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Many social phenomena have a spatio-temporal dimension and involve dynamic 

decisions made by individuals.  Investigations focusing on the spatio-temporal 

dimensions of human behavior have received a great deal of theoretical attention; 

however, empirical testing of these theories has been handicapped by a lack of micro-

level data and modeling tools that can capture the dynamic interactions of individuals 

and the context in which they occur.  This research presents a methodology for 

evaluating theory through the implementation of a simulation model; the assumptions 

of the theory are operationalized in a model, a series of experiments are run, and the 

outcomes are analyzed to discover if they match what the theory would predict.   

Specifically, the concepts of routine activity theory (RAT) (Cohen and Felson, 

1979) are formalized in a computational laboratory representing Seattle, Washington.  

The computational environment for implementation, Agent Analyst, merges agent-

based modeling (ABM) software with geographic information systems (GIS).  A 

strategy for developing activity spaces is implemented and demonstrates how agents 

  



can move along existing street networks, and land use patterns can be used to create 

representational activity spaces.  Three versions of a model of street robbery are 

developed; each version implements a different level of constraints on agent’s routine 

activities.  In one version (Simple), individuals are either at home or not at home.  In 

another, individuals follow a temporal schedule (Temporal).  Last, individual’s 

schedules are both temporally and spatially constrained (Activity Space).  A series of 

experiments are conducted which compare the incidence and spatial pattern of street 

robbery events from each version. 

The results of the experiments provide strong evidence of the important role 

routine activities play in street robbery events.  The addition of temporal and spatio-

temporal schedule constraints reduces the incidence and changes the pattern of street 

robberies.  Support for routine activity theory’s premise, as time spent away from 

home increases street robbery will increase, is found in the Simple and Temporal, but 

not the Activity Space version of the model. 
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Chapter 1:  Introduction  

“A temporal pattern is apparent in each and every spatial pattern (and) 
space and time are separable from one another only in abstraction.” 
(Hawley, 1950 288) 
 

Drawing on human ecological theory, Cohen and Felson put forward a “routine 

activity approach” to studying crime (Cohen & Felson, 1979 588).  They hold that 

“criminal acts require the convergence in space and time of likely offenders, suitable 

targets and the absence of capable guardians against crime” (Cohen & Felson, 1979 

588).  According to the routine activity approach, convergence of individuals is the 

key dynamic element that enables illegal acts to occur during the course of everyday 

activities.  Changes in social structure impact the frequency with which these 

elements converge by modifying the routine activity patterns of offenders, victims, 

and potential guardians.  From this basic argument, they go on to hypothesize that if 

the frequency with which these elements converge in space and time increases, crime 

will also increase even if the supply of offenders or targets remains constant within a 

city.  In this way, routine activity theory clearly states the basic elements necessary 

for a crime to occur and then elegantly ties the frequency with which those elements 

converge in space and time to macro level crime rates.  Their intriguing argument 

recognizes the importance of space-time activities of individuals and makes the 

theory a logical choice on which to base this investigation. 

Routine activity theory has been widely applied in empirical research and the 

theoretical framework is well-developed.  However, because of difficulties in 

obtaining individual-level data and shortcomings in available statistical techniques, 
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the empirical validity of the theory is still in question (Akers, 2000; J. E. Eck, 1995a).  

The inability to collect individual-level data, to characterize human travel behavior in 

general and the situational elements of crime events in particular, is an on-going 

barrier (Huisman & Forer, 1998; O'Sullivan & Haklay, 2000).  Likewise, the 

identification of modeling tools capable of capturing the dynamic nature of human 

activities and interactions of individuals when they converge remains a hurdle. 

In response to these challenges, some researchers have turned to simulation 

modeling as an alternative approach.  Although modeling in general has a long been 

applied to examine social science phenomena, simulation has not (Gilbert & Terna, 

1999; Gilbert & Troitzsch, 1999; R. G. Golledge, 1983; Harvey, 1969).  Recent 

software developments have made access to simulation modeling much easier.  Given 

the relative obscurity of simulation research, some background explaining how 

simulation models fit within a typology of modeling approaches is offered next.   

In general, models offer a simplified representation of reality by attempting to 

capture only the most important elements of the phenomenon under study.  Ostrom 

(1988) identified three types of models: verbal arguments, mathematical, and 

simulation.  Verbal arguments describe relationships using words, where 

mathematical models use symbols and numbers.  Mathematical models emphasize 

formalization and specificity over the richness of detail found in verbal models.  

However, complex mathematical models can quickly become computationally 

impractical requiring simplifying assumptions (e.g. rational man) to be used.  The 

simplifying assumptions underpinning models are at the root of many debates in the 

literature and are critical to the veracity of the model created.  When simplifying 
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assumptions are incorrect, the efficacy of model results is compromised.  Statistical 

models are a type of mathematical model representing the relationship among two or 

more characteristics of the unit of analysis (e.g. individuals, streets or cities).  The 

implementation of statistical models in a wide variety of software packages has aided 

their adoption by researchers.   

Finally, simulation models are similar to mathematical models in that they are 

developed from theory and involve a simplification of reality but their specification is 

in the form of a computer program (Gilbert & Terna, 1999; Ostrom, 1988).  Once 

built, the computer program is run to obtain results, which are then analyzed using 

statistical models.  Simulation models rely on a bottom-up approach.  In other words, 

a few simple, theoretically based rules are developed for the individual agents.  The 

interactions of individuals in the model produce the macro-level patterns that emerge.  

The property of emergence refers to any unexpected consequences from the 

application of simple behaviors (Epstein & Axtell, 1996; Gilbert & Troitzsch, 1999).  

In addition, individuals in simulation models are able to make dynamic decisions 

based on changing information (Bonabeau, 2002).  Since routine activity theory 

posits both the micro-level factors necessary for a crime and the macro level 

consequences of changes in the convergence of those factors, simulation modeling is 

particularly well suited to operationalizing it.   

The three types of symbol systems can be applied in the same research endeavor, 

and may even be at their most powerful when used in that way (Ostrom, 1988; 

Troitzsch, 1998).  Accordingly, this research relies on all three symbol systems with 

different symbol systems playing a dominant role as the phases of the research 
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progress.  In the early stages, verbal models are used to describe what is known or 

thought to be known about human behavior in general and criminal decision-making 

within its environmental context in particular.  These verbal descriptions are then 

formalized in the behavior rules of the model.  In some cases, mathematical equations 

are embedded within the computer program to specify the relative importance of 

variables in the decision-making process.  The environment and the people within 

that environment are defined within the program.  The program also keeps track of 

the model time and the interactions among agents and their environment and writes 

out data at user-designated intervals.  Statistical equations are then used to evaluate 

the results of the model runs.  In this way, each of the symbol systems can be used to 

its best advantage with the goal of increasing the level of understanding of the process 

and/or relationships under study. 

Agent-based models are a type of simulation model that consists of a collection of 

autonomous entities implemented within a software program.  Entities in the model 

(i.e. agents) can represent people, governments, neighborhoods etc.  Each entity has a 

set of unique characteristics and behaviors.  Typically, these agents are placed in an 

artificial world to interact although there is a recent movement to use geographic 

information systems to provide a ‘real’ landscape (Brown, Riolo, Robinson, North, & 

Rand, 2005; O'Sullivan & Haklay, 2000).  Agent-based models allow heterogeneity 

among individuals that more closely approximates the variety found in life.  In 

addition, they are better able to accommodate the non-linearity in relationships that is 

frequently evident in complex and dynamic interactions (Dibble, 2003; Epstein & 

Axtell, 1996; Gilbert & Terna, 1999; Liu, Wang, Eck, & Liang, 2005). 
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Agent-based models can be implemented in the form of a computational 

laboratory.  A computational laboratory is a set of software tools that enable the 

specification and execution of systematic experiments using simulation (Chen, 

Cunningham, Ewing, Peralta, & Visser, 1994; Dibble, 2001; Parker, Berger, & 

Manson, 2001; Slavin, 1996; Tesfatsion, 2001).  An agent based modeling (ABM) 

simulation implemented in the framework of a computational laboratory offers the 

advantage of being able to hold the agents and/or the landscape constant and then 

vary one or both of them systematically.  This feature provides a level of control 

difficult to attain using traditional social science methods (Dibble, 2003; Epstein & 

Axtell, 1996; Gilbert & Terna, 1999).  The combination of heterogeneous agents and 

control enables the researcher to conduct a variety of experiments, using different 

conditions or applying various prevention scenarios, and then evaluate outcomes for 

minimal cost as compared to experiments undertaken in the real world.  These 

characteristics directly address the shortcomings of earlier research testing routine 

activity and suggest ABM as an important component of a new, more flexible 

methodology. 

The use of simulation models is not without its drawbacks.  Like mathematical 

models, they are constrained by the original assumptions and the rules on which the 

model is based.  This drawback is mitigated, but not eradicated, by the use of 

empirically-based parameters whenever possible.  Relatedly, the creation of an 

artificial society opens the research effort to a variety of issues regarding the 

generalizability and usability of findings.  Even when the simulation is based on a 

real place, the society is still representative rather than empirical.  In addition, as 
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compared to mathematical models, simulation does not produce any measures of the 

robustness of a particular solution (Axtell, 2000; Lempert, 2002).  Mathematical 

models produce such statistics as confidence intervals that communicate the surety 

with which results can be interpreted.  Simulation results can approach this type of 

measure through an iterative process of varying input parameters and cataloguing the 

outcomes of those variations so that we can begin to say something about the 

robustness of a particular model.  Since the goal of agent-based modeling (ABM) is 

often directed toward explanation rather than prediction, the knowledge gained from 

using an iterative strategy to study artificial societies can serve to increase our 

understanding of how a process ‘works’ using the aforementioned strategy. 

The employment of ABM in the social sciences has increased over the last ten 

years (Gilbert & Doran, 1994; Gilbert & Terna, 1999; Gilbert & Troitzsch, 1999; 

Macy & Willer, 2002).  This rising interest in ABM stems from its unique capabilities 

which range from description, to knowledge discovery, to hypothesis testing.  

Another intrinsic advantage is derived from the computer code written for the 

simulation.  Formalized computer code provides concrete documentation for the 

assumptions of the model and enables transparency in the research enterprise that is 

necessary for replication and testing of results (Chattoe 1996; Gilbert & Terna 1995).  

These attributes are especially important when trying to discover the mechanisms 

through which observed macro level patterns are formed.  Criminologists have 

recently begun to explore how agent-based models can inform the study of crime (P. 

L. Brantingham & Brantingham, 2004; P. L. Brantingham & Groff, 2004; J. E. Eck & 

Liu, 2004; Xue & Brown, 2003).  However, the inherently spatial nature of human 
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movement and interaction, as well as the role of place in influencing those elements, 

require that models incorporate space as well as time. 

Recent advances in technology have enabled the creation of the software 

packages necessary to enable agents to be ‘situated’ in a particular spatio-temporal 

milieu (e.g., agents can interact with data describing the streets in real environment).  

One example is the software product Agent Analyst which links two popular 

geographic information systems (GIS) and ABM software packages, ArcGIS (ESRI, 

2005) and RepastPy (North, Collier, & Vos, 2006).  The combination of the strengths 

of ABM and GIS is necessary in order to move away from the use of artificial 

landscapes and instead model individuals in their environment (Albrecht, 2005; An, 

Linderman, Qi, Shortridge, & Liu, 2005; Brown et al., 2005).  The technological 

advances just discussed provide the tools for addressing the limitations of previous 

research.  They facilitate the creation of a GIS/ABM model that is capable of 

capturing and analyzing: 1) the process involved in the convergence of offenders, 

victims, and guardians at a particular place and time; 2) the interaction that takes 

place once they occur; and 3) the culmination of those interactions in the form of 

emerging crime patterns.   

1.0 Goal and Objectives 

This research proceeds in the tradition of Schelling (1971), Epstein and Axtell 

(1996) and many others where the goal of simulation is greater understanding rather 

than prediction.  The primary goal of this study is to demonstrate how formalizing 

theory in a computational laboratory can provide a better understanding of how the 

spatio-temporal aspects of human activity influence the incidence and distribution of 
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street robbery events.  Accordingly, the point of this research is not to predict the 

pattern of street robbery events in Seattle, Washington, but rather to operationalize 

the assumptions of routine activity theory in an artificial society and then test whether 

the model outcomes match the predicted outcomes.  The approach taken here 

emphasizes theory-testing but still in a theoretical world.  In this way, the method 

represents an interim testing ground between the verbal formulation of the theory and 

the testing of theory with empirical data.  While this exercise does not result in a 

determination of whether a theory is true in the real world, it does provide a way to 

test the plausibility of the theory’s assumptions.  To this end, the most parsimonious 

model possible is created, run, and the results subject to rigorous testing.   

The choice to focus on a single crime is based the widespread recognition that 

crime is not a homogenous phenomenon.  Narrowing the study to only one type of 

crime aids in the interpretation of findings and subsequently, to better understanding  

(Clarke, 1983; Clarke & Cornish, 1985;2001; Zahn & Jamieson, 1997).  The crime of 

street robbery offers several advantages for this study.  First, it is an instrumental 

crime and thus more likely than expressive crimes to involve a rational decision 

process (Clarke & Cornish, 1985; Cornish & Clarke, 1986; Walsh, 1986).  Second, 

street robbery is by definition restricted to the street or some other exposed area rather 

than in a residence or business and thus involves the public intersection of offender 

and target in space and time.  Third, police presence is assumed to be more effective 

against street level crime then crimes that take place indoors (e.g. domestic violence).  

Fourth, street robbery elicits a high level of fear among residents because of its 
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suddenness and potential for serious injury and thus is of considerable interest to both 

law enforcement and the public (Feeney, 1986).   

The following objectives are met in order to achieve the overall goal.   

1) Formalize routine activity theory (Cohen & Felson, 1979) in a GIS/ABM so 

that the dynamics of individual level decision-making and behavior that 

produce macro level street robbery patterns can be represented. 

2) Explore the role of geography (i.e. activity spaces) by having the agents 

interact in a ‘real’ environment, and by making the spatio-temporal dimension 

of human behavior explicit in the model and the experiments. 

3) Create and run a series of experiments to test whether:  a) the theoretically-

predicted outcomes from routine activity theory match the model-produced 

outcomes; and b) changing the spatio-temporal schedules of individuals 

produces different quantities and spatial distributions of street robbery. 

As the initial foray into this area, the first objective of the study focuses on the 

development of several versions of a GIS-enabled computational laboratory for 

modeling some simple, dynamic interactions between individuals from which 

aggregate crime rates and patterns of crime emerge.  The modeling approach involves 

a multi-step process that begins with a review of the published writings on routine 

activity theory to identify and formalize key concepts in the theory.  Those key 

concepts are then incorporated into the models in the form of behavior rules.  Because 

opportunity theories focus on dynamic, individual-level interactions within a 

particular environmental context, the application of a geographic perspective is a 

positive, and I would argue necessary, dimension to modeling crime.  Specifically, a 
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geographic perspective makes explicit the role of the distribution of land uses and the 

shape of transportation systems in human movement.  Human movement is critical to 

understanding convergence (i.e. why suitable targets and motivated offenders 

converge where and when there is a lack of capable guardians). 

The creation and testing of the model is completed over three phases: 1) 

development of a conceptual model of crime; 2) implementation of the base model; 

and 3) verification of the base model.  The initial phase relies on a careful 

examination of the existing theory and empirical results to inform the identification 

and definition of relationships used in the model.  The result of this step is a 

conceptual model specifying the important constructs that underlie routine activity 

theory.  These constructs are operationalized through the identification of specific 

variables and how they will be measured (Kerlinger & Lee, 2000).  Next, the base 

version of the model is programmed using the specifications from the conceptual 

model and making changes as needed because of the specific configuration of 

software tools chosen for implementation.  The resulting computer program is 

systematically tested to ensure proper operation and the code verified.  Extensive 

testing of the entire technological framework is conducted to ensure that the model 

performs as expected.  Finally, experiments are conducted to answer the research 

questions.  The same testing protocol is applied to each of the model versions as they 

are implemented under the third objective.   

The second objective is to explore the role of geography by making the spatio-

temporal dimension of human behavior explicit in the model.  This objective is met 

by varying the spatio-temporal aspects of agent activity spaces across versions of the 
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model.  The Simple version of the model does not contain elements of spatial or 

temporal activity spaces; rather, the individuals have a defined amount of time to 

spend at home each day but the rest of the time they move randomly along a street 

network.  This model acts as a null to which the other models are compared.  Two 

additional versions incorporate the idea of temporally and spatially constrained 

activity spaces.  In one, the individuals have a temporal activity program with random 

movement.  In the other, the individuals have the same temporal activity program but 

travel among a set of activity locations.  Together, the activity locations and the path 

taken among them constitute a defined routine activity space.   

The third objective is met by using the computational laboratory developed to 

explore the following research questions:  1) Does the shift of routine activities away 

from home increase street robbery? 2) Does the spatial distribution of street robberies 

change as routine activities shift away from home? and 3) How does the spatio-

temporal structure of routine activities influence the incidence and spatial pattern of 

street robbery?  The same set of experiments is run for each of the model versions. 

1.1 Expected Significance of the Research 

The proposed methodology offers several advances.  First, and most generally, 

this work demonstrates the value of simulation for theory testing and exploration.  

This method is particularly pertinent in social science where the ideal of falsification 

of theories with empirical data is difficult to achieve (Popper, 1965).  Falsification 

occurs when the systematic empirical observations do not match what the theory 

predicted (Vold, Bernard, & Snipes, 2002).  But in order to be falsified, a theory must 

be “testable by objective, repeatable evidence” (Akers, 2000 7).  One major challenge 
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to establishing the empirical validity of routine activity theory is the lack of empirical 

data on the micro-level interactions of individuals in space-time.  The methodology 

posited here provides an alternative to empirical studies that is both systematic and 

repeatable.  The method also enables the use of rigorous research design principles in 

conducting experiments.  The virtual laboratory is particularly attractive for theory 

testing when ethical or monetary reasons preclude the conduct of empirical research 

experiments.  In addition, the methodology promotes rigor and specificity by 

requiring the formalization of theoretical concepts before translating those concepts 

into a simulation model and by codifying the assumptions of the model in the 

computer program which implements them.  These characteristics provide a level of 

transparency that is necessary for repeatability and for comparison of different 

implementation models to one another. 

Second, the research integrates the strengths of GIS and ABM in a computational 

laboratory enabling the combination of empirical data representing travel 

opportunities and situational context from a GIS with ABM’s dynamic agent 

decision-making.  As a result, direct representation and manipulation of individuals’ 

routine activities is achievable.  The combination also makes possible the simulation 

of the micro- and macro-level interactions in a crime event as it happens.  The 

resulting spatio-temporal patterns can be displayed and analyzed.  Third, the 

completed simulation model offers the first test of routine activity theory in which the 

individual-level decisions and the spatio-temporal aspects of activity spaces are 

quantified and the impacts of movement on the resulting crime patterns are measured.   
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Looking forward, these base versions of a street robbery model can serve as the 

foundation for subsequent extensions that will more richly represent both human 

behavior and context as they are related to crime.  The results of experiments 

conducted with these and future versions of the model have the potential to inform the 

creation of crime prevention strategies and contribute to the body of knowledge in 

geography, criminology, and social sciences in general. 

1.2 Organization of the Remaining Text 

The dissertation is organized in the following manner.  A series of three papers 

form the body of the dissertation.  I’ll apologize up front for information that is 

repeated among the papers.  Each paper/chapter represents one of the objectives just 

outlined.  Chapter 2 details a new methodology for ‘situating simulation’ by 

developing activity spaces based on the land use of an existing city and implementing 

movement along a vector street network.  Chapter 3 discusses the formalization of 

routine activity theory in a computational laboratory and reports whether the 

outcomes from a simple model reflect what the theory predicts.  Chapter 4 extends 

the basic model of street robbery outlined in the second paper by incorporating the 

routine activity spaces and agent movement discussed in Chapter 2 in two new 

versions of the model and then compares the results from all three versions.  Chapter 

5 summarizes the findings, discusses potential limitations, and then puts forward 

directions for future research.  Complete documentation of the model versions is 

provided in the Appendices.  Appendix A contains the documentation for the simple 

random version and Appendix B the documentation for the two versions in which 

each individual has a defined schedule (one temporal and the other spatio-temporal).  
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Appendices C, D, and E consist of the software code for the three versions of the 

model.  The print statements used for debugging are left in the code to aid subsequent 

users. 
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Chapter 2:  ‘Situating’ Simulation  

1.0 Introduction 

The importance of incorporating space and time into research on human behavior 

has long been recognized in a variety of disciplines (Chorley & Haggett, 1967; Engel-

Frisch, 1943; Hägerstrand, 1973; Harvey, 1969; Hawley, 1950; Horton & Reynolds, 

1971; H. J. Miller, 1991; R. J. Sampson, 1993).  Addressing spatio-temporal 

interactions among individuals and their environments is a challenging undertaking 

with two major hurdles.  First, it is not enough to be able to capture the multitude of 

individual decisions that occur within unique contexts; the method must also be able 

to accommodate dynamic changes in the characteristics of individuals and situations 

that influence the outcome of subsequent interactions.  Second, individual-level data 

that can support these types of studies must be obtained.  Although there has been 

tremendous growth in the availability of micro-level data describing places, data 

regarding the daily activities of individuals (e.g. the type, location, and duration of 

activity) remains sparse.  While these data are essential to modeling the spatio-

temporal convergence and interaction of individuals, they are unlikely to become 

available due to privacy concerns (O'Sullivan, 2004b). 

Given the large quantity of micro level environmental data and mature software 

packages, researchers frequently turn to geographic information systems (GIS) to 

model human behavior (An et al., 2005; Kwan, 1998; H. J. Miller, 1991).  GIS 

provide a powerful tool for collecting, managing and displaying the multitude of 

spatially explicit data available on places but they are unable to model the dynamic, 
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individual-level interactions across time.  The inability of GIS to accommodate time 

is a well-known issue that remains unsolved despite a great deal of attention 

(Albrecht, Forthcoming; Brown et al., 2005; Peuquet, 1994;2002).  Physical scientists 

address this issue in their process models by preparing their data in a GIS and then 

analyzing them in a dynamic model (Maguire, Batty, & Goodchild, 2005).   

Simulation modeling offers an alternative method capable of capturing dynamic 

interactions among individuals taking place at the micro level and their relationship to 

macro level patterns.  All models, simulation or otherwise, involve the creation of a 

simplified representation of a social phenomenon (Gilbert & Terna, 1999).  In the 

case of statistical models, such as a regression model, input data are ‘run’ via a 

statistical program which produces output data describing the relationships among the 

input data.  Simulation models, in contrast, are computer programs themselves; 

programs that describe critical aspects of the social phenomenon being modeled.  The 

program is run and the output data are analyzed using standard statistical techniques.  

Simulation modeling has three main advantages over statistical models.  First, it 

allows heterogeneity among individuals that more closely approximates the variety 

found in life.  Second, it is able to accommodate the non-linear relationships present 

in dynamic and complex interactions (Dibble, 2003; Epstein & Axtell, 1996; Gilbert 

& Terna, 1999).  Third, simulation modeling can be used in situations where little or 

no data empirical data are available.  Statistical models require data, either empirical 

or simulated. 

Agent-based modeling (ABM) is one type of simulation that employs a bottom-up 

approach in which agents are imbued with unique characteristics and general 
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behavioral rules (Epstein & Axtell, 1996; Gilbert & Terna, 1999; Gilbert & Troitzsch, 

1999).  An agent is an “autonomous goal-directed software entity” (O'Sullivan & 

Haklay, 2000) that most often represents a person but can also represent 

organizations, neighborhoods etc.  The outcome of interaction with other agents is 

driven by the decisions of the individuals involved and those decisions dynamically 

change the characteristics of agents.  These agents are removed from their ‘real-word’ 

situation and placed in an artificial world (O'Sullivan & Haklay, 2000).  The use of 

artificial landscapes which do not take into account the impact of the environment in 

which individuals move and interact represents one significant drawback to ABM. 

A natural application for ABM is toward achieving a better understanding of the 

crime event in its situational context.  Some researchers have already begun to 

explore the use of simulation for capturing the dynamic interactions taking place at 

the micro level and their relationship to macro level patterns (P. L. Brantingham & 

Brantingham, 2003;2004; P. L. Brantingham & Groff, 2004; J. E. Eck & Liu, 2004; 

Gunderson & Brown, 2003; Wang, Liu, & Eck, 2004).  However, these efforts rely on 

the use of artificial landscapes to inform agent activities and movement.   

In order to model individuals in a non-artificial environment, an approach is 

needed that combines the strengths of ABM and GIS (Albrecht, 2005; An et al., 2005; 

Brown et al., 2005).  A combined ABM/GIS simulation model integrates the 

advantages of autonomous agents found in agent-based modeling with the spatial 

explicitness of a geographic information system.  This allows agents to interact on 

city streets and their activities during the simulation to be informed by the distribution 

of opportunities for housing, employment, shopping, and recreation across the urban 

 17 
 



 

backcloth.  The result is agent spatial behavior that is more representative of actual 

human behavior than when agents are created with and interact on artificial 

landscapes. 

This research documents the successful implementation of a model of street 

robbery in which agents move on the vector street network and their activity spaces 

reflect the distribution of population, jobs, and retail/services/recreation opportunities.  

The methodology is implemented using Agent Analyst software, an integrated 

ABM/GIS tool.  The GIS component enables the creation of realistic activity spaces 

and the movement of agents along vector street networks, while the ABM controls the 

temporal elements of the simulation and the interaction of agents with one another.  

By combining the two, the situational elements of the convergence of offender and 

victim at a specific place and time are simulated.  The crime of street robbery is a 

natural choice for this type of model because it stems from the interaction of 

individuals in a public area.  In addition, it is an instrumental crime (for economic 

gain), and thus more likely to be the result of a rational decision than an expressive 

crime (Clarke & Cornish, 1985; Walsh, 1986).  The remainder of this paper is 

organized as follows.  First, the theoretical basis for the model is covered and a 

conceptual model presented.  Next the implementation details including model rules 

and input data are provided.  Lastly, the results and the implications for future 

research are discussed. 

2.0 Theoretical Basis for a Street Robbery Model 

Both criminological and geographical knowledge are important to the 

development of a conceptual model of street robbery events.  Opportunity theories of 
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crime, ones that address the elements of the situation in which the offender makes the 

decision to offend, form the basis of the model.1  Specifically, routine activity theory 

(RAT) (Cohen & Felson, 1979) provides the structure of the model and rational 

choice theory (Clarke & Cornish, 1985;2001) is used to guide offender decision 

making.  The structure and timing of agent’s activities and movement along the street 

network is informed by the major theoretical perspectives that address routine activity 

spaces. 

2.1 Criminological Theory 

Cohen and Felson’s (1979) routine activity theory identifies the key to increases 

in crime as the shift of routine activities away from home.  The theorists hypothesize 

that as individuals spend more time away from home, crime will increase.  As 

originally conceptualized, routine activity theory identifies the convergence of 

motivated offender, suitable target, and the lack of a capable guardian at a particular 

place and time as the core elements necessary for a crime to occur.  They emphasize 

that crimes occur when the normal everyday activities of offenders and victims 

intersect with no guardian present. 

The theorists also recognize the importance of routine activities in influences 

when and where victims and offenders converge but they do not directly address the 

details of human mobility.  They view routine activities as the key dynamic element 

in determining aggregate crime rates because it affects the three other elements 

                                                 
1 Space constraints prohibit a detailed examination of extensions to routine activity theory or even 
related opportunity theories pertinent to micro level modeling.  Rational choice theory is addressed 
because it provides for bounded rationality in the decision to offend.  For a complete overview of 
theories and how they inform the criminal event perspective (CEP) please see (Meier, Kennedy, & 
Sacco, 2001).  Several books offer a good overview of opportunity theories (Akers, 2000; Cullen & 
Agnew, 1999; Vold et al., 2002). 
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necessary for a crime, motivated offender, suitable target, and guardianship.  Changes 

in routine activities directly impact the frequency of convergence among these 

elements which in turn, increase or decreases overall crime rates.  Thus, the theorists 

neatly tie the interaction of clearly defined elements of a crime to societal level crime 

rates.  These four elements of offender, target, guardian, and routine activities form 

the main constructs of the model.   

As previously mentioned, routine activity theory pays little attention to the source 

of the offender’s motivation and assumes a supply of motivated offenders.  

Consequently, the model developed here relies on rational choice theory for the 

specifics of offender decision-making (Clarke & Cornish, 1985).  Rational choice 

theory is based on the economic principle of expected utility where each individual’s 

decisions are predicated upon balancing projected benefits against projected costs of 

activities.  The theory does not assume people have perfect knowledge but rather 

recognizes that offenders make the decision to commit a particular offense based on 

the characteristics of the specific situation using bounded rationality (i.e. imperfect 

knowledge) and taking into account three factors:  the suitability of the situation, the 

presence of a viable target and the level of guardianship.  Rational choice theory also 

assumes that offender spatial behavior is essentially similar to that of non-offenders 

so all people in the model who are not police have identical movement rules. 

2.2 Activity Spaces Theory 

One of the core concepts in routine activity theory involves the necessity of the 

convergence of victims and offenders in space and time.  The specific ‘where’ and 

‘when’ of convergence stems from the routine behavior patterns of each actor 
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involved.  Thus representing the spatio-temporal aspects of human behavior that 

facilitate convergence is a critical element in modeling street robbery events since it 

is the interactions between humans and their environment that serve as the source of 

explanation of observed spatial patterns (Aitken, Cutter, Foote, & Sell, 1989; Gold, 

1980; R. G. Golledge & Timmermans, 1990; Timmermans & Golledge, 1990; 

Walmsley & Lewis, 1993). 

A large quantity of research is available to inform agent movement and routine 

activities in the model and that research suggests people tend to have an area within 

which they conduct their daily activities.  Some researchers term this area an activity 

space (Horton & Reynolds, 1971), some call it a potential path area (H. J. Miller, 

1991), and others a domain (Hägerstrand, 1970;1975).  This area encompasses both 

the locations that are visited and the paths taken among those locations.  Different 

perspectives have their own terms for these locations and paths.  Locations that are 

visited are called stations (Hägerstrand, 1970;1975), nodes (Paul Brantingham & 

Brantingham, 1981b; Patricia Brantingham & Brantingham, 1993; Lynch, 1960; H. J. 

Miller, 1991), or anchorpoints (R. Golledge & Stimson, 1997; R. G. Golledge, 1978).  

These are the places where the majority of human interaction occurs.  The particular 

routes taken among the locations are termed paths (Hägerstrand, 1970;1975; Lynch, 

1960).  None of these elements are static, for example, the shape and size of areas 

(i.e. activity spaces) can change as people change jobs (i.e. nodes) or as their 

circumstances change (Hägerstrand, 1970).   

Regardless of the terminology, home tends to be the dominant place in any 

activity space.  Travel tends to be concentrated along certain routinely frequented 

 21 
 



 

paths.  Frequently traveled paths may be important factors in determining aggregate 

crime patterns because they bring offenders and victims together in space and time.  

Individual’s travel patterns are influenced by constraints (i.e., temporal, economic and 

spatial) on their ability to take advantage of opportunities for housing, employment, 

recreation etc   

Together this collection of research provides a strong basis for conceptualizing 

routine activity spaces of individuals as a set of places and the paths between those 

places.  Specifically, agents in the model have four places they visit each day: a 

home, a main node (e.g. work, school, etc.), and at least two other places that are 

visited frequently such as a gym, grocery store, dry cleaner, class etc.  The paths 

taken to travel among the places are structured by the street network.   

2.3 Conceptual Model 

The preceding review of research identifies the basic elements represented in the 

conceptual model (see boxes in Figure 2-1).  The conceptual model identifies two 

classes of people, civilians and police.  Civilians have activity spaces and can take on 

different roles (i.e., offender, victim, or guardian) depending on the particular 

situation.  Police exist only as agents of formal guardianship.  Civilians with criminal 

propensity can potentially take on any one of three roles, offender, victim or guardian.  

Civilians without criminal propensity can be either victims or guardians.  In addition 

to criminal propensity, each civilian in the model has a unique set of characteristics 

that include wealth and employment status.   
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Figure 2-1:  Conceptual Model of Street Robbery 
 

 
 

Two other spatial elements are important to convergence of civilian agents in a 

model of street robbery.  One is the activity spaces of the agents and the other is the 

network of streets available for travel.  The size and form of activity spaces is 

influenced by the distribution of residential housing, jobs, schools, retail and services.  

Each civilian has a unique activity space reflecting the places they visit.  Once 

convergence occurs, factors such as guardianship, and suitability of target are 

considered by the offender when making the decision whether or not to commit a 

robbery.   
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3.0 Research Design 

This section describes a methodology for ‘situating’ simulation models including 

software, data, movement and activity space formulation.  Recent developments in 

technology and increased data availability at the micro-level support this approach to 

modeling individual-level phenomena.  The move to object-oriented architecture 

provides the technical foundation for the integration of GIS and ABM.  Section 3.1 

provides specifics about the software package used to implement the methodology.  

Next, the data used to inform agent movement and the activity spaces of the agents is 

described.  Section 3.3 explains how random and directed movement of agents is 

implemented in the model.  Lastly, section 3.4 gives the details of how agent activity 

spaces are constructed so they reflect the actual distributions of homes, jobs and 

opportunities for retail, recreation, and services. 

3.1 Agent Analyst- GIS/ABM Integration 

The method uses a new software package, Agent Analyst, which integrates GIS 

and ABM to provide a platform for the dynamic modeling of individuals across space 

and time.2   This package follows the middleware approach in which the temporal 

relationships are handled by the ABM software and the topological relationships are 

managed by the GIS (Brown et al., 2005).  Agent Analyst combines two of the most 

popular packages for ABM and GIS, the Recursive Porous Agent Simulation Toolkit 

(Repast) and ArcGIS.  To make the software easier to use, Agent Analyst is built 

using the rapid development version of Repast called Repast for Python Scripting 

                                                 
2 Agent Analyst under development as a partnership between ESRI and Argonne National 
Laboratories; they are the parent companies of ArcGIS and Repast respectively.  Agent Analyst is free 
but currently available by request only.  The website for Repast is http://repast.sourceforge.net/.   
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(RepastPy) which has a graphical user interface that automates much of the 

programming to create the framework of a model.  Agent Analyst is designed to be 

added into ArcGIS as a toolbox.  Once the toolbox is added in ArcGIS, individual 

models can access shapefiles allowing: 1) individual agents to become spatially aware 

and 2) the visualization of agent movement and decision outcomes (e.g. locations of 

crimes).   

The integration of GIS and ABM enables the exploration of how individual 

decisions by heterogeneous agents translate into aggregate rates of street robbery.  

ABM permits the researcher to: 1) collect data about the characteristics of each 

individual present during an interaction; 2) randomly assign characteristics to agents 

greatly reducing the possibility of systematic bias; 3) allow agents to make 

independent decisions within behavioral guidelines; and 4) systematically vary one 

attribute while holding all others constant to undertake controlled, repeatable 

experiments (Dibble, 2003; Epstein & Axtell, 1996; Gilbert & Terna, 1999).  GIS 

makes it possible to take into account how the characteristics of the real environment 

(i.e. street network, distribution of homes, jobs and activities) impact the activity 

spaces of agents.  In addition, it provides the ability explore the role of routine 

activities in facilitating the space-time convergence of a motivated offender and a 

suitable target, without a capable guardian present. 

3.1 Data 

The initial implementation of the model is situated in Seattle, Washington which 

provides the data for the model landscape and the agent activity spaces.  Four input 

datasets describing conditions in Seattle are used to inform the activity spaces of 
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agents in the model: 1) total population; 2) total employment; 3) total potential 

activities; and 4) streets.  Blockgroup level population figures are used to describe the 

distribution of residences across Seattle (U.S. Census Bureau, 2000).  Employment 

data are used to describe the number of employees per zip code area (U.S. Census 

Bureau, 2002).  The 18,024 potential activity locations are identified through the use 

of retail and service establishments (e.g. grocery stores, convenience stores, dry 

cleaners, gyms etc.) (ESRI, 2003).  The street network, derived from the King County 

Street Network Database (SND) file, is used to structure agent travel. 

In addition to the input data describing Seattle, twelve parameters are set prior to 

the model run.  The rationale for their initial settings is described in detail in Table 2-

1.  Random number seeds are a unique type of parameter used in the model; they 

provide the ability to replicate the model behavior over subsequent runs and are 

essential to using simulation as a laboratory for experimentation (Axelrod, 

Forthcoming). 
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Table 2-1:  Parameters in the Model 
Variable Rationale 

Society Level  

Number of Agents = 1000 
 

Represents a balance between ensuring there are enough 
agents so that interactions can occur and the computational 
overhead from using more agents 

Number of Police = 200 
 

Chosen to ensure that police agents would be present at some 
of the convergences that occur across the 16,035 places in 
Seattle. 

Unemployment Rate = 6% 
 

The unemployment rate of six percent is based on the 2002 
unemployment rate for Seattle (Bureau of Labor Statistics, 
2003).3

Rate of Criminal Propensity 
= 20% 

Given that 20% of the population has committed a crime, 20% 
of civilians are assigned criminal propensity using a uniform 
distribution (Visher & Roth, 1986). 

Time To ReOffend = 60 
 

Parameter value chosen as a starting point since the author 
could find no empirical data on which to base time to 
reoffend.. 

Random Number Seed = 
100 (seed also tested at 200, 
300, 400 and 500) 
 

An explicit random number seed based on the Mersenne 
Twister (MT) algorithm is used as the basis for all random 
number distributions used in the model.  MT is currently 
considered to be the most robust in the industry (Ropella, 
Railsback, & Jackson, 2002). 

Agent Level  

Societal Time Spent Away 
From Home = 30% (40%, 
50%, 60%, 70%) 

Assigned based on a normal distribution with a mean of 432 
minutes (for the 30% condition) and a standard deviation of 
10% of the mean (sd = 43).4

Initial Wealth = 50 
 

Initial wealth is assigned with a mean of 50 and a standard 
deviation of 20 units. 

Amount of wealth received 
each payday = 5 

No empirical evidence available. 

Amount of wealth 
exchanged during robbery=1 

No empirical evidence available.5  

Situation Level  

Guardianship Perception = 
U(-2,2) 
 

The guardianship perception value can add or subtract zero, 
one or two guardians from the actual number present.  This 
represents the stochastic element in the offender’s perception 
of the willingness of a guardian to intervene. 

Suitable Target Perception = 
U(-1,1) 

The value in suitable target can increase or decrease the 
suitability or leave it unchanged.  This enables the offender to 
sometimes decide a target is not suitable even when they have 
more wealth. 

                                                 
3 Since the jobs data are from 2002, the corresponding year’s unemployment rate is used. 
4 In Groff (Forthcoming-a) the time spent away from home is systematically varied to test the core 
proposition of routine activity that as time spent away from home increases crime will increase. 
5 A request to the Seattle Police Department for the average amount of cash taken during street 
robberies remains unanswered. 
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The outcome data from the simulation are collected for individual civilians, street 

nodes/places and for the society as a whole (Table 2-2).  Data are collected at 

intervals during the model and at the completion of each model run.  These data are 

written to two types of files, text files and shapefiles.  In a simulation model, the 

modeler controls the data that are collected and how frequently they are written to a 

file.  There is a computational cost each time the program writes to a file that must be 

balanced with the need for information about the model run.   
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Table 2-2:  Outcome Data from Model 

Variable Name Description Level of 
Measurement 

Societal-level Outcome   
TotRob Total number of robberies Ratio 
RobRate Average number of robberies per 

population 
Ratio 

TotConverge Total number of convergences (i.e. 
situations with a motivated offender 
and one or more ‘at risk’ civilians) 

Ratio 

TotDeterred Total number of robberies deterred by 
a cop’s presence 

Ratio 

TotOffenders Total number of civilians with criminal 
propensity that commit a robbery 

Ratio 

TotVictims Total number of civilians who are 
victims of street robbery 

Ratio 

TotRepeatVictims Total number of civilians who are 
repeat victims of street robbery 

Ratio 

AveAwayTime Average amount of time agents spend 
away from home 

Ratio 

   
Individual-level Process   
AwayTime Total time spent away from home Ratio 
TotOff Total robberies committed Ratio 
TotVict Total times robbed Ratio 
Criminal Propensity Presence or absence of criminal 

propensity 
Dummy 

WealthBegin Beginning amount of wealth Ratio 
WealthEnd Ending amount of wealth Ratio 
   
Place-level Process   
TotRobPlace Total number of robberies Ratio 
TotVisits Total number of times an agent 

stopped 
Ratio 

TotalNodeswRob Total number of street nodes that had a 
robbery 

Ratio 

TotNodeswMultRob Total number of street nodes that had 
more than one robbery 

Ratio 

MeanRobPlace Mean robberies per street node Ratio 
MeanVisitsPlace Mean visits per street node Ratio 
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3.3 Achieving Agent Movement in the Model 

Two types of agent movement are implemented in the model, random and 

directed (i.e. among a predefined set of locations).  These two types of movement 

require different strategies for implementation but both rely on street nodes rather 

than streets.  This unconventional strategy is necessary because Agent Analyst does 

not support connections to a geodatabase or a network dataset, the two data structures 

which enable routing in ArcGIS.  Consequently, there can be no dynamic routing of 

directed agent travel within Agent Analyst.  The alternative strategy implemented 

here uses GIS to convert the street intersections to a node layer.  An additional benefit 

of this strategy is that it allows dynamic agent movement to be implemented within 

Agent Analyst. 

Directed movement in the model is the more complex type of movement and 

requires the definition of activity spaces for the agents before running the model.  

Activity spaces consist of four activity nodes and a list of path nodes.  The list of path 

nodes describes the complete set of nodes to be traversed to visit all four activity 

nodes.  Movement takes place from street intersection/node to a connected street 

intersection/node (hereafter referred to as street nodes).  Since routing in ArcGIS uses 

the streets, identifying the street nodes that are traversed in the course of visiting all 

four activity nodes required the creation of a custom program.6  The output of the 

program provides a list of street nodes that are traversed while traveling the shortest 

path among the activity nodes.  Civilian agents in the model always travel among 

their activity nodes in the same order each day (i.e. home, main, activity one, activity 
                                                 
6  The custom program was created in Visual Basic and added to the ArcGIS 9.1 session to identify the 
street nodes traversed by each agent.  The author gratefully acknowledges the assistance of Mary Jo 
Fraley who wrote the code and is making it available via the author. 
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two).  They always start and end a model day at their home.  As seen in left panel of 

Figure 2-2, directed agent movement occurs from node to node along a pre-defined 

path.  In the example, the agent starts at home and moves to node 107.  From there 

the agent moves to 110, 122 and so on.   

Figure 2-2:  Movement in the Model 

 

In addition to the directed movement by civilians going about their daily 

activities, dynamic random movement is also implemented in the model.  Random 

movement is used by the police agents in all three versions and by the civilians in two 

versions of the model.  Implementing random movement of civilians enables the 

comparison of outcomes to those from a model in which the civilians have directed 

movement.   

Random movement is implemented in the model through a two-step process, 

identification of neighboring nodes and random selection of the target node.  As part 
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of the preprocessing of data done before running the model, a set of adjacent nodes is 

identified for each node and written to a file.  The creation of this file is achieved 

through a series of topological queries (i.e. select node, select streets adjacent to 

selected node, select nodes that intersect selected streets).  In this way, a file of 

neighboring nodes is created for each travel node and then used as the basis for 

random movement.   

When traveling in a random fashion, the agents follow a ‘random walk’ where the 

agents move one randomly chosen node each minute of the model (Chaitin, 1990).  

The current location of each agent is associated with a street node.  During the model 

run, the file of node neighbors is used by each agent as they travel.  The right panel of 

Figure 2-2 shows a simplified travel movement.  The agent is at node 134 and could 

potentially move to any of the following nodes: 102, 120, 121, or 133.  A uniform 

random number is generated giving each node an equal chance of being selected.  The 

agent then moves to the selected node and the cycle repeats. 

3.4 Creating Activity Spaces for Civilians in the Model 

As discussed earlier, theory from both geography and criminology holds that the 

travel behavior of individuals is influenced by the street network, the specific 

locations at which opportunities for employment, recreation, retail and services exist, 

and the distance among those locations.  The temporal schedule (i.e. the amount of 

time spent at each activity) is affected by the distances between the activities and the 

speed of travel.  The more time spent traveling the less is available to spend at an 

activity.  The complete process of developing agent activity spaces is detailed in 

Figure 2-3 which also describes the entire data flow from input through output.     
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Figure 2-3:  Data Inputs/Outputs Related to Agent Activity and Outcome Data 

 
However, before the activity spaces for the civilian agents can be created the 

locations of the street nodes have to be linked to the polygon layers.  The process 

begins by using GIS to create a layer of street nodes and assign area identifiers (e.g. 

blockgroup or zip codes) to each street node (e.g., street node 1 is in blockgroup 201).  

In stage 2, the distribution of homes, jobs and retail/service/recreation activities 

across Seattle is calculated.  These distributions are then used to assign agent homes, 

jobs and activities in the same proportion as they are found in Seattle (e.g. if 10% of 

the population lives in a particular blockgroup then 10% of the agents are assigned to 

that blockgroup).  This process produces two files; one file contains the activity node 

number and the blockgroup in which it is located and the other file contains the 
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blockgroup and number of agents to be assigned a home node from that blockgroup.  

The same basic methodology is then repeated to assign work places and activities.   

Stage three uses the two files just described in a java program that randomly 

selects and assigns agent homes, work places, and activities in the same proportion as 

they are found in Seattle.  Each agent’s four activity nodes are selected representing a 

home node, main node (e.g., work, school etc.), and two additional activity nodes 

(e.g., retail stores, gym, coffee shop).  Two thousand files path files are written out; 

one for each agent when employed and another for each agent when unemployed.   

The final stage in creating directed movement paths involves finding the shortest 

path among the nodes.  As previously mentioned, the shortest path among the activity 

nodes is calculated using ArcGIS Network Analyst via a custom Visual Basic 

program that generates a list of nodes that are traversed while traveling the shortest 

path and writes them out to agent path files.  Two paths are created for each agent; 

one describes their activity space when employed and the other when unemployed.  

Three of the four nodes remain the same between the two activity spaces, home, 

recreation node 1 and recreation node 2; only the main node changes.  When 

employed, the agents’ main node is assigned in the same proportion as employment; 

when unemployed it is assigned from the distribution of activities in Seattle.  The 

4,000 output files describing the activity nodes (N=2000) and activity paths (N=2000) 

for each agent are then ready to be used to define directed civilian agent movement in 

the model. 

At this point, a temporal schedule is assigned within the street model using the 

following steps.  First, the time spent at home is randomly assigned to each agent so 
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that the societal average matches the average for the experimental condition being 

tested.  Next the number of nodes traversed is counted and subtracted from the total 

time away from home.  The larger the geographic extent of an individual’s activity 

nodes the greater the time required to travel among them.  The remaining time is 

randomly allocated to the Main, Activity 1 and Activity 2.  Because of the large size 

of some of the agent activity spaces, the agents must travel more than one node each 

turn in order visit each activity node and make it back home in one day.  The number 

of nodes traveled per turn is determined via a random normal distribution (mean = 6, 

sd = 1). 

4.0 Implementation Model 

This section explains how the conceptual model of street robbery is implemented 

in three progressively more complex versions using ABM and GIS and based on GIS 

data describing Seattle (Table 2-3).  The simplest version called Simple, has agents 

move along a real street network but does not incorporate the notion of routine 

activity spaces (temporal or spatio-temporal).  The Temporal version has agents with 

random movement and a temporal schedule while in the Activity Space version 

agents have a spatio-temporal schedule with defined movement patterns that are 

based on the activity spaces developed earlier.  The offender’s decision making 

process is identical for all three versions of the model. 
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Table 2-3:  Implementation Versions of the Conceptual Street Robbery Model 

 Simple Temporal Activity Space 

Civilian Movement Random Random Defined Activity 

Space 

Police Movement Random Random Random 

Civilian 

Characteristics 

   

Criminal Propensity Yes Yes Yes 

Wealth Yes Yes Yes 

Activity Space No Temporal 

schedule 

Spatio-temporal 

Multi-faceted Risk 

Status 

No Yes Yes 

Employment Status No Yes Yes 

 

4.1 Overview of the Landscape and the People in the Model 

The model of street robbery is based on the core elements of routine activity 

theory (RAT): a motivated offender, a suitable target, and the lack of a capable 

guardian.  The size, shape and timing of the routine activity spaces developed in 

section three are important in determining the frequency with which those elements 

converge in space-time.  These concepts form the basis for three of the agent classes 

in the model: place, civilian and police officer (Figure 2-4).  The fourth class consists 

of the active nodes and is used to keep track of the street nodes where there are 

agents.  The rest of this section describes each of the four major components of the 

model: landscape, people, activity spaces, and model behavior.   
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Figure 2-4:  Classes in the Street Robbery Model 

 
The city of Seattle is used as the basis for the landscape in all three versions of the 

street robbery model.  One function of the landscape is to provide information on the 

distribution of population, jobs, and service/retail opportunities across Seattle.  The 

other is to realistically structure the movement patterns of both civilians and police.  

Two classes in the model have to do with the landscape, places and active nodes.  The 

place class of agents in the model represents all 16,035 street nodes.  Each place has 

attributes that are updated during the model run (e.g. total robberies, total visits etc).  

Places, as the lone vector agents, are directly linked to a shapefile representing street 

intersections and provide the only mechanism for visualization of the model while it 

is running and after the completion of a model year.7  The active node class is 

                                                 
7 There are two types of agents in RepastPy GIS Model, vector and generic.  Vector agents are 
associated with a shapefile and can thus be displayed on a map while generic agents cannot. 
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generic, and serves as a computational device to identify which nodes have agents on 

them at each tick of the model.  It is dynamic and changes with each minute of the 

model.  The active node class improves the performance of the model by restricting 

the set of places that have to be checked each minute of the model. 

Two agent classes operationalize people in the model, civilian and police.  The 

civilian class represents the general population of Seattle.  The three roles that people 

can take on during a crime event are encompassed in the civilian agent class; civilians 

can be offenders, targets, or agents of informal guardianship.  The particular role a 

civilian agent takes is driven by their characteristics and the contextual dynamics of 

the specific interaction.  Police are the agents of formal guardianship.  Both police 

and civilian agents are assigned a type of movement that is static over a particular 

model run.  Only civilians have additional attributes that are used in the model.   

Police agents have only one role, that of a formal guardian.  In the model, the 

presence of a police agent prevents a crime from occurring.  At the start of the 

simulation, police agents are randomly distributed across the nodes.  To accomplish 

their mission of crime prevention police agents follow a ‘random walk’ movement 

pattern in which they move one node at a time and only to an adjacent node.  Police 

never commit crimes in this model and they are never targets.   

Civilian agents are randomly distributed across the nodes in the Simple and 

Temporal versions but in the Activity Space model civilians begin each day at an 

assigned home node.  Regardless of version, the civilian agents in the model are 

assigned three characteristics that are integral to the decision to commit a street 

robbery: 1) a time to spend at home; 2) criminal propensity; and 3) wealth.  In the 
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Temporal and Activity Space models agents also have an employment status.  The 

final characteristic of agents is their mode of movement and accompanying temporal 

schedule which vary by version of the model; totally random, temporal only with 

random movement or spatio-temporal (these were discussed in section 4.0).  Some 

background on each of the roles (i.e., offender, target and guardian) and how they are 

incorporated into the model is provided next.   

