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This thesis investigates the detection of structural damage in plate structures using the 

empirical mode decomposition method along with the Hilbert spectral analysis. In 

recent years there have been an extensive amount of research associated with the 

development of health monitoring methods for aerospace systems, such as aging 

aircraft and Health and Usage Monitoring Systems (HUMS) for rotorcraft. The 

method developed here exploits a new time-frequency signal processing analysis tool, 

the Hilbert-Huang transform, along with the Lamb wave propagation for thin plates.  

With the use of the wave reflections from discontinuities, damage identification 

methods were developed to determine the presence, location and extent of damage in 

isotropic and composite plate structures.  



  

The ability of the empirical mode decomposition to extract embedded oscillations, to 

reveal hidden reflections in the data and to provide a high-resolution energy-time-

frequency spectrum is used to describe the Lamb waves interactions with various 

damaged regions. 
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Chapter 1 

Introduction 

 

1.1  Motivation 

Structural Health Monitoring (SHM) and continuous on-line monitoring of structural 

integrity are of primary concern in many engineering field as aerospace, automotive, 

large civil structures and other industrial applications [1]. The replacement of present 

day manual inspection techniques with more advanced sensitive and automatic health 

monitoring system would substantially reduce the maintenance and the related life-

cycle costs of these structures. Considerable research effort in that direction are being 

made in universities, research centers and corporations all around the world. 

Currently, the health monitoring of aircraft structures is conducted off-line and 

techniques such as ultrasonic inspection, acoustic emission, C-scan or X-rays are 

commonly used. These techniques do not provide early warning for preventive 

maintenance of the structures and lead to increased operation and maintenance costs. 

Hence, it is highly desirable to have a means of continuously monitoring the integrity 

of the structure in order to improve performance and reduce costs. The introduction 

and the significant use of composite materials has increased the need of a robust in-

situ health monitoring system. While in-service inspection of metallic structures 

requires mostly the detection of fatigue cracks and corrosion, composites structures 

require the detection accidental damage such as delaminations and impact damage. 
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The situation suggests that different health monitoring philosophies should be applied 

to the two different families of structural components.  

A real time in-situ monitoring of a structure suggests the use of smart sensors and 

actuators. Adaptive material solutions to structural health and usage monitoring 

relates to systems including smart sensors for damage detection combined with 

advanced signal processing method. The use of small and conformable transducers 

that could continuously interrogate the structure is mandatory for an online 

monitoring system. Various sensor technologies such as optical fiber sensors or 

piezoelectric sensors are currently available and can be integrated into a structure to 

be monitored. Recently, piezoelectric materials have become available in the form of 

ceramic elements that can also become an integral part of a monitored structure. The 

sensor technology and the associated signal analysis and interpretation algorithm is 

the key factor in the development of a successful health monitoring solution. The key 

to reliable and high-resolution damage detection is a good signal interpretation. 

Signal processing and computation are crucial elements in the implementation and 

operation of any damage detection system. This system requires the availability of 

appropriate signal processing technology to extract features from different types of 

sensors and translate this information into a diagnosis of location and severity of 

damage [2]. 
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1.2 Structural Health Monitoring Overview 

 

1.2.1 Challenge and Goals of Structural Health Monitoring 

Structural Health Monitoring (SHM) involves real-time monitoring of structures by 

means of sensors embedded or mounted externally to the structure. Speckmann [4] 

introduced the idea of SHM as a system similar to the human nervous system as 

described in the Figure 1.1. The human body actually contains sensors (that are the 

nerves), which inform the brain (SHM system) of the intensity of the pain. Actions 

such as going to the doctor or take medicine can therefore be taken. In the case of an 

aircraft, the sensors must be right at the place where an area is to be monitored to 

ensure the structural integrity. In case of damage, the sensors directly identify the 

location and possible preventive actions be taken.  

 

 

 

 

 

 

Figure 1.1: Idea of a structural health monitoring system 

 

Continuous on-line monitoring of structural integrity are of primary concern in many 

engineering field as aerospace, automotive, large civil structures and other industrial 

applications. Of all these possible applications, the aerospace industry has one of the 

Evaluation 

Information processing 

Sensory system 
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highest payoffs. Indeed damage can lead to catastrophic failures and costly 

inspections. The continued growth in air traffic has therefore placed an increasing 

demand on the aerospace industry to manufacture aircraft at lower costs, while 

ensuring that products are sure, efficient and friendly to the environment. New large 

capacity aircraft are being developed and will be used widely in the future. Many of 

these structures will make greater use of composite materials. For instance the new 

Boeing 7E7 will be built with 50% of composites materials whereas the world’s 

largest aircraft, the Airbus A380 is composed of 25% of composites materials and 

22% of carbon fiber reinforced plastic [5]. At the same time the current aircraft fleet 

is ageing continually. All these developments represent a major challenge to 

inspection and maintenance. 

1.2.2 Safety Issue 

Maintenance and continuous health monitoring of air, land and sea structures is one 

of the most important concerns in many industries including transportation and civil 

engineering. In high performance transportation such as aerospace, high-speed trains 

and also automobiles, where structural failures may lead to fatal accidents, safety of 

operation is a prime consideration. Cracks in metallics and impact damage in 

composite materials are the major cause of failure in aerospace structures. To ensure 

structural integrity and hence maintain safety, in-service health and usage monitoring 

techniques must be employed. In this context structural health monitoring is used to 

ensure safe and reliable systems. 
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1.2.3 Cost Issue 

Structural repairs increase the cost of transportation in at least two ways. First, the 

design and implementation of repairs implies direct costs. Second, the execution of 

repairs generally requires the transportation system to be temporarily taken out of 

service and this induces indirect costs due to the loss of production volume or as a 

result of leasing a substitute system. To reduce repair and maintenance costs an 

attempt to repair can be undertaken at a very early stage of damage development to 

limit direct costs. Alternatively, it might be decided to postpone repair until the 

transportation system has to be taken out of service for scheduled major overhauls to 

reduce indirect costs. In this context structural health monitoring becomes an issue of 

cost savings [6]. A recent study on inspection requirements for a modem fighter 

aircraft (featuring both metal and composite structure) revealed that an estimated 40% 

plus could be saved on inspection time by utilizing smart monitoring systems. More 

than 70 millions hours per year, equivalent to US$ 10.5 billion, is invested in civil 

aircraft maintenance. A typical Boeing 747 aircraft is inspected every 12 to 17 

months specifically for signs of fatigue damage [6]. 

1.2.4 Performance Issue 

Different types of damage (cracks, corrosion or delaminations) can be found thanks to 

appropriate inspection technique. The established inspection techniques vary from 

visual inspection by the naked eye to passing the structure through a fully automated 

inspection gantry. In an indirect approach structural performance or rather structural 

behavior is measured and compared with the supposedly known global response 

characteristics of the undamaged structure. 
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Obviously in both the direct and indirect approaches the sensitivity and the reliability 

of inspection are important quantitative performance measures. They are determined 

on the one hand by the laws of physics but on the other in practice also by the 

hardware and software quality of the inspection equipment, and last but not least, by 

the equipment operator: the inspector. In this connection human factors such as the 

loss of alertness in case of rare occurrences of damage and inspector fatigue in case of 

long and tedious inspections are important reasons to consider an autonomous 

solution to inspection as an element of structural health monitoring [6]. The 

replacement of present day manual inspection techniques with more advanced 

sensitive and automatic health monitoring system would reduce substantially the 

maintenance and the related life-cycle costs of these structures.  Thus, the basic 

approach is to make non-destructive testing technology an integral part of the aircraft 

structure itself. By using an in-situ structural health monitoring system to 

continuously monitor the structure, components would remain in operation without 

regularly scheduled maintenance until the SHM system reported that damage was 

present and a repair was necessary. 

1.2.5 Summary 

Safety, life-cycle costs and performance issues are key drivers that motivate an 

integrated vehicle health management solution for aircraft systems. 

The attractive potential of autonomous monitoring systems arises from a number of 

elements such as: reduced life cycle costs, reduced inspection/maintenance effort, 

improved performance, improved high rate operator availability, extended life of 

structures and improved safety. This leads to more efficient and economically 
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attractive aircraft. All these elements are important to both manufacturers and 

operators of civil and military aircrafts. 

 

1.3 Signal Processing in SHM 

In general, the development of successful health monitoring methods depends on two 

key factors: sensor technology and the associated signal analysis and interpretation 

algorithms. Intelligent signal processing is the key element, which builds the bridge 

between the sensor signal and the structural integrity interpretation [7]. There are a 

number of intelligent signal processing methods available for damage detection which 

could be integrated with aircraft structures and play an important role in aircraft 

maintenance. The past fifteen years have led to the development of numerous 

techniques such as Neural Networks, Genetic Algorithms and Time-Frequency 

methods. 

1.3.1 Signal Processing 

Processing a signal consists of extracting important feature from sensors 

measurements to reach a desire goal. For instance, if we are interested in reducing the 

noise in a signal, the best representation would be the one in which the signal and the 

noise are separated. The signal processing covers a lot of different applications: each 

time one uses a sensor to measure data, one has to process the corresponding signal. 

A relatively common diagram describing a signal processing system is given in the 

Figure 1.2. 
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The sensors translate a physical phenomenon from one or many sources in temporal 

variations or in spatial variations. These sources are emitting signals which can 

transmit through a medium in the form of a wave (electromagnetic, acoustic, etc...). 

These waves, containing the source information, can be disturbed, spread out in time, 

delayed, reflected, etc…  

Moreover, sensed signals are often polluted by measurement noise. This noise makes 

the signal much more complicated to analyze. Therefore, the complexity of the 

physical phenomenon along with the disturbances due to the propagating medium and 

the noise due to the measurement devices do not allow the extraction of the most 

useful data. Thus, signal processing consists of transforming a signal in a certain 

manner in order to get specified information. Various linear and nonlinear transforms 

are used in practice. In particular, the Fourier transform, the Short-Time-Fourier 

transform, the Wigner-Ville distribution and the Wavelet transforms has been widely 

used in structural health monitoring. 

1.3.2 Spectral Analysis 

Any observed signals, as acquired from measuring sensors in raw form, are in the 

time-domain. The history of the spectral analysis and time-frequency analysis began 

with the introduction of the Fourier transform by the French physicist Joseph Fourier 

Transmitting 
Source 

Propagation 
Medium 

Sensors Processing 
Unit 

Disturbance
s 

Noise 

Figure 1.2: A common signal processing system 
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[8] in 1807, defined as 2( ) ( ) iftX f x t e dtπ
+∞

−∞

= ∫ . The squared modulus of the Fourier 

transform, the power spectrum, gives an indication about the energy content of the 

analyzed signal. Historically, Fourier spectral analysis has provided a general method 

for examining the global energy-frequency distributions and has been used for 

damage detection. Melhem, et. al. [9]  showed that the Fourier transform can detect 

the progression of an impact damage in a beam. Nag, et. al. [10] created a spectral 

finite element model based on the fast Fourier transform to simulate a composite 

beam with a delamination. The analysis efficiently identified the severity of 

delaminated configurations through a damage force indicator. Lee, et. al. [11] 

examined the power spectrum of a Lamb wave signal and observed fluctuations in the 

dominant frequency due to damage. Loewke, et. al. [12] showed that the 2D FFT can 

be a useful tool in revealing the relative magnitudes of different spatial wavelengths 

of a signal in a material. Alleyne, et. al. [13] also examined the 2D FFT and 

performed both experimental and numerical investigations to show the Lamb wave 

interactions with defects. The Fourier transform is very useful in many applications, 

but it had to be modified in order to get information not only in the frequency domain 

but also in the time domain. 

1.3.3 Short-Time Fourier Transform (STFT) 

The Hungarian-British 1971 Nobel Prize in physics, Dennis Gabor, first recognized 

the great importance of localized time and frequency concentrations in signal 

processing [14]. In order to incorporate both time and frequency localization 

properties in one single transform function, Gabor introduced the windowed Fourier 
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transform by using a Gaussian distribution function as a window function. The idea is 

to use a window function in order to localize the Fourier transform, then shift the 

window to another position, and so on. The result of this transform would be 

displayed in a time-frequency representation, commonly referred to as a spectrogram. 

Ihn, et. al. [15] computed the spectrogram provided by the STFT to select an 

individual mode for damage detection and maximize signal to noise ratio in sensor 

signals. A reassigned spectrogram is used by Valle, et. al. [16] to characterize the 

modal and frequency content of a single ultrasonic signal as a function of time, 

enabling a procedure to locate flaws in an aluminum plate specimen. Kim, et. al. [17] 

used the STFT to decompose the piezoelectric sensor signals due to a low-velocity 

impact damage in composite laminates. The need to describe more accurately non-

stationary signals and the poor time-frequency resolution of the STFT pushed the 

scientists to research a new method able to overcome these drawbacks. 

1.3.4 Wavelet Transform 

In 1982, Jean Morlet, a French geophysical engineer, discovered the idea of the 

wavelet transform, providing a new mathematical tool for seismic wave analysis. 

Morlet first introduced the idea of wavelets as a family of functions constructed from 

translations and dilatations of a single function called the “mother wavelet”. A lot of 

researchers (Grossmann, Meyer, Mallat, Daubechies, etc…) developed and enhanced 

this new signal-processing tool to make it the most efficient and used technique in the 

structural health-monitoring field. The Wavelet analysis has been one of the most 

important and fastest evolving mathematical and signal processing tools of the last 

twenty years. There has been a considerable amount of papers dealing with the use of 
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Wavelet transform in structural health monitoring. Wait, et. al. [18] used the Morlet 

wavelet transform to gain insight as to how the intensities of the signal input energy 

have been shed into sideband frequencies as a result of damage in a composite plate. 

A damage index relating the ratio of the test signal’s kinetic energy to that of the 

baseline signal was then computed. Paget, et. al. [19] examined the amplitude change 

of the wavelet coefficients to successfully characterize the interactions of the Lamb 

waves with damage in a plate. Kessler, et. al. [20] plotted the magnitude of the 

wavelet coefficient at the peak driving frequency and compared the remaining energy 

from the input signal for both undamaged and damaged cases of simple structures. 

Kim, et. al. [21] explored the change of modal properties caused by a damage in a 

beam structure, which results in the variation of the wavelet coefficients. Lemistre, et. 

al. [22] used the wavelet transform to extract the shearing mode due to a delamination 

in a composite plate and then to localize damage with a good accuracy. Ip, et. al. [23] 

measured the arrivals times of reflected waves from the wavelet coefficients plots to 

infer the distance of the delamination from the sensor in composite beams. Salehian, 

et. al. [24] implemented the same analysis on an isotropic aluminum plate and an 

anisotropic composite plate. Silva, et. al. [25] used the wavelet transform to detect 

hidden corrosion on the surface of aluminum panel. Wavelet analysis was used to 

determine the wave speed that is affected by corrosion in the material.  Quek, et. al. 

[26] explored the wavelet transform of dynamic response data as a local non-

destructive evaluation technique for locating damage in a  beam. Okafor, et. al. [27] 

observed that the magnitude of the wavelet coefficient at the location of damage 

increased linearly with the increase in the amount of damage. A review of structural 
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health monitoring literature from 1996 to 2001 [28] yields more examples of the use 

of the wavelet transform for damage detection in structures. Despite its extensive use, 

the wavelet transform suffers of its non-adaptive nature. Once the wavelet basis 

function is selected, data is correlated with different dilated and scaled versions of 

their fundamental basis function. 

1.3.5 Hilbert-Huang Transform (HHT) 

Huang, et. al. [29] introduced a new adaptive method for nonlinear and non-stationary 

data analysis in 1998. This method consists of the combination of the empirical mode 

decomposition associated with the Hilbert spectral analysis. Lin, et. al. [30] showed 

that the Hilbert-Huang Transform can be used to identify the structural parameters of 

a benchmark building and is quite accurate in detecting structural damage locations 

and severities. Quek, et. al. [31] illustrated the suitability of the HHT for damage 

detection problems, such as an aluminum beam with a crack, a sandwiched aluminum 

beam with an internal delamination, a reinforced concrete slab with different degrees 

of damage. Crack and delamination in homogeneous beams can be located accurately 

and damage in the reinforced concrete slab can be identified if it has been previously 

loaded beyond first crack. Tua, et. al. [32] used the energy peaks in the Hilbert 

spectrum corresponding to crack-reflected waves to determine accurate flight times 

and also to estimate the orientation of the crack. Yang, et. al. [33] proposed two 

damage detection techniques based on the HHT. The first method, based on the 

empirical mode decomposition (EMD) extracted damage spikes due to a sudden 

change whereas the second one, based on the EMD and the Hilbert transform was 

capable of determining the damage time instants and determining the natural 
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frequencies and damping ratios of the structure before and after damage. Salvino and 

Pines [34] showed the ability of the empirical mode decomposition to extract phase 

information from transient signals and use the results to infer damage in a structure. 

Jha, et. al. [35] investigated the HHT to a multi-level structure. They showed that 

discontinuity in the IMFs indicated the presence and location of a damaging event in 

a structure monitored continuously. Bernal, et. al. [36] examined the instantaneous 

frequency of the intrinsic mode functions (IMF) provided by the EMD as a damage 

detection tool. Yu, et. al. [37] proposed a method for the fault diagnosis of roller 

bearings based on the HHT. The local Hilbert marginal spectrum is used to diagnose 

the faults in a roller bearing and to identify fault patterns. 

The HHT is going to become the most used intelligent signal processing for in-situ 

monitoring of structures in the next few years. The Wavelet transform is still used by 

some researchers but the HHT offers a huge potential for analyzing non-stationary 

and nonlinear data. Quek, et. al. [38] compared the results obtained from the wavelet 

analysis in a previous paper with results from an empirical mode decomposition. The 

empirical mode decomposition was shown to provide a more direct method of 

extracting information needed for damage detection purposes. 

 

 

 

 

 



 14 

1.4 Present Study 

To increase the safety, affordability and sustainability of long-term exploration 

missions, diagnosis and prognosis for Integrated Systems Health Management of 

complex mission-critical spacecraft structures is essential. Currently, there is no 

comprehensive approach monitoring the health of critical spacecraft structures using 

in-situ sensors and actuators. Past efforts have involved limited sensing of spacecraft 

structural components with insufficient data to diagnose the presence, type and extent 

of structural damage. This project aims to develop robust diagnostic metrics to infer 

damage presence, type and location through new time frequency signal processing 

analysis tools. 

The Acousto-Ultrasonic approach with in-situ transducers developed by 

Purekar [39] has shown promising results for wave propagation in thin plates and 

damage detection. The same approach is followed in this work. The Acousto-

ultrasonic technique is based on stress waves introduced into a structure by a probe at 

one point and sensed by another probe at a different position. The pitch-catch method, 

which consists of a transducer used to send out an interrogating signal and 

transducers located at different positions to monitor the dynamics of the plate, is used 

in the present work and shown in the Figure 1.3. The Lamb waves are excited through 

a piezoceramic actuator and the response is gathered with an array of sensors. Multi-

sensors architectures improves signal to noise ratio and offer better robustness and 

reliability. Purekar, et. al. [40] used the array of sensor as a directional filter to look in 

different directions in a plate. 
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Figure 1.3: Pitch-catch damage detection method 

 

Since Acousto-ultrasonic produce transient signals, a way of interpreting the results 

needs to be devised. Several methods have been proposed to enhance the 

interpretation of the measured Lamb wave signals to detect and locate structural 

damage. They are based on changes in wave attenuations using wavelets, time 

frequency analysis, wave reflections, and time of arrival information. As mentioned 

previously, many time-frequency methods have been applied to structural health 

monitoring methods. The Short-time Fourier Transform and the Wavelet transform 

are the most commonly used time-frequency analysis tools in the damage detection 

field. In this work the Hilbert-Huang transform is examined as a damage detection 

tool. This work demonstrates that the use of empirical mode decomposition coupled 

with Hilbert spectral analysis is an effective tool for locating damage in a two 

dimensional structure.  

 

 

Actuation 
Transducer 

Sensing 
Transducer 

Damage 

Interrogating signal Reflection from damage 



 16 

1.5 Organization of the thesis 

This thesis explores the use of the empirical mode decomposition along with the 

Hilbert spectral analysis for damage detection in isotropic and composite plate 

structures. The primary objective of this research is the implementation of the 

Hilbert-Huang transform and the investigation of its potential use for damage 

detection purposes.  

 

A review of the most commonly used time-frequency methods in structural 

health monitoring is presented in Chapter 2. The Short-time Fourier transform, the 

Wigner-Ville distribution and the Wavelet transform are described and illustrated 

through examples to better understand the physics under these transforms. The 

Chapter 3 details the empirical mode decomposition algorithm and the associated 

Hilbert spectral analysis. The different issues encountered during the implementation 

of the method are also discussed. The end of the chapter is dedicated to a comparison 

of the Hilbert-Huang transform with the time-frequency methods reviewed in Chapter 

2. 

 

The investigation of the different potential features that could be used to 

obtain robust and efficient metrics for damage detection is shown in Chapter 4. A one 

dimensional finite element model is created and simulated in order to examine the 

Hilbert phase as a damage detection parameter. Both energy and time resolutions are 

also explored to give information about the location and the severity of damage. The 

different metrics developed in Chapter 4 are applied to the damage detection of 
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isotropic plate structures in Chapter 5. The HHT shows the ability to reveal hidden 

reflections in data and to quantify the growth of the defect in the case of an aluminum 

plate with holes. Chapter 6 is dedicated to the damage detection in composite plates. 

Delaminations, local stiffness changes and low-velocity impact are experimented and 

processed. The results of the damage metrics on these data are then discussed.   

