Y axis denotes the indexes of register bits in the registers. The number 

of demands at the end of the software execution is displayed in the Z axis. 
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Table 4.4 Index of user programmable registers 

 
Name ACC Ap F Fp B Bp C Cp D Dp E 

Index 1 2 3 4 5 6 7 8 9 10 11 

Name Ep H Hp L Lp I R IX IY SP PC 

Index 12 13 14 15 16 17 18 19 20 21 22 
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Figure 4.9 Usage profile for all the CPU registers for the division software program 

 

We can see that the usage varies for different registers. Some of them are used 

quite frequently, while there are several registers not used at all during software 

execution. Some of the hidden register bits have higher demand than the user 

programmable ones. The usage of different register bits within a particular register 

also varies. For registers that are used to store data information, the usage is roughly 
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randomly distributed. But for the registers storing address information, for example 

the program counter (PC) register, the lower bits are used more often than the higher 

bits. 

Quantitatively, the total number of demands to the registers at the end of the 

software execution is about 200000. Out of the 53 registers, 8 registers (e.g., PC, R) 

are demanded within [31000, 10001], 11 registers (e.g., F, ACC, L, SP, H) within 

[10000, 1001], 9 registers (e.g., E, C, B, D) within [1000, 101], 3 registers (e.g., IX, 

IY) within [100, 1], and 22 registers (e.g., Ap, Fp, Bp, Cp, Dp, Ep, Hp, Lp, I) are not 

used. The coefficients of variation (i.e. the ratio of the standard deviation to the mean) 

for the usage of different register bits within the registers are also calculated. The user 

programmable registers with the highest coefficients of variation are SP (2.17) and 

PC (1.92), and the lowest are E (0.08), and H (0.01).  

Figure 4.10 shows the failure probability distributions of the registers of the Z80 

CPU at the end of the execution of the division application with the particular 

operational profile used.  
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a) Delay failure manifestation. 
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b) Stuck-at failure manifestation. 

Figure 4.10 Failure probability distributions for all the CPU registers for the division 

software program 
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The software-specific hardware failure profile of the Z80 registers for the delay 

manifestation is shown in Figure 4.10a. The total delay probability of all registers at 

the end of the software execution is about 9E-12. Out of the 53 registers, 2 registers 

(all hidden registers) have probability within [2E-12, 1E-12], 14 registers (e.g., PC, R, 

F, ACC) within [10E-13, 1E-13], 10 registers (e.g., L, SP, H, E, C, B) within [10E-14, 

1E-14], 3 registers (e.g., D, IX) within [10E-15, 1E-15], 2 registers (e.g., IY) within 

[10E-16, 1E-16], and 22 registers (e.g., Ap, Fp, Bp, Cp, Dp, Ep, Hp, Lp, I) are not 

affected. The user programmable registers with the highest coefficients of variation of 

delay probability are SP (2.17) and PC (1.92), and the lowest are E (0.08), H (0.01). 

The software-specific hardware failure profile of the Z80 registers for the stuck-

at manifestation is shown in Figure 4.10b. The total stuck-at probability of all 

registers at the end of the software execution is about 1E-08. Out of the 53 registers, 

32 registers (including all the user programmable registers in the following order: PC, 

SP, IX, IY, R, F, ACC, L, H, E, C, B, Ap, Fp, Bp, Cp, Dp, Ep, Hp, Lp, I, D) have 

failure probability within [7E-10, 1E-10], and the other 21 registers (all hidden) 

within [10E-11, 3E-11]. The user programmable registers with the highest 

coefficients of variation of stuck-at probability are PC (0.37) and R (0.34), and the 

lowest are registers Lp (1.48E-08) and I (1.48E-08).  

As can be seen, the results for the delay manifestations follow the same pattern 

as the number of demands (Figure 4.9). This means the delay failure probability is 

highly dependent on the hardware usage induced by the software execution. On the 

contrary, the stuck-at failure probability is always positive even when the register bits 

are not used. This is due to the fact that the stuck-at manifestation is partly triggered 
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by the TDDB effect, and the latter is stressing the semiconductor devices even when 

the device is under static usage conditions (as explain in Section 3.1.1). 

Figure 4.11 illustrates the combined failure probability distribution profile of the Z80 

CPU registers. The failure profile is similar to the stuck-at failure profile in Figure 

4.10b, since the stuck-at manifestation is dominant over the delay manifestation by a 

difference of several orders of magnitude. 
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Figure 4.11 Combined failure probability distribution for all the registers for the 

division software program 

 

Figure 4.12 shows the usage information of the ALU gates of the Z80 CPU for the 

division application software. All the gates are included in a possible ALU layout in 

the 2-D map. We use a gray scale to indicate usage information: the deeper the colors 

in the map, the higher the number of demands during the software execution. It can 

be seen that the usage varies for different gates in the ALU. 
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The total number of demands for all the gates is about 4E10. Out of the 461 

logic gates, 128 are demanded within [6E4, 1E4], 294 gates within [10E3, 1E3], 27 

gates within [10E2, 1E2], and 12 are not demanded. Per type, the most demanded 

gate types are mux2_1 and nor2_1 with the number of demands within [75000, 

80000], and the less demanded are or2_1 and or4_1 (less than 30,000). For the gates 

of the same type, the highest demand variance is experimented by types nor4_1 and 

inv_1, while the lowest variance is experienced by nand2_1 and xnor2_1 (with 

coefficients of variation of 1.45, 1.02, 0.42 and 0.06, respectively). Per individual 

gates of the same type, the gates with the maximum number of demands are of type 

nor4_1 (with one gate with 55,681 demands) and mux2_1 (with one gate with 45,271 

demands), and the minimum number of demands are of type ABorC, inv_1, nor2_1 

and or2_1 (with at least one gate with 0 demand). The highest demand average are 

observed in gates of type or4_1 (15,460 demands) and not_ab_or_c_or_d (15,454 

demands), while the lowest in types inv_1 (4,070 demands) and nand2_1 (3,150 

demands).  
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Figure 4.12 ALU usage map for the division software program 

 

Figure 4.13 shows the failure probability information for the ALU gates of the Z80 

CPU after one run of the division application software.  

 

a) Delay failure manifestation. 
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b) Different-Function failure manifestation. 

 

c) Stuck-at failure manifestation. 