All civilian agents are assigned a time to spend at home that is static over a model 

run.  In the Simple model, civilians are either at home or not at home.  When not at 

home, agents move along the street network as described in the earlier section on 

random movement.  Civilians in the Temporal and Activity Space models share the 

same temporal schedule for activities and travel.  They have attributes describing the 

time to spend at home, a main activity and two other activities.  Civilians in the 

Activity Space model have places at which those activities occur.  When not at home, 

civilians in the Temporal version travel randomly and those in the Activity Space 

version follow the shortest path among their activity nodes.   

Criminal propensity is used to differentiate agents who evaluate situations and 

make the decision to offend from all other agents in the model.  In all other ways, 

civilians with criminal propensity are exactly the same as those without.  While only 

agents with criminal propensity can make the decision to offend, it is the particular 

constellation of individual and situational factors that determines whether a crime is 

committed.  In this way, patterns of offending and victimization are allowed to 

emerge from decisions made by individuals in particular contexts.   
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The additional characteristic of employment status is added to civilian agents in 

the Temporal and Activity Space versions of the model.  This characteristic has two 

important impacts in those versions of the model.  First, it changes the relative 

amount of time spent at the three activity nodes (but not the overall time spent away 

from home).  In the Activity Space version, a change in employment status also 

changes the activity nodes that are visited by the affected agents.  Incorporating this 

characteristic enables the model to reflect the impact that employment status has on 

the temporal and spatial aspects of routine activity schedules.  Second, employment 

status impacts the wealth of the civilian agents.  Those who are employed receive 

regular but static infusion of wealth every two weeks over the model year.  Civilians 

who are unemployed do not get paid.  Every month, three percent of unemployed 

agents become employed and are replaced by a new random selection of employed 

agents who become unemployed.  It is important to note that the employment status is 

assigned independently of the criminal propensity indicator; civilians with criminal 

propensity can be employed in the model, as they are in life. 

As noted earlier, the built environment influences the structure of routine 

activities.  The structure of routine activities, in turn, impacts the convergence of 

offenders, targets, and guardians at places.  The interaction among civilians and 

police in the model takes place in the particular situational context existing at places 

(Carlstein & Thrift, 1978; Meier et al., 2001; R. J. Sampson, 1993).  The three 

versions of the model implement different activity spaces for civilian agents.  In the 

Simple model, civilian agents are assigned only a time to spend at home.  All agents 

begin at home and then travel randomly until the end of the day.  Their next day 
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begins at the node where the previous one ended.  Since they are at risk of being 

robbed whenever they are not at home, civilians in the random model have the 

highest level of risk. 

The Temporal and Activity Space versions of the model incorporate a more 

complex notion of activity space and risk.  In these versions of the model, civilian 

agents are not at risk when they are at home or at work; only when they are at other 

activities or traveling.  This representation of risk is in keeping with the crime being 

studied.  By definition, street robbery happens only on the street or in public places; 

not in a home or inside a workplace.   

Civilian agents in the Temporal version spend the same amount of time at the four 

activity nodes and in travel as their corresponding civilians in the Activity Space 

version but they travel randomly.  Only the Activity Space version uses the pre-

defined activity spaces that reflect the distribution of activity places in Seattle.   

The following describes general model behavior.  Each tick corresponds to one 

minute of time, and each minute the nodes with an agent present are evaluated.  

Active nodes meeting the three criteria continue to be evaluated:  1) no police present, 

2) at least two civilians present and 3) at least one of the civilians must have criminal 

propensity.  First an active offender agent is selected from the agents at the active 

node.  If there is only one offender at the node, they automatically become the active 

offender.  Otherwise, the active offender is randomly selected from the list of agents 

with criminal propensity who are at the node.  Random selection is necessary to 

ensure the same agent is not selected to be active each time the model is run.  

Offender agents who are not selected are at risk of becoming victims.  Once the active 
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offender at each of the active nodes evaluates their situation, all agents move and the 

decision structure repeats. 

5.0 Results of Implementing a Model in Agent Analyst 

The successful implementation of a theoretically-based, geographically-aware 

model of street robbery documented here capitalizes on the recent development of 

Agent Analyst to enable agent movement along real street networks.  It also 

demonstrates how realistic activity spaces can be developed from the distribution of 

land use in a city.  These advances allow a simulation model to be ‘situated’ on an 

existent rather than an artificial landscape and in doing so provide a more realistic 

context to the model.   

The versions of the model implement two types of movement along a street 

network, random and directed.  Both implementations ‘situate’ simulated interactions 

by structuring potential movement based on a street network.  The random movement 

offers the ability to have agents move along an existing street network rather than in 

abstract grid space or along linked grids to mimic a street network.  Thus researchers 

can use a street network directly without having to convert the network to a grid for 

use in a simulation model.   

Although this is a significant advance, there are two drawbacks to the current 

implementation of random movement.  First, the random selection of the next node is 

done from a list that only considers adjacent nodes.  Thus, agents are limited to 

moving only one node per minute.  In addition, there is no prohibition against 

backtracking by agents.  The same node that an agent just came from is included in 

the list of adjacent nodes for the current node which means it can be selected as the 
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goal node.  Together these implementation decisions may lead to smaller, less 

realistic activity spaces for agents that are moving randomly.  Future implementations 

should consider giving agents who are moving randomly, the same ability to move 

more than one node as the agents who have directed movement. 

The directed movement allows agents to move purposefully among a set of 

locations.  These locations can represent home, work, school, shopping, service, 

and/or recreation places.  Directed movement serves as the basis for spatial activity 

spaces by enabling agent travel among a set of predetermined locations that are 

visited daily. 

The creation of activity spaces also is an important step forward in situating 

simulation.  The model versions implemented here will provide the basis for 

systematic experiments testing how a random schedule of activity, can be compared 

to one with temporal constraints and one with spatio-temporal constraints.  Thus the 

impact of time can be tested separately from the impact of space.  Although this 

model implements only simplified versions of activity spaces, the methodology 

provides a guide for future research to extend. 

6.0 Conclusions 

This paper details a new methodology for ‘situating’ simulation.  It makes use of 

a recently released software tool that integrates GIS and ABM.  The result is a 

package that combines the individual-level modeling capabilities of an ABM with the 

spatial analysis capabilities of a GIS and in doing so situates simulated agents within 

an empirical context.  A methodology for enabling agent movement on a street 

network and creating geographically informed activity spaces is detailed and provides 
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the foundation for the development of three versions of a model of street robbery 

events.  

This implementation of a street robbery model has important implications for the 

use of simulation to elaborate theory (Albrecht, 2005; J. Eck, 2005) and to conduct 

experiments (Dowling, 1999; Schultz & Sullivan, 1972).  Previous attempts to test 

routine activity theory, although generally supportive, have produced mixed results 

(Kennedy & Forde, 1990; Messner & Blau, 1987; Miethe & McDowall, 1993; R. 

Sampson, J. & Lauritsen, 1990).  None of those tests were able to sufficiently address 

the spatio-temporal structure of routine activities, satisfactorily deal with 

measurement issues or effectively capture the dynamic nature of interactions at the 

micro level.  The methodology and model implemented here address all three of those 

issues.  In addition, agent based software allows single aspects of the behaviors of 

agents to be manipulated while all others are held constant.  This capability is used to 

conduct controlled experiments to test the core axioms of routine activity theory 

(Groff, Forthcoming-a) and to separate the effects of space and time on the 

convergence of the elements necessary for a street robbery to occur (Groff, 

Manuscript available from author). 

The choice of parameter values is a critical aspect of all models that deserves 

special attention because it impacts the external validity of the model by 

compromising the parameter validity; the measure of how well the parameter values 

used in the model matched reality (Carley, 1996).  As noted in the data section, this 

research made every attempt to use realistic model parameter values.  However, in 

some cases there was no evidence available and in others a simplified representation 
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was chosen to establish a baseline (e.g. wealth distribution) (Axelrod, Forthcoming; 

Epstein & Axtell, 1996).  In these cases, the validity of the parameters is unconfirmed 

and their impact on the model results needs to be thoroughly tested via systematic 

sensitivity tests. 

On the whole, the methodology presented here is relatively straightforward and 

establishes a foundation for further more complex explorations of agent movement 

and activity spaces.  In the case of agent movement, one enhancement would be to 

take into account barriers.  For example, in the case of police, they typically are 

assigned to patrol within designated areas.  Subsequent implementations could make 

use of those types of barriers and in doing so provide a step toward more realistic 

police agent behavior.  Barriers are also important to civilians and may be physical 

(e.g. streams, limited access highways) and/or perceptual (e.g. edges of 

neighborhoods etc.).  Another enhancement would be to use speed limits and one-way 

streets in the development of the routes among activity places. 

The future use of this methodology is both facilitated and limited by the software 

packages available for implementation.  Currently, Agent Analyst offers a unique 

opportunity and some challenges to ‘situating simulation’.  Since it is still under 

development, its ultimate form is still evolving so all these statements apply to the 

beta version only.  On the plus side, Agent Analyst offers the most straightforward 

option for non-programmers who are interested in developing their own spatially-

aware models.  It unburdens the new programmer from the numerous details involved 

in developing the model framework and learning the syntax of java.  On the minus 

side, the current version is only able to read shapefiles, not the network data sets that 

 45 
 



 

would enable dynamic routing.  In addition, the debugging tools are extremely 

limited.  Finally, would-be modelers must become familiar with a unique subset of 

Python syntax and any Java classes that are used.  Addressing these issues would 

decrease the difficulty of programming models, speed development time, and increase 

the realism of agent travel and activity spaces in the models.   
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Chapter 3 Simulation for Theory Testing and Experimentation 

1.0 Introduction 

Achieving a better understanding of crime events in their spatio-temporal context 

is an important research area in criminology with major implications for making 

better policies and developing effective crime prevention strategies.  Theoretical 

advances under the rubric of opportunity theory have highlighted benefits of a shift in 

focus from the criminal motivation of people to the contexts in which crime events 

occur (Paul Brantingham & Brantingham, 1981a; J. E. Eck & Weisburd, 1995; D. L. 

Weisburd, 2002).  Because these approaches focus on the crime event and not the 

intrinsic motivations of the actors, they produce concrete and immediate strategies for 

both policy and practice (Akers, 2000; Cullen & Agnew, 1999; Felson, 1987; Vold et 

al., 2002).  Implementation of these strategies holds the promise of quick and 

measurable reductions in crime rates.   

Routine activity theory (RAT) (Cohen & Felson, 1979), in particular, has received 

a great deal of attention and its crime reduction potential is widely recognized.8  

Accordingly, there have been many attempts over the last twenty-five years to 

empirically validate routine activity theory.  Despite applying a variety of 

methodologies, these studies have produced inconsistent support for the theory.  Their 

                                                 
8 Environmental criminology is another important theory that emphasizes place characteristics and 
offender travel in the convergence of victims and offenders in space-time (Paul Brantingham & 
Brantingham, 1991 [1981]; P. J. Brantingham & Brantingham, 1978).  Other theories relevant to micro 
level modeling include lifestyle theory (Hindelang, Gottfredson, & Garofalo, 1978) and the criminal 
event perspective (CEP) (Meier et al., 2001).  However, the need to focus on one theory for the initial 
model precludes a full examination of these theories.  Three books on the theoretical foundations of 
criminology offer a more complete overview of opportunity theories (Akers, 2000; Cullen & Agnew, 
1999; Vold et al., 2002). 
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shortcomings stem from the lack of: 1) individual-level data, and 2) flexible modeling 

tools.   

This research demonstrates a new approach to testing routine activity theory 

(Cohen & Felson, 1979) using simulation modeling.  The assumptions of routine 

activity theory are operationalized and implemented in a model of street robbery 

events.  The crime of street robbery is a natural choice for this type of model because 

it involves the interaction of individuals in a public area (e.g. street, parking lot, 

recreational area etc.).  In addition, it is an instrumental crime (for economic gain), 

and thus more likely to be the result of a rational decision than an expressive crime 

(e.g. assault) (Clarke & Cornish, 1985; Walsh, 1986). 

The model findings provide strong evidence for the plausibility of routine activity 

theory’s core proposition; as individuals spend more time away from home, the 

number of street robberies will increase.  Analysis of the spatial patterns of street 

robberies reveals a clustered distribution that becomes more dispersed as time away 

from home increases since individuals have more time to travel farther from home.  

In addition, locations that have a high incidence of robbery when society, as a whole, 

is spending less time away from home remain high density locations as society 

spends more time away from home.   

The following sections provide the rationale and methodology for constructing 

simulation models based on theory.  Section 2 discusses previous tests of routine 

activity theory and provides an introduction to simulation as an alternative 

methodology.  The criminological concepts that underpin the model are identified in 

section 3.  Although routine activity theory is the focus of this research, rational 
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choice theory contributes concepts important to the rules that guide offender decision-

making.  Section 4 provides a description of how those constructs are implemented in 

an agent-based modeling (ABM)/geographic information systems (GIS) framework.  

The analysis strategy and findings are detailed in Sections 5 and 6.  The final sections 

discuss the findings and implications for future research. 

2.0 Meeting the Challenges Encountered by Previous Research 

A wide variety of studies have attempted to validate routine activity theory.  Some 

have employed macro-level data to approximate the construct of routine activities 

(Cohen, 1981; Messner & Blau, 1987; Miethe, Hughes, & McDowall, 1991).  Others 

have relied on survey data collected from individuals (Miethe, Stafford, & Long, 

1987; Osgood, Wilson, O'Malley, Bachman, & Johnston, 1996), and still others have 

combined micro- and macro-level variables to represent routine activities within a 

social structure (Cohen, Kluegel, & Land, 1981; Kennedy & Forde, 1990; Miethe & 

McDowall, 1993; Rountree & Land, 1996; R. Sampson, J. & Lauritsen, 1990; R. J. 

Sampson & Wooldredge, 1987).  As mentioned earlier, these studies have found 

inconsistent support for the theory.  However, the studies suffer from three main 

shortcomings: 1) failure to consider the spatio-temporal structure of routine activities, 

2) measurement issues, and 3) the inability to represent patterns emerging from 

individual-level interactions.  These issues are addressed in more detail next. 

Although the importance of spatio-temporal elements in routine activities is often 

acknowledged, the spatial structure and timing of these activities has been widely 
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overlooked.9  Indeed none of these studies incorporated the dynamic, spatio-temporal 

interaction of offenders, victims, and potential guardians at the micro level; an 

omission that was most likely driven by a lack of data.  In a commendable effort, two 

studies attempted to address these issues through the inclusion of gross measures to 

capture the timing of routine activity (e.g., breaking out daytime from nighttime 

activities) (Kennedy & Forde, 1990; Miethe & McDowall, 1993).  However, the 

spatio-temporal structure of routine activities is a core component of routine activity 

theory and must be more comprehensively measured if its role in the convergence of 

offenders and targets is to be better understood.   

A variety of measurement issues arise when attempting to test routine activity 

theory (Cohen et al., 1981; Miethe et al., 1991; R. J. Sampson & Wooldredge, 1987).  

As Bursik and Grasmick note “it has been notoriously difficult to collect reliable and 

valid indicators of its central components” (1993 77).  Other measurement issues 

include:  ecological fallacy; overlapping operationalization of constructs; difficulty 

with adequately measuring the construct of routine activities; and a reliance on 

official data and victimization surveys that have widely-recognized flaws.  When tests 

are done using macro-level data, they are susceptible to the ecological fallacy which 

states that the characteristics of an area cannot necessarily be inferred to individuals.  

Consequently, macro-level data are generally unsuitable for testing a micro-level 

theory such as routine activity (J. E. Eck, 1995a).   

Regardless of the level of analysis, all studies have struggled with measuring the 

construct of routine activities as isolated from other constructs being measured.  This 

                                                 
9  Two studies (Miethe & McDowall, 1993; R. J. Sampson & Wooldredge, 1987) emphasized how 
opportunity structure changed across areas but neither measured how the spatio-temporal structure of 
routine activities impacted the observed distribution of crime. 
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problem is related to general issues that have arisen when attempting to clearly link 

empirically measured variables to particular constructs (e.g., single person households 

are associated with less informal social control and with less guardianship) (Cohen et 

al., 1981; Miethe et al., 1991).  These issues make it difficult to test the theory 

because data issues rather than theoretical ones can be employed to dispute contrary 

evidence (Miethe et al., 1991; Miethe et al., 1987).  In addition, the reliance on 

official data and victimization surveys, which have widely-recognized flaws, makes 

conclusions drawn from studies using those sources susceptible to the usual caveats 

(Gove, Hughes, & Geerken, 1985).   

Finally, all of the previous tests reviewed here suffer from the inability to 

adequately model the complex and dynamic interactions of individuals that produce 

observed crime patterns.  Routine activity theory is essentially a micro-level theory 

with macro-level implications; it characterizes crime patterns as resulting from the 

decisions of individuals made in the context of a particular situation (J. E. Eck, 

1995a).  The methods of previous studies were simply not able to accommodate the 

complex, non-linear nature of constantly changing individual-level interactions and 

the manner in which crime patterns emerge from those interactions (Liu et al., 2005).   

2.1 A New Approach for Modeling Crime Events and Crime Patterns 

Simulation modeling offers an alternative method for capturing the dynamic 

interactions among individuals taking place at the micro level and their relationship to 

macro level patterns.  Some researchers view simulation as a third way of conducting 

social science research in addition to the more traditional verbal and 

mathematical/statistical representation of theories (Gilbert & Terna, 1999; Ostrom, 
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1988).  In this tradition, simulation allows for the exploration and elaboration of 

theory (Dowling, 1999; J. Eck, 2005; O'Sullivan, 2004a).  Like other modeling 

approaches, simulation modeling involves the creation of a simplified representation 

of a social phenomenon (Gilbert & Terna, 1999).  The most familiar type of model is 

a statistical one (e.g., a regression model) in which input data are ‘run’ via a statistical 

program and values are output that describe the relationships among the input data.  

In contrast, simulation models are themselves computer programs that incorporate the 

critical aspects of the social phenomenon being modeled.  The program is run and the 

output data are analyzed, often via standard statistical techniques.  Simulation 

modeling has two main advantages over statistical models.  It allows heterogeneity 

among individuals that more closely approximates the variety found in everyday life 

and is able to accommodate the non-linear relationships present in dynamic and 

complex interactions (Dibble, 2003; Epstein & Axtell, 1996; Gilbert & Terna, 1999). 

Agent-based modeling (ABM) is one type of simulation.  ABM employs a 

bottom-up approach; agents are imbued with unique characteristics and general 

behavioral rules and macro-level patterns emerge from their interactions (Epstein & 

Axtell, 1996; Gilbert & Troitzsch, 1999).  An agent “can be thought of as an 

autonomous, goal-directed software entity” (O'Sullivan & Haklay, 2000 13).  Agents 

most often represent people but can also correspond to organizations, neighborhoods, 

governments etc.  The characteristics of agents can be randomly assigned so that 

specific societal averages are produced and the possibility of systematic bias is all but 

eliminated.  Individual agents in the model interact with each other based on a set of 

decision rules.  Their characteristics are dynamically changed as a result of those 
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interactions.  Traditionally, agents interact in an artificial world, although the value of 

leveraging GIS data to provide a ‘real’ landscape is gaining recognition since 

artificial landscapes do not take into account the impact of the environment on agent 

behavior (Brown et al., 2005; O'Sullivan & Haklay, 2000).   

Additional scientific rigor is achieved when simulation models are implemented 

within a computational laboratory framework (Dibble, 2003;2006; Epstein & Axtell, 

1996; Gilbert & Terna, 1999; Macy & Willer, 2002).10  Computational laboratories 

enable experiments to be conducted and replicated.  Aspects of the agents, society, 

and the landscape can be held constant or systematically varied in order to provide a 

level of control impossible to attain using traditional social science methods.  These 

characteristics of computational laboratories facilitate the creation of a variety of 

simulated experiments, featuring different conditions or applying various prevention 

scenarios, which are then evaluated.  An added advantage is that compared to 

empirical research, simulations have minimal cost.   

Recently, a small body of research has emerged that makes use of simulation 

models to explore crime-related issues.  Work by Epstein, Steinbruner and Parker 

(2001) on civil violence and Wilhite (2001) on protection and social order provide 

interesting approaches to modeling how the interactions of individual agents are 

related to emerging patterns of violence or protection.  Within criminology, work has 

begun on conceptualizing the application of simulation in environmental criminology 

(P. L. Brantingham & Brantingham, 2004; P. L. Brantingham & Groff, 2004) and 

explaining crime patterns (J. Eck, 2005).  ABM is being applied to study both 

                                                 
10 The term computational laboratory refers to the software tools to create and evaluate models 
through systematic experimentation and descriptive analysis of output data (Dibble, 2003;2006; 
Epstein & Axtell, 1996; Gilbert & Terna, 1999).   
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physical and cyber crime (Gunderson & Brown, 2003), and some researchers are 

combining ABM with other technologies.  One example implements a general model 

of crime on a GIS-based raster grid (Wang et al., 2004).  Another study, based on 

routine activity theory, employs cellular automata to study street robbery in one 

neighborhood (Liu et al., 2005).  Rather than offering competing paradigms, these 

approaches represent a healthy variety of complementary approaches (J. E. Eck & 

Liu, 2004). 

The approach taken in this paper extends previous efforts in several ways.  First, 

the steps involved in building and applying a simulation model are thoroughly 

explained to aid in replication.  Second, a set of experiments is conducted to provide 

the first direct test, albeit in an artificial society, of Cohen and Felson’s core assertion 

that shifts in routine activities away from home, increases crime rates.  Each 

experiment holds the number of motivated offenders and suitable targets constant, 

only the amount of time spent at home varies for the agents in the model.  Third, 

software integrating ABM and GIS is used to explore how agent travel on a real street 

network impacts the frequency of convergence of the elements necessary for a crime 

to occur.  GIS software excels at managing data about space and ABM is superior at 

keeping track of time; together they allow exploration of space-time relationships.  

Finally, the new approach allows examination of how the convergence of 

heterogeneous agents translates into aggregate rates of street robbery.   

The remainder of the paper details how a computational laboratory using 

ABM/GIS can be employed to address the following research questions: 1) Does the 

shift of routine activities away from home increase the incidence of street robberies?; 
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and 2) What is the impact of increasing time spent away from home on the spatial 

pattern of street robberies?  In order to facilitate interpretation, the initial model is 

made as simple as possible implementing only the core concepts of routine activity.   

3.0 Theoretical Basis for the Conceptual Model and Behavioral Rules 

Although the approach advocated here is novel, the process of developing models 

to represent reality is not.  Models have a long history of use in the general social 

sciences (Gilbert & Terna, 1999; Gilbert & Troitzsch, 1999; Schelling, 1971; Simon, 

1952).  While models vary in how faithfully they represent reality, they typically 

operate on the principle that simpler is better; thus a primary goal of modelers is try to 

assemble the most parsimonious model to answer a question.  The degree to which 

the theory is represented in the model represents the structural validity of the model 

(An et al., 2005; Manson, 2001).  Simulation models, in particular, start with simple 

models and then systematically add complexity to ensure that the dynamics are well 

understood before continuing (Macy & Willer, 2002). 

Following those earlier modeling efforts, the building of the simulation model 

detailed here begins with the identification of the most basic theoretical propositions 

of routine activity theory.  Once these are identified, the next step is to develop a 

conceptual diagram that captures both the essential constructs and how they are 

related to one another.  The constructs and their relationships are then formalized so 

they can be coded in a computer program.  In some cases, the constructs are 

formalized as clearly stated verbal guidelines that underlie the behavior of agents, 

their interactions with other agents, and their interaction with the environment.  In 

other cases, the definition of these constructs takes the form of mathematical 
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equations for evaluation of specific situations an agent encounters during the course 

of a simulation.  Where theory is not detailed enough for implementation or does not 

address an issue, empirical research is used to enhance the representation of behavior 

within the model.  The final step in building the simulation is implementation of the 

model via a software package that integrates ABM and GIS.   

Fortunately, there is rich background literature to guide the development of an 

agent-based model of street robbery.  Appropriately, the model relies mainly on 

routine activity theory for definition of the core concepts.  Since routine activity 

theory does not address offender decision-making, rational choice perspective is 

employed to develop the decision rules applied in the model (Clarke & Cornish, 

1985;2001).  The next sections serve a dual purpose providing the basis for both the 

conceptual model and the formalization of behavioral rules. 

3.1 Routine Activity Theory 

Cohen and Felson’s (1979) original formulation of routine activity theory has 

become the most frequently cited basis for examining the connection between social 

structural changes that have affected routine activities and crime.11  In their seminal 

work, Cohen and Felson hypothesize that it was the shift away from home-based 

activities that produced the increase in crime that occurred after World War II.  An 

increase which occurred despite improvement in the socioeconomic indicators 

historically associated with crime (e.g. unemployment and education).  As originally 

conceptualized, routine activity theory identifies the convergence of motivated 

offender, suitable target, and the lack of a capable guardian at a particular place and 
                                                 
11 The extensions to the original 1979 version of the theory are not incorporated into this first effort 
(Felson, 2001;2002).  This was done in order to make the results of the model easier to interpret. 
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time as the core elements necessary for a crime to occur (Cohen and Felson 1979).  

The authors also recognize the importance of routine activities in shaping the spatio-

temporal structure of convergence of victim and offender.  They emphasize that 

crimes occur when the normal everyday activities of offenders and victims converge 

with no guardian present.   

The four elements of a crime noted above form the main constructs of the model 

(Figure 3-1).  There are two types of people in the model, civilians and police.  

Civilians take on roles representing the three major elements of crime (i.e. offenders, 

targets and guardians).  The fourth element, routine activity, is influenced by the 

amount of time an individual spends away from home and the network of streets 

available for travel.  Once convergence occurs, factors such as guardianship and 

suitability of target are considered by the offender when making the decision whether 

or not to commit a robbery.   
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Figure 3-1:  Simple Conceptual Model of Street Robbery 

 

Table 3-1 and the next few paragraphs provide a detailed account of how each of 

the above constructs is translated into a formal verbal description and then how that 

description is implemented in the model.  Beginning with motivated offenders, RAT 

assumes they are ubiquitous.  In making the decision to offend, they evaluate the level 

of guardianship and whether or not a suitable target is present.  Targets, on the other 

hand, are central to the theory which identifies visibility, accessibility, ability to self-

protect, and potential for financial gain as the most important characteristics in 

determining their suitability.  The specifics of what constitutes a capable guardianship 

are not addressed, but the theory suggests that the deterrent value of some types of 

individuals is higher than other types.  For example, formal guardians such as police 

officers have greater influence because they are more likely to intervene. 
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Cohen and Felson view the construct of routine activity as the key dynamic 

element in determining aggregate crime rates because they affect the particular 

configuration of offenders, guardians and targets in a situation.  Changes in routine 

activities directly impact the frequency of convergence among these elements which 

in turn, increases or decreases overall street robbery rates resulting from ‘direct-

contact predatory violations’.12  In addition, the theorists postulate that if the 

frequency of convergence increases, crime may increase even if the absolute number 

of motivated offenders remains constant.  The central premise of routine activity 

theory then is that as individuals spend more time away from home, crime will 

increase. 

 
12 Following Glaser, they define ‘direct-contact predatory violations’ as crimes where “someone 
definitely and intentionally takes or damages the person or property of another” (1974 4). 



 

Table 3-1: Formalization of Theoretical Concepts 

Theory Theoretical Concept Verbal Operationalization of Theoretical 
Concept 

Implementation 

 Motivated Offender   
-Routine Activity 
-Rational Choice  
 

There is a supply of 
motivated offenders.   

Research indicates that approximately 20% of the 
population has participated in crime.13  This is the 
proportion of the population that is encompassed in the idea 
of motivated offenders.  They have already achieved the 
state of ‘readiness’ to commit a crime. 
 

-Twenty percent of agents have 
criminal propensity. 
 
-Only agents with criminal 
propensity make decision to offend. 

-Rational Choice 
 

Offender makes decision to 
offend using bounded 
rationality and based on the 
availability of suitable 
targets without capable 
guardians. 

Among those individuals with some level of criminal 
motivation, the decision to offend utilizes information on 
the suitability of targets and the level of guardianship to 
evaluate the potential for a successful crime.  The decision 
itself is not necessarily lengthy or rational but rather based 
on a form of ‘bounded rationality’ in which offenders 
choose the first opportunity that is convenient and meets 
some minimum requirement for risk and reward. 
 

-Agents with criminal propensity 
compare wealth of other agents at 
node with own wealth. 

 Suitable Target   
-Routine Activity 
-Rational Choice 
 

Suitable target is an 
individual who is visible, 
accessible and has perceived 
value.   

Visibility and accessibility requirements are met if an 
individual is on the street as opposed to at home or inside a 
building.  The individual also must be perceived as having 
at least as much money as the motivated offender so there is 
some potential for gain.   

-Agents with criminal propensity 
evaluate all other agents at the same 
node based on the formula below: 
 
      S = (WT) - (WA) + PS 
 

                                                 
13 Two studies that examined total lifetime participation rates for serious crimes are averaged to get the propensity applied in the model.  McCord (1979) found a 
participation rate of 16.9% for males and Blumstein and Gaddy (1982) found a rate of 22.8% among males and females.  An average of those two is 19.8% 
which is rounded to the 20% figure in the model. 
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Theory Theoretical Concept Verbal Operationalization of Theoretical 
Concept 

Implementation 

 Capable Guardian   
-Routine Activity 
-Rational Choice 
 

Formal and informal 
guardians factor into level 
of guardianship. 

Other individuals at the same place affect the decision to 
offend.  Their deterrent effect depends on the offender’s 
perception that they might intervene in the crime.  Police 
have a high deterrent effect because they are the most likely 
to intervene.   

-Each agent with criminal propensity 
evaluates the level of guardianship at 
a node. 
 
• If cop present, no crime. 
• Use formula to evaluate 

informal guardianship: 
 

G = ((NA – 2) + PG) 
 Routine Activities   
-Routine Activity Social structure Changes in the social structure over impacted the amount of 

time spent away from home.  As the locus of leisure and 
work time moved away from the household, fewer 
individuals were left in the home to act as guardians and 
their individual exposure to crime increased. 

Average time spent away from home 
for all agents is systematically varied 
across five experimental conditions. 



 

3.2 Offender Decision-making 

Since routine activity theory assumes a supply of motivated offenders and does 

not address the decision to offend, the rational choice perspective supplies the 

theoretical basis for offender decision-making in the model.14  Rational choice 

defines criminal behavior as a two-step process.  The first step involves the decision 

to participate in criminal acts.  The result of this step is a state of “readiness” to 

commit crime.  The second step involves the decision to commit a particular crime 

and is influenced by the situational factors that exist in a particular context.  This 

research focuses on the second step in the process, the decision to commit a specific 

crime and assigns agents in the model a criminal propensity indicator that signifies 

they are at this stage. 

There are several components of rational choice that inform the model.  At the 

core of the theory is the concept of rationality in decision-making.  The theorists 

advocate for a notion of rationality that is very broad, stating that “even if the choices 

made or the decision processes themselves are not optimal ones, they may make sense 

to the offender and represent his best efforts at optimizing outcomes” (Clarke & 

Cornish, 1985 163).  In other words, offenders rely on a form of ‘bounded rationality’ 

when making the decision to commit a specific offense.15  Rational choice 

perspective also assumes that, except for commission of crimes, offender routine 

behavior is essentially similar to that of non-offenders.   

                                                 
14 Following Epstein and Axtel (1996: 1) this research is not concerned with the specific study of how 
individuals make decisions, the topic of studies in experimental economics that focus on game theory 
and decision rules, but rather examines the effect of specific individual behaviors on macro level social 
patterns.      
15 Bounded rationality, in particular, lends itself to investigation via agent-based models (O'Sullivan & 
Haklay, 2000). 
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The theorists also emphasize the value of models and particularly of formalizing 

process in models.  Clarke and Cornish (1985 149) specifically acknowledge the 

heuristic value of models that incorporate the role of situational aspects of criminal 

behavior by stating “[t]hey do not have to be ‘complete’ explanations of criminal 

conduct, but only ones ‘good enough’ to suggest new directions for empirical enquiry 

or crime control policy”.  In addition, Clarke and Cornish suggest models should be 

crime specific and include situational factors (1985; 2001); thus, this research focuses 

on street robbery rather than robbery in general and includes both individual and 

situational factors. 

4.0 Implementing a Model of Street Robbery 

The following section details how the theoretically based rules and relationships 

discussed earlier are implemented in a basic model of street robbery.16  This stage of 

model building highlights the attributes that make agent-based simulation a powerful 

tool for exploring spatio-temporal behavior.  Specifically, the ability to represent a 

group of agents as autonomous decision-makers that are involved in dynamic 

interactions is essential to modeling complex systems of individuals such as those 

producing crime.  The decisions made by agents at one point in time affect the 

information considered by agents in subsequent turns.  For example, when agents are 

robbed they have less money; the next time they are in a situation with a motivated 

offender they may be perceived as a less suitable target.  This change occurs as the 

program is running, and its impact is immediately incorporated into the scenario.  The 

                                                 
16 The technical details of the implementation are available in Groff (Forthcoming-b). 
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outcome of the model is a set of measurements describing individual and societal 

crime rates and the distribution of crime events.   

4.1 Software 

The model is built using Agent Analyst software which combines two of the most 

popular packages for ABM and GIS.  The Recursive Porous Agent Simulation 

Toolkit for Python (RepastPy) provides the ABM capabilities which are integrated 

with ArcGIS.  After Agent Analyst is added into ArcGIS as a toolbox, the program 

can read from and write to shapefiles.  Shapefiles are the program’s native file format 

for geographic information.   

4.2 Study Area, Duration and Data 

Although the model can be implemented with any street network, the initial 

implementation is situated in Seattle, Washington which provides the data for the 

model landscape.  Seattle is the largest city in the state of Washington with a 

population of 564,945 persons in 2000 (U.S. Census Bureau, 2000) and two-thirds of 

the city is bounded by water.  Two types of data about Seattle are important to the 

research: 1) input data consisting of a GIS layer that describes the Seattle street 

network; and 2) output data collected during the model runs which quantify the model 

outcomes.   

Since this is a simulation model, data representing the state of society and the 

state of individual agents can be produced at custom intervals (e.g. daily, monthly, 

etc).  Data are collected over the course of one year (525,601 minutes) which allows 

the exploration of changes that might be occurring in the behavior of individual 

civilians and society over time. 
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Input data for the model consists of the street network of Seattle which is derived 

from the King County Street Network Database (SND) file and provides the basis for 

agent movement in the model.  Because of software limitations, this layer is 

converted to a set of nodes that represent the street intersections.  Instead of traveling 

along streets, civilians and police in the model move from street intersection/node to 

street intersection/node (hereafter referred to as node).  There are 16,035 nodes in 

Seattle, and these locations represent places at which a street robbery may occur. 

In a simulation model, the modeler controls the type of data that are collected and 

how frequently they are written to a file.  For this research, the outcome data are 

collected about individual civilians, nodes (places) and society at daily intervals 

during the model and at the completion of each model run (Table 3-2).  These data 

are written to two types of files, text files and shapefiles.  CrimeStat and ArcGIS are 

used to analyze and visualize the results.  

Agent level variables are collected to describe the time spent away from home, 

victimization, offending, wealth levels, and whether or not the civilian has criminal 

propensity.  Cumulative totals of the results of agent interactions are also collected for 

society as a whole.  These variables describe: the frequency of street robbery; the 

number of times more than one agent is at a node; the extent to which police deter 

crime; offending rates among civilians with criminal propensity; and victimization 

rates for all civilians.  In addition, data from the simulation are collected at the street 

node level.  These data are subsequently employed to generate statistics about the 

spatial distribution of street robberies.   
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Table 3-2:  Outcome Data from Model 

Variable Name Description Level of 
Measurement 

Societal-level Outcome   
TotRob Total number of robberies Ratio 
RobRate Average number of robberies per 

population 
Ratio 

TotConverge Total number of convergences (i.e. 
situations with a motivated offender 
and one or more ‘at risk’ civilians) 

Ratio 

TotDeterred Total number of robberies deterred by 
a police’s presence 

Ratio 

TotOffenders Total number of civilians with criminal 
propensity that commit a robbery 

Ratio 

TotVictims Total number of civilians who are 
victims of street robbery 

Ratio 

TotRepeatVictims Total number of civilians who are 
repeat victims of street robbery 

Ratio 

AveAwayTime Average amount of time agents spend 
away from home 

Ratio 

   
Individual-level Process   
AwayTime Total time spent away from home Ratio 
TotOff Total robberies committed Ratio 
TotVict Total times robbed Ratio 
Criminal Propensity Presence or absence of criminal 

propensity 
Dummy 

WealthBegin Beginning amount of wealth Ratio 
WealthEnd Ending amount of wealth Ratio 
   
Place-level Process   
TotRobPlace Total number of robberies Ratio 
TotVisits Total number of times an agent 

stopped 
Ratio 

TotalNodeswRob Total number of street nodes that had a 
robbery 

Ratio 

TotNodeswMultRob Total number of street nodes that had 
more than one robbery 

Ratio 

MeanRobPlace Mean robberies per street node Ratio 
MeanVisitsPlace Mean visits per street node Ratio 
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4.3 Hypotheses and Experiments 

Two hypotheses are tested via five theoretically-based experimental conditions 

(Table 3-3).  Each experimental condition represents an increase in the societal 

average for time spent on routine activities away from the home (i.e. 30%, 40%, 50%, 

60% and 70%).17  The two hypotheses examined are: 

H1:  As the average time spent by civilians on activities away from 
home increases, the aggregate rate of street robbery will increase. 

 
H2:  As the average time spent by civilians on activities away from 

home increases, the spatial pattern of street robberies will change.   
 

The first hypothesis tests the core assertion of routine activity theory – crime rates 

will increase as time spent away from home increases.  The second hypothesis 

explicitly examines the spatial structure of street robbery locations by comparing the 

spatial pattern produced under each of five experimental conditions. 

Table 3-3:  Experimental Conditions 
 

Average Time Spent Away From Home Movement 
Type C1 C2 C3 C4 C5 
Random 30% 40% 50% 60% 70% 
Hours per week ≈50  ≈67  ≈84  ≈101  ≈118  

 

4.4 Parameters in the Model 

In addition to the input data describing Seattle, twelve exogenous parameters are 

set prior to the model run.18  Table 3-4 describes and provides the rationale for each 

                                                 
17 Using data from 1966, Cohen and Felson calculated the average time spent away from home to be 
7.74 hours per day.  The experimental conditions begin at 7.2 hours per day spent away from home (30 
percent condition) and increase by 10 percent with each subsequent condition to a high of 16.8 hours 
per day (70 percent condition). 
18 The values of several of these parameters are assigned using random number generators (RNGs).  In 
simulation models, random numbers have two main functions: 1) provide a stochastic element into 
what would otherwise be deterministic models of human behavior and 2) enable the replication of 
model results through assignment of a random number seed at the start of a simulation.  The seed is the 
starting point for all random numbers that are produced during the course of a model run.  A particular 
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of the parameters values in the model.  The choice of parameter values is a critical 

aspect of all models that deserves special attention because of the potential impacts 

on the model outcomes.  Parameterization of simulation models, while often based on 

empirical data, must sometimes rely on the experience of the researcher (Liu et al., 

2005).  For this study, every attempt is made to assign realistic model parameter 

values, but in cases where there was no evidence available a simplified representation 

was chosen to establish a baseline (e.g. wealth distribution) (Axelrod, Forthcoming; 

Epstein & Axtell, 1996).   

                                                                                                                                           
seed produces the same sequence of numbers each time.  This attribute enables testing of the 
robustness of model outcomes since in simulation modeling the results of a single model run are 
vulnerable to being atypical (Axelrod, Forthcoming).  This research applies an explicit random number 
seed based on the Mersenne Twister algorithm, currently considered to be the most robust available, as 
the basis for all random number distributions used in the model (Ropella et al., 2002).   
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Table 3-4:  Parameters in the Model 
Variable Rationale 

Society Level  

Number of Agents = 1,000 
 

Represents a balance between ensuring there are enough 
agents so that interactions can occur and the computational 
overhead from using more agents 

Number of Police = 200 
 

Chosen to ensure that police would be present at some of the 
convergences that occur across the 16,035 places in Seattle. 

Unemployment Rate = 6% 
 

The unemployment rate of six percent is based on the 2002 
unemployment rate for Seattle (Bureau of Labor Statistics, 
2003).19

Rate of Criminal Propensity 
= 20% 

Given that 20% of the population has committed a crime, 20% 
of civilians are assigned criminal propensity using a uniform 
distribution (Visher & Roth, 1986). 

Time To ReOffend = 60 
 

Parameter value chosen as a starting point since the author 
could find no empirical data on which to base time to 
reoffend.. 

Random Number Seed = 
100 (seed also tested at 200, 
300, 400 and 500) 
 

An explicit random number seed based on the Mersenne 
Twister (MT) algorithm is used as the basis for all random 
number distributions used in the model.  MT is currently 
considered to be the most robust in the industry (Ropella et 
al., 2002). 

Agent Level  

Societal Time Spent Away 
From Home = 30% (40%, 
50%, 60%, 70%) 
 

Assigned based on a normal distribution with a mean of 432 
minutes (for the 30% condition) and a standard deviation of 
10% of the mean (sd = 43). 

Initial Wealth = 50 
 

Initial wealth is assigned with a mean of 50 and a standard 
deviation of 20 units. 

Amount of wealth received 
each payday = 5 
 

No empirical evidence available. 

Amount of wealth 
exchanged during robbery= 
1 

No empirical evidence available.20

Situation Level  

Guardianship Perception = 
U(-2,2) 
 

The guardianship perception value can add or subtract zero, 
one or two guardians from the actual number present.  This 
represents the stochastic element in the offender’s perception 
of the willingness of a guardian to intervene. 

Suitable Target Perception = 
U(-1,1) 

The value in suitable target can increase or decrease the 
suitability or leave it unchanged.  This enables the offender to 
sometimes decide a target is not suitable even when they have 
more wealth. 

                                                 
19 Since the jobs data are from 2002, the corresponding year’s unemployment rate is employed. 
20 A request to the Seattle Police Department for the average amount of cash taken during street 
robberies remains unanswered. 
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Six of the parameters in the model apply to society and include the numbers of 

civilian and police agents, the unemployment rate, the rate of criminal propensity, the 

time an offender waits before committing another offense, and the random number 

seed.  The number of civilians and police had to be large enough to ensure that two or 

more agents would sometimes end up at the same one of the 16,035 nodes but small 

enough to be computationally feasible.  The choice of 1,000 civilian agents and 200 

police agents met that balance.  In accordance with the criminal careers literature, 

20% of civilian agents are assigned a ‘readiness’ to commit a crime that is positive; 

making them the only civilians who evaluate each situation for its potential to commit 

a street robbery.  Since even motivated offenders do not offend continuously, a 

minimum time of one hour is required before an offender can commit another 

robbery. 

Another four characteristics describing time away from home, initial wealth, 

amount of wealth received each payday, and amount of wealth exchanged during a 

robbery are set for each agent.  Amount of time to spend away from home and initial 

wealth are assigned using random normal distributions.21  Amount received each 

payday and amount of wealth exchanged are fixed.  These parameter values are 

admittedly unrealistic but are chosen to provide a starting point for the research.   

Two parameters are important to the decision to commit a robbery because they 

represent the offender’s perception of the characteristics of a situation.  The informal 

guardianship perception value can: 1) magnify the perception of the other agents as 

capable guardians; 2) reduce it or 3) leave it unchanged.  This introduces a stochastic 

                                                 
21 The choice of distribution (e.g. normal, poisson, etc.) and the mean and standard deviation used to 
assign values affect the allotment of the characteristics across all the agents.  
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element into the offender’s perception of whether other civilians at the node are 

capable guardians or not.  The suitable target perception value serves the same 

function for the decision about whether a suitable target exists and enables the 

offender to decide a target is not suitable even when the target has more wealth. 

4.5 Agents in the Model 

There are two types of agents which represent people in the model, police and 

civilians.  Police agents have only one role, that of a formal guardian.  Lack of a 

formal guardian in routine activity theory is one of elements that are necessary for a 

crime to occur.  Thus in the model, the presence of a police agent prevents a crime 

from occurring.  To accomplish their mission of crime prevention, police agents 

randomly move along streets. Police never commit crimes in this model, and they are 

never targets.   

The civilian agents represent the general population of the city.  At the start of the 

simulation, all civilian agents are randomly assigned a starting home location, a 

wealth level, a criminal propensity indicator, and an allocation of time to spend away 

from home.  Per routine activity theory, a civilian agent can assume one of three 

possible roles, offender, target, or informal guardian.  The particular role a civilian 

agent assumes is driven by their individual characteristics and the contextual 

dynamics of the specific interaction.  All civilian agents begin each day at home 

where, by definition, they cannot be involved in street robbery either as a victim or 

offender.  After they spend their allotted time at home, they travel for the rest of the 

day.  Wealth is included in the model as the basis for determining whether the civilian 
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is a suitable target.  Every two weeks, all civilian agents receive a static amount of 

wealth set at five units.   

Each of the civilian agents is randomly assigned a percentage of time to stay away 

from home.  While the time each agent spends away from home is unique, the time 

for society is controlled.  This agent characteristic is the basis for the experiments 

testing societal trends in time spent away from home.  Table 3-5 provides an example 

for the 40% experimental condition.  A random normal distribution is used to assign 

each of the civilian agents a percentage of time to be away from home so that the 

mean for society is 40%.  

Table 3-5:  Sample Assignment of Time of Away from Home for the 40% 
Experimental Condition 

 
 Away*  At Home 
Agent 1 26% 74% 
Agent 2 45% 55% 
Agent 3 60% 40% 
Agent 4 81% 19% 
Agent 5 53% 47% 
Agent 6 30% 70% 
Agent 7 25% 75% 
Agent 8 11% 89% 
Agent 9 41% 59% 
Agent 10 28% 69% 
Average 40% 60% 
*Time ‘Away’ from home is the difference between total time and time spent at home. 

 

Since routine activity theory recognizes the importance of the frequency with 

which the elements of a crime converge in generating crime events but does not 

elaborate on the space-time structure of human activity, this model of crime events 

characterizes both the distribution and movement patterns of individuals as random.  

Both the civilian and police agents are distributed randomly across the street 
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intersections in Seattle.  Once their time at home is complete, civilians follow a 

‘random walk’ in which the agents move one randomly chosen node each minute of 

the model (Chaitin, 1990).  When an agent (civilian or police) is moving, each 

adjacent node has an equal chance of being selected and the civilian can backtrack as 

well as go forward along the network.  Civilian agents with criminal propensity travel 

along the same street network and visit the same locations as other civilians and as 

police agents.  To illustrate the dynamics of the decision to offend, more detail is 

provided in the next section regarding the behavior of agents with criminal 

propensity. 

4.6 Decision to Offend 

At each tick of the model, only those agents with criminal propensity (one at a 

time) who are traveling consider the following aspects of their situation (Figure 3-2): 

1) Is there a police agent at the node? 
2) What is the level of informal guardianship at the node? 
3) Is there a suitable target at the node? 
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Figure 3-2:  Steps in Decision to Offend 

 
The level of guardianship and the availability of a suitable target are evaluated via 

two equations.  For computational reasons, guardianship is the first situational 

element considered by the active agent.  If there is a police agent at the same node, 

the active agent decides not to offend because of too much formal guardianship.  

However, if there are no police agents and there is at least one other civilian agent at 

the node, the level of informal guardianship is evaluated further via the formula 

below (1).  First, the total number of civilian agents at the location is evaluated minus 

the active agent and the potential target.  This adjustment reflects the unlikelihood 

that an offender would act as a potential target’s guardian and the inability of the 

target to be its own guardian.  Uncertainty in how offenders perceive the 

‘capableness’ of the other civilians is incorporated into the formula through the 
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addition of a stochastic term PG that can either increase or decrease the active agent’s 

perception of the level of guardianship in a situation.   

G = ((NA – 2) + PG)        (1) 

If G < 1, then there is a lack of capable guardians so condition evaluates to True 
If G = 1, then make a random decision – condition could evaluate to True or 
False 
If G > 1, then capable guardianship is present so condition evaluates to False 
Where: 
G = Guardianship 
NA= number of agents at node 
PG = Perception of capability of guardians who are present (uniform random 
number between -2 and 2) 

 
In reality, the presence of capable guardians is most likely evaluated along a 

continuum.  On one end of the continuum a police officer is present on the street 

corner.  At the other end, the potential offender is alone with a suitable target.  More 

frequently, situations are somewhere in between.   

Finally, the active agent considers whether there are suitable targets at the node.  

All other civilians who are away from home and at the same node are evaluated using 

wealth as the primary criteria for identifying a suitable target (2). 

S = (WT) - (WA) + PS        (2) 

If S >= 0, then there is a suitable target so condition evaluates to True 
If S < 0, then no suitable target present so condition evaluates to False 

Where: 
S = Perceived suitableness of target 
WT = wealth of target 
WA = wealth of active agent (potential offender) 
PS = Offender perception of target suitability (uniform random value between 
-1 and 1) 

 

If at least one other agent’s wealth exceeds the active agent’s wealth, the 

evaluation of the civilian with the highest wealth continues via the formula above.  
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The error term PS represents the influence of other factors on the offender’s 

perception of the relative suitableness of a target and its value can either increase or 

decrease the perceived suitability of the target.  It is worth noting that other agents 

with criminal propensity who are at the node are included in the active agent’s 

evaluation and can become victims.  If S < 0, there is not suitable target at the node, 

and the active agent does not commit robbery. 

To recap, for situations in which there is a suitable target, the decision to offend 

hinges on the level of informal guardianship.  If G = True, then there is there is a lack 

of capable guardians so the decision is to rob the suitable target identified.  If G = 

False, the amount of guardianship is too high, and the decision is not to offend.  But if 

G = 1, the decision could go either way.  In these cases, the active agent makes a 

random decision whether to commit the street robbery.  When an agent commits a 

robbery, one unit of wealth is taken from the victim and transferred to the offender.  

Once each civilian with criminal intent has evaluated their situation, the model time 

advances, agents move and the decision structure is repeated. 

5.0 Analysis 

Both traditional and spatial analysis techniques are used to examine the results of 

the model runs.  Descriptive statistics such as mean, median and standard deviation 

are used to characterize the results of each of the experiments.  As is customary 

practice, an ANOVA is applied to determine if there is a significant difference among 

the RobRates for the five experimental conditions (Axelrod, Forthcoming).  The 

number of robbery victimizations for each civilian agent in the model is the response 

variable.  A sample size of five thousand observations across five experimental 
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conditions provides a very powerful design.  Thus increasing the sample size to ten 

thousand or twenty thousand should not change any findings of significant 

differences among the groups.  Finally, the resulting spatial patterns of robbery events 

are examined.   

At the agent level, descriptive statistics are generated to test the relationships 

among time spent away from home (AwayTime), total number of victimizations 

(TotVict), and total number of robberies committed (TotOff).  These statistics are 

examined for the total population and then just for agents with and without criminal 

propensity.   

Two approaches to describing the spatial distribution of street robberies are taken.  

A visual comparison is made of the resulting crime patterns using a kernel density.  