Concluding thoughts, including contributions and limitations of the current work and 

possible future directions for research are highlighted in Chapter 7. 
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Chapter 2 

Time-Frequency Methods For Damage Detection 

 

A transient time-domain signal, together with its Fourier transformed spectrum, does 

not provide enough information for applications that require an understanding of how 

a signal’s frequency changes as a function of time. The Fourier transform is limited to 

stationary signals, signals that have the same frequency content for all times. In 

contrast, nonstationary signals require signal-processing methods that can 

quantitatively resolve changes in frequency content, as a function of time. 

 

The field of time-frequency signal analysis is one of the recent developments, which 

provides suitable tools for analyzing nonstationary signals occurring in many fields of 

engineering, such as telecommunications, vibration analysis, and biomedicine. Ville 

[41] notes that there are two basic approaches to time-frequency analysis. The first is 

to divide the signal into slices in time and to analyze the frequency content of each of 

these slices separately. The second approach is to first filter the signal at different 

frequency bands and then cut the frequency bands into slices in time to analyze their 

energy content as a function of time and frequency. The first approach is the basic 

Short-Time Fourier Transform, also known as spectrogram, and the second one is the 

Wigner-Ville Transform. Other time-frequency analysis techniques include, but are 

not limited to, wavelet analysis and empirical mode decomposition combined with the 

Hilbert spectral analysis. 
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This chapter briefly reviews the time-frequency methods discussed above except for 

the empirical mode decomposition, which will be described in detail in the next 

chapter. 

 

2.1 Short-Time Fourier Transform (STFT) 

2.1.1 Description of The Method 

When the spectral content of the signal changes in time, neither the time nor the 

frequency-domain is sufficient to accurately describe the signal properties. Many 

attempts have been made to overcome this drawback. The analysis in both time and 

frequency domains using the so-called windowed Fourier transform is the first 

important development. This analysis makes use of a window function. The idea of 

the windowed Fourier transform is to analyze the frequency content of a signal within 

a window that is fixed in size and moves with time along the signal, as depicted in 

Figure 2.1. Effectively the signal is divided into segments before Fourier analysis is 

applied. The signal is assumed to be stationary within each segment. Different 

positions of the window cover the whole time domain. Thus, the windowed signal 

( )wx t  encodes the window position τ  and time t . If the Fourier transform is applied 

to such a signal the result is a new signal representation ( , )F t f  that in fact is a 

function of time and frequency. This analysis leads to the short-time Fourier 

transform. The biggest limitation of this approach is the comparison between the time 

and frequency resolution of the analysis. Good time resolution implies a small time 

window, which results in a poor frequency resolution and vice versa. The optimum, 
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obtained for a Gaussian window, is called the Gabor transform. While the STFT 

compromise between time and frequency information can be useful, the drawback is 

that once you choose a particular size for the time window, that window is the same 

for all frequencies. Many signals require a more flexible approach, one where we can 

vary the window size to determine more accurately either time or frequency. 

 

 

 

 

 

 

Figure 2.1: Short-time Fourier transform process 

 

As explained above, an intuitive solution to introduce the time-dependency in the 

Fourier transform consists of windowing the signal x  around a particular time t , 

computing its Fourier transform and doing that for each time instant t . The resulting 

transform is the Short-Time Fourier Transform and is defined by: 

2( , ) ( ) ( ) j fuF t f x u h u t e duπ
+∞

−

−∞

= −∫  

where ( )h t  is a window centered at time 0t = . Indeed, multiplying by 

( )h u t− suppresses the signal outside a neighborhood around the time point u t=  and 

the Fourier transform of this windowed signal gives a local spectrum of the signal x  

around t . 
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2.1.2 Example 

 
The Fourier transform analyzes a signal over its whole temporal duration. Hence, it 

yields information over the complete spectrum of the signal. The frequency spectrum 

of the signal, given in the Figure 2.2, can be used to determine that two frequencies 

are present in the signal, but it cannot tell us if these two frequency components 

overlap in time or not. The Fourier transform projects the signal in the frequency 

domain but loses completely the link with the time domain.  

 

 

 

 

 

 

 

 
 

Figure 2.2: STFT application example 

 

Let us now apply the STFT with a Gaussian window and plot the spectrogram of the 

signal 1 2( ) sin(2 ) sin(2 )s t f t f tπ π= + with 1 15f Hz=  and 2 4f Hz= . 
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Figure 2.3: Spectrogram of the example signal ( )s t  

 

From the image density plot in the Figure 2.3, we can easily determine that two 

harmonic components are present in the signal. These components have a finite 

duration and we can notice some overlap in time between the components. The reason 

for this overlap is given by the size of the window ( )h t . Indeed, the uncertainty 

principle affects the resolution of our analysis. A simple example shows the influence 

of the size of the window on the time-frequency resolution of the STFT. If we 

consider a linear frequency modulation with a Gaussian amplitude modulation and 

successively apply a Dirac impulse window and a constant window, we obtain the 

significant results shown in the Figure 2.4.  

 

When the window ( )h t is chosen as a Dirac impulse, the STFT is perfectly localized 

in time but does not provide any frequency resolution. On the other hand, if the 

constant window is used, the STFT reduces to the Fourier transform and does not 

provide any time resolution as illustrated in the Figure 2.4. So the frequency 
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resolution of the STFT is proportional to the effective bandwidth of the analysis 

window. 

 

 

 

 

 

 

 
Figure 2.4: Illustration of the influence of the window 

 

The Gaussian window is the optimal choice in order to get a good time-frequency 

resolution. The same signal is plotted in the Figure 2.5 along with its spectrogram and 

its frequency spectrum and shows a decent resolution. 

 

 

 

. 

 

 

 

 

Figure 2.5: STFT of ( )s t  with a Gaussian window  
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2.13 Conclusion 

Gabor formulated a fundamental method for decomposition of signals in terms of 

atomic waveforms. His pioneering approach has now become one of the standard 

models for time-frequency signal analysis. The Short-time Fourier transform (or the 

Gabor transform, or the windowed Fourier transform) allows the analysis of signals 

with multiple frequency components, which occur at different and possible 

overlapping time intervals. However, since this transform relies on the traditional 

Fourier analysis, we have to assume the data to be piecewise stationary, which is not 

always justified for non-stationary data. Moreover, we have a trade-off between time 

and frequency resolutions. On one hand, a good time resolution requires a short 

window ( )h t . On the other hand, a good frequency resolution requires a long window 

( )h t . This limitation is a consequence of the Heisenberg-Gabor inequality [42]. We 

will come back to this concept later in the chapter, since the main difference between 

the wavelet transform and the windowed Fourier transform is exactly how the 

uncertainty principle is satisfied.  

These limitations render this method of limited usage although easy to implement 

with the fast Fourier transform. 
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2.2 The Wavelet Transform 

2.2.1 Description of the method 

To overcome the drawback of the fixed size window, the wavelet analysis has been 

introduced as a windowing technique with variable-sized regions. The wavelet 

analysis represents the next logical step and has been one of the most important and 

fastest evolving signal processing tools of the last twenty years. Wavelet 

decomposition introduces the notion of scale as an alternative to frequency, and maps 

a signal into a time-scale plane as shown in the Figure 2.6. This is equivalent to the 

time-frequency plane used in the STFT. Each scale in the time-scale plane 

corresponds to a certain range of frequencies in the time-frequency plane. 

 

 

 

 

 
 
 

 
Figure 2.6: The Wavelet transform process 

 

The wavelet transform can be classified as continuous or discrete. In general, 

continuous wavelets are better for time-frequency analysis and discrete wavelets are 

more suitable for decomposition and compression. This is the reason why only the 

continuous wavelet transform will be treated in this chapter. 
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Wavelet definition 

The term wavelet means a small wave. A wavelet is a waveform of limited duration. 

Wavelets are localized waves that extend for a finite time duration compare to sine 

waves which extend from minus to plus infinity, as shown in Figure 2.7. 

 

 

 

 

 

 

 

 

 

Figure 2.7: Difference between a wave and a wavelet 

 

The comparison with the Fourier analysis is now clear. The wavelet analysis is the 

decomposition of a signal into shifted and scaled versions of the original wavelet 

whereas the Fourier analysis is the decomposition of a signal into sine waves of 

different frequencies. 

Mathematically, the continuous wavelet transform of a function ( )f t  is defined as the 

integral transform of ( )f t  with a family of wavelet functions , ( )a b tψ  [42]: 

1
( , ) ( )*x

t b
CWT a b f t dt

aa
ψ

+∞

−∞

− 
=  

 
∫  
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In other words, the continuous wavelet transform (CWT) is defined as the sum of the 

signal multiplied by scaled and shifted versions of the wavelet function ψ: 

( , ) ( )* ( , , )CWT scale position f t scale position t dtψ
+∞

−∞

= ∫  

The function ( )tψ is commonly called the mother wavelet and the family of functions 

, ( )
a b

tψ is called daughter wavelets. The daughter wavelets are derived from scaling 

and shifting the mother wavelet, as seen in the Figure 2.8. The scale factor a  

represents the scaling of the function ( )tψ , and the shift factor b  represents the 

temporal translation of the function. If 1a < , the wavelet is the compressed version 

(smaller support in time-domain) of the mother wavelet and correspond mainly to 

higher frequencies. On the other hand, when 1a > , , ( )a b tψ has a larger time-width 

than ( )tψ and corresponds to lower frequencies.  

The normalization constant is chosen such that the norm of each function , ( )a b tψ  is 

constant. The results of the CWT are many wavelet coefficients C, which are function 

of scale and position. 

 

 

 

 

 

 

 

Figure 2.8: Scaling property of the wavelets 
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Process 

The continuous wavelet transform process can be summarized in five steps [43]. 

(1) The first step consists in choosing a wavelet and to compare it to the start 

section of the original signal, as depicted in Figure 2.9. 

(2) Calculate C, that represents how closely correlated the wavelet is with this 

section of the signal.  

 

 

 

 

 

 
Figure 2.9: Correlation of the wavelet and the start section of the original signal 

 

(3) Shift the wavelet to the right and repeat steps (1) and (2) until the whole signal 

has been covered. (see Figure 2.10) 

 
 
 
 
 
 

 
 
 
 
 
 

Figure 2.10: Correlation of the wavelet and the second section of the original signal 
 

(4) Scale the wavelet and repeat steps 1 through 3 (see Figure 2.11) 
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Figure 2.11: Correlation of the shifted wavelet and the start section of the original 
signal 

 

(5) Repeat steps (1) through (4) for all scales. 

 

Scalogram 

A set of coefficients corresponding to the different sections at different scales is 

therefore created. A 2D plot can be plotted on which the x-axis represents the position 

along the signal (i.e time), the y-axis represents scale, and the color at each x-y point 

represents the magnitude of the wavelet coefficient C. It is important to mention that 

we obtain a time-scale representation with the wavelet transform compare to the 

STFT where we obtain a time-frequency representation. However each scale in the 

time-scale plane corresponds to a certain range of frequencies in the time-frequency 

plane. 

2.2.2 Example 

Let us consider the signal composed by a cosine at a 500Hz frequency and an impulse 

at 0.125t s= as shown in the Figure 2.12 and let us apply the continuous wavelet 

transform to this signal with the Morlet wavelet. The Fourier analysis is first applied 

and shows its limitations as seen in the frequency spectrum of the Figure 2.12 
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Wavelet 
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The scalogram is plotted in the Figure 2.13 and allows a better interpretation of the 

frequency content of the signal.  
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Figure 2.12: Wavelet application example – Signal s(t) 
 

 

 

 

 

 

 

 

 
Figure 2.13: Scalogram of the example signal s(t) 

 

Time (s) 0 0.05 0.1 0.15 0.2 0.25 
-1 

-0.5 
0 

0.5 
1 

1.5 
2 

2.5 

0 500 1000 1500 2000 2500 3000 3500 4000 
0 

200 

400 

600 

800 

1000 

Frequency (Hz) 

scalogram

time (or space) b

s
c
a
le

s
 a

200 400 600 800 1000 1200 1400 1600 1800 2000

 63.662

21.2207

12.7324

9.09457

7.07355

5.78745

4.89708

4.24413

3.74482

3.35063

3.03152

2.76791

2.54648

2.35785

2.19524

2.05361

1.92915

1.81891

1.72059

1.63236

Time (s) 

frequency 

scalogram 

0 0.05 0.1 0.15 0.2 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

(a) Time-scale representation (b) Time-frequency representation 

(a) Time domain signal 

(b) Fourier spectrum 



 31 

From this time-frequency representation, we can conclude that the 500Hz frequency 

is present during the whole time and that an impulse occurs at 0.125t s= . The 

resolution turns out to be also very good. A way to obtain a time-frequency 

representation instead of a time-scale representation is to compute the center 

frequency cF  of the wavelet and to use this relation: 
.
c

a

F
F

a
=

∆
where a  is the scale, 

aF  is the pseudo-frequency and ∆  the sampling period. The idea is to capture the 

main wavelet oscillation and to associate a purely periodic signal of frequency cF . 

This frequency corresponds to the fast-fourier transform maximum of the wavelet, i.e 

the dominant frequency. So if cF  is the frequency of the wavelet, then when the 

wavelet is dilated by a factor a , this center frequency becomes cF

a
. If ∆  is the 

sampling period, we naturally obtain this relationship between the scale a  and the 

frequency: 
.
c

a

F
F

a
=

∆
. 

The corresponding time-frequency representation of the scalogram is plotted in the 

Figure 2.13. This type of representation is useful in order to compare the efficiency of 

the STFT and the wavelet transform in terms of time and frequency resolutions. 

 

2.2.3 Conclusion 

In the case of Fourier transform, the set of basis functions were obtained by 

manipulating a periodic function. Fourier analysis is therefore ideal for periodic 

functions. In the case of wavelet transform, the basis functions are obtained by 

shifting and scaling one particular function. This is the main reason for the success of 
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the wavelets in signal processing and time-frequency analysis. When we look at a 

wavelet and a sine wave (Figure 2.7), we can intuitively see that signal with sharp 

changes might be better analyzed with an irregular wavelet than with a smooth 

sinusoid. The main advantage of the continuous wavelet transforms is to zoom in to 

discontinuities and sharp transients. The wavelet transform has been the revolutionary 

signal-processing tool of the last fifty years and has been widely used in damage 

detection. 

 

2.3 The Wigner-Ville Distribution 

2.3.1 Description of The Method 

Basically, there are two kinds of time-frequency representations. The short-time 

Fourier transform and the wavelet transform are linear transforms of the signal. These 

time frequency representations decompose the signal into elementary components 

well localized in time and in frequency. One other approach is to develop a joint 

function of time and frequency, known as a time-frequency distribution that can 

describe the energy density of a signal simultaneously in both time and frequency.  In 

this case energy time-frequency distributions are obtained and are naturally quadratic 

transforms of the signal. The Wigner-Ville distribution (WVD) or the Wigner-Ville 

transform (WVT) plays a major role in the time-frequency analysis and has many 

desirable properties as a signal-processing tool. The first one is its ability to provide a 

high-resolution representation in both time and frequency for non-stationary signals. 

Second of all, it has the special properties of satisfying the time and frequency 
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marginals in terms of the instantaneous power in time and energy spectrum in 

frequency and the total energy of the signal in the time and frequency plane. Third, 

the first conditional moment of frequency at a given time is the derivative of the 

phase of the signal at that time. The disadvantages of the WVD are that it is 

nonpositive, it is bilinear and it has cross-terms.  

 

The general class of time-frequency distributions for a given time signal ( )x t  can be 

defined as the Cohen distribution [14]:  

* 2 ( )( , , ) ( , ) ( ) ( )*
2 2

i t f u

CF t f x u x u e dud dπ θ τ θτ τ
φ φ θ τ τ θ

+∞ +∞ +∞
− + −

−∞ −∞ −∞

= − +∫ ∫ ∫  

where ( , )φ θ τ is an arbitrary function called the kernel. Different kernels can be 

chosen to obtain different properties. The best known, the Wigner-Ville distribution 

has been proposed by Ville in 1948 [41] and can be obtained from Equation (2.4) by 

taking ( , ) 1φ θ τ = , which results in, 

* 2( , ) ( ) ( )*
2 2

i f

xW t f x u x u e dπ ττ τ
τ

+∞
−

−∞

= − +∫  

This distribution satisfies a large number of desirable mathematical properties. In 

particular, the WVD is always real-valued, it preserves time and frequency shifts and 

satisfies the marginal properties. The goal of this chapter is not to deal with 

mathematical formulas but more to understand the physic under this time-frequency 

distribution, the different properties and mathematical formulations of the WVD can 

be found in Debnath book [14]. 

(2.4) 

(2.4) 

(2.5) 



 34 

2.3.2 Example 

Let us consider for this first example the simulated signal showed on the left of the 

Figure 2.14. Clearly, this is an oscillating signal whose frequency varies with time. 

However, it is difficult to conclude from this representation what relationship exists 

between frequency and time. The Figure 2.14 gives an illustration of the Wigner-Ville 

distribution and show that the signal frequency is modulated linearly. 

 

 

 

 

 

 

 

 

 
Figure 2.14: Wigner Ville application example 

 

If we choose a 3-dimensional plot to represent it, we can see that the WVD can take 

negative values, and that the localization obtained in the time-frequency plane for this 

signal is almost perfect, as shown in the Figure 2.15. This example illustrates 

perfectly the ability of the Wigner-Ville to provide a high-resolution time-frequency 

representation. However, interference terms can appear due to the bilinearity of the 

WVD. Let us consider now a Doppler signal and its WVD distribution in the Figure 

2.16. 
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Figure 2.15: 3D Wigner-Ville representation of s(t) 

 

 

When we look at the time-frequency distribution, we notice that the energy is not 

distributed as we could expect for this signal. Indeed, numerous other terms are 

present at positions in time and frequency where the energy should be null. The 

energy spectral density clearly shows that only two frequencies are present in the 

Doppler signal and the switch between these two frequencies occurs at 125t s= , as 

shown in the time-domain signal. These interference terms come from the bilinearity 

of the WVD. The Wigner-Ville distribution is quadratic in x , so if x  is a sum 

( )a b+ , the Wigner-Ville distribution of x  contains an interference term 2ab  in 

addition to the desired quantity 2 2( )a b+ . These interference terms result in an 

increased noise level of the Wigner-Ville distribution relative to the spectrogram. 
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difficult to visually interpret the WVD image. However, it appears that these terms 

must be present or the good properties of the WVD cannot be satisfied. Actually, 

there is a trade-off between the quantity of interferences and the number of good 

properties. 

Figure 2.16: Wigner-Ville transform of  a Doppler signal 
 

In practice, smoothing in time and frequency can dramatically reduce these 

interference terms. The result is the smoothed-pseudo Wigner-Ville distribution 

(SPWVD) defined by 
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where ⊗  defines the convolution with respect to the time t . The function ( )g t  is the 

smoothing function in time and ( )h τ  restricts the range of the integral in τ . 

Restricting the range in τ  is equivalent to smoothing in frequency. The SPWVD 

reduces to the conventional Wigner-Ville distribution when ( ) 1h τ =  and 

( ) ( )g t dirac t= . 

2.3.3 Conclusion 

The Wigner-Ville distribution is one of the fundamental methods that have been 

developed over the years for the time-frequency analysis. In view of its remarkable 

mathematical structures and properties, the Wigner-Ville distribution is well 

recognized as an effective method for the time-frequency (space wavenumber) 

analysis of nonstationary signals (waveforms). Despite its inherent weaknesses as 

bilinearity and cross terms, the Wigner-Ville distribution plays a central role in the 

field of bilinear/quadratic time-frequency representations and can be slightly 

modified by smoothing in one or two dimensions to overcome its drawbacks. In 

recent years, this distribution has served as a useful analysis tool in many diverse 

fields and in structural health monitoring in particular. 

 

2.4 Summary 

 
A review of the most common time-frequency methods used in structural health 

monitoring is established in this chapter. Attention has been paid to describe these 

different techniques physically more than mathematically through examples. The 

standard Short-time Fourier transform has shown some limitations to accurately 
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describe nonlinear and non-stationary time series. Its poor time-frequency resolution, 

its Fourier dependence and its piecewise stationary assumption make it difficult to use 

despite its easy implementation. The Wigner-Ville distribution possesses a 

noteworthy mathematical structure and some interesting properties for the time-

frequency analysis. However, this distribution suffers from the same limitations as the 

Short-time Fourier transform when its shortcomings (bilinearity, cross terms) are 

overcome by time and frequency smoothing. The wavelet transform is currently the 

most popular time-frequency method and is used in many diverse fields for the 

analysis of nonlinear and non-stationary signals. The shifted and scaled basis 

functions are the main reason for the success of wavelets in signal processing. 