Figure 4.13 ALU map of probability distributions of different failure 

manifestations for the division program 
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The software-specific hardware failure profile of the Z80 ALU gates for the 

delay manifestation is shown in Figure 4.13a. The total delay failure probability of 

the ALU gates at the end of the software execution is 2.6E-09. Out of the 461 gates, 

86 have probabilities within [8E-11, 1E-11], 92 gates within [10E-12, 1E-12], 247 

gates within [10E-13, 1E-13], 24 gates within [10E-14, 1E-14], and 12 are not 

affected. Per gate type, the highest failure probability types are mux2_1 (1.33E-09) 

and xor_1 (5.55E-10), and the lowest are of type or2_1 (3.45E-12) and nor4_1 

(2.10E-12). Among the gates of a same type, the highest probability variance is 

experienced by gates of type nor4_1 and inv_1, while the lowest variance is 

experienced by nand2_1 and xnor2_1 gates (with coefficient variations of 1.45, 1.02, 

0.42 and 0.06, respectively). Per individual gates within a type, the gates with the 

maximum failure probability are of type mux2_1 (with one gate with probability 

7.6E-11) and xnor2_1 (with one gate with probability 7.3E-11), and gates with the 

minimum failure probability are of type ABorC, inv_1 nor2_1, and or2_1 (with at 

least one gate with 0 probability). The highest probability averages are observed in 

gates of type xnor2_1 (6.97E-11) and xor2_1 (2.13E-11), while the lowest in types 

nand2_1 (2.74E-13) and nor4_1 (2.10E-13).  

The failure probability profile of the Z80 ALU gates for the different function 

manifestation is displayed in Figure 4.13b. The total failure probability of the 

different function manifestation of the ALU gates at the end of the software execution 

is 1.12E-09. Of all the gates in the ALU, 2 gates have probabilities within [1E-11, 2E-

11], 312 gates within [10E-12, 1E-12], 70 gates within [10E-13, 9E-13], 77 gates (the 

inv_1 type) are not affected. Per gate type, the highest failure probability types are 
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xor2_1 (2.36E-10) and nor2_1 (1.99E-10), and the lowest are or4_1 (2.99E-12) and 

inv_1 (0). Among the gates of the same type, the highest probability variance is 

experienced by gates of type nor2_1 and nand2_1 (with coefficients of variation of 

8.07E-08, 2.93E-08), while the lowest variance is experienced by gates of type 

ab_or_c_or_d, mux2_1, nor3_1, nor4_1, or2_1, xnor2_1 and xor2_1 (0 variation 

coefficient). Per individual gates of the same type, the gates with the maximum 

failure probability are of type xnor2_1 (with one gate with probability 1.8E-11) and 

xor2_1 (with one gate with probability 9.1E-12), and the minimum are types inv_1 

(with at least one gate with 0 probability). The highest probability averages are 

observed in gates of type xnor2_1 (1.78E-11) and xor2_1 (9.09E-12), while the 

lowest in types nor2_1 (1.50E-12) and mux2_1 (9.46E-13).  

The failure probability profile for all the gates in the ALU for the stuck-at 

manifestation is shown in Figure 4.13c. The total stuck-at failure probability of all the 

ALU gates at the end of the software execution is 7.65E-10. Out of the 461 gates, 417 

have probabilities within [4.5E-12, 1E-12], while 44 gates (of types 

not_ab_or_c_or_d and xor2_1) are not affected. Per gate type, the highest failure 

probability types are nor2_1 (2.28E-10) and inv_1 (1.46E-10), and the lowest are 

or4_1 (2.99E-12) and not_ab_or_c_or_d and xor2_1 (0). Within the gates of a same 

type, the highest probability variance is experienced by gates of type nor2_1, 

ab_or_c_or_d, nor4_1 and nand2_1 (with coefficients of variation within [8.53E-08 

1.46E-08], while the lowest variance is experienced by gate type ABorC, and2_1, 

inv_1, mux2_1, nand3_1, nand4_1, nor3_1, or2_1 and xnor2_1 (0 variation). Per 

individual gates of the same type, the gates with the maximum failure probability are 
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of type or4_1 (with one gate with probability 4.40E-12) and or2_1 (with one gate 

with probability 3.80E-12), and gates with the minimum probability are types 

not_ab_or_c_or_d and xor2_1 (with at least one gate with 0 probability). The highest 

probability averages are observed in gates of type or4_1 (4.37E-12) and or2_1 

(3.79E-12), while the less in types nand3_1 (1.31E-12) and nand2_1 (1.15E-12).  

Figure 4.14 shows the combined failure probability distribution of the ALU gates of 

the Z80 CPU for the division application software (i.e., Delay+DiffFunc+Stuck-at in 

Figure 4.13).  

 

Figure 4.14 ALU map of combined failure probability distribution for the 

division program 

 

The total failure probability of all the ALU gates at the end of the software 

execution is 4.48E-09. Out of the 461 gates, 115 gates have probabilities within [10E-

11, 1E-11], and 346 gates within [10E-12, 1E-12]. Per gate type, the highest failure 

probability types are mux2_1 (1.53E-09) and xor2_1 (7.91E-10), and the lowest are 
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or2_1 (2.46E-11) and or4_1 (1.35E-11). For the gates of the same type, the highest 

probability variance is experienced by gates of type mux2_1 and xor2_1, while the 

lowest variance is experienced by gates of type xnor2_1 and nand2_1 (with 

coefficient variations of 0.82, 0.48, 0.05 and 0.03, respectively). Per individual gates 

of the same type, the gates with the maximum failure probability are of type xnor2_1 

(with one gate with probability 9.2E-11) and mux2_1 (with one gate with probability 

7.8E-11), and the minimum are of types nor2_1 (with one gate with probability 3E-12) 

and inv_1 (with at least one gate with probability 2E-12). The highest probability 

averages are observed in gates of type xnor2_1 (8.94E-11) and xor2_1 (3.04E-11), 

while the lowest occur in types nor2_1 (3.70E-12) and inv_1 (2.73E-12).  

The hardware failure probability distributions discussed before is based on the 

execution of the division software program with a particular set of input values. The 

probability distribution profile is not constant for different software programs. Figure 

4.15 shows the ALU gates usage map for a 16-bit bubble sorting software program. 

The program sorts an array of integer numbers in descending order. The assembly 

language program contains 342 lines of code. The corresponding failure probability 

distribution map of all the gates in the ALU is illustrated in Figure 4.16.  
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Figure 4.15 ALU usage map for the bubble sorting program 

 

 

Figure 4.16 ALU map of combined failure probability distribution for the bubble 

sorting program 
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By comparing the ALU gate usage map of the bubble sorting program to that of 

the division program (Figure 4.12), we can see that the maximum number of demands 

is higher in the division program. The usage distributions for all the gates are 

different as shown in the difference of gray areas on the usage map. However, there 

are also similarities between the two maps. The most frequently demanded gates are 

located roughly in the same spots, which means that even though these are two 

different software programs, the most demanded hardware components are almost the 

same. Similar conclusions can be made for the comparison of the failure probability 

distribution maps of the two programs (Figure 4.14 and Figure 4.16).  