Kernel density surfaces offer a means of evaluating the existence of global trends in 

the distribution of street robberies and for comparing the relative density of robberies 

across experimental conditions.  To create a kernel density, a temporary grid is laid 

over the entire study area and a density value for each cell in the grid is computed 

using a circular ‘neighborhood’ (Bailey & Gatrell, 1995; Mitchell, 1999; Williamson 

et al., 2001).22

In addition to the kernel density, formal tests of the spatial distribution of crime 

events are employed using Ripley’s K function.  Ripley’s K is applied to compare the 

clustering of robberies and visits to places at different scales.  Typically, the K 

function for complete spatial randomness (CSR) is helpful in identifying whether the 

observed pattern is significantly different than what would be expected from a 

                                                 
22 The term kernel refers to size of the ‘neighborhood’ (also called bandwidth) that is taken into 
account when computing the density.  The total number of street robberies within the bandwidth are 
summed and divided by the area under the circle.  The resulting value is assigned to the current cell.     
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random distribution (Bailey & Gatrell, 1995; Levine, 2005).  A known weakness of 

comparing the observed distributions to CSR is that most human-generated patterns 

are non-random (e.g., population, housing, etc.) (Levine, 2005).   

In this research, CSR cannot be used to evaluate the clustering in street robbery 

events because the locations at which data are collected are constrained to a fixed set 

of locations representing the intersections in Seattle.23  Since the CSR algorithm 

randomly places points anywhere within the study area boundary, it would be 

inappropriate to compare the clustering in robberies and number of visits, which are 

constrained to the street nodes, to a randomly generated CSR.  However, a K function 

can be generated from the pattern of street nodes thus revealing the extent of the 

clustering intrinsic to the street network.  Comparing the K function for street 

intersections to CSR answers the question of whether the intersections are more 

clustered than would be expected under CSR.  Taking this one step further, the K 

function for street robberies can be compared to the one for intersections to find out if 

robberies are more clustered than the street intersections. 

Another aspect of the same discussion involves the role of the street nodes in 

structuring the initial distribution of police and civilians since they too can only be 

allocated to a street node (and not to any location within Seattle).  In this way, the 

structure of the street network conditions both the original distribution of agents and 

their movement.  Since the agents are randomly assigned to nodes and they move 

randomly during the simulation, the distribution of robberies should be similar to that 

of the network nodes if space alone determines where street robberies occur.  To 

                                                 
23 Thanks to Ned Levine for pointing out this issue. 
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check this, the K function for nodes is compared to the K functions for both robberies 

and visits.   

6.0 Findings 

The creation of the street robbery model enables the exploration of routine 

activity theory’s propositions via simulation.  Two research questions are addressed 

in the analysis.  The first asks whether the shift in routine activities away from home 

increases the incidence of street robbery.  The second examines the spatial pattern of 

street robberies as members of society spend more time away from home.  This 

section describes the behavior of the model and summarizes the findings of the tests.  

The robustness of the findings is then evaluated by running the model using five 

different random number seeds and systematically varying key parameter values for 

each seed.   

6.1 General Description of Model Outcomes 

Data describing nine attributes of places and society are collected to characterize 

the results from the model runs across the five experimental conditions.  Societal-

level changes in the number of street robberies and convergences of agents in space-

time (i.e. opportunities for street robbery) are in line with what routine activity theory 

would predict; both values increase with time spent away from home (Table 3-6).  

The number of times the presence of a police agent prevents a robbery from taking 

place also increases as the societal time spent away from home increases.  In all 

likelihood, this increase in deterrence is directly related to the existence of more 
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situations in which a crime might occur (i.e. a motivated offender and suitable target 

are at the same place-time).   

Table 3-6:  Societal-level Model Outcomes 

Experimental Condition 
 Cond 30 Cond 40 Cond 50 Cond 60 Cond 70 

Societal-Level  
Total Robberies 54,637 76,032 95,219 118,085 139,007
Total Intersections 1,454,341 2,050,761 2,631,149 3,238,760 3,835,299
Total Robberies 
Deterred by Police 1,532 2,148 2,693 3,430 4,040
Model time at 
home (minutes) 1003.09 859.79 716.51 573.21 429.91
Model time spent 
away (minutes) 436.91 580.21 723.49 866.79 1010.09
 

More in-depth examination reveals the number of intersections, street robberies, 

and robberies prevented by police across experimental conditions are related (Figure 

3-3).  As time away from home increases, the number of convergences displays the 

highest rate of increase, followed by the number of robberies, and the number of 

robberies deterred by police presence.   

Figure 3-3:  Comparison of Robbery Incidents, Convergences and Robberies Deterred 
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Examining the amount of time before the model reaches equilibrium provides 

insights into model dynamics.  Figure 3-4 illustrates the change in the number of 

robberies per day over the entire model year for the 30% condition.  The first day has 

the highest number of robberies (N=444).  The number drops rapidly each day until 

about day 24 when equilibrium is achieved at around 150 incidents per day.  During 

equilibrium the number of robberies per day fluctuates between 100 and 200 for the 

rest of the year.  So the major changes in the model are occurring before the end of 

the first month, even though the wealth of individual agents continues to change via 

robbery events and paydays throughout the model year. 

Figure 3-4:  Days to Equilibrium for Street Robbery Simple Model (condition: 30%, 

seed = 100) 
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One potential explanation for this pattern lies in the way wealth is distributed.  

The same initial wealth distribution is applied regardless of criminal propensity and 

each civilian agent receives the same amount each payday.  However, agents with 

criminal propensity can also gain wealth from committing robberies.  Over time, this 

wealth advantage translates into higher levels of wealth for offenders as compared to 

non-offenders.  Evidence of this growing wealth imbalance begins around day 24.  

 81 
 



 

When the agents with criminal propensity tend to have more wealth, fewer civilians 

qualify as suitable targets.  Robberies become restricted to situations in which there 

are two or more agents with criminal propensity because only in these situations is 

there likely to be an agent with more wealth than the active offender.  This reduces 

the number of robberies experienced by society, although the convergences remain 

high.  The model process just described, while informative in terms of understanding 

model dynamics, does not impact the comparison among model conditions because 

the behavior of the process is consistent across experimental conditions.  The more 

time spent away from home the fewer days it takes to reach equilibrium and the 

higher the equilibrium number of robberies. 

6.2 Testing Routine Activity Theory 

A One-Way ANOVA is applied to test the hypothesis that robberies will increase 

as time spent away from home increases.  By comparing the mean number of 

robberies across the five experimental conditions, it is possible to determine if 

robbery increases as the time spent away from home increases.  The results of the 

ANOVA indicate there are there are significant differences on the rates of street 

robbery across the experimental conditions (Table 3-7).24  However, the test does not 

provide information on which of the conditions were significantly different. 

                                                 
24 Because of the positive skew to the distribution of robberies, additional tests regarding the equality 
of means were conducted.  Both the Brown-Forsythe and the Welch tests for equality of the means are 
significant at .000.  These tests are preferable to the F test when the equality of variances assumption is 
violated as it is here ("SPSS for Windows," 2002). 
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Table 3-7:  Change in Street Robbery Events across Experimental Conditions 
Condition  30% 40% 50% 60% 70% 

Target time to spend away from 
home in minutes (hours) per day 

432 
(7.2) 

576 
(9.6) 

720 
(12) 

864 
(14.4) 

1008 
(16.8) 

Actual time spent away from home 436.9 580.2 723.5 866.8 1010.1 
Number of civilian agents (N) 1,000 1,000 1,000 1,000 1,000 
Mean robberies (Standard 
Deviation)*** 

54.64 
(101.99) 

76.03 
(144.15) 

95.22 
(182.35) 

118.09 
(228.14) 

139.01 
(270.06) 

*** Difference among one or more of the groups is significant at P < .000. 
 

Results from post hoc tests employed to identify which experimental conditions 

are significantly different from one another are inconsistent (Table 3-8).25  Beginning 

with the 30% condition, there is significantly less crime in societies in which 

individuals spend 30% of their time away from home when compared to each of the 

other conditions.  Other significant differences are between the 40% condition and 

both the 60% and 70% conditions; as well as between the 50% and the 70% 

conditions.   

                                                 
25  The Levene statistic is significant indicating the variances are significantly different among the 
groups.  However, ANOVA is robust in the face of this violation when the group sizes are equal which 
they are in this research (Newton & Rudestam, 1999; Shannon & Davenport, 2001).  A Tamhane’s T2 
post hoc test is used because it does not assume equal variances. 
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Table 3-8:  Post Hoc Tests of Mean Differences (seed = 100) 

(I) Randomization 
Condition 

(J) Randomization 
Condition 

Mean 
difference (I - 

J) 

Standard 
error 

Significance

30% Time away 40% Time away a -21.39 5.584 .001 
 50% Time away a -40.58 6.607 .000 
 60% Time away a -63.45 7.903 .000 
 70% Time away a -84.37 9.129 .000 
     
40% Time away 50% Time away -19.19 7.351 .088 
 60% Time away a -42.05 8.534 .000 
 70% Time away a -62.98 9.681 .000 
     
50% Time away 60% Time away -22.87 9.236 .126 
 70% Time away a -43.79 10.305 .000 
     
60% Time away 70% Time away -20.92 11.180 .470 
a Significant differences were found between experimental conditions I and J. 
 

6.3 Spatial Distribution of Street Robberies across Places 

The spatial distribution of street robberies is addressed via descriptive statistics, 

examination of the outcome pattern, and quantitative description of the concentration 

of robbery events.  The spatial distribution of agent movement and robberies across 

intersections reveals both increased concentration and a slight increase in spread, as 

time spent away from home increases (Table 3-9).  Looking first at the summary 

statistics for places in Seattle, the mean visits per intersection increases at the same 

rate across all experimental conditions as does the mean robberies per intersection.  

However, both the percentage of intersections with only one robbery and those with 

more then one robbery have their largest increase between the 30% and 40% 

conditions.   
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Table 3-9:  Place-level Model Outcomes 

Experimental Condition 
 Cond30 Cond40 Cond50 Cond60 Cond70 

Place-level  
Mean visits per 
street node 9,733 12,904 16,088 19,253 22,423
Mean robberies 
per street node 3.41 4.74 5.94 7.36 8.67
Percent of 
street nodes 
with a robbery 

83% 
(N=13,376)

87% 
(N=13,925)

89% 
(N=14,309)

91% 
(N=14,531) 

92% 
(N=14,683)

Percent of 
street nodes 
with more then 
one robbery  

70% 
(N=11,157)

76% 
(N=12,175)

81% 
(N=12,995)

83% 
(N=13,303) 

85% 
(N=13,572)

 

The spatial pattern of robberies is examined across all five conditions using kernel 

density (Map 3-1).26  A visual inspection of the map series indicates support for the 

second hypothesis.  At 30% time spent away from home, a few areas of concentration 

appear.  As civilians spend more time away from home, the densities of those original 

concentrations increase while new areas of higher density appear.  This pattern 

reflects both the increased frequency of the convergence of the elements necessary for 

a crime to occur and the larger travel areas of agents as they spend more time away 

from home. 

                                                 
26 A bandwidth of 1,320 feet (one quarter mile) and a cell size of 100 feet are the basis for all kernel 
density surfaces.  The quarter mile distance is often employed to represent the potential walking area 
for individuals in urban areas and by extension their potential area of interaction (Calthrope, 1993; 
Duaney & Plater-Zyberk, 1993; Nelessen, 1994).  The surfaces are generated in ArcGIS version 9.1 
and the output is in robberies per square mile (Mitchell, 1999). 
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Map 3-1: Kernel Densities for Modeled Street Robbery Events 
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Results of the Ripley’s K function indicate that there is a high degree of 

concentration in street robbery locations across all five conditions.27  Figure 3-5 

compares the concentration of street robberies generated from each of the five 

experimental conditions to the concentration of the street network’s nodes and to a 

reference distribution describing the amount of concentration that would be expected 

under CSR.28  Concentration in street nodes increases until approximately one and 

one-half miles when it levels off for about a half mile and then begins to decline.  The 

graph reveals that street nodes are significantly more concentrated than would be 

expected under CSR. 

Figure 3-5:  Ripley’s K for Robbery across Experimental Conditions 
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The street robbery distribution lines for each experimental condition follow a 

similar pattern to the line for all street nodes.  All six lines are identical until about 

800 feet when the robberies become more clustered than the street nodes.  This 

                                                 
27 The reported Ripley’s K functions are generated using CrimeStat III.  No edge correction is applied 
since approximately three quarters of the perimeter of Seattle is bounded by water.  
28 The CSR K function distribution is generated by using a uniform random number generator to create 
100 distributions with the same N as the observed distribution, in this case N=16,035 (Levine, 2005).  
A significance level of p < .05 is used.  The random distribution generated under CSR is truly random 
in that any location can be selected, not just an intersection.   
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pattern continues until about 2.25 miles when the robberies in the 60% and 70% 

conditions converge with the line for street nodes.  The lines for the 30, 40 and 50% 

conditions remain more concentrated than the street nodes at all distances and the 

difference between concentrations is consistent.  Robberies are most concentrated 

when society spends 30% of time away from home, and the concentration decreases 

as time spent away from home increases.   

Data characterizing the total number of visits experienced by each node offer a 

means of quantifying agent travel patterns.  Comparing the distribution of all agent 

movement with the distribution of robberies provides a test of whether the two 

distributions are different.  Figure 3-6 suggests that the pattern of visits across nodes 

is very similar to that of street robberies.  However, the lines describing visits are 

closer together indicating there is even less difference in the concentration of the 

distributions for visits than there is for street robberies.  These results suggest that 

street robbery incidents tend to occur where many agents routinely converge but that 

robberies have other factors contributing to their greater concentration that are not 

accounted for by the structure of the street network. 
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Figure 3-6:  Ripley’s K for Visits across Experimental Conditions 
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Overall, the results of the K function suggest support for the important role that 

the street network plays in the concentration of street robbery.  Specifically, they 

illustrate that street nodes are significantly more concentrated than would be expected 

under CSR and that their intrinsic clustering is responsible for the majority of 

clustering in both agent travel and street robberies.  This finding underscores the 

importance of considering the street network in any evaluation of the concentration of 

travel (i.e. visits) and street robberies that are produced by the model.  That being 

said, the results also suggest that there are situational factors at work in generating the 

observed robbery patterns.  Even though the agents (both civilians and police) are 

randomly distributed across street intersections at the beginning of the simulation and 

then move randomly from node to node over the whole model year, there is additional 

clustering in the distributions of street robbery events that cannot be accounted for by 

the pattern of street nodes.   
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6.4 Some Comments on the Robustness of the Model 

Sensitivity testing is essential to quantifying the robustness of the model results 

and is conducted by varying the initial parameters and the random number seed 

(Manson, 2001).  The values of five of the parameters (i.e. number of police, time to 

wait before able to re-offend, initial wealth distribution, perception of target 

suitability random term and the perception of guardianship random term) are 

increased; the model runs repeated for all five experimental conditions; and a one-

way ANOVA applied to analyze the results.  While the absolute number of street 

robberies increased or decreased depending on the parameter being varied, in all 

cases the original significant differences between the groups remained, demonstrating 

the robustness of model results to changes in initial parameters (Table 3-10).  Finally, 

the entire sensitivity testing process of varying the five parameter values is repeated 

four more times using different random number seeds to test the effect of changing 

the random number seed on the outcomes of the model.  An analysis of the output 

demonstrates that model results are robust to changes in the random number seed.29

                                                 
29 The results of the sensitivity tests with random number seeds of 200, 300, 400 and 500 are available 
upon request. 
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Table 3-10:  Parameter Testing Results 

Condition  30% 40% 50% 60% 70% 
Target time to spend away from 
home (hours) 

432 
(7.2) 

576 
(9.6) 

720 
(12) 

864 
(14.4) 

1008 
(16.8) 

Actual time spent away from home 436.9 580.2 723.5 866.8 1010.1 
      
Base Model (robbery rate per 1000 
agents)*** 54.637 76.032 95.219 118.085 139.007 

      
Parameter Verification      
Increase number of police to 
1000*** 54.148 72.502 91.474 110.752 131.611 

Increase time to wait before re-
offending to one day*** 31.682 37.358 41.403 44.551 47.134 

Increase societal wealth 
distribution (mean = 100 and 
sd=50) *** 

58.937 79.097 100.195 121.916 143.241 

Increase impact of random term 
representing perception of target 
suitability U(-10,10) *** 

42.093 56.688 73.931 87.699 103.353 

Increase impact of random term 
representing perception of 
guardianship U(-4,4) *** 

51.427 72.520 89.590 108.469 128.618 

*** Difference among one or more of the groups is significant at P < .000. 
 

7.0 Discussion 

This paper presents a new approach to formalizing and testing criminological 

theory that relies on simulation.  To demonstrate the methodology, a simulation 

model of street robbery is developed based on the core propositions of routine activity 

theory.  The model is then used to conduct a series of experiments to test whether the 

outcomes match what the theory predicts.   

Previous attempts to test routine activity theory, although generally supportive, 

have produced mixed results.  None of the tests were able to sufficiently address the 

spatio-temporal structure of routine activities, satisfactorily deal with measurement 
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issues, or effectively capture the dynamic nature of interactions at the micro-level.  

This research addresses all three of those issues by relying on simulated individuals 

that interact on the streets of Seattle, Washington.   

Routine activity theory’s basic premise, crime will increase as individuals spend 

more time away from home, is strongly supported by model results and the finding is 

robust even when the initial parameter values are systematically varied.  Although the 

absolute number of robberies fluctuates as parameters are changed, the relative 

relationship between increasing time spent away from home and the rate of street 

robberies remains significant.   

Previous research has recognized the role of the built environment in general to 

structuring movement (Capone & Nichols, 1976; O'Sullivan, 2004a) and to 

concentrating population-related variables (Bailey & Gatrell, 1995; Levine, 2005).  

This research finds the street intersections are significantly more clustered than would 

be expected by chance.  Taking this clustering into account, the pattern for street 

robberies exhibits additional clustering beyond what is explained by the street 

network but only at certain distances.  At these distances, the clustering is instead 

related to the specific situation in which the crime occurs. 

Although this initial implementation of the method is simple, it accomplishes 

several essential functions.  First, it makes the process of theory testing transparent by 

formalizing model specifications.  Subsequent researchers have a concrete record of 

how theoretical constructs are operationalized in the model.  Second, the model 

provides a base upon which to build more complex explorations of street robbery.  

Third, the method replaces artificial landscapes prevalent in agent-based models with 
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the street network of Seattle.  In doing so, the research takes an important step toward 

more realistically ‘situating’ simulation and measuring the street network’s influence 

on spatial patterns of street robbery.  Fourth, the use of a series of controlled 

experiments to test the model illustrates the potential for this type of research to refine 

theory by systematically varying one aspect while holding all others constant.   

New questions could be explored by building additional analytical capability into 

the base model.  The incorporation of activity spaces for civilians represents an 

important and necessary enhancement to the initial model.  Rather than traveling 

randomly, individuals could be assigned home, job, and other locations among which 

they could travel (Groff, Forthcoming-b).  The spatial distribution of homes, jobs, 

recreation and services in Seattle could serve as the basis for the distribution of 

agents’ activity nodes in the model.  In this way, the activity locations of agents in the 

model would reflect the activity spaces of the civilians of Seattle.   

The behaviors and awareness levels of agents could be expanded and made more 

nuanced.  Enhancing the behavior of existing police agents would enable tests of the 

effectiveness of different patrol strategies (e.g. hot spot policing) in reducing or 

displacing crime.  For example, a researcher could compare the results of the previous 

simulation in which police patrol randomly to a hot spots policing strategy in which 

police are assigned areas where street robbery is highest.  In addition, a wider range 

of place characteristics and neighborhood-level perceptions of areas could be 

incorporated into the dynamic decisions of individuals.  This would enable more 

richly textured micro-level situations in which agents interact as well as incorporate 

important micro and macro-level elements that impact how a situation is perceived.   

 93 
 



 

At the individual level, the influence of guardianship on the decision to offend 

could be studied intensively.  Specifically, the role of place managers and intimate 

handlers as guardians could be tested in a computational laboratory (J. E. Eck, 1995a; 

Felson, 2001;2002).  For example, a researcher could change the weightings of 

different types of agents (e.g. police, known agents, place managers etc.) to determine 

the effect on the decision to offend while holding everything else constant.   

8.0 Conclusion 

Despite the potential value of simulation as a research platform, serious questions 

remain about evaluating models (Manson, 2001; O'Sullivan, 2004a).  Focusing on 

simulation models as tools to aid in explanation and understanding rather than 

prediction avoids many of the thorniest questions of model validation.  In this role, 

simulation models become aids to the refinement of theory prior to empirical testing 

and are especially useful in identifying ‘gaps’ in theory (O'Sullivan, 2004a).  In 

addition, simulation models have the potential to reduce research costs by saving 

empirical tests for the strongest theories.  After all, simulated theory testing takes 

place in an artificial world and thus is not capable of conferring empirical validity to a 

theory (Paternoster, 2001). 

The research methodology employed here provides a unique framework for 

promoting more comprehensive and rigorous tests of theories about human behavior 

at both the micro- and macro-levels of analysis.  Because the method requires the 

formalization of theoretical concepts, it has the potential to generate a common 

language with which to describe those concepts, and to stimulate the construction of 

well-defined models that can be discussed and tested further.  The findings from the 
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example model of street robbery specified and tested here demonstrate clear support 

for the plausibility of the basic premise of routine activity theory and in doing so 

provide the foundation for the development of additional, more richly specified 

models of criminal and spatial behavior.  Advanced models are likely to produce 

concrete, public policy relevant findings addressing both the situational elements of 

crime and the structure of routine activities in general.  The potential for crime 

reduction from these findings is high because the situational aspects of the crime 

event can be altered far more quickly and easily than ones involving the root causes 

of criminal motivation (Akers, 2000; Cullen & Agnew, 1999; Felson, 1987; Vold et 

al., 2002).  
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Chapter 4: The Spatio-Temporal Aspects of Routine Activities 
and Crime  

1.0 Introduction 

Researchers within geography and closely related disciplines have long 

recognized the importance of considering space and time when examining human 

behavior (Chorley & Haggett, 1967; Engel-Frisch, 1943; Hägerstrand, 1970;1973; 

Harvey, 1969; Hawley, 1950; Horton & Reynolds, 1971; H. J. Miller, 1991; R. J. 

Sampson, 1993).  In particular, sparked by theoretical developments during the 1970s 

and 1980s, many criminologists have begun to study how places influence when and 

where victims and offenders converge (D. L. Weisburd, 2002).  Proponents of this 

view focus on the study of crime events rather than criminal motivation and rely on a 

set of ‘opportunity theories’ of crime to explain why crimes occur in one place and 

not another.   

As the importance of place and time in criminological theory has gained 

recognition, so has the utility of applying a more process-oriented perspective to the 

study of crime (R. J. Sampson, 1993; D. L. Weisburd, Lum, & Yang, 2004).  This 

approach recognizes that “social behavior occurs in particular times and places with 

particular social actors” (R. J. Sampson, 1993 429).  While the theoretical framework 

exists for such research, the collection of individual-level data to characterize human 

interactions in general and crime events in particular remains an on-going barrier to 

the empirical application of this perspective and one that is unlikely to change due to 

privacy concerns (O'Sullivan, 2004b). 
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In response to these challenges, some researchers have begun to consider 

simulation modeling as an alternative approach (P. L. Brantingham & Brantingham, 

2004; J. Eck, 2005; J. E. Eck & Liu, 2004; Gilbert & Terna, 1999; Gilbert & 

Troitzsch, 1999; Gimblett, 2002; Liu et al., 2005; Macy & Willer, 2002; Moss & 

Edmonds, 2005).  A subset of these researchers are interested in crime and recognize 

the value of simulation modeling for: 1) understanding crime in its situational 

context; and 2) capturing the dynamic interactions taking place at the micro level and 

examining their relationship to macro level patterns (P. L. Brantingham & 

Brantingham, 2003;2004; P. L. Brantingham & Groff, 2004; J. E. Eck & Liu, 2004; 

Gunderson & Brown, 2003; Wang et al., 2004).  In particular, the Brantinghams 

(2004) have clearly illustrated the important role of agent-based models in 

formalizing the context in which a crime event occurs.   

Many researchers use simulation modeling for prediction and forecasting 

(Maguire et al., 2005; E. J. Miller, Hunt, Abraham, & Salvini, 2004; E. J. Miller, 

Roorda, & Carrasoc, 2005).  Others emphasize the potential of simulation for 

elaborating theory (Albrecht, 2005; J. Eck, 2005; Macy & Willer, 2002) and for 

conducting systematic experiments in virtual laboratories (Dibble, 2001; Epstein & 

Axtell, 1996; Gilbert & Terna, 1999; Macy & Willer, 2002).   

One recent study offers an example of combining theoretical exploration with 

controlled experiments to study the crime of street robbery.  This was accomplished 

by implementing the assumptions of a theory, in this case routine activity theory 

(RAT) (Cohen & Felson, 1979), in a simulation model and then testing them via 

controlled experiments to discover whether the theoretically-predicted outcomes 
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match the model outcomes (Groff, Forthcoming-a).  The model building process 

emphasized simplicity, focusing on the elements that were directly addressed by the 

theory (Macy & Willer, 2002) and relied on ‘situating’ simulation by combining 

agent-based modeling (ABM) with geographic information systems (GIS) to include 

space and time.  The study found support for RAT’s core proposition that shifts in 

routine activities away from home increase the incidence of street robbery.  In 

addition, a spatial analysis demonstrated that the observed clustering in street robbery 

events is beyond the degree that would be expected based on the configuration of the 

streets.  The approach taken in the study represents a middle ground for theory 

‘elaboration’ between the verbal formulation of the theory and the testing of theory 

with empirical data (J. Eck, 2005); some characterize it as a way of ‘experimenting on 

theories’ (Dowling, 1999).  

RAT’s recognition of the importance of space and time in determining the 

convergence of the elements and the simplicity of the theory make it an ideal 

candidate for underpinning a further exploration of temporal and spatial impacts on 

crime patterns.  This research extends the earlier study by adding defined temporal 

and spatio-temporal schedules to the base model of street robbery.  Systematically 

adding complexity to the original model (Groff, Forthcoming-a) makes it possible to 

isolate the effect of first time and then space on the amount and spatial distribution of 

street robbery.  This is accomplished via the use of a new method for implementing 

activity spaces in agent-based models for ‘situating simulation’ to better reflect the 

influence of the built environment and urban structure on agent behavior (Groff, 

Forthcoming-b).   
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The remainder of this paper begins with a brief description of the theoretical basis 

for both the original model and the space-time extensions.  Next, the research design 

is described including: the application of agent-based modeling to this topic; the input 

data that are used to characterize agent activity spaces; and the experiments 

conducted.  The implementation model is explained to provide a basis for interpreting 

the model results.  The analyses of model results reveal that adding temporal and 

spatio-temporal schedules to agent activity spaces significantly alters the incidence 

and spatial distribution of street robberies.  Support for routine activity theory’s 

premise that crime will increase as people spend more time away from home is found 

in the Temporal version only. 

2.0 Theoretical Background 

Since this research extends an existing model, the next section only briefly 

describes the theoretical basis for that model (Groff, Forthcoming-a).  The bulk of the 

current section provides the theoretical background for the spatial and temporal 

components of human activity and their implications for the frequency and timing of 

the convergence of individuals.   

2.1 Criminological Foundations for the Original Street Robbery Model 

The original model of street robbery is primarily based on routine activity theory 

(Cohen & Felson, 1979) but relies on rational choice theory for the specifics of 

offender decision-making (Clarke & Cornish, 1985;2001).  This is necessary because 

routine activity theory pays little attention to the source of the offender’s motivation 
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and merely assumes a supply of motivated offenders.  None of the later extensions to 

RAT are considered. 

The central premise of Cohen and Felson’s (1979) routine activity theory (RAT) 

is that increases in crime are the result of a shift of routine activities away from home.  

As originally conceptualized, RAT identifies the convergence of motivated offender, 

suitable target, and the lack of a capable guardian at a particular place and time as 

the core elements necessary for a crime to occur.  A fourth element, routine activities, 

influences when and where victims and offenders converge.  Routine activities are the 

key dynamic element in determining aggregate crime rates because this element 

affects the convergence of the three other elements necessary for a crime, motivated 

offender, suitable target and guardianship.  In sum, crimes occur when the normal, 

everyday activities of offenders and victims converge in space and time with no 

guardian present.  Changes in routine activities directly impact the frequency of 

convergence among these elements which in turn, increase or decreases overall crime 

rates.   

2.2. Background on the Spatio-temporal Nature of Human Activity 

One of the core concepts in RAT involves the necessity of the convergence of 

victims and offenders in space and time in order for a crime to occur.  The specific 

‘where’ and ‘when’ of convergence stems from the routine behavior patterns of each 

actor involved.  Thus representing the spatio-temporal aspects of human behavior that 

facilitate convergence is a critical element in modeling street robbery events since it 

is the interactions between humans and their environment that serve as the source of 
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explanation of observed spatial patterns (Aitken et al., 1989; R. G. Golledge & 

Timmermans, 1990; Walmsley & Lewis, 1993).   

Scholars have long recognized that capturing only a single dimension leaves more 

questions than are answered (Hägerstrand, 1970;1975; Pred, 1967; Thrift & Bennett, 

1978; Thrift & Pred, 1981) and that examining space-time together yields a different 

and more complete representation of a situation than studying temporal variation or 

patterns in space individually (Pred, 1996).  However, RAT does not address any 

specifics of routine activities and the original model (Groff, Forthcoming-a) 

implements only a simple notion of activity space in which agents were either at 

home or away from home.  A more complex representation of activity spaces is 

required to capture the space-time aspects of human behavior. 

Although modeling activity spaces is not the main focus this research, their 

creation is essential to representing the routine activities component of routine 

activity theory.  Fortunately, a substantial literature exists that is dedicated to the 

examination of issues surrounding time-space geographies.  The time-geographic 

approach developed by the Lund School in Sweden is highlighted because it focuses 

on developing a set of probable behaviors not on trying to predict activity spaces 

based on empirical data and emphasizes increased understanding as a goal 

(Hägerstrand, 1975).  This is accomplished by explicitly representing how the 

opportunities and constraints within which individuals operate limit the temporal 

and/or spatial extent of activities.  Related approaches to studying space-time patterns 

relevant to this research are touched upon.  Finally, attempts at empirical 

implementation of time-geographic principles that incorporate the use of GIS are 
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discussed.  Together these investigations provide the foundation for the modeling 

approach taken in this research. 

Time-Geography as a Framework for Modeling Routine Activity Spaces 

Time-geography, as developed by Hägerstrand (1970; 1975), is a conceptual 

framework that takes into account the spatio-temporal aspects of human behavior as 

situated within larger social processes (Thrift & Pred, 1981).  Time and space are 

components of every action and interaction; one cannot be considered without the 

other.  Individuals travel to various locations along paths.  They operate with a known 

domain and points at which individuals stop their spatial movement (e.g. work, 

school, recreation) for a time are referred to as stations.  A large part of human 

interaction occurs at stations.  None of these elements are static, for example, 

domains and bundles can change as people change jobs or as their circumstances 

change (Hägerstrand, 1970).   

Several aspects of time-geography are important to the current investigation.  

Individual’s travel patterns are influenced by constraints (temporal, economic and 

spatial) on their ability to take advantage of opportunities for housing, employment, 

recreation etc.  Focusing on individual opportunities and constraints as they play out 

within a particular context is essential to understanding why events, in this case street 

robberies, occur sometimes and not others (Pred, 1996).  Hägerstrand identifies three 

main types of constraints that shape both the destinations and the route taken by 

individuals as they go about their daily activities; capability, coupling and authority 

(Hägerstrand, 1970).  Capability constraints relate to physical or resource-related 

limits to activity.  A physical constraint may consist of the time needed to sleep while 
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resource-related constraints are often related to distance.  For example, a person who 

can afford a car has greater mobility than someone who walks.  Especially important 

to this research is how capability constraints interact with fixed locations to limit 

travel (e.g. individuals can travel no farther away from home or work than the amount 

of time needed to return).  The actual distance depends on several factors including 

mode of transportation, street network, and speed limits; all of which factor into the 

amount of distance that can be covered in the time allotted.  Thus, models of routine 

activities must include both individual behavior and urban form if we are to better 

understand how the two are related and how they together produce human travel 

behavior (Hägerstrand, 1975).   

While the coupling constraints and authority constraints are not incorporated into 

the current research, they represent important information to inform future efforts.  

Coupling constraints involve activities that must be undertaken with others and thus 

they require both spatial and temporal overlap among specific sets of individuals (e.g. 

coworkers, customers, and friends).  Individuals are also constrained by the time-

space aspects of authority constraints that regulate access to particular areas at 

specific times.   

As the preceding paragraphs demonstrate, both time-geography and routine 

activity theory address individual-level behavior in the context of the macro-level 

environment and thus the two lines of research are complimentary.   

Implementations of Time-geographic Models 

While time-geography offers good conceptual grounding for understanding 

human behavior, its implementation to conduct empirical research has faced a variety 
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of challenges.  Early efforts, such as that of Lenntorp (1978), were hampered by 

complications in translating conceptual models into physical data models (Huisman, 

Forer, & Albrecht, 1997 as summarized from Forer 1993; H. J. Miller, 1991); the lack 

of data describing the space-time activities of individuals (Huisman & Forer, 1998; H. 

J. Miller, 2001); and difficulty in representing what data were available in a GIS, 

especially the temporal element (H. J. Miller, 2001; Peuquet, 1994).   

Miller (1991) took a major step toward computer modeling of human behavior 

when he defined the data inputs necessary for operationalizing time-geographic 

activity spaces within a GIS.  He terms the set of available places and routes a person 

can visit within a time period a ‘potential path area’ (PPA).  A PPA is limited by the 

activities that a person needs to accomplish, where those activities are located, and 

the street network (H. J. Miller, 2001).  Most importantly for the current research, he 

identifies the following elements necessary for defining a PPA: 1) locations that 

function as the origin/end of trips; 2) locations of activities; and 3) the arcs and nodes 

describing the travel environment (H. J. Miller, 1991).   

In his original work Miller (1991) recognized the potential of GIS for 

implementing time-geographic principles but noted that the main hurdle has been the 

incorporation of time into GIS (Peuquet, 1994;2002).  More recent work by Miller 

(2005) argues that the time-geographic conceptual framework cannot provide the 

specificity necessary to develop physical data models.  In response, he offers 

specifications for a measurement theory for time-geography (H. J. Miller, 2005).  

Briefly, they involve capturing the location (as an x, y coordinate pair) and the time 

(as a discrete time slice, t) for every individual in the model.  Miller’s (2005) 
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methodology takes into account velocity of travel, as reflected by mode and speed 

limits, as a constraint on the physical distance that can be covered within a specified 

time.  These constraints structure the timing and thus the ‘spacing’ of discretionary 

activity, an important element in criminal behavior (Ratcliffe, in press).   

Other perspectives on human behavior 

Several other perspectives are drawn from to inform agent movement and routine 

activities in the model.  In general, these perspectives agree that each person has an 

activity space; a geographic area within which they conduct their daily activities 

(Horton & Reynolds, 1971).  This area is equivalent to Hägerstrand’s (1970; 1975) 

domain and encompasses both the locations that are visited and the paths taken 

among those locations.  Different researchers have their own terms for these locations 

and paths.  Locations that are visited are called nodes (Paul Brantingham & 

Brantingham, 1981b; Patricia Brantingham & Brantingham, 1993; Lynch, 1960; H. J. 

Miller, 1991) or anchorpoints (R. Golledge & Stimson, 1997; G. Rengert, 1988).  

These are the places where the majority of human interaction occurs.  The particular 

routes taken among the locations are termed paths (Lynch, 1960; H. J. Miller, 1991).  

These paths often represent the shortest route between two places (Felson, 1987). 

Regardless of the terminology, these perspectives share the following 

characteristics.  Individuals’ travel patterns are influenced by temporal, economic and 

spatial constraints that limit their choices related to housing, employment, recreation 

etc.  Home tends to be the dominant node and travel is concentrated along certain 

routinely frequented paths.  Frequently traveled paths are hypothesized to be 

important factors in determining aggregate crime patterns because they bring 
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offenders and victims together in space and time.  Activity spaces and domains 

represent the areas with which an individual has routine interaction.   

Research on offender travel behavior has shown that their activity spaces are 

similar to non-offenders but more diffuse, including approximately two blocks on 

either side of major arteries, entertainment and employment centers (Paul 

Brantingham & Brantingham, 1991).  The more diffuse pattern is a result of 

additional exploration to identify potential targets.  In addition, studies on the journey 

to crime have consistently found a distance decay effect (i.e., the distance from 

residence to crime location is shorter rather than longer) (Capone & Nichols, 1976; 

Costanzo, Halperin, & Gale, 1986; Groff & McEwen, 2005; Katzman, 1981; McIver, 

1981; G. F. Rengert, Piquero, & Jones, 1999).  Together, the principle of least effort 

and findings from distance decay and activity space research emphasize the 

importance of proximity, accessibility, land use, and individual characteristics in the 

convergence of victims and offenders.  The formulation of activity spaces in this 

model combines elements from the perspectives just discussed and relies heavily on 

the notion of an integrated time-space approach to modeling human behavior in the 

urban environment.   

2.3 Hypotheses 

The review of the relevant literature highlights two questions related to the role of 

time and space in the production and pattern crime events.  Does the amount of time 

spent away from home continue to impact crime in the predicted direction regardless 

of the spatio-temporal structure of routine activities?  What effect do temporal and 

spatio-temporal constraints on routine activities have on the incidence and pattern of 
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street robbery events?  To examine these questions the current research revisits an 

earlier study’s hypotheses (H1 and H3) (Groff, Forthcoming-a) and tests if they hold 

true when the structure of routine activities is varied.  Two additional hypotheses (H2 

and H4) are also tested.  The first two hypotheses address the incidence of street 

robbery and the last two its spatial distribution: 

H1:  As the average time spent by civilians on activities away from 
home increases, the aggregate rate of robbery will increase. 

 
H2:  The temporal and spatio-temporal schedules of civilians while 

away from home change the incidence of robbery events. 
 
H3:  As the average time spent by civilians on activities away from 

home increases, the spatial pattern of robberies will change.   
 
H4:  The temporal and spatio-temporal schedules of civilians while 

away from home change the spatial pattern of robbery events.   

The first hypothesis tests the core assertion of routine activity theory when agents 

have temporal and spatio-temporal schedules.  The earlier study’s findings 

demonstrated the plausibility of this hypothesis when agents had no constraints on 

their spatio-temporal when away from home (Groff, Forthcoming-a).  The second 

hypothesis examines the effect of adding temporal and then spatio-temporally defined 

activity spaces on the incidence of street robbery.  The third hypothesis is replicated 

from the original study and compares the outcome distributions of street robberies of 

the experimental conditions (i.e. as society spends more time away from home) to one 

another.  The fourth hypothesis explores the impact of changing the structure of 

routine activities on the spatial distribution of crime events.  Since this is the first test 

of the effect of spatio-temporal schedules on the spatial pattern of street robberies, 

hypotheses 3 and 4 do not describe the potential outcome pattern but simply note it 

will be different. 
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3.0 Research Design 

This section describes the overall methodology used to implement two additional 

versions of a basic model of street robbery.  It begins with a brief overview of agent-

based modeling in general and the software used to implement the model.  Next, the 

input data utilized and the experiments that are conducted to test the effects of space 

and time on the frequency and distribution of crime events are discussed.   

3.1 Agent-based Modeling and the Implementation Software 

Agent-based models are one type of simulation modeling.  An agent-based model 

consists of a collection of autonomous entities implemented within a software 

program (O'Sullivan & Haklay, 2000).  Taken together these entities create an 

artificial world in which agents can represent people, governments, neighborhoods 

etc.  Each entity has a set of unique characteristics and behaviors which are often 

based on existing theory and empirical research.  Typically, these agents interact 

within an artificial world although there is increasing recognition of the value of 

using geographic information systems to provide a ‘real’ landscape (Brown et al., 

2005; O'Sullivan & Haklay, 2000).   

The two additional versions of the original model (Groff, Forthcoming-a) are built 

using the same software, Agent Analyst.30  Agent Analyst combines two of the most 

popular packages for ABM and GIS.  For ABM it relies on the Recursive Porous 

Agent Simulation Toolkit (Repast) product line and for GIS it uses ArcGIS.  Once the 

Agent Analyst toolbox is added into an ArcGIS session individual models can access 

                                                 
30 Agent Analyst is under development as a partnership between ESRI and Argonne National 
Laboratories; the parent companies of ArcGIS and Repast respectively.  Agent Analyst is free but 
currently available by request only.  The website for Repast is http://repast.sourceforge.net/.   
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shapefiles allowing: 1) individual agents to become spatially aware and 2) the 

visualization of agent movement and decision outcomes (e.g. locations of crimes).   

A combined ABM/GIS simulation model integrates the advantages of 

autonomous agents found in agent-based modeling with the spatial explicitness of a 

geographic information system (Albrecht, 2005; An et al., 2005; Brown et al., 2005).  

Both are necessary to move from artificial environments to ‘real’ ones.  The agents 

interact on city streets and their activities during the simulation are impacted by the 

distribution of opportunities for housing, employment, shopping and recreation across 

the urban backcloth.  In this way, the spatial behavior of agents based on real 

landscapes is more representative of actual human behavior than that of agents who 

are created with and interact upon artificial landscapes. 31   

3.2 Data 

The model uses input data describing the land use and street network of Seattle, 

Washington to provide the basis for the model landscape and the agent activity spaces 

(Groff, Forthcoming-a).  Four datasets describing conditions in Seattle are used to 

inform the activity spaces of agents in the model: 1) total population; 2) total 

employment; 3) total potential activities; and 4) streets.  Blockgroup level population 

figures describe the distribution of residences across Seattle (U.S. Census Bureau, 

2000).  Employment data provide the number of employees per zip code area (U.S. 

Census Bureau, 2002).  Potential activity locations are quantified through the use of 

retail, recreation and service establishments (e.g. grocery stores, convenience stores, 

dry cleaners, gyms etc.) (ESRI, 2003).  Finally, the King County Street Network 
                                                 
31 The details of implementing movement and activity spaces in the model are discussed in Groff 
(Forthcoming-b). 
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Database (SND) file is used to structure the agent’s movements.  Because of software 

limitations, street intersections are used to represent places rather than streets.  

Individual civilians and police in the model move from street intersection/node to 

street intersection/node (hereafter referred to as node).  There are 16,035 nodes in 

Seattle and these locations represent places at which a street robbery may occur.  

In addition to the input data describing Seattle, twelve parameters are set prior to 

the model run (Table 4-1).  These parameters are identical to the ones used in the 

previous study (Groff, Forthcoming-a).  The choice of parameter values is a critical 

aspect of all models that deserves special attention because of the potential impacts 

on the model outcomes.  Findings from the  original model were robust to sensitivity 

tests (i.e. changes in both parameter values and random number seeds) (Groff, 

Forthcoming-a).  The same sensitivity tests are conducted here: 1) five of the 

parameter values are increased; and 2) the random number seed is changed four 

times.  The model runs are repeated for each test and a one-way ANOVA is applied 

to evaluate the results.   
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Table 4-1:  Parameters in the Model 
 

Variable Rationale 

Society Level  
Number of Agents = 1,000 
 

Represents a balance between ensuring there are enough 
agents so that interactions can occur and the computational 
overhead from using more agents 

Number of Cops = 200 
 

Chosen to ensure that cops would be present at some of the 
convergences that occur across the 16,035 places in Seattle. 

Unemployment Rate = 6% 
 

The unemployment rate of six percent is based on the 2002 
unemployment rate for Seattle (Bureau of Labor Statistics, 
2003).32

Rate of Criminal Propensity 
= 20% 

Given that 20% of the population has committed a crime, 20% 
of civilians are assigned criminal propensity using a uniform 
distribution (Visher & Roth, 1986). 

Time To ReOffend = 60 
 

Parameter value chosen as a starting point since the author 
could find no empirical data on which to base time to 
reoffend.. 

Random Number Seed = 
100 (seed also tested at 200, 
300, 400 and 500) 
 

An explicit random number seed based on the Mersenne 
Twister (MT) algorithm is used as the basis for all random 
number distributions used in the model.  MT is currently 
considered to be the most robust in the industry (Ropella et 
al., 2002). 

Agent Level  
Societal Time Spent Away 
From Home = 30% (40%, 
50%, 60%, 70%) 
 

Assigned based on a normal distribution with a mean of 432 
minutes (for the 30% condition) and a standard deviation of 
10% of the mean (sd = 43).33

Initial Wealth = 50 
 

Initial wealth is assigned with a mean of 50 and a standard 
deviation of 20 units. 

Amount of wealth received 
each payday = 5 

No empirical evidence available. 

Amount of wealth 
exchanged during robbery=1 

No empirical evidence available.34

Situation Level  
Guardianship Perception = 
U(-2,2) 
 

The guardianship perception value can add or subtract zero, 
one or two guardians from the actual number present.  This 
represents the stochastic element in the offender’s perception 
of the willingness of a guardian to intervene. 

Suitable Target Perception = 
U(-1,1) 

The value in suitable target can increase or decrease the 
suitability or leave it unchanged.  This enables the offender to 
sometimes decide a target is not suitable even when they have 
more wealth. 

                                                 
32 Since the jobs data are from 2002, the corresponding year’s unemployment rate is used. 
33The time spent away from home is systematically varied to test the core proposition of routine 
activity that as time spent away from home increases crime will increase. 
34 A request to the Seattle Police Department for the average amount of cash taken during street 
robberies remains unanswered. 
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3.3 Agent Activity Spaces in the Model 

The purpose of the agent activity spaces in these versions of the model is two-

fold.  First, they represent the routine activities element of RAT.  Second, they 

provide a systematic way of testing the impact of time and time-space schedules on 

the incidence and distribution of street robbery.  While simple, the initial definition of 

activity spaces captures some crucial elements of human spatial behavior.  First, 

agents like people, have a series of places that they visit each day representing home, 

work and activities.  For instance, a person may go to work, pick-up the dry-cleaning, 

go to the gym and then to the grocery.  Second, the spatial extent of those activities is 

fairly consistent and forms a routine activity space.  One limitation of the activity 

spaces in the model is that they are static while human behavior often changes daily.  

Ideally, each the agent’s activity space would be dynamic during the model run 

enabling them to choose locations for activities within their potential path area given 

existing temporal constraints.  However, current software limitations preclude 

dynamic activity spaces.  While the software limitation is disappointing, the 

implementation of routine activity spaces with temporal and spatio-temporal 

constraints represents an advance and is tested here.  

A time-geographic framework is supplemented by work done on activity spaces 

to develop simulated routine activities (Kwan & Lee, 2004).  This hybrid approach 

gives structure to the way human activities are organized, while recognizing the 

importance of activity spaces as the areas in which individuals conduct their everyday 

lives (Horton & Reynolds, 1971).  Following Hägerstrand (1975), the activity spaces 

developed here are not meant to accurately portray the specific activities, durations 
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and routes of each individual in the model or to predict what those activity spaces 

would look like but rather to offer a representative heuristic.  In this way, the current 

model looks for middle-ground between empirical research and simulation which 

more effectively captures the complexity of human behavior. 

As in real life, activity spaces in the model have both spatial and temporal 

elements.  Theory holds that the travel behavior of individuals is influenced by the: 1) 

street network; 2) the specific locations at which opportunities for employment, 

recreation, retail and services exist; and 3) the distance among those locations 

(Hägerstrand, 1970;1975; Kwan, 1998; H. J. Miller, 1991).  The temporal schedule is 

impacted by the amount of time to spend at each activity, the distances between the 

activities and the speed of travel.  The more time spent traveling the less is available 

to spend at an activity.  

In the model, the routine activity spaces of individuals are implemented as a set of 

nodes (places) and paths (list of places traversed when traveling from one node to 

another) (Hägerstrand, 1970;1975; H. J. Miller, 1991).  Specifically, each civilian 

agent is assigned four nodes representing a home, a main (e.g. work, school etc.) and 

two activities (e.g. recreation, social, and retail places).  The nodes are assigned based 

on the distributions of population, jobs and activities in Seattle (e.g. if 10% of the 

population lives in a particular blockgroup then 10% of the agents are assigned to that 

blockgroup).  In this way, the size and form of activity spaces is influenced by the 

distribution of residential housing, jobs, schools, retail and services (Kwan, 1998; 

Weber & Kwan, 2003).  The outcome is that each civilian has a unique activity space 
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reflecting their origin/end place, the places they visit, and the routes among those 

places.35   

The agent activities are attached to a series of street intersections rather than street 

addresses or street blocks.36  Street intersections are used to represent “interchange 

points for journeys from stations to the road network and vice versa” (Lenntorp, 1978 

168).  It is at street intersections that agents change travel status (e.g. from work to 

travel) and that the potential for street robbery exists.  Intersections also provide a 

convenient heuristic to represent the dual nature of many places; a bank may be a 

workplace to an employee and a discretionary activity to customers (Lenntorp, 1978).   

In addition, domains can change as people change jobs or as circumstances 

change (Hägerstrand, 1970).  Accordingly, each civilian agent has two potential 

activity spaces; one activity space is used while employed and the other while 

unemployed.  Since becoming unemployed does not automatically change residence 

and other activities, the two activity spaces are identical except that the work location 

is dropped from the unemployed path and a new activity location is added.  The home 

location and the locations of the original two activities do not change.   

Following time-geographic principles each agent is indivisible, they can be in 

only one place at a time, movement across space takes time, and all activities have 

duration.  These principles are reflected in the existence of a temporal schedule for 

each that incorporates the temporal constraints on their travel (H. J. Miller, 2005).  

                                                 
35 This relatively simple representation of human spatial behavior does not incorporate other aspects of 
trip decision making (e.g. trip purpose, model of travel, order of travel, time of day etc.) which affect 
travel but it does provide a starting point. 
36 This follows the method used by Miller (1991) but for different reasons.  His was to simplify the 
representation in GIS.  Here the use of street intersection reflects a software limitation.  Repast cannot 
read network or geodatabase files from ArcGIS.   
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Each agent’s temporal schedule is primarily based on the daily amount of time the 

agent is assigned to stay at home and the size of their activity space.  The amount of 

time to stay at home is assigned first and is static so that the average time spent away 

from home for the societal experimental condition will be accurate.  Next, the amount 

of time needed to travel among the activity nodes is calculated since, as noted earlier, 

it limits the time available to spend at activities.  The remaining time in the day is 

randomly allocated to the Main, Activity 1 and Activity 2.   

The final element important to human activity is the street network.  The paths 

taken to travel among activity place are structured by the street network (Hägerstrand, 

1970;1975; H. J. Miller, 1991).  Movement in the model is either random or directed.  

Random movement follows a ‘random walk’ process in which a node is randomly 

chosen from the set of adjacent nodes (Chaitin, 1990).  Random movement is used by 

the police agents in all three versions and by the civilians in two versions of the 

model.   

Agents with pre-defined spatio-temporal activity spaces (i.e. those in the Activity 

Space version) are the only ones who use directed movement.  Their activity locations 

and the path among those places are generated in ArcGIS before the start of the 

model.  Each agent starts at home and then moves along the shortest path from 

activity place to activity place according to a temporal schedule and following a ring 

pattern so they end at home (Hägerstrand, 1970; Lenntorp, 1978; H. J. Miller, 1991).  

While research has shown that the shortest topological path is frequently not taken, it 

offers a standardized and convenient heuristic for this initial model.  In this way, 

movement along the street network and activity spaces provide the basis for modeling 
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how the routine nature of spatio-temporal behavior influences the convergence of 

individuals at a place-time.   