Nevertheless, one difficulty of the wavelet analysis is its non-adaptive nature. Once 

the basic wavelet is selected, one will have to use it to analyze all the data. To 

overcome this drawback, Huang [29] introduces a new adaptive method for analyzing 

nonlinear and non-stationary data. 
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Chapter 3 

The Empirical Mode Decomposition (EMD) And The 

Associated Hilbert Spectral Analysis 

 

 

3.1 Fundamental Concepts 

3.1.1 The Hilbert transform and analytical signal 

Definition and formula 

The Hilbert transform [ ( )]H x t  of a real-valued function ( )x t  extended from −∞  to 

+∞  is a real-valued function defined by 

0

0
0

( ) ( )
[ ( )] ( ) lim

( ) ( )

x u x u
H x t y t du du

t u t u

ε

ε
ε

π π

− ∞

→
−∞ −

 
= = + 

− − 
∫ ∫  

assuming that 2[ ( )]x t dt

∞

−∞

< ∞∫ , equation (3.1) can be rewritten as  

1 ( )
[ ( )] ( )

x u
H x t y t P du

t uπ

∞

−∞

= =
−∫  

where P indicates the Cauchy principal value. This transform exists for all functions 

of class p
L . Thus, ( )y t  is the Hilbert transform of the initial process ( )x t . A 

description of the Hilbert transform with the emphasis on its mathematical formality 

can be found in Bendat and Piersol [44]. Essentially equation (3.2) defines the Hilbert 

transform as the convolution of ( )x t  with 
1

t
; it therefore emphasizes the local 

properties of ( )x t , even though the transform is global. Physically, the Hilbert 

(3.1) 

(3.2) 
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Transform can also be interpreted as a natural / 2π  phase shifter, which consists of 

passing ( )x t  through a system that leaves the magnitude unchanged, but changes the 

phase of all frequency components by / 2π . With this definition, ( )y t forms the 

complex conjugate of ( )x t  and we can define the analytical signal, ( )z t , as  

( ) ( ) ( )z t x t iy t= +  

The advantage of this representation lies in the fact that the possibility arises of 

uniquely determining genuine time-variant variables. These are the instantaneous 

parameters with amplitude as 2 2( ) ( ) ( )a t x t y t= + and phase 
( )

( ) arctan
( )

y t
t

x t
θ

 
=  

 
. 

Finally, Equation (3.3) can be rewritten as  

( )( ) ( ) i tz t a t e θ=  

In this equation, the polar coordinate expression further clarifies the local nature of 

this representation. It is the best local fit of an amplitude and phase varying 

trigonometric function to ( )x t . The Hilbert transform forms the basis of the definition 

of an analytical signal and provides a unique way of defining the imaginary part so 

that the result is an analytic function. In the frequency domain, the definition of the 

analytical signal has a simple interpretation since [ ( )]TF z t  is a single sided Fourier 

transform where the negative frequency values have been removed, the strictly 

positive ones have been doubled, and the DC component is kept unchanged: 

( ) 0Z υ =  if 0υ <  

( ) (0)Z Xυ =  if 0υ =  

( ) 2 ( )Z Xυ υ=  if 0υ >  

(3.3) 

(3.4) 

(3.5) 
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in which ( )X υ  is the Fourier transform of ( )x t  and ( )Z υ  is the Fourier transform of 

( )z t . 

Thus, the analytic signal can be obtained from the real signal by forcing to zero its 

spectrum for the negative frequencies, which do not alter the information content 

since for a real signal, *( ) ( )X Xυ υ− = . 

 

An example of Hilbert transform 

A simple sine wave and its Hilbert transform (cosine wave) is plotted for comparison 

in the Figure 3.1. 

 

 

 

 

 

 

 

 

Figure 3.1: Hilbert transform of a sine wave 

 

A phase shift of / 2π  is clear. Since this signal only involves a single frequency 

wave, the instantaneous amplitude is constant and the phase function is a straight line, 

as shown in the Figure 3.2. 
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Figure 3.2: Amplitude and phase of the Hilbert transform of a sine wave 

 

3.1.2 The Instantaneous Frequency 

Definition and concept 

The notion of instantaneous frequency has been highly controversial and even with 

the Hilbert transform, there is still considerable controversy in defining the 

instantaneous frequency as the rate of phase change 

d

dt

θ
ω =  and 
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d
f

dt

θ

π
=  

The definition of the instantaneous frequency presented here is the most basic but is 

by no means unique. Ville [41] defined another estimator for the instantaneous 

frequency as the first moment of the distribution with respect to frequency. Cohen 

[45] defined the instantaneous frequency to be the average of the frequencies that 

exist in the time-frequency plane at a given time. A comprehensive discussion on the 

various proposed formulations may be found in Boashash [46]. The main difficulty in 

accepting the idea of instantaneous frequency arises from the definition of the 
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‘global’ frequency in the traditional Fourier analysis. The frequency is indeed defined 

for the sine or cosine function spanning the whole data length with constant 

amplitude. As an extension of this definition, the instantaneous frequencies also have 

to relate to either a sine or a cosine function. Thus, we need at least one full 

oscillation of a sine or a cosine wave to define the local frequency value. According 

to this logic, nothing shorter than a full wave will do. Such a definition would not 

make sense for non-stationary data for which the frequency has to change values from 

time to time, so that there is an apparent paradox in associating the words 

‘‘instantaneous’’ and ‘‘frequency’’. If the concept of instantaneous frequency is 

applied blindly to any analytic function, one may run into one of the four paradoxes 

discussed by Cohen [47]. Hence, some limitations on the data are necessary, since the 

instantaneous frequency given in Equation (3.6) is a single value function of time. 

The definition implies that at any given time, there is only one frequency value. This 

leads Cohen [47] to introduce the term, ‘monocomponent function’, which have been 

loosely defined as narrow band. Finally, one reasonable and meaningful definition of 

the instantaneous frequency could be the representation of the frequency of the signal 

at one time, without any information about the signal at other times.  

 

The illustration of the instantaneous frequency concept for a ‘monocomponent’ signal 

can easily confirm from the definition that the instantaneous frequency of a harmonic 

function is constant and coincides with the frequency of the function. One can gain 

intuitive appreciation for the concept of instantaneous frequency by examining a 

chirp signal. A linear chirp is defined as ( ) cos[( ) ]y t at t=  from where the 
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interpretation of a frequency varying linearly with time is evident. A plot of a linear 

chirp with its instantaneous frequency computed from Equation (3.6) is plotted in 

Figure 3.3. 

 

 

 

 

 

 

 

 
Figure 3.3: Instantaneous frequency of a linear chirp 

 

As one can see, the instantaneous frequency definition captures the time variation of 

the frequency accurately. However, when the chirp is represented in the Fourier 

domain the result contains a large number of components with different frequencies 

and the simple nature of the signal is lost. 
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different frequencies with the same amplitude. The result obtained using the 

instantaneous frequency is completely different, and therefore irrelevant as seen in the 

Figure 3.4.  

 

 

 

 

 

 

 

Figure 3.4: Instantaneous frequency of a multi-components signal 

 

Meaningful instantaneous frequency 

In order to obtain meaningful instantaneous frequency, restrictive conditions have to 

be imposed on the data as discussed by Gabor [48] and Boashash [46]: the frequency 

of the signal must be positive. Let us consider some simple examples to illustrate this 

restriction physically, by examining the function ( ) sinx t tα= +  for 0,0.5,1.5α =  

and by computing the phase function and the instantaneous frequency for each value 

of α . The phase function of sin t  is a straight line. The phase plot of x-y plane is a 

simple circle of unit radius as shown in the Figure 3.5. If we change the signal mean 

by adding a small amount α , the phase plot is still a simple circle independent of the 

value of α . However, the center of the circle is displaced by the amount α . 
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Figure 3.5: Physical interpretation of instantaneous frequency 

 

If 1α <  the Fourier spectrum has a DC term but the mean zero-crossing frequency is 
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These simple examples illustrate physically that, for a simple signal such as a sine 

function, the instantaneous frequency can be defined only if we restrict the function to 

be symmetric locally with respect to the zero mean level. 

 

Conclusion 

The examples presented above, lead to the definition of a class of functions for which 

the instantaneous frequency can be defined everywhere. A new method needs 

therefore to be introduced in order to decompose any signal into a superposition of 

components with well-defined instantaneous frequency. This method will have to 

locally eliminate riding waves and asymmetries (defined by envelope of extrema) in 

order to obtain a series of monocomponent contributions. This new method has been 

introduced by Huang in 1998 [29] and is called ‘the empirical mode decomposition’. 

 

3.1.3 The Hilbert-Huang transform 

The Hilbert-Huang transform scheme can be divided into two parts. In the first step, 

the experimental data are decomposed into a collection of intrinsic mode functions 

(IMFs). This decomposition is viewed as an expansion of the data in terms of the 

IMFs. In other word, these IMFs are regarded as the basis of that expansion which 

can be linear or nonlinear as dictated by the data. Since the IMFs have well-behaved 

Hilbert transforms, the corresponding instantaneous frequencies are calculated. Thus, 

in the next step, we could localize any event on the time as well as the frequency axis. 

The local energy and the instantaneous frequency derived from the IMFs give us a 
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full energy-frequency-time distribution of the data, and such a representation is 

designated as the Hilbert spectrum. 

 

Part I: The Empirical Mode Decomposition   

  

Intrinsic mode function 

Based on the observations of the previous section, a new class of functions designated 

as intrinsic mode functions can be proposed for the instantaneous frequency to make 

sense. An intrinsic mode function (IMF) is a function that satisfies two conditions: 

(1) in the whole data set, the number of extrema and the number of zero crossings 

must either equal or differ at most by one 

(2) at any point, the mean value of the envelope defined by the local maxima and 

the envelope defined by the local minima is zero 

The first condition is similar to the narrow-band requirement for a stationary 

Gaussian process. It ensures that the local maxima of the data series are always 

positive and the local minima are negative, respectively. The second condition 

modifies a global requirement to a local one, and is necessary to ensure that the 

instantaneous frequency will not have unwanted fluctuations arising from asymmetric 

waveforms. An example of an IMF is plotted on the Figure 3.6. 

 

IMFs represent oscillatory modes embedded within data where each IMF involves 

only one mode of oscillation with no complex riding waves present. An IMF can be 

non-stationary and either be amplitude and/or frequency modulated. 
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Figure 3.6: Intrinsic mode function (IMF) example 

 

Intrinsic mode functions could be considered as a more general case of the simple 

harmonic functions. It has to be mentioned that, by definition, intrinsic mode 

functions always have positive frequencies, because the oscillations in IMFs are 

symmetric with respect to the local mean. 

 

The sifting process 

In general, most of the data are not naturally IMFs and the Hilbert transform cannot 

provide the full description of the frequency content if the data involves more than 

one oscillatory mode at a given time. Hence, we need to find a way to decompose the 

data into a set of independent IMF components.  

 

Huang introduced a method to decompose a complicated data into IMF components 

with meaningful instantaneous frequencies. This new method is intuitive, direct, a 

posteriori and adaptive. The decomposition is based on three assumptions: 
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(1) the signal has at least two extrema, one maximum and one minimum 

(2) the characteristic time scale is defined by the time lapse between the extrema 

(3) if the data were totally devoid of extrema but contained only inflection points, 

then it can be differentiated once or more times to reveal the extrema. 

The sifting process to find the IMFs of a signal consists of several steps. We will 

describe these steps using an arbitrary signal denoted ( )x t . 

(1) Find the positions and amplitudes off all local maxima and minima in the 

input signal. These are marked by green and yellow dots respectively in the 

Figure 3.7. 

(2) Create the upper envelope by spline interpolation of the local maxima and the 

lower envelope by spline interpolation of the local minima, denoted max ( )e t  

and min ( )e t . These are shown as the blue and red curves in the Figure 3.7. 

(3) For each time instant t, calculate the mean of the upper envelope and the 

lower envelope. 

max min
1

( ) ( )

2

e t e t
m

+
=  

This signal is referred to as the envelope mean and is shown as the black line 

in the Figure 3.7. 

(4) Subtract the envelope mean signal from the input signal (black from blue, 

yielding the results illustrated by blue in Figure 3.7. 

1 1( ) ( )h t x t m= −  

This is one iteration of the sifting process. The next step is to check if the 

signal 1( )h t  is an IMF or not. In the original work of Huang, the sifting 

(3.7) 

(3.8) 
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process stops when the difference between two consecutive siftings is smaller 

than a selected threshold SD, defined by  

2

1( 1) 1

2
0 1( 1)

( ( ) ( ) )

( )

T
k k

t k

h t h t
SD

h t

−

= −

 −
 =
 
 

∑  

We will see later that the choice of the stop criterion is crucial in order to get 

meaningful IMF components. 

(5) If 1( )h t is not an IMF, iterate by repeating the process from step (1) with the 

resulting signal from step (4). In the second sifting process, 1( )h t  is therefore 

treated as the data, then 

11 1 11h h m= −  

 We can repeat this sifting procedure k times, until 1kh is an IMF, that is 

1 1( 1) 1k k kh h m−= −  

 When the stop criterion is met, the IMF is defined as 

1 1kc h=  

After the IMF 1c  is found (illustrated by the blue curve in the Figure 3.7) 

define the residue 1r  as the result of subtracting this IMF from the input signal 

1 1( )r x t c= −  

 The residue is illustrated by the blue curve in the Figure 3.7. 

(6) The next IMF is found by starting over from step (1), now with the residue as 

the input signal.  

 

Steps (1) to (6) can be repeated for all the subsequent jr  and the result is 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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1 2 2 1,..., n n nr c r r c r−− = − =  

The EMD is completed when the residue, ideally, does not contain any extrema 

points. This means that it is either a constant or a monotonic function. The signal can 

be expressed as the sum of IMFs and the last residue 

1

( )
n

i n

i

x t c r
=

= +∑  

The extracted IMFs are symmetric, have a unique local frequency and different IMFs 

do not exhibit the same frequency at the same time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original data

Original data with the local minima and maxima

(a) Original signal 

(b) Localization of the local extrema 

(3.14) 

(3.15) 
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Original signal with the upper envelope in blue, the lower envelope 

in purple and the mean envelope in black

The resulting first IMF

Result of one iteration in the IMF sifting process (this is still not an IMF)

(d) Resulting first IMF 

(d) Result of one iteration of the sifting process 

(c) Spline fitting 
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Residue

 

 

 

 

 

 

 

 
Figure 3.7: Sifting process illustration 

 

The decomposition steps are based on the simple assumption that any data consists of 

different simple intrinsic modes of oscillations. Each mode may or may not be linear, 

and will have the same number of extrema and zero-crossings. Furthermore, the 

oscillation will also be symmetric with respect to the ‘local mean’. At any given time, 

the data may have many different coexisting modes of oscillation, one superimposing 

on the others. The result is the final complicated data. An IMF represents each of 

these oscillatory modes. To clarify the decomposition process, Figure 3.8 summarizes 

the procedure of the EMD. The sifting process serves two purposes: to eliminate 

riding waves and to make the wave-profiles more symmetric in smoothing uneven 

amplitudes. While the first condition is absolutely necessary for separating the 

intrinsic modes and for defining a meaningful instantaneous frequency, the second 

condition is also necessary in case the neighboring wave amplitudes have too large a 

disparity. Another way of explaining how the EMD works is that it picks out the 

highest frequency oscillation that remains in the signal. 

(f) Residue function  



 55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Flow chart of the EMD 
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Thus, locally, each IMF contains lower frequency components than the one extracted 

just before. The set of IMFs obtained is unique and specific for the particular time 

series since it is based on and derived from the local characteristics of these data. 

Hence, the sifting process allows one to decompose the data into n-empirical modes 

and a residue.  

 
Part II : The Hilbert Spectral Analysis 

 
The Hilbert transform of IMFs 

The empirical mode decomposition gives us a set of independent IMF components 

with meaningful instantaneous frequencies. Each of the IMF components can be 

therefore treated as a signal where the Hilbert transform can be applied.  

( )( ) ( )*exp ( )
j j

c t a t i t dtω= ∫  

After performing the Hilbert transform on each IMF component, the original data 

( )x t  can be expressed as a real part (RE) of the complex expansion: 

( )
1

( ) ( )*exp ( )
n

j j

j

x t RE a t i t dtω
=

 
=  

 
∑ ∫  

The residue nr  is omitted on purpose because it is either a monotonic function or a 

constant. Here, both amplitude ( )ja t  and instantaneous frequency ( )j tω  are function 

of time t  in contrast with the constant amplitude and frequency in the Fourier 

expansion. 

1

( ) ji t

j

j

x t RE a e
ω

∞

=

 
=  

 
∑  

Hence, the IMF represents a generalized Fourier expansion. 

(3.16) 

(3.17) 

(3.18) 
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The Hilbert spectrum 

Equation (3.17) enables us to represent the amplitude and the instantaneous frequency 

as functions of time in a three-dimensional plot, in which the amplitude can be 

contoured on the frequency-time plane. This frequency-time distribution of the 

amplitude is designated as the Hilbert amplitude spectrum, ( , )H tω , or simply Hilbert 

spectrum. Various forms of Hilbert spectra presentations can be made. The first one, 

the skeleton form, will emphasize frequency variations of each IMF and will be used 

if more quantitative results are desired. A second form, commonly used as a first 

look, is the smoothed Hilbert spectrum. If we apply a weighted spatial filter with 

large enough spatial averaging, we obtain a smoothed spectrum similar to what the 

wavelet analysis would give. Even if such a smoothing degrades both frequency and 

time resolutions, it could give a better physical interpretation. Hence, if more 

qualitative results are desired, the smoothed presentation is more appropriate. Both 

forms of the Hilbert spectrum are shown in the Figure 3.8 for the example treated in 

the sifting process section. 

 

 

 

 

 

 

 
Figure 3.9: Hilbert-Huang spectrum 
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The time resolution of the Hilbert spectrum can be as precise as the sampling rate in 

the data, while the frequency resolution is arbitrary. The lowest extractable frequency 

is 1/T , where T represents the duration of the record and the highest frequency is 

1/( )n t∆ , where 5n =  is a minimum number of points, necessary to define frequency 

accurately and t∆  is the sampling rate. 

 

3.2 Program Implementation 

Matlab 7.0 was adopted for the numerical implementation of the HHT method in this 

work. As defined above, the EMD algorithm depends on a number of parameters, 

which have to be controlled by the user. Spline fitting, stopping criterion and end 

effects can affect the overall success of the analyzing procedure and hence need to be 

carefully investigated in order to avoid some inconsistency in the decomposition. 

3.2.1 Stop Criterion 

To guarantee that the IMF components retain enough physical sense of both 

amplitude and frequency modulations, we have to determine a criterion for the sifting 

process to stop. On one hand, a too stringent criterion can result in over-decomposing 

the data, giving non-physical IMF components. On the other hand, a too lax criterion 

may not reveal the actual IMF components of the data.  

Huang [29] first introduced the standard deviation as a stopping criterion. The 

standard deviation, SD, is computed from the two consecutive sifting results as 
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2

1( 1) 1

2
0 1( 1)

( ( ) ( ) )

( )

T
k k

t k

h t h t
SD

h t

−

= −

 −
 =
 
 

∑  

This criterion is typically set between 0.2 and 0.3 and seems to work in practice even 

if it is an ad hoc criterion. However, numerical simulations indicate that such stop 

criterion requires a lot of siftings and therefore increase the computer time in 

extracting each IMF. 

Quek [31] proposed another criterion as an alternative measure, defined as  

2

1( 1) 1

0

2

1( 1)

0

( ( ) ( ) )

( )

T

k k

t

T

k

t

h t h t

SD

h t

−
=

−
=

−

=
∑

∑
 

This criterions turn out to be more efficient along with a good choice of the critical 

value. A new criterion have been considered by Rilling, et al. [49], which takes into 

account the locally large excursions while guaranteeing globally small fluctuations in 

the mean. This criterion is based on two thresholds 1θ  and 2θ  and an evaluation 

function ( ) ( ) / ( )t m t a tσ =  with max min( ) ( )
( )

2

e t e t
a t

−
= . The sifting is iterated until 

1( )tσ θ<  for 95 % of the total duration, while 2( )tσ θ<  for the remaining 5 %. These 

three different stop criterions have been tested and the most efficient one turns out to 

be the last one in terms of the number of iterations and computer time.  

 
 
 
 
 

(3.19) 

(3.20) 
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3.2.2 Spline Fitting 

Special attention has to be paid to the problem of obtaining the true envelopes of the 

signal. The interpolation to produce envelopes from the extrema points can be done in 

different ways and the nature of the chosen interpolation plays an important role. As 

the description of the sifting process indicates, the spline fitting is the essential step in 

generating the intrinsic mode function, the basis for the Hilbert spectral analysis. 

Cubic splines are commonly used but serious problems can occur near the ends, 

where the cubic spline fitting can have large swings. The approximate envelopes 

obtained by the cubic spline interpolation do not always encompass all the data and 

some leakage can occur, corrupting the signal, as seen in the Figure 3.9. The cubic 

spline fitting adopted here has both overshoot and undershoot problems. This problem 

can be overcome by over sampling the discrete signal ( )x t , resulting in a better 

localization of the extrema. Another way to get rid of these near end distortions is to 

use higher-order spline fitting, which is more time consuming. A new method 

introduced by Blakely [50] takes advantage of the theory of matrix-free moving least-

squares approximation to construct the approximate envelopes without the need of 

solving a system of equations. This method provides an attractive alternative to the 

cubic spline and offers a fast computation time. 
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Figure 3.10: Spline fitting leakage 

 

The spline can contaminate the IMFs through the thousand of siftings. Indeed, when 

we consider the case of the linear sum of two cosine waves with very close 

frequencies, the EMD cannot extract the two components and the instantaneous 

frequencies of the components become overlapped. The key problem here is the 

spline fitting. Unless a better spline fitting is implemented, EMD will not be able to 

improve the instantaneous frequencies definition in such a case. Thus, the spline 

fitting appears to be a major factor in the limitations of the Hilbert spectral analysis.  

 

3.2.3 End Effects 

Due to a final length signal and its polar representation, the Hilbert Transform 

experienced the Gibbs phenomenon, caused by representing a discontinuity at the 

beginning and at the end of the signal (see Figure 3.10). Another type of end effects is 

due to the spline fitting. At the ends, the cubic splines can indeed have wide swings if 

left unattended. To alleviate both types of end effects, Huang [29] proposed to add 

two characteristics waves at the beginning and at the end of the signal to smooth it at 
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the edges. Another efficient method is to over sample the signal so that the 

propagation of end effects is outside the required window. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.11: End effects illustration 

 

3.3 Program Validation and Comparison 

 

To show the efficiency of the empirical mode decomposition and the Hilbert 

spectrum, a simple example has been studied and compared to the time-frequency 

methods reviewed in the previous chapter. 