This information is useful for both software and hardware reliability engineers, 

especially when working on developing embedded systems, where the software 

programs used are more or less fixed. For software reliability engineers, they should 

put more emphasis on studying the hardware components with high failure 

probabilities during the execution of the software program, rather than assuming that 

all the hardware components have the same probability of failure. For hardware 

reliability engineers, they should work with the hardware designer to decrease the 

failure probability of failure by making proper adjustments for the highly stressed 

hardware components. This will be the most efficient way to increase both the 

hardware reliability and the reliability of the software running on the hardware device. 

The effects of different software input values and different compilers on the 

hardware failure probability distribution are also analyzed in [68]. The analyses 

indicate that while different inputs may yield slightly different failure probability 

values, the shape of the failure distribution is roughly the same. Different compilers 
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could also lead to different failure distributions. Compilers that tend to use more 

registers to store intermediate data will result in shorter execution time. 
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Chapter 5 Transient Failures and Models 
 

The impact of hardware failures on software reliability is discussed in detail in 

the previous three chapters, where only permanent failures are considered. However, 

for some systems, such as those used for space applications, transient failures caused 

by external radiation become an important factor, which could impact the reliability 

of the system. In this chapter, transient failures from different sources of radiation are 

studied. Then the case study used in Chapter 4 is extended to consider the transient 

failure probability distributions of the same hardware devices in a satellite application 

environment. 

5.1 Transient Failures 

5.1.1 Transient Failure Introduction 

Transient failures, also called soft errors or Single Event Upsets (SEUs) [69], 

appear in semiconductor devices during system operation due to electrical noise (e.g., 

noisy power supply) or external radiation such as α-particles, cosmic rays or nuclear 

reactions. SEUs mainly consist of the generation of electron-hole pairs due to the 

collision of energetic particles with the silicon atoms, which in turn can lead to 

temporal voltage and current peaks in the circuit. So, contrary to permanent failures, 

SEUs do not introduce physical defects in the circuit.  

Electrical noise may come from well-known sources such as a noisy power 

supply or radiation from lightning. Extensive design efforts have been made during 

the last decades to make electronics immune to such noise.  



 

 102 
 

The α-particles are emitted by radioactive impurities (e.g., uranium) present in 

packaging materials and the interconnect wires of integrated circuits [70]. Nowadays, 

the SEU rate induced by α-particles can be drastically reduced by the use of highly 

purified materials (e.g., α-particle emission from chip metallization can be reduced 

by a factor of approximately 1000 by using a highly purified aluminum with an 

impurity concentration of the order of 2ppb [71]).  

Cosmic rays are the main the source of radiation in deep space leading to SEUs 

in microelectronic devices, in particular due to proton and heavy ion particles [72]. 

Within the earth’s atmosphere the major causes of SEUs are the neutron particles 

from spallation reactions occurring when the galactic cosmic rays collide with the 

oxygen and nitrogen atoms in the air. At sea level, about 97% percent of the 

remaining cosmic ray particles are neutrons. Neutrons are expected to cause upsets in 

microelectronic devices within 18km in the atmosphere. Energetic protons are also 

abundant in the near-Earth Van Allen belts.  

Nuclear reactions (e.g., from spacecrafts or nuclear power-plant reactors) also 

lead to an important emission of neutrons [72]. In particular, in future nuclear-

powered space missions from NASA, neutrons induced from space nuclear reactors 

will have an important impact on the reliability of microelectronic devices used in the 

spacecraft.  

5.1.2 Impact on Higher Hardware Levels  

SEUs mainly manifest themselves in the form of pulses in combinational logic (a 

temporal peak of current or voltage in a signal) and bit-flips in storage elements (the 

stored bit changes from 0 to 1 or vice-versa) [73]. However, unlike the case of 
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permanent failures, SEUs in combinational logic are less likely to propagate to the 

storage elements due to a set of well-known masking mechanisms (i.e., logical 

masking, electrical masking and latching-window masking [73]).  

Therefore, this chapter focuses on investigating the impact of SEUs on hardware 

storage elements, such as flip-flops. The failure rates of bit-flips from different 

radiation sources are introduced in the following section. 

5.2 Failure Rate Calculation 

5.2.1 Heavy Ions Induced SEUs  

Due to their high Linear Energy Transfer (LET) values, heavy ions can cause 

direct ionization when passing through microelectronic devices and leading to SEUs. 

The LET corresponds to the amount of energy lost by the radiation particles per unit 

of distance traveled, which is deposited into the device. The fundamental assumption 

of the upset mechanism is that there is a Sensitive Volume (SV) within a 

semiconductor device that can be upset by the passage of the radiation particles. The 

SV is thus independent from the radiation particles considered. The SV is generally 

modeled as a right Rectangular Parallelepiped (RPP) shape with lateral dimensions x 

and y and thickness z. Associated with the SV is a Cross Section (CS) that can be 

interpreted as the projection of the SV in the direction of the movement of the 

radiation particles.  

The data needed to calculate the heavy ions induced failure rate is shown in 

Figure 5.1.  
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Figure 5.1 Heavy ions SEU rate calculation 

 

According to Figure 5.1, three different types of data are necessary to calculate 

the heavy ions induced failure rate:  

 Data dependent upon the design and technology of the IC storage elements 

(z, Lo, W, S, CSm),  

 Data dependent upon the operational space environment of the spacecraft  

(Relements, EM),  

 Data dependent upon the particular characteristics of the mission and the 

spacecraft design (θshielding, O).  

The physical meaning of each parameter is described as follows: 

 IC sensitive volume thickness (z) is the thickness of the Sensitive Volume 

(SV).  

 IC cross section fitting parameters (Lo, W, S) are a set of values used to 

approximate the Cross Section (CS) curve as a function of the Linear 

Energy Transfer (LET). They correspond to the onset threshold LET (Lo), 

width (W) and shape (S) of a Weibull distribution.  
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 IC saturation cross section (CSm) is the value that CS approaches as LET 

gets very large. It is equivalent to area xy of the SV. 

 Radiation elements range (Relements) refers to the range of radiation elements 

present in the environment (e.g., heavy ions He+2 to Ni+28).  