3.4 Experiments 

In keeping with the original study, the same series of five experiments are 

conducted on each of the two new versions of the street robbery model (Table 4-2).  

These experiments are used to test: 1) whether changes in routine activities (defined 

as time spent away from home) can increase crime even if the numbers of motivated 

offenders remains constant; and 2) the impact of spatial and temporal constraints on 

the incidence and spatial pattern of street robberies.  These tests proceed in a 

systematic fashion, with each condition representing an increase in the societal 

average for time spent on routine activities away from the home.  All of the 

percentages represent an average time spent away from home for the agent population 

as a whole; individual agents have different times spent away from home.   

Table 4-2:  Experimental Conditions:  Three Versions 
Average Time Spent Away From Home Version of 

Model C1 C2 C3 C4 C5 
Simple 30% 40% 50% 60% 70% 
Temporal 30% 40% 50% 60% 70% 
Activity Space 30% 40% 50% 60% 70% 
Hours per week ≈50  ≈67  ≈84  ≈101  ≈118  

 

Random number generators play an important dual role in agent-based models by 

providing the stochastic elements in the model and enabling scientific 

experimentation.  Both uniform and normal random number distributions are used for 

decision-making in the model.  For example, random numbers play a key role in 

representing uncertainty in the current knowledge about how individuals evaluate 
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guardianship and target suitability.  However, when a random number seed is defined 

at the start of a simulation the random number generator produces the same sequence 

of random numbers each time the model is run making experiments repeatable.  This 

characteristic forms the basis for using simulation as a laboratory for experimentation 

because it enables any differences in the outcome variable to be attributed to the 

manipulated variable and not to other sources (Axelrod, Forthcoming; Groff, 

Forthcoming-a; Lenntorp, 1978).   

4.0 Implementation Model 

This section explains how the original model of street robbery is extended by 

creating two additional and progressively more complex versions.  Like the original 

model of street robbery, these versions are based on the core elements of RAT but 

add routine activity spaces (Figure 4-1).  Since the original model serves as a base for 

the two new versions, the elements common to all three versions are described first 

and then the changes unique to each additional version are covered. 

There are two types of people in the model, civilians and police.  The civilians 

represent the general population of Seattle.  Only civilians have attributes and can 

take on different roles in the model (i.e., offender, victim, or guardian) depending on 

the particular situation.  Each civilian in the model has a unique set of characteristics 

that include criminal propensity, time to stay at home, wealth, and employment status.   
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Figure 4-1:  Conceptual Model of Street Robbery for All Versions 

 

Criminal propensity differentiates agents who are interested in committing 

robbery from all other agents in the model.  Civilians with criminal propensity can 

potentially take on any one of three roles, offender, victim, or guardian.  Civilians 

without criminal propensity can be either victims or guardians.  In all other ways, 

civilians with criminal propensity are exactly the same as those without.  While only 

agents with criminal propensity can make the decision to offend, it is the particular 

constellation of individual and contextual dynamics that determines whether a crime 

is committed.  In this way, patterns of offending and victimization are allowed to 

emerge from decisions made by individuals in particular contexts.  In addition to 

criminal propensity civilian agents are assigned a time to spend at home that is static 

over a model run, and a wealth and employment status that can change during the 
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model run.  Once convergence occurs, guardianship and suitability of target are 

considered by the offender when making the decision whether or not to commit a 

robbery. 

Police agents represent formal guardian and their presence automatically prevents 

a crime from occurring.  In all model versions, at the start of the simulation police 

agents are randomly distributed across the nodes and they follow a ‘random walk’ 

movement pattern in which they move one node at a time and only to an adjacent 

node.  

Regardless of model version, the decision to offend is made as follows.  At each 

model tick (i.e. each minute of the model year) all nodes with at least one agent 

present are evaluated.  Active nodes meeting the following three criteria are evaluated 

further:  1) no police present; 2) at least two civilians present; and 3) at least one of 

the civilians must have criminal propensity.  If there is only one offender at the node, 

that agent automatically becomes the active offender.  Otherwise, the active offender 

is randomly selected from the list of agents with criminal propensity who are at the 

node.  Offender agents who are not selected to be active are at risk of becoming 

victims.  When an agent commits a robbery, one unit of wealth is taken from the 

victim and transferred to the offender.  Once the active offender at each of the active 

nodes evaluates their situation, all agents move and the decision structure repeats.  

4.1 Model Versions 

Each of the three street robbery model versions is described and the differences 

among them are highlighted (Table 4-3).  The Simple version is from the original 

study and is included to offer a counterpoint to the two new versions (Groff, 
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Forthcoming-a).  In the Simple version, the agents move randomly along a real street 

network but the version does not incorporate the notion of temporal or spatio-

temporal schedules.  Civilian agents are randomly distributed across the nodes and 

each day begins at the node where the previous one ended.  Since they are ‘at risk’ of 

being robbed or robbing whenever they are not at home, civilians in the Simple 

version are the most exposed to becoming victims of or committing a crime.  Unlike 

the other two versions, civilian agents do not have an employment status so all 

civilian agents get paid every other week. 

Table 4-3:  Implementation Versions of the Conceptual Street Robbery Model 

 Simple Temporal Activity Space 

Civilian Movement Random Random Defined Activity 

Space 

Police Movement Random Random Random 

Civilian 

Characteristics 

   

Criminal Propensity Yes Yes Yes 

Wealth Yes Yes Yes 

Activity Space No Temporal Only Spatio-temporal 

Multi-faceted Risk 

Status 

No Yes Yes 

Employment Status No Yes Yes 

 

The Temporal and Activity Space versions are very similar to one another 

differing only in that one has temporal constraints and the other has spatio-temporal 

constraints on agent behavior.  The Temporal version has civilian agents who are 

randomly distributed across the nodes and follow a temporal schedule for travel when 
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not at home.  Civilians in the Temporal and Activity Space models share the same 

temporal schedule for activities and travel and consequently those agents spend the 

same amount of time ‘at risk’ for street robbery.  The Activity Space version of the 

model implements geographically informed activity spaces in which each agent 

travels among a pre-defined set of activity nodes. 

Civilian agents in the Temporal and Activity Space versions have attributes 

describing the time to spend at home, at a main activity, and at two other activities.  

Each type of activity has a different level of risk for street robbery.  While at home or 

at work the agent is not at risk of participating in a street robbery.  Thus, the amount 

of time at home or at work reduces risk of street robbery, while time spent traveling 

or engaging in other activities increases it.  This representation of risk is in keeping 

with the crime being studied.  By definition, street robbery happens only on the street 

or in public places; not in a home or inside a workplace.37   

Civilian agents in the Temporal and Activity Space versions of the model each 

have an employment status.  This characteristic has two important impacts in these 

versions of the model.  First, it changes the amount of time spent at the three activity 

nodes (but not the overall time spent away from home).  In the case of the Activity 

Space version, employment status determines the spatial-temporal aspects of the 

agent’s activities.  Those agents who are employed receive regular but static infusion 

of wealth every two weeks over the model year but civilians who are unemployed do 

not get paid.  Every month, 3% of unemployed agents become employed and are 

replaced by a new random selection of employed agents who become unemployed.  It 

                                                 
37 The designation of ‘at risk’ is simplified from real life.  A person who is shopping in a retail store 
also cannot be a victim of street robbery but is considered ‘at risk’ in the model.  The main purpose of 
the designation is to vary the time a civilian agent is at risk based on their activities. 
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is important to note that the employment status is assigned independently of the 

criminal propensity indicator; civilians with criminal propensity can be employed in 

the model, as they are in life. 

5.0 Analysis 

Descriptive statistics such as mean, median, standard deviation, and range are 

employed to characterize the results of each of the experiments and to compare them.  

An ANOVA, is used to determine if there is a significant difference among the street 

robbery rates for the five experimental conditions across the model versions (Axelrod, 

Forthcoming).  The response variable is number of robberies for each of the one 

thousand civilian agents.   

Two approaches for describing the spatial distribution of street robberies are 

applied (Groff, Forthcoming-a).  A visual comparison of the resulting crime patterns 

is made using a kernel density.  Kernel density surfaces offer a means of evaluating 

the existence of global trends in the distribution of street robberies and for comparing 

the relative density of robberies across experimental conditions (Bailey & Gatrell, 

1995; Levine, 2005; Mitchell, 1999; Williamson et al., 2001).   

In addition, formal tests of the spatial distribution of crime events are employed 

via Ripley’s K but with the following interpretational caveat in mind.  As noted in the 

earlier study, the data from the model are somewhat unique in that convergences and 

robbery events can only occur at the street nodes thus a comparison to complete 

spatial randomness is inappropriate (Forthcoming-a).  Instead, the K function is 

calculated for the street nodes and then compared to CSR.  The original study found 

the street nodes were significantly more clustered than would be expected under CSR.  
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In addition, the robberies were more clustered than the street nodes at certain 

distances.  To investigate this aspect in terms of space and time, both the line for CSR 

and the K function are depicted on all graphics to reveal the degree of intrinsic 

clustering in the street network as compared to CSR.   

The impact of schedule constraints on the spatial distribution of street robbery is 

evaluated by comparing the findings from the Simple version to those from the 

Temporal and Activity Space versions across the five experimental conditions using 

kernel density and Ripley’s K.  All of these measures are distance-based and 

characterize the spatial patterning of the street robbery locations as conditioned by the 

pattern of street nodes.  The robustness of all the findings is then evaluated through 

the systematic variation of five of the key parameter values and by varying the 

random number seed used across the new versions of the model. 

6.0 Findings 

This section summarizes the findings of the analyses just described.  First 

descriptive model outcomes are expressed by examining both place- and societal-

level attributes to characterize differences in the results from the model runs of the 

three versions across the five experimental conditions.  Next, the results pertinent to 

each of the hypotheses are conveyed.   

6.1 Descriptive Analysis 

Societal-level changes in the number of street robberies, the frequency of 

convergence of agents in space-time (i.e. opportunities for street robbery), and the 

number of crimes deterred by the police for all three versions of the model are in line 
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with what routine activity theory would expect; all the values increase steadily with 

time spent away from home (Table 4-4).  While the overall trends are consistent, 

significant differences in volume exist by model version.  The Simple model has the 

highest number of robberies and the steepest increases as time spent away from home 

increases.  The Temporal version has the fewest robberies and an identical slope as 

the Activity Space version.  Together these results point to the importance of a time 

schedule in lowering the incidence of street robberies regardless of the time spent 

away from home.  The addition of a spatially-constrained schedule to the Temporal 

version increases the number of street robberies.  This outcome is most likely related 

to the rate of convergence (i.e. presence of motivated offender and suitable target at 

same place-time) which tends to be highest in the Activity Space version and lowest 

in the Temporal version.  
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Table 4-4: Societal-level Model Outcomes 

 

 
 

Experimental Condition  30% 40% 50% 60% 70% 
Target time to spend away 
from home in minutes 
(hours) 

432 
(7.2) 

576 
(9.6) 

720 
(12) 

864 
(14.4) 

1008 
(16.8) 

Actual time spent away 
from home 

436.9   (S) 
427.8  (T) 
427.7 (AS) 

580.2   (S) 
572.5   (T) 
 572.3 (AS) 

723.5   (S) 
717.0   (T) 
716.9 (AS) 

866.8   (S) 
 861.6   (T) 
 861.5 (AS) 

1010.1   (S) 
1006.2   (T) 
1006.2 (AS) 

      
Total Robberies 54,637   (S)

12,807   (T)
32,326 (AS)

76,032    (S)
13,671   (T)
34,628 (AS)

95,219    (S)
15,183   (T)
38,331 (AS)

118,085    (S)
16,196   (T)
41,266 (AS)

139,007    (S)
17,181   (T)
46,085 (AS)

Total Convergences 1,454,341   (S)
736,787   (T)

1,889,899 (AS)

2,050,761    (S)
1,013,814    (T)
2,663,961 (AS)

2,631,149    (S)
1,285,568   (T)
3,446,132 (AS)

3,238,760   (S)
1,579,963   (T)
4,260,133 (AS)

3,835,299   (S)
1,880,647   (T)
5,018,754 (AS)

Total Robberies Deterred 
by Police 

1,532   (S)
325   (T)

1,286 (AS)

2,148   (S)
414   (T)

1,417 (AS)

2,693   (S)
416   (T)

1,484 (AS)

3,430   (S)
454   (T)

1,670 (AS)

4,040   (S)
450   (T)

1,979 (AS)
Percentage of civilians 
who were robbed 

77.7%   (S)
74.5%   (T)
74.0% (AS)

77.6%    (S)
73.2%   (T)
72.8% (AS)

76.4%    (S)
74.6%   (T)
71.8% (AS)

75.1%    (S)
72.5%   (T)
72.5% (AS)

76.2%    (S)
71.5%   (T)
73.5% (AS)

Percentage of civilians 
who were repeat victims 
of street robbery 

65.2%   (S)
64.6%   (T)
64.4% (AS)

65.2%    (S)
64.1%    (T)
63.1% (AS)

65.5%    (S)
63.9%   (T)
62.6% (AS)

65.1%   (S)
63.2%   (T)
62.9% (AS)

65.7%   (S)
62.6%   (T)
63.4% (AS)

Number of civilians with 
criminal propensity who 
committed a street robbery  

200   (S)
199   (T)
200 (AS)

200    (S)
200   (T)
200 (AS)

200   (S)
200   (T)
199 (AS)

200   (S)
200   (T)
198 (AS)

200   (S)
200   (T)
197 (AS)

(S) Simple (T) Temporal (AS) Activity Space 



 

Results from this research also show that deterrence (i.e. number of times the 

presence of a police agent prevents a robbery from taking place) increases for all model 

versions as the societal time spent away from home increases and the relationships 

among the versions are identical to those for convergence.  This supports Cohen and 

Felson’s (1979) hypothesis that the frequency of convergence impacts the potential for 

deterrence.  Whenever there are more convergences there are by definition more times a 

police agent can function as an agent of formal guardianship. 

Together these findings illustrate the separate impact of a temporal schedule and a 

defined activity space on the frequency of convergences across the three models.  Agents 

who travel randomly but have a temporal schedule experience the fewest number of 

convergences because the time they are ‘at risk’ is less then the agents in the Simple 

version.  When a spatial element is added (i.e. agents have defined activity spaces), it 

increases the frequency of convergence because agent’s homes, jobs and activities are 

clustered as opposed to randomly allocated across Seattle as in the other versions.  

Increasing convergence translates into more street robberies for agents in the Activity 

Space version.   

6.2 Hypothesis Test Results 

The first hypothesis tests the core assumption of RAT; as the average time spent by 

civilians on activities away from home increases, the aggregate rate of robbery will 

increase.  A One-Way ANOVA is applied to the means of the five experimental 

conditions to determine if the average number of robberies across all the civilian agents 

increases as the time spent away from home increases.  Separate tests are conducted for 

the Temporal and Activity Space versions of the model.  The results of the ANOVA 
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indicate significant differences only for the Temporal version (Table 4-5).38  Overall, the 

only version that does not support RAT is the one that includes space.39   

Table 4-5: ANOVA for Street Robbery Events across Versions and Experimental 
Conditions 

Proportion of Time Spent Away From Home  
Condition 

1 
(30%) 

Condition 
2 

 (40%) 

Condition 
3  

(50%) 

Condition 
4 

(60%) 

Condition 
5 

(70%) 
Number of civilians N=1,000 N=1,000 N=1,000 N=1,000 N=1,000 
      
Simple Model ***      

Mean 
(Standard Deviation) 

54.64 
(101.99) 

76.03 
(144.15) 

95.22 
(182.35) 

118.09 
(228.14) 

139.01 
(270.06) 

Temporal Model ***      
Mean 

(Standard Deviation) 
12.81 

(17.54) 
13.67 

(19.35) 
15.18 

(22.42) 
16.20 

(24.34) 
17.18 

(26.64) 
Activity Space Model      

Mean 
(Standard Deviation) 

32.33 
(87.69) 

34.63 
(103.26) 

38.33 
(129.42) 

41.27 
(148.5) 

46.09 
(174.90) 

*** Difference among one or more of the groups is significant at P <= .000. 
 

Additional tests using Tamhane’s T2 are employed to identify which groups differed 

significantly (Table 4-6).40  Comparing each group, in turn, to the other four groups 

reveals that there are differences between the conditions in the Simple and Temporal 

                                                 
38 Because of the positive skew to the distribution of robberies, additional tests regarding the equality of 
means are conducted.  Both the Brown-Forsythe and the Welch tests for equality of the means are 
significant at .000.  These tests are preferable to the F test when the equality of variances assumption is 
violated as it is here ("SPSS for Windows," 2002). 
39 The large sample size has a twin effect producing both a powerful design capable of detecting even small 
effects and making finding statistical significant relationshipts more likely.  The non significant finding for 
the Activity Space version may stem from the large standard deviation found in each of the conditions.  A 
variety of additional analysis confirm the finding of non significance for the Activity Space model.  
Specifically, analyses conducted with the same response variable under a Univariate Generalized Linear 
Model (GLM), and additional tests using both a One-way ANOVA and Univariate GLM but with a logged 
response variable, produce consistent findings.   
40 Tamhane’s T2 is used because it does not assume equal variances.  A test for homoscedasticity showed 
the variances are not equal across the five experimental conditions.  The Levene statistic is significant 
indicating the variances are significantly different among the groups.  However, ANOVA is robust in the 
face of this violation when the group sizes are equal which they are in this research (Newton & Rudestam, 
1999; Shannon & Davenport, 2001). 
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versions.41  While all but two comparisons for the Simple version were significant, only 

three of the between-group differences are significant for the Temporal version; between 

the 30% and both the 60% and 70% conditions as well as between the 40% and the 70% 

condition.  Thus, the effect of a temporal activity schedule is to reduce the number of 

significant differences between the experimental conditions. 

                                                 
41Tamhane’s T2 is only applied to those versions in which there were significant differences for the version 
as a whole. 
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Table 4-6:  Post Hoc Tests of Mean Differences by Experimental Condition (seed = 100) 
(I) Randomization 
Condition 

(J) Randomization 
Condition 

Mean difference 
(I - J) 

Standard 
error 

Significance

30% Time away 40% Time away    
 (S) a -21.39 5.584 .001 
 (T) -.86 .826 .970 
 (AS) -2.30 4.284 1.00 
 50% Time away    
 (S) a -40.58 6.607 .000 
 (T) -2.38 .900 .081 
 (AS) -6.01 4.944 -6.01 
 60% Time away    
 (S) a -63.45 7.903 .000 
 (T) a -3.39 .949 .004 
 (AS) -8.94 5.453 .656 
 70% Time away     
 (S) a -84.37 9.129 .000 
 (T) a -4.37 1.009 .000 
 (AS) -13.76 6.187 .234 
40% Time away 50% Time away    
 (S) -19.19 7.351 .088 
 (T) -.51 .936 .676 
 (AS) -3.70 5.236 .999 
 60% Time away    
 (S) a -42.05 8.534 .000 
 (T) -2.53 .983 .098 
 (AS) -6.64 5.719 .941 
 70% Time away    
 (S) a -62.98 9.681 .000 
 (T) a -3.51 1.041 .008 
 (AS) -11.46 6.423 .540 
50% Time away 60% Time away    
 (S) -22.87� 9.236 .126 
 (T) -1.01 1.046 .983 
 (AS) -2.93 6.229 1.00 
 70% Time away    
 (S) a -43.79 10.305 .000 
 (T) -2.00 1.101 .515 
 (AS) -7.75 6.880 .951 
60% Time away 70% Time away    
 (S) -20.92 11.180 .470 
 (T) -.98 1.141 .993 
 (AS) -4.82 7.255 .999 
a Significant differences were found between experimental conditions I and J at p < .05. 
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The second hypothesis is that the temporal and spatio-temporal schedules of civilians 

while away from home change the incidence of robbery events.  This hypothesis explores 

whether the versions of the model produce significantly different numbers of street 

robberies for each of the experimental conditions (e.g. whether the number of robberies 

under the 30% time away condition for the Simple version were significantly different 

than under the Temporal or the Activity Space versions).  The results of the ANOVA 

indicate there are significant differences between the rates of street robbery for all three 

versions of the model.  A post hoc analysis reveals there are significant differences 

among all five experimental conditions (Table 4-7).  In other words, regardless of the 

amount of time spent away from home, including the temporal and spatial components of 

activity spaces resulted in significantly different robbery rates.  These results support the 

separate importance of both time and space when modeling routine activities.   
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Table 4-7:  Post Hoc Tests of Mean Differences Between Same Condition in Different 
Model Versions (Seed = 100) 
 
(I) Version (J) Version Mean difference 

(I - J) 
Standard 

error 
Significance

Simple  Temporal    
 30% Time Away a 41.83 3.272 .000 
 40% Time away a 62.36 4.599 .000 
 50% Time away a 80.84 5.810 .000 
 60% Time away a 101.89 7.255 .000 
 70% Time away a 121.83 8.582 .000 
 Activity Space    
 30% Time Away a 22.31 4.253 .000 
 40% Time away a 41.40 5.607 .000 
 50% Time away a 56.89 7.071 .000 
 60% Time away a 76.82 8.608 .000 
 70% Time away a 92.92 10.175 .000 
Temporal Activity Space    
 30% Time Away a -19.52 2.828 .000 
 40% Time away a -20.96 3.322 .000 
 50% Time away a -23.15 4.154 .000 
 60% Time away a -25.07 4.758 .000 
 70% Time away a -28.90 5.594 .000 
a Significant differences were found between model versions I and J at p < .05.
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A tabular view of the spatial distribution of agent movement and robberies offers 

descriptive evidence in support of the third hypothesis; as the average time spent by 

civilians on activities away from home increases, the spatial pattern of robberies will 

change (Table 4-8).  The outcome measures reveal both increases in concentration 

and spread of street robberies as time spent away from home increases.  Mean 

robberies per node are lowest in the Temporal model followed by the Activity Space 

model.  The more time that is spent away from home, the bigger the disparity among 

the versions.  A different pattern emerges when looking at the percent of street nodes 

with only one robbery and the percent with more then one robbery.  The Simple 

version has the highest proportions of both, followed by the Temporal version.  Less 

than 10% of all nodes in Activity Space version ever have a robbery. 
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Table 4-8: Place-Level Model Outcomes 
Experimental Condition  30% 40% 50% 60% 70% 

Average robberies per 
node 

3.41   (S)
.80   (T)

2.02 (AS)

4.74   (S)
.85   (T)

2.16 (AS)

5.94   (S)
.95   (T)

2.39 (AS)

7.36   (S)
1.01   (T)
2.57 (AS)

8.67   (S)
1.07   (T)
2.87 (AS)

Average number of visits 
per node 

9,732.8   (S)
5,319.1   (T)
5,116.6 (AS)

12,903.9    (S)
6,956.6   (T)
6,711.3 (AS)

16,087.8   (S)
8,595.7   (T)
8,331.1 (AS)

19,253.4   (S)
10,234.7   (T)
9,930.4 (AS)

22,423.0   (S)
11,873.2   (T)
11,522.2 (AS)

Total places with a 
robbery 

13,376   (S)
6,689   (T)
1,535 (AS)

13,925   (S)
6,641   (T)
1,499 (AS)

14,309   (S)
6,549   (T)
1,472 (AS)

14,531   (S)
6,441   (T)
1,475(AS)

14,683   (S)
6,568   (T)
1,498 (AS)

Percent of places with a 
robbery 

83.4%   (S)
41.7%   (T)
9.6% (AS)

86.8%   (S)
41.4%   (T)
9.4% (AS)

89.2%   (S)
40.8%   (T)
9.2% (AS)

90.6%   (S)
40.2%   (T)
9.2% (AS)

91.6%   (S)
41.0%   (T)
9.3% (AS)

Total places with more 
then one robbery 

11,157   (S)
3,130   (T)
1,179 (AS)

12,175   (S)
3,183   (T)
1,171 (AS)

12,995   (S)
3,225   (T)
1,128 (AS)

13,303   (S)
3,254   (T)
1,134 (AS)

13,572   (S)
3,197   (T)
1,142 (AS)

Percent of places with 
more then one robbery 

69.6%   (S)
19.5%   (T)
7.4% (AS)

75.9%   (S)
19.9%   (T)
7.3% (AS)

81.0%   (S)
20.1%   (T)
7.0% (AS)

83.0%   (S)
20.3%   (T)
7.1% (AS)

84.6%   (S)
19.9%   (T)
7.1% (AS)

(S) Simple (T) Temporal (AS) Activity Space 
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Another way of characterizing the spatial pattern of robberies is via a kernel 

density.42  Two maps describe the spatial pattern of robberies that emerges for each 

version of the model at the 30 percent and 70 percent conditions (Maps 4-1 and 4-2).  

As civilians spend more time away from home, the robbery concentration at existing 

places increases while new areas emerge; an effect that is most likely due to the 

increased frequency of the convergence of the elements necessary for a crime to 

occur. 43  This visual inspection of the map series indicates support for the third 

hypothesis and illustrates the importance of considering the spatio-temporal structure 

of routine activities. 

 
42 The purpose of the kernel density surface use here is to represent the overall changes in intensity 
across the city of Seattle.  Therefore, a bandwidth of 1,320 feet (one quarter mile) and a cell size of 
100 feet are the basis for all kernel density surfaces.  The quarter mile distance is often employed to 
represent the potential walking area for individuals in urban areas and by extension their potential area 
of interaction around a given point (Calthrope, 1993; Duaney & Plater-Zyberk, 1993; Nelessen, 1994).  
The surfaces are generated in ArcGIS version 9.1 and the output is in robberies per square mile 
(Mitchell, 1999). 
43 Kernel density maps of the 30, 40, 50 and 60 percent conditions are not shown here but are available 
from the author. 



 

Map 4-1: Kernel Density for 30% Time Spent Away From Home 
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Map 4-2: Kernel Density for 70% Time Spent Away From Home 

 



 

Ripley’s K offers a more formal test of the form of the distribution across versions 

and experimental conditions. 44  Figure 4-2 compares the concentration of street 

robberies under all five of the experimental conditions to the concentration of the 

street network’s nodes, and to a reference distribution describing the amount of 

concentration that would be expected under CSR.45  As in the original study, street 

nodes are significantly more concentrated then would be expected under CSR (Groff, 

Forthcoming-a).  Results of the Ripley’s K function indicate that there is a high 

degree of concentration in street robbery locations across all five conditions.  The 

street robbery distribution lines for the Simple (Figure 4-2a) and Temporal (Figure 4-

2b) versions of the model are very similar to the one for street nodes in general and to 

each other.   

                                                 
44 The reported Ripley’s K functions are generated using CrimeStat III (Levine, 2005).  Following the 
original study, no edge correction is applied since approximately three quarters of the perimeter of 
Seattle is bounded by water.  
45 The CSR K function distribution is generated by using a uniform random number generator to create 
100 distributions with the same N as the observed distribution, in this case N=16,035 (Levine, 2005).  
A significance level of p < .05 is used.  The random distribution generated under CSR is truly random 
in that any location can be selected, not just an intersection.   
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Figure 4-2:  Ripley’s K:  Distribution of Robbery Events 
(a) Simple 
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(b) Temporal 

-4000

-3000

-2000

-1000

0

1000

2000

3000

215
128

8
236

2
343

5
450

9
558

3
665

6
773

0
880

3
987

7
109

50
120

24
130

97
141

71
152

45
163

18
173

92
184

65
195

39
206

12

Distance Bin (Feet)

L(
t)

Cond 30

Cond 40

Cond 50

Cond 60

Cond 70

Street  Nodes

CSR Nodes Min

CSR Nodes Max

 
(c) Activity Space  
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In the Simple version of the model, robberies are most concentrated when society 

spends 30% of time away from home and the concentration decreases as time spent 

away from home increases while the 70% condition is the most clustered for the 

Temporal version.  Temporal version robberies track the clustering in street nodes 

until about a quarter of mile when they become and then remain more clustered at all 

distances.  The one exception is for condition 50 which exhibits the same level of 

clustering as the street nodes at distances less than about one mile and greater than 

two miles.  The Activity Space K function lines are significantly more clustered than 

the street nodes at all distances and under all five experimental conditions (Figure 4-

4c).  Unlike the Temporal and Simple versions, there is very little variation among the 

individual experimental condition lines for the Activity Space version.   

An additional analysis of the distribution of visits (i.e. number of times a civilian 

agent is at a node) to separate the clustering in street robbery from clustering due to 

everyday travel patterns shows that the patterns for visits and robberies are very 

similar across all model versions with robberies exhibiting slightly more clustering 

than would be expected based on the network.  This provides evidence of the 

existence of additional factors, beyond routine travel, that are contributing to the 

greater concentration of street robbery events.46   

The final hypothesis is that the temporal and spatio-temporal schedules of 

civilians while away from home change the spatial pattern of robbery events.  It 

explores the impact of systematically adding temporally and spatially explicit 

components to agent behavior on the spatial distribution of street robberies.  Kernel 

                                                 
46 Due to space constraints the kernel density and Ripley’s K results for the analysis of visits are not 
included in the paper but are available upon request from the author. 
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density maps (Maps 4-1 and 4-2) reveal the existence of intra-version and inter-

version differences in the spatial patterns of street robbery at the 30 and 70 percent 

conditions.  In general, the Simple condition has fewer clusters then the Temporal 

version but the clusters represent higher density areas, regardless of the experimental 

condition.  The location of the densest clusters are in the same general area (e.g. in 

and near the downtown) for both versions but the distribution for the rest of the city is 

very different.  The Simple model has more clusters in the southern part of the city 

and the Temporal Activity Space has more in northern Seattle.  As the only spatially-

defined version, the Activity Space version has a pattern distinctly different from the 

other versions; one that reflects the unchanging activity spaces of the agents in the 

model.   

Another way to examine the differences in the spatial pattern of street robberies 

produced by the addition of time and then time-space to the civilian’s activities is to 

use the Ripley’s K calculated earlier but compare the distributions produced by the 

model versions at the 30 and the 70 percent experimental conditions (Figure 4-3).47  

The street robbery pattern produced by the Activity Space version is significantly 

more clustered than the other versions, and than would be expected based on the 

street node network regardless of experimental condition.  This result is reasonable, 

although not predicted; because the Activity Space version specifically restricts 

civilians to pre-defined activity spaces for the duration of the model run.  

                                                 
47 Only the 30 and 70 percent graphs are included in the paper.  Results from the 40, 50, and 60 percent 
conditions are available from the author. 
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Figure 4-3: Ripley’s K Analysis:  Distribution of Street Robberies by Model Version 
 
(a) Condition 30:  Society Spends 30 Percent of Time Away From Home 
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(b) Condition 70:  Society Spends 70 Percent of Time Away From Home 
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On the other hand, the pattern of clustering in the Simple and Temporal versions 

relative to one another changes depending on time spent away from home.  Although 

both are more clustered then the street nodes at distances under two miles, the 

 141



 

strength of that clustering varies with experimental condition.  The Simple version 

exhibits higher levels of clustering at distances under two miles for 30 percent 

condition.  At 70 percent the results are identical at shorter distances but after about a 

mile they two versions switch roles and the Temporal version exhibits greater 

clustering because of the smaller activity spaces.  Overall, temporal constraints 

reduce clustering in the distribution at distances between one-half and two miles but 

only in societies in which civilians spend up to half of their time away from home.  In 

sum, adding spatial constraints produces a much larger effect than adding temporal 

ones.   

6.6 Sensitivity Test Results 

Similar to results for the original model, the new model versions are robust to 

changes in parameters and random number seeds (Groff, Forthcoming-a).  The 

absolute number of robberies increased or decreased depending on the parameter 

being varied.  However, findings related to RAT’s core proposition remain consistent 

across all the tests except two, lending additional support for robustness of the model 

even as parameters are varied.  First, one of tests varying the random number seed did 

produce a significant result for the Activity Space version.  Otherwise, the results of 

the model are shown to be robust to changes in the random number seed.48  Second, 

increasing the time an agent with criminal propensity has to wait to commit another 

street robbery made the ANOVA for the Temporal version non significant and 

pointed to the importance of timing in the decision to offend.  These were the only 

changes from manipulating the base model parameters. 

                                                 
48 The numeric results are available upon request from the author. 
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6.7 Explanations for the Emergent Patterns 

Explanations for the findings just described have their roots in the simple rules 

governing agent behavior and interaction.  The separate influences of temporal and 

spatio-temporal schedules and the movement rules of the agents underlie the finding 

that time and space each have an effect on the incidence and spatial distribution of 

street robbery events stems.  Temporal schedules reduce the time agents are ‘at risk’.  

Agents with a temporal schedule spend time at their activity nodes which means they 

are not vulnerable to street robbery for as much time and they travel shorter distances 

each day.  These changes to their behavior directly impact the number of times they 

end up at a place where a crime might occur (i.e. the number of convergences) and 

thus, the rate of street robbery in society.  They also change the spatial distribution of 

robbery events by making the potential path space of the agents in the Temporal 

version smaller.   

Empirically-informed spatio-temporal activity spaces in the Activity Space 

version of the model increase convergences in two ways.  First, they increase the 

clustering of agent’s homes, jobs, and activity nodes as compared to a random 

distribution.  As a result, civilians are funneled along many of the same roads to reach 

many of the same areas.  Second, the use of a defined activity space embodies the 

routine nature of daily travel and its restriction to a potential path area in which 

individuals can travel to all the required locations within their time schedule (H. J. 

Miller, 1991).  Civilians following these predefined paths are by definition then 

converging only with other civilians’ paths that physically intersect their own.  In this 

way, spatially-defined activity spaces act to: 1) concentrate the activities of agents 
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sharing the same activity space; 2) increase the frequency of convergence of agents in 

the model; and 3) increase the deterrence effect of police who are in those high 

concentration areas.  

Adding a spatially-defined activity space produced results that did not support 

RAT’s premise that as time spent away from home increases, crime will increase.  

The explanation for this finding is probably in the implementation of the model rather 

then the theory itself.  Currently, the activity spaces of civilians are unrealistically 

consistent which concentrates their interaction to one daily path.  While this type of 

activity space may be accurate for some small proportion of individuals, accessibility 

research indicates there is typically more variety in daily paths (Kwan, 1998; Weber 

& Kwan, 2002).  As a consequence of this concentrated interaction in the model, the 

same civilians with and without criminal propensity meet again and again.  As the 

civilians with criminal propensity accumulate more wealth than the non-criminal 

civilians, especially in situations where there are only two agents (criminal and non-

criminal civilian), no crime will occur.  Thus while the frequency of convergence in 

the model continues to increase dramatically, the rise in street robberies is much 

slower and there are not significant differences as society spends more time away 

from home.  Adding to the variety of agent paths or increasing the number of agents 

in the population might produce a finding consistent with routine activity theory but 

must wait for future versions. 

7.0 Discussion and Conclusion 

This research extends earlier work that presented the case and provided the 

method for testing routine activity theory using simulation and found support for the 
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theory’s main premise that the shift of routine activities away from home increases 

rates of street robbery (Groff, Forthcoming-a).  The approach used was unique in that 

it incorporated all travel behavior and interactions of individuals when usually only 

the situations in which a crime occurs are studied.  However, the earlier study left 

unexamined the temporal and spatio-temporal aspects of routine activities in the 

model.   

This paper extends the earlier work by creating two additional versions of the 

basic model of street robbery based on an existing methodology for ‘situating 

simulation’ (Groff, Forthcoming-b).  One version adds time schedules to the civilians 

that more realistically reflect the actual vulnerability to the crime of street robbery by 

restricting their ‘at risk’ status to times they are traveling or participating in an 

activity that requires them to be outdoors (e.g. walking in the park, shopping along 

the street, etc).  The other version defines both the spatial and temporal schedules of 

the civilians by having them travel among a set of locations spending the same 

amounts of time traveling and at activities as in the Temporal version.  In this way, 

the current work is able to: 1) test the core premise of routine activity theory that 

shifting routine activities away from home increases street robbery; 2) explore the 

impact of progressively more complex temporally and spatio-temporally explicit 

activity spaces on the incidence of street robbery; and 3) examine the influence of the 

first two on the spatial distribution of street robbery events.   

The resulting analyses provide strong support for the important role of time and 

particularly space-time in the definition of activity spaces.  Specifically, routine 

activity spaces that include time or time-space produce different quantities of street 
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robberies with dissimilar spatial distributions across Seattle.  In other words, as 

expected based on theory, the introduction of temporal and spatio-temporal elements 

to the activity spaces of the civilians in the model causes changes in both the 

frequency and spatial distribution of street robbery events.  However, the simulation 

provides inconsistent evidence for the plausibility of routine activity theory; while the 

results of the Temporal version support the plausibility of RAT’s main premise, those 

from the Activity Space version do not.   

Further examination of mechanisms underlying the observed outcomes are key to 

achieving a better understanding and deserve further examination, particularly in 

terms of model enhancements that would more completely reflect theory about 

human behavior in space-time.  The following discussion highlights the directions for 

future work with the greatest promise for better representing activity spaces in the 

model. 

Of the many ways in which complexity could be added to the model, 

incorporating a more realistic representation of time is perhaps the most intriguing.  

Adding time of day would allow for a more fully developed representation of 

temporal constraints to be included in the model (H. J. Miller, 2005).  Even the naïve 

version of time implemented here this research demonstrates that temporal constraints 

influence both the rate and spatial pattern of street robberies.  Other research provides 

the basis for more sophisticated representations of temporal constraints on offender 

behavior by illustrating how they are important in shaping the spatio-temporal 

patterns of opportunity-based crimes (Ratcliffe, in press).  The requirement that an 

individual arrive at work at a certain time, the restriction of a lunch hour, the need to 
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pick up dry cleaning, and to stop at the grocery store before arriving home to cook 

dinner; all these tasks constrain the spatio-temporal activities of individuals.  

Individuals also have discretionary time (i.e. time not allocated to a task or to travel) 

that is important to include in any model.  Incorporating time of day would have the 

added benefit of enabling the model to reflect more general temporal patterns such as 

the fact that more people are away from home during the day and early evening than 

during the night time (i.e. when most people are sleeping).   

Additional temporal constraints related to mode of transportation and 

characteristics of the street network could enhance the notion of ‘at risk’ status.  

Individuals who are walking or using public transportation are at greater risk of street 

robbery than those in automobiles.  Mode of transportation also impacts the distance 

that can be traveled in a particular time period which could be included in the model.  

The inclusion of speed limits and one-way streets would better provide greater 

realism in creating the routes among locations.   

Beyond temporal constraints, the representation of activity spaces in general 

deserves more attention.  The current implementation does not reflect the multi-

layered complexity that represents the human experience and decision-making.  For 

example, Hägerstrand’s more fully descriptive notion of human behavior in which 

people have intentions that they are trying to realize through their behavior and these 

future intentions influence present behavior is missing (Hägerstrand, 1975).  Nor does 

the model include rational choice perspective’s recognition of the role that 

‘familiarity’ plays in the decision to commit a crime.  These enhancements require the 
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use of genetic algorithms which enable the agents to have the knowledge of their past 

and the experience that comes with such knowledge.   

Ideally, activity spaces would be dynamically generated during each day of the 

model.  This would allow the activity spaces to emerge during the course of a 

simulation and become the object of a study.  Unfortunately, this strategy would 

require that the necessary software classes be developed so the appropriate data 

structures could be accessed during model runs.  In the interim, there are several 

enhancements that can be implemented such as including more agents and generating 

multiple activity spaces per agent.  Including more civilian agents would increase the 

potential for convergence and better reflect the density of the city.  By increasing the 

number of activity spaces available to agents, the model will better reflect the variety 

found in activity spaces.  For example, activity spaces are usually different during the 

week then on the weekend.   

Finally, replication is necessary to improve the external validity of the model.  

The testing of different cities with varying street networks and land use patterns 

would provide additional insight into the role of the built environment.  As it is, this 

research develops two new versions of a basic model of street robbery demonstrating 

the important role of space, time, and the built environment in structuring activity 

spaces which in turn mediate convergences and the crime patterns that result. 

More generally, this research demonstrates how geographical perspectives can 

inform the spatio-temporal representation of human behavior in a criminological 

theory and in doing so advance the body of knowledge in both disciplines.  The 

research breaks new ground by extending an existing model so that it is capable of 
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accommodating both the empirically-based activity spaces and the individual-level 

interactions necessary to represent crime events.  The resulting analyses provide 

strong support for the importance of considering time and space when modeling 

human behavior.  Indeed, progressively adding first temporal and then spatio-

temporal activity spaces significantly changes both the incidence of street robbery 

and the spatial distribution of the events.  These findings provide evidence for the 

importance of including the individual-level, spatio-temporal aspects of human spatial 

behavior in crime event models. 
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Chapter 5:  Discussion and Conclusions 
 

This final chapter discusses and presents conclusions regarding the major findings 

from the program of work undertaken here.  First, the motivation for the research is 

briefly explained.  Next, the research questions are examined and the major findings 

are discussed.  The potential limitations of the study are presented in terms of their 

impacts on the findings.  Theoretical implications of the study are described.  The 

chapter ends with a discussion of future research plans including approaches to 

assessing the results of these types of models. 

5.0 Background 

The characteristics of human behavior strongly influence where, and with whom, 

individuals converge in space and time.  A major theory in criminology, routine 

activity theory (RAT), recognizes the role of routine activities in bringing together 

the other elements necessary for a crime (i.e. suitable target, likely offender and 

capable guardian) (Cohen & Felson, 1979).  However, the ability of researchers to 

empirically test a micro-level theory, such as RAT, has been hampered by the lack of 

individual-level data (J. E. Eck, 1995a).  Previous tests were also handicapped by the 

need for techniques that can accommodate heterogeneous individuals, non-linear 

processes and dynamic interaction occurring in space-time.   

Simulation modeling provides a framework for addressing these challenges.  

Since a simulation involves an artificial society, it negates the need for individual-

level data about activities.  Recent developments have integrated ABM and GIS tools 

enabling researchers to represent individual-level behavior within its environmental 
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context.  This research examines the core propositions of RAT through the creation of 

an ABM/GIS model of street robbery in Seattle, Washington.  In doing so, the study 

demonstrates how theoretical assumptions can be formalized in an agent-based model 

and tested via systematic manipulation of those assumptions to discover if the 

theoretically-predicted outcomes match the model outcomes. 

5.1 Major Questions and Findings 

Three research questions are examined in the study.  The first investigates 

whether the shift in routine activities away from home increases street robbery.  The 

second asks whether the spatial distribution of street robberies changes as people 

spend more time away from home.  The third, explores how the spatio-temporal 

structure of routine activities influences the incidence and spatial pattern of street 

robbery. 

Three major findings emerge from these efforts.  First, support for routine activity 

theory’s core proposition depends on the type of schedule constraints placed on the 

agents.  When agents have no constraints on their travel or when they have only 

temporal constraints (i.e. the Simple and Temporal versions), the number of street 

robberies increases as the agents spend more time away from home.  However, when 

the agents are assigned spatio-temporally defined activity spaces, the incidence of 

street robbery still increases but the differences among the experimental conditions 

are not statistically significant.  Therefore, the findings provide support for routine 

activity theory’s core proposition but not when the agent’s activity spaces are 

spatially constrained.  This finding also provides evidence of the importance of the 
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spatial component of routine activity in structuring where and with whom 

convergences occur. 

The finding of non significance for the Activity Space version has theoretical 

implications.  It demonstrates that spatial constraints counteract the influence of 

increasing time spent away from home.  Not completely, since crime continues to 

increase with time spent away from home in the Activity Space version.  However, 

enough to reduce the differences between the experimental conditions and render 

them non significant.  Thus it is the spatio-temporal etiology of routine activity, and 

not just the gross amount of time spent away from home, that underpins macro level 

robbery rates.   

The implementation of activity spaces in the model is one potential source of 

explanation for the lack of significant findings for the Activity Space version.  The 

maximum of two only potential activity spaces (i.e. when employed and when 

unemployed) constrains the spatial extent of agent travel to an unrealistic degree.  

Consequently, during any model run specific agents can only converge with the 

relatively few other agents whose activity spaces intersect their own.  While activity 

spaces are somewhat static, it is the degree to which activity spaces are constrained 

that is the issue.  In the model, the repeated interaction of the same agents quickly 

causes the offender agents to gain more wealth than the civilian agents, so that no 

crime occurs when only two civilians converge and the offender has more wealth.  As 

a result, increasing convergences do not translate into higher numbers of robbery.  

While this phenomenon is present in all three versions of the model, it is most 

pronounced in the Activity Space version.  Figure 5-1 shows the precipitous drop in 
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daily robbery statistics for all three versions.  Three potential strategies that may 

ameliorate this phenomenon are to: 1) make the wealth distribution for citizens reflect 

criminal propensity by assigning offenders lower wealth; 2) increase the number of 

civilian agent activity spaces available for agents; and 3) boost the number of civilian 

agents in the model.  

Figure 5-1:  Daily Change in Street Robbery Events 
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The second finding is that the spatial and temporal structures of routine activities 

have separate and unequal impacts on the convergence of the elements necessary for 

a crime.  Consistent with the first finding related to incidence of street robbery, the 

spatial distribution also changes as time away from home increases but only for the 

Simple and Temporal versions of the model (i.e. when there are no spatial 

constraints).  The maps of kernel density show changes in the locations of high 

density areas as the time away from home increased and the Ripley’s K results 

indicate changes in the clustering of street robbery across experimental conditions.  
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However, additional time spent away from home in the Activity Spaces version 

produces only small changes in pattern but large increases in the intensity of 

clustering.  Thus, spatially constrained activities that reflect opportunity structures in 

a community are the source of generally stable hotspots that increase in intensity as 

time spent away from home increases. 

Thirdly, temporal and spatio-temporal constraints have a differential influence on 

the incidence of street robbery.  As compared to the Simple version, in which agents 

are either at home or not at home, the addition of temporal schedules for civilian 

agents reduces the incidence of street robbery by about 77% and changes the 

distribution of street robbery events.  This result provides evidence in support of 

Ratcliffe’s (in press) hypothesis that temporal constraints are a major source of 

observed patterns of opportunity-based crime. When spatially defined activity spaces 

are added to the model and the temporal schedule for each agent is held constant, the 

separate and even larger impact of space is clearly demonstrated.  Spatio-temporally 

constrained schedules significantly increase the incidence of street robbery as 

compared to agents with a temporal schedule only and radically change the 

distribution of street robbery events.  The clustering in the spatial distribution of 

robberies is higher than the other versions and more linear in nature due to 

concentration along the major travel routes among homes, jobs and activities. 

These findings regarding differences by type of schedule constraints are 

consistent across all five experimental conditions.  In other words, regardless of time 

spent away from home, the type of schedule (i.e. simple, temporal or spatio-temporal) 

produces significantly different numbers and patterns of street robbery.  Thus, the 
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impact of temporal and spatio-temporal constraints on activity is robust with regard to 

time spent away from home. 

There are several potential explanations for these findings.  The changes in 

incidence and pattern could be related to the amount of time the agents are ‘at risk’.  

The addition of a temporal schedule reduces both the time that civilian agents are ‘at 

risk’ of being victimized and the time that civilians with criminal propensity have to 

offend.  In this way, temporal schedules constrain the activities of both offenders and 

non-offenders and directly influence the number and pattern of convergences.  

Differences in time ‘at risk’ do not explain the increase in street robberies between 

the Temporal and Activity Space versions because the temporal schedule is held 

constant between the two.   

The explanation for this finding lies in the clustered nature of human activity that 

is reflected in the Activity Space version of the model.  The homes of civilian agents 

are concentrated in certain areas, they travel to jobs that are clustered in other areas 

and they participate in activities that have yet another, but still clustered, distribution.  

The road network acts to amplify this result in that agents traveling to the same area 

tend to be routed along the same major roads.  In this way, the implementation of 

spatio-temporal routine activity spaces following time geographic principles acts to 

increase overlap in activity spaces which in turn, increases the frequency of 

convergence.  One interesting side effect of this increased concentration is that police 

agents who are randomly assigned to patrol in those high concentration areas are able 

to deter more crimes than when civilian agents are only temporally constrained but 

randomly distributed (as in the Temporal version of the model).  This finding has 
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implications for achieving a better understanding the relationship between police 

patrol strategies and crime. 

5.2 Significance of the Research 

This examination of how the spatio-temporal nature of human activity influences 

the incidence and distribution of street robbery events breaks new ground on several 

fronts both theoretical and methodological.  Theoretically, the research provides 

discoveries stemming from the ability to test both the micro and macro aspects of 

routine activity theory simultaneously and to explicitly examine the role of temporal 

and spatial constraints.  First, the model runs confirm that if the number of offenders 

and their motivation is held constant, as people spend more time away from home, the 

number of street robberies will increase.  The differences among the experimental 

conditions are significant in both the Simple and Temporal versions, but not for the 

Activity Space version.  In other words, when the core propositions of routine activity 

theory are implemented in an artificial society, there is mixed support for its core 

proposition and that support hinges on the spatio-temporal aspects of human 

behavior.  Thus the second discovery is that both temporal and spatial constraints play 

a key role in determining the incidence of street robbery and should be included in 

future empirical studies that aim to tease out the role of routine human behavior in 

robbery events.   

Third, the findings from the research demonstrate the importance of the street 

network and the distribution of opportunities in structuring travel and street robbery.  

When the activity spaces of the agents reflect the distribution of opportunities, the 

clustering of the spatial distribution increases dramatically confirming the important 
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role of opportunities in shaping spatial patterns of street robbery.  These findings lend 

credence to the inclusion of ‘place’ in later formulations of routine activity theory 

(Felson, 2001;2002). 

Methodological advances include the following.  First, the research provides a 

well-documented example of how a simulation model offers a unique opportunity to 

formalize theories from multiple disciplines and then compare the theorized outcomes 

to the model outcomes.  Specifically, the resulting effort creates a formal 

representation of routine activity theory that can be tested and enhanced in an 

artificial environment before the expense of empirical data analysis is undertaken.  

The agent activity spaces developed for this research provide the foundation 

subsequent, richer representations of activity spaces.  In addition, this work facilitates 

future research by providing written and copious documentation of the model 

assumptions; a resource that is necessary for replication and testing.  In sum, this 

effort fills the need identified in previous research for the publication of example 

models with documentation (Axelrod, Forthcoming).  

Second, the research demonstrates the value of ‘situating’ simulation.  A 

methodology is presented to develop a representative society that interacts in a real 

cityscape.  In this case, Seattle, Washington provides the environment in which the 

agents live their lives.  Activity spaces are created based on the distribution of 

population, housing, recreation, retail and services in the city; thus, effectively 

incorporating the influence of land use on the activities of agents.  In addition, agents 

can move along the vector GIS streets of Seattle.  This enables researchers to use their 

vector geographic data sources directly without having to convert to a grid-based 
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system.  Together these advancements make it possible to compare the model 

outcome under three different assumptions of spatio-temporal activity constraints.  

Under the first assumption the agents move randomly, under another they move 

randomly but have a temporal schedule and under a third they have both spatial and 

temporal constraints on their activities.  In this way, the research design enables the 

impact of time to be tested separately from the impact of space.   