3.3.1 Analyzed Signal 

Let us first validate the implementation of the Hilbert-Huang transform on a relevant 

example. We will consider the case of a simple sine wave with one frequency 

suddenly switching to another frequency and a Dirac type impulse occurring at a 

certain time. This signal s(t) is defined by the Equation (3.21) 
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Figure 3.12: Example signal s(t) 

 

This signal has been chosen in order to demonstrate the ability of the EMD to 

separate the different frequency components as well as to identify irregularities in a 

signal. The time domain representation of this signal along with its Fourier spectrum 

is given in the Figure 3.11. As expected, the two frequencies present in the signal 

show up in the Fourier spectrum unlike the spikes that remains undetectable for the 

FT.  

 

3.3.2 EMD Analysis 

The empirical mode decomposition is then applied to the signal. The first part of the 

EMD consists of extracting the intrinsic modes, as shown in the Figure 3.12. 
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Figure 3.13: Empirical mode decomposition of s(t) 

From this decomposition, we can notice that the first IMF is mainly composed of the 

two harmonic terms 1 1000f Hz=  and 2 500f Hz=  of the signal. The second and the 

third IMF are dedicated to the description of the spike. As one can see, only the 

irregularity is emphasized on these IMFs. The power of the EMD is thus shown 

through this example as it proved its ability to extract embedded and hidden feature in 
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monotonic function from which no more IMF can be extracted. The purpose of the 

sifting process was to obtain a set of functions that have well-behaved Hilbert 

transform. Hence, the second part of the Hilbert-Huang process is to take the Hilbert 

transform of each IMF and to deduct their meaningful instantaneous frequencies. It is 

now possible to represent the amplitude and the instantaneous frequency as functions 

of time in a three-dimensional plot, the Hilbert Huang spectrum (see Figure 3.14) 

The empirical mode decomposition with the Hilbert-Huang spectrum gives a high-

resolution time-frequency representation. The 2D plot provides fine details about the 

nature of the two sine waves as well as the impulse. The two frequencies can be 

accurately determined as well as their time duration. Both frequency and time 

resolutions are excellent. Moreover, there is little if any leakage at the frequency 

switch point. The impulse appears as a discontinuity in the frequency band. This can 

be compared to a discontinuity for a mathematical function. This discontinuity is well 

localized in time and is spread out over the whole frequency range. This makes sense 

as an impulse in the time domain theoretically contains all frequencies. All these 

details can be seen in the 3-dimensional plot in the Figure 3.13. 

 
 
 
 
 
 
 
 
 
 

 

 
Figure 3.14: Hilbert-Huang spectrum of s(t) 
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3.3.3 Comparison with the others time-frequency methods 

After analyzing the signal ( )s t  with the Hilbert-Huang transform, it is instructive to 

process the same signal through other time-frequency methods. A comparison with 

these methods will reveal the strengths and weaknesses of other time-frequency 

methods. The spectrogram of ( )s t  corresponding to the STFT and the scalogram 

corresponding to the wavelet transform are plotted in the Figure 3.15. A random 

window size has been chosen for the Short-time Fourier transform, that is one fourth 

of the signal length. A large time window implies a good frequency resolution and a 

poor time resolution. Indeed, we can notice that the two frequency components are 

overlapping in time around the switch point. 

 

  

 

  

 

 
 

Figure 3.15: Spectrogram and scalogram of s(t) 
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underlined. There is no guarantee that the window size adopted coincides with the 
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stationary time scales. The impulse event being very localized in time, a narrow 

window must therefore be applied. However, this choice implies a poor frequency 

resolution, as shown in the Figure 3.15. 

 

 

 

 

 

 
 
 
 

Figure 3.16: Similarity between the STFT and the PWVD 

 
 
The impulse can now be seen but the spectrogram gives now a smeared average 

frequency range over witch the main waves energies reside. The STFT turns out to be 

very limited compared to the Hilbert-Huang transform for the analysis of non-

stationary data. Moreover, the pseudo Wigner-Ville distribution is plotted in the 

Figure 3.16. In order to get rid of the cross terms and interferences, the time-

frequency representation has been modified by smoothing in time and frequency. The 

result is, then, basically that of the STFT analysis. The Wigner-Ville distribution 

therefore suffers all the limitations of the short-time Fourier transform.  

 

The wavelet analysis is the best available non-stationary data analysis so far and turns 
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nonlinear and non-stationary signal analysis methods. The standard Morlet wavelet 

analysis identifies the local frequency before and after the frequency switch as well as 

the location of the frequency switch in the Figure 3.14. At the same time, the result 

also shows the leakage of the energy to the neighboring modes. In the Hilbert-Huang 

spectrum, we can see much sharper frequency definitions and the time location of the 

frequency switch than those shown in the scalogram. The range of variation is 

insignificant compared with the leakage in the wavelet analysis result. This suggests 

that the Hilbert-Huang transform is capable of providing a more crisp indication of 

the frequencies in the signal. 

 

Another interesting observation is that the scalogram shows the smearing of the 

precise time location of the frequency switch event in the lower-frequency range. If 

we only look in the low-frequency range, we cannot tell the exact time of the impulse 

whereas it is well localized in the high-frequency range. More generally, to look for 

definition of a low-frequency event, we have to look at the high-frequency range in 

the wavelet spectrum. On the contrary, the energy of the impulse is well localized in 

both time and frequency domains in the Hilbert-Huamg spectrum. This illustrates the 

unique property of the Hilbert spectrum in elimination of the spurious harmonic 

components to represent the non-stationary data. Another strength of the Hilbert-

Huang transform is its ability to resolve the intra-wave frequency modulation, while 

the wavelet can only describe the inter-wave frequency modulation. The analyzed 

signal ( )s t  does not illustrate this property. Huang demonstrates it clearly through 

some examples [29]. 
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3.3.4 Conclusion 

 

This relatively simple example has been used to try to underline the strength as well 

as weaknesses of the wavelet transform, the short-time Fourier transform and the 

Hilbert-Huang transform. A comparative table summarizes the advantages and 

shortcomings of these different time-frequency methods.  

Table 3.1: Strength and weaknesses of the STFT, the wavelet transform and the HHT 

 

The STFT seems to be limited compared to the wavelet and the HHT in the analysis 

of nonlinear and non-stationary signals. The wavelet transform has been the best 

available non-stationary data analysis before the introduction of the Hilbert-Huang 

transform. However, the analysis of the signal ( )s t  has proven that the HHT offers a 

better time and frequency resolutions than the wavelet transform and allows a better 

physical interpretation of the signal content. The Hilbert-Huang transform turns out to 

be a new revolutionary nonlinear and non-stationary signal data analysis method. 

STFT Wavelet Hilbert-Huang

Strength easy to implement basis functions obtained by shifting 
and scaling a particular function

high time-frequency resolution

uniform resolution generalized Fourier analysis with 
variable amplitudes and frequencies

analytic form for the result first local and adaptive method in 
frequency-time analysis

non-stationary data analysis can clearly define both inter- and 
intrawave frequency modulations

feature extraction robust nonlinear and non-stationary 
data analysis

feature extraction

Weakness piecewise stationarity of the 
data assumption not always 

justified

uniformly poor resolution end effects due to spline fitting and 
the Hilbert transform

time-frequency resolution 
limited by the Heisenberg 

principle

leakage generated by the limited 
length of the basic wavelet function

cannot separete signals with very 
close frequencies

non-adaptive nature non-adaptive nature no physical meaning of some IMFs

feature extraction impossible cannot resolve intrawave frequency 
modulation

no mathematical formulation

high-frequency range observation 
to define local events
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3.5 Summary 

 
The combination of the empirical mode decomposition and the associated Hilbert 

spectral analysis has proven to be versatile and robust in analysis of nonlinear and 

non-stationary data. Central to the present approach is the sifting process to produce 

the intrinsic modes that enables complicated data to be reduced into such a structure 

that the instantaneous frequencies are meaningful. The expansion in terms of IMF 

basis has the form of a generalized Fourier analysis with variable amplitudes and 

frequencies. The application of the Hilbert transform on the extracted IMFs allows 

the creation of an energy-time-frequency representation, the Hilbert-Huang spectrum, 

characterized by a high time and frequency resolutions. However some problems 

related to its implementation still exist and need attention. The spline fitting has 

overshoot and undershoot problems, the criteria in the sifting process needs to be 

selected judiciously and the end effects need more improvements. The EMD 

combined with the Hilbert spectral analysis has offered a powerful method for 

nonlinear and non-stationary data analysis. It is the first local and adaptive method in 

time-frequency analysis 
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Chapter 4 

EMD Metrics For Damage Detection 
 

From the previous chapters, the empirical mode decomposition with its associated 

Hilbert spectral analysis has shown promising results in the analysis of time-series 

data. This great potential could be applied to help the diagnosis and the prognosis of 

aerospace structures. The structural health monitoring aims at developing a damage 

identification method that provides complete damage information. Rytter [51] 

proposed a system of classification for damage-identification techniques, which 

defined four levels of damage identification. The presence of damage, its location, its 

size and the prediction of the remaining service life of the structure are the different 

hierarchical goals to reach for any damage detection scheme. A metric is the key tool 

to infer the size of the damage. From the measurement of a specific physical property 

of the structure (damping, stiffness, energy…), a metric will give the necessary 

information to quantify the severity of the damage. This chapter is therefore dedicated 

to the investigation of the Hilbert-Huang transform features that could be used to 

obtain robust and efficient metrics for damage detection in isotropic and composite 

structures.  

4.1 The Hilbert instantaneous phase 

Some researchers has recently suggested exploiting instantaneous phase features of 

the vibration signals combined with wave mechanics based concepts for damage 

detection [34,52]. Compared to the others time-frequency methods, the Hilbert 
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instantaneous phase is a unique feature that describes the traveling structural wave 

propagation. Pines and al. [34] have indeed proved the dependency of the phase on 

the structural parameters as stiffness, mass and damping. The Hilbert instantaneous 

phase turns therefore out to be an interesting feature to investigate in our quest for 

damage detection metrics. 

 

4.1.1 Description 

As seen in section 3.1.1, the Hilbert transform of a real-valued time-domain signal 

( )x t  is another real-valued time-domain signal, denoted by [ ( )]H x t , such that 

( ) ( ) [ ( )]z t x t iH x t= +  is an analytic signal, where 

1 ( )
[ ( )]

x u
H x t du

t uπ

∞

−∞

=
−∫  

We can define an envelope function ( )a t  describing the instantaneous amplitudes of 

the original signal ( )x t  and a phase function ( )tθ  describing the instantaneous phase 

of ( )x t  versus time using ( )( ) ( ) [ ( )] ( ) i tz t x t iH x t a t e θ= + = . These instantaneous 

parameters are hence defined as, 

2 2 1/ 2( ) [ ( ) [ ( )] ]a t x t H x t= +  and 
[ ( )]

( ) arctan
( )

H x t
t

x t
θ

 
=  

 
 

The instantaneous Hilbert phase is therefore defined for the real-valued time-domain 

signal ( )x t  in Equation (4.2). However, in the purpose of our research, the signal 

( )x t  is first processed through the empirical mode decomposition in order to get the 

intrinsic modes (IMFs), which admit well-behaved Hilbert transform. The signal ( )x t  

is thus decomposed into n empirical modes ( )ic t  and can be expressed as, 

(4.1) 

(4.2) 
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1

( ) ( )
n

i

i

x t c t
=

=∑  

The residue, which is a mean trend, has been left out on purpose. Then the Hilbert 

transform is applied to each IMF and produces the instantaneous phase as functions 

of time, 

[ ]( )
( ) arctan

( )

i

i

i

H c t
t

c t
θ

 
=  

 
 

The total instantaneous phase is the sum of the instantaneous phases corresponding to 

each IMF and is defined as, 

[ ]
1

( )
( ) arctan

( )

n
i

i i

H c t
t

c t
θ

=

 
=  

 
∑  

Because the intrinsic modes have been restricted to be symmetrically local with 

respect to the mean zero level, the phase can be considered to be local and to increase 

monotonically as a function of time. The instantaneous frequencies are derived in 

taking the derivative of the phase and hence need the continuity of this one. 

Computing the unwrapped phase instead preserves this continuity. The phase function 

is not restricted anymore to an interval of length 2π  and increases monotonically. An 

example of the unwrapped phase is given in Figure 4.1 along with its corresponding 

time-domain signal.  

 

The unwrapped instantaneous Hilbert phase has been therefore defined and needs 

now to be investigated as a potential damage detection tool.  

 

 

(4.3) 

(4.4) 

(4.5) 
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Figure 4.1: Hilbert phase example 

4.1.2 1D finite element simulation 

Before computing the phase for real undamaged and damaged data, a finite element 

model has been simulated in order to understand how the instantaneous phase can be 

used to detect damage in structures. A dynamic finite element model of a clamped-

free rod was created in order to simulate the 1D wave propagation. Damage was 

introduced by a loss of stiffness in an element and the excitation input was a sine 

burst signal. The simulation results are then processed through the EMD and the 

phases for the undamaged case and the damaged case are then computed and 

compared.  

 

4.1.2.1 Governing equation for a thin rod 
 
Let us review very quickly the governing equation of a rod and the basic wave 

propagation characteristics. Consider a straight rod as shown in the Figure 4.2 along 

with the free body diagram of a differential element. 
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Figure 4.2: Thin longitudinal rod 

 

Assuming that there is no body force, the equation of motion in the x  direction 

becomes: 

2

2

u
A dx A Adx

x t

σ
σ σ ρ

∂ ∂ 
− + + = 

∂ ∂ 
 

that reduces to 

2

2

u

x t

σ
ρ

∂ ∂
=

∂ ∂
 

We now assume that the material follows the Hooke’s law Eσ ε=  where E  is the 

Young’s modulus and ε  the axial strain. We obtain for a homogeneous rod ( E  and 

ρ  are constant) the following equation of motion, 

2 2

2 2

u u
E

x t
ρ

∂ ∂
=

∂ ∂
 

From the familiar wave equation 
2 2

2 2 2

0

1u u

x c t

∂ ∂
=

∂ ∂
, we deduct the wave propagation 

speed in a longitudinal thin rod, that is 0

E
c

ρ
= . 

σ dx
x

σ
σ

∂
+

∂

x u

dx

x  is to the cross section of the rod 
A   is the cross-sectional area 
u  is the longitudinal displacement 
σ  is the stress field 

(4.6) 

(4.7) 

(4.8) 

(4.9) 
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4.1.2.2 Finite element formulation 
 
We want to describe the wave propagation as a function of time in a rod. The most 

widely used formulation to determine the transient response of a structure is the finite 

element method where a structure is discretized into elements in which the potential 

and kinetic energies are formulated. Using variational mechanics, the variation of the 

difference between the kinetic and the potential energy gives rise to a second order 

differential equation which describes the structure’s dynamics, Mq Kq F+ =&& . Where 

M  and K  are the mass and stiffness matrices, F  is the applied force and q  is the 

vector of nodal degrees of freedom. The transient response is then obtained in 

replacing the time derivative in the equation of motion by finite difference 

approximations. 

 

A rod can only carry axial load. The basic finite element is shown in the Figure 4.3 

and is a two-node element that can be obtained from the exact solution for a rod with 

constant properties along its axis and pure nodal loading.  

 

 

 
Figure 4.3: Two-node element 

 

The element stiffness matrix and the element mass matrix are the well-known 

matrices 

1 1

1 1

EA
Ke

l

− 
=  − 

  and  
1 0

0 1
Me Alρ

 
=  

 
 

,EA l

1 1,u f 2 2,u f

1 2

(4.10) 
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The number of elements chosen turns out to be an important parameter in the wave 

propagation. To describe the wave propagation via the finite element model, the 

wavelength of the excitation signal has to be taken into account. A number of three 

elements per wavelength is a good approximation. For aluminum rod and an 

excitation burst at 10 kHz  frequency, the wave speed is given by 

5100 /
E

c m s
ρ

= ≅  and the wavelength is 0.5
c

m
f

λ = ≅ . From these calculations 

and in order to get clear signals, a long rod of 30m  with a mesh of 400 elements has 

been created as shown in the Figure 4.4. 

 

 

 

 
Figure 4.4: Meshing of the rod model 

 

After the assembly of the global stiffness and mass matrices, the equation of motion 

Mq Kq F+ =&&  becomes, 

401*401 401*401 401*1

1 0 1 1 0

0 2 0 1 2 1 0

( )0 2 ... 1 2 ... ...

... ... ... ... ... ... ...

... 1 ... 1 1

EA
Al q q f t

l
ρ

−     
     − −     
     + =−
     
     
          

&&  

Once the boundary conditions are applied and the forcing actuation is set, the 

transient analysis can start. The more general methods for transient analysis are based 

on replacing the time derivative in the equation of motion by finite difference 

… … 
F 

L = 30 m 

Mesh : 400 elements 

el #01  el #02  el #400  

(4.11) 
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approximations. The most widely used methods are implicit methods like the 

Newmark method. They lead to an incremental, time stepping algorithm. The 

transient vibration of a rod can be simulated to view its wave propagation properties. 

4.1.3 Simulation results 

 
First, we wish to analyze the response of an undamaged rod to a transient load. The 

problem will be that of a rod, fixed at 0x =  and subjected to a transient load ( )f t  at 

30x L m= = . The goal of the dynamic FEM simulation is to plot the variation of the 

displacement ( , )u x t with time for any x  along the rod. For the present study case, the 

transient load will be a sine burst at 10 kHz frequency applied at the tip and the 

displacement at 22.5x m=  will be evaluated as shown in the Figure 4.5. 

 
 
 
 
 
 
 
 

 

 

Figure 4.5: Forced vibrations model of a rod 

 
The wave-propagation solution of this kind of problem is very well known and can be 

found in Graff’s book [53]. Waves in a rod are non-dispersive. This means that their 

speed of propagation is constant, independent of frequency as seen in Equation (4.9). 

The mathematical resolution of the wave-propagation is therefore facilitated and the 

reflection from boundaries can be mathematically predicted. As shown in Graff’s 

F 

L = 30 m 

Sensor 
L’ = 22.5 m 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sine burst @ 10KHz 

Time (s) 

(a) Finite element model 

(a) Transient load 



 79 

book [53], we will have a displacement reversal at the fixed boundary. This statement 

can be verified by the result of the simulation as seen in Figure 4.6. 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 4.6: Response of an undamaged clamped-free rod to a transient load 

 
The sensor detects at first the traveling wave generated by the tip excitation. The 

reflection from the clamped boundary is identified later and is reversed as predicted 

by the wave propagation theory in a rod. The wave propagation in the undamaged rod 

is depicted in the Figure 4.6. 

Reflections of waves may occur at discontinuities other than a boundary condition. 

One way to simulate damage in a computational model is to create a discontinuity in 

cross-section, or material properties, or both, which is commonly referred to as an 

impedance change. A loss of stiffness in an element is hence introduced in the model, 

resulting in a damaged rod. The situation is shown in the Figure 4.7. 
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Two damaged models have been created to introduce a loss of stiffness in the element 

located at 7.5x m=  such that (i) 
2
und

dam

E
E =  for the first case and (ii) 

4
und

dam

E
E =  

for the second case. Both wave-propagation simulation results are plotted in the 

Figure 4.8. 

 

 

 

 

 

 

 

 
 

Figure 4.8: Response of a damaged clamped-free rod to a transient load 
 

The reflections from the damage and the edge are clearly visible. The amplitude of 

these reflections increases with an increase in loss of stiffness in the element. A larger 

damage releases more energy in the structure, implying a greater magnitude in the 

waveform reflection. 

 

A hamming window is applied in order to smooth the ends of the data to eliminate 

some aberrations and to allow a better spline interpolation in the EMD algorithm. 
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The empirical mode decomposition along with the Hilbert transform can now be 

applied to these signals and the phase computed. The result for the Hilbert phase of 

the undamaged case and the damaged case is represented in the Figure 4.9. 

 

 

 

 

 

 

 

Figure 4.9: Hilbert phase 

 

From this plot, we can conclude that the reflection from the damage is interpreted by 

a slope change in the Hilbert phase. Physically, any damage in a structure alters the 

speed at which the energy traverses the structure. Once the wave passed through the 

damage, the energy speed is no more affected and the Hilbert phase behaves in the 

same manner for both undamaged and damaged cases as depicted in the Figure 4.9. 

Furthermore, the slope change appears to be dependent on the size of the damage as 

seen in the Figure 4.9. The energy speed propagation would be therefore altered in a 

different way depending on the size of the damage. This implies that one can track 

increasing amount of damage as a function of phase. Thus, the Hilbert phase allows 

the size and location of damage to be determined. 
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Even if the simulation results are not perfect and could be improved by augmenting 

the meshing and discretizing the rod by more elements, the damages are clearly 

localized by the slope change of the Hilbert phase.  

 

4.2 The energy metric 

One of the main advantages of the Hilbert-Huang transform is to provide a high-

resolution energy time-frequency representation. The Hilbert spectrum is capable of 

describing with high precision the frequency content of any nonstationary and non-

linear signals. The different features embedded in the time-domain signal can 

therefore be highlighted and better understood. For these reasons, the energy time-

frequency plot provided by the HHT could be used to identify and assess structural 

damage. A Hilbert energy spectrum describing the wave energy density can be 

created and the severity of the damage inferred from the reflected energy. 