 Environment model (EM) corresponds to the operational environment of the 

spacecraft. It considers long-term average and worst case particle fluxes.  

 Spacecraft shielding thickness (θshielding) corresponds to the thickness of the 

spacecraft shielding.  

 Spacecraft orbit (O) corresponds to the spacecraft orbit, including Near-

Earth Interplanetary orbits (e.g., earth to mars) and orbits inside the 

magnetosphere.  

Experimental data for the (saturation) cross section (CS, CSm) and the fitting 

parameters (Lo, W, S) are available from on-ground based radiation tests. These tests 

are performed by subjecting the device to radiation particles of a range of LETs. The 

sensitive volume thickness (z) is given by the semiconductor technology 

specifications. The radiation elements range (Relements), environmental model (EM), 

spacecraft shielding thickness (θshielding) and orbit (O) can be determined from the 

spacecraft and mission specifications.  

The analytical modeling for the heavy ions induced failure rate is shown in 

Figure 5.2, and is based on the IRPP model [74-76]. The model has been 

implemented by CREME96 program [77, 78]. CREME96 (Cosmic Ray Effects on 

Micro-Electronics) is a suite of computer program developed at the Naval Research 
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Laboratory. It has become a widely used design tool in the aerospace industry for 

SEU rate calculation. 
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E, ∫dE Variable E is the threshold energy for generating a device critical 

charge, whose integration range is provided by the CREME96 

FLUX module. 

flux Heavy ions flux spectra outside of the spacecraft, calculated using 

the CREME96 FLUX module. 

Φ(L) Integral flux over ion LET for the environment of concern, 

calculated using the CREME96 TRANS module. 

Ap Average projected area of the right rectangular parallelepiped 

shaped sensitive volume. 

f(s) Distribution of path lengths through the sensitive volume. 

R(E) The upset rate for a particular threshold energy.  

F(L) The integral Weibull distribution describing the shape of the CS 

versus LET curve.  

L Threshold LET 

f(E) Probability density function converted from the CS versus LET 

curve.  
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Figure 5.2 Analytical modeling for heavy ions induced failure rate 

 

5.2.2 Protons Induced SEUs 

The basic physics of the upset interaction for protons is the same as for heavy 

ions. Both types of upsets are caused by the ionization of a device after it collects 

charge produced by the ionization of a passing radiation particle. The difference is 

that heavy ions can produce SEUs directly due to the high LET values, while proton 

upsets are caused by the ionization of secondary particles produced by a nuclear 

reaction in the vicinity of the sensitive volume. 

The data needed to calculate the protons induced failure rate is shown in Figure 

5.3.  

IC cross section fitting parameters (A, B, Eo, W, S)

Environment model (EM)

Spacecraft orbit (O)

Analytical 
modeling 
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induced 
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Pλ

shieldingθSpacecraft shielding thickness (              )shieldingθSpacecraft shielding thickness (              )

IC saturation cross section (CSm)

 

Figure 5.3 Protons SEU rate calculation 

 

The environment model (EM), the spacecraft shielding thickness (θshielding), the 

spacecraft orbit (O), and the saturation cross section (CSm) are defined in Section 

5.2.1. Parameters A, B, Eo, W, S are used to adjust the cross section curve. The 

analytical modeling for the proton induced failure rate is shown in Figure 5.4, and is 

based on the Bendel and Petersen models [79] and the Weibull distribution.  
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E, ∫dE Variable E is the proton energy, whose integration range is provided 

by the CREME96 FLUX module. 

σ(E) Proton cross section as a function of proton energy. 

J(E) Differential proton flux at the sensitive volume. 

Figure 5.4 Analytical modeling for protons induced failure rate 

 

5.2.3 Neutrons Induced SEUs 

Similar to the protons induced SEUs, neutron upsets are caused by the ionization 

of secondary particles produced by a nuclear reaction around the sensitive volume. 

We distinguish between the upset rate caused by neutrons present in the earth’s 

atmosphere (Figure 5.5) and neutrons emitted by spacecrafts nuclear reactors (Figure 

5.6).  
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Figure 5.5 Atmospheric neutron SEU rate calculation 
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Figure 5.6 Spacecraft nuclear reactor neutron SEU rate calculation 

 

The concept of IC sensitive volume (parameter V) has already been described in 

Section 5.2.1. Parameter X is the value of the neutron-induced error (NIE) as a 

function of the device critical charge [80]. F is the integral flux of neutrons present in 

the atmosphere with energy above 1MeV. Regarding spacecraft nuclear reactors, Fs 

represents the neutron flux emitted by the reactor, Dst is the distance between the 

reactor and the target semiconductor devices, Mshielding is the shielding material of the 

reactor, and θshielding is the reactor shielding thickness.  
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Letaw and Normand calculated the neutron-induced error (NIE) as a function of 

the device critical charge for different environments [80]. They proposed a simple 

analytical model for the neutron induced SEU rate as the product of parameters F, V 

and X, as shown in Figure 5.7 and Figure 5.8.  

XVFN ⋅⋅=λF, V, X '
Nλ

 

Figure 5.7 Analytical modeling for atmospheric neutrons induced failure rate 
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Figure 5.8 Analytical modeling for spacecraft nuclear reactor neutrons induced 

failure rate 

 

Value F for the neutron flux depends on the environment. For atmospheric 

neutrons (Figure 5.7), a typical neutron flux above 1 MeV is 1cm-2s-1. For nuclear 

reactor induced neutrons, the neutron flux at the surface of the microelectronic 

devices F is inversely proportional to the square of the distance to the neutron source 

Dst. The flux value can also be reduced by the shielding material. The effectiveness of 

the shielding should be obtained through radiation testing.  For example, the neutron 

flux can be reduced by 1 magnitude with LiH shielding of 7.8cm thickness [81]. 

Therefore, the final flux value F can be calculated as a function of Fs, Mshielding, 

θshielding and Dst, as shown in Figure 5.8.  
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5.3 Extension of Permanent Failure Probability Results 

With the information on transient failures above, the study of the hardware 

failure probability distribution can be extended to include the case for transient 

failures. We now consider the computer system described in the last chapter is used in 

a satellite application. The orbit considered here is a Highly Elliptical Orbit (HEO) 

with an inclination of 27 degrees around the earth (with an apogee of 35449 km and 

perigee of 3997 km). The period of the orbit is 11 hr 39 min. The environment model 

corresponds to a solar quiet condition with long-term average SEU rates. Assume the 

shielding thickness for the satellite is 100 mils (which equals to 0.25cm). The range 

of radiation elements includes all possible heavy ions (atomic number from 2 to 92) 

and protons. We assume that a nuclear reactor will not be used for the satellite orbit, 

which means there will be no neutron in this orbit environment. 