Third, the computational laboratory framework enables the first test of routine 

activity theory based on individual-level data.  Although conducted using 

representational agents rather than empirical data, the computational laboratory 

framework permits a high level of scientific rigor to be applied to design and testing 

of the model and the analyses of results.  The result is a simulated laboratory 

environment in which the emphasis is on increasing our understanding of the 

processes behind observed patterns.  Different aspects of the model can be changed 

while all others are held constant in order to isolate, as much as possible, the impact 

of that one variable from all others.  In general, the method used in this research 

represents an interim testing ground between the verbal formulation of the theory and 

the testing of theory with empirical data.  While these tests do not result in a 

determination of whether a theory is empirically valid, they do provide a way to 

strengthen the theory prior to empirical testing.  A process that has been described in 

the literature as ‘elaborating’ (J. Eck, 2005) or ‘experimenting’ on theories (Dowling, 

1999).  
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5.3 Assessing the Model Results 

As stated earlier the goal of this research was to operationalize theoretical 

assumptions and then test whether the results generated from an artificial society 

match what routine activity theory would predict.  However a related question 

concerns strategies for assessing the validity of ABM-produced results.  One 

approach is to compare the distributional properties of the rates and patterns of street 

robbery to empirical data.  This approach depends on being able to obtain reliable 

empirical data.  In this case, the required data would be official crime data on street 

robbery.  The reliability of official crime data is questionable and varies by type of 

crime (Gove et al., 1985; Kerlinger & Lee, 2000).  Violent crimes such as robbery are 

more likely to be reported to police by the victim and to end up as an official crime 

report.  However, victims who are engaged in illegal behavior themselves are less 

likely to report being robbed.  The shortcomings of official crime data lend credence 

to assessing validity by comparing the characteristics of the distributions produced by 

the model with ones produced from empirical data.   

Both spatial and aspatial characteristics of distributions can be used to compare 

model and empirical results.  A variety of studies have found that the spatial 

distribution of crime is clustered across space (P. L. Brantingham & Brantingham, 

1999; Sherman, Gartin, & Buerger, 1989; D. Weisburd & Green, 1994; D. L. 

Weisburd, Bushway, Lum, & Yang, 2004).  Most frequently, a relatively few places 

are responsible for a large proportion of the crime.  In addition, these studies have 

demonstrated the existence of hotspots (i.e. clusters of crime locations) that often 

persist over time.  In line with these well-known characteristics of the spatial 
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distribution of crime, the model results produced by this research show evidence of 

hotspots and the concentration of robberies at a relatively few locations. 

Aspatial characteristics can also be used to compare model results with empirical 

ones.  These comparisons could include characteristics such as the rate of street 

robbery per population, rate of repeat victimization, measures of offenders as victims 

etc.  While empirical street robbery data were not available for Seattle, one model 

result matched that of empirical studies.  Just as in real life, criminals in the model 

were victimized at a higher rate than non-criminals (Deadman & MacDonald, 2004).   

When model results share characteristics with empirical ones, the credibility of 

the model increases.  Consistent empirical and model-produced findings demonstrate 

that the simulated mechanisms produce distributions that share characteristics with 

empirical ones.  However, matching distributions is not a sufficient criteria for 

validation since a different model could also produce comparable patterns (Troitzsch, 

2004).  In sum, establishing model credibility is an incremental process that involves 

multiple comparisons and is not an exact science.   

5.4 Possible Limitations of the Research 

There are several potential limitations to the research, some stem from the use of 

ABM and others are related to the implementation model created and the reliance on 

one site’s data.  Related to ABM in general, the meaning of findings from an artificial 

society inspires debate.  Since the goal of this research was to explore the 

assumptions of routine activity theory, the findings demonstrate to what extent the 

theory is plausible.  This study provides evidence in support of routine activity theory 
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but additional empirical testing is required to determine the empirical validity of the 

theory. 

Another characteristic of agent-based models is that their findings are constrained 

by the assumptions and rules on which the model is based.  This study relied on 

empirically-based parameter values whenever possible to strengthen their validity.  In 

addition, the study used sensitivity tests to characterize the impact of parameter value 

changes on the model outcomes, and to determine whether the findings from a single 

run are representative (Axelrod, Forthcoming; Gilbert & Troitzsch, 1999).  To test the 

robustness of the research finding five different parameters were systematically 

varied.  Only one, time an offender had to wait before committing another robbery, 

changed the experimental results and then only for the temporal version of the model.  

Four other input parameter values were tested but none of those changed the findings.  

Additional sensitivity testing was conducted by manipulating the random number 

seed four more times.  The model findings were robust across random number seed 

tests with one exception; under one random number seed the Activity Space version 

became significant. 

Agent-based models rely on random numbers and random number distributions to 

provide a stochastic element to the simulation.  Similar to the choice of parameter 

values, the choice of distribution (e.g. Uniform, Poisson, Normal, etc.) and the 

moments of the distribution (e.g. mean, standard deviation etc.) have implications for 

model results.  In this study, the wealth distribution demonstrated a large influence 

over the model’s time to equilibrium.  The model assumed wealth is distributed 

normally across all civilians, quickly producing a society in which the offenders have 
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more wealth then the civilians so the offenders are victimized at a higher rate.  

Subsequent experiments with a two-tiered wealth distribution (one for civilians with 

criminal propensity and another for those without) under the Simple version of the 

model find that it lengthens the time to equilibrium and reduces repeat victimization 

among offenders but further study on this aspect is needed.   

Two limitations of the model as implemented are related to the characterization of 

civilian agent activity spaces.  First, software limitations forced the creation of static 

rather than dynamic activity spaces for the Activity Space version of the model.  As 

discussed in the findings, this severely limits the variety of travel that agents 

undertake during a model run to only one of two routes and in so doing, concentrates 

agent activity and limits convergences to the same set of agents.  Because of this 

limitation, the findings regarding Activity Space version should be interpreted with 

caution.   

The random movement in the model has two limitations.  First, the agent only 

considers the adjacent nodes so they only can move one node per minute.  Second, 

there is no prohibition against back-tracking by agents so they can move back to the 

node they had occupied in the previous minute.  Together these implementation 

decisions may lead to smaller, less realistic activity spaces for agents that are moving 

randomly.  Future implementations should consider giving agents who are moving 

randomly the same ability to move more than one node as the agents who have 

directed movement.  The implications of these shortcomings are revisited in the 

suggestions for extensions to the model. 
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Finally, the generalizability of the findings is limited by the nature of the data and 

the reliance of a single site.  The single site analysis was appropriate for an initial 

effort such as this one but that decision restricted the ability to make statements about 

the plausibility of model assumptions in cities with different street networks and 

distributions of jobs, homes, and activities.  In addition, the base data for the 

distribution of jobs were for larger geographic units (i.e. zip codes) than those for 

homes and activities (i.e. blockgroups).  The validity of the assumption of 

homogeneous distribution of data across each unit becomes weaker as units grow 

larger which in turn, decreases the potential for the allocation of job locations to 

agents to reflect the actual distribution of jobs within each zip code.  This is a 

relatively minor limitation since the goal is to distribute job locations of agents to 

areas proportionately, not exactly. 

5.5 Next Steps 

As far as enhancements of the current model, a few of the directions highlighted 

by the findings of the model are discussed first and then a couple of other promising 

directions are noted.  The research endeavor reveals three ways in which the model 

could be enhanced.  One is to provide civilian agents with a greater variety of activity 

spaces, which could be done by simply creating a more activity spaces for use in the 

model.  A second is to increase, as much as possible given limitations of computing 

power, the number of civilian agents in the model to better reflect the potential for 

convergence and bring the civilian/police ratio closer to what is found in Seattle.  A 

third would assign agent’s wealth based on a two-tiered distribution with its roots in 

the mean income distribution of Seattle.  Civilian agents with criminal propensity 
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would get a lower wealth distribution than agents without criminal propensity.  In 

addition, pay would be in proportion to wealth for agents who are employed.  These 

changes would better reflect the existing wealth distribution and how wealth figures 

into the decision to commit a street robbery.  After all, reports of street robbers who 

commit robbery to make their mortgage payment are rare.  Preliminary tests 

conducted with different wealth distributions demonstrate that a two-tiered wealth 

distribution reduces the time to equilibrium in the model.   

Including situational aspects of the crime event probably represents the most 

intriguing direction for enhancements of the model.  The theoretical basis for 

including situational characteristics can be found in later formulations of routine 

activity theory (J. E. Eck, 1995a; Felson, 1986a;1986b;1987) and under rubric of 

environmental criminology (Paul Brantingham & Brantingham, 1991 [1981]).  More 

recent additions to routine activity theory include a refined concept of guardianship 

that relies on two additional elements intimate handlers (Felson, 1986a) and place 

managers (J. E. Eck, 1995b) as well as a recognition of the importance of place 

characteristics and the distribution of population (Felson, 1986b;1987) in the 

patterning of crime.  Empirical research within these theoretical frameworks has 

generated a large body of knowledge about the characteristics of places and situations 

that are related to crime.   

The final example of future work discussed here (but only one of many potential 

ones) is to give the police realistic patrol strategies and measure the relative 

effectiveness of each.  For example, under directed patrol, the police agents would 

have particular areas to which they are assigned to patrol.  Police could not go outside 
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these areas.  The outcome crime patterns using this strategy could be contrasted with 

a place-based or hot spots policing strategy (Braga, 2001; Sherman et al., 1989; 

Sherman & Weisburd, 1995; D. Weisburd, Maher, & Sherman, 1992).  These police 

agents would be assigned to small areas of Seattle at which the concentration of street 

robbery is the highest (based on model output).  Changes in the incidence street 

robbery could be observed.  In addition, the geographic phenomenon of displacement 

and diffusion could be investigated in depth.  These topics are of great interest to both 

geographers and criminologists. 

In sum, this investigation creates as many questions as it answers.  Interesting 

findings that were not directly related to the hypotheses must wait for elaboration in 

later analyses.  For instance, some agents with criminal propensity never commit a 

street robbery while others commit hundreds.  What are the differences between these 

agents?  In the same vein, not all civilians are victims of street robbery yet others are 

repeatedly victimized.  Further, many of those repeat victims are agents with criminal 

propensity, a finding that is in line with ethnographic studies that indicate criminals 

are very often victims depending on the situation.   

To end, the current effort introduces a new way of strengthening theories through 

testing in an artificial society prior on empirical tests.  This method shows great 

promise for investigating a multitude of interdisciplinary research questions that cut 

across the social sciences. 
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Appendices 

Appendix 1:  Street Robbery Model Documentation:  Simple Version 

Street Robbery Model Documentation:  Simple Version 
 
This documentation explains the Street Robbery Simple Model from a programming 
perspective following guidelines for sharing simulation research in Axelrod 
(Forthcoming).  A general description of the model is provided in the main text.  The 
theoretical basis for the model is provided in Groff (Forthcoming-a).  Details on the 
implementation of agent movement on a vector network are in Groff (Forthcoming-
b).  The model is created in a flavor of RepastPy called Agent Analyst.   
 
1.  REPAST PY AND AGENT ANALYST 
RePast Py was developed by Argonne National Laboratories to provide a Python-
based syntax for rapid model development.  The software uses a hybrid language 
dubbed Not Quite Python (NQPY).  The language uses Python-syntax to access Java 
classes.  Agent Analyst is an extension to RePastPy that can be used as a toolbox in 
ESRI’s ArcGIS software.  Agent Analyst provides the ability to use data from a 
geographic information system (GIS) in agent-based models.  Public releases of final 
versions of software are available at http://repast.sourceforge.net/download.html.  For 
general information on RePast please see http://repast.sourceforge.net/index.html.  
The Street Robbery Model presented here was developed with a beta version of 
Agent Analyst which utilized Java 1.2.4_06, Python 2.3 and ArcGIS 9.1.  The 
documentation assumes some familiarity with these languages and software products. 
 
2.  OVERVIEW OF THE MODEL 
The Street Robbery Simple model is based on routine activity theory (RAT) (Cohen 
& Felson, 1979) and creates a simulation of how an individual agent’s decisions on 
whether or not to commit a street robbery translate into macro-level crime patterns.  
RAT identifies four elements necessary for a crime to occur.  Specifically, the routine 
activities of individuals determine which individuals are at the same place, at the 
same time.  For a crime to occur there has to be a motivated offender, a suitable target 
and the lack of capable guardians.  Each of these elements is represented in the 
model.  A series of experiments are conducted to test whether the outcomes from the 
model match what the theory predicts (i.e. whether crime will increase as people 
spend more time away from home).  This prediction is tested by systematically 
changing the amount of time that the society of agents spends away from home.  For 
example, in the first of five conditions agents spend 30% of their time away from 
home.  The results from this model are compared to societies in which agents spend 
40%, 50%, 60%, and 70% of their time away from home.   
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There are two types of people in the model, civilians/citizens and police/cops. 49  
Civilians have two characteristics, wealth and criminal propensity.  Two-hundred of 
the one thousand civilians in the model are assigned criminal propensity; they 
evaluate each situation for the potential to commit a street robbery considering the 
level of guardianship (formal and informal) and the suitability of the target.  Civilians 
with criminal propensity can take on the role of offender, target, or informal guardian 
in any situation; while those without can only play the roles of target or guardian.  
Police have only one role, formal guardians.   
 
The model uses empirical data to inform the movement of agents.  All of the agents in 
the model travel randomly.  Citizen agents start at and remain at home for a set period 
and then begin traveling randomly for the rest of each day.  They begin the next day 
at the ending point of the previous day.  Police agents travel randomly without 
stopping.  Figure 1 provides a graphical view of the general data flow.  Data 
describing the street nodes and the neighbors of each node are added into the Street 
Robbery model and used to support agent movement on Seattle’s street network. 
 
Figure 1:  Data Flow 

 
There is one main model and four classes of agents in the Street Robbery Model.  
Three of the classes consist of generic agents – cops, citizens and active nodes.  One 
class is made up of vector agents, places.  Vector agents have an inherent spatial 
property that is needed in the simulation, generic agents do not.  Each of the classes 
has a set of actions, a schedule that controls when the actions run, and a set of fields.  
The actions control a variety of functions necessary to the running of the model 
including agent initialization, agent movement, and agent decision-making.  The 
actions can be scheduled to run at each model tick, at a specified interval, or just once 
during the course of a model run.  The fields contain the data that are available to 

                                                 
49 The terms civilian and citizen describe the population of the city who are not police/cops.  The 
general term describing the population was changed to civilian after the program was written and the 
code has not been changed to reflect that evolution.  The same situation is true for the use of the terms 
police and cop both of which refer to law enforcement officers. 
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describe the members of each class.  There is also a Sequence Graph that is used to 
graphically display the number of robberies as they occur during the model run.   
 
3.  MAIN MODEL AND AGENT CLASSES  
There is one main model and four classes of agents in each of the versions (Figure 2).  
Three of the classes consist of generic agents – cops, citizens and active nodes.  One 
class is made up of vector agents, places.  Vector agents have an inherent spatial 
property that is needed in the simulation, generic agents do not.  Each of the classes 
has a set of actions, a schedule that controls when the actions run and a set of fields.  
The actions control a variety of functions necessary to the running of the model 
including agent initialization, agent movement and agent decision-making.  The 
actions can be scheduled to run at each model tick, at a specified interval or just once 
during the course of a model run.  The fields contain the data that are available to 
describe the members of each class.     
 
Figure 2:  Street Robbery Model Classes 

 
 
3.1 The Main Model 
The main model is called StreetRobSimple.  It has a display name of Street Robbery 
Simple.  The main model contains all the actions for the initialization of the model.  
Each of the actions is listed and their function is explained.  Fields that are in all 
capital letters are static/global variables that can be called from anywhere in the 
model.  The main model is also where all the random number distributions are created 
so they can be called during the appropriate parts of the model run.  Please see Figure 
3 for a graphical representation of the order of execution.   
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Figure 3:  Order of Action Execution 

 
Actions: 

initAgents() 
Main action that calls other actions to initialize the agents.  This is the first 
action to run in the model.  It calls the following actions:  
writeModelRunData(), initModel(), initCitizensRandom(), 
createCitizenTravelOutputFiles(), setupPlaces() and initCops().  Specifies 
a random number seed and creates the uniform random number 
distribution with the specified seed.  The action also creates the street 
message display function (that is currently not used).   
 

updateDisplay() 
Changes the display in ArcMap.  The action is currently scheduled to be 
called every ten ticks. 
 

writeAgents() 
This action writes the agent values from the place class to the shapefile. 
The action is currently scheduled to be called every ten ticks and runs 
before the updateDisplay() action.  The symbolization settings are created 
in the properties of the strnodes2 layer in ArcGIS.  The same shapefile is 
added into the .mxd file twice; once to symbolize the total robberies at a 
place, another time to symbolize the total number of visits to a place. 
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setupPlaces() 
The primary function of setupPlaces is to initialize a hashmap and identify 
the neighbors of each place for random movement.  First, a hashmap is 
created to store a list of all the places with strnode-id as the key.  Next, the 
action reads the nodeNeighbors.csv file and associates the set of neighbors 
with the correct Place (i.e., it populates the field myNeighbors in the Place 
class). 
 

showMessage() 
The showMessage() action enables the display of custom messages to an 
output window. 
 

incrementModel() 
This action is scheduled to execute at every tick of the model.  The action 
does the following: 1) increments model counter; 2) calls the 
writeOccupiedNodes() and writeCitizenInfoPaths() actions 3) calls 
decideRob(); and 4) clears the agent list associated with the ActiveNode 
class 
 

initModel() 
The initModel() is called by initAgents() and sets values for constants and 
static variables in the model some of which are parameters and can be 
changed through the RePast GUI at model run time.   
 

decideRob() 
Contains the code to evaluate who is at the occupied nodes and then 
decide whether a crime should occur.  First, the action checks to find out 
which agents are at a streetnode by using the ActiveNodes class.  Next, the 
presence or absence of official guardianship (in the form of a cop) is 
evaluated.  Then the presence of an offender is evaluated (list of agents at 
the node is shuffled so the same agent is not evaluated first each time and 
if there are two offenders at a node, each has a random chance of getting 
to decide to commit a crime).  Only nodes with two or more agents and an 
offender are evaluated as far as the actual decision to commit a crime.  
Program also takes into account whether the agents at the node are ‘at 
risk’ (which is set in Citizens.step()).  If a crime occurs, the action changes 
the following field values: victim and offender wealth, number of 
victimizations and total robberies at the place.  This action contains a ton 
of commented out code that can be used for debugging and understanding 
the operation of the model.  The decideRob() action is called by 
incrementModel().   
 

writeOccupiedNodes() 
This action writes out the distribution of agents across street nodes for 
diagnostics and data analysis.  The action is called by the 
incrementModel() action at every tick (currently commented out).  
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However, it could be written out less frequently by scheduling the action 
instead. 
 

initCops() 
Creates cop agents and assigns them to a strnode (number) and a location 
(Place).  Action uses a uniform distribution to select the nodes on which to 
place the cops at the start of the model. 
 

resetAgentsDaily() 
At end of the model day, all agents are reset to be back at home so they are 
at an activity node (home), not at risk and not moving.  Action is in 
schedule to run at an interval of 1,440 (one model day).  Although the 
fields referring to time at activities are vestigial (e.g. timeMain, timeRec1 
etc.) they remain because they are written out in other places and would 
require significant effort to remove. 
 

createCitizenTravelOutputFiles() 
Creates two different types of output files to which citizen data can be 
written.  One creates a unique file for each citizen agent to which output 
can be written by the writeAgentInfoFiles() action (output/citizenX.csv) 
(not used).  The other type of file is a single file to which data can be 
written at specified intervals to monitor societal-level citizen 
characteristics (output/citizenChar.csv) and is very helpful in tracking 
model output.  This file is written to by dataRecorder(). 
 

writeCitizenTravInfotoFiles() 
Uses the files created by createAgentOutputFiles() and writes out 
information about the individual agents at different points in the model 
(not currently called). 
 

writeModelRunData() 
This action creates a log file that can be used to capture messages and 
critical statistics during each model run. 
 

writeStatistics() 
This action captures the final field values for citizen agents pertaining to 
activity spaces and crime in a single file.  Writes out the aggregate time 
spent at home, main, rec1, rec2, travel, and exposed; the assigned time to 
spend at home, main, rec1, rec2, travel; and the Total number of offenses 
and victimizations.  These same statistics are written to individual agent 
files by the createCitizenTravelOutputFiles() and 
writeCitizenTravInfoFiles() actions.  The action writes to 
output/statistics.csv which is written one time at end of simulation and is 
very helpful for understanding victimization, offending and wealth for 
each agent. 
 

 171



 

dataRecorder() 
This action takes the place of the data recorder that I could not get to work 
in the model.  It records variables that change for society as a whole 
during the model run such as: number of unemployed agents, average 
wealth, robbery rate, total victims, total repeat victims, total offenders, 
total repeat offenders, percent exposed, percent traveling, and number of 
active offenders.  Writes to output/citizenChar.csv 
 

initCitizensRandom() 
Sets criminal propensity and wealth characteristics, and assigns values to 
the time to stay away from home fields using a random normal number 
distribution.   
 

writeFinalAgents()  
Action writes the final shapefile out to the output folder. 
 

writeCitizenInfoPaths()  
This action writes out each node visited by an agent during the course of 
the simulation to a single file.  Using Tracking Analyst, the file can be 
‘played back’ to follow the path of the agent.  Additional analysis can also 
be conducted on the size and shape of the agent’s random activity space. 

 
Fields:   

messageDisplay - uchicago.src.simbuilder.util.MessageDisplay, displays 
messages while model is running.  Parameter 

modelStep – integer, counter that keeps track of model steps, 1 minute steps  
MODEL_HOUR – integer, number of steps in an hour, 6 x 60 = 360 steps in 

an hour.  Default value = 60. 
MODEL_DAY – integer, number of steps/minutes in a day, 24 x 360 = 8,640 

steps = 1,440 minutes in a day. 
MODEL_WEEK – integer, number of minutes in a week, 7 x 1,440 = 10,080 

minutes in a day; 7 x 8640 = steps in a day. 
MODEL_YEAR - integer, number of minutes/steps in a year, 365 x 1,440 = 

525,600 minutes in a year; 365*8640 = 3,153,600 steps 
SOCIETAL_TIMEAWAY – double, Default value = .70,  
totRob – integer - Default value = 0, Cumulative number of robberies in the 

model run. Parameter 
placeMap – java.util.hashmap – hashmap of strnode-ids 
AGENTS – integer – Default value 1000, total number of agents in the model. 

Parameter 
totDeter – integer, Default value = 0, total number of robberies deterred by 

presence of cop for the entire model run.  For this to increment there had 
to have been more than one agent and a criminal agent at the node. 

totIntersect – integer, total times there were more than two agents at a node 
and a criminal. Represents the number of potential crime situations and is 
a running total for model run. 
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LOG_FILE – java.lang.string – file name to which data are written 
REPEAT – integer, default value is 60-time a criminal has to wait before re-

offending.  Parameter 
MIN_GUARDIANSHIP – integer, contains minimum amount of random 

error in the perception of guardianship by the criminal agent, default value 
is -2.  Parameter. 

MAX_ GUARDIANSHIP – integer, contains maximum amount of random 
error in the perception of guardianship by the criminal agent, default value 
is 2.  Parameter. 

MIN_SUITABILITY - integer, contains minimum amount of random error in 
the perception of target suitability by the criminal agent, default value is -
1.  Parameter. 

MAX_SUITABILITY - – integer, contains maximum amount of random error 
in the perception of target suitability by the criminal agent, default value is 
1.  Parameter. 

NUM_PLACES – integer, number of street intersections in the model. 
COPS – integer, number of police agents in the model.  Parameter 
WEALTH_MEAN – integer, mean of the wealth distribution for all agents in 

the model.  Parameter. 
WEALTH_SD – integer, standard deviation of the wealth distribution for all 

the agents in the model.  Parameter. 
SEED – integer, random number seed.  Parameter. 

 
Actions that are in Schedule  

Every Tick: 
Citizen: step 
Cop: step 
incrementModel  

At Interval: 
Tick 20,160:   

payCitizens 
Tick 1,440:   

dataRecorder 
 writeStatistics 

At: 
Tick 525.600: 

dataRecorder 
 writeStatistics 

End: 
Data Recorder:  dataRecorder: record 
Data Recorder:  dataRecorder: write 
 

Other actions that I have scheduled in the past: 
writeAgents – at interval of 20 ticks 
updateDisplay – at interval of 20 ticks 
writeCitizenTravInfoFiles – at interval of 40 ticks 
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resetAgentsDaily - at interval of 1440 ticks 
writeFinal – called by incrementModel() at model end 

 
3.2 Vector Agents 
There is only one vector agent class in the simulation and it consists of the set of 
places (street intersections) in Seattle.  To clarify, each street intersection (also called 
a street node) is a place in the model.  There are 16,035 places in the model and they 
exist in the shapefile called strnodes2.shp that is a point file.  This class contains the 
geographic information about the distribution of agents and robberies (i.e., where the 
agents and the robberies are located in Seattle). 

 
Name:    Places 
Group Name:  places 
 
Actions: 

None. 
 
Shapefile fields: 

ARC_ - integer, internal arc-id used by ArcGIS 
STRCL_ - integer, internal node number used by ArcInfo 
STRCL_ID – integer, node number used in the model 
citiStart – integer, node at which a citizen agent starts the simulation 
copStart – integer, node at which a police agent starts the simulation 
crimStart – integer, node at which a civilian agent with criminal propensity 
starts the simulation 
the_geom – com.vividsolutions.jts – geometry of point 
totPrevent – integer, total number of potential crime situations in which a cop 
prevented the crime at a node that would have been committed otherwise 
totalRob – integer, total number of robberies at a node 
totalVisit – integer, total times any agent visited a node 

 
Class Fields: 

strcl_ - integer, street node number 
myNeighbors – java.util.ArrayList – list of nodes adjacent  

 
Actions that are in Schedule  

None 
 

 
3.3  Generic Agents 

Overview of Generic Agents 
There are three generic agent classes in the model, citizens, active nodes and cops.  
These classes are not inherently spatial in nature but through object-oriented 
programming, the members of the classes are associated with members of the 
Place class.  Each of the generic classes is described in this section. 
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Name:  Citizen 
Group Name: citizens 
 
The citizen class contains all the citizen agents in the model.  One of the 
interesting facets of this implementation is that citizen agents with criminal 
propensity and those without are modeled exactly the same as far as movement, 
initial wealth, and pay.  The only characteristic that differs is the presence of 
criminal propensity and only those citizens who have criminal propensity evaluate 
criminal opportunities and are able to make the decision to offend.  All citizen 
agents can be victims of street robbery. 

 
Actions: 

step() 
This action changes the atRisk, atActivity and moveStatus variables 
depending on whether an agent is at home or traveling.  Dynamically 
creates the ActiveNode class with each step.  Only agents at ActiveNodes 
are evaluated during the decideRob() routine. 

 
payCitizens() 

Pay citizens who are employed every two weeks. 
 

Fields: 
placeNode – Place, associated with vector group of Places 
name – string, name of the agent 
home – integer, home node of agent 
main – integer, work, school or other significant activity node, this value 

reflects current employment status (emp or unemp) 
rec1 – integer, one activity node, this value reflects current employment status 

(emp or unemp) 
rec2 – integer, another activity node, this value reflects current employment 

status (emp or unemp) 
currentNode – integer, holds the strnode_id of node the agent is occupying 
criminalPropensity – Boolean, whether or not an agent thinks about 

committing a crime, default value=false. 
timeHome – integer, minutes spent at home 
timeMain – integer, minutes spent at work 
timeRec1 – integer, minutes spent at recreation one 
timeRec2 – integer, minutes spent at recreation two 
timeTraveling – integer, minutes spent traveling among activity nodes 

(assigned as part of activity space) 
totTimeExposed – integer, cumulative time spent traveling and at activities 

taking into account changes in employment (counter value) 
atActivity – Boolean, true= stationary, false = moving, default value = true 
atRisk – Boolean, true = vulnerable to being victimized, false = safe, default 

value = false. 
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timeCounter – integer, keeps track of the cumulative time at an activity but is 
reset when activity type changes or agent begins to travel.  Default value = 
0. 

wealth - integer, the amount of wealth an agent has 
position – the position in the pathNodes array that an agent is occupying 
moveStatus – boolean, true = traveling, false = not traveling, default value = 

false 
occupiedNode – ActiveNode, each of these nodes have at least one civilian 

agent on them. 
empHome – integer – the home node for an agent while employed  
empMain – integer – the main node for an agent while employed  
empRec1 – integer – the first recreation node for an agent while employed  
empRec2 – integer – the second recreation node for an agent while employed  
unempHome – integer – the home node for an agent while unemployed  
unempMain – integer – the main node for an agent while unemployed  
unempRec1 – integer – the first recreation node for an agent while 

unemployed  
unempRec2 – integer – the second recreation node for an agent while 

unemployed  
unempPathNodes – java.util.ArrayList – the list of nodes that an unemployed 

agent traverses during the course of a day 
empPathNodes– java.util.ArrayList – the list of nodes that an employed agent 

traverses during the course of a day 
changeEmpStatus – Boolean, true = change the employment status, false= do 

not change employment status, default value = false 
numVict – integer, number of times an agent get robbed, default value is 0 
numOffen – integer, number of times an agent commits a robbery, default 

value is 0 
totTimeTraveling – integer – cumulative travel time even with employment 

changes (counter) 
totTimeExposed – integer – cumulative ‘at risk’ for street robbery (i.e. not at 

home) 
timerHome – integer – cumulative time spent at home over the course of the 

model run 
timerMain – integer – cumulative time spent at main over the course of the 

model run 
timerRec1 – integer – cumulative time spent at rec1 over the course of the 

model 
timerRec2 – integer – cumulative time spent at rec2 over the course of the 

model 
timerRepeat – integer – cumulative time spent unable to offend until the 

REPEAT value is reach 
location – Place, is the street node object as a place 
strnode – integer, holds the strnode id number 
employmentStatus – boolean, employed = true and unemployed = false.  

Default value =true. 
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Actions that are in Schedule  

step – at every 1 tick 
payCitizens – at interval of 20,160 ticks 

 
Name:  ActiveNode 
Group Name:  activeNodes 
 
The ActiveNode class exists as a computational device to avoid having to check 
all the places at each step.  At each step, the nodes where citizens and cops are 
located are associated with the ActiveNode class.  This limits the maximum 
number of nodes that would have to be checked to 1,000 (i.e. the maximum 
number of nodes if each agent was at a unique node) instead of 16,035.  
 
Actions: 

None 
 

Fields: 
strnode – integer, has the node number of the agent 
agentList – java.util.ArrayList, has the list of agents at the node 

 
Actions in the Schedule  

None 
 

Name:  Cop 
Group Name: cops 

 
The Cop agent class is used to increase the risk of committing a crime (i.e. 
increase the guardianship at a place).  Cops cannot be victimized nor can they 
commit a crime.  Their movement patterns are random.  They move from their 
current place to a randomly chosen adjacent place at every model tick by 
consulting the myNeighbors field in the Place class which lists all the neighbors 
for their current node.   

 
Actions: 

step() – 
First the action gets the list of all the places in the Place class.  For each 
node that has a cop, the list of neighbor nodes is shuffled and then the cop 
is assigned to the first position in the node list.  The strnode and the 
location fields are changed to reflect the cop’s new position.  The location 
field is a Place object which allows the decideRob() action to see if there 
are cops at the active node.  Cops move last in each tick. 

 
Fields: 

strnode – integer, has the node number  
location –Place, is the street node object as a place 
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Actions in the Schedule  

step() – runs at every 1 tick. 
 

 
3.4  Other Model Components 
A sequence graph is included that tracks the number of times a street node is visited 
by any agent, the number of times a robbery occurs on the node and the number of 
times a robbery is deterred by the presence of a cop. 
 

Name:  _Tracking 
Title:  Activity Graph 

 
Series: 

totalRobberies – cumulative number of robberies at a node 
totalDeterred – cumulative number of robberies prevented by a cop at a node 
totalIntersect - cumulative number of times more than one agent is at a node 
 

Schedule: 
Update of graph is run on every 100 ticks. 

 
 
3.5  Random Number Distributions 
The use of robust random number generators (RNGs) is essential to producing high 
quality, scientifically defensible results.  This simulation uses the Mersenne Twister 
RNG for all the random numbers in the model.  Each of the random number 
distributions used relies on the same seed.  The following section describes all the 
random number distributions used in the model, how they are created and which 
action calls them. 
 
Actions That Use RNG’S 
 
initCitizens() 
 
Uniform random number distribution that is used to choose subsets of agents from the 
totals set for criminal propensity, employment status, number from between 0 and the 
number of agents in the model.  Random.nextIntFromTo(0,self.NUM_Places - 1)  
 
Normal random number distribution that is used to assign the amount of time to spend 
at home with a mean of the experimental value and a standard deviation of 10 percent 
of the mean (very peaked distribution) as is shown below.   
 
societyPercHome = 1 - self.SOCIETAL_TIMEAWAY 
  standardDeviation = (self.MODEL_DAY * societyPercHome)*.10 
  meanTimeHome = self.MODEL_DAY * societyPercHome 
  Random.createNormal(meanTimeHome,standardDeviation) 
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Normal random number distribution that is used to assign wealth to the agents:  
Random.createNormal(self.WEALTH_MEAN,self.WEALTH_SD)  
 
decideRob() 
 
Uniform RNG to represent differences in perceived guardianship:  
Random.createUniform(-2,2).  This adds or subtracts up to 2 agents to the perceived 
guardianship value (e.g. a place manager might represent 2 agents, while someone in 
car might not count for as much): 
Random.uniform.nextIntFromTo(self.MIN_GUARDIANSHIP, 
self.MAX_GUARDIANSHIP) 
 
Uniform RNG to represent differences in perceived target suitability:  
Random.createUniform(-1,1) – this adds or subtracts one unit of wealth from the 
highest wealth agent: 
Random.uniform.nextIntFromTo(self.MIN_SUITABLITY, self.MAX_ 
SUITABLITY) 
 
Uniform RNG (uses target suitability RNG above) used to represent the influence of 
other unknown factors when the decision to offend could go either way based on 
guardianship and suitability (randDecision): 
Random.uniform.nextIntFromTo(self.MIN_SUITABLITY, self.MAX_ 
SUITABLITY) 
 
initCops() 
 
Uniform RNG to choose place index numbers to which to assign cops.  Randomly 
chooses from the entire set of street nodes.  
Random.uniform.nextIntFromTo(0, self.NUM_PLACES – 1) 
 
 
3.6  Statistics Files 
 

1) C:/model_output<condition>/modelRunDatav1.csv – in the initCitizens() 
write out agent values for criminal propensity, employment and wealth; in the 
initModel() write out parameter values for model  
2) C:/model_output<condition>/citizen<agentName>.csv – a series of files 
(one for each agent) that are written from the writeCitizenTravelInfoFiles().  
Each file contains the: tick, the timers for home, main, rec1, rec2, time 
exposed and time traveling, the position of the agent in their path, number of 
offenses, number of victimizations and the amount of time originally assigned 
to spend at each place.   
3) C:/model_output<condition>/statistics.csv – writes out the times actually 
spent at activity nodes.  All agents are in one file.  Easy to get percentages of 
time spent at home, main, rec1, rec2 from this file. 
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4) C:/model_output<condition>/occupiedSnapshot<Tick>.csv – a series of 
files are created (one at each tick).  Documents the distribution of agents 
across the streetnodes and keeps track of how many agents were at any one 
street node and which agents were there. 
5) C:/model_output<condition>/timeAtActivityNodes.csv – file that has the 
amounts of time assigned for activity nodes.  All agents are in one file. 
6) C:/model_output<condition>/citizenChar.csv – prints every 60 ticks.  Has 
information to monitor the model level variables.  Files is created by 
createCitizenTravelOutputFiles() and written to in dataRecorder() 
7) C:/model_output<condition>/path<agentName>.csv – creates and writes to 
the files to hold the list of nodes that each citizen visits during random 
movement.  Action must be scheduled to run. 
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Appendix 2:  Street Robbery Model Documentation:  Temporal and Activity Space 

Versions 

Street Robbery Model Documentation:   
Temporal and Activity Space Versions 

 
This documentation explains the versions of the Full Street Robbery Model from a 
programming perspective.  The documentation follows guidelines for sharing 
simulation research in Axelrod (Forthcoming).  A general description of the model is 
provided in the main text.  The criminological basis for the model is provided in 
Groff (Forthcoming-a).  The theoretical basis for the representation of activity spaces 
is discussed in Groff (Manuscript available from author).  The implementation of 
agent movement on a vector network is detailed in Groff (Forthcoming-b).  The 
model is created in Agent Analyst.   
 
 
1.  REPAST PY AND AGENT ANALYST 
RePastPy was developed by Argonne National Laboratories to provide a Python-
based syntax for rapid model development.  The software uses a hybrid language that 
has been dubbed Not Quite Python (NQPY).  NQPY uses Python-syntax to access 
Java classes.  Agent Analyst is an extension to RePastPy that can be used as a toolbox 
in ESRI’s ArcGIS software.  Agent Analyst provides the ability to use data from a 
geographic information system (GIS) in agent-based models.  Public releases of final 
versions of software are available at http://repast.sourceforge.net/download.html.  For 
general information on RePast please see http://repast.sourceforge.net/index.html.  
The Street Robbery Model presented here was developed with a beta version of 
Agent Analyst which utilized Java 1.2.4_06, Python 2.3 and ArcGIS 9.1.  The 
documentation assumes some familiarity with these languages and software products. 
 
 
2.  OVERVIEW OF THE MODEL 
The versions of the Street Robbery model discussed here are based on routine activity 
theory (RAT) (Cohen & Felson, 1979) and create a simulation of how an individual 
agent’s decisions on whether or not to commit a street robbery translate into macro-
level crime patterns.  RAT identifies four elements necessary for a crime to occur.  
Specifically, the routine activities of individuals determine which individuals are at 
the same place, at the same time.  For a crime to occur there has to be a motivated 
offender, a suitable target and the lack of capable guardians.  Each of these elements 
is represented in the model.  A series of experiments are conducted to test whether the 
outcomes from the model match what the theory predicts (i.e. whether crime will 
increase as people spend more time away from home).  This prediction is tested by 
systematically changing the amount of time that the society of agents spends away 
from home.  For example, in the first of five conditions agents spend 30% of their 

 181

http://repast.sourceforge.net/download.html
http://repast.sourceforge.net/index.html


 

time away from home.  The results from this model are compared to societies in 
which agents spend 40%, 50%, 60%, and 70% of their time away from home.   
 
There are two types of people in the model, civilians/citizens and police/cops.50  
Civilians have characteristics describing their employment status, activity status, 
wealth, and criminal propensity.  Two-hundred of the one thousand civilians are 
assigned criminal propensity; they evaluate each situation for the potential to commit 
a street robbery considering the level of guardianship (formal and informal) and the 
suitability of the target.  Civilians with criminal propensity can take on the role of 
offender, target, or informal guardian in any situation; while those without can only 
play the roles of target or guardian.  Police have only one role, formal guardians.   
 
The two versions of the model described here are identical except for the spatio-
temporal constraints placed on the civilian’s schedules.  Police agents patrol 
randomly without stopping in both versions.  Both versions rely on empirical data to 
inform the movement of agents (i.e. the street network of Seattle, WA).  However, 
civilians in the Temporal version move randomly but follow a time schedule.  At the 
start of each day, citizen agents remain at home for their assigned time and then begin 
traveling randomly for the rest of each day.  They begin the next day at the ending 
point of the previous day.   
 
In the Activity Space version, each agent has both spatial and temporal constraints on 
their activities.  Civilians follow the same temporal schedule as they did in the 
Temporal version but also have a set of locations they must visit each day.  In this 
way, an agent’s activity space consists of a set of places and the time to stay at each 
one.  The civilians begin each day at their home and travel in a ring pattern among 
their assigned activity nodes.  The Activity Space version uses empirical data to 
inform both the locations of the places visited and the route taken among those places 
(i.e. the activity spaces).  Section 3 offers a complete description of the technical 
aspects of implementing activity spaces. 
 
 
3.  ACTIVITY SPACES 
 
3.1 Implementing Movement Along a Street Network 
Agent Analyst does not support the connections to a geodatabase or a network dataset 
which enable routing in ArcGIS.  Consequently, there can be no dynamic routing of 
agent travel in the model.  The alternative strategy to enable directed agent movement 
among a set of locations was to use GIS functionality to create predefined activity 
spaces outside of Agent Analyst.  Street intersections (represented as points) rather 
than the street segments are the Places in the model.  Thus, movement takes place 
from street intersection to a connected street intersection rather than from one street 

                                                 
50 The terms civilian and citizen describe the population of the city who are not police/cops.  The 
general term describing the population was changed to civilian after the program was written and the 
code has not been changed to reflect that evolution.  The same situation is true for the use of the terms 
police and cop both of which refer to law enforcement officers. 
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to another.  This allows the agent paths to be represented by the series of street 
intersections that are traversed to visit all four nodes.  The above solution also 
facilitates the dynamic random movement that is required according to the model 
specification.  Random movement is used by the cop agents in both the Temporal and 
Activity Space versions and by the civilians in the Temporal version of the model.   
 
The extensive data manipulation that was necessary to prepare data for use in the 
model is diagrammatically represented in Figures 1 and 2.  Figure 1 provides an 
overview of the entire data flow and Figure 2 offers the details of the process of 
creating activity spaces.  Figure 2 should be read left to right and top to bottom.  The 
symbols appear in a legend in the lower right hand corner.  They represent different 
types of files and programs.  The rounded boxes represent GIS layers (dark green are 
lines and light green are points and yellow are polygons).  The orange rectangles are 
files (usually .csv).  The bright blue pages are programs. 
 
Figure 1 provides a graphical view of the general data flow.  For agent movement, 
both versions rely on the streets of Seattle represented as intersection nodes.  So the 
movement box on the left describes the data for random movement.  The Activity 
Space version of the model employs GIS data describing streets, blockgroups and zip 
codes in Seattle to provide the geographic structure within which the citizen and cop 
agents go about their daily lives.  Data describing the geographic distribution of 
residents, jobs and potential activities for these areas was collected to aid in the 
development of the agent’s activity spaces.  To enable dynamic random movement in 
both versions of the model, a Python script was developed to identify the neighbor 
nodes for each node in the network.  Output data are written to both the street node 
shapefile and a series of text log files as the model runs.   
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Figure 1:  Data Flow 

 
 
Figure 2 provides more detail regarding the type of data that were used to inform the 
model, how those data were manipulated and by what software.  Two types of street 
layers were used in the study, travel streets and activity streets.  First, all linear 
features in the King County Street Network Database (SND) that were not 
transportation-related were removed to create the travel streets.51  Travel streets 
consist of those streets that can be used for transportation and serve as the basis for 
cop and citizen movement.  Activity streets contain only those streets along which an 
agent could live, work or undertake an activity (i.e., freeways are excluded).  The 
activity streets were created by removing the freeways from the query used to 
produce the travel streets.52  The node layer (activity nodes) was used to allocate the 
agent home, employment and activity places.   
 

                                                 
51 Travel streets consist of the following types of linear features:  Streets (code=0), Divided Street 
(code=1), Parks (Unlimited access) (code=2), Freeway (code=4), Alley (code=6), Parks (Limited 
access) (code=7),  Other agency (code=8), Stairs (code=20), Walkway (code=21), Multipurpose Trail 
(code=22), Private Street (code=40), Dock (addressable slips) (code=51). 
52 Features along which there could be no employment or housing or activities (i.e., Freeways) are 
removed leaving the following types of features:  Streets (code=0), Divided Street (code=1), Parks 
(Unlimited access) (code=2), Alley (code=6), Parks (Limited access) (code=7),  Other agency 
(code=8), Stairs (code=20), Walkway (code=21), Multipurpose Trail (code=22), Private Street 
(code=40), Dock (addressable slips) (code=51).  
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Additional processing was necessary to create a layer that accurately represents street 
intersections/nodes.  First, both street layers were converted to ArcInfo coverages and 
the pseudo nodes removed.53  The street layers were then converted to point 
shapefiles where each point represents the intersection of two streets.  At the end of 
the first GIS stage, a layer of travel nodes and activity nodes were intersected with the 
blockgroup polygons and the zip code polygons to provide a list of the street nodes in 
each blockgroup and zip code.  Before the activity spaces for the citizen agents could 
be created, the locations of the street nodes had to be linked to the polygon layers 
because those layers contained the data about the potential activity nodes that exist in 
each area (i.e., blockgroup or zip code).   
 
Figure 2:  Creating Activity Spaces for Citizen Agents 

 
 
3.2  Creating Activity Spaces 
Figure 2 also offers a detailed view of all the stages involved in assembling the 
citizen agent activity spaces.  The first stage, just described, used GIS to: 1) create a 
layer of street nodes (intersections); 2) assign area identifiers to each street node and 
3) assemble data describing population, jobs and activities.  The next stage employed 
                                                 
53 Pseudo-nodes are nodes remaining in the layer from when the SND contained more lines but that no 
longer represent the intersection of two lines.  Failing to delete the pseudo nodes would artificially 
inflate the number of street intersections in Seattle.  Nodes that represent false intersections (e.g. 
overpasses) and nodes that were not connected to the rest of the network are also deleted to make the 
node network better represent the actual number of intersections in Seattle. 
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data from the first stage to calculate the number of citizen agent homes, jobs and 
activities that should be allocated to each area in the same proportion as they are 
found in Seattle (e.g. if 10% of the population lives in a particular blockgroup then 
10% of the agents are assigned to that blockgroup).  Stage three made use of a java 
program to randomly select a set of activity nodes for each agent.  Four activity nodes 
were selected; those nodes represent a home node, main node (could be work, school 
etc.) and two recreational nodes (i.e., retail store, gym, coffee shop).  Together the 
four different activity nodes constitute each agent’s activity space.  The following 
paragraphs provide a more detailed description of the processes involved in creating 
activity spaces, regardless of stage. 
 
Home Node Assignment 
Agent homes are allocated by a multi-step process.  First, the total population of each 
census blockgroup is collected from the 2000 Census of Population and Housing.  
Seattle had a total population of 564,945 in 2000.  That means that each agent in the 
model represents 565 people who live in Seattle.  Next, the percentage of Seattle’s 
total population that lives in each blockgroup is calculated and multiplied by the 
number of agents (1000) that are in the model to get the number of homes that should 
be assigned from that blockgroup.  At this point two files exist; one file contains the 
activity node number and the blockgroup in which it is located.  The other file 
contains the blockgroup and number of agents to be assigned a home node from that 
blockgroup.  The same basic methodology is then used to assign work places and 
activities.   
 
Employment Node Assignment 
A data source for the number of employees per blockgroup is needed in order to 
assign the work places of the agents when they are employed.  Unfortunately, the 
number of employees is not available by blockgroup, only by zip code.  There far 
fewer zip codes (n=56) than blockgroups (n=570) in Seattle.  Consequently, the 
employment data is less precise than the blockgroup data (i.e., the units to which 
employees are assigned are much larger and thus the potential for allocating agents in 
a way that is not reflected by the actual distribution of employment is higher).  The 
rest of the process is the same as for assigning homes.   
 
Activity Node Assignment 
The same strategy used for homes and workplaces is also used for activity nodes.  
Data regarding retail establishments and service establishments in Seattle is used.  
Retail, entertainment and service businesses classified as the following SIC codes are 
included in the analysis:  52; 53; 54; 55; 56; 57; 58; 59; 72; 7991; 7992; 7993; 7997; 
7999; 82; 83; 84; and 8661.  Using a spatial join, each activity is assigned to a 
blockgroup and then summarized to obtain the total number of activities per 
blockgroup.  These data indicate a total of 18,024 qualifying establishments in the 
city.  Once again, the percentage of total activities in Seattle is calculated for each 
blockgroup and written out to a file.  The file contains two fields; blockgroup-id and 
the number of activity nodes to be allocated to this blockgroup.   
 

 186



 

A java program randomly assigns agent homes, work places and activities in the same 
proportion as they are found in Seattle.54  In general, the program reads in the three 
files that describe how many agents should live, work and recreate in each area (i.e. 
blockgroup or zip code) and the two files that match each street node with the 
blockgroup or zip code in which it is located.  An array of 1,000 numbers is created to 
assign work places and homes.  A separate array of 3,000 numbers is created to use 
with activity nodes.55  Those lists are shuffled and then used to select the nodes in 
random order for home, work and activities.  Two thousand files are written out; one 
for each agent when employed and another for each agent when unemployed.  The 
home, work, rec1 and rec2 are written to the file for a particular agent when 
employed.  The same home, rec1, and rec2 are written to agent’s unemployed node 
set with the addition a new node to replace work. 
 
Establishing the Path Among Activity Nodes 
The final stage in the process involved finding the shortest path among the activity 
nodes.  However, the standard routing algorithm identifies the streets that are 
traversed, not the street nodes.  This was accomplished via ArcGIS Network Analyst 
and the process automated via Visual Basic.56  This is done for both the activity space 
when employed and when unemployed.  The program reads each file of agent activity 
nodes and uses the X, Y coordinates to convert the activity nodes to a shapefile.  The 
program then calculates the shortest path using a network dataset.57  The travel nodes 
that are traversed while traveling the shortest path are written out to agent path files 
(two for each agent; employed and unemployed).  The 4,000 output files describing 
the activity nodes and activity path nodes for each agent are read into the model and 
used to define citizen agent movement. 

 
3.3 Java Program Documentation 
All the java programs are part of a package called AssignNodestoAgents.  The two 
main programs are NodeAssignment and AssignNodeSets.  Four additional methods 
are called upon by the two main programs.  The purpose and inner workings of each 
are described below. 
 
NodeAssignment()  
NodeAssignment is the main program to randomly select the streetnodes to be part of 
agent activity spaces.  It reads two types of files – 1) nodes per area (blockgrpid, 
streetnode, x, y) or (zip, streetnode, x, y) that list all the streetnodes in each area and 
2) a file that lists each area and the number of agents who live, work or recreate there 
(area, number of agents).  The program writes out three files allHomes, allJobs and 
allAct.csv that contain a list of 1,000 randomly selected home and work nodes, and 
                                                 
54 Detailed documentation on the java program is available in section 3.3. 
55 Three thousand nodes are needed because an activity space requires a) 1,000 nodes for recreation 
place 1 (rec1), b) 1,000 nodes for recreation place 2 (rec2) and 3) 1,000 nodes to replace the Main node 
when the agent is unemployed.   
56  The custom program was created in Visual Basic and run in ArcGIS 9.1 to identify the street nodes 
traversed by each agent.  Section 3.4 has the documentation for the program. 
57 The network dataset is created from the travel street network and is required to be able to use 
Network Analyst. 
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3,000 activity nodes.  The program has two methods, collectNodes and 
selectRandomNodes.  The collectNodes reads a csv file of records containing the 
blockgroup/zip code, streetnode, x and y for all streetnodes in Seattle.  This method is 
essential because it enables the identification of a set of streetnodes for each 
blockgroup from which the specified number of homes or jobs can be selected.  The 
selectRandomNodes method actually creates the set of randomly selected streetnodes.  
It begins by reading the file with the area-id and number of streetnodes to choose 
(homes, jobs, and activities).  It then generates a set of random numbers.  Then a 
number is chosen from the set of random numbers that is between zero and the size of 
the BlkgrpSet set for that blockgroup.  The program then checks that number against 
the index numbers of the streetnodes and selects the streetnode in an area that has the 
corresponding index number.  These actions are repeated until the correct number of 
nodes to be assigned to that area is reached.   
 