 

4.2.1 Wave and energy 

A wave can be described as a disturbance, which travels through a medium, 

transporting energy from one location (its source) to another location without 

transporting matter. Each individual particle of the medium is temporarily displaced 

and then returns to its original equilibrium position [54]. Consequently a wave is an 

energy transport phenomenon, which transports energy along a medium without 

transporting matter. The amount of energy carried by a wave is related to the 

amplitude of the wave. A high-energy wave is characterized by high amplitude; a low 

energy wave is characterized by low amplitude. 
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4.2.2 The Hilbert spectrum and the reflected energy 

As seen earlier, after applying the EMD and the Hilbert transform on the IMFs, a real 

signal ( )x t  can be expressed as ( )
1

( ) ( )*exp ( )
n

j j

j

x t a t i t dtω
=

=∑ ∫  where ( )ja t  are the 

instantaneous amplitudes and ( )j tω  are the corresponding instantaneous frequencies. 

Because both amplitude and frequency of each IMF is a function of time, they can 

define a three-dimensional space or ordered triplet [ , ( ), ( )]t t a tω . This space is 

generalized by means of a function of two variables ( , )H tω  to [ , ( ), ( , )]t t H tω ω , 

where ( ) ( ( ), )a t H t tω= . Therefore we obtain a three-dimensional plot, in which the 

amplitude can be contoured on the frequency-time plane. As mentioned previously, 

the amount of energy carried by a wave is related to its amplitude. This transported 

energy is directly proportional to the square of the amplitude of the wave. Thus, the 

squared values of amplitude can be substituted in the Hilbert spectrum to represent 

the energy density and to produce the Hilbert energy spectrum. The idea behind this 

is that any reflection from a damage can be quantitatively estimated through the 

energy transported by the reflected wave. It has been shown in the previous section 

that the amplitude of the reflection increases with the size of the damage. This 

increase in amplitude should be revealed locally in the energy-time-frequency 

representation. We can therefore expect to infer the size of the damage through the 

Hilbert energy spectrum. The next section illustrates the use of the energy density 

spectrum for detecting and evaluating damage. 
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4.2.3 The Hilbert-Huang spectrum as a damage detection parameter 

Let us apply the Hilbert-Huang transform to a progressively damaged structure and 

plot the corresponding Hilbert energy spectrum. The baseline signal and three 

different damage cases are plotted in the Figure 4.10.  

 

 

 

 

 

 

 
 
 

Figure 4.10: Baseline signals of a progressively damaged structure 
 
 
The reflection from the damage can clearly be seen in the time-domain signals. As the 

damage becomes bigger, the amplitude of the reflection increases as shown in the 

Figure 4.10. The values of the instantaneous amplitudes provided by the Hilbert 

transform of each IMF are squared and the energy density for each of these signals 

are plotted in the Figure 4.11. 
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Figure 4.11: Hilbert-Huang energy spectra 

 

These Hilbert energy spectra reflect the observations made for the time-domain 

signals. The damage is described by a frequency band well localized in time and the 

energy of the reflected waveform is quantified by the squared value of the amplitude. 

The plots clearly show a variation of the reflected energy with the amount of damage. 

Thus a damage index can be introduced in order to quantify the severity of the 

damage as a function of reflected energy,  
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where ( ),eH t f  is the energy density spectrum and ( )a t is the instantaneous 

amplitude. 

 

This damage index is applied to the red dashed window part of the spectrum, 

corresponding to the reflected waveform from the damage, and the result is displayed 

next to each spectrum. As expected, this damage index increases with the size of the 

damage and a trend could be interpolated to infer the increasing damage.  

The analysis of this damaged structure is facilitated by clear time-domain signals. The 

reflection from the damage is visible without any data pre-processing. In general, 

reflections from boundaries and other discontinuities will be difficult to identify. The 

empirical mode decomposition serves this purpose. The ability of the EMD to 

decompose any complicated data into a set of simple oscillatory functions would 

allow extracting embedded reflections.   

 

To summarize, the objective is first to extract signal structures embedded in the data. 

The empirical mode decomposition is therefore the fundamental key to reveal the 

damage signatures that may otherwise remain hidden. The next step is to create the 

Hilbert energy spectrum for both undamaged and damaged cases. At this point, the 

energy density representation accurately describes the wave propagation in the 

structure. The presence of damage can hence be inferred and an estimation of the size 

predicted through the amount of reflected energy.  
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The Hilbert-Huang spectrum can also be a useful tool to describe at the first sight the 

shape of a structure. The high-resolution time-frequency description of a signal’s 

content allows a better understanding of the physics hidden in the data. A simple 

experiment of an aluminum beam with a crack milled into it is significant. The depth 

of the crack is half the thickness of the beam and the acquisition of the data is done 

with a strain gage. The Hilbert spectra for the undamaged case and the damaged case 

are plotted in Figure 4.12. 

 

 

 

 

 

 

 

Figure 4.12: Hilbert-Huang spectra of an aluminum beam 
 

A quick look at the plots allows one to determine that the beam is damaged. The 

damage introduced into the beam creates additional harmonics in the amplitude 

spectrum of the strain energy that have not been present in the undamaged beam. This 

simple observation of the spectrum can be used for small parts of structure that cannot 

be fixed and that need to be replaced if damaged. 
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4.3 The phase shift metric 

The high frequency and energy definitions provided by the HHT are used in the 

previous section to locate and infer the size of a damage. Another interesting 

parameter to investigate is the high time resolution of the Hilbert-Huang spectrum. 

The time of flight is an important feature that is often used in damage detection 

schemes. The time of flight between the actuator and sensor in a structure is directly 

dependent on the wave propagation properties in the structure. 

The time resolution is therefore explored to obtain an accurate time of flight and 

consequently a precise position of the structural discontinuity. The track of increasing 

damage would be also possible as long as the initial size of the damage is known. 

4.3.1 Principle 

A wave propagates at a certain speed in a structure. The time difference between the 

initial sensing actuation and the reflection from a discontinuity gives the time needed 

for the wave to travel. The basic formula *length speed time=  locates the damage. 

When a wave encounters a damage, part of the incident wavefront is reflected back 

while the rest is transmitted through the damaged region. This reflection occurs at the 

beginning of the damage, which implies that a bigger damage would engender a 

sooner reflection than a smaller damage located at the same position. Hence, the 

times of flight would be different for damages with different sizes at the same 

location as shown in the Figure 4.13. Thus, if the time resolution of the HHT is 

powerful enough to perceive the small fluctuations of the different times of flight, an 

estimation of the severity of the damage would be possible.  
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Figure 4.13: Variations of the time of flight with the size of damage 

 

4.3.2 Application 

In order to demonstrate the ability of the Hilbert spectrum to accurately describe the 

wave temporal propagation, an energy-time plot for the progressively damaged 

structure of the previous section is created in the Figure 4.14. 

 

 

 

 

 

 

 

 
 

Figure 4.14: Energy-time spectrum of a progressively damaged structure 
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As we can see in the Figure 4.14, the amplitude peaks corresponding to the damages 

reflections are shifted in time. This is even more visible on the zoom plot of the 

reflections. From the different times of arrival, we can formulate a first qualitatively 

conclusion about the size of the damages. The damage corresponding to the arrival 

time 1t  turns out to be the biggest one, as the wave needs less time to travel from the 

sensor to the damage. Assuming that the size and the shape of the initial damage are 

known, simple geometric calculations would allow to estimate the growth of the 

damage from the time difference between the initial and the new reflections. The 

severity of the damage can be thus quantified through the arrival time of the reflection 

as long as the initial damage is identified. From the observation of the Figure 4.14, we 

can also notice that the amplitude of the reflections increases with the size of the 

damage, which makes sense with the previous theories.  

Hence, the importance of an accurate signal processing for obtaining the flight times 

cannot be over-emphasized. Accurate identification of localized events is required to 

determine the location of the damage, especially when complications due to the 

dispersive nature of waves in plates will exist.  

4.4 Summary 

The empirical mode decomposition and the Hilbert spectrum offer a lot of 

possibilities for damage detection. First of all, the Hilbert phase represents a unique 

feature describing the energy propagation in a structure. The Hilbert phase as a 

damage detection parameter seems to work pretty well for one-dimensional models 

with non-dispersive wave propagation. The presence of damage is interpreted by a 

slope change in the Hilbert phase plot, which corresponds to a modification of the 
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speed at which the energy traverses the structure. The finite element simulation as 

well as the civil building model analysis by Pines and Salvino [34] has shown 

promising results in the detection and evaluation of structural damage. Second of all, 

the energy metric relies on the high energy-time-frequency resolution of the Hilbert 

spectrum. This metric listens to the energy release in the structure upon defect 

growth. The amount of reflected energy is described and quantified with the Hilbert 

energy spectrum and an estimation of the severity of the damage can be deduced. 

Finally, a phase shift metric is developed based on the arrival times of reflected 

waves from damage. Depending on the size of the damage, the wave will need a 

certain time to travel. This time of flight can be exploited along with geometric 

considerations to determine the defect growth from the knowledge of the initial 

damage properties. 

Hence, the EMD along with the Hilbert transform seems to be the appropriate time-

frequency analysis method for health monitoring of structures. The ability of the 

empirical mode decomposition to extract embedded oscillation, to reveal hidden 

reflections in the data and to accurately describe the frequency content of a signal 

through the high-definition Hilbert spectrum make it an ideal tool for damage 

detection.  The different damage detection schemes developed in this chapter must 

now be investigated to two-dimensional isotropic and composite plate structures 

where the waves are dispersive and thus more complicated to describe. 
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Chapter 5 

Damage Detection In Isotropic Plates 
 

 

5.1 Introduction 

For thin plates, wave propagation is described using Lamb waves. Lamb waves are 

dispersive plate waves that occur for traction-free forces on both surface of the plate. 

In this chapter, a description of Lamb waves and their properties is discussed. The 

interaction of these waves with a damaged region changes the way the waves 

propagate. Part of the incident wavefront is reflected back while the rest is transmitted 

through the damaged region. The presence of the reflected waves indicates that 

damage is present in the structure. The generation of Lamb waves in the plate is 

carried out through the excitation of a piezoceramic actuator. This actuation element 

actively interrogates the plate and the response signals are gathered with a sensor 

array made from a piezoelectric sheet. Reflections from damage can then be extracted 

from sensor signals in an effort to locate a damage region. Damage in the form of 

holes in an isotropic plate is examined. The experimental setup used in this work was 

developed by Purekar for his doctoral research [39]. The energy and the phase shift 

metrics, described in Chapter 4, are applied on data sets obtained from exciting waves 

in isotropic plates. These techniques are used to show that the location of the hole can 

be determined as well as trends indicating that the size can be inferred. These damage 
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detection schemes are facilitated by the isotropic nature of the plate. The Lamb wave 

propagation is indeed well described in isotropic plate structures. 

5.2 Basic wave mechanics 

Before describing Lamb wave propagation in plates, fundamental notions on wave 

mechanics need to be recalled [53]. A propagating wave is characterized by a spatial 

frequency, k , as well as a temporal frequency, ω . The wavenumber is the spatial 

frequency of a wave. The distance between two successive points of constant phase is 

the wavelength and is defined from the corresponding wavenumber as 
2

k

π
λ = . A 

wave propagating in one direction is commonly described by ( )i kx t
e

ω± +
, the sign of the 

wavenumber indicating the direction of travel. The propagation velocity of the 

constant phase is 
pc

k

ω
= , defined as the phase speed. A group of waves 

corresponding to a band of frequencies will travel at a speed which may be different 

than the phase speed. This group speed happens to be the local slope of the 

frequency-wavenumber relationship and is defined as ( )gc
k

ω
ω

∂
=

∂
 for a group of 

waves centered around the frequency ω . The relationship between the wavenumber 

and the temporal frequency describes the way the waves propagate. If this relation is 

linear, then the phase speed is constant. The shape of the wave would be the same as 

the wave propagates through the structure. These types of waves are called non-

dispersive waves. However, when the wavenumber-frequency relationship is not 

linear, the frequency components of the wave signal will travel at different speeds and 

the wave form will not maintain its shape. These types of waves are called dispersive 
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and are much more complicated to study. The wavenumber turns out to be a crucial 

parameter in the wave propagation since it describes not only the spatial distribution 

of the wave but also leads to the wave propagation speed in a medium. The 

wavenumber-frequency relationships for a thin isotropic plate are shown to be [39]: 

transverse vibration: 4
m

k
D

ω=  

in-plane vibrations: 21k
E

ρ
ω υ= ± −  

where m  is the mass per area of the plate and D  the rigidity of the plate. The 

wavenumber-frequency relationship is therefore non linear in the case of transverse 

vibration of a thin plate and linear in the case of in-plane vibrations. These 

relationships hold for cases where the thickness of a plate is a lot smaller than the 

wavelength of the wave and assuming no shear deformation. A more general 

description of the wave propagation properties needs to take into account shear 

deformation and is given by the Lamb wave theory. 

 

5.3 Lamb wave propagation in isotropic plates 

5.3.1 Lamb wave for damage detection 

Guided waves are able to interact with defects in structures due to their propagation 

properties that are highly sensitive to any discontinuities in materials. The interaction 

of Lamb waves with defects on plates has been investigated best by Alleyne and 

Cawley [55]. Giurgiutiu, et. al. [56] conducted numerical and experimental studies of 

reflections of Lamb modes from cracks in an aluminum plate. A damage index based 

(5.1) 

(5.2) 
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on the scattering information of Lamb waves interactions with a crack was developed 

by Ihn and Chang [15]. Because Lamb waves travel long distances and can be applied 

with conformable PZT actuators, they are suitable for online structural health 

monitoring. Lamb waves are the most widely used guided ultrasonic waves for 

structural damage detection. 

5.3.2 Theory of Lamb wave propagation 

Lamb waves refer to elastic perturbations propagating in a solid plate with free 

boundaries and with a thickness of the order of a wavelength or so. These two-

dimensional propagating vibrations in a plate are described by mathematical 

equations formulated by Horace Lamb in 1917 [57]. There are two groups of 

propagation modes according to their displacement pattern, the symmetric waves and 

the anti-symmetric waves, that satisfy the wave equation and the boundary 

conditions. A graphical representation of these two groups of waves can be seen in 

Figure 5.1. For a given plate thickness d  and acoustic frequency f , there exists a 

finite number of propagation modes specified by their phase velocities. The velocities 

of these waves depend on the frequency and the thickness of the plate. A complete 

description of propagation characteristics for plates is normally given in the form of a 

set of dispersion curves, illustrating the plate-mode phase velocity as a function of the 

frequency-thickness product. Each curve represents a specific mode, which is 

conventionally called A0, S0, A1, S1, A2, S2, etc. where An denotes anti-symmetric 

modes and Sn symmetric modes.  
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Figure 5.1: Graphical representation of the symmetric and anti-symmetric waves 

 

The method of potential is the most common approach for solving the Lamb wave 

problem. Let us consider a thin plate bounded by two parallel planes a distance 2d  

apart as shown in the Figure 5.2.  

 

 

 

Figure 5.2: Geometry of the plate for Lamb wave propagation 

 

The equation of motion of the particle displacements can be given as (Achenbach 

[58]) 

, ,( )i jj j ji i iw w f wµ λ µ ρ ρ+ + + = &&  

where iw  are the displacements, if  are body forces, λ , µ  are Lame constants and ρ  

is the density. The boundary conditions for the surface tractions can be defined as  

i ij j
t S n=  where it  are traction forces, 

ij
S  are stresses and 

j
n  are cosine directions. 

Using the Helmholtz decomposition, the wave equations can be obtained from 

Equation (5.3) 

2d 
x 

y 

z Thin plate 

x 
2b 

y 
Symmetric Anti-symmetric 

S0 S1 S2 
A0 A1 A2 

(5.3) 
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2 2 2

2 2 2 2

1 3

2 2 2

2 2 2 2

1 3

1

1

L

T

x x c t

x x c t

φ φ φ

ψ ψ ψ

∂ ∂ ∂
+ =

∂ ∂ ∂

∂ ∂ ∂
+ =

∂ ∂ ∂

 

These wave equations govern the longitudinal and shear waves of plain strain.  φ   

and ψ  represent decomposed displacement variables, Lc  indicates the velocity of 

longitudinal wave whereas Tc  is the velocity of shear (transverse) waves. The actual 

longitudinal and transverse displacements of the plate can be obtained as 

1

1 3

2

3 1

w
x x

w
x x

φ ψ

φ ψ

∂ ∂
= +

∂ ∂

∂ ∂
= −

∂ ∂

 

respectively. The solutions of Equations (5.4), representing traveling waves in the 1x  

direction and standing waves in the 3x  direction can be assumed to be in the form 

given by 

3 1

3 1

( ) exp[ ( )]

( ) exp[ ( )]

x i kx t

x i kx t

φ ω

ψ ω

= Φ −

= Ψ −
 

where ω  is the frequency and k  is the wavenumber. Substituting Equations (5.6) into 

Equations (5.4) gives the unknown amplitude functions Φ  and Ψ  as  

3 1 3 2 3

3 1 3 2 3

( ) sin( ) cos( )

( ) sin( ) cos( )

x C px C px

x D qx D qx

Φ = +

Ψ = +
 

where 

2
2 2

2

L

p k
c

ω
= −  and 

2
2 2

2

T

q k
c

ω
= −  

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

longitudinal 

transverse 
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and 1C , 2C , 1D , 2D  are arbitrary constants. Since both field variables involve sine 

and cosine functions, which are odd and even respectively, the solutions are often 

split into two symmetric and anti-symmetric modes. The displacements for the 

symmetric modes are  

1 2 3 1 3

2 2 3 1 3

cos( ) cos( )

sin( ) sin( )

w ikC px qD qx

w pC px ikD qx

= +

= − −
 

whereas the solutions for the anti-symmetric modes can be given as 

1 1 3 2 3

2 1 3 2 3

sin( ) sin( )

cos( ) cos( )

w ikC px qD qx

w pC px ikD qx

= −

= −
 

These equations, referred as Rayleigh-Lamb equations for guided waves in plates, 

show that Lamb wave propagation is generally complex due to the coexistence of at 

least two modes at any given frequency and the strongly dispersive nature of these 

modes at high frequency. The traction-free boundary conditions for the plain strain 

need to be additionally applied in order to obtain the constants 1C , 2C , 1D , and 2D . 

This lead to Rayleigh-Lamb frequency relations known as dispersion equations 

2

2 2 2

tan( ) 4

tan( ) ( )

qh k pq

ph q k
= −

−
 for the symmetric modes 

2 2 2

2

tan( ) ( )

tan( ) 4

qh q k

ph k pq

−
= −  for the anti-symmetric modes 

where / 2h d= . The above equations can be solved numerically in order to predict 

velocities of a propagating Lamb wave of frequency f  in a plate of thickness d . The 

results are presented as a function of the fd  frequency-thickness product. Figure 5.3 

gives an example of the dispersion characteristics for an aluminum plate.  

 

(5.9) 

(5.10) 

(5.11) 

(5.12) 
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Figure 5.3: Lamb wave dispersion characteristics for an aluminum plate 

 

This figure clearly shows how many complex modes can propagate in the plate. 

Single S0 and A0 Lamb wave modes are possible only for small values of the 

frequency-thickness product (typically 2fd < ). 

5.3.3 Modes selection for damage detection 

As seen in the Figure 5.3, a different number of modes may propagate depending on 

the frequency-thickness values. In a practical application of Lamb waves, for 

simplicity of analysis, the frequency-thickness values are kept under the cut-off 

frequency of the A1 mode where there is only a fundamental symmetric mode S0 and a 

fundamental anti-symmetric mode A0. The anti-symmetric mode is widely used in 

detection of damage in composite structures due to its sensitivity to delamination 

damages [59]. The fundamental symmetric mode has been used to detect surface 
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crack growth in metallic structures [60] and is utilized in this study for hole detection 

in an aluminum plate 

 

5.4 Excitation and sensing of Lamb waves 

There are a variety of techniques for generating and receiving Lamb waves. 

Advanced methods employ laser sources for generation and optical fiber detectors for 

reception. The simplest methods use piezoelectric devices since they exhibit 

simultaneous actuator and sensor behavior. Piezoelectric transducers are the most 

widely used sensors for damage detection. Their low weight and volume makes them 

suitable for incorporation in autonomous systems. The two most widely used 

manufactured materials are lead zirconate titanate (PZT) and polyvinylidene fluoride 

(PVDF). The PZT is a ceramic and is quite brittle whereas the PVDF are very flexible 

polymer films, easy to handle. 

5.4.1 Constitutive equations 

Piezoelectric materials exhibit coupled mechanical, electrical and piezoelectric 

properties. The constitutive equations describing these materials can be given as  

t

E

T

S S T d E

D E dTε

= +

= +
 

where S  is the mechanical strain, E  is the electric field, T  is the mechanical stress, 

D  is the electrical displacement, d  is the piezoelectric coefficient and ε  is the 

permittivity. The subscripts E  and T  indicate that the quantities are under constant 

electrical and stress fields, respectively. Piezoelectric coefficients ijd  characterize 

(5.13) 
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either the strain produced by an applied electrical field or the charge density 

developed from the applied stress field and are defined as  

  
ij

strain charge
d

applied electric field applied stress
= =  

The subscript i indicates the direction of electric field or displacement, whereas the 

subscript j gives the direction of strain or stress. Typical properties of ceramic and 

polymer based piezoelectric materials are given in the Table 5.1. 

 

 

 

 

 

 
Table 5.1: Typical properties of piezoelectric materials 

 

5.4.2 PZT actuator 

From the Equation (5.13), an applied electric field will produce a mechanical 

deformation. This is the converse effect, illustrated graphically in the Figure 5.4.  