To calculate the SEU rates for different radiation sources, the parameters in 

Figure 5.2 and Figure 5.4 have to be obtained. The environment and mission orbit 

related parameters can be chosen based on the above description. The IC storage 

elements related parameters should be extracted from radiation testing. Since we do 

not have such testing data available for the flip-flops in the vtvtlib25 cell library, the 

radiation testing data of similar technology is used, assuming they have similar SEU 

rates. Ground based radiation tests have been performed on the registers of the 

PPC750 microprocessor by IBM and Motorola [82], The PPC750 microprocessor is 

also based on the CMOS 0.25μm technology. The Weibull fitting parameters are 

extracted from the test data of the PPC750 registers. All the parameters needed are 

summarized in Table 5.1.  
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Table 5.1 Parameters for the calculation of SEU rates for the HEO orbit profile 
 

Parameters Heavy ions Protons 

z 2μm  

Lo 3.6 MeV-cm2/mg  

W 30.82 MeV-cm2/mg 88.98 MeV 

S 0.92 0.95 

CSm 10 μm2 0.1×10-12 cm2 

Relements atomic number 2 to 

92 

 

EM long-term average fluxes 

θshielding 100 mils 

O Highly Elliptical Orbit 

Eo  8.0 MeV 

 

The average SEU rates induced by heavy ions and protons for each orbit 

segment are calculated and illustrated in Figure 5.9. The Y axis denotes the SEU rate 

in the unit of SEUs/Bit/Hour. The X axis denotes the time along an orbit period. The 

total SEU rates for the orbit as a function of time are shown in Figure 5.10.  
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Figure 5.9 Heavy ions and protons induced SEU rates along the HEO orbit as a 

function of time 
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Figure 5.10 Total SEU rates along the HEO orbit as a function of time 

 

High SEU rates appear when the satellite is close to Earth, where trapped 

protons are mainly responsible for the transient failures. When the satellite is far from 

Earth, the SEU rates induced by heavy ions and protons are about the same order.  



 

 114 
 

Figure 5.11 shows a comparison of transient and permanent failure probabilities for 

several register bits along the orbiting period, assuming the CPU is executing the 

division program described in Section 4.4 repetitively. The transient failure 

probability increases rapidly during the time when the satellite is close to Earth due to 

the high SEU rates. On the other hand, the permanent failure probabilities increase in 

a stable style regardless of the satellite’s possition. In this case, the SEU is the 

dominant failure mechanism in the satellite orbit environment. 
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Figure 5.11 Transient and permanent failure probabilities along the orbit as a 

function of time 

 

However, the transient SEU rate can be reduced through radiation hardening 

techniques. Ground-based tests show that the SEU rate of a radiation hardened 

microprocessor, such as the RAD750 developed by BAE system based on the 

PPC750 microprocessor, can be reduced by up to six orders of magnitude [83, 84]. If 

the registers in the Z80 microprocessor are hardened using such techniques, the SEU 

dominance could disappear. Assuming the SEU rate can be reduced by two orders of 
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magnitude, the probabilities for transient and permanent failures along the satellite 

orbit would be of the same order, as illustrated in Figure 5.12. If this is the case, both 

transient and permanent failures should be considered to study their impact on 

software reliability. 
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Figure 5.12 Transient and permanent failure probabilities along the orbit as a 

function of time, with radiation hardening techniques applied 
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Chapter 6 Summary and Future Research 
 

6.1 Summary 

In this dissertation, we have developed a methodology for the reliability analysis 

of the manifestations of permanent hardware failures in the hardware devices of 

computer systems operating under a particular execution profile of application 

software. An analysis of the different types of manifestations of permanent failure in  

semiconductor devices was performed at different hardware levels (physical, logic 

and register transfer levels). We have focused on intrinsic failures (HCI, EM, TDDB), 

which propagate to higher hardware levels in the form of signal delays, changes of 

circuit functionality, and signals stuck at a logic value (0 or 1). We then proposed a 

methodology for the analysis of the manifestations of permanent hardware failures on 

software reliability. The methodology is divided into three parts: (i) analysis of the 

manifestations of permanent failures on circuit elements (logic gates, flip-flops, etc.), 

(ii) development of reliability models as functions of the software execution, and (iii) 

calculation of failure probability distributions of the hardware devices of a computer 

system under a particular software execution. 

In the first part of this methodology (analysis of failure manifestations), SPICE 

simulation is performed to investigate the behavior of the circuit elements (logic gates 

and flip-flops) under study with a set of generic input stimuli, which covers all 

possible combinations of logic levels and transitions of the input signals. This allows 

for calculating the failure rates of different circuit elements. A set of Failure 

equivalent circuit models for different failure mechanisms, including HCI, EM, and 
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TDDB is used to study the circuit failure manifestations in the presence of hardware 

failures. The main outcome of this phase consists of the set of manifestations of the 

permanent failures observed in the circuits’ output signals (e.g., signal delays, 

functionality changes or stuck-at failures). 

In the second part of the methodology (development of reliability models), a set 

of reliability models are built that allow for calculating the occurrence rate of each 

failure manifestation of a circuit as a function of the software execution profile of a 

computer system. The models are based not only on existing expressions for the 

constant stress failure rate of permanent failures, but also on specifically developed 

models that account for the operational conditions of circuits (e.g., current and 

voltages) and for the usage of the computer hardware devices as a consequence of the 

software execution. Different structures and notations are proposed for the reliability 

models in order to process huge numbers of failure manifestations into reduced and 

practical sets of expressions. 

In the third part of the methodology (calculation of failure probability 

distributions) the reliability models developed in the previous phase are applied to a 

particular computer platform. The usage of the hardware devices is obtained through 

VHDL simulations of the computer system under the execution of the software 

program of interest. This allows for solving the reliability models and calculating the 

failure probability distributions (per failure manifestation) of the various hardware 

devices of the computer platform (e.g., ALU gates, CPU registers, memories, etc.).  

We have then extended the methodology to the consideration of transient 

failures, also known as Single Event Upsets (SEUs). We studied the causes and 
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manifestations of transient failures in semiconductor devices, and developed 

reliability models that integrate into the same framework well-known analytical 

models for the failure rate calculation of Single Event Upsets (SEUs). These take into 

account SEUs induced by cosmic ray particles (heavy ions and protons), neutrons 

present in the atmosphere, as well as neutrons emitted by nuclear reactors such as the 

ones that will be used in the spacecrafts of the future nuclear powered space missions 

from NASA. The models use design and technology parameters of the IC hardware 

devices, the operational environment characteristics (radiation particle fluxes) as well 

as the specifications of the system and mission (e.g., spacecraft shielding and orbit). 