AssignNodeSets() 
AssignNodeSets reads the three files generated by NodeAssignment and creates two 
sets nodes of each of the 1,000 agents (employed and unemployed).  Since the nodes 
in the files were randomly chosen but are still grouped by area-id, a method is needed 
to “shuffle” the locations before assigning them to the individual agent’s activity 
spaces.   Since I could not find a way to shuffle the files, instead two arrays are 
created (one with 1000 numbers and the other with 3000 numbers).  These lists are 
shuffled and the numbers used to choose the indexes of the streetnodes in homes, 
jobs, and activities.  The streetnodes are written out so that each agent has the same 
home, act1 and act2 nodes between their two paths.  For employed they have home, 
work, act1 and act2.  While unemployed, agents have home, act1, act2 and act3.  The 
program writes out 2000 uniquely named files each with a streetnode, x-coord and y-
coord.  These files are then used in ModelBuilder to generate the pathnodes (each 
intersection along the path among the nodes in the activity space). 
 
StrNodeLoc () 
StrNodeLocs are objects that represent the streetnode number and x,y of a particular 
streetnode.  Creating an object that represents these associated pieces of information, 
I could keep the three variables (streetnode number, x-coord and y-coord) together 
and easily write them out to files. 
 
BlkGrpNodes()  
BlkgrpNodes are objects that represent the streetnode number, x-coord and y-coord of 
all the streetnodes in a particular blockgroup (actually it is a set of StrNodeLoc 
objects).  Nodes associated with a blockgroup are selected from the overall list and 
put into a collection (in this case a vector).  There is a method called collectInfo in the 
NodeAssignment that reads a csv file of records that give the blockgroupid, 
streetnode, x and y for each record.  This method is essential to creating a set of 
streetnodes for each blockgroup from which the specified number of homes or jobs 
can be selected. 
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RandomNodeSet() 
RandomNodeSet objects are structured the same as BlkGrpNode objects but they 
represent a set of randomly selected streetnodes (streetnode number, x,y).  Once again 
it is a set of StrNodeLoc objects.  There are three types of RandomNodeSets, home, 
job, and activity.   
 
Mersenne()  
This implements the class that uses the Mersenne Twister algorithm for random 
number generation so that the Mersenne Twister random number generator (RNG) 
can be used directly.  However, the tutorial for Random Numbers on the Repast 
website states the Random class in Java also uses Mersenne Twister as the RNG.  
Consequently, the direct call implemented here is not necessary. 
 
3.4 Visual Basic Program Documentation 
This stand-alone application allows you to select a folder containing comma-
delimited ASCII files.58  In this case, the files contain the activity nodes for the 
civilian agents.  It reads the activity nodes (4 nodes), puts the nodes on a street 
network, and calculates the shortest path route between each set of nodes in a ring 
pattern.  Next, the resulting route is joined back to the junctions in a network dataset 
based on the matched records so the only records selected are the ones that were 
traversed.  Then the nodes are written out to a shapefile, two routes for each agent 
(employed and unemployed)   
 
The visual basic project for the application consists of a basutil.bas which contains 
several subroutines that enable the above.  The form is called frmAgentPaths.frm and 
provides the graphical user interface.  The prjAgentPaths.vbp is the visual basic 
project file that is needed to open the project.  The form uses the ArcObjects 
MapControl, one property is the ability to open a map document that references the 
network dataset and junctions that are to be used.  
 
4.  MAIN MODEL AND AGENT CLASSES  
There is one main model and four classes of agents in each of the versions (Figure 3).  
Three of the classes consist of generic agents – cops, civilians and active nodes.  One 
class is made up of vector agents, places.  Vector agents have an inherent spatial 
property that is needed in the simulation, generic agents do not.  Each of the classes 
has a set of actions, a schedule that controls when the actions run and a set of fields.  
The actions control a variety of functions necessary to the running of the model 
including agent initialization, agent movement and agent decision-making.  The 
actions can be scheduled to run at each model tick, at a specified interval or just once 
during the course of a model run.  The fields contain the data that are available to 
describe the members of each class.  There is also a Sequence Graph that is used to 
graphically display the number of robberies as they occur during the model run.   
 

                                                 
58 The author gratefully acknowledges Jo Fraley for writing and making this program available to 
subsequent researchers. 
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Figure 3:  Street Robbery Model Classes 

 
 
4.1 The Main Model 
The main models for each version are called StreetRobTemporal and 
StreetRobActivitySpace.  They have display names of Street Robbery Temporal and 
Street Robbery Activity Space.  The main model contains all the actions for the 
initialization of the model.  Each of the actions is listed and their function is explained 
below.  The text describes the Activity Space version and differences for the 
Temporal version are noted in parentheses where they occur.  Fields that are in all 
capital letters are static/global variables that can be called from anywhere in the 
models.  The main models are also where all the random number distributions are 
created so they can be called during the appropriate parts of the model run.  Please 
see Figure 4 for a graphical representation of the order of execution for the actions in 
the models.   
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Figure 4:  Order of Action Execution in the Model 

 
 

Actions: 
initAgents() 

This action is the first action to run in the model.  As such, it is also the 
main action that calls other actions to initialize the agents.  It calls the 
following actions for both versions:  writeModelRunData(); initModel(); 
createCitizenTravelOutputFiles(); setupPlaces(); and initCops().  For the 
Temporal version it calls initCitizensRandom() and for the Activity 
Spaces version it calls initCitizens() and initActivitySpaces().  Specifies a 
random number seed and creates the uniform random number distribution 
and a normal distribution with the specified seed.  The action also creates 
the street message display function (that is currently not used).   
 

updateDisplay() 
The updateDisplay action changes the display in ArcMap.  Execution of 
this action is done through the schedule.   
 

writeAgents() 
This action writes the agent values from the place class to the shapefile. 
The action runs before the updateDisplay() action.  The symbolization 
settings are created in the properties of the strnodes2 layer in ArcGIS.  The 
same shapefile is added into the .mxd file twice; once to symbolize the 
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total robberies at a place, another time to symbolize the total number of 
visits to a place. 
 

setupPlaces() 
The primary function of setupPlaces is to initialize a linked hashmap and 
identify the neighbors of each place for random movement.  First, a linked 
hashmap is created to store a list of all the places with strnode-id as the 
key.  Next, the action reads the nodeNeighbors.csv file and associates the 
set of neighbors with the correct Place (i.e., it populates the field 
myNeighbors in the Place class). 
 

showMessage() 
The showMessage() action enables the display of custom messages to an 
output window. 
 

incrementModel() 
This action is scheduled to execute at every tick of the model.  The action 
does the following: 1) increments model counter, 2) calls the 
writeOccupiedNodes() action, 3) calls decideRob(); 4)clears the agent list 
associated with the ActiveNode class and increments the criminal agent’s 
time to reoffend counter.  It also has code to call the 
writeOccupiedNodes() and writeCitizenInfoPaths() methods to track agent 
movement. 
 

initModel() 
The initModel() is called by initAgents() and sets values for constants and 
static variables in the model some of which are parameters and can be 
changed through the RePast GUI at model run time.   
 

initActivitySpaces() (not used in StreetRobberyTemporal) 
Reads the files of activity nodes and paths and creates a new Civilian 
agent with an activity space as specified by the appropriate activity nodes 
and pathnodes.  Uses the assignNodeInfo() action in Citizens to set the 
field values in Citizen agents. 
 

initCitizens()(not used in StreetRobberyTemporal which uses 
initCitizensRandom instead) 

Sets criminal propensity, wealth, employment, and assigns values to the 
time to stay away from home fields using the random number distributions 
created in initAgents().  Action also writes out timeHome, timeMain etc. 
fields to a file for validation.  The times are calculated by starting with the 
time to spend at home (because this has to be allocated so that the average 
is a certain number).  Next, the number of pathnodes the agent has to 
traverse in a day is accounted for.  Then a check is done to make sure an 
agent does not have less time left then they are required to stay at home.  
If that statement evaluates to true, then another random time is assigned to 
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that agent and the statement is reevaluated until there is time left to do 
other activities.  Next, the remaining time is divided in half and half is 
assigned to the Main activity node.  The remaining time is multiplied by a 
randomly chosen fraction between .10 and .90 and the resulting value is 
assigned to Rec1.  The Rec2 activity node is assigned the remainder of the 
time.   
 

initCitizensRandom() (not used in StreetRobberyActivitySpace) 
Sets criminal propensity, wealth, employment, and reads the activity 
schedule used in the StreetRobberyActivitySpace version from files.  
Action also writes out timeHome, timeMain etc. fields to a file for 
validation.  The times were calculated during the run of the 
StreetRobberyActivitySpace model so they are identical between the two 
models.  A new field is created to divide the time traveling into three equal 
parts.  The agent uses these times to randomly travel before stopping at its 
next activity.  In this way, time spent at activities is separated by time 
travel. 
 

decideRob() 
Contains the code to evaluate who is at the occupied nodes and then 
decide whether a crime should occur.  First, the action checks to find out 
which agents are at a streetnode by using the ActiveNodes class.  Next, the 
presence or absence of official guardianship (in the form of a cop) is 
evaluated.  If a cop is not present, then the program continues to evaluate 
the civilian agents at a node.  The list of agents at the node is randomly 
reordered so the same agent is not evaluated first each time and if there are 
two offenders at a node, each has a random chance of getting to decide to 
commit a crime.59  Then each civilian agent is checked for criminal 
propensity.  The first agent found becomes the criminal decision-maker 
for this situation.  Program also takes into account whether the agents at 
the node are ‘at risk’ (which is set in Citizens.step()).  Next a target agent 
is identified by checking the wealth of each agent.  The agent with the 
most wealth is chosen to be the target but only if their wealth is greater 
than or equal to the criminal agent’s wealth.  Only nodes with two or more 
agents and an offender are evaluated as far as the actual decision to 
commit a crime.  The suitability and guardianship terms are calculated and 
used in the decision to commit a crime.  If a crime occurs, the action 
changes the following field values: victim and offender wealth, number of 
victimizations and total robberies at the place.  The decideRob() action is 
called by incrementModel().   
 
 

                                                 
59 Although this method required additional coding, the use of randomly generated numbers ensures 
that the same result will be achieved each time a run is conducted with the same random number seed.  
The shuffle method cannot be used because the order of the agents changes each time the action is 
given regardless of the random number seed. 
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writeOccupiedNodes() 
This action writes out the distribution of agents across street nodes for 
diagnostics and data analysis.  The action is called by the 
incrementModel() action so it occurs at every tick (not currently used).  
However, it could be written out less frequently by scheduling the action 
instead. 
 

idChangingEmploymentStatus() 
This action is scheduled to run every two weeks.  The action identifies the 
3% of agents whose employment status will change by setting the field 
changeEmpStatus to true.   
 

switchActivitySpace() (not used in StreetRobberyTemporal) 
Checks to see if agent has been identified to switch employment status (by 
looking at the field – changeEmpStatus that is calculated in 
idChangingEmploymentStatus()) and then calculates new times to spend 
at activity nodes just for those agents who change.  Uses the same 
methodology as in the initCitizens() action to allocate time spent at 
activity nodes.  Last, the action updates the field values of main, rec1, rec2 
and pathNodes to reflect the new path (employed or unemployed).   
 

initCops() 
Creates cop agents and assigns them to a strnode (number) and a location 
(Place).  Action uses a uniform distribution to select the nodes on which to 
place the cops at the start of the model. 
 

resetAgentsDaily() 
At end of the model day, all agents are reset to be back at home so they are 
at an activity node (home), not at risk and not moving.  In the Activity 
Space version this is necessary because the agents travel a random number 
of street nodes during each turn.  
 

createCitizenTravelOutputFiles() 
Creates two different types of output files to which citizen data can be 
written.  One creates a unique file for each citizen agent to which output 
can be written by the writeAgentInfoFiles() action (output/citizenX.csv).  
The other type of file is a single file to which data can be written at 
specified intervals to monitor societal-level citizen characteristics 
(output/citizenChar.csv).  This file is written to by dataRecorder(). 
 

writeCitizenTravInfotoFiles() 
Uses the files created by createAgentOutputFiles() and writes out 
information about the individual agents at different points in the model 
(not currently called). 
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writeModelRunData() 
This action creates a log file to capture model parameter values, error 
messages and critical statistics during each model run.  Many actions write 
to the file as necessary. 
 

writeStatistics() 
This action captures the final field values for citizen agents pertaining to 
activity spaces and crime in a single file.  Writes out the aggregate time 
spent at home, main, rec1, rec2, travel, and exposed; the assigned time to 
spend at home, main, rec1, rec2, travel; and the Total number of offenses 
and victimizations.  These same statistics are written to individual agent 
files by the createCitizenTravelOutputFiles() and 
writeCitizenTravInfoFiles() actions.  The action writes to 
output/statistics.csv which is written one time at end of simulation and is 
very helpful for understanding victimization, offending and wealth for 
each agent. 
 

dataRecorder() 
This action takes the place of the data recorder that I could not get to work 
in the model.  It records variables that change during the model run such 
as: number of unemployed agents, average wealth, robbery rate, total 
victims, total repeat victims, total offenders, total repeat offenders, percent 
exposed, percent traveling, and number of active offenders.  Writes to 
output/citizenChar.csv. 
 

writeFinalAgents() 
This action writes out the ending values in the shapefile to a named model 
output directory for later analysis. 
 

writeCitizenInfoPaths() 
For random movement and to verify directed paths, this action provides a 
convenient way to write out every street node visited by an agent. 
 

Fields:   
messageDisplay - uchicago.src.simbuilder.util.MessageDisplay, displays 

messages while model is running.  Parameter 
modelStep – integer, counter that keeps track of model steps, 1 minute steps  
MODEL_HOUR – integer, number of steps in an hour, 6 x 60 = 360 steps in 

an hour.  Default value = 60. 
MODEL_DAY – integer, number of steps/minutes in a day, 24 x 360 = 8,640 

steps = 1,440 minutes in a day. 
MODEL_WEEK – integer, number of minutes in a week, 7 x 1,440 = 10,080 

minutes in a day; 7 x 8640 = steps in a day. 
MODEL_YEAR - integer, number of minutes/steps in a year, 365 x 1,440 = 

525,600 minutes in a year; 365*8640 = 3,153,600 steps 
SOCIETAL_TIMEAWAY – double, Default value = .70,  
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totRob – integer - Default value = 0, Cumulative number of robberies in 
the model run. Parameter 

totRob – integer, cumulative number of robberies for model.   
placeMap – java.util.hashmap – hashmap of strnode-ids 
AGENTS – integer – Default value 1000, total number of agents in the model. 

Parameter 
totDeter – integer, Default value = 0, total number of robberies deterred by 

presence of cop for the entire model run.  For this to increment there had 
to have been more than one agent and a criminal agent at the node. 

totIntersect – integer, total times there were more than two agents at a node 
and a criminal. Represents the number of potential crime situations and is 
a running total for model run. 

NORM_TRAVEL – cern.jet.random.Normal – random number distribution 
for number of positions to move while traveling 

REPEAT – integer, default value is 60-time a criminal has to wait before re-
offending.  Parameter 

COPS – integer, number of cop agents in the model, default value is 200.  
Parameter. 

MIN_GUARDIANSHIP – integer, contains minimum amount of random 
error in the perception of guardianship by the criminal agent, default value 
is -2.  Parameter. 

MAX_ GUARDIANSHIP – integer, contains maximum amount of random 
error in the perception of guardianship by the criminal agent, default value 
is 2.  Parameter. 

MIN_SUITABILITY - integer, contains minimum amount of random error in 
the perception of target suitability by the criminal agent, default value is -
1.  Parameter. 

MAX_SUITABILITY - – integer, contains maximum amount of random error 
in the perception of target suitability by the criminal agent, default value is 
1.  Parameter. 

NUM_PLACES – integer, number of street intersections in the model.  
Parameter. 

WEALTH_MEAN – integer, mean of the wealth distribution for all agents in 
the model.  Parameter. 

WEALTH_SD – integer, standard deviation of the wealth distribution for all 
the agents in the model.  Parameter. 
 

Actions that are in Schedule  
incrementModel – at every 1 tick 
resetAgentsDaily - at interval of 1440 ticks (run last) 
dataRecorder – at interval of 1,140 
idChangingEmploymentStatus – at interval of 40,319 ticks 
switchActivityStatus - at interval of 40,320 ticks (run last) 
writeStatistics – at end (525,600) ticks  
writeStatistics – at interval of 525,599 ticks (Activity Space only) 
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4.2  Vector Agents 
There is only one vector agent class in the simulation and it consists of the set of 
places (street intersections) in Seattle.  To clarify, each street intersection (also called 
a street node) is a place in the model.  There are 16,035 places in the model and they 
exist in the shapefile called strnodes2.shp that is a point file.  This class contains the 
geographic information about the distribution of agents and robberies (i.e., where the 
agents and the robberies are located in Seattle). 
 

Name:    Places 
Group Name:  places 
 
Actions: 

None. 
 
Shapefile fields: 

ARC_ - integer, internal arc-id used by ArcGIS 
STRCL_ - integer, internal node number used by ArcInfo 
STRCL_ID – integer, node number used in the model 
citiStart – integer, node at which a citizen agent starts the simulation 
copStart – integer, node at which a police agent starts the simulation 
crimStart – integer, node at which a civilian agent with criminal propensity 
starts the simulation 
the_geom – com.vividsolutions.jts – geometry of point 
totPrevent – integer, total number of potential crime situations in which a cop 
prevented the crime at a node that would have been committed otherwise 
totalRob – integer, total number of robberies at a node 
totalVisit – integer, total times any agent visited a node 

 
Class Fields: 

strcl_ - integer, street node number 
myNeighbors – java.util.ArrayList – list of nodes adjacent  

 
Actions that are in Schedule  

None 
 

 
4.3 Generic Agents 

Overview of Generic Agents 
There are three generic agent classes in the model, citizens, active nodes and cops.  
These classes are not inherently spatial in nature but through object-oriented 
programming, the members of the classes can be associated with members of the 
Place class.  Each of the generic classes is described in this section. 
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Name:  Citizen 
Group Name: citizens 
 
The citizen class contains all the citizen agents in the model.  One of the 
interesting facets of this implementation is that citizen agents with criminal 
propensity and those without are modeled exactly the same as far as activity 
spaces, initial wealth, pay schedule and employment status.  The only 
characteristic that differs is the presence of criminal propensity.  Only those 
citizens who have criminal propensity evaluate criminal opportunities and are able 
to make the decision to offend.  All citizen agents can be victims of street 
robbery. 

 
Actions: 

step() (Activity Space version) 
This action controls the movement of the agents along their paths by 
incrementing their position in their pathNodes field.  Keeps track of time 
(timeCounter) spent at an activity.  Changes the atRisk, atActivity and 
moveStatus variables depending on which activity and whether an agent is 
traveling between activities.  Dynamically creates the ActiveNode class 
with each step.  Only agents at ActiveNodes are evaluated during the 
decideRob() routine. 
 

step() (Temporal version) 
This action controls the random movement of the agents by having them 
choose a neighbor node to move to.  Keeps track of total time spent in 
their time schedule (timeCounter) throughout the course of a day.  
Changes the atRisk, atActivity and moveStatus variables depending on the 
activity of the agent and whether an agent is traveling between activities.  
Dynamically creates the ActiveNode class with each step.  Only agents at 
ActiveNodes are evaluated during the decideRob() routine. 

 
assignNodeInfo() (not used in the Temporal version) 

Assigns the field values from the activity node and path files generated by 
the Java/GIS programs to each of the Citizen agents (see Figure 2).  The 
following fields are assigned: name, home, empHome, empMain, 
empRec1, empRec2, empPathNodes, unempHome, unempMain, 
unempRec1, unempRec2, unempPathnodes and currentNode.  Is called by 
the model action, initActivitySpaces(). 

 
payCitizens() 

Pay citizens who are employed every two weeks (20,160 ticks). 
 

Fields: 
placeNode – Place, associated with vector group of Places 
name – string, name of the agent 
home – integer, home node of agent 
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main – integer, work, school or other significant activity node, this value 
reflects current employment status (emp or unemp) 

rec1 – integer, one activity node, this value reflects current employment status 
(emp or unemp) 

rec2 – integer, another activity node, this value reflects current employment 
status (emp or unemp) 

pathNodes – java.util.ArrayList, the nodes traveled to move among activities, 
reflects current employment status pathnodes 

currentNode – integer, holds the strnode_id of node the agent is occupying 
criminalPropensity – Boolean, whether or not an agent thinks about 

committing a crime, default value=false. 
timeHome – integer, minutes spent at home 
timeMain – integer, minutes spent at work 
timeRec1 – integer, minutes spent at recreation one 
timeRec2 – integer, minutes spent at recreation two 
timeTraveling – integer, minutes spent traveling among activity nodes 

(assigned as part of activity space), default value=0 
atActivity – Boolean, true= stationary, false = moving, default value = true 
atRisk – Boolean, true = vulnerable to being victimized, false = safe, default 

value = false. 
timeCounter – integer, keeps track of the cumulative time at an activity but is 

reset when activity type changes or agent begins to travel.  Default value = 
0. 

employmentStatus – boolean, employed = true and unemployed = false.  
Default value =true. 

wealth - integer, the amount of wealth an agent has 
position – integer, the position in the pathNodes array that an agent is 

occupying 
moveStatus – boolean, true = traveling, false = not traveling, default value = 

false 
occupiedNode – ActiveNode, each of these nodes have at least one civilian 

agent on them. 
empHome – integer – the home node for an agent while employed  
empMain – integer – the main node for an agent while employed  
empRec1 – integer – the first recreation node for an agent while employed  
empRec2 – integer – the second recreation node for an agent while employed  
unempHome – integer – the home node for an agent while unemployed  
unempMain – integer – the main node for an agent while unemployed  
unempRec1 – integer – the first recreation node for an agent while 

unemployed  
unempRec2 – integer – the second recreation node for an agent while 

unemployed  
unempPathNodes – java.util.ArrayList – the list of nodes that an unemployed 

agent traverses during the course of a day 
empPathNodes– java.util.ArrayList – the list of nodes that an employed agent 

traverses during the course of a day 
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changeEmpStatus – Boolean, true = change the employment status, false= do 
not change employment status, default value = false 

numVict – integer, number of times an agent get robbed, default value is 0 
numOffen – integer, number of times an agent commits a robbery, default 

value is 0 
totTimeTraveling – integer – cumulative travel time even with employment 

changes (counter) , default value is 0 
totTimeExposed – integer, cumulative time spent traveling and at activities 

taking into account changes in employment (counter value) , default value 
is 0 

timerHome – integer – cumulative time spent at home over the course of the 
model run, default value is 0 

timerMain – integer – cumulative time spent at main over the course of the 
model run, default value is 0 

timerRec1 – integer – cumulative time spent at rec1 over the course of the 
model, default value is 0 

timerRec2 – integer – cumulative time spent at rec2 over the course of the 
model, default value is 0 

timerRepeat – integer – cumulative time spent unable to offend until the 
REPEAT value is reach, default value is 0 

location – Place – place object representing physical location of agent 
strnode – integer – strnode number of intersection representing physical 

location of agent 
nodeList – java.util.ArrayList – list of nodes agent has visited using random 

movement 
timeEmpHome – integer – time to spend at home while employed (Temporal 

only) 
timeEmpMain – integer – time spent at main while employed (Temporal only) 
timeEmpRec1 – integer – time spent at rec1 while employed(Temporal only) 
timeEmpRec2 – integer – time spent at rec2 while employed (Temporal only) 
timeEmpTraveling - integer, time to spend traveling while employed 

(Temporal only) 
timeUnempHome – integer – time to spend at home while unemployed 

(Temporal only) 
timeUnempMain – integer – time spent at main while unemployed (Temporal 

only) 
timeUnempRec1 – integer – time spent at rec1 while unemployed (Temporal 

only) 
timeUnempRec2 – integer – time spent at rec2 while unemployed (Temporal 

only) 
timeUnempTraveling - integer, time to spend traveling while employed 

(Temporal only) 
travelTimeSplit – integer – travel time between activities (Temporal only) 

 
Actions that are in Schedule  

step – at every 1 tick 
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payCitizens – at interval of 20,160 ticks  
 

Name:  ActiveNode 
Group Name:  activeNodes 
 
The ActiveNode class exists as a computational device to avoid having to check 
all the places at each step.  At each step, the nodes where citizens and cops are 
located are associated with the ActiveNode class.  This limits the maximum 
number of nodes that would have to be checked to 1,000 (i.e. the maximum 
number of nodes if each agent was at a unique node) instead of 16,035.  
 
Actions: 

None 
 

Fields: 
strnode – integer, has the node number of the agent 
agentList – java.util.ArrayList, has the list of agents at the node 

 
Actions in the Schedule  

None 
 
 

Name:  Cop 
Group Name: cops 

 
The Cop agent class is used to represent formal guardianship at a place.  The 
presence of a cop increases the risk of committing a crime (i.e. increase the 
guardianship at a place).  Cops cannot be victimized nor can they commit a crime.  
Their movement patterns are random.  They move from their current place to a 
randomly chosen adjacent place at every model tick by consulting the 
myNeighbors field in the Place class which lists all the neighbors for their current 
node.   

 
Actions: 

step() – 
First the action gets the list of all the places in the Place class.  For each 
node that has a cop, the list of neighbor nodes is reordered and then the 
cop is assigned to the first position in the node list.  The strnode and the 
location fields are changed to reflect the cop’s new position.  The location 
field is a Place object which allows the decideRob() action to see if there 
are cops at the active node.  Cops move last in each tick. 

 
Fields: 

strnode – integer, has the node number  
agentList – java.util.ArrayList – contains the agents who are at the street 
intersection 
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Actions in the Schedule  

step() – runs at every 1 tick. 
 

 
4.4  Other Model Components  
 
A sequence graph is included that tracks the number of times a street node is visited 
by any agent, the number of times a robbery occurs on the node and the number of 
times a robbery is deterred by the presence of a cop. 
 

Name:  _Tracking 
Title:  Activity Graph 

 
Series: 

totalRobberies – cumulative number of robberies at a node 
totalDeterred – cumulative number of robberies prevented by a cop at a node 
totalIntersect - cumulative number of times more than one agent is at a node 
 

Schedule: 
Currently not scheduled. 

 
 
4.5  Random Number Distributions 
 
The use of robust random number generators (RNGs) is essential to producing high 
quality, scientifically defensible results.  This simulation uses the Mersenne Twister 
RNG for all the random numbers in the model.  The same seed is used for each of the 
random number distributions in a single run of five experiments.  The seed is set in 
the initAgents() action.  Two types of random number distributions are used, normal 
and uniform.  The uniform random number distribution is created in the initAgents 
and used in various actions as documented below.  Two normal distribution are 
created in the initAgents() action for Full Robbery Directed movement model, one as 
a static variable the other as a regular normal distribution.  The static normal 
distribution is necessary for directed agent movement and is called from the step() 
action.  The Full Street Robbery Random model requires only one normal distribution 
be created.  The following section describes all the random number distributions used 
in the model, how they are created and in which action they are used. 
 
Actions That Use RNG’S 
 
initCitizens() 
 
Uniform distributions are used to: 

• choose subsets of agents from the totals set for criminal propensity, 
employment status, number from between 0 and 999.   
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• select numbers from between (.1,.9) to assign a percent of time left to 

rec1.   
 

• Represent randomness in an offender’s perception of guardianship and 
suitability of targets. 

 
Normal distributions are used to: 

• assign wealth to the agents:  Random.createNormal(50,20)   
 

• assign the amount of time to spend at home with a mean of the 
experimental value and a standard deviation of 10 percent of the mean 
(very peaked distribution) as is shown below.   

 
societyPercHome = 1 - self.SOCIETAL_TIMEAWAY 
standardDeviation = (self.MODEL_DAY * societyPercHome)*.10 
meanTimeHome = self.MODEL_DAY * societyPercHome 
Random.createNormal(meanTimeHome,standardDeviation) 
 

• choose a number of nodes to move each turn.  A separate random number 
generator is created and used for this distribution.  A global variable is 
created to hold the distribution so it can be called from the Citizen.step() 
action (only in the Activity Space model). 

mtRNG = MersenneTwister(100) 
self.NORM_TRAVEL = Normal(6,1,mtRNG) 

 
 
decideRob() 
 
Uniform distributions are used to: 

• represent differences in perceived guardianship, generate number between 
-2 and 2.  This adds or subtracts up to 2 agents to the perceived 
guardianship value (e.g. a place manager might represent 2 agents, while 
someone in car might not count for as much).  

 
• represent differences in perceived target suitability, select a number 

between -1 and 1 which adds to or subtracts from the difference in wealth 
between offender and target.    

 
• represent the influence of other unknown factors when the decision to 

offend could go either way based on guardianship and suitability (i.e. the 
randDecision section of code)  
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idChangingEmploymentStatus() 
 
Uniform distribution is used to: 

• choose a subset of agents that will change their employment status, generates 
a series of numbers from between 0 and 999.  

 
 
switchActivitySpace() 
 
Uses two of the same distributions as the initCitizens() action: 
 
Uniform distributions are used to: 

• choose subsets of agents from the totals set for criminal propensity, 
employment status, number from between 0 and 999.   

 
• select numbers from between (.1,.9) to assign a percent of time left to 

rec1.   
 
Normal distribution (created in initCitizens()) is used to: 

• assign the amount of time to spend at home with a mean of the 
experimental value and a standard deviation of 10 percent of the mean 
(very peaked distribution) as is shown below.   

 
societyPercHome = 1 - self.SOCIETAL_TIMEAWAY 
standardDeviation = (self.MODEL_DAY * societyPercHome)*.10 
meanTimeHome = self.MODEL_DAY * societyPercHome 
Random.createNormal(meanTimeHome,standardDeviation) 

 
initCops() 
 
Uniform distribution is used to: 
 

• choose place index numbers to which to assign cops.  Randomly chooses 
from the entire set of street nodes, 0 to 16034. 

 
Citizen.step() 
 
Normal distribution is used to: 

• obtain a random number of nodes to move each turn.  The average number 
of nodes needs to be six per turn.  This distribution was created in 
initAgents() and is called here self.NORM_TRAVEL.   
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4.6  Statistics Files 
 

The following files are written out for each model run: 
1) C:/model_output<condition>/modelRunDatav1.csv – in the initCitizens() 
write out agent values for criminal propensity, employment and wealth; in the 
initModel() write out parameter values for model  
2) C:/model_output<condition>/citizen<agentName>.csv – a series of files 
(one for each agent) that are written from the writeCitizenTravelInfoFiles().  
Each file contains the: tick, the timers for home, main, rec1, rec2, time 
exposed and time traveling, the position of the agent in their path, number of 
offenses, number of victimizations and the amount of time originally assigned 
to spend at each place.   
3) C:/model_output<condition>/statistics.csv – writes out the times actually 
spent at activity nodes.  All agents are in one file.  Easy to get percentages of 
time spent at home, main, rec1, rec2 from this file. 
4) C:/model_output<condition>/occupiedSnapshot<Tick>.csv – a series of 
files are created (one at each tick).  Documents the distribution of agents 
across the streetnodes and keeps track of how many agents were at any one 
street node and which agents were there. 
5) C:/model_output<condition>/timeAtActivityNodes.csv – file that has the 
amounts of time assigned for activity nodes.  All agents are in one file. 
6) C:/model_output<condition>/citizenChar.csv – prints every 60 ticks.  Has 
information to monitor the model level variables.  Files is created by 
createCitizenTravelOutputFiles() and written to in dataRecorder() 
7) C:/model_output<condition>/path<agentName>.csv – creates and writes to 
the files to hold the list of nodes that each citizen visits during random 
movement.  Action must be scheduled to run. 

 

 205



 

Appendix 3:  Street Robbery Model:  Simple Version Code 

Street Robbery Simple Actions 
 
def initAgents(): 
 
Java imports 
uchicago.src.simbuilder.util.MessageDisplay 
java.lang.String 
anl.repast.gis.data.dbf.DBFReader 
anl.repast.gis.data.dbf.JDBField 
java.Array 
java.util.Vector 
java.util.List 
java.lang.Object 
java.util.ArrayList 
uchicago.src.sim.util.Random 
java.io.PrintWriter 
 
Code 
  print "Inside initAgents" 
  if (self.messageDisplay == None): 
    self.messageDisplay = MessageDisplay() 
    self.messageDisplay.display("Street Robbery Messages") 
  else: 
    self.messageDisplay.clear() 
     
  # Explicitly set the random number generator seed and initialize Random distributions  
  # Create RNG and set seed  
  Random.setSeed(self.SEED) 
  #Random.setSeed(100) 
  Random.createUniform() 
   
  # Create log file for model run 
  self.writeModelRunData() 
    
  # Initialize model level variables 
  self.initModel() 
   
  # Initialize the activity spaces of agents 
  self.initCitizensRandom() 
   
  # Create output files for analysis 
  self.createCitizenTravelOutputFiles() 
   
  # Process the street nodes for use in the model 
  self.setupPlaces() 
   
  # Check to make sure values in shapefile fields are zero 
  for node as Place in self.places: 
    if node.totalRob > 0 or node.totalVisit > 0 or node.totPrevent > 0: 
      print "WARNING:  Shapefile had non-zero values in counter fields"      
      
  # Initialize the cop agents 
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  self.initCops() 
 
def updateDisplay(): 
  #print "Inside updateDisplay" 
  self.updateGISDisplay() 
 
def writeAgents(): 
  #print "Inside writeAgents-Model level" 
  baseFilePath = ".\\projects\\rob_model\\shapefiles\\" 
  self.writeAgents(self.places, baseFilePath + "strnodes2.shp") 
 
def setupPlaces(): 
 
Java Imports 
java.io.BufferedReader 
java.io.FileReader 
java.util.StringTokenizer 
 
Code 
  print "Inside setupPlaces" 
   
  # Put Places in a HashMap where the key is the strnode-id  
  # Creates the map 
  self.placeMap = LinkedHashMap() 
   
  # Add the places to the hashmap  
  for currentPlace as Place in self.places:  
    specNode = "0" 
    specNode = String.valueOf(currentPlace.getSTRCL_()) 
    specNodeNew = Float(specNode) 
    self.placeMap.put(specNodeNew, currentPlace) 
    #print "PLACE node info: ", specNodeNew 
    currentPlace.setMyNeighbors(ArrayList()) 
  
  # Read the neighbors file and set each nodes neighbors. 
  # The neighbors files lists the active node and the neighboring 
  # nodes of that active node.  The map created above is used to 
  # get the neighbors for each active node. 
   
  fileName = "./projects/rob_model/neighborFiles/nodenghbrs.csv" 
  reader = BufferedReader(FileReader(fileName)) 
  line = reader.readLine() 
     
  while(line): 
    tokenizer = StringTokenizer(line, ",") 
    if(tokenizer.hasMoreTokens()): 
      activeNode = tokenizer.nextToken().trim() 
      actNodeObject = Float(activeNode) 
      currentPlace = (Place)self.placeMap.get(actNodeObject)    
      #print "Current variable ", activeNode #prints out the variable strcl_ 
      #print "Current node from place object:  ", currentPlace.getSTRCL_() 
      nghs = currentPlace.getMyNeighbors() 
      while (tokenizer.hasMoreTokens()): 
        ngh = tokenizer.nextToken() 
        currentPlace.myNeighbors.add(ngh) 
        #print "Neighbor node ", ngh 
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    # Read the line 
    line = reader.readLine() 
  # Close the reader   
  reader.close() 
   
  #This code enables verification that the myNeighbors array has the correct values 
  for currentPlace as Place in self.places: 
    #print "Streetnode: ", node.strcl_ 
    if currentPlace.getMyNeighbors() == None: 
      print "Neighbor arraylist is empty for node " + currentPlace.strcl_ 
 
def showMessage(String message): 
 
Java imports 
javax.swing.JOptionPane 
 
Code 
  print "Inside showMessage" 
  JOptionPane.showMessageDialog((JComponent)None, message) 
 
def incrementModel(): 
   
  # Increment the modelStep field 
  if self.modelStep < self.MODEL_YEAR:     #525,600 
  #if self.modelStep < 40320:      # month is 40,320         
    self.modelStep = self.modelStep + 1 
  else: 
    self.writeFinalAgents() 
    for node as Place in self.places: 
      node.totalVisit = 0 
      node.totalRob = 0 
      node.totPrevent = 0 
      node.copStart = 0 
      node.citiStart = 0 
      node.crimStart = 0 
    self.writeAgents() 
    self.writeStatistics() 
    self.dataRecorder() 
    print "YEAR OVER" 
    self.stop() 
  #print "MODEL STEP = ", self.modelStep 
     
  # ActiveNode - call a method to write out a file of the nodes and their  
  # associated agents at each step 
  #print "Called writeOccupiedNodes" 
  #self.writeOccupiedNodes()     
   
  # Write out citizen position 
  #self.writeCitizenInfoPaths() 
   
  # Make the decision to commit a crime 
  # print "Total Active NOdes: ", self.activeNodes.size() 
  self.decideRob()       
   
  # Clear the agents from the activeNodes class   
  self.activeNodes.clear() 
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  #print "Total active nodes after clear: ", self.activeNodes.size() 
   
  # Increment the timers for agents with criminal propensity 
  for citizen as Citizen in self.citizens: 
    if citizen.criminalPropensity == true: 
      if citizen.timerRepeat > 0 and citizen.timerRepeat < self.REPEAT: 
        citizen.timerRepeat = citizen.timerRepeat + 1 
        #print "Agent " + citizen.name + " repeat timer incremented to: " + citizen.timerRepeat 
      elif citizen.timerRepeat == self.REPEAT: 
        #print "REPEAT value: " + self.REPEAT 
        citizen.timerRepeat = 0 
        #print "Agent " + citizen.name + " timer reset to 0: " + citizen.timerRepeat 
      else: 
        citizen.timerRepeat = citizen.timerRepeat 
     
  #print "TOTAL Robberies in society: ", self.totRob 
 
def initModel(): 
Java imports 
cern.jet.random.* 
cern.jet.random.engine.MersenneTwister 
uchicago.src.sim.util.Random 
cern.jet.random.Normal 
 
Code 
  print "Inside initModel" 
   
  # Open log file 
  logoutput = self.LOG_FILE 
  logWriter = BufferedWriter(FileWriter(logoutput, true))   
   
  # Set static field values for model run 
  #self.SOCIETAL_TIMEAWAY = .30 
  self.modelStep = 0 
  self.MODEL_HOUR = 60  #360 steps per hour, Travel occurs at 6 steps per minute 
  self.MODEL_DAY = (24 * self.MODEL_HOUR) 
  self.MODEL_WEEK = (7 * self.MODEL_DAY) 
  self.MODEL_YEAR = (365 * self.MODEL_DAY) 
  #self.REPEAT = 60      #Time until a criminal can reoffend 
   
  # Print to file to document model run 
  temp =  self.SOCIETAL_TIMEAWAY *100 
  logData = "Experimental condition: " + temp + "% time spent away from home" + "::::" + "Number 
of Agents in model " + self.AGENTS  
  intSize = int(logData.length()) 
  logWriter.write(logData,0,intSize) 
  logWriter.newLine() 
  logData = "" 
  logData = "Number of cops: " + self.COPS 
  intSize = int(logData.length()) 
  logWriter.write(logData,0,intSize) 
  logWriter.newLine() 
  logData = "" 
  logData = "Limit on Repeat Offending: " + self.REPEAT 
  intSize = int(logData.length()) 
  logWriter.write(logData,0,intSize) 
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  logWriter.newLine() 
  logData = "" 
   
   
  #Close the log file   
  logWriter.close() 
 
 
def decideRob(): 
Java Imports 
java.lang.Object 
java.lang.String 
uchicago.src.sim.util.SimUtilities 
java.util.Arrays 
java.util.List 
 
Code 
  #print "Inside decideRob" 
   
  # Open log file 
  logoutput = self.LOG_FILE 
  logWriter = BufferedWriter(FileWriter(logoutput, true)) 
  #data = "Inside Decide Rob Action" 
  #intSize = int(data.length()) 
  #logWriter.write(data,0,intSize) 
  #logWriter.newLine() 
  #data = "" 
  # Check each ActiveNode for list of agents 
  # Logical error check 
  if self.activeNodes.size() > self.AGENTS: 
    ########################### 
    data = "Too Many Active Nodes during step: " + self.modelStep 
    intSize = int(data.length()) 
    logWriter.write(data,0,intSize) 
    logWriter.newLine() 
    data = "" 
     
  # Loop through the nodes with citizens and make the decision to commit a robbery 
  for occupied as ActiveNode in self.activeNodes: 
    # Check agents at each of the active nodes  
    #print "The Node being evaluated is: ", occupied.strnode 
     
    #################   
    #data = "Street Node " + occupied.strnode 
    #intSize = int(data.length()) 
    #logWriter.write(data,0,intSize) 
    #logWriter.newLine() 
    #data = "" 
     
    # Initialize variables in action 
    numAgentsAtNode = occupied.getAgentList().size() 
    #data = "Number of Agents at Node (from size of agent list field): " + numAgentsAtNode 
    #intSize = int(data.length()) 
    #logWriter.write(data,0,intSize) 
    #logWriter.newLine() 
    #data = "" 
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    numCrimAtNode = 0 
    numAgentAtRisk = 0 
    numCriminals = 0 
    offenderAtNode = false 
    curStreetNode = (Place)self.places.get(0) 
    #print "The default curStreetNode: ", curStreetNode.STRCL_ 
    curAgent = (Citizen)self.citizens.get(0) 
    #targetAgent = (Citizen)self.citizens.get(0) 
    targetAgent = (Citizen)self.citizens.get(0) 
    criminalAgent = (Citizen)self.citizens.get(0)  
    copPresent = false 
    robbery = true 
    crimWealth = 0 
    evalWealth = 0 
    targetWealth = 0 
    suitability = 0 
    targetSet = false 
     
    #################   
    #data = "START VALUES: Criminal Agent-- " + criminalAgent.name + "Current Agent-- " + 
curAgent.name + "Target agent- " + targetAgent.name 
    #intSize = int(data.length()) 
    #logWriter.write(data,0,intSize) 
    #logWriter.newLine() 
    #data = "" 
     
    # Log presence of agents on street node 
    # Retrieving the place by converting to a float object 
    occupiedObject = Float(occupied.strnode) 
    currentPlace = (Place)self.placeMap.get(occupiedObject) 
    #print "NEW Place node:", currentPlace.getSTRCL_() 
    #print "Number of agents at Node: ", numAgentsAtNode 
    #self.messageDisplay.addAlert("There are "+ numAgentsAtNode + " citizens at " + 
occupied.strnode) 
     
    # Log fact that agents visited a node in the shapefile 
    if (currentPlace != None): 
      currentPlace.totalVisit = currentPlace.totalVisit + numAgentsAtNode 
      #currentPlace.visits = currentPlace.visits + numAgentsAtNode 
      #print "NEW Number of Visits: ", currentPlace.totalVisit    
    else: 
      print "Unable to log visit at strnode: " + occupied.strnode + " during tick: " + self.modelStep 
       
    # Loop through all the cops to find out if there is a cop at node 
    for copAtNode as Cop in self.cops: 
      copPlace = copAtNode.getLocation() 
      # When you find a cop at the place break out of loop and calculate variable 
      if copPlace == currentPlace: 
        #print "Cop at node: ", copAtNode.location.STRCL_  
        copPresent = true 
        break 
      else: 
        copPresent = false 
    #############################DEBUG 
    #if copPresent == true: 
      #data = "Cop is at node! "  
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      #intSize = int(data.length()) 
      #logWriter.write(data,0,intSize) 
      #logWriter.newLine() 
      #data = ""     
    #if copPresent == true: 
      #print "Cop! at node "+ occupied.strnode 
         
    # Only evaluate nodes that have more than one citizen and there is no cop present   
    if numAgentsAtNode > 1:                 
     
      #################  DEBUG 
      #data = "Street Node " + occupied.strnode 
      #intSize = int(data.length()) 
      #logWriter.write(data,0,intSize) 
      #logWriter.newLine() 
      #data = "" 
      ############################# 
      #data = "Number of Agents at Node is: " + numAgentsAtNode 
      #intSize = int(data.length()) 
      #logWriter.write(data,0,intSize) 
      #logWriter.newLine() 
      #data = "" 
      #i = 0 
      #j = 1 
             
      # Calculate the level of GUARDIANSHIP 
      guardianship = (numAgentsAtNode - 2) + 
Random.uniform.nextIntFromTo(self.MIN_GUARDIANSHIP,self.MAX_GUARDIANSHIP) 
      #print "Guardianship is: ", guardianship 
       
      # Outside loop that checks each of the agents at a particular node using the citizen name 
      # Shuffle the agents at a node so they have an equal chance of being selected first and thus 
      # are not always evaluated in the same order. 
       