 

 

 

 

 

 

Figure 5.4 Direct and Inverse piezoelectric effects 
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When an electric field is applied in the direction normal to the PZT surface, surface 

strains are generated. Due to the coupling of the element to the structure, forces and 

moments are induced in the structure, generating elastic waves. A single piezoelectric 

element on a plate would produce both an in-plane loading and a bending moment. 

The actuation transducer used was a PZT-5H piezoceramic element and is shown in 

the Figure 5.5.  

 

Figure 5.5: PZT-5H piezoceramic element 

 

A single 3.2 mm x 3.2 mm (1/8 inch x 1/8 inch) element was directly mounted on the 

right edge of the top surface of the plate and used to interrogate it. 

5.4.3 PVDF sensor array 

From Equation (5.13), the resulting deformation in a material due to a mechanical 

force generates an electric field proportional to the magnitude of the deformation. 

This is the direct effect as seen in the Figure 5.4. When an elastic wave propagates 

through the structure, the strain and stresses induced generate a voltage on the 

piezoceramic element. One way to use the direct effect is to hold the electric field, E , 

constant. As a result, the electric displacement on the surface of an element is only a 

function of mechanical quantities. The electric displacement is obtained from 
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integrating over the area of the sensing element to get a charge representing a 

measure of the strain in the material: 

3
A

q D dA= ∫  

The use of an array of sensors offers a better robustness, reliability and confidence in 

the results. It will be shown later that it also allows a spatial filtering of the 

propagating and reflecting waves. A sensor array made from a 52 mµ  (.002 in.) thick 

PVDF piezoelectric sheet from Measurement Specialties, Inc. is used in the 

experimental damage setup. For this experiment, a sensor array, like the one shown in 

Figure 5.6, is composed of 19 elements with a spacing of 3.175 mm (1/8 in.) where 

each sensor has a diameter of 1.59 mm (1/16 in.).  

 

 

 

 
 

Figure 5.6: PVDF sensor array 
 

5.5 Experimental setup and results 

5.5.1 Equipment 

The set of experiments conducted in this thesis made use of tools and equipments 

commonly used in a laboratory. A signal conditioning circuitry has been created by 

Purekar [39] to obtain the PVDF sensor signals. A charge amplifier circuit with 

additional gain stages was created for this purpose. The Tektronix TDS420A digital 

(5.15) 
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oscilloscope (see Figure 5.7) was used to display the sensor signals and to store the 

data on a disk. The piezoceramic actuator was excited by a signal constructed and 

transferred to the Agilent 33220A function generator, shown in the Figure 5.7. This 

function generator could read the digital signal and output the corresponding analog 

signal to the power amplifier. The Piezo Systems, Inc. EPA-104 power amplifier was 

aimed to provide the necessary power for the excitation of the actuation element.  

                

 
 
 

Figure 5.7: Experimental equipment 
 
 

Figure 5.8 summarizes the damage detection configuration used in this thesis. 

 

 

 

 

 

 

 
Figure 5.8: Damage detection configuration 
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5.5.2 Damage detection setup 

A .060 inch thick aluminum plate was instrumented with a sensor array and the 

actuator described earlier. The plate was 26 inches long and 20 inches wide. A 1/8 

inch diameter hole was first drilled at a distance of 6 inch from the middle sensor. 

The size of the holes was progressively increased to reach a maximum size of  ½ 

inch. The plate is shown in Figure 5.9. 

 

 

 

 

 

 

 
Figure 5.9: Experimental setup 

 

A piezoceramic actuator was used to excite the structure with Lamb waves. The 

waves propagated outward, through the array, and reflected off of the hole. The 

sensor array was used to capture the transient signals associated with the incident and 

reflected wave energy. 

5.5.3 Transient analysis 

The excited transient signal made up of a windowed 5 cycles sine tone burst at 600 

kHz is shown in the Figure 5.10 along with its frequency spectrum. This signal is 

windowed in order to get a single wave traveling at the desired driving frequency. 
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Because the pulse has a finite duration, range of frequencies is excited rather than a 

single frequency and dispersion distorts the shape of the pulse as different frequency 

components travel at different velocities. A Dolph-Chebyshev window was used to 

prevent the generation of unwanted modes. The advantage of this windowed tine 

burst was the elimination of significant side lobes allowing for the attenuation of the 

spurious parasite modes.  

 

 

 

 

 

 

 
 

Figure 5.10 : Excitation signal sent to actuation element 
 

The waves created by the actuation element propagate outward and the signals at each 

sensor location are gathered. Each sensor signal is averaged 40 times before being 

saved on the disk. A sample of the saved transient signals is shown in Figure 5.11.  

The signals correspond to the S0 mode propagating in the plate gathered by sensors 

#01 and #19 of the array. The S0 mode was chosen because higher frequency waves 

are generally more appropriate for detecting small amounts of damage. As expected, 

the waves travel to the top and hit the lowest element first. The first wave corresponds 

to the S0 mode whereas the second wave corresponds to the wave reflecting off of the 

right and left edges of the plate.  
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Figure 5.11: Sample of the response signals 

 

5.6 Hilbert-Huang Transform analysis 

 

5.6.1 Empirical mode decomposition 

Once the response signals are gathered for all sensors, the processing of the data starts 

by the empirical mode decomposition and the sifting process to extract the intrinsic 

mode functions. The comparison between the undamaged and damaged transient 

signals of the middle sensor does not give any information about the presence or not 

of damage in the plate, as shown in the Figure 5.12.  

Both signals seem identical and the reflection from the hole is not visible. Thus, we 

cannot determine the status of the plate’s health from the transient signals. The 

empirical mode decomposition algorithm is applied on these signals and the resulting 

IMFs are plotted in the Figure 5.13 and 5.15. 
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Figure 5.12: Middle sensor responses 
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Figure 5.13: Empirical mode decomposition of the undamaged signal 
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The EMD extracted 9 IMFs for both undamaged and damaged cases. Because of the 

implementation problems of the algorithm detailed in Chapter 3, some IMFs may not 

have a physical meaning. In our study, only one part of the signal gathered by the 

sensor needs to be examined since all the damage information is contained between 

the right/left edges and the upper edge reflections. As a result, the meaningful 

component of the sensor signal must be extracted.  Indeed, the initial wavefront is an 

interference noise due to the conditioning circuitry whereas the rest of the signal is 

composed of multiple unwanted reflections. The signal included in the red box of the 

Figure 5.12 is therefore extracted and windowed with a Tukey window in order to get 

smooth ends for the spline-fitting step of the sifting process. An energy threshold 

value is proposed to retain the physical meaningful IMFs. If the energy carried by the 

IMF is less than a certain value, the corresponding IMF is not taken into account in 

the analysis. The energy of each IMF is therefore computed and plotted in the Figure 

5.14. 

 

 

 

 

 

 

 

 

Figure 5.14: Variation of IMFs energy 
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Figure 5.15: Empirical mode decomposition of the damaged signal 

 

For this precise case study, most of the wave propagation information is carried in the 

first 2 IMFs. A closer look at the first intrinsic mode leads to an interesting 

observation. A new wave appears only in the damaged IMF, corresponding to a 

discontinuity reflection in the plate. The presence of the hole is therefore detected in 

the first IMF, as seen in the Figure 5.16. 
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Figure 5.16: IMF #01 

 

The wave propagation characteristics along with the time of flight between the 

actuation and the damage reflection leads to an estimation of the damage distance. 

This position is determined using the group speed of the mode at the given frequency. 

The Lamb wave group velocity curves can be determined from the aluminum 

properties and the plate thickness (see Figure 5.17). 

 

 

 

 

 

 

 

 

Figure 5.17: Lamb wave group velocity characteristics for an aluminum plate 
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At a 600 kHz frequency, the S0 Lamb wave propagates at a speed 5200 m/sgc =  in a 

.060 inch thick aluminum plate. The time of flight between the actuation waveform 

and the reflection wave from the hole is determined through the IMF #1 plot in Figure 

5.16. The location of the damage can then be inferred, as shown in the Figure 5.18.  

 

 

 

 

 

 
Figure 5.18: Localization of the hole position 
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the increasing damage. The energy metric and the phase shift metric are tested to 

detect the damage growth in the plate. 

5.6.2 Hilbert-Huang spectrum and the Energy metric 

As outlined in the Chapter 4, the energy metric uses the high-resolution energy-time-

frequency representation provided by the Hilbert spectral analysis. Since, the energy 

metric relies on the Hilbert-Huang spectrum, a study of the three-dimensional images 

of both damaged and undamaged cases is carried out. The EMD associated with the 

Hilbert spectral analysis is therefore applied to the response signal of sensor #1. Only 

the first IMF is considered in this study since most energy is concentrated within the 

first mode. The damaged (hole size = 1/2 in.) and undamaged Hilbert-Huang 

spectrum are plotted in the Figure 5.19. 

 

 

 

 

 

 

 

 
Figure 5.19: Hilbert-Huang spectrum for the sensor #01 

 
 
The smoothed spectra have been privileged as a first qualitative approach.  The 

different frequency bands correspond to the S0 actuation wave, the reflection from 

the right and left edges and the reflection from the top edge, respectively. The 

(a) Undamaged spectrum (b) Damaged spectrum 
Time (ms)

n
o
rm

a
liz

e
d

 f
re

q
u
e
n
c
y

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

0.14

0.1

0.06

0.02

S0 actuation

Left/Right edges reflection

Top edge reflection

Hole reflection

Time (ms)

n
o
rm

a
l;
iz

e
d
 f

re
q
u
e
n

c
y

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

0.14

0.1

0.06

0.02

S0 actuation

Left/Right edges reflection

Top edge reflection



 114 

damaged spectrum also revealed the reflection from the hole. The propagation is 

entirely described through the time-frequency spectrum. The array can be used to 

infer the direction of propagation of the different waves present in the signal. The 

spectra for the response signals of sensor #19 are plotted in Figure 5.20 to confirm the 

wave propagation properties as well as the presence of the defect. 

 

 

 

 

 

 

 
 

 
Figure 5.20: Hilbert-Huang spectrum for the sensor #19 
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extracting the reflection from the damage and computing the energy release in the 

structure, displayed in the Hilbert-Huang energy spectrum. The energy metric has 

been defined in Chapter 4 as  

( ) 2, ( )
e

f t f t

E H t f a t= =∑∑ ∑∑  

where ( ),eH t f  is the energy density spectrum and ( )a t is the instantaneous 

amplitude. 

 

Four holes sizes are considered in this experiment, ranging from 1/8 in. to 1/2 in. The 

energy density spectrum of the reflection wave is plotted for each case in the Figure 

5.21 along with the corresponding energy computation. As expected, the energy 

metric increases as the damage increases. A linear interpolation of the energy release 

in the structure upon defect growth is created from the first 3 cases as a tool to predict 

the size of damage. This curve is then used for the last case corresponding to a 1/2 in. 

hole drilled in the plate in order to predict the size of this hole from the energy 

measurement. The linear fit is plotted in the Figure 5.22.  
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Figure 5.21: Energy density of the damage reflected frequency band  

 
 
The reflected energy for the 1/2 in. hole is given in the Figure 5.21. This value can be 

plugged in the prediction trend in order to obtain an estimation of the size of the 

corresponding hole. The energy value of 0.0254E =  leads to an approximate 

diameter of 0.56 in.φ = , which corresponds to a 12 % error. 

 

 

 

 

 

 

 

 

Figure 5.22: Linear prediction of the hole diameter from the reflected energy 
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The energy metric turned out to be able to detect the location of damage as well as to 

give an estimation of its size. However, a prediction trend corresponding to each type 

of damage must be defined beforehand to predict the size of a defect from the energy 

released in the structure. 

5.6.3 Energy-time spectrum and the Phase shift metric 

The importance of an accurate signal processing technique for obtaining the flight 

times cannot be over-stressed. In our study, accurate identification of localized events 

is required to determine the location of the damage in the plate precisely and to 

quantify the defect growth. The phase shift metric uses the time resolution of the 

Hilbert-Huang transform to extract accurate time of flight so as to track the increasing 

damage in a structure. The peaks on the energy-time spectrum for the IMF component 

containing the highest energy give the wave arrival times of interest. As seen earlier, 

the first IMF encloses the highest energy in the signal. The energy-time spectrum for 

the first IMF of the plate is plotted for each damage size for an actuation frequency of 

700 kHz, in the Figure 5.23. 

 

 

 

 

 

 

 

Figure 5.23: Energy spectrum and phase shift metric 
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A small time difference exists between the different reflections from the holes. The 

amplitude peaks corresponding to the damages reflections are shifted in time, 

indicating a change in the size of the damage. Some simple geometric considerations 

along with the Lamb wave group velocity can quantify the extent of the damage, as 

depicted in the Figure 5.24. The shape and the initial size of the damage are assumed 

to be known. 

 

 

 

 

 

 

Figure 5.24: Quantification of the damage size from the time of flight 
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crack-reflected waves provide a means for determining accurate flight times and also 

for estimating the severity of the damage. 

 

 

 

 

 

 

 
 
 
 

Figure 5.25: Time difference trend relating the actuation and the reflected waves 
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energy in the Hilbert Huang spectrum. As the damage size increases, the reflected 

energy increases and fits a linear curve. The prediction of a damage size was also 

possible, using the interpolation trend and the energy measurement. The other metric 

was the phase shift between the reflected signals from the holes. As the damage size 

increases, the time difference between the traveling waveforms and the reflecting 

waveform decreases. The smallest time of flight will correspond to the hole with the 

biggest diameter. The extent of the damage could also be quantified if the initial 

shape and size were known.  
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Chapter 6 

Damage detection in composite plates 

 

6.1 Introduction 

The high stiffness to weight ratio, low electromagnetic reflectance and the ability to 

embed sensors and actuators have made fiber-reinforced composites very attractive 

for primary aircraft structures. However, damage detection in composites is more 

difficult than in metallic structures due to the anisotropy of the material, the 

conductivity of the fibers, the insulating properties of the matrix, and the fact that 

much of the damage often occurs beneath the top surface of the laminate and is 

therefore not readily detectable. The Acousto-ultrasonic technique becomes therefore 

more complicated for composite structures due to the anisotropic nature of the 

material. The wave propagations dynamics is now dependent of the layup of the 

laminate. The dispersion curves are not anymore described by the Equations (5.11) 

and (5.12). Purekar [39] used a finite element approach to model the wave 

propagation dynamics and to obtain the dispersion relations. The CLPT theory also 

provides the wavenumber-frequency relationships for both transverse and in-plane 

vibrations. These results will be used to apply an acousto-ultrasonic approach for 

damage detection in composite plate structures experimentally. The most common 

encountered defects in composite structures are delaminations and impact damage. 

Delamination can produce catastrophic failure due to loss of interlaminar shear 

carrying capability whereas impact damage causes significant loss on the 
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compression static strength. A set of experiments, involving cross plies laminates, is 

conducted in this research in order to simulate these types of damage. A low-velocity 

impact experiment is realized with a pendulum mechanism to reproduce a real world 

situation. The acousto-ultrasonics approach along with the HHT data processing tool 

for damage detection looks for changes in the wave propagation characteristics due to 

defects in the structure. In this study, the low frequency A0 mode is used in the 

composite laminate to determine the presence of delaminations and impact damage. 

The data are post-processed with the HHT in a damage detection and quantification 

purpose. On the contrary of the isotropic study where a single sensor was used, the 

array is exploited to spatially filter sensor signals to extract reflections from damage. 

The Hilbert-Huang transform analysis shows promising results for damage detection 

in composite plate structures.  

 

6.2 Wave propagation in composite laminates 

6.2.1 Low-frequency wave propagation 

At low frequency, the common way to model the wave propagation is to use the 

Classical Laminated Plate Theory (CLPT). By use of this theory, the stiffness 

properties of a structural laminate can be determined from the basic building block, 

the lamina.  
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Figure 6.1: Laminate configuration 

 

First, the stress-strain behavior of an individual lamina is expressed for the kth ply of a 

laminate [61] by  

{ } { }[ ]kk k
Qσ ε=  

where Q  are the transformed reduced stiffnesses, defined in terms of the engineering 

constants. Then, the variations of stress and strain through the thickness of the 

laminate are determined in order to define the extensional and bending stiffnesses of 

the laminate. Assuming linear displacement distributions through the thickness of the 

laminate, the strains are  
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0u  and 0v  are constant in-plane displacements and the derivative of the in plane 

displacements are expressed by 0,xu and 0, yv . The second derivative of the transverse 

displacement ,xxw  and , yyw  express the middle curvature of the middle surface.  

The resultant forces and moments acting on a laminate are obtained by integration of 

the stresses in each layer through the laminate thickness 
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Substituting Equations (6.1) and (6.2) in (6.3), the force-strain curvature and moment-

strain curvature relations can be expressed in a matrix form 
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The configuration and the geometry of the plate are shown in the Figure 6.1. The 

matrices A, B, D are therefore dependent on the stacking sequences of the plies. Thus, 

the choice of the layup will change the properties of a laminate, constructed with the 

same ply material.  

For dynamic problems, the governing equations of motion are shown to be [39]:  
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In our present research, the composite plate was constructed of IM7/8552 with a 

layup of [90/0/0/90]s. A laminate of multiple orthotropic layers that are 

symmetrically arranged about the middle surface exhibits no coupling between 

(6.3) 

(6.4) 

(6.5) 

(6.6) 
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bending and extension; that is the B matrix is zero. The extensional stiffness matrix, 

A, and the bending stiffness matrix, D, take also a simpler form: 

11 12

12 22
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By introducing these simplified matrices in Equation (6.5) and (6.6), the governing 

equations of motion for transverse and in-plane wave propagation become: 
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A wave traveling solution in the x and y directions can be assumed and the 

wavenumber-frequency relationship can be deduced from the Equations (6.8) and 

(6.9): 
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The wavenumber-frequency relationships for both transverse and in-plane wave 

propagation have the same form than for the isotropic cases. However, these relations 

suggest that the wave propagation will depend on the stacking sequence and on the 

fiber direction. The wave group speed will therefore differ for each layup and for 

(6.7) 
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(6.9) 

(6.10) 

(6.11) 
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each direction of travel. The CLPT theory is able to represent the low frequency 

dynamic of laminates. Nevertheless, this model is not valid at high frequencies since 

the assumption of no shear deformation is not verified anymore. A new model must 

be conceived to take in to account the shear deformation to predict the Lamb wave 

propagation at high frequencies. 

6.2.2 High-frequency wave propagation 

The finite element model constructed by Purekar [39] includes the shear deformation 

and hence can predict more accurately the Lamb wave propagation than the simple 

CLPT model. The wavenumber-frequency plots of the CLPT and FEM models are 

represented in the Figure 6.2 for the symmetric orthotropic laminate [90/0/0/90]s.  

As seen in the previous Chapter, the knowledge of the Lamb wave group velocity in 

the material is indispensable to determine the location as well as the extent of 

damage. The group speeds, based on the CLPT and the FE model, are determined 

from the local slope of the wavenumber-frequency curves. 
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Figure 6.2: Wavenumber-frequency relationships for the [90/0/090]6s layup 

6.2.3 Wavenumber filtering 

Sensor arrays can be used as wavenumber filters in much the same way as temporal 

filters act on frequencies [40]. The wavenumber filtering technique is able to 

eliminate unwanted information using the set of sensor responses. The transient 

signals of each sensor are weighted by a gain function and consolidated together to 

form the sensor array signal, given by 
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where ( )ixφ is the gain applied to the sensor located  at ix .  The different weights 

applied to the group of sensors determine the filtering properties of the array 

response. As a result, a wave arriving from a specific direction can be isolated by an 

appropriate choice of gains. At each temporal frequency corresponds a spatial 
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direction that the wave propagates and the angle that the wave travels relative to the 

array axis. The sign of the wavenumber corresponds to the direction of the wave 

propagation.  For a sensor array oriented along the x-axis, a negative wavenumber 

corresponds to a rightward propagating wave. In the wavenumber domain, the 

leftward propagating waves occupy the right side of the axis (positive k) whereas the 

rightward propagating waves occupy the left side of the axis (negative k). The 

directional filter is able to separate the data and to solely give either the leftward 

propagating waves or the rightward propagating waves. The principle is the same as 

for a band-pass filter where only a band of frequencies is passed through. The choice 

of the weighting functions to obtain the leftward propagating waves is shown in the 

Figure 6.3. The array output, ( )tψ , can be expressed in the wavenumber domain 

using the Fourier transform.  

 

 

 

 

 

Figure 6.3: Weighting functions for the leftward filtering 

 

The wavenumber filter would be composed of an even and an odd function in the 
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Figure 6.4: Ideal filter 
 
 

The spatial weighting function corresponding to this ideal filter is: 

 

 

 

 

where k  is the desired wavenumber to be passed through the filter. The discrete 

nature of the array limits the usable wavenumber to a maximum wavenumber 

analogous to the Nyquist frequency in temporal sampling. The finite number of 

sensors also implies that a band of wavenumbers will be filtered instead of one 

specific wavenumber. The capabilities of a discrete finite sensor array can be 

improved with the use of windowing functions along with the spatial weighting. 

This filtering technique will be used along with the HHT to look at a specific 

direction and hence to infer the presence of delaminations and impact damage in 

composite plate structures. 

 

6.3 Composite plate manufacturing 

The construction of the laminate in the present study uses the carbon fiber pre-preg 
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unidirectional carbon fibers (IM7) impregnated in an epoxy resin (8552) with a 

nominal volume fraction of 57%. The properties of the material are presented in the 

Table 6.1. 