The case study was then extended to the consideration of transient failures, by 

calculating the failure probability distributions due to SEUs of the hardware devices 

of the Z80 based computer system.  

6.2 Conclusions 

The contribution of this dissertation is to propose a simulation-based method to 

determine the software-specific hardware usage profile and failure probability profile 

that can be used to determine the likelihood, location, and the time of hardware 

failures in computer systems in operation. The main features and contributions of the  

methodology are summarized hereafter: 

 It takes into account the influence of the software execution, the operational 

environment and the semiconductor design and technology in the creation 

and activation phenomena of hardware failures. 

 It includes the whole spectrum of hardware failures that can arise during the 

system operation, i.e. not only Single Event Upsets (SEUs), but also 
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permanent semiconductor defects due to Hot Carrier Injection, 

Electromigration, and Time Dependent Dielectric Breakdown.  

 It considers all the possible locations for the hardware failures, i.e. not only 

sequential logic circuits (registers, memory cells, caches, etc.) but also 

combinational logic circuits (logic gates). 

 It analyzes the propagation of failures under particular operational 

conditions (including the software execution) and precisely determines the 

form under which each hardware failure manifests (stuck-at-1, stuck-at-0, 

bit-flip, circuit delay, change of functionality, etc.). 

 It takes into account the usage of the hardware circuit elements due to the 

software execution during the operational life of the system and provides the 

failure probability distributions of the circuit elements. This information can 

facilitate both software and hardware reliability engineers to improve the 

system reliability more efficiently by focusing on the most failure-prone 

circuit elements.  

 It can be used to extend the use of the fault injection technique to software 

reliability prediction under hardware failures and allows for precisely 

defining representative fault models that can be used in fault injection 

techniques and tools. It also sets the basis to develop testbeds based on 

software implemented fault injection (SWIFI) to calculate the final failure 

probability of the software application. As far as we know, this is the first 

time that such an extension has been proposed. 
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6.3 Future Work 

We have focused on permanent and transient failures that directly impact the 

storage elements and logic gates in a computer system. One of the future directions of 

this work will be to extend the approach to account for the impact of permanent and 

transient failures that propagate from combinational logic circuit elements of a 

microprocessor to its storage elements. We also plan to extend the proposed 

reliability models to account for the effect of the hardware detection and recovery 

mechanisms (e.g., error detection and correction codes) used in most modern 

computer systems. Finally, the results of this research will be integrated into PRA 

frameworks and will be used for the calculation by fault injection of the software 

reliability of software-intensive safety critical systems. 
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Appendix A Failure Manifestations for Logic Gates 
 

Table A.1 Z80 ALU logic gates – Results of SPICE simulations for HCI stress  
 

 Mi  ( ) IhciiI /,  F  
INV_1 M0 1/2 fallDelay −  
NOR2_1 M0 

M1 
1/8 
1/8 

0↑−− fallDelay  
↑−− 0fallDelay  

OR2_1 M0 
M1 
M2 

1/8 
1/8 
2/8 

0↑−− riseDelay  
1↑−− riseDelay  

fallDelay −  
NAND2_1 M0 

M1 
1/8 
1/8 

fallDelay −  
fallDelay −  

XOR2_1 M0 
M3 
M5 
M7 
M9 
M11 

2/8 
2/8 
1/8 
1/8 
1/8 
1/8 

↑−↓−− 01riseDelay  
0↑−− riseDelay  

11 ↑−↑−− fallDelay  
11 ↑−↑−− fallDelay  

00 ↓−↓−− fallDelay

00 ↓−↓−− fallDelay  
NOR3_1 M0 

M3 
M5 

1/16 
1/16 
1/16 

00↑−− fallDelay  
00 ↑−− fallDelay  

↑−− 00fallDelay  
MUX2_1 M0 

M3 
M5 
M7 
M9 
M11 

4/8 
1/8 
2/8 
2/8 
1/8 
6/8 

↓−− 10fallDelay  
↑−↑−− XriseDelay 101  
↑−↑−− XriseDelay 101  
100 ↓−↑−− XriseDelay  
100 ↓−↑−− XriseDelay  

fallDelay −  
ABorC M0 

M3 
M5 
M7 

1/16 
1/16 
3/16 
5/16 

↑−↑−− 1101riseDelay  
↑−↑−− 1101riseDelay  

↑−− XXriseDelay  
fallDelay −  

NAND3_1 M0 
M1 
M2 

1/16 
1/16 
1/16 

fallDelay −  
fallDelay −  
fallDelay −  

XNOR2_1 M0 
M3 
M5 
M7 
M9 
M11 
M13 

2/8 
2/8 
1/8 
1/8 
1/8 
1/8 
4/8 

↑−− 0fallDelay  
0↑−− fallDelay  

11 ↑−↑−− riseDelay  
11 ↑−↑−− riseDelay  

00 ↓−↓−− riseDelay  
00 ↓−↓−− riseDelay  

fallDelay −  
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 Mi  ( ) IhciiI /,  F  
NAND4_1 M0 

M1 
M2 
M3 

3/32 
1/32 
2/32 
1/32 

fallDelay −  
fallDelay −  
fallDelay −  
fallDelay −  

NOR4_1 M0 
M3 
M5 
M7 

1/32 
1/32 
1/32 
1/32 

000↑−− fallDelay  
000 ↑−− fallDelay  
000 ↑−− fallDelay  
↑−− 000fallDelay  

OR4_1 M0 
M3 
M5 
M7 
M9 

1/32 
1/32 
1/32 
1/32 
4/32 

000↑−− riseDelay  
000 ↑−− riseDelay  

000 ↑−− riseDelay  
↑−− 000riseDelay  

fallDelay −  
NOT 
(ABorCorD) 

M0 
M3 
M5 
M7 

1/32 
1/32 
2/32 
3/32 

100001 ↑−↑−− fallDelay  
100001 ↑−↑−− fallDelay  

00100 ↑−↑−− XfallDelay  
↑−↑−− 01000XfallDelay  

ABorCorD M0 
M3 
M5 
M7 
M9 

1/32 
1/32 
2/32 
3/32 
8/32 

100001 ↑−↑−− riseDelay  
100001 ↑−↑−− riseDelay  

00100 ↑−↑−− XriseDelay  
↑−↑−− 01000XriseDelay  

fallDelay −  
AND2_1 M0 

M1 
M2 

1/8 
1/8 
2/8 

riseDelay −  
riseDelay −  
fallDelay −  

 
 