      #for position in range(0, numAgentsAtNode): 
        #print "Original Order: Node--" + occupied.strnode + " Position " + position + ", "+ 
String.valueOf(occupied.getAgentList().get(position)) 
            
      # Create a distribution using number of agents at node  
      maxValue = numAgentsAtNode-1 
             
      # Create arraylist variables 
      # Array to hold randomly shuffled agents 
      randList = ArrayList() 
      # List of array positions that have been used 
      strList = ArrayList() 
      foundIt = false 
      #print numAgentsAtNode 
      # Outside while to create a new list of all the agents at the node in a new order 
 
      while randList.size() < numAgentsAtNode: 
        # Generate a random number 
        foundIt = false 
        index = Random.uniform.nextIntFromTo(0,numAgentsAtNode-1) 
        indexStr = String.valueOf(index) 
        #print "The first index generated is: " + index 
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        ############################# 
        #data = "Index value: " + index 
        #intSize = int(data.length()) 
        #logWriter.write(data,0,intSize) 
        #logWriter.newLine() 
        #data = ""  
        # If this is the first agent generated then add it to the new randList array, otherwise check to see if  
        # the index has already been used 
        if strList.size() >= 1: 
          for p in range (0, strList.size()): 
            if String.valueOf(strList.get(p)) == indexStr: 
              foundIt = true 
              break 
          
        if foundIt == false:  
          agent = occupied.AgentList.get(index) 
          randList.add(agent) 
          strList.add(indexStr) 
          #print "randList size is ", randList.size() 
          #print "New size of list of index numbers is " + strList.size() 
       
      # Code to verify new order     
      #for position in range(0, numAgentsAtNode): 
        #print "New order at Node: " + occupied.strnode + " position " + position + ", " + 
String.valueOf(randList.get(position)) 
 
             
      for i in range (0,numAgentsAtNode): 
        #Bunch of code that get the agent name (e.g. a1) and then strips off the first character 
        #and pulls the correct Citizen agent using the agent name  
        fullName = randList.get(i) 
        fullStrName = String.valueOf(fullName) 
        partName = fullStrName.substring(1) 
        #print "Agent: " + partname + " in agentList" 
        # Use the agent's name to find the index number of correct Citizen agent 
        index = int(partName) - 1 
        curAgent = (Citizen)self.citizens.get(index) 
        #print "Citizen in agentList: ", curAgent.name 
        #print "Current agent: " + curAgent.name + " is criminal? " + curAgent.criminalPropensity 
         
        ################################# 
        #data = "Loop through current agents to find Criminal: " + i + "," + 
String.valueOf(randList.get(i)) + "," + "criminal: " + curAgent.criminalPropensity + "," + " at risk?: " + 
curAgent.atRisk  
        #intSize = int(data.length()) 
        #logWriter.write(data,0,intSize) 
        #logWriter.newLine() 
        #data = ""       
         
        # Identifies if any of the agents have criminal propensity and are 'atRisk' and selects the 
        # first one it finds to be the active criminal in this interaction 
        if curAgent.criminalPropensity == true and curAgent.atRisk == true: 
          criminalAgent = curAgent 
          if criminalAgent.timerRepeat == 0: 
            offenderAtNode = true 
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          #else: 
            #print "Agent " + criminalAgent.name + " Offender unable to offend yet" 
          break        #go directly to next if statement (if offenderAtNode == true:) 
           
      #################################DEBUG 
      #data = "Criminal in interaction: " + criminalAgent.name + "," + "timer: " + 
criminalAgent.timerRepeat  
      #intSize = int(data.length()) 
      #logWriter.write(data,0,intSize) 
      #logWriter.newLine() 
      #data = ""      
       
      # Loop that uses formulas to evaluate guardianship and target suitability 
      if offenderAtNode == true: 
        #print "Offender: " + criminalAgent.name + " is at Node and evaluating opportunity" 
         
        # Find out how many civilians are 'at risk' and  
        # which 'at risk' civilian at the active node has the most wealth 
        for i in range (0,numAgentsAtNode): 
          # Get the first agent in the randomly ordered list 
          fullName = randList.get(i) 
          fullStrName = String.valueOf(fullName) 
          partName = fullStrName.substring(1) 
          # Use the agent's name to find the index number of correct Citizen agent 
          index = int(partName) - 1 
          evalAgent = (Citizen)self.citizens.get(index) 
          evalWealth = evalAgent.wealth 
          crimWealth = criminalAgent.Wealth 
          #print "Criminal's Wealth: ", crimWealth 
          #print "Evaluated agent: ", evalAgent.name 
          #print "Evaluated agent's wealth: ", evalWealth 
           
          # Counter for number of criminals at node 
          if evalAgent.criminalPropensity == true: 
            numCrimAtNode = numCrimAtNode + 1 
           
           
          #############################DEBUG 
          #data = "Evaluate Wealth for eval agent: " + evalAgent.name + " has wealth of: " + evalWealth 
+ " CrimAgent: " + criminalAgent.name + "has wealth of: " + crimWealth 
          #data = "Eval agent: " + "," + evalAgent.name + "," + "Wealth: " + "," + evalWealth + " 
CrimAgent: " + criminalAgent.name + "has wealth of: " + crimWealth  
          #intSize = int(data.length()) 
          #logWriter.write(data,0,intSize) 
          #logWriter.newLine() 
          #data = "" 
           
          # Counter for number of agents at node who are 'at risk' of being robbed (only is counted 
          # if there is an offender at the node) 
          if (evalAgent.atRisk == true) and (evalAgent.name != criminalAgent.name): 
            numAgentAtRisk = numAgentAtRisk + 1 
             
          ############################# 
          #data = "Number of agents at risk: " + numAgentAtRisk  
          #intSize = int(data.length()) 
          #logWriter.write(data,0,intSize) 
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          #logWriter.newLine() 
          #data = ""  
             
          # Identify the 'at risk' agent with the most wealth 
          if criminalAgent.name != evalAgent.name:  
            ############################# 
            #data = "Comparing " + criminalAgent.name + " with " + crimWealth + " to evaluated agent: " 
+ evalAgent.name + " with " + evalWealth 
            #intSize = int(data.length()) 
            #logWriter.write(data,0,intSize) 
            #logWriter.newLine() 
            #data = ""  
           
            #print "Comparing " + criminalAgent.name + " with " + crimWealth + " to evaluated agent: " + 
evalAgent.name + " with " + evalWealth 
            if (crimWealth <= evalWealth) and (evalAgent.atRisk == true): 
              if evalWealth > targetWealth: 
                targetWealth = evalWealth 
                #targetAgent = (Citizen)self.citizens.get(index) 
                targetAgent = evalAgent 
                targetSet = true 
                #print "Current Agent with highest wealth ", targetAgent.name 
                 
        ######################## DEBUG 
        #data = "Identity of selected targetAgent: " + "," + targetAgent.name + "," + 
targetAgent.criminalPropensity  
        #intSize = int(data.length()) 
        #logWriter.write(data,0,intSize) 
        #logWriter.newLine() 
        #data = ""       
        #print "Number of agents at risk", numAgentAtRisk 
         
        ######################Print summary 
        #if numCrimAtNode >= 2: 
          #data = "Model Step: " + "," + self.modelStep 
          #intSize = int(data.length()) 
          #logWriter.write(data,0,intSize) 
          #logWriter.newLine() 
          #data = "" 
          #data = "Number Criminals: " + "," + numCrimAtNode + "," + "Number Agents at Risk: " + 
numAgentAtRisk 
          #intSize = int(data.length()) 
          #logWriter.write(data,0,intSize) 
          #logWriter.newLine() 
          #data = "" 
        
        # Decide to Commit Robbery 
        # Calculate SUITABILITY of victim but first check to see if there is a targetAgent found 
        targetExists = false 
        if targetSet == true: 
          #print "Current Agent with highest wealth ", targetAgent.name 
          suitability = targetWealth - crimWealth + 
Random.uniform.nextIntFromTo(self.MIN_SUITABILITY, self.MAX_SUITABILITY) 
          #suitability = targetWealth - crimWealth + self.UNI_PERCEPTION.nextInt() 
          targetExists = true 
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        # Series of checks necessary to evaluate guardianship value calculated earlier 
        # If G < 1 then there is a lack of capable guardians so commitCrime = true 
        # If G = 1 then randomly assign T or F with equal probability 
        # If G >= 2 then too many guardians so commitCrime = false 
        #print "PreCommit Crime Guardianship is: ", guardianship 
        #print "Suitability is: ", suitability 
         
        # Check to make sure a target exists and evaluate suitability and guardianship 
        if targetExists == true and suitability >= 0 and guardianship < 1 and copPresent == false:    
#commit crime 
          # Exchange one units of wealth 
          # Subtract one unit from victim 
          #print "Victim Name ", targetAgent.name 
          #print "Victims current wealth ", targetAgent.wealth 
          targetAgent.wealth = targetAgent.wealth - 1 
          #print "Victims new wealth ", targetAgent.wealth 
          #print "Offender Name: " + criminalAgent.name + "Timer value of: " + 
criminalAgent.timerRepeat 
          #print "Offenders current wealth ", criminalAgent.wealth 
           
          # Add one unit of wealth to criminal 
          criminalAgent.wealth = criminalAgent.wealth + 1 
          #print "Offenders new wealth ", criminalAgent.wealth 
           
          # Start the timer until citizen can offend again 
          criminalAgent.timerRepeat = 1 
           
          # Code to log the offense for that specific place 
          if (currentPlace != None): 
            currentPlace.totalRob = currentPlace.totalRob + 1 
            #print "Robbery at Node: ", currentPlace.STRCL_ 
            #print "Total Robberies at Specific Node  ", currentPlace.totalRob  
            # Log the offense at model level 
            self.totRob = self.totRob + 1 
           
            # Log offending and victimization for agents involved 
            criminalAgent.numOffen = criminalAgent.numOffen + 1 
            targetAgent.numVict = targetAgent.numVict + 1   
             
            ##################################DEBUG 
            #data = "ROBBERY:  CriminalAgent: " + criminalAgent.name + "," + "TargetAgent: " + 
targetAgent.name  
            #intSize = int(data.length()) 
            #logWriter.write(data,0,intSize) 
            #logWriter.newLine() 
            #data = ""  
            
             ##################################DEBUG 
            #data = "WEALTH:  CriminalAgent: " + criminalAgent.wealth + "," + "TargetAgent: " + 
targetAgent.wealth  
            #intSize = int(data.length()) 
            #logWriter.write(data,0,intSize) 
            #logWriter.newLine() 
            #data = "" 
                          
            #if targetAgent.criminalPropensity == true: 
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                ################################## 
                #data = "Model step:  " + self.modelStep 
                #intSize = int(data.length()) 
                #logWriter.write(data,0,intSize) 
                #logWriter.newLine() 
                #data = ""  
                #data = "Target Agent: " + targetAgent.name + "is a criminal" 
                #intSize = int(data.length()) 
                #logWriter.write(data,0,intSize) 
                #logWriter.newLine() 
                #data = ""  
             
          else: 
              print "Unable to log robbery at strnode: " + occupied.strnode + " during tick: " + 
self.modelStep 
                 
        # Random decision to commit robbery 
        elif targetExists == true and suitability >= 0 and guardianship == 1 and copPresent == false:      
          randDecision = guardianship + Random.uniform.nextIntFromTo(self.MIN_SUITABILITY, 
self.MAX_SUITABILITY) 
          #print "Random Decision: ", randDecision   
          if randDecision == 1: 
            break 
          elif randDecision < 1: 
            # Exchange one units of wealth 
            #print "Random: Victim Name ", targetAgent.name 
            #print "Random: Victims current wealth ", targetAgent.wealth 
            targetAgent.wealth = targetAgent.wealth - 1 
            #print "Victims new wealth ", targetAgent.wealth 
            #print "Random: Offender Name " + criminalAgent.name + "Timer value of: " + 
criminalAgent.timerRepeat 
            #print "Random: Offenders current wealth ", criminalAgent.wealth 
            criminalAgent.wealth = criminalAgent.wealth + 1 
            #print "Offenders new wealth ", criminalAgent.wealth 
             
            # Start the timer until citizen can offend again 
            criminalAgent.timerRepeat = 1 
               
            # Log the offense at the specific place                             
            if (currentPlace != None): 
              currentPlace.totalRob = currentPlace.totalRob + 1 
              #print "Robbery at Node: ", currentPlace.STRCL_ 
              #print "Total Robberies at Specific Node  ", currentPlace.totalRob  
              # Log the offense at model level 
              self.totRob = self.totRob + 1 
             
              # Log offending and victimization for agents involved 
              criminalAgent.numOffen = criminalAgent.numOffen + 1 
              targetAgent.numVict = targetAgent.numVict + 1 
               
              ################################## 
              #data = "ROBBERY:  CriminalAgent: " + criminalAgent.name + "," + "TargetAgent: " + 
targetAgent.name  
              #intSize = int(data.length()) 
              #logWriter.write(data,0,intSize) 
              #logWriter.newLine() 
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              #data = ""  
               
              #if targetAgent.criminalPropensity == true: 
                ################################## 
                #data = "Target Agent: " + targetAgent.name + "is a criminal" 
                #intSize = int(data.length()) 
                #logWriter.write(data,0,intSize) 
                #logWriter.newLine() 
                #data = ""  
             
            else: 
              print "Unable to log random decision robbery at strnode: " + occupied.strnode + " during tick: 
" + self.modelStep 
        
      ################################## 
      #data = "FINAL:  CriminalAgent: " + criminalAgent.name + "," + "TargetAgent: " + 
targetAgent.name  
      #intSize = int(data.length()) 
      #logWriter.write(data,0,intSize) 
      #logWriter.newLine()  
           
    # Loop that logs deterrence effect of cops 
    #print "Cop was present and I made it inside for loop" 
    if offenderAtNode == true and copPresent == true and numAgentAtRisk >= 1 and targetWealth > 0: 
      currentPlace.totPrevent = currentPlace.totPrevent + 1 
      self.totDeter = self.totDeter + 1 
      #print "Running total of crimes DETERRED is: ", self.totDeter     
             
    # Log occurrence of potential crime situation - offender and victims present 
    if offenderAtNode == true and numAgentAtRisk >= 1: 
      self.totIntersect = self.totIntersect + 1   
      #print "Running total of potential robbery situations: ", self.totIntersect 
                      
    #else: 
      #print "Only one agent at node or cop at node." 
       
  # Close the writer   
  logWriter.close() 
 
def writeOccupiedNodes(): 
  #print "Inside writeOccupiedNodes from model level" 
   
  away = int(self.SOCIETAL_TIMEAWAY*100) 
   
  # Write out contents of ACTIVE NODES class 
  # CREATE an output file and the buffered writer to write the activity times for each agent to a file 
  currTick = int(self.getTickCount()) 
  #print "Current Tick: ", currTick 
  outFileName = "C:/model_output"+away+"/occupiedSnapshot"+currTick+".csv" 
  #outFileName = "./projects/rob_model/output/occupiedSnapshot"+currTick+".csv" 
  txtWriter = BufferedWriter(FileWriter(outFileName)) 
  columnNames = "StreetNode,NumAgents,Agent1,Agent2,Agent3,Agent4,Agent5" 
  intSize = int(columnNames.length()) 
  txtWriter.write(columnNames,0,intSize) 
  txtWriter.newLine() 
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  # Loop through all the active nodes and write the agents at each node to a file 
  for occupied as ActiveNode in self.activeNodes: 
    #print "Number of agents at node ", occupied.agentList.size() 
    #create a string of each data field to be written to the file 
    tempNode = String.valueOf(occupied.strnode) 
    numAgents = String.valueOf(occupied.agentList.size())   
    temp = tempNode + "," + numAgents 
     
    #print numAgents + " are at node" 
     
    for i in range (0,occupied.agentList.size()): 
      temp = temp + "," 
      temp = temp + String.valueOf(occupied.agentList.get(i)) 
    
    intSize = int(temp.length()) 
    txtWriter.write(temp,0,intSize) 
    txtWriter.newLine() 
   
  #print "Agent:", citizens.getName() 
  #print "Time Traveling: ", citizens.getTimeTraveling() 
  #print "Time at Home: ", citizens.getTimeHome() 
  #print "Time at Main: ", citizens.getTimeMain() 
  #print "Time at Rec1: ", citizens.getTimeRec1() 
  #print "Time at Rec2: ", citizens.getTimeRec2() 
   
  # Close the file of activity path nodes 
  txtWriter.close() 
 
def initCops(): 
  print "Inside init cops" 
  # Randomly assign the cops to a starting location.      
  # Use the Places to get the strnode 
  for i in range (self.COPS):             
    #index =  self.UNI_SELPLACES.nextInt() 
    index = Random.uniform.nextIntFromTo(0, self.NUM_PLACES - 1) 
    #print "Index ", index 
    cop = Cop() 
    cop.setModel(self) 
      
    node = (Place)self.places.get(index) 
    #print "FOUND a place " , node.STRCL_ 
     
    # Log that cop started at this node 
    node.copStart = 1 
    cop.setLocation(node) 
    cop.setStrnode(node.STRCL_) 
    self.cops.add(cop) 
 
def resetAgentsDaily(): 
  #print "Inside resetAgentsDaily" 
   
  for citizen as Citizen in self.citizens: 
    citizen.atActivity = true 
    citizen.atRisk = false 
    citizen.moveStatus = false 
    citizen.position = 0 
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    citizen.timeCounter = 0 
    citizen.timerHome = 0 
    citizen.timerMain = 0 
    citizen.timerRec1 = 0 
    citizen.timerRec2 = 0 
    #print "Counter at reset agent: " + citizen.timerRepeat 
 
def createCitizenTravelOutputFiles(): 
  print "Inside createCitizenTravelOutputFiles" 
   
  away = int(self.SOCIETAL_TIMEAWAY*100) 
   
  # Citizen characteristics 
  #for citizen as Citizen in self.citizens: 
    #agentName = String.valueOf(citizen.name) 
    # Write the fields describing citizen agents 
    # CREATE an output file and the buffered writer to write the activity times for each agent to a file 
    #currTick = int(self.getTickCount()) 
    #outFileName = "C:/model_output"+away+"/citizens"+agentName+".csv" 
    #txtWriter = BufferedWriter(FileWriter(outFileName)) 
    #columnNames = 
"Tick,timerHome,timerMain,timerRec1,timerRec2,totTimeTraveling,totTimeExposed,numVict,numOf
fen,assignHome,assignMain,assignRec1,assignRec2,assignTravel" 
    #intSize = int(columnNames.length()) 
    #txtWriter.write(columnNames,0,intSize) 
    #txtWriter.newLine() 
    #txtWriter.close() 
     
  # Citizen random path nodes 
  #for citizen as Citizen in self.citizens: 
    # Create a string of each data field to be written to the file, two fields at a time 
    #agentName = String.valueOf(citizen.name) 
    # Write the fields describing citizen agents 
    # CREATE an output file and the buffered writer to write the activity times for each agent to a file 
    #currTick = int(self.getTickCount()) 
    #print "Current Tick: ", currTick 
    #outFileName = "C:/model_output"+away+"/path"+agentName+".csv" 
    #txtWriter = BufferedWriter(FileWriter(outFileName, true)) 
    #txtWriter.close() 
     
     
  # Create an output file for model runtime statistics  
  # Average number of agents unemployed, average wealth, robbery rate, exposure rate, etc. 
  currTick = int(self.getTickCount()) 
  outFileName = "C:/model_output"+away+"/citizenChar.csv" 
  dataWriter = BufferedWriter(FileWriter(outFileName)) 
  columnNames = 
"Tick,NumChangeEmp,NumUnemployed,TotWealth,AvgWealth,RobRate,TotVictims,RepeatVict,Tot
Offen,RepeatOffen,NumExp,PercExposed,NumTravel,PercTraveling,numActiveOffenders,numWaitin
gOffenders,cumDeter,cumIntersect,cumRobberies" 
  intSize = int(columnNames.length()) 
  dataWriter.write(columnNames,0,intSize) 
  dataWriter.newLine() 
  dataWriter.close() 
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def writeCitizenTravInfotoFiles(): 
  #print "Inside writeCitizenTravInfotoFiles" 
  away = int(self.SOCIETAL_TIMEAWAY*100) 
   
  # Loop through all citizen agents and write out the specified fields 
  for citizen as Citizen in self.citizens: 
    # Create a string of each data field to be written to the file, two fields at a time 
    agentName = String.valueOf(citizen.name) 
    # Write the fields describing citizen agents 
    # CREATE an output file and the buffered writer to write the activity times for each agent to a file 
    currTick = int(self.getTickCount()) 
    #print "Current Tick: ", currTick 
    outFileName = "C:/model_output"+away+"/citizens"+agentName+".csv" 
    txtWriter = BufferedWriter(FileWriter(outFileName, true)) 
  
    tempName = currTick 
    home = String.valueOf(citizen.timerHome)   
    temp = tempName + "," + home 
    main = String.valueOf(citizen.timerMain) 
    temp = temp + "," + main 
    rec1 = String.valueOf(citizen.timerRec1) 
    temp = temp + "," + rec1 
    rec2 = String.valueOf(citizen.timerRec2) 
    temp = temp + "," + rec2 
    travel = String.valueOf(citizen.totTimeTraveling) 
    temp = temp + "," + travel 
    expose = String.valueOf(citizen.totTimeExposed) 
    temp = temp + "," + expose 
    vict = String.valueOf(citizen.numVict) 
    temp = temp + "," + vict 
    offen = String.valueOf(citizen.numOffen) 
    temp = temp + "," + offen 
    ahome = String.valueOf(citizen.timeHome)   
    temp = temp + "," + ahome 
    amain = String.valueOf(citizen.timeMain) 
    temp = temp + "," + amain 
    arec1 = String.valueOf(citizen.timeRec1) 
    temp = temp + "," + arec1 
    arec2 = String.valueOf(citizen.timeRec2) 
    temp = temp + "," + arec2 
    atravel = String.valueOf(citizen.timeTraveling) 
    temp = temp + "," + atravel 
     
    intSize = int(temp.length()) 
    txtWriter.write(temp,0,intSize) 
    txtWriter.newLine() 
    txtWriter.close() 
 
def writeModelRunData(): 
  print "Inside writeModelRunData" 
  away = int(self.SOCIETAL_TIMEAWAY*100) 
  print away 
   
  # CREATE an output file and the buffered writer to write the activity times for each agent to a file 
  modelRun = 1 
  self.LOG_FILE = "C:/model_output"+away+"/RunDatav"+ modelRun + ".csv" 
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  txtWriter = BufferedWriter(FileWriter(self.LOG_FILE)) 
   
  # Put a model run header 
  header =  "Model run: " + modelRun 
  intSize = int(header.length()) 
  txtWriter.write(header,0,intSize) 
  txtWriter.newLine() 
   
  # Add parameter information 
  seed = Random.getSeed() 
  nxtLine = "Random Number Seed: " + seed 
  intSize = int(nxtLine.length()) 
  txtWriter.write(nxtLine,0,intSize) 
  txtWriter.newLine() 
   
  nxtLine = "Time to reoffend: " + self.REPEAT 
  intSize = int(nxtLine.length()) 
  txtWriter.write(nxtLine,0,intSize) 
  txtWriter.newLine() 
   
  nxtLine = "Wealth: " + "Mean " + self.WEALTH_MEAN + ", Standard Deviation " + 
self.WEALTH_SD 
  intSize = int(nxtLine.length()) 
  txtWriter.write(nxtLine,0,intSize) 
  txtWriter.newLine() 
   
  nxtLine = "Error Term in Suitability: " + "Minimum " + self.MIN_SUITABILITY + ", Maximum " + 
self.MAX_SUITABILITY 
  intSize = int(nxtLine.length()) 
  txtWriter.write(nxtLine,0,intSize) 
  txtWriter.newLine() 
   
  nxtLine = "Error Term in Guardianship: " + "Minimum " + self.MIN_GUARDIANSHIP + ", 
Maximum " + self.MAX_GUARDIANSHIP 
  intSize = int(nxtLine.length()) 
  txtWriter.write(nxtLine,0,intSize) 
  txtWriter.newLine() 
     
  # Close text writer 
  txtWriter.close() 
 
def writeStatistics(): 
  # Writes out final statistics for all agents in one file to provide summary statistics 
  # Aggregate time spent at home, main, rec1, rec2, travel, and exposed. 
  # Assigned time to spend at home, main, rec1, rec2, travel. 
  # Total number of offenses and victimizations. 
  # Create a file  
   
  away = int(self.SOCIETAL_TIMEAWAY*100) 
   
  outFileName = "C:/model_output"+away+"/statistics.csv" 
  txtWriter = BufferedWriter(FileWriter(outFileName)) 
  columnNames = 
"Agent,timerHome,timerMain,timerRec1,timerRec2,totTimeTraveling,totTimeExposed,numVict,num
Offen,assignHome,assignMain,assignRec1,assignRec2,assignTravel,criminal,wealth" 
  intSize = int(columnNames.length()) 

 222



 

  txtWriter.write(columnNames,0,intSize) 
  txtWriter.newLine() 
   
  for citizen as Citizen in self.citizens: 
    # Create a string of each data field to be written to the file, two fields at a time 
    name = String.valueOf(citizen.name) 
    home = String.valueOf(citizen.timerHome)   
    temp = name + "," + home 
    main = String.valueOf(citizen.timerMain) 
    temp = temp + "," + main 
    rec1 = String.valueOf(citizen.timerRec1) 
    temp = temp + "," + rec1 
    rec2 = String.valueOf(citizen.timerRec2) 
    temp = temp + "," + rec2 
    travel = String.valueOf(citizen.totTimeTraveling) 
    temp = temp + "," + travel 
    expose = String.valueOf(citizen.totTimeExposed) 
    temp = temp + "," + expose 
    vict = String.valueOf(citizen.numVict) 
    temp = temp + "," + vict 
    offen = String.valueOf(citizen.numOffen) 
    temp = temp + "," + offen 
    ahome = String.valueOf(citizen.timeHome)   
    temp = temp + "," + ahome 
    amain = String.valueOf(citizen.timeMain) 
    temp = temp + "," + amain 
    arec1 = String.valueOf(citizen.timeRec1) 
    temp = temp + "," + arec1 
    arec2 = String.valueOf(citizen.timeRec2) 
    temp = temp + "," + arec2 
    atravel = String.valueOf(citizen.timeTraveling) 
    temp = temp + "," + atravel 
    acriminal = String.valueOf(citizen.criminalPropensity) 
    temp = temp + "," + acriminal 
    awealth = String.valueOf(citizen.wealth) 
    temp = temp + "," + awealth 
     
    intSize = int(temp.length()) 
    txtWriter.write(temp,0,intSize) 
    txtWriter.newLine() 
     
  # Close the file   
  txtWriter.close() 
 
def dataRecorder(): 
  #print "DATA RECORDER T0 FILE" 
   
  # Writes out model runtime statistics  
  # Average number of agents unemployed, average wealth, robbery rate, exposure rate, etc. 
   
  away = int(self.SOCIETAL_TIMEAWAY*100) 
   
  # Open the output file and the buffered writer to write the information to a file 
  currTick = int(self.getTickCount()) 
  outFileName = "C:/model_output"+away+"/citizenChar.csv" 
  dataWriter = BufferedWriter(FileWriter(outFileName, true)) 
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  # Count number of agents to change employment status  
  numChange = 0 
  #for citizens as Citizen in self.citizens: 
    #if citizens.changeEmpStatus == true: 
      #numChange = numChange + 1 
      #citizens.changeEmpStatus = false 
   
  # Count unemployed agents  
  numUnemployed = 0 
  numEmployed = 0 
  #for agent as Citizen in self.citizens: 
    #if agent.employmentStatus == false: 
      #numUnemployed = numUnemployed + 1 
    #elif agent.employmentStatus == true: 
      #numEmployed = numEmployed + 1   
    #else: 
      #print "Employment status not assigned"   
  #print "Number unemployed is: ", numUnemployed 
  #print "Number employed is: ", numEmployed 
   
  # Calculate average wealth of agents  
  totWealth = 0 
  for citizens as Citizen in self.citizens: 
    totWealth = totWealth + citizens.wealth 
  aveWealth = totWealth / self.AGENTS 
   
  # Calculate the robbery rate  
  robRate = self.totRob / self.AGENTS 
   
  # Count number of agents victimized 
  totNumVict = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.numVict > 0: 
      totNumVict = totNumVict + 1 
       
  # Count number of repeat victims 
  numRepeatVict = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.numVict > 1: 
      numRepeatVict = numRepeatVict + 1 
       
  # Count number of offenders 
  totNumOffenders = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.numOffen > 0: 
      totNumOffenders = totNumOffenders + 1 
       
  # Count number of repeat offenders 
  numRepeatOffen = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.numOffen > 1: 
      numRepeatOffen = numRepeatOffen + 1    
       
  # Calculate the number of citizens at risk of victimization 
  numExp = 0 
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  for citizens as Citizen in self.citizens: 
    if citizens.atRisk: 
      numExp = numExp + 1    
  percExp = ((numExp / self.AGENTS) * 100) 
   
  # Calculate the number of citizens traveling 
  numTravel = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.atActivity == false: 
      numTravel = numTravel + 1    
  percTravel = ((numTravel / self.AGENTS) * 100) 
   
  # Calculate the number of active offenders (able to offend) 
  numActiveOffen = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.criminalPropensity and citizens.atRisk and citizens.timerRepeat == 0: 
      numActiveOffen = numActiveOffen + 1    
       
  # Calculate the number of waiting offenders (not able to offend) 
  numWaitingOffen = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.criminalPropensity and citizens.atRisk and citizens.timerRepeat > 0: 
      numWaitingOffen = numWaitingOffen + 1   
       
           
       
  # Create a string of each data field to be written to the file 
  temp = currTick + "," + numChange + "," + numUnemployed + "," + totWealth 
  temp = temp + "," + aveWealth 
  temp = temp + "," + robRate  
  temp = temp + "," + totNumVict 
  temp = temp + "," + numRepeatVict 
  temp = temp + "," + totNumOffenders 
  temp = temp + "," + numRepeatOffen 
  temp = temp + "," + numExp + ","+ percExp 
  temp = temp + "," + numTravel + ","+ percTravel 
  temp = temp + "," + numActiveOffen 
  temp = temp + "," + numWaitingOffen 
  temp = temp + "," + self.totDeter 
  temp = temp + "," + self.totIntersect 
  temp = temp + "," + self.totRob 
  intSize = int(temp.length()) 
  dataWriter.write(temp,0,intSize)  
  dataWriter.newLine() 
  
  #Close the file 
  dataWriter.close() 
 
def initCitizensRandom(): 
  print "Inside initCitizensRandom" 
   
  # Randomly assign all citizens to a starting location and name them 
  for i in range(1000): 
    p = i + 1 
    index = Random.uniform.nextIntFromTo(0, self.NUM_PLACES - 1) 
    #print "Index ", index 
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    citizen = Citizen() 
    citizen.setModel(self) 
     
    node = (Place)self.places.get(index) 
    #print "Assigned to place ", node.STRCL_ 
    # Log where citizen started random movement 
    node.citiStart = 1 
    citizen.setLocation(node) 
    citizen.setStrnode(node.STRCL_) 
    name = "a" + p 
    citizen.setName(name) 
    self.citizens.add(citizen) 
     
  # Open log file 
  logoutput = self.LOG_FILE 
  logWriter = BufferedWriter(FileWriter(logoutput, true)) 
  logData =  "Log File Name: " + logoutput 
  intSize = int(logData.length()) 
  logWriter.write(logData,0,intSize) 
  logWriter.newLine() 
   
  # Randomly assign criminal propensity to 20% of the Citizens  
  # Assign 200 agents criminal propensity (criminalPropensity = true) 
  for i in range (200):                           
   index = Random.uniform.nextIntFromTo(0, self.AGENTS-1) 
   agent = (Citizen)self.citizens.get(index) 
   #print "Index ", String.valueOf(index) 
   #print "Agent Name: "+ agent.getName()+ " is a criminal" 
   node = agent.getLocation() 
       
   # Condition to check and make sure citizen was not previously selected to have criminal propensity 
   if agent.criminalPropensity == false: 
    agent.criminalPropensity = true 
    # Log where criminal started random movement 
    node.crimStart = 1 
   else: 
    while agent.criminalPropensity == true: 
      index = Random.uniform.nextIntFromTo(0, self.AGENTS-1) 
      agent = (Citizen)self.citizens.get(index) 
      node = agent.getLocation() 
    # Log where criminal started random movement 
    node.crimStart = 1 
    agent.criminalPropensity = true 
   #print "Agent Name: "+ agent.getName()+ " is a criminal" 
      
  ###Randomly assign time to stay at home to each agent 
  ## Five experimental conditions: 
  #  30% timeAway = 70% of time at home (1008 minutes) 
  #  40% timeAway = 60% of time at home 
  #  50% timeAway = 50% of time at home 
  #  60% timeAway = 40% of time at home 
  #  70% timeAway = 30% of time at home 
  # Create a new random number generator to create a normal distribution  
  # with a mean of 70 and SD of 10.   
 
  # CREATE an output file of times at each node and traveling 
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  # First create the buffered writer to write the activity times for each agent to a file 
  away = int(self.SOCIETAL_TIMEAWAY*100) 
  outFileName = "C:/model_output" +away+"/timeAtActivityNodes.csv" 
  txtWriter = BufferedWriter(FileWriter(outFileName)) 
  columnNames = "Agent,Home" 
  intSize = int(columnNames.length()) 
  txtWriter.write(columnNames,0,intSize) 
  txtWriter.newLine() 
   
  # Uniform distribution to assign amount of time to spend at home 
  # Mean is the society mean and SD is ten percent of the mean 
  societyPercHome = 1 - self.SOCIETAL_TIMEAWAY 
  standardDeviation = (self.MODEL_DAY * societyPercHome)*.10 
  meanTimeHome = self.MODEL_DAY * societyPercHome 
   
  # Create a normal distribution with specified mean and sd 
  Random.createNormal(meanTimeHome, standardDeviation) 
   
  # Allocate the time to remain at home  
  for citizens as Citizen in self.citizens:   
   
    # Initialize nodeList array 
    citizens.nodeList = ArrayList() 
     
    # Get a new random number for each agent 
    timeAtHome = Random.normal.nextInt() 
    #print "Random time at home: ", totTimeAtHome 
   
    # While loop to check for size of timeAtHome and reset timeAtHome until  
    # it is less than total time in day. 
    while timeAtHome > self.MODEL_DAY:  
      timeAtHome =  Random.normal.nextInt() 
    
    # Assign variable value to field in citizen 
    citizens.timeHome = timeAtHome 
     
    # Create a string of each data field to be written to the file 
    tempName = String.valueOf(citizens.getName()) 
    tempHome = String.valueOf(citizens.getTimeHome()) 
    values = (tempName + "," + tempHome)  
    intSize = int(values.length()) 
    txtWriter.write(values,0,intSize) 
    txtWriter.newLine() 
    
    #print "Agent:", citizens.getName() 
    #print "Time at Home: ", citizens.getTimeHome() 
      
  # Close the file of time at home 
  txtWriter.close() 
    
  # Create new random normal distribution to ASSIGN WEALTH 
  Random.createNormal(self.WEALTH_MEAN,self.WEALTH_SD) 
   
  # ASSIGN wealth to agents 
  for citizens as Citizen in self.citizens: 
    #Get a new random number for each agent 
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    citizens.wealth = Random.normal.nextInt() 
    #print "Name: ", citizens.getName() + " has been assigned Wealth of: "+ citizens.getWealth() 
     
  # Write out initial values for each agent 
  # Header line 
  logData = "Name, Criminality, Wealth, TimeHome, StartNode" 
  intSize = int(logData.length()) 
  logWriter.write(logData,0,intSize) 
  logWriter.newLine() 
  logData = "" 
  for citizens as Citizen in self.citizens: 
    # Write values 
    logData = citizens.getName() + "," + citizens.getCriminalPropensity() + "," + citizens.getWealth() + 
"," + citizens.getTimeHome() + "," + citizens.getStrnode() 
    intSize = int(logData.length()) 
    logWriter.write(logData,0,intSize) 
    logWriter.newLine() 
    logData = "" 
     
 #Close the log file   
  logWriter.close() 
 
def writeFinalAgents(): 
  print "Writing Final Agents" 
  away = int(self.SOCIETAL_TIMEAWAY*100) 
  baseFilePath = "C:/model_output"+away+"/" 
  self.writeAgents(self.places, baseFilePath + "strnodes"+away+".shp") 
 
def writeCitizenInfoPaths(): 
  #print "Inside writeCitizenTravInfotoFiles" 
  away = int(self.SOCIETAL_TIMEAWAY*100) 
   
  # Loop through all citizen agents and write out the specified fields 
  for citizen as Citizen in self.citizens: 
    # Create a string of each data field to be written to the file, two fields at a time 
    agentName = String.valueOf(citizen.name) 
    # Write the fields describing citizen agents 
    # CREATE an output file and the buffered writer to write the activity times for each agent to a file 
    currTick = int(self.getTickCount()) 
    #print "Current Tick: ", currTick 
    outFileName = "C:/model_output"+away+"/path"+agentName+".csv" 
    txtWriter = BufferedWriter(FileWriter(outFileName, true)) 
    node = citizen.strnode 
    temp = node + "," + currTick 
    intSize = int(temp.length()) 
    txtWriter.write(temp,0,intSize) 
    txtWriter.newLine() 
       
    txtWriter.close() 
 
Place Actions 
(none) 
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Citizen Actions 
 
def step(): 
Java imports 
java.lang.Object 
java.lang.Double 
java.lang.Number 
java.lang.Integer 
 
Code 
  #print "INSIDE CITIZEN STEP" 
   
  # Every citizen agent evaluates their move status, if they are moving they are added to the active 
nodes 
  # class and are part of the decision to commit a crime.  Then the values (atRisk, atActivity, moving, 
and  
  # position are set for the next turn.  
  isActNodePosition = 0 
  isActNode = 0 
   
  # Each agent stays at home a designated amount of time and then moves with each model tick 
  # Increment timerHome value and set moveStatus 
  if self.timerHome < self.timeHome: 
    self.timerHome = self.timerHome + 1 
     
    # Add the new node to the agent's nodeList field to track  
    #self.nodeList.add(String.valueOf(self.strnode)) 
  else: 
    self.moveStatus = true 
    self.atRisk = true 
    self.totTimeExposed = self.totTimeExposed + 1 
    places = self.model.getPlaces() 
     
    #if self.name == "a6" or  self.name == "a7": 
     #print "Agent: ", self.name 
     #print "Old node: ", self.strnode 
     
    # Identify number of neighbor nodes, generate a random number and use that to pick the next node 
    numNeighs = self.location.myNeighbors.size()   
    #print "Number of neighbors is: ", numNeighs 
     
    # Generate a value 
    index = Random.uniform.nextIntFromTo(0,numNeighs-1) 
    #print "Index picked: ",index 
         
    #for node in range (0, numNeighs): 
      #print "Neighbor " + node + " is :" + String.valueOf(self.location.getMyNeighbors().get(node))+ " 
at position " + index 
   
    # Get the new node and assign it to strnode field  
    newNode = self.location.getMyNeighbors().get(index) 
    self.strnode = int(String.valueOf(newNode)) 
     
    # Add the new node to the agent's nodeList field to track  
    #self.nodeList.add(newNode) 
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    #print self.name + " Move to " + "adjacent strnode: ", self.strnode     
    #print self.name + " Move to " + "adjacent strnode: ", self.nodeList.get(0) 
     
    # Do the assignment directly of the strnode to a place 
    nodeFL = Float(self.strnode) 
    newLocation = (Place)self.model.placeMap.get(nodeFL) 
    self.location = newLocation 
    #if self.name == "a6" or  self.name == "a7": 
      #print "New location: ", self.location.STRCL_ 
   
    # ADD an agent to the ActiveNode class.  If there is an ActiveNode agent  
    # that exists with a particular strnode value then add the name of the  
    # citizen agent to the agentList (an arrayList).  If there is no ActiveNode  
    # with the same value as the currentNode then add a new ActiveNode agent and  
    # populate the strnode number with the currentNode and add the name of the  
    # citizen agent to the agentList (an arrayList).   
       
    #print "There are " + self.model.activeNodes.size() + "active nodes" 
     
    # Test to see if this is the first ActiveNode 
    nodeisEqual = false 
    if self.model.activeNodes.size() <> 0: 
      for occupied as ActiveNode in self.model.activeNodes: 
        if self.strnode == occupied.strnode: 
          occupied.agentList.add(self.name) 
          nodeisEqual = true  
          #print "Found an existing active node" 
      
    if self.model.activeNodes.size() == 0 or nodeisEqual == false: 
      newAgent = ActiveNode() 
      newAgent.setModel(self.model) 
      newAgent.strnode = self.strnode 
      newAgent.agentList = ArrayList() 
      newAgent.agentList.add(self.name) 
      self.model.activeNodes.add(newAgent) 
      #print "First agent at node: " + newAgent.strnode 
      #print "ArrayList Value = ", newAgent.agentList.get(0) 
          
    #print "Current Node as Integer: ", Integer.toString(self.location) 
 
def payCitizens(): 
    #print "Inside Pay Citizens" 
  # Each employed citizen gets paid at designated intervals 
   
  if self.employmentStatus == true: 
    #print "Agent Name: ",self.name 
    #print "Agent Old Wealth: ", self.wealth 
     
    self.wealth = self.wealth + 5 
     
    #print "Agent New Wealth: ", self.wealth 
 
 
Active Node Actions 
(none) 
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Cop Actions 
 
def step(): 
Java imports 
java.lang.Object 
java.lang.String 
uchicago.src.sim.util.SimUtilities 
java.util.Arrays 
java.util.List 
 
Code 
  # Every cop moves with each model tick 
  places = self.model.getPlaces() 
  #print "Old node: ", self.strnode 
   
  # Shuffle the adjacent nodes of the Place where the cop is located    
  # Identify number of neighbor nodes 
  numNeighs = self.location.myNeighbors.size()   
  maxValue = numNeighs-1 
     
  # Generate a value 
  index = Random.uniform.nextIntFromTo(0,numNeighs -1) 
     
  #print "Move to index: " + index 
     
  # Verification code 
  #for node in range (0, numNeighs): 
    #print "Neighbor " + node + " is :" + String.valueOf(self.location.getMyNeighbors().get(node)) 
   
  # Get the new node and assign it to strnode field  
  # (can't just use index because index and strnode do not correspond) 
  newNode = self.location.getMyNeighbors().get(index) 
  self.strnode = int(String.valueOf(newNode)) 
   
  #print "New strnode: ", self.strnode    
   
  # Do the assignment directly of the strnode to a place 
  nodeFL = Float(self.strnode) 
  newLocation = (Place)self.model.placeMap.get(nodeFL) 
  self.location = newLocation 
  #print "New location: ", self.location.STRCL_ 
 
 
Sequence Graph 
 
totalRobberies 
return self.totRob 
 
totalDeterred 
return self.totDeter 
 
totalIntersect 
return self.totIntersect 
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Appendix 4:  Street Robbery Model:  Temporal  Version Code 

Street Robbery Temporal Actions 
 
def initAgents(): 
Java imports 
uchicago.src.simbuilder.util.MessageDisplay 
java.lang.String 
anl.repast.gis.data.dbf.DBFReader 
anl.repast.gis.data.dbf.JDBField 
java.Array 
java.util.Vector 
java.util.List 
java.lang.Object 
java.util.ArrayList 
uchicago.src.sim.util.Random 
java.io.PrintWriter 
 
Code 
  print "Inside initAgents" 
  if (self.messageDisplay == None): 
    self.messageDisplay = MessageDisplay() 
    self.messageDisplay.display("Street Robbery Messages") 
  else: 
    self.messageDisplay.clear() 
     
  # Explicitly set the random number generator seed and initialize Random distributions  
  # Create RNG and set seed                  
  Random.setSeed(100) 
  Random.createUniform() 
   
  # Create log file for model run 
  self.writeModelRunData() 
    
  # Initialize model level variables 
  self.initModel() 
   
  # Process the street nodes for use in the model 
  self.setupPlaces() 
   
  # Initialize the agents 
  self.initCitizensRandom() 
     
  # Create output files for analysis 
  self.createCitizenTravelOutputFiles() 
   
  # Check to make sure values in shapefile fields are zero 
  for node as Place in self.places: 
    if node.totalRob > 0 or node.totalVisit > 0 or node.totPrevent > 0: 
      print "WARNING:  Shapefile had non-zero values in counter fields" 
   
  # Initialize the cop agents 
  self.initCops() 
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  print "Leaving initAgents" 
 
def updateDisplay(): 
  #print "Inside updateDisplay" 
  self.updateGISDisplay() 
 
def writeAgents(): 
  #print "Inside writeAgents-Model level" 
  baseFilePath = ".\\projects\\rob_model\\shapefiles\\" 
  self.writeAgents(self.places, baseFilePath + "strnodes2.shp") 
 
def setupPlaces(): 
Java imports 
ava.io.BufferedReader 
java.io.FileReader 
java.util.StringTokenizer 
 
Code 
  print "Inside setupPlaces" 
   
  # Put Places in a HashMap where the key is the strnode-id  
  # Creates the map 
  self.placeMap = LinkedHashMap() 
   
  # Add the places to the hashmap  
  for currentPlace as Place in self.places:  
    specNode = "0" 
    specNode = String.valueOf(currentPlace.getSTRCL_()) 
    specNodeNew = Float(specNode) 
    self.placeMap.put(specNodeNew, currentPlace) 
    #print "PLACE node info: ", specNodeNew 
    currentPlace.setMyNeighbors(ArrayList()) 
  
  # Read the neighbors file and set each nodes neighbors. 
  # The neighbors files lists the active node and the neighboring 
  # nodes of that active node.  The map created above is used to 
  # get the neighbors for each active node. 
   
  fileName = "./projects/rob_model/neighborFiles/nodenghbrs.csv" 
  reader = BufferedReader(FileReader(fileName)) 
  line = reader.readLine() 
     
  while(line): 
    tokenizer = StringTokenizer(line, ",") 
    if(tokenizer.hasMoreTokens()): 
      activeNode = tokenizer.nextToken().trim() 
      actNodeObject = Float(activeNode) 
      currentPlace = (Place)self.placeMap.get(actNodeObject)    
      #print "Current variable ", activeNode #prints out the variable strcl_ 
      #print "Current node from place object:  ", currentPlace.getSTRCL_() 
      nghs = currentPlace.getMyNeighbors() 
      while (tokenizer.hasMoreTokens()): 
        ngh = tokenizer.nextToken() 
        currentPlace.myNeighbors.add(ngh) 
        #print "Neighbor node ", ngh 
    # Read the line 
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    line = reader.readLine() 
  # Close the reader   
  reader.close() 
   
  #This code enables verification that the myNeighbors array has the correct values 
  #for currentPlace as Place in self.places: 
    #print "Streetnode: ", node.strcl_ 
    #if currentPlace.getMyNeighbors() == None: 
      #print "Neighbor arraylist is empty for node " + currentPlace.strcl_ 
    #else: 
      #print "Neighbor Nodes", currentPlace.getMyNeighbors().size() 
 
 
def showMessage(String message): 
Java imports 
javax.swing.JOptionPane 
 
Code 
  print "Inside showMessage" 
  JOptionPane.showMessageDialog((JComponent)None, message) 
 
 
def incrementModel(): 
  #print "Inside incrementModel" 
   
   # Increment the modelStep field 
  #if self.modelStep < self.MODEL_DAY:     #1,440 
  #if self.modelStep < self.MODEL_WEEK:      
  if self.modelStep <  self.MODEL_YEAR:       #525,600 
  #if self.modelStep < 40320:      # month is 40,320         
    self.modelStep = self.modelStep + 1 
  else: 
    self.writeFinalAgents() 
    for node as Place in self.places: 
      node.totalVisit = 0 
      node.totalRob = 0 
      node.totPrevent = 0 
      node.copStart = 0 
      node.citiStart = 0 
      node.crimStart = 0 
    self.writeAgents() 
    self.writeStatistics() 
    self.dataRecorder() 
    print "YEAR OVER" 
    self.stop() 
  #print "MODEL STEP = ", self.modelStep 
     
  # ActiveNode - call a method to write out a file of the nodes and their  
  # associated agents at each step 
  #print "Called writeOccupiedNodes" 
  #self.writeOccupiedNodes() 
   
  # Write out citizen position 
  #self.writeCitizenInfoPaths() 
   
  # Make the decision to commit a crime 
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  # print "Total Active Nodes: ", self.activeNodes.size() 
  self.decideRob()       
   
  # Clear the agents from the activeNodes class   
  self.activeNodes.clear() 
  #print "Total active nodes after clear: ", self.activeNodes.size() 
   
   # Increment the timers for agents with criminal propensity 
  for citizen as Citizen in self.citizens: 
    if citizen.criminalPropensity == true: 
      if citizen.timerRepeat > 0 and citizen.timerRepeat < self.REPEAT: 
        citizen.timerRepeat = citizen.timerRepeat + 1 
        #print "Agent " + citizen.name + " repeat timer incremented to: " + citizen.timerRepeat 
      elif citizen.timerRepeat == self.REPEAT: 
        #print "REPEAT value: " + self.REPEAT 
        citizen.timerRepeat = 0 
        #print "Agent " + citizen.name + " timer reset to 0: " + citizen.timerRepeat 
      else: 
        citizen.timerRepeat = citizen.timerRepeat 
     
  #print "TOTAL Robberies in society: ", self.totRob 
 
 
def initModel(): 
Java Imports 
cern.jet.random.* 
cern.jet.random.engine.MersenneTwister 
uchicago.src.sim.util.Random 
cern.jet.random.Normal 
 
Code 
  print "Inside initModel" 
   
  # Open log file 
  logoutput = self.LOG_FILE 
  logWriter = BufferedWriter(FileWriter(logoutput, true))   
   
  # Set static field values for model run 
  self.modelStep = 0 
  self.MODEL_HOUR = 60  #360 steps per hour, Travel occurs at 6 steps per minute 
  self.MODEL_DAY = (24 * self.MODEL_HOUR) 
  self.MODEL_WEEK = (7 * self.MODEL_DAY) 
  self.MODEL_YEAR = (365 * self.MODEL_DAY) 
   
 # Print to file to document model run 
  temp =  self.SOCIETAL_TIMEAWAY *100 
  logData = "Experimental condition: " + temp + "% time spent away from home" + "::::" + "Number 
of Agents in model " + self.AGENTS  
  intSize = int(logData.length()) 
  logWriter.write(logData,0,intSize) 
  logWriter.newLine() 
  logData = "" 
  logData = "Number of cops: " + self.COPS 
  intSize = int(logData.length()) 
  logWriter.write(logData,0,intSize) 
  logWriter.newLine() 
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  logData = "" 
   
  #Close the log file   
  logWriter.close() 
 
 
def decideRob(): 
Java imports 
java.lang.Object 
java.lang.String 
uchicago.src.sim.util.SimUtilities 
java.util.Arrays 
java.util.List 
 
Code 
  #print "Inside decideRob" 
   
  # Open log file 
  logoutput = self.LOG_FILE 
  logWriter = BufferedWriter(FileWriter(logoutput, true)) 
  #data = "Inside Decide Rob Action" 
  #intSize = int(data.length()) 
  #logWriter.write(data,0,intSize) 
  #logWriter.newLine() 
  #data = "" 
   
  # Check each ActiveNode for list of agents 
  # Logical error check 
  if self.activeNodes.size() > self.AGENTS: 
    data = "Too Many Active Nodes during step: " + self.modelStep 
    intSize = int(data.length()) 
    logWriter.write(data,0,intSize) 
    logWriter.newLine() 
    data = "" 
 
  # Loop through the nodes with citizens and make the decision to commit a robbery 
  for occupied as ActiveNode in self.activeNodes: 
    # Check agents at each of the active nodes  
    #print "The Node being evaluated is: ", occupied.strnode 
     
    #################   
    #data = "Street Node " + occupied.strnode 
    #intSize = int(data.length()) 
    #logWriter.write(data,0,intSize) 
    #logWriter.newLine() 
    #data = "" 
     
    # Initialize variables in action 
    numAgentsAtNode = occupied.getAgentList().size() 
    #data = "Number of Agents at Node (from size of agent list field): " + numAgentsAtNode 
    #intSize = int(data.length()) 
    #logWriter.write(data,0,intSize) 
    #logWriter.newLine() 
    #data = "" 
     
    numCrimAtNode = 0 
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    numAgentAtRisk = 0 
    numCriminals = 0 
    offenderAtNode = false 
    curStreetNode = (Place)self.places.get(0) 
    #print "The default curStreetNode: ", curStreetNode.STRCL_ 
    curAgent = (Citizen)self.citizens.get(0) 
    targetAgent = (Citizen)self.citizens.get(0)    #used to initialize target variable 
    criminalAgent = (Citizen)self.citizens.get(0)  
    copPresent = false 
    robbery = true 
    crimWealth = 0 
    evalWealth = 0 
    targetWealth = 0 
    suitability = 0 
    targetSet = false 
     
    #################   
    #data = "START VALUES: Criminal Agent-- " + criminalAgent.name + "Current Agent-- " + 
curAgent.name + "Target agent- " + targetAgent.name 
    #intSize = int(data.length()) 
    #logWriter.write(data,0,intSize) 
    #logWriter.newLine() 
    #data = "" 
     
    # Log presence of agents on street node 
    # Retrieving the place by converting to a float object 
    occupiedObject = Float(occupied.strnode) 
    currentPlace = (Place)self.placeMap.get(occupiedObject) 
    #print "NEW Place node:", currentPlace.getSTRCL_() 
    #print "Number of agents at Node: ", numAgentsAtNode 
    #self.messageDisplay.addAlert("There are "+ numAgentsAtNode + " citizens at " + 
occupied.strnode) 
     
    # Log fact that agents visited a node in the shapefile 
    if (currentPlace != None): 
      currentPlace.totalVisit = currentPlace.totalVisit + numAgentsAtNode 
      #currentPlace.visits = currentPlace.visits + numAgentsAtNode 
      #print "NEW Number of Visits: ", currentPlace.totalVisit    
    else: 
      print "Unable to log visit at strnode: " + occupied.strnode + " during tick: " + self.modelStep 
       
    #Loop through all the cops to find out if there is a cop at node 
    for copAtNode as Cop in self.cops: 
      copPlace = copAtNode.getLocation() 
      #When you find a cop at the place break out of loop and calculate variable 
      if copPlace == currentPlace: 
        #print "Cop at node: ", copAtNode.location.STRCL_  
        copPresent = true 
        break 
      else: 
        copPresent = false 
         
    #############################DEBUG 
    #if copPresent == true: 
      #data = "Cop is at node! "  
      #intSize = int(data.length()) 
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      #logWriter.write(data,0,intSize) 
      #logWriter.newLine() 
      #data = ""     
    #if copPresent == true: 
      #print "Cop! at node "+ occupied.strnode 
         
    #Only evaluate nodes that have more than one citizen and there is no cop present   
    if numAgentsAtNode > 1:                #Change to > 1 for final testing 
     
      #################  DEBUG 
      #data = "Street Node " + occupied.strnode 
      #intSize = int(data.length()) 
      #logWriter.write(data,0,intSize) 
      #logWriter.newLine() 
      #data = "" 
      ############################# 
      #data = "Number of Agents at Node is: " + numAgentsAtNode 
      #intSize = int(data.length()) 
      #logWriter.write(data,0,intSize) 
      #logWriter.newLine() 
      #data = "" 
               
      # Calculate the level of GUARDIANSHIP 
      guardianship = (numAgentsAtNode - 2) + 
Random.uniform.nextIntFromTo(self.MIN_GUARDIANSHIP,self.MAX_GUARDIANSHIP) 
      #print "Guardianship is: ", guardianship 
      
      # Outside loop that checks each of the agents at a particular node using the citizen name 
      # Use code to randomly shuffle the agents at a node so they have an equal chance of being  
      # selected first and thus are not always evaluated in the same order. 
       