 

 

Table 6.1: IM7/8552 material properties 

The composite plate was manufactured using a hand lay-up technique. Appropriate 

plies were cut out and laid up as a [90/0/0/90]8s laminate. The geometric 

configuration of the plies is shown in the Figure 6.5.  

 

 

 

 

 

 

 

 

Figure 6.5: Layup geometric configuration 

 

After being vacuum bagged to eliminate air gaps, the layup was ready for curing in 

the autoclave. The curing cycle for curing in one cycle the composite laminate is 

shown in the Figure 6.6. The resulting laminate was then cut into the plate of 

dimensions 35 by 24 in. 
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Figure 6.6: Temperature and pressure profile of the curing process 

 

6.4 Delaminations detection and characterization 

Delaminations arise in composite structures due to a variety of reasons. Defects in the 

manufacturing process, debonding or even impact damage can cause a delamination 

between the plies of the composite structures. Though not visible to the naked eye, a 

delamination leads to a loss in structural stiffness and strength and may conduct to 

catastrophic failure. Various attempts have been made recently to detect and 

characterize delamination growth in composite laminates.  

6.4.1 Experimental setup 

An experimental setup to examine delamination damage detection is shown in Figure 

6.7. This experiment was conducted by Dr. Purekar for his research work [39]. A 6 

plies orthotropic and symmetric composite plate was instrumented with a PVDF 

sensor array and a piezoceramic actuator. The plate was 35 inch long and 24 inch 

wide. A 1/8 in. × 1/8 in. PZT-5H patch actuator was bonded to the surface of the 
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laminate at the left edge and used to excite the structure with interrogating A0 waves. 

The actuation element creates a moment on the plate. This moment loading produces 

bending waves which are used for the damage detection. A sensor array was bonded 

in the middle of the plate. The array contained 19 circular sensor elements with a 

diameter of 1/16 in. and a spacing of 1/8 in. A tone burst signal of a given frequency 

and number of cycles was used to excite the actuator and the resulting transient 

responses were observed and recorded at each sensor locations of the array. The 

reproduction of a delamination damage was created by introducing a circular layer of 

Teflon between a 90° and a 0° ply in the middle of the plate. Two sizes of 

delamination were examined with Teflon patches of 1 in. and 2 in. diameters.  

 

 

 

 

 

 

 

Figure 6.7: Experimental setup 

 6.4.2 Transient analysis 

The plate was excited with a 7 cycles tone burst at a 80 kHz frequency. The middle 

sensor response shows no significant difference between the responses of the 

undamaged and delaminated plates, as shown in the Figure 6.8. 
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When the A0 lamb wave mode is excited, it propagates away from its origin. The 

energy will spread out in both space and time. Owing to dispersion and interaction 

with the damage, the measured signal will be a combination of the scaled and shifted 

versions of the excitation waveform as depicted in the Figure 6.8. An interference 

wavefront at .05 ms�  is still present in the signal and will be filtered out. The 

incident waves from the actuation element are located at .35 ms�  for each case 

whereas the reflections from the top and bottom edges arrive at .55 ms� . A 

reflection waveform from the delamination should be comprised between the 

bottom/top edges reflections and the right edge reflection wave. A close observation 

of the transient signals does not point to the presence of damage in the structure 

despite slight differences. The reflection from the delamination in the damaged plates 

must be weak and is probably drowned out by the boundaries reflections. The 

empirical mode decomposition might be able to reveal these feeble reflections from 

delaminations if they exist in the transient signals. 

 

 

 

 

 

 

 

 

Figure 6.8: Middle sensor responses 
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6.4.3 Empirical mode decomposition 

The EMD algorithm is applied to the undamaged plate and the delaminated plates. 

The results of the decomposition are given in the Figure 6.9, 6.10 and 6.11. The 

sifting process extracts one more IMF in the case of the undamaged plates than in the 

damaged plate. Even if the transient signals look the same, the EMD clearly detects a 

difference between the undamaged and the damaged cases. The deep inspection of the 

second IMFs shows an extra reflection in the delaminated decompositions. This 

reflection turns out to be very weak as expected and could correspond to the 

delamination reflection as shown in the Figure 6.12.  
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Figure 6.9: Empirical mode decomposition of the undamaged signal 
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The sifting process therefore extracts a new waveform in the second intrinsic mode. 

The amplitude of this reflection increases with the size of the delamination, which 

confirms the connection with the delamination. 

The distance between the array and the delamination location can be determined 

based on the time interval between the incident propagating wave and the identified 

reflected wave from the delamination in the IMF #2. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 6.10: Empirical mode decomposition of the delaminated signal – 1 in. 
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reflections are localized at 0.66 ms� , which gives a time interval of 0.31 mst∆ = . 

With a group velocity of 1500 m/s , the delamination is estimated at 9.15 in., which is 

far from the exact solution of 8 in. The empirical mode decomposition cannot predict 

precisely the presence of the delamination from the hidden reflections revealed by the 

sifting process. The 15 % error on the location estimation suggests that weak 

reflections embedded in large reflections are hard to accurately extract in the time 

domain. However, the sifting process has shown again its capability to extract signal 

features.  
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Figure 6.11: Empirical mode decomposition of the delaminated signal – 2 in. 
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Figure 6.12: IMF #02 

6.4.4 Directional filtering 

The wavenumber filtering can be applied prior to the data processing with the EMD 
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cycles tone burst at 60 kHz. The middle sensor responses are shown in the Figure 
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2. The leftward propagating signals show a reflection in the delaminated 

plate cases at 0.6 ms� that is not present in the undamaged case. 

3. The reflection from the right edge of the plate is seen at 1.2 ms� . 

4. The reflections from the delaminations and the right edge are still weak in 

magnitude. Noise and interference corrupt these reflections and make their 

readability difficult. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13: Directionally filtered response for 60 kHz excitation 
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approximation of the location of the delamination is also possible using the time of 

flight and the group velocity. This method gives approximately the same results as 

those in the previous section and will not be privileged to infer the delamination 

position. 

6.4.5 Hilbert-Huang spectrum and the energy metric 

The EMD associated with the Hilbert spectral analysis might clear up the leftward 

propagating signals to only display the reflection from the delamination. The Hilbert-

Huang spectra for undamaged and damaged cases are plotted in Figure 6.14 in order 

to be analyzed in a damage identification purpose. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14: Hilbert-Huang spectra 
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The HHS is capable to localize the reflections from both delaminations in the 

leftward propagating waves. The reflections produced carry enough energy to be 

extracted in the energy-time-frequency representations. The right edge reflection is 

not visible for the delaminated plate #2. The energy released by the delamination 

makes the right edge reflection too weak to be represented. The computation of the 

energy density measurement of the reflected energy bands from the delamination are 

summarized in the Table 6.2: 

 

 

 

 

  

Table 6.2: Energy density measurement of the reflected frequency band – 

Delamination experiment 

 

The size of the delamination can therefore be inferred through the reflected energy 

released in the structure. This energy increases upon the defect growth. An 

interpolation trend to predict the extent of the damage would not be relevant since 

only two sizes of delamination were experimented. The Hilbert-Huang spectrum 

allows a better interpretation of the propagation in a composite plate with seeded 

delaminations. The quantification of the delamination extent is possible through the 

reflected energy. 
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6.4.6 The Hilbert phase 

As described in the Chapter 4, the Hilbert phase is an interesting feature to investigate 

for damage detection purposes. The Hilbert phase is based on the instantaneous phase 

functions issued by the Hilbert transform of IMFs. The total instantaneous phase is 

the sum of the instantaneous phases corresponding to each IMF and is defined as, 
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Because of the IMFs properties, the Hilbert phase monotonically increases as a 

function of time. The EMD is first applied to the transient middle sensor signal, 

gathered by the sensor array. The actuation frequency considered for this study is set 

at 40 kHz. The Hilbert phases are then computed for the unfiltered set of data and 

plotted in the Figure 6.15. 
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The Hilbert phases turn out to have the same behavior for both undamaged and 

delaminated cases. The presence of damage through the Hilbert phase appears as a 

slope change. In this case, the Hilbert phase does not detect any slope change and 

consequently cannot infer the presence of the delamination in the structure. The same 

analysis on the filtered set of data leads to the Hilbert phases in the Figure 6.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.16: Hilbert phase of the directionally filtered set of data 
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delamination, the slope of the damaged phase behaves as the undamaged slope. The 

speed at which energy traverses the structure is altered by the delamination and is 

reflected as a slope deviation in the Hilbert phase. The sudden change of the energy 

propagation therefore allows the localization of the delamination in the composite 

plate. The next problem is to investigate if the Hilbert phase is able to track the 

increasing delamination in the structure. In this purpose, the Hilbert phase of the 

undamaged plate and the two delaminated plates are compared in the Figure 6.17. 

 

 

 

 

 

 

 

 

Figure 6.17: Hilbert phase  
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region it transmits through the entrance of the delamination with little reflection. The 

transmitted wave splits into two independent waves which propagate at slower speeds 

then the incident wave. The Hilbert phase is not only able to detect the presence of 

the delamination but also to quantify its size. A mean phase error is proposed to 

evaluate the extent of the delamination and is defined as: 
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where damθ  represents the damaged phase and undθ  the undamaged phase. The results 

of the damaged index are shown in the Figure 6.18 and the interpolation trend based 

on the mean phase error seems to follow a parabolic curve. The estimation of the 

delamination size is therefore theoretically possible. 

 

 

 

 

 

 

 

 

Figure 6.18: Mean phase error interpolation fit 

 

The Hilbert phase turns out to be the best technique among the developed damage 

detection schemes for delamination detection in composite plate structures. The 

Phase metric 

0 
0.05 
0.1 

0.15 
0.2 

0.25 
0.3 

0.35 

0 0.5 1 1.5 2 2.5 
Delamination (inch) 

E
 

(6.16) 



 145 

Hilbert phase is able to accurately detect and quantify the presence and the extent of 

the seeded delaminations in the composite plates.  

 

6.5 Mass loading 

A common way to simulate defect interactions with the wave propagation is to locally 

modify the mass of the structure. Artificial damage can therefore be introduced, 

causing local loading. This damage simulation method allows to not physically 

damage the plate and makes it reusable for other experiments. Different sizes of 

damage can also be tested without having to manufacture other plates. A non-axis 

damage detection scheme could also be investigated since all the experiments so far 

were considering defects aligned with the sensor axis. 

6.5.1 Experimental setup 

A new experiment was set up and conducted with a 8 plies composite plate [0/90]s, 

the setup of which is shown in the Figure 6.19. The plate was instrumented with a 

piezoceramic actuator and a PVDF sensor array. A 1/4 in. × 1/4 in. PZT-5H patch 

actuator was bonded to the surface of the laminate at the left edge and used to excite 

the structure with interrogating A0 waves. A sensor array was bonded at a distance of 

12 in. from the actuation element. The array contained 19 circular sensor elements 

with a diameter of 1/8 in. and a spacing of 1/4 in. Such array with bigger sensors than 

the previous experiment allows stronger response signals but a lower cut-off 

frequency. However, this experiment looks at the A0 actuation mode, which means 

low-frequency excitations. The plate was 35 inch long and 24 inch wide. A tone burst 
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signal of a maximum frequency of 60 kHz and 5 cycles was used to interrogate the 

plate and the resulting transient responses were observed and saved for each sensor of 

the array. Artificial damages were introduced in the form of bonded circular 

aluminum masses, causing local mass addition. These masses were glued on a plate 

and removed applying shear forces. Three different sizes of mass were tested as 

shown in the Figure 6.19. 

 

 

 

 

 

 

  

Figure 6.19: Experimental setup 
 

6.5.2 Damage along the array axis 

6.5.2.1 Transient analysis 

The first configuration experimented is the one depicted in the Figure 6.19. The 

damage is located on the same axis as the array in order to get the reflection back 

from the mass.  The set of data is gathered for an actuation frequency of 40 kHz. The 

sensor #6 response is shown in Figure 6.20 for the undamaged case and the three 

damaged cases. The A0 mode actuation wave is located at .3 ms�  whereas the 

reflections from the top and bottom edges arrive at .6 ms� . The reflection from the 

right edge can also be seen at 1.0 ms� .  
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Figure 6.20: Sensor #06 response signals 

 

 

 

 

 

 

 
 
 

Figure 6.21: Reflections from the damage 
 

If a reflection from the artificial damage is present in the signal, it should be visible 

between the top/bottom edge reflection and the right edge reflection. As seen in the 

Figure 6.20, waveforms corresponding to the damage reflections appear at 0.8 ms� . 

The magnitude of these reflections increases with the size of the mass as shown in the 

Figure 6.21. The observation of the transient signals therefore indicates the presence 

of a discontinuity in the structure. The reflections from the masses are big enough to 
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be revealed in the transient signals. Larger sensor elements enable stronger response 

signals and thus a better distinction of the waveforms from the noise present in the 

signals. 

 

6.5.2.2 Hilbert-Huang spectrum and Energy metric 

The intrinsic mode functions provided by the EMD are not analyzed for this case 

study since the reflections from the damages are perfectly visible on the transient 

signal. The Hilbert-Huang spectra are plotted in the Figure 6.22 in order to quantify 

the amount of damage from the reflected energy bands.  

 

 

 

 

 

 

 

Figure 6.22: Hilbert-Huang spectra 
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exact time of flight. The reflected energy band metric can now be applied to quantify 

the masses size.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.23: Energy density measurement of the reflected frequency band 

 

The energy released by the wave upon the damage growth increases with the size of 

the masses. These results are similar than for the isotropic plate with holes drilled in 

the structure. The energy increases linearly with the diameter of the masses as shown 

by the interpolation trend in the Figure 6.24. The prediction of the damage size from 

the released energy is therefore possible with the linear fit.  
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Figure 6.24: Prediction trend of the damage size  

 

6.5.2.3 Energy-time spectrum and the Phase shift metric 

The importance of the determination of the time interval between the actuation wave 

and the reflection waveform has been over-emphasized in the previous experiments. 

The best method to obtain the time of flight is to look at the energy peaks on the 

energy-time spectrum for the IMF component containing the highest energy. Thus, 

the energy-time spectrum for the first IMF is plotted in the Figure 6.25. 
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From the time of flight and the A0 group wave velocity, the location of the damage 

can be inferred. However, the A0 group velocity is unknown for this new plate since 

the plate thickness is different. The wavenumber-frequency curves need to be 

reconstructed for the A0 mode along the 0° and the 90° fiber directions. The CLPT 

theory is retained to compute the wavenumber-frequency relationships since it has 

shown good correlation with the FEM model of Purekar [39] until the 40 kHz 

frequency. Above this frequency, the CLPT predictions are not accurate enough and 

the shear deformation must be taken into account. As demonstrated in the Section 

6.2.1, the wavenumber-frequency relationship for the A0 bending mode is given by 

the CLPT theory and defined as 
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symmetric laminate [90/0/0/90]8s. The different 11Q , 22Q and kz  are deducted from 

the material property given in Table 6.1 and from the layup configuration. The mass 

of the plate is determined from the material density and the volume of the plate. Once 

the bending stiffness coefficients and the mass are computed, the wavenumber-

frequency curves are plotted as shown in the Figure 6.26. From this curve, the phase 

speed can be easily deducted from the relation 
pc

k

ω
=  and for the A0 mode 2g pc c= . 

Once the group velocity is determined, the location can be inferred. For the present 

(6.17) 
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case, the estimation of the distance between the sensor #6 and the damage is 10.47 

in.; the exact solution being equal to 10 in. 

  

 

  

 

 

 

 
 

Figure 6.26: Wavenumber-frequency relationships for the [90/0/090]8s layup 
 

The quantification of the increasing damage is also possible using the same approach 

developed for the damage detection in isotropic plates. Assuming the knowledge of 

the size and shape of the initial damage, the formula 

g

TOF 2 - TOF 1
D2 = c D1

2

 
× + 
 

 gives the diameter of the new extent damage.  

 

6.5.2.4 The Hilbert phase 

The Hilbert phase has shown promising results for the detection of seeded 

delamination in composite plates. The use of this technique for this experiment is thus 

investigated. The phases for the undamaged and damaged cases are plotted in the 

Figure 6.27. 
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Figure 6.27: Hilbert phase 

 

The results are less convincing than for the delamination experiment. Though a slope 

change is discernible, the presence of the damage is not obvious. The undamaged and 

damaged phases are really close even if a slope change occurs at 1. ms� indicating 

the presence of damage. Such behavior can be explained by some reasons. First of all, 

the Hilbert phase is a very sensitive parameter. As proved by Salvino and Pines [34], 

the phase value varies with the structural parameters as mass, damping, stiffness. A 

slight change in one of these parameters will influence the phase behavior. Second of 

all, the type of windowing applied to the transient signals before the EMD analysis 

also affects the phase through the spline fitting. Third of all, the bonding of the mass 

on the plate is not perfect. The masses were mounted on the plate with M-Coat and 

then demounted. This operation was realized three times. Despite the efforts put to 

clean the plate after demounting a mass, some imperfections may have modified the 

wave propagation within the damage.  The results of the mean phase error 

computation are given in the Table 6.3. 
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Table 6.3: Mean phase error results 

 

Although the slope change is barely visible, the mean phase error metric increases 

with the size of the damage. The Hilbert phase is still able to locate and quantify 

damage in composite plate. However, the energy and phase shift metrics turned out to 

be more efficient for this experiment.  

6.5.2 Non-axis damage detection 

The different damage detection schemes have been applied with success to defects 

oriented along the array axis. This simple configuration allowed a direct interpretation 

of the gathered transient signals since the reflection from damage could be seen. A 

damage positioned at a certain angle with respect to the array axis is more difficult to 

locate. The same type of experiment than in the previous section is conducted. In this 

case, the mass is placed at 45° with respect to the array axis as shown in the Figure 

6.28. 
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The transient signals obtained for this setup configuration are given in the Figure 

6.29. 

 

 

 

 

 

 

 

Figure 6.29: Middle sensor responses 

 

The time-domain signals show no significant qualitative difference between the 

responses of the undamaged and damaged plates. The reflection from the artificial 

damage is not visible anymore. However the reflection from the top/bottom edge 

looks greater and longer in time for the damaged case as seen in the Figure 6.29. This 

observation leads to the assumption that the reflection from the damage and the 

reflection from the top/bottom edges might be superimposed. The empirical mode 

decomposition could confirm this supposition. The first two extracted IMFs are 

shown in the Figure 6.30. The comparison of the first IMFs does not bring any 

information for a damage detection purpose since it roughly corresponds to the 

original signal without noise. The second damaged IMF is more explicit with the 

presence of a new reflection that does not occur for the undamaged case. This 
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waveform turns out to have the same shape and number of cycles than the excitation 

signal. 

  

 

 

 

 

 

 

Figure 6.30: Extraction of the first two IMFs 

 

Owing to dispersion and interaction with the damage, the measured signal is a 

combination of the scaled and shifted versions of the excitation waveform. As a 

result, the initial assumption is confirmed and the reflection from the damage was 

embedded in the top/bottom edges reflection. The different time scales allow the 

empirical mode decomposition to make the distinction between both reflections. In 

fact, the decomposition is based on the direct extraction of the energy associated with 

various intrinsic time scales. The reflection from the damage is therefore located in 

the second mode of the decomposition. The Hilbert-Huang spectra give a better 

description of the wave propagation and reflection in the plate as shown in the Figure 

6.31. 
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Figure 6.31: Hilbert-Huang energy spectra 

 

The Hilbert spectrum of the damaged signal shows the summation of the different 

reflections between 0.6 and 0.8 ms as assumed. The presence of the damage can be 

inferred by the presence of the multi-reflection waveforms in the damaged cases. A 

bigger mass was then mounted on a plate and the corresponding time-frequency 

representation is plotted in the Figure 6.32. 

 

 

 

 

 

 

 

 

Figure 6.32: Hilbert-Huang spectrum corresponding to a bigger damage (mass #3) 
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The same behavior is observed. The energy-released measurement is applied in order 

to quantify the extent of the damage. As shown in the Table 6.4, the energy increases 

with the size of the damage even for a non-axis damage case. 

 

 

 

 

Table 6.4: Energy density measurement of the reflected frequency band – Mass 

experiment 

 

Though the track of the increasing damage turns out to be possible, the determination 

of the position angle of the damage remains a problem. In this case, the time of flight 

technique cannot be used since the wave propagation characteristics along this angle 

are unknown. The Hilbert phase also localized the presence of the defect by a slope 

change around 0.6 ms, as seen in the Figure 6.33. The Hilbert phase looks thus 

consistent with the previous results. 
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The different damage detection methods point out the presence of the damage through 

the reflection extracted in the second mode. However, more information is needed to 

figure out the exact location of the damage. A triangularization technique could be 

examined where elliptical loci of possible crack positions will be constructed based 

on the flight time of crack-reflected waves. This solution would imply at least 3 

different sensors and the knowledge of the ellipses equations for the composite wave 

propagation. Such technique was used by Tua, et al. [32] for damage location in 

aluminum plates.  The EMD associated with the Hilbert spectra analysis is capable of 

detecting and quantifying the damage with one sensor element for non-axis damage 

position. The location of the crack remains though unknown.  

 

6.6 Low-velocity impact damage 

The previous experiments aimed to validate the HHT as a damage detection tool and 

were based on seeded damage. The HHT shown promising results on seeded 

delamination and local mass loading detection. A real-world application is now 

investigated to confirm the real potential of the HHT for a structural health 

monitoring system. As mentioned earlier, the most commonly encountered type of 

damage is caused by impact due to the low interlaminar strength of composites. The 

mechanical properties can be severely degraded as a result of a low-velocity impact 

even for barely visible damage. An impact on the structure can induce different type 

of damage as matrix cracking, delaminations and broken fibers. Such impact can 

occur in the reality if a worker accidentally drops a tool or if a bird crashes into the 

aircraft during the take-off. A good way to experimentally simulate a low-velocity 



 160 

impact is to build a swinging pendulum mechanism. The energy of the impact could 

therefore be quantified through the potential energy and related to the damage 

growth. 