 

Table A.2 Z80 ALU logic gates – Results of SPICE simulations for EM stress  
 

 Ni  ( ) IemiI /,  F  
INV_1 N1 

N2 
N3 

2/2 
2/2 
2/2 

riseDelay −  
fallDelay −  
fallDelay −  

NOR2_1 N1 
N2 
N3 
N4 

4/8 
4/8 
2/8 
2/8 

riseDelay −  
riseDelay −  

0↑−− fallDelay  
↑−− 0fallDelay  

OR2_1 N1 
N2 
N3 
N4 
N5 

4/8 
4/8 
0 
2/8 
2/8 

fallDelay −  
fallDelay −  

- 
0↑−− riseDelay  

fallDelay −  
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 Ni  ( ) IemiI /,  F  
NAND2_1 N1 

N2 
N3 
N4 

2/8 
2/8 
4/8 
4/8 

1↓−− riseDelay  
↓−− 1riseDelay  

fallDelay −  
fallDelay −  

XOR2_1 N1 
N2 
N3 
N4 
N5 
N6 
N7 
N8 
N9 

4/8 
6/8 
2/8 
4/8 
4/8 
4/8 
4/8 
6/8 
0 

↓−− 0fallDelay  
↓−↑−− 10riseDelay  
↑−↓−− 01riseDelay  

↓−− 0fallDelay  
0↓−− fallDelay  

fallDelay −  
↑−− 0riseDelay  

11 ↑−↑−− fallDelay  
- 

NOR3_1 N1 
N2 
N3 
N4 

6/16 
6/16 
2/16 
4/16 

riseDelay −  
0000 ↑−↑−− fallDelay  

00↑−− fallDelay  
fallDelay −  

MUX2_1 N1 
N2 
N3 
N4 
N5 
N6 
N7 
N8 
N9 

12/8 
6/8 
0 
8/8 
10/8 
0 
12/8 
4/8 
0 

↓−↑−− XfallDelay 110  
XfallDelay ↓−↓−− 001  

- 
10 ↑−− riseDelay  

fallDelay −  
- 

↑−↑−− 1001riseDelay  
100 ↓−↑−− XriseDelay  

- 
ABorC N1 

N2 
N3 
N4 
N5 
N6 
N7 
N8 

6/16 
6/16 
10/16 
0 
10/16 
0 
10/16 
0 

1001 ↓−↓−− fallDelay  
↓−↓−− 1001fallDelay  

fallDelay −  
- 

riseDelay −  
- 

riseDelay −  
- 

NAND3_1 N1 
N2 
N3 
N4 

2/16 
4/16 
6/16 
6/16 

11↓−− riseDelay  
1111 ↓−↓−− riseDelay  

fallDelay −  
fallDelay −  

XNOR2_1 N1 
N2 
N3 
N4 
N5 
N6 
N7 

4/8 
6/8 
2/8 
0 
4/8 
4/8 
4/8 

↓−− 0riseDelay  
↓−↑−− 10fallDelay  
↑−↓−− 01fallDelay  

- 
0↓−− riseDelay  
0↓−− riseDelay  

riseDelay −  
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 Ni  ( ) IemiI /,  F  
N8 
N9 
N10 
N11 
N12 

0 
4/8 
6/8 
0 
0 

- 
↑−− 0fallDelay  

11 ↑−↑−− riseDelay  
- 
- 

NAND4_1 N1 
N2 
N3 
N4 
N5 

2/32 
4/32 
2/32 
8/32 
8/32 

111↓−− riseDelay  
111111 ↓−↓−− riseDelay  

↓−− 111riseDelay  
fallDelay −  
fallDelay −  

NOR4_1 N1 
N2 
N3 
N4 
N5 

8/32 
8/32 
2/32 
4/32 
2/32 

riseDelay −  
000000000 ↑−↑−↑−− fallDelay

000↑−− fallDelay  
000000 ↑−↑−− fallDelay  

↑−− 000fallDelay  
OR4_1 N1 

N2 
N3 
N4 
N5 
N6 

8/32 
8/32 
0 
2/32 
4/32 
2/32 

fallDelay −  
fallDelay −  

- 
000↑−− riseDelay  
000 ↑−− riseDelay  

↑−− 000riseDelay  
NOT 
(ABorCorD) 

N1 
N2 
N3 
N4 
N5 
N6 
N7 

10/32 
10/32 
16/32 
16/32 
4/32 
6/32 
5/32 

001011010 ↓−↓−↓−− riseDelay

010100001 ↓−↓−↓−− riseDelay

riseDelay −  
fallDelay −  

100001 ↑−↑−− fallDelay  
00100 ↑−↑−− XfallDelay  

↑−↑−− 01000XfallDelay  
ABorCorD N1 

N2 
N3 
N4 
N5 
N6 
N7 
N8 
N9 
N10 

10/32 
10/32 
16/32 
0 
16/32 
0 
4/32 
6/32 
5/32 
0 

001100010 ↓−↓−↓−− fallDelay

010100001 ↓−↓−↓−− fallDelay

fallDelay −  
- 

riseDelay −  
- 

100001 ↑−↑−− riseDelay  
00100 ↑−↑−− XriseDelay  

↑−↑−− 01000XriseDelay  
- 

AND2_1 N1 
N2 
N3 
N4 
N5 

2/8 
2/8 
4/8 
0 
4/8 

1↓−− fallDelay  
riseDelay −  
riseDelay −  

- 
fallDelay −  
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Table A.3 Z80 ALU logic gates – Results of SPICE simulations for TDDB stress 
 

 Mi  ( )tddbiC ,  F  
INV_1 M0 

M1 
0.5 
0.5 

1−− atStuck  
0−− atStuck  

NOR2_1 M0 
M1 
M2 
M3 

0.5 
0.5 
0.5 
0.25 

bDiffFunc →  
aDiffFunc →  
0−− atStuck  
0−− atStuck  

OR2_1 M0 
M1 
M2 
M3 
M4 
M5 

0.5 
0.5 
0.25 
0.25 
0.5 
0.75 

bDiffFunc →  
aDiffFunc →  
1−− atStuck  
1−− atStuck  
1−− atStuck  
0−− atStuck  