6.6.1 Experimental Setup 

The same plate used for the previous experiment is instrumented and setup along with 

a basic pendulum system. The identical smart structures technologies to actuate and 

sense the structure are also used. The pendulum mechanism is shown in the Figure 

6.34 

 

 

 

 

       

 

 

 

 
Figure 6.34: Swinging pendulum mechanism 

 

A hammer type of impactor was conceived and was able to carry circular masses to 

increase the energy impact. The impactor was free to swing around a circular shaft 

introduced through the two columns. Shaft collars were used to avoid unwanted 

oscillations of the impactor instead of a bearing. Thus, some frictional effects are 
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neglected in this experiment and should be taken into account for a most accurate 

estimation of the energy released by the system. The experimental setup is pictured in 

the Figure 6.35. The horizontal position of the plate was chosen in order to avoid any 

bending after the impact. 

        

 

Figure 6.35 Low-velocity impact experimental setup 

 

This experiment setup allows systematic impact as desired. For each impact, the 

response signals are gathered without removing the plate. The boundary conditions 

remain identical for every impact and thus will not influence the results. A picture of 

the impacted region is also taken after each impact. In this way, a correlation between 

the visual inspection of the plate and the signal processing results will be possible. 

Some damage could indeed occur between the plies without being visible at the 

surface of the structure. A preliminary study with a C-Scan system would allow to 

ensure that the impact produced damage and also to reveal the extent of this damage. 

Unfortunately the university does not own such equipment. Each impact starts at zero 

initial velocity and at a certain initial angle. The impact energy comes from the 
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gravitational potential energy. The experimental setup therefore makes pendulum 

impacts repeatable with only one varying parameter, the impact energy. 

6.6.2 Impact energy quantification 

The energy potential of a single mass pendulum is entirely from gravity and is given 

by the well-know formula: 

E mgL=  

where E  is the gravitational potential energy, m  the mass of the pendulum (the mass 

of the string is small enough to be neglected), L  the pendulum length, and g  the 

gravitational constant in the medium.  

Let us take the zero of potential energy to be at a 90° angle of the swing, as shown in 

the Figure 6.36. When the pendulum is brought to a certain height before being 

released, the pendulum is higher than at the initial position of the swing, and the 

potential energy is equal to the weight of the pendulum multiplied by the change in 

height. If the pendulum has length L, the change in height is sinL θ  and the potential 

energy becomes:    

sinE mgL θ=  

 

 

 

 

 

Figure 6.36: Potential energy calculation 
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In the study case, the pendulum is not limited at a single mass but at a hammer 

impactor with a significant weight. Thus, the impactor system will be replaced for the 

calculation by a single mass defined by its center of mass as shown in the Figure 6.37.  

 

 

 

 

 

 

 

Figure 6.37: Impactor model 

 

The center of mass is defined as the average of the constituting elements positions 

weighted by their masses. Each time a mass is added to the system, the center of mass 

changes. The values of the different parameters needed to compute the potential 

energy are summarized in the Table 6.5. 

 

 

 

 

 

Table 6.5: Potential energy parameters 
 
 
 
 

m1 

m3 

m2 m 

L 

0.601 3.05 2.267  

0.625 5.32 4.536  
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The damage detection methodology follows these steps: 

1. The plate is impacted. Each impact has more energy than the 

previous one. The initial angle is increased or a mass is added in this 

purpose. 

2. A picture of the impacted region is taken. 

3. The plate is interrogated by a tone burst at a 40 kHz frequency with 

5 cycles.  The response signals are observed and saved on a disk. 

4. This set of data is processing with the HHT. 

5. Repeat the process 

 

The different impact cases with the corresponding potential energy are given in the 

Table 6.6. 

 

 

 

 

 

Table 6.6: Summary of the different impact cases 

 

6.6.3 Transient signal analysis 

A first undamaged set of data is taken as a baseline. The plate is then impacted and 

the middle sensor responses are examined in order to infer the presence of damage in 

the plate. A first impact of 3.27 J is applied and the middle sensor signals for the 
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undamaged and impacted plates are compared in the Figure 6.38. The location of the 

impacted region was chosen in order for the reflected waveform to be visible in the 

transient signals. The pendulum mechanism was therefore impacted the plate at a 

distance of 8.5 in. from the middle sensor as for the local mass loading experiment. If 

damage is created due to the impact, the reflected waveform should appear between 

the top/bottom edges and the right edge reflections. The observation of the transient 

signals in the Figure 6.38 does not give any information about the presence of 

damage due to the first low-velocity impact. The impact energy was then increased by 

adding a mass to the impactor and the middle sensor responses are plotted in the 

Figure 6.38. In this case, a difference can be seen between the undamaged and the 

impacted signals at .7 ms� . 

 

 

 

 

 

 

 

 

Figure 6.38: Middle sensor responses for the first two impact cases 
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this reflection. An impact of 12.7 J damaged the composite plate. A C-scan 

examination would precise the type of damage engendered by the impact. This NDE 

technique being not available, a visual inspection of the impacted region gives a good 

understanding of the impact consequence on the structure. A picture of both impacted 

region surfaces were taken and are shown in the Figure 6.39.  

                  

Figure 6.39: Impacted region pictures 

 
The observation of these pictures and a touch examination of the impacted region do 

not show the presence of any defects in the plate. The common visual inspection 

technique used for the structural health monitoring of composite structures would not 

detect the presence of damage in the plate. However, the transient response detects a 

discontinuity in the structure at the impact location. The reflected waveform localized 

by the sensor signal is nevertheless weak and needs to be effectively identified as a 

damage reflection. To accomplish this goal, the wavenumber filtering technique is 

applied to extract the leftward propagating waves. The damage reflection would be 

better characterized and quantified with this representation.  The leftward propagating 

waves for the undamaged and the two first impacted cases are plotted in the Figure 

6.40.     

 

(a) Front surface (b) Back surface 
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Figure 6.40: Leftward propagating waves – Impacted cases #1 and #2 

 
The first impact does not affect the health of the composite plate. However, the 

leftward propagating waves for the impact of 12.7 J of energy confirm the presence of 

damage with a new waveform detected between 0.6 ms and 0.8 ms. Although 

invisible on both surfaces of the impacted region, damage is present in the structure. 

The source of impact damage may include delamination between plies, matrix 

cracking or broken fibers. The use of Lamb waves to interrogate composite structures 

enables subsurface damage that is invisible to the naked eye to be detected. A third 

impact is used to determine whether the damage region grows. The middle sensor 

response corresponding to this impact case #3 is plotted in the Figure 6.41 along with 

the picture of the impacted region. Again, a weak reflection is visible for the impacted 

case around 0.7 ms, that is not present for the undamaged case. In order to have a 

better idea of the magnitude of this reflection, the leftward propagation is also 

extracted and plotted in the Figure 6.42. 

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (ms)

Leftward propagating waves

undamaged

3.3 J impact

12.7 J impact

Reflection from damage



 168 

                                                                           

 

 
Figure 6.41: 17.9 J impact case 

The picture of the front surface of the plate clearly shows that the composite structure 

is damaged. Broken fibers can be seen as well as matrix cracking. Compared to the 

previous impact, the damage is evident by visual inspection of the plate. However, the 

magnitude of the reflected waveform shown in the Figure 6.42 slightly increases from 

the 12.7 J impact to the 17.9 J impact whereas the difference between the shapes of 

the impacted region is obvious.  

 

 

 

 

 

 

 

Figure 6.42: Leftward propagating waves – Impacted cases #2 and #3 
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From this observation, two theories can be assumed. The first one is that the Lamb 

wave is not able to track the increasing damage. The second one is that the structural 

properties of the plate have been equally affected by the impacts even though the 

visual inspection leads to different interpretations. A stronger impact analysis will 

confirm either of these assumptions. A mass of 10 lbs is adding to the hammer system 

and the swinging impactor is released at a 45° angle, producing a 23.1 J impact. The 

middle sensor response along with the leftward propagation are plotted in Figure 6.43 

 

 

 

 

 

 

 

 

Figure 6.43: Case #4 analysis 

Both sensor signal and leftward propagating waves show that the magnitude of the 
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- The Lamb waves are able to detect damage in a composite plate that is 

invisible by the naked eyes. 

- A composite structure can be seriously damaged without showing any 

physical signs on the surfaces. 

- The physical marks of damage and the real loss in mechanical properties are 

not related. 

- The amplitude of the reflection from damage increases with the impact 

energy and therefore with the size of the damage. 

6.6.4 Hilbert-Huang spectrum and Energy metric 

The empirical mode decomposition is then used to apply the Hilbert transform to the 

intrinsic mode functions extracted and to plot the time-frequency representation of the 

data. Once the Hilbert-Huang spectrum is obtained, the energy released by the 

damage can be quantified and linked to the impact energy and the size of the damage. 

The energy metric is applied to the unfiltered set of data. The Hilbert-Huang spectra 

for the unfiltered undamaged and damaged (12.7 J impact) are given in the Figure 

6.44. 

 

 

 

 

 

 

 (a) Undamaged (b) 12.7 J impact 

Figure 6.44: Hilbert-Huang spectra – Unfiltered data 
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The results of the Hilbert energy measurement of the reflected frequency band are 

given in the Table 6.7.  

 
 

 

Table 6.7: Energy metric results for the unfiltered data 

Assuming that each impact weakens the plate and contributes to the creation of 

damage in the next impact, a cumulative energy impact approach seems to be more 

representative of the effective energy involved in damaging the plate. The energy 

metric results can therefore be plotted to describe the growth of damage with respect 

to the energy impact, as seen in Figure 6.45. 

 

 

 

 

 

 

 

Figure 6.45: Growth of damage with impact energy 

The energy released upon the damage growth perfectly fits a parabolic interpolation 

curve. In the case of the local mass loading experiment, the energy was shown to 
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only one sensor. 
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6.6.5 Energy-time spectrum and the Phase shift metric 

The energy-time spectrum aims to localize the damage through a precise 

determination of the time of flight and to quantify the size of the damage through the 

phase shift between the reflected waveforms. The energy-time spectrum for the low-

velocity impact experiment described in the previous sections is given in the Figure 

6.46. For a better visibility and readability, the results have been separated in two 

distinct plots. 

 

 
 

 

 

 

 

 
Figure 6.46: Energy-time spectra 

As expected, the localization in time of the reflected waveform through the energy 

spectrum turns out to be very precise. A phase shift between the reflections from 

increasing damage can even be temporally quantified and related to the size of the 

damage. The amplitude of the reflected waveforms also increases with the energy 

impact. However, for the case #4 corresponding to the 23.1 J impact energy, the 

reflection is spread out in time, has a weaker magnitude and does not exhibit a clear 
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created a second damage in the plate. The reflected waveform represented in the 

energy spectrum therefore encloses two adjacent reflections. This assumption is 

confirmed by the picture of the impacted region in the Figure 6.47 that shows two 

damages in the plate.  

 

Figure 6.47: Front surface picture – Case #4 
 
 

Using the group wave velocity and the time of flight given by the energy spectrum, 

the location of the damage can be inferred in the same way than for the previous 

experiments. In this case, we obtain the same results as for the local mass loading 

experiment of the Section 6.5. 

In order to confirm the plate has effectively been damaged by the impact, a cross-

section cut along the damage is realized. As we can see on the picture of the Figure 

6.48, the different impacts created matrix crackings, broken fibers and a 

delamination. 

 

Damage 2 

Damage 1 

Delamination 

Figure 6.48: Cross-section picture of the impacted region 
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6.6.6 The Hilbert phase 

So far, the Hilbert phase turned out to be the most promising feature for delamination 

detection in composite structures using the HHT but also the most sensitive and 

difficult to apply. This real world type of experiment aspires to confirm the capability 

of the Hilbert phase to describe the changes in the wave propagation speed energy. 

The Hilbert phase results are plotted in the Figure 6.49. 

 

 
 

 

 

 

 

 

 
Figure 6.49: Hilbert phase plots 
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plate as seen in the Figure 6.49. The location of damage can be inferred from the time 

divergence and the amount of damage can be quantified by the mean phase error 

metric. The behaviors of both impacted phases are pretty close even if the 17.9 J 

impact appears to damage more the plate than the 12.7 J impact. The Hilbert phase is 

therefore consistent with all the previous conclusions and can perfectly describe the 

wave propagation and interaction with damage in the composite plate.  

6.7 Summary 

 
The CLPT theory was presented to model the dynamics of the composite plate. From 

the CLPT formulation, the wavenumber-frequency relationships were determined and 

computed for a symmetric layup [90/0/0/90]8s. This theory was used to determine the 

wave group velocity of the A0 mode used to excite the structure. The most common 

encountered types of damage in composite structures were tested through a set of 

three experiments. The HHT as a damage detection tool was then used to process the 

data and to infer the presence of delamination and/or impact damage. The seeded 

delamination simulated by a Teflon patch and introduced between two adjacent plies 

was successfully detected by the Hilbert phase. The Hilbert phase accurately 

described the change in energy speed due to the delamination.  Local mass loading 

was best identified by the Hilbert-Huang spectrum. The energy density of the 

reflection from the extra mass mounted on the plate increased with the size of the 

masses. A real world study case was then presented. A low-velocity impact 

experiment based on a swinging pendulum mechanism was setup. The data was 

processed with the EMD algorithm and the Hilbert spectra analysis. The damage 

detection schemes could detect and locate a damage that was not visible in the visual 
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inspection. The HHT was also shown to track increasing damage with increasing 

energy impact. 
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Chapter 7 

Conclusion 
 

7.1 Contributions 

This chapter presents a summary of the important results and conclusions that can be 

drawn from this study. This thesis investigates a damage detection approach using 

wave propagation in thin plates and the Hilbert-Huang transform as a signal-

processing tool. The study has focused on developing and validating damage 

detection schemes based on the features of the empirical mode decomposition and the 

associated Hilbert spectral analysis. Three damage detection techniques were 

developed based on the energy density, the time of flight and the energy speed 

propagation. The study was conducted for both isotropic and composite thin plates. 

For thin plates, wave propagation is described in terms of Lamb waves. The 

symmetric fundamental in-plane wave mode S0 was used for detecting damage in 

isotropic plates whereas the anti-symmetric fundamental transverse wave mode A0 

was privileged to describe the damage interactions in composite plates. Two types of 

damage were investigated, impact damage and seeded delamination, for composite 

plates. Damage in the form of hole was examined in aluminum plate. The details of 

the major contributions resulting from this work are presented below: 

2. The Hilbert-Huang transform was first implemented in Matlab 7.0. This 

method consisted in two parts in analyzing a given time series data. The 

first part is the empirical mode decomposition, which decomposes any 
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given signal into a set of simply oscillatory functions, defined as intrinsic 

mode functions. The IMF components were obtained by a sifting process 

algorithm. The second part of the implementation was the definition of the 

time dependent amplitudes and frequencies of the empirical modes using a 

Hilbert transform. The final result was represented by an energy-time-

frequency representation, referred as the Hilbert-Huang spectrum. 

3. The instantaneous phase can be used as a damage detection tool. A finite 

element model of a rod was used to show the effect of a stiffness loss on 

the phase behavior. The principle is that any damage in a structure alters 

the speed at which the energy traverses the structure. The phase reflects 

this speed change by a slope deviation. As a result, the Hilbert phase can 

not only detect the presence of the defect in the structure but also quantify 

the extent of the damage.  

4. The Hilbert-Huang spectrum described the energy propagation in the 

structure. Any reflection is measurable by its energy density. The energy 

released upon defect growth can be therefore quantified and use to track 

the increasing damage. A larger reflection due to a larger damage will 

result in an increase of the energy in the Hilbert energy spectrum. 

5. The time of flight between the actuation waveform and a damage 

reflection can be accurately extracted from the energy-time spectrum 

provided by the HHT. The peaks on the energy-time spectrum for the IMF 

component containing the highest energy give the wave arrival times of 

interest. The wave group velocity combined with the time of flight locate 
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the damage. If the initial shape and size of the damage is known, basic 

geometric considerations associated with time of flight and wave 

propagation characteristics provide a means to estimate the severity of the 

damage. 

6. In a pulse-echo damage detection application, a piezoceramic actuator is 

used to actively interrogate a thin aluminum plate with damage in the form 

of a hole. The actuator sends out a transient interrogating excitation signal 

that is reflected from the damaged region. The response signals are 

gathered by the sensor array. The empirical mode decomposition was 

applied to the transient response signals and the reflection from the hole 

was revealed. Along with the knowledge of the wave propagation 

velocities, the location of the damaged could be placed. The energy of the 

reflected frequency band was used to quantify the size of the hole through 

the Hilbert energy spectrum. The prediction of the size of a hole was 

shown to be pretty accurate 

7. The wavenumber filtering technique was used to separate the response of 

a delaminated composite laminate into a leftward and a rightward 

components. A reflection from the delamination, first invisible in the 

transient signals, showed up. Though weak, the reflection increased with 

the size of the delamination.  

8. The reflection from the delamination also appeared in the second IMF 

after the decomposition of the transient signal. The empirical mode 
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decomposition was therefore able to extract weak reflections embedded in 

noise and other boundaries reflections. 

9. The Hilbert phase turned out to be very efficient for delamination 

detecting in composite plates. The change in wave propagation speed due 

to the delamination was perfectly described by the phase behavior. The 

phase reacted by a slope deviation to the discontinuity. The time needed 

for the wave to pass trough the delamination gave the time span of the 

deviation. 

10. Local mass loading was experimented on a cross-ply laminate in bonding 

masses on the plate surface. The wave experienced reflection from the 

mass. The reflection was visible in the transient signals. The extent of the 

artificial damage could be quantified with the energy release in the 

structure and by the time shift between reflections. 

11.  A low-velocity impact was successfully experimented and tested. The 

repetitive impact system allowed a correlation of the visual inspection of 

the impacted region with the potential energy and the HHT results. 

Invisible damage to the naked eyes was detecting in the leftward 

propagating waves as well as in the middle sensor responses. The energy-

time spectrum could locate the damage whereas the energy density 

spectrum was used to quantify the damage. The increasing damage was 

shown to follow a parabolic trend. The Hilbert phase also gave consistent 

results with the other damage detection techniques and was able to detect 

and quantify the amount of damage created by the pendulum impactor 
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mechanism. This real world application showed all the Hilbert-Huang 

transform potential as a damage detection tool. 

7.2 Limitations of Current Methods 

Though the HHT appears to have a great potential for structural health monitoring 

purposes, there are certain issues which need to be addressed that could extend its 

use. A few of the limitations of the HHT and the damage detection methods 

developed are illustrated:  

1. Concerning the empirical mode decomposition, some issues encountered 

during its implementation could be improved. The spline fitting influences 

a lot the decomposition. Overshoot and undershoot happen many times 

during the sifting process and corrupt the decomposition. The starting and 

ending points play a fundamental role in the extracting IMFs as well. An 

optimal windowing of the data must be found in order to avoid end effects 

and other types of unwanted behaviors. The stop criterion of the sifting 

process is also problematic. A good compromise between a too stringent 

and a too lax criterion must be found.  All these implementation issues 

influence the quality of the decomposition and can be improved. Last but 

not least, the HHT is an empirical method. A mathematical formulation of 

the decomposition would probably help to resolve the problems 

enumerated above. 

2. The Hilbert phase have sown some limitations for the local mass loading 

study case. The sensitivity of the phase to the structural elements limits its 

efficiency. Despite the outstanding results obtained for the delamination 
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case, a deeper investigation of the different parameters that influence the 

phase would allow a better understanding of this unique feature. The 

bonding conditions in the experiment may also have corrupted the phase 

behavior. 

3. Damage detection techniques considered in this research were developed 

for damage oriented along the array axis. Non-axis damage detection has 

been inspected. The empirical mode decomposition was able to detect the 

presence of the damage. However, the different damage detection schemes 

did not provide a way to infer the location of the damage.  

 

7.3 Recommendations for Future Work 

The current study has tried to develop a new methodology in the field of signal 

processing for damage detection. In order to extend the use of the Hilbert-Huang 

Transform for practical implementation into an SHM system, there are several 

advancements in the current state of the art that need to take place. The most 

immediate are discussed as follows: 

1. Improved wave propagation modeling of an anisotropic composite plate in 

order to get a better understanding of the way the waves propagate in the 

medium. A triangularization technique would then be possible and non-

axis damage detection would be achievable with only three sensors, using 

the HHT. 
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2. Evaluated the ability of the damage detection techniques to detect multiple 

damages. This would enable to confirm the HHT as a potential damage 

detection tool. 

3. Developed numerical simulations to confront with experimental results 

obtained in this work. A Reissner-Mindlin type of model would allow an 

accurate representation of the plate dynamics at high frequencies where 

transverse shear play a significant role. 

4. Use of a C-scan system to qualitatively measure the amount of damage 

created by the impact of the swinging pendulum system. This would give 

a more physical interpretation to the HHT results. 

5. Modified the actual empirical mode decomposition algorithm to obtain a 

spatial decomposition in terms of wavenumbers. Each IMF would 

correspond to a wavenumber present in the signal. As a result, the wave 

propagation would be entirely described and decomposed by the different 

mode functions. Each wavenumber present in the signal would be 

extracted with its occurring time. The spatial EMD would act as an 

adaptive wavenumber filter. 
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