NAND2_1 M0 
M1 
M2 
M3 

0.5 
0.25 
0.5 
0.5 

1−− atStuck  
1−− atStuck  
bDiffFunc →  
aDiffFunc →  

XOR2_1 M0 
M1 
M2 
M3 
M4 
M5 
M6 
M7 
M8 
M9 
M10 
M11 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.25 
0.25 
0.25 
0.25 
0.5 
0.5 

baDiffFunc →  
abDiffFunc →  
abDiffFunc →  

baDiffFunc →  
baDiffFunc →  

baDiffFunc +→  
baDiffFunc →  

baDiffFunc +→  
baDiffFunc →  

abDiffFunc →  
baDiffFunc →  

abDiffFunc →  
NOR3_1 M0 

M1 
M2 
M3 
M4 
M5 

0.5 
0.5 
0.25 
0.5 
0.125 
0.5 

cbDiffFunc →  
0−− atStuck  
0−− atStuck  

caDiffFunc →  
0−− atStuck  

baDiffFunc →  
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 Mi  ( )tddbiC ,  F  
MUX2_1 M0 

M1 
M2 
M3 
M4 
M5 
M6 
M7 
M8 
M9 
M10 
M11 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

cabacbaDiffFunc ++→  
bcacDiffFunc +→  
baDiffFunc +→  

baDiffFunc →  
cbaDiffFunc ++→  

cbaDiffFunc →  
cbaDiffFunc ++→  

cbaDiffFunc →  
caDiffFunc +→  

acDiffFunc →  
0−− atStuck  
1−− atStuck  

ABorC M0 
M1 
M2 
M3 
M4 
M5 
M6 
M7 

0.375 
0.5 
0.5 
0.5 
0.375 
0.5 
0.625 
0.375 

bccaDiffFunc +→  
cbDiffFunc +→  
caDiffFunc +→  

cDiffFunc →  
cbaDiffFunc ++→  

abDiffFunc →  
0−− atStuck  
1−− atStuck  

NAND3_1 M0 
M1 
M2 
M3 
M4 
M5 

0.5 
0.25 
0.125 
0.5 
0.5 
0.5 

1−− atStuck  
1−− atStuck  
1−− atStuck  
bcDiffFunc →  
acDiffFunc →  
abDiffFunc →  

XNOR2_1 M0 
M1 
M2 
M3 
M4 
M5 
M6 
M7 
M8 
M9 
M10 
M11 
M12 
M13 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.25 
0.25 
0.25 
0.25 
0.5 
0.5 
0.5 
0.5 

baDiffFunc +→  
abDiffFunc →  
abDiffFunc →  

baDiffFunc +→  
baDiffFunc +→  

baDiffFunc →  
baDiffFunc +→  

baDiffFunc →  
baDiffFunc +→  

abDiffFunc →  
baDiffFunc +→  

abDiffFunc →  
0−− atStuck  
1−− atStuck  

NAND4_1 M0 
M1 
M2 
M3 
M4 

0.5 
0.25 
0.125 
0.0625 
0.5 

1−− atStuck  
1−− atStuck  
1−− atStuck  
1−− atStuck  
bcdDiffFunc →  
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 Mi  ( )tddbiC ,  F  
M5 
M6 
M7 

0.5 
0.5 
0.5 

acdDiffFunc →  
abdDiffFunc →  
abcDiffFunc →  

NOR4_1 M0 
M1 
M2 
M3 
M4 
M5 
M6 
M7 

0.5 
0.5 
0.25 
0.5 
0.125 
0.5 
0.0625 
0.5 

dcbDiffFunc →  
0−− atStuck  
0−− atStuck  

dcaDiffFunc →  
0−− atStuck  

dbaDiffFunc →  
0−− atStuck  

cbaDiffFunc →  
OR4_1 M0 

M1 
M2 
M3 
M4 
M5 
M6 
M7 
M8 
M9 

0.5 
0.0625 
0.125 
0.5 
0.25 
0.5 
0.5 
0.5 
0.9375 
0.0625 

dcbDiffFunc ++→  
1−− atStuck  
1−− atStuck  

dcaDiffFunc ++→  
1−− atStuck  

dbaDiffFunc ++→  
1−− atStuck  

cbaDiffFunc ++→  
0−− atStuck  
1−− atStuck  

NOT 
(ABorCorD) 

M0 
M1 
M2 
M3 
M4 
M5 
M6 
M7 

0.5 
0.5 
0.5 
0.4375 
0.375 
0.5 
0.1875 
0.5 

dcDiffFunc →  
dcbDiffFunc →  
dcaDiffFunc →  
( ) dcdcbaDiffFunc ++→  

dcbaDiffFunc →  
dbdaDiffFunc +→  

dcbaDiffFunc →  
cbcaDiffFunc +→  

ABorCorD M0 
M1 
M2 
M3 
M4 
M5 
M6 
M7 
M8 
M9 

0.5 
0.5 
0.5 
0.4375 
0.375 
0.5 
0.1875 
0.5 
0.8125 
0.1875 

dcDiffFunc +→  
dcbDiffFunc ++→  
dcaDiffFunc ++→  

( )( ) cddcbaDiffFunc +++→  
dcbaDiffFunc +++→  

( )( )dbdaDiffFunc ++→  
dcbaDiffFunc +++→  

( )( )cbcaDiffFunc ++→  
0−− atStuck  
1−− atStuck  

AND2_1 M0 
M1 
M2 
M3 
M4 
M5 

0.25 
0.5 
0.75 
0.5 
0.5 
0.25 

0−− atStuck  
0−− atStuck  
1−− atStuck  

bDiffFunc −  
aDiffFunc −  
0−− atStuck  
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Glossary 

ALU  Arithmetic Logic Unit 

CS  Cross Section 

EM  Electromigration 

EOS  Electrical Overstress 

ESD  Electrostatic Discharge 

FIT  Failure In Time 

HCI  Hot Carrier Injection 

HEO  Highly Elliptical Orbit 

HISREM Hot Carrier Induced Series Resistance Enhancement Model 

IC  Integrated Circuit 

IRPP  Integral Rectangular Parallelpiped 

LET  Linear Energy Transfer 

MaCRO Maryland Circuit Reliability-Oriented SPICE simulation method 

MOSFET  Metal-Oxide Semiconductor Field-Effect Transistor 

MTTF  Mean Time To Failure 

RTL  Register Transfer Level 

RPP  Rectangular Parallelpiped 

SOFR  Sum-of-failure-rates 

SPICE  Simulation Program Integrated Circuits Emphasis 

SV  Sensitive Volume 

SWIFI  Software Implemented Fault Injection 

TDDB  Time Dependent Dielectric Breakdown 
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VHDL  Very High Speed Integrated Circuit Hardware Description Language 
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