      #for position in range(0, numAgentsAtNode): 
        #print "Original Order: Node--" + occupied.strnode + " Position " + position + ", "+ 
String.valueOf(occupied.getAgentList().get(position)) 
            
      # Create a distribution using number of agents at node  
      maxValue = numAgentsAtNode-1 
             
      # Create arraylist variables 
      # Array to hold randomly shuffled agents 
      randList = ArrayList() 
      # List of array positions that have been used 
      strList = ArrayList() 
      foundIt = false 
      #print numAgentsAtNode 
      # Outside while to create a new list of all the agents at the node in a new order 
 
      while randList.size() < numAgentsAtNode: 
        # Generate a random number 
        foundIt = false 
        #index = shuffleDist.nextInt() 
        index = Random.uniform.nextIntFromTo(0,numAgentsAtNode-1) 
        indexStr = String.valueOf(index) 
        #print "Original index generated is: " + index 
         
        ############################# 
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        #data = "Index value: " + index 
        #intSize = int(data.length()) 
        #logWriter.write(data,0,intSize) 
        #logwriter.newLine() 
        #data = ""  
         
        # If this is the first agent generated then add it to the new randList array, otherwise check to see if  
        # the index has already been used 
        if strList.size() >= 1: 
          for p in range (0, strList.size()): 
            if String.valueOf(strList.get(p)) == indexStr: 
              foundIt = true 
              break 
          
        if foundIt == false:  
          agent = occupied.AgentList.get(index) 
          randList.add(agent) 
          strList.add(indexStr) 
          #print "randList size is ", randList.size() 
          #print "New size of list of index numbers is " + strList.size() 
       
      # Code to verify new order     
      #for position in range(0, numAgentsAtNode): 
        #print "New order at Node: " + occupied.strnode + " position " + position + ", " + 
String.valueOf(randList.get(position)) 
 
      for i in range (0,numAgentsAtNode): 
        #Bunch of code that get the agent name (e.g. a1) and then strips off the first character 
        #and pulls the correct Citizen agent using the agent name  
        fullName = randList.get(i) 
        fullStrName = String.valueOf(fullName) 
        partName = fullStrName.substring(1) 
        #print "Agent: " + partname + " in agentList" 
        # Use the agent's name to find the index number of correct Citizen agent 
        index = int(partName) - 1 
        curAgent = (Citizen)self.citizens.get(index) 
        #print "Citizen in agentList: ", curAgent.name 
        #print "Current agent: " + curAgent.name + " is criminal? " + curAgent.criminalPropensity 
         
        ################################# 
        #data = "Loop through current agents to find Criminal: " + i + "," + 
String.valueOf(randList.get(i)) + "," + "criminal: " + curAgent.criminalPropensity + "," + " at risk?: " + 
curAgent.atRisk  
        #intSize = int(data.length()) 
        #logWriter.write(data,0,intSize) 
        #logWriter.newLine() 
        #data = ""       
                 
        # Identifies if any of the agents have criminal propensity and are 'atRisk' and selects the 
        # first one it finds to be the active criminal in this interaction 
        if curAgent.criminalPropensity == true and curAgent.atRisk == true: 
          criminalAgent = curAgent 
          if criminalAgent.timerRepeat == 0: 
            offenderAtNode = true 
          #else: 
            #print "Agent " + criminalAgent.name + " Offender unable to offend yet" 
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          break        #go directly to next if statement (if offenderAtNode == true:) 
           
      #################################DEBUG 
      #data = "Criminal in interaction: " + criminalAgent.name + "," + "timer: " + 
criminalAgent.timerRepeat  
      #intSize = int(data.length()) 
      #logWriter.write(data,0,intSize) 
      #logWriter.newLine() 
      #data = ""      
       
       
      # Loop that uses formulas to evaluate guardianship and target suitability 
      if offenderAtNode == true: 
        #print "Offender: " + criminalAgent.name + " is at Node and evaluating opportunity" 
         
        # Find out how many civilians are 'at risk' and  
        # which 'at risk' civilian at the active node has the most wealth 
        for i in range (0,numAgentsAtNode): 
          # Get the first agent in the randomly ordered list 
          fullName = randList.get(i) 
          fullStrName = String.valueOf(fullName) 
          partName = fullStrName.substring(1) 
          # Use the agent's name to find the index number of correct Citizen agent 
          index = int(partName) - 1 
          evalAgent = (Citizen)self.citizens.get(index) 
          evalWealth = evalAgent.wealth 
          crimWealth = criminalAgent.Wealth 
          #print "Criminal's Wealth: ", crimWealth 
          #print "Evaluated agent: ", evalAgent.name 
          #print "Evaluated agent's wealth: ", evalWealth 
           
          # Counter for number of criminals at node 
          if evalAgent.criminalPropensity == true: 
            numCrimAtNode = numCrimAtNode + 1 
           
           
          #############################DEBUG 
          #data = "Evaluate Wealth for eval agent: " + evalAgent.name + " has wealth of: " + evalWealth 
+ " CrimAgent: " + criminalAgent.name + "has wealth of: " + crimWealth 
          #data = "Eval agent: " + "," + evalAgent.name + "," + "Wealth: " + "," + evalWealth + " 
CrimAgent: " + criminalAgent.name + "has wealth of: " + crimWealth  
          #intSize = int(data.length()) 
          #logWriter.write(data,0,intSize) 
          #logWriter.newLine() 
          #data = "" 
           
          # Counter for number of agents at node who are 'at risk' of being robbed (only is counted 
          # if there is an offender at the node) 
          if (evalAgent.atRisk == true) and (evalAgent.name != criminalAgent.name): 
            numAgentAtRisk = numAgentAtRisk + 1 
             
          ############################# 
          #data = "Number of agents at risk: " + numAgentAtRisk  
          #intSize = int(data.length()) 
          #logWriter.write(data,0,intSize) 
          #logWriter.newLine() 
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          #data = ""  
             
          # Identify the 'at risk' agent with the most wealth 
          if criminalAgent.name != evalAgent.name:  
            ############################# 
            #data = "Comparing " + criminalAgent.name + " with " + crimWealth + " to evaluated agent: " 
+ evalAgent.name + " with " + evalWealth 
            #intSize = int(data.length()) 
            #logWriter.write(data,0,intSize) 
            #logWriter.newLine() 
            #data = ""  
           
            #print "Comparing " + criminalAgent.name + " with " + crimWealth + " to evaluated agent: " + 
evalAgent.name + " with " + evalWealth 
            if (crimWealth <= evalWealth) and (evalAgent.atRisk == true): 
              if evalWealth > targetWealth: 
                targetWealth = evalWealth 
                #targetAgent = (Citizen)self.citizens.get(index) 
                targetAgent = evalAgent 
                targetSet = true 
                #print "Current Agent with highest wealth ," + targetAgent.name 
         
        ######################## DEBUG 
        #data = "Identity of selected targetAgent: " + "," + targetAgent.name + "," + 
targetAgent.criminalPropensity  
        #intSize = int(data.length()) 
        #logWriter.write(data,0,intSize) 
        #logWriter.newLine() 
        #data = ""       
        #print "Number of agents at risk", numAgentAtRisk 
         
        ######################Print summary 
        #if numCrimAtNode >= 2: 
          #self.multiCriminalsAtNode = self.multiCriminalsAtNode + 1 
          #data = "Two or more criminals presentat node during Model Step: " + "," + self.modelStep 
          #intSize = int(data.length()) 
          #logWriter.write(data,0,intSize) 
          #logWriter.newLine() 
          #data = "" 
          #data = "Number Criminals: " + "," + numCrimAtNode + "," + "Number Agents at Risk: " + 
numAgentAtRisk 
          #intSize = int(data.length()) 
          #logWriter.write(data,0,intSize) 
          #logWriter.newLine() 
          #data = "" 
                   
        # Decide to Commit Robbery 
        # Calculate SUITABILITY of victim but first check to see if there is a targetAgent found 
        targetExists = false 
        if targetSet == true: 
          #print "Current Agent with highest wealth ", targetAgent.name 
          suitability = targetWealth - crimWealth + 
Random.uniform.nextIntFromTo(self.MIN_SUITABILITY, self.MAX_SUITABILITY) 
          targetExists = true 
             
        # Series of checks necessary to evaluate guardianship value calculated earlier 
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        # If G < 1 then there is a lack of capable guardians so commitCrime = true 
        # If G = 1 then randomly assign T or F with equal probability 
        # If G >= 2 then too many guardians so commitCrime = false 
        #print "PreCommit Crime Guardianship is: ", guardianship 
        #print "Suitability is: ", suitability 
         
        # Check to make sure a target exists and evaluate suitability and guardianship 
        if targetExists == true and suitability >= 0 and guardianship < 1 and copPresent == false:    
#commit crime 
          # Exchange one units of wealth 
          # Subtract one unit from victim 
          #print "Victim Name ", targetAgent.name 
          #print "Victims current wealth ", targetAgent.wealth 
          targetAgent.wealth = targetAgent.wealth - 1 
          #print "Victims new wealth ", targetAgent.wealth 
          #print "Offender Name: " + criminalAgent.name + "Timer value of: " + 
criminalAgent.timerRepeat 
          #print "Offenders current wealth ", criminalAgent.wealth 
           
          # Add one unit of wealth to criminal 
          criminalAgent.wealth = criminalAgent.wealth + 1 
          #print "Offenders new wealth ", criminalAgent.wealth 
           
          # Start the timer until citizen can offend again 
          criminalAgent.timerRepeat = 1 
           
          # Code to log the offense for that specific place 
          if (currentPlace != None): 
            currentPlace.totalRob = currentPlace.totalRob + 1 
            #print "Robbery at Node: ", currentPlace.STRCL_ 
            #print "Total Robberies at Specific Node  ", currentPlace.totalRob  
            # Log the offense at model level 
            self.totRob = self.totRob + 1 
           
            # Log offending and victimization for agents involved 
            criminalAgent.numOffen = criminalAgent.numOffen + 1 
            targetAgent.numVict = targetAgent.numVict + 1   
             
            ##################################DEBUG 
            #data = "ROBBERY:  CriminalAgent: " + criminalAgent.name + "," + "TargetAgent: " + 
targetAgent.name  
            #intSize = int(data.length()) 
            #logWriter.write(data,0,intSize) 
            #logWriter.newLine() 
            #data = ""  
            
            ##################################DEBUG 
            #data = "WEALTH:  CriminalAgent: " + criminalAgent.wealth + "," + "TargetAgent: " + 
targetAgent.wealth  
            #intSize = int(data.length()) 
            #logWriter.write(data,0,intSize) 
            #logWriter.newLine() 
            #data = "" 
                          
            if targetAgent.criminalPropensity == true: 
                ################################## 

 242



 

                data = "Model step:  " + self.modelStep 
                intSize = int(data.length()) 
                logWriter.write(data,0,intSize) 
                logWriter.newLine() 
                data = ""  
                data = "Target Agent: " + targetAgent.name + "is a criminal" 
                intSize = int(data.length()) 
                logWriter.write(data,0,intSize) 
                logWriter.newLine() 
                data = ""  
             
          else: 
              print "Unable to log robbery at strnode: " + occupied.strnode + " during tick: " + 
self.modelStep 
                 
        # Random decision to commit robbery 
        elif targetExists == true and suitability >= 0 and guardianship == 1 and copPresent == false:      
          randDecision = guardianship + Random.uniform.nextIntFromTo(self.MIN_SUITABILITY, 
self.MAX_SUITABILITY) 
          #print "Random Decision: ", randDecision   
          if randDecision == 1: 
            break 
          elif randDecision < 1: 
            # Exchange one units of wealth 
            #print "Random: Victim Name ", targetAgent.name 
            #print "Random: Victims current wealth ", targetAgent.wealth 
            targetAgent.wealth = targetAgent.wealth - 1 
            #print "Victims new wealth ", targetAgent.wealth 
            #print "Random: Offender Name " + criminalAgent.name + "Timer value of: " + 
criminalAgent.timerRepeat 
            #print "Random: Offenders current wealth ", criminalAgent.wealth 
            criminalAgent.wealth = criminalAgent.wealth + 1 
            #print "Offenders new wealth ", criminalAgent.wealth 
             
            # Start the timer until citizen can offend again 
            criminalAgent.timerRepeat = 1 
               
            # Log the offense at the specific place                             
            if (currentPlace != None): 
              currentPlace.totalRob = currentPlace.totalRob + 1 
              #print "Robbery at Node: ", currentPlace.STRCL_ 
              #print "Total Robberies at Specific Node  ", currentPlace.totalRob  
              # Log the offense at model level 
              self.totRob = self.totRob + 1 
             
              # Log offending and victimization for agents involved 
              criminalAgent.numOffen = criminalAgent.numOffen + 1 
              targetAgent.numVict = targetAgent.numVict + 1 
               
              ################################## 
              #data = "ROBBERY:  CriminalAgent: " + criminalAgent.name + "," + "TargetAgent: " + 
targetAgent.name  
              #intSize = int(data.length()) 
              #logWriter.write(data,0,intSize) 
              #logWriter.newLine() 
              #data = ""  
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              #if targetAgent.criminalPropensity == true: 
                ################################## 
                #data = "Target Agent: " + targetAgent.name + "is a criminal" 
                #intSize = int(data.length()) 
                #logWriter.write(data,0,intSize) 
                #logWriter.newLine() 
                #data = ""  
             
            else: 
              print "Unable to log random decision robbery at strnode: " + occupied.strnode + " during tick: 
" + self.modelStep 
        
      ################################## 
      #data = "FINAL:  CriminalAgent: " + criminalAgent.name + "," + "TargetAgent: " + 
targetAgent.name  
      #intSize = int(data.length()) 
      #logWriter.write(data,0,intSize) 
      #logWriter.newLine()  
            
    # Loop that logs deterrence effect of cops 
    #print "Cop was present and I made it inside for loop" 
    if offenderAtNode == true and copPresent == true and numAgentAtRisk >= 1 and targetWealth > 0: 
      currentPlace.totPrevent = currentPlace.totPrevent + 1 
      self.totDeter = self.totDeter + 1 
      #print "Running total of crimes DETERRED is: ", self.totDeter     
             
    # Log occurrence of potential crime situation - offender and victims present 
    if offenderAtNode == true and numAgentAtRisk >= 1: 
      self.totIntersect = self.totIntersect + 1   
      #print "Running total of potential robbery situations: ", self.totIntersect 
                      
    #else: 
      #print "Only one agent at node or cop at node." 
       
  # Close the writer   
  logWriter.close() 
 
 
def writeOccupiedNodes(): 
  #print "Inside writeOccupiedNodes from model level" 
   
  away = int(self.SOCIETAL_TIMEAWAY*100) 
   
  # Write out contents of ACTIVE NODES class 
  # CREATE an output file and the buffered writer to write the activity times for each agent to a file 
  currTick = int(self.getTickCount()) 
  #print "Current Tick: ", currTick 
  outFileName = "C:/model_output"+away+"/occupiedSnapshot"+currTick+".csv" 
  #outFileName = "./projects/rob_model/output/occupiedSnapshot"+currTick+".csv" 
  txtWriter = BufferedWriter(FileWriter(outFileName)) 
  columnNames = "StreetNode,NumAgents,Agent1,Agent2,Agent3,Agent4,Agent5" 
  intSize = int(columnNames.length()) 
  txtWriter.write(columnNames,0,intSize) 
  txtWriter.newLine() 
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  # Loop through all the active nodes and write the agents at each node to a file 
  for occupied as ActiveNode in self.activeNodes: 
    #print "Number of agents at node ", occupied.agentList.size() 
    #create a string of each data field to be written to the file 
    tempNode = String.valueOf(occupied.strnode) 
    numAgents = String.valueOf(occupied.agentList.size())   
    temp = tempNode + "," + numAgents 
     
    for i in range (0,occupied.agentList.size()): 
      temp = temp + "," 
      temp = temp + String.valueOf(occupied.agentList.get(i)) 
    
    intSize = int(temp.length()) 
    txtWriter.write(temp,0,intSize) 
    txtWriter.newLine() 
   
  #print "Agent:", citizens.getName() 
  #print "Time Traveling: ", citizens.getTimeTraveling() 
  #print "Time at Home: ", citizens.getTimeHome() 
  #print "Time at Main: ", citizens.getTimeMain() 
  #print "Time at Rec1: ", citizens.getTimeRec1() 
  #print "Time at Rec2: ", citizens.getTimeRec2() 
   
  # Close the file of activity path nodes 
  txtWriter.close() 
 
 
def idChangingEmploymentStatus(): 
  print "ID CHANGE AGENTS loop" 
   
  #SWITCH the employment status for 3% of agents in the model using a uniform distribution  
  for i in range (30):                      
   index = Random.uniform.nextIntFromTo(0,self.AGENTS - 1)     
   agent = (Citizen)self.citizens.get(index) 
   agent.changeEmpStatus = true 
   #print "Changed agent name ", agent.name 
 
 
def switchActivitySpace(): 
  # Switch the activity spaces of agents whose employment status changed 
  # Change the times to remain at home, main, rec1 and rec2 and the time needed for travel 
   
  print "Inside switchEmploymentStatus -- Model" 
   
  for citizens as Citizen in self.citizens:         
    if citizens.changeEmpStatus == true: 
      #print "Index ", String.valueOf(index) 
      #print "Agent Name: ", citizens.getName() 
      #print "PreChange empStatus ", citizens.employmentStatus 
      if citizens.employmentStatus == true: 
        #print "My Values should be for unemployed" 
        citizens.employmentStatus = false        #Employed becomes unemployed 
        citizens.timeHome = citizens.timeUnempHome 
        citizens.timeMain = citizens.timeUnempMain 
        citizens.rec1 = citizens.timeUnempRec1 
        citizens.rec2 = citizens.timeUnempRec2 

 245



 

        citizens.timeTraveling = citizens.timeUnempTraveling 
        citizens.changeEmpStatus = false 
        #print "Time at Main ", citizens.timeMain 
        #print "Time at Main when Unemployed", citizens.timeUnempMain 
      else:  
        #print "I am employed" 
        citizens.employmentStatus = true         #Unemployed becomes employed  
        citizens.timeHome = citizens.timeEmpHome 
        citizens.timeMain = citizens.timeEmpMain 
        citizens.rec1 = citizens.timeEmpRec1 
        citizens.rec2 = citizens.timeEmpRec2 
        citizens.timeTraveling = citizens.timeEmpTraveling 
        citizens.changeEmpStatus = false 
        #print "Time at Main ", citizens.timeMain 
        #print "Time at Main when Employed", citizens.timeEmpMain 
   
      #print "PostChange ", citizens.employmentStatus 
 
 
def initCops(): 
  print "Inside init cops" 
  #Randomly assign the cops to a starting location.   
   
  # Use the Places to get the strnode ##CODE HAS BEEN VERIFIED 
  for i in range (self.COPS):             
    index = Random.uniform.nextIntFromTo(0, self.NUM_PLACES - 1) 
    #print "Index ", index 
    cop = Cop() 
    cop.setModel(self) 
      
    node = (Place)self.places.get(index) 
    #print "FOUND a place " , node.STRCL_ 
     
    # Log that cop started at this node 
    node.copStart = 1 
    cop.setLocation(node) 
    cop.setStrnode(node.STRCL_) 
    self.cops.add(cop) 
 
 
def resetAgentsDaily(): 
  #print "Inside resetAgentsDaily" 
   
  for citizen as Citizen in self.citizens: 
    citizen.atActivity = true 
    citizen.atRisk = false 
    citizen.moveStatus = false 
    citizen.position = 0 
    citizen.timeCounter = 0 
    citizen.timerHome = 0 
    citizen.timerMain = 0 
    citizen.timerRec1 = 0 
    citizen.timerRec2 = 0 
    #print "Counter at reset agent: " + citizen.timerRepeat 
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def createCitizenTravelOutputFiles(): 
  print "Inside createCitizenTravelOutputFiles" 
   
  away = int(self.SOCIETAL_TIMEAWAY*100) 
     
  # Create an output file for model runtime statistics  
  # Average number of agents unemployed, average wealth, robbery rate, exposure rate, etc. 
  currTick = int(self.getTickCount()) 
  outFileName = "C:/model_output"+away+"/citizenChar.csv" 
  dataWriter = BufferedWriter(FileWriter(outFileName)) 
  columnNames = 
"Tick,NumChangeEmp,NumUnemployed,TotWealth,AvgWealth,RobRate,TotVictims,RepeatVict,Tot
Offen,RepeatOffen,NumExp,PercExposed,NumTravel,PercTraveling,numActiveOffenders,numWaitin
gOffenders,cumDeter,cumIntersect,cumRobberies, cumMultiOffendersAtNode" 
  intSize = int(columnNames.length()) 
  dataWriter.write(columnNames,0,intSize) 
  dataWriter.newLine() 
  dataWriter.close() 
 
 
def writeCitizenTravInfotoFiles(): 
  #print "Inside writeCitizenTravInfotoFiles" 
  away = int(self.SOCIETAL_TIMEAWAY*100) 
   
 # Loop through all citizen agents and write out the specified fields 
  for citizen as Citizen in self.citizens: 
    # Create a string of each data field to be written to the file, two fields at a time 
    agentName = String.valueOf(citizen.name) 
    # Write the fields describing citizen agents 
    # CREATE an output file and the buffered writer to write the activity times for each agent to a file 
    currTick = int(self.getTickCount()) 
    #print "Current Tick: ", currTick 
    outFileName = "C:/model_output"+away+"/citizens"+agentName+".csv" 
    txtWriter = BufferedWriter(FileWriter(outFileName, true)) 
  
    tempName = currTick 
    home = String.valueOf(citizen.timerHome)   
    temp = tempName + "," + home 
    main = String.valueOf(citizen.timerMain) 
    temp = temp + "," + main 
    rec1 = String.valueOf(citizen.timerRec1) 
    temp = temp + "," + rec1 
    rec2 = String.valueOf(citizen.timerRec2) 
    temp = temp + "," + rec2 
    travel = String.valueOf(citizen.totTimeTraveling) 
    temp = temp + "," + travel 
    expose = String.valueOf(citizen.totTimeExposed) 
    temp = temp + "," + expose 
    vict = String.valueOf(citizen.numVict) 
    temp = temp + "," + vict 
    offen = String.valueOf(citizen.numOffen) 
    temp = temp + "," + offen 
    ahome = String.valueOf(citizen.timeHome)   
    temp = temp + "," + ahome 
    amain = String.valueOf(citizen.timeMain) 
    temp = temp + "," + amain 
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    arec1 = String.valueOf(citizen.timeRec1) 
    temp = temp + "," + arec1 
    arec2 = String.valueOf(citizen.timeRec2) 
    temp = temp + "," + arec2 
    atravel = String.valueOf(citizen.timeTraveling) 
    temp = temp + "," + atravel 
     
    intSize = int(temp.length()) 
    txtWriter.write(temp,0,intSize) 
    txtWriter.newLine() 
    txtWriter.close() 
 
 
def writeModelRunData(): 
  print "Inside writeModelRunData" 
  away = int(self.SOCIETAL_TIMEAWAY*100) 
  print away 
   
  # CREATE an output file and the buffered writer to write the activity times for each agent to a file 
  modelRun = 1 
  self.LOG_FILE = "C:/model_output"+away+"/RunDatav"+ modelRun + ".csv" 
  txtWriter = BufferedWriter(FileWriter(self.LOG_FILE)) 
   
  # Put a model run header 
  header =  "Model run: " + modelRun 
  intSize = int(header.length()) 
  txtWriter.write(header,0,intSize) 
  txtWriter.newLine() 
   
  # Put a model name in header 
  header =  "Model Name: Full_Random Model" 
  intSize = int(header.length()) 
  txtWriter.write(header,0,intSize) 
  txtWriter.newLine() 
   
  # Add parameter information 
  seed = Random.getSeed() 
  nxtLine = "Random Number Seed: " + seed 
  intSize = int(nxtLine.length()) 
  txtWriter.write(nxtLine,0,intSize) 
  txtWriter.newLine() 
   
  nxtLine = "Time to reoffend: " + self.REPEAT 
  intSize = int(nxtLine.length()) 
  txtWriter.write(nxtLine,0,intSize) 
  txtWriter.newLine() 
   
  nxtLine = "Wealth: " + "Mean " + self.WEALTH_MEAN + ", Standard Deviation " + 
self.WEALTH_SD 
  intSize = int(nxtLine.length()) 
  txtWriter.write(nxtLine,0,intSize) 
  txtWriter.newLine() 
     
  # Close text writer 
  txtWriter.close() 
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def writeStatistics(): 
  # Writes out final statistics for all agents in one file to provide summary statistics 
  # Aggregate time spent at home, main, rec1, rec2, travel, and exposed. 
  # Assigned time to spend at home, main, rec1, rec2, travel. 
  # Total number of offenses and victimizations. 
   
  # Create a file  
  away = int(self.SOCIETAL_TIMEAWAY*100) 
  month = "month"+ self.modelStep/40320   
     
  # Set up to write to file 
  outFileName = "C:/model_output"+away+"/statistics_"+month+".csv" 
  txtWriter = BufferedWriter(FileWriter(outFileName)) 
  columnNames = 
"Agent,timerHome,timerMain,timerRec1,timerRec2,totTimeTraveling,totTimeExposed,numVict,num
Offen,assignHome,assignMain,assignRec1,assignRec2,assignTravel,criminal,wealth" 
  intSize = int(columnNames.length()) 
  txtWriter.write(columnNames,0,intSize) 
  txtWriter.newLine() 
   
  for citizen as Citizen in self.citizens: 
    # Create a string of each data field to be written to the file, two fields at a time 
    name = String.valueOf(citizen.name) 
    home = String.valueOf(citizen.timerHome)   
    temp = name + "," + home 
    main = String.valueOf(citizen.timerMain) 
    temp = temp + "," + main 
    rec1 = String.valueOf(citizen.timerRec1) 
    temp = temp + "," + rec1 
    rec2 = String.valueOf(citizen.timerRec2) 
    temp = temp + "," + rec2 
    travel = String.valueOf(citizen.totTimeTraveling) 
    temp = temp + "," + travel 
    expose = String.valueOf(citizen.totTimeExposed) 
    temp = temp + "," + expose 
    vict = String.valueOf(citizen.numVict) 
    temp = temp + "," + vict 
    offen = String.valueOf(citizen.numOffen) 
    temp = temp + "," + offen 
    ahome = String.valueOf(citizen.timeHome)   
    temp = temp + "," + ahome 
    amain = String.valueOf(citizen.timeMain) 
    temp = temp + "," + amain 
    arec1 = String.valueOf(citizen.timeRec1) 
    temp = temp + "," + arec1 
    arec2 = String.valueOf(citizen.timeRec2) 
    temp = temp + "," + arec2 
    atravel = String.valueOf(citizen.timeTraveling) 
    temp = temp + "," + atravel 
    acriminal = String.valueOf(citizen.criminalPropensity) 
    temp = temp + "," + acriminal 
    awealth = String.valueOf(citizen.wealth) 
    temp = temp + "," + awealth 
     
    intSize = int(temp.length()) 
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    txtWriter.write(temp,0,intSize) 
    txtWriter.newLine() 
     
  # Close the file   
  txtWriter.close() 
 
 
def dataRecorder(): 
  #print "DATA RECORDER T0 FILE" 
   
  # Writes out model runtime statistics  
  # Average number of agents unemployed, average wealth, robbery rate, exposure rate, etc. 
   
  away = int(self.SOCIETAL_TIMEAWAY*100) 
   
  # Open the output file and the buffered writer to write the information to a file 
  currTick = int(self.getTickCount()) 
  outFileName = "C:/model_output"+away+"/citizenChar.csv" 
  dataWriter = BufferedWriter(FileWriter(outFileName, true)) 
   
  # Count number of agents to change employment status  
  numChange = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.changeEmpStatus == true: 
      numChange = numChange + 1 
      citizens.changeEmpStatus = false 
   
  # Count unemployed agents  
  numUnemployed = 0 
  numEmployed = 0 
  for agent as Citizen in self.citizens: 
    if agent.employmentStatus == false: 
      numUnemployed = numUnemployed + 1 
    elif agent.employmentStatus == true: 
      numEmployed = numEmployed + 1   
    else: 
      print "Employment status not assigned"   
  #print "Number unemployed is: ", numUnemployed 
  #print "Number employed is: ", numEmployed 
   
  # Calculate average wealth of agents  
  totWealth = 0 
  for citizens as Citizen in self.citizens: 
    totWealth = totWealth + citizens.wealth 
  aveWealth = totWealth / self.AGENTS 
   
  # Calculate the robbery rate  
  robRate = 0 
  robRate = self.totRob / self.AGENTS 
   
  # Count number of agents victimized 
  totNumVict = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.numVict > 0: 
      totNumVict = totNumVict + 1 
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  # Count number of repeat victims 
  numRepeatVict = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.numVict > 1: 
      numRepeatVict = numRepeatVict + 1 
       
  # Count number of offenders 
  totNumOffenders = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.numOffen > 0: 
      totNumOffenders = totNumOffenders + 1 
       
  # Count number of repeat offenders 
  numRepeatOffen = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.numOffen > 1: 
      numRepeatOffen = numRepeatOffen + 1    
       
  # Calculate the number of citizens at risk of victimization 
  numExp = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.atRisk: 
      numExp = numExp + 1    
  percExp = ((numExp / self.AGENTS) * 100) 
   
  # Calculate the number of citizens traveling 
  numTravel = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.atActivity == false: 
      numTravel = numTravel + 1    
  percTravel = ((numTravel / self.AGENTS) * 100) 
   
  # Calculate the number of active offenders (able to offend) 
  numActiveOffen = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.criminalPropensity and citizens.atRisk and citizens.timerRepeat == 0: 
      numActiveOffen = numActiveOffen + 1    
       
  # Calculate the number of waiting offenders (not able to offend) 
  numWaitingOffen = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.criminalPropensity and citizens.atRisk and citizens.timerRepeat > 0: 
      numWaitingOffen = numWaitingOffen + 1   
       
           
       
  # Create a string of each data field to be written to the file 
  temp = currTick + "," + numChange + "," + numUnemployed + "," + totWealth 
  temp = temp + "," + aveWealth 
  temp = temp + "," + robRate  
  temp = temp + "," + totNumVict 
  temp = temp + "," + numRepeatVict 
  temp = temp + "," + totNumOffenders 
  temp = temp + "," + numRepeatOffen 
  temp = temp + "," + numExp + ","+ percExp 
  temp = temp + "," + numTravel + ","+ percTravel 
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  temp = temp + "," + numActiveOffen 
  temp = temp + "," + numWaitingOffen 
  temp = temp + "," + self.totDeter 
  temp = temp + "," + self.totIntersect 
  #temp = temp + "," + self.totRob + "," + self.multiCriminalsAtNode 
  intSize = int(temp.length()) 
  dataWriter.write(temp,0,intSize)  
  dataWriter.newLine() 
  
  #Close the file 
  dataWriter.close() 
 
 
def writeFinalAgents(): 
  print "Writing Final Agents" 
  away = int(self.SOCIETAL_TIMEAWAY*100) 
  baseFilePath = "C:/model_output"+away+"/" 
  self.writeAgents(self.places, baseFilePath + "strnodes"+away+".shp") 
 
 
def writeCitizenInfoPaths(): 
  #print "Inside writeCitizenTravInfotoFiles" 
  away = int(self.SOCIETAL_TIMEAWAY*100) 
   
  # Loop through all citizen agents and write out the specified fields 
  for citizen as Citizen in self.citizens: 
    # Create a string of each data field to be written to the file, two fields at a time 
    agentName = String.valueOf(citizen.name) 
    # Write the fields describing citizen agents 
    # CREATE an output file and the buffered writer to write the activity times for each agent to a file 
    currTick = int(self.getTickCount()) 
    #print "Current Tick: ", currTick 
    outFileName = "C:/model_output"+away+"/path"+agentName+".csv" 
    txtWriter = BufferedWriter(FileWriter(outFileName, true)) 
    node = citizen.strnode 
    temp = node + "," + currTick 
    intSize = int(temp.length()) 
    txtWriter.write(temp,0,intSize) 
    txtWriter.newLine() 
       
    txtWriter.close() 
 
 
def initCitizensRandom(): 
  print "Inside initCitizensRandom" 
   
  away = int(self.SOCIETAL_TIMEAWAY*100) 
   
  # Randomly assign all citizens to a starting location and name them 
  for i in range(self.AGENTS):      # Change to 1000 for final model 
    p = i + 1 
    index = Random.uniform.nextIntFromTo(0, self.NUM_PLACES - 1) 
    #print "Index ", index 
    citizen = Citizen() 
    citizen.setModel(self) 
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    node = (Place)self.places.get(index) 
    #print "Assigned to place ", node.STRCL_ 
    # Log where citizen started random movement 
    node.citiStart = 1 
    citizen.setLocation(node) 
    citizen.setStrnode(node.STRCL_) 
    name = "a" + p 
    citizen.setName(name) 
    self.citizens.add(citizen) 
     
  # Open log file 
  logoutput = self.LOG_FILE 
  logWriter = BufferedWriter(FileWriter(logoutput, true)) 
  logData =  "Log File Name: " + logoutput 
  intSize = int(logData.length()) 
  logWriter.write(logData,0,intSize) 
  logWriter.newLine()    
   
  # Randomly assign criminal propensity to 20% of the Citizens  
  # Assign 200 agents criminal propensity (criminalPropensity = true) 
  for i in range (200):                           
    index = Random.uniform.nextIntFromTo(0, self.AGENTS - 1) 
    agent = (Citizen)self.citizens.get(index) 
    #print "Index ", String.valueOf(index) 
    #print "Agent Name: "+ agent.getName()+ " is a criminal" 
    node = agent.getLocation() 
   
    # Condition to check and make sure citizen was not previously selected to have criminal propensity 
    if agent.criminalPropensity == false: 
      agent.criminalPropensity = true 
      # Log where criminal started random movement 
      node.crimStart = 1 
    else: 
      while agent.criminalPropensity == true: 
        index = Random.uniform.nextIntFromTo(0, self.AGENTS - 1) 
        agent = (Citizen)self.citizens.get(index) 
        node = agent.getLocation() 
      # Log where criminal started random movement 
      node.crimStart = 1 
      agent.criminalPropensity = true 
    #print "Agent Name: "+ agent.getName()+ " is a criminal" 
     
    logData = agent.getName() + " ," + " criminal" 
    intSize = int(logData.length()) 
    logWriter.write(logData,0,intSize) 
    logWriter.newLine() 
    logData = "" 
     
  # Read in files of times to spend at activities for each agent when EMPLOYED 
  fileName = "C://Program Files//Repast 3//Agent 
Analyst//projects//rob_model//timeSchedule//empTimeAtActivityNodes" + away + ".csv" 
  txtreader1 = BufferedReader(FileReader(fileName)) 
   
  aName = "" 
   
  # Read each line of the file 
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  for citizens as Citizen in self.citizens: 
    line = txtreader1.readLine() 
    tokenizer = StringTokenizer(line, ",") 
     
    # Loop to get all the fields in a particular line 
    if (tokenizer.hasMoreTokens()): 
      aName = tokenizer.nextToken().trim() 
      tEmpHome = tokenizer.nextToken().trim() 
      citizens.timeEmpHome = int(tEmpHome) 
      tEmpMain = tokenizer.nextToken().trim() 
      citizens.timeEmpMain = int(tEmpMain) 
      tEmpRec1 = tokenizer.nextToken().trim() 
      citizens.timeEmpRec1 = int(tEmpRec1) 
      tEmpRec2 = tokenizer.nextToken().trim() 
      citizens.timeEmpRec2 = int(tEmpRec2) 
      tEmpTravel = tokenizer.nextToken().trim() 
      citizens.timeEmpTraveling = int(tEmpTravel) 
            
  # Close the file of activity nodes 
  txtreader1.close() 
   
  # Read in files of times to spend at activities for each agent when UNEMPLOYED 
  fileName = "C://Program Files//Repast 3//Agent 
Analyst//projects//rob_model//timeSchedule//unempTimeAtActivityNodes" + away + ".csv" 
     
  # Read each line of the file 
  for citizens as Citizen in self.citizens: 
    line = txtreader.readLine() 
    tokenizer = StringTokenizer(line, ",") 
     
    # Loop to get all the fields in a particular line 
    if (tokenizer.hasMoreTokens()): 
      aName = tokenizer.nextToken().trim() 
      tUnempHome = tokenizer.nextToken().trim() 
      citizens.timeUnempHome = int(tUnempHome) 
      tUnempMain = tokenizer.nextToken().trim() 
      citizens.timeUnempMain = int(tUnempMain) 
      tUnempRec1 = tokenizer.nextToken().trim() 
      citizens.timeUnempRec1 = int(tUnempRec1) 
      tUnempRec2 = tokenizer.nextToken().trim() 
      citizens.timeUnempRec2 = int(tUnempRec2) 
      tUnemptravel = tokenizer.nextToken().trim() 
      citizens.timeUnempTraveling = int(tUnemptravel) 
       
    #print "Agent:", aName 
    #print "Employed Time at Home: ", intEmpHome 
    #print "Employed Time at Main: ", intEmpMain 
    #print "Employed Time at Rec1: ", intEmpRec1 
    #print "Employed Time at Rec2: ", intEmpRec2 
    #print "Employed Time Traveling: ", intEmpTravel 
     
    #print "Agent:", aName 
    #print "Unemployed Time at Home: ", intUnempHome 
    #print "Unemployed Time at Main: ", intUnempMain 
    #print "Unemployed Time at Rec1: ", intUnempRec1 
    #print "Unemployed Time at Rec2: ", intUnempRec2 
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    #print "Unemployed Time Traveling: ", intUnempTravel 
     
     
  # Close the file of activity nodes 
  txtreader.close() 
     
  # SET the employment status for all agents in the model 
  # Using a uniform distribution assign 6% of agents to be unemployed 
  for i in range (60):                       
    index = Random.uniform.nextIntFromTo(0, self.AGENTS - 1) 
    agent = (Citizen)self.citizens.get(index) 
    #print "Index ", String.valueOf(index) 
      
    # Condition to check and make sure citizen was not previously selected to be unemployed 
    if agent.employmentStatus == true: 
      agent.employmentStatus = false        #Agent is unemployed 
    else: 
      while agent.employmentStatus == false: 
        index = Random.uniform.nextIntFromTo(0, self.AGENTS - 1)   
        agent = (Citizen)self.citizens.get(index) 
      agent.employmentStatus = false 
      #print "Agent Name: "+ agent.getName()+ " is unemployed" 
    
    logData = agent.getName() + " ," + " unemployed" 
    intSize = int(logData.length()) 
    logWriter.write(logData,0,intSize) 
    logWriter.newLine() 
    logData = "" 
   
  # CREATE an output file of times at each activity and traveling 
  # First create the buffered writer to write the activity times for each agent to a file 
  outFileName = "C:/model_output" +away+"/timeAtActivityNodes.csv" 
  txtWriter = BufferedWriter(FileWriter(outFileName)) 
  columnNames = 
"Agent,Home,Main,Rec1,Rec2,Travel,empHome,empMain,empRec1,empRec2,empTravel,unempHo
me,unempMain,unempRec1,unempRec2,unempTravel" 
  intSize = int(columnNames.length()) 
  txtWriter.write(columnNames,0,intSize) 
  txtWriter.newLine()   
   
  # Assign time schedule to each citizen agent in the model 
  for citizens as Citizen in self.citizens: 
    if citizens.employmentStatus == true: 
      citizens.timeHome = citizens.timeEmpHome 
      citizens.timeMain = citizens.timeEmpMain 
      citizens.timeRec1 = citizens.timeEmpRec1 
      citizens.timeRec2 = citizens.timeEmpRec2 
      citizens.timeTraveling = citizens.timeEmpTraveling   
      citizens.travelTimeSplit = citizens.timeTraveling / 4    # Allocate equal travel between activities 
    elif citizens.employmentStatus == false: 
      citizens.timeHome = citizens.timeUnempHome 
      citizens.timeMain = citizens.timeUnempMain 
      citizens.timeRec1 = citizens.timeUnempRec1 
      citizens.timeRec2 = citizens.timeUnempRec2 
      citizens.timeTraveling = citizens.timeUnempTraveling   
      citizens.travelTimeSplit = citizens.timeTraveling / 4    # Allocate equal travel between activities 
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    else: 
      print "Agent has not been assigned a criminal propensity."   
     
    # Create a string of each data field to be written to the file for later diagnostics 
    tempName = String.valueOf(citizens.getName()) 
    tempHome = String.valueOf(citizens.getTimeHome()) 
    tempMain = String.valueOf(citizens.getTimeMain()) 
    tempRec1 = String.valueOf(citizens.getTimeRec1()) 
    tempRec2 = String.valueOf(citizens.getTimeRec2()) 
    tempTravel = String.valueOf(citizens.getTimeTraveling()) 
    tEmpHome = String.valueOf(citizens.getTimeEmpHome()) 
    tEmpMain = String.valueOf(citizens.getTimeEmpMain()) 
    tEmpRec1 = String.valueOf(citizens.getTimeEmpRec1()) 
    tEmpRec2 = String.valueOf(citizens.getTimeEmpRec2()) 
    tEmpTravel = String.valueOf(citizens.getTimeEmpTraveling())     
    tUnempHome = String.valueOf(citizens.getTimeUnempHome()) 
    tUnempMain = String.valueOf(citizens.getTimeUnempMain()) 
    tUnempRec1 = String.valueOf(citizens.getTimeUnempRec1()) 
    tUnempRec2 = String.valueOf(citizens.getTimeUnempRec2()) 
    tUnempTravel = String.valueOf(citizens.getTimeUnempTraveling()) 
     
    # Write values to file    
    values = 
(tempName+","+tempHome+","+tempMain+","+tempRec1+","+tempRec2+","+tempTravel+","+tEmp
Home+","+tEmpMain+","+tEmpRec1+","+tEmpRec2+","+tEmpTravel+","+tUnempHome+","+tUne
mpMain+","+tUnempRec1+","+tUnempRec2+","+tUnempTravel) 
    intSize = int(values.length()) 
    txtWriter.write(values,0,intSize) 
    txtWriter.newLine() 
    
    #print "Agent:", citizens.getName() 
    #print "Time Traveling: ", citizens.getTimeTraveling() 
    #print "Time at Home: ", citizens.getTimeHome() 
    #print "Time at Main: ", citizens.getTimeMain() 
    #print "Time at Rec1: ", citizens.getTimeRec1() 
    #print "Time at Rec2: ", citizens.getTimeRec2() 
   
  #close the file of activity path nodes 
  txtWriter.close() 
     
  # Create new random normal distribution to ASSIGN WEALTH 
  Random.createNormal(self.WEALTH_MEAN,self.WEALTH_SD) 
   
  # ASSIGN wealth to agents 
  for citizens as Citizen in self.citizens: 
    #Get a new random number for each agent 
    citizens.wealth = Random.normal.nextInt() 
    #print "Name: ", citizens.getName() + " has been assigned Wealth of: "+ citizens.getWealth() 
      
  # Write out initial values for each agent 
  # Header line 
  logData = "Name, Criminality, Wealth, TimeHome, StartNode" 
  intSize = int(logData.length()) 
  logWriter.write(logData,0,intSize) 
  logWriter.newLine() 
  logData = "" 
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  for citizens as Citizen in self.citizens: 
    # Write values 
    logData = citizens.getName() + "," + citizens.getCriminalPropensity() + "," + citizens.getWealth() + 
"," + citizens.getTimeHome() + "," + citizens.getStrnode() 
    intSize = int(logData.length()) 
    logWriter.write(logData,0,intSize) 
    logWriter.newLine() 
    logData = "" 
     
  #Close the log file   
  logWriter.close() 
 
 
Place Actions 
(none) 
 
Citizen Actions 
 
def step(): 
Java imports 
java.lang.Object 
java.lang.Double 
java.lang.Number 
java.lang.Integer 
Code 
 #print "INSIDE CITIZEN STEP" 
   
  # Every citizen agent evaluates their move status, if they are moving they are added to the active 
nodes 
  # class and are part of the decision to commit a crime.  Then the values (atRisk, atActivity, moving, 
and  
  # position are set for the next turn. 
   
  # Verification code to check daily start points of agents 
  #if self.timeCounter < 2: 
    #print "AGENT: ", self.name 
    #print "Start Node : ", self.strnode 
       
  # Associate all agents with a current street node so we can test whether they are are atRisk  
  # and/or moving. 
  self.currentNode = self.strnode 
   
  # Collect all agents who are moving or recreating are at risk and need to be logged  
  # at active nodes and put them in the activeNode class. 
       
  #<<CONDITION 1 - Start  
  if self.moveStatus == true or self.atRisk == true: 
       
    # ADD an agent to the ActiveNode class.  If there is an ActiveNode agent  
    # that exists with a particular strnode value then add the name of the  
    # citizen agent to the agentList (an arrayList).  If there is no ActiveNode  
    # with the same value as the currentNode then add a new ActiveNode agent and  
    # populate the strnode number with the currentNode and add the name of the  
    # citizen agent to the agentList (an arrayList).   
       
    #print "Current Node: ", self.currentNode 
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    #print "The Size is : ", self.model.activeNodes.size() 
       
    # Test to see if this is the first ActiveNode 
    nodeisEqual = false 
    #<CONDITION 1.1 - Start 
    if self.model.activeNodes.size() <> 0: 
      for occupied as ActiveNode in self.model.activeNodes: 
        if self.currentNode == occupied.strnode: 
          occupied.agentList.add(self.name) 
          nodeisEqual = true 
      #CONDITION 1.1 - End >  
       
    #<CONDITION 1.2 - Start 
    if self.model.activeNodes.size() == 0 or nodeisEqual == false: 
      newAgent = ActiveNode() 
      newAgent.setModel(self.model) 
      newAgent.strnode = self.currentNode 
      newAgent.agentList = ArrayList() 
      newAgent.agentList.add(self.name) 
      self.model.activeNodes.add(newAgent) 
      #print "First agent of Total Agents: ", self.model.activeNodes.size() 
      #print "Inside Assignment: Strnode = ", newAgent.strnode 
      #print "ArrayList Value = ", newAgent.agentList.get(0) 
    #CONDITION 1.2 - End > 
          
 
    #print "Current Node as Integer: ", Integer.toString(self.currentNode) 
    #print "Home Node: " + self.home +  " Main Node: " + self.main + " Rec 1: " + self.rec1 + " Rec 2: 
" + self.rec2 
    #CONDITION 1 - End >>  
     
  #print "Home Node: " + self.home +  " Main Node: " + self.main + " Rec 1: " + self.rec1 + " Rec 2: " 
+ self.rec2 
     
  # RESET values for next turn.   
  # Check to see if currentNode equal to an activity node.   
  # If yes, do not move but update time that agent has been at node.  If no, move to next node. 
  #<<<CONDITION 2 - Start  
  seg1 = self.timeHome + self.travelTimeSplit 
  seg2 = self.timeHome + self.travelTimeSplit + self.timeMain 
  seg3 = self.timeHome + self.travelTimeSplit + self.timeMain + self.travelTimeSplit  
  seg4 = self.timeHome + self.travelTimeSplit + self.timeMain + self.travelTimeSplit + self.timeRec1 
  seg5 = self.timeHome + self.travelTimeSplit + self.timeMain + self.travelTimeSplit + self.timeRec1 
+ self.travelTimeSplit 
  cumulative = seg5 + self.timeRec2 
   
  #print "self.timeHome = " + self.timeHome 
  #print "self.timeMain = " + self.timeMain 
  #print "self.timeRec1 = " + self.timeRec1 
  #print "self.rec1 = " + self.rec1 
  #print "self.timeRec2 = " + self.timeRec2 
  #print "self.rec2 = " + self.rec2 
  #print "seg1 = " + seg1 
  #print "seg2 = " + seg2 
  #print "seg3 = " + seg3 
  #print "seg4 = " + seg4 
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  #print "seg5 = " + seg5 
  #print "remainder = " + remainder 
  #print "self.travelTimeSplit = " + self.travelTimeSplit 
  #print "self.model.MODEL_DAY = " + self.model.MODEL_DAY 
   
  if self.timeCounter <= self.timeHome: 
    #print "Time assigned to be at HOME: ", self.timeHome 
    #print "Time Spent at Home: ", self.timeCounter 
    if self.timeCounter < self.timeHome: 
      # Agent is at home 
      self.atActivity = true 
      self.atRisk = false 
      self.moveStatus = false 
      #Increment the timer  
      self.timeCounter = self.timeCounter + 1 
      self.timerHome = self.timerHome + 1 
    else: 
     # Next step agent leaves home 
     self.atActivity = false 
     self.atRisk = true 
     self.moveStatus = true      
     self.timeCounter = self.timeCounter + 1 
  elif self.timeCounter > seg1 and self.timeCounter <= seg2: 
    #print "Time Assigned Main ", self.timeMain 
    # "Total Time", self.timeCounter  
    if self.timeCounter < seg2: 
      # Agent is at Main activity 
      self.atActivity = true 
      self.atRisk = false 
      self.moveStatus = false 
      #Increment the timer  
      self.timeCounter = self.timeCounter + 1 
      self.timerMain = self.timerMain + 1 
    else: 
      # Next step agent leaves Main activity 
      self.atActivity = false 
      self.atRisk = true 
      self.moveStatus = true 
      self.timeCounter = self.timeCounter + 1 
      ##print "Agent Leaving Main and moving to position: ", self.position 
      self.totTimeTraveling = self.totTimeTraveling + 1 
      self.totTimeExposed = self.totTimeExposed + 1 
  elif self.timeCounter > seg3 and self.timeCounter <= seg4: 
    #print "Time Assigned REC1", self.timeRec1 
    #print "Total Time: ", String.valueOf(self.timeCounter) 
    if self.timeCounter < seg4: 
      # Agent is at Rec1 
      self.atActivity = true 
      self.atRisk = true                  #Agents at activities are also at risk 
      self.moveStatus = false 
      #Increment the timer  
      self.timeCounter = self.timeCounter + 1 
      self.timerRec1 = self.timerRec1 + 1 
      self.totTimeExposed = self.totTimeExposed + 1 
    else:  
      # Agent is leaving Rec1 next step 
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      self.atActivity = false 
      self.atRisk = true 
      self.moveStatus = true   
      self.timeCounter = self.timeCounter + 1 
      ##print "Agent Leaving Rec1 and moving to position: ", self.position  
      self.totTimeTraveling = self.totTimeTraveling + 1 
      self.totTimeExposed = self.totTimeExposed + 1 
  elif self.timeCounter > seg5 and self.timeCounter <= cumulative: 
    #print "Time assigned Rec2 ", self.timeRec2 
    #print "Total time: ", String.valueOf(self.timeCounter) 
    if self.timeCounter < cumulative:  # line 135 
      # Agent is at Rec2 
      self.atActivity = true              #Agents at activities are also at risk 
      self.atRisk = true 
      self.moveStatus = false 
      #Increment the timer  
      self.timeCounter = self.timeCounter + 1 
      self.timerRec2 = self.timerRec2 + 1 
      self.totTimeExposed = self.totTimeExposed + 1 
    else:  
      # Agent is leaving Rec2 next step 
      self.atActivity = false 
      self.atRisk = true 
      self.moveStatus = true   
      self.timeCounter = self.timeCounter + 1 
      ##print "Agent Leaving Rec1 and moving to position: ", self.position  
      self.totTimeTraveling = self.totTimeTraveling + 1 
      self.totTimeExposed = self.totTimeExposed + 1 
  else: 
    # Agent is traveling 
    #print "Agent is Traveling" 
    self.atActivity = false 
    self.atRisk = true 
    self.moveStatus = true 
    self.timeCounter = self.timeCounter + 1 
    self.totTimeTraveling = self.totTimeTraveling + 1  
    #print "Agent time traveling incremented to " + self.totTimeTraveling + " in else of Condition 2.1.1"     
    self.totTimeExposed = self.totTimeExposed + 1 
     
    # Select the node the agent will move to in the next turn 
    places = self.model.getPlaces() 
     
    #if self.name == "a6" or  self.name == "a7": 
    #print "Agent: ", self.name 
    #print "Old node: ", self.strnode 
     
    # Identify number of neighbor nodes, generate a random number and use that to pick the next node 
    numNeighs = self.location.myNeighbors.size()   
    #print "Number of neighbors is: ", numNeighs 
     
    #if self.name == "a6" or  self.name == "a7": 
      #print "Number of neighbors is: ", numNeighs 
     
    # Generate a value 
    index = Random.uniform.nextIntFromTo(0,numNeighs-1) 
    #print "Index picked: ",index 
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    #if self.name == "a6" or  self.name == "a7": 
      #print "Index picked: ",index  
     
    #for node in range (0, numNeighs): 
      #print "Neighbor " + node + " is :" + String.valueOf(self.location.getMyNeighbors().get(node))+ " 
at position " + index 
   
    # Get the new node and assign it to strnode field  
    newNode = self.location.getMyNeighbors().get(index) 
    self.strnode = int(String.valueOf(newNode)) 
     
    # Add the new node to the agent's nodeList field to track  
    #self.nodeList.add(newNode) 
     
    #print self.name + " Move to " + "adjacent strnode: ", self.strnode     
    #print self.name + " Move to " + "adjacent strnode: ", self.nodeList.get(0) 
     
    # Do the assignment directly of the strnode to a place 
    nodeFL = Float(self.strnode) 
    newLocation = (Place)self.model.placeMap.get(nodeFL) 
    self.location = newLocation 
    #if self.name == "a6" or  self.name == "a7": 
      #print "New location: ", self.location.STRCL_   
        
    #CONDITION 2 - END>>> 
       
  #CONDITION 1 - End > 
 
 
def assignNodeInfo(String tname, int ehome, int emain, int erec1, int erec2, ArrayList 
ePathNodeList, int uhome, int umain, int urec1, int urec2, ArrayList uPathNodeList): 
  # Assigns the variable values read from the files in initCitizens() to the fields in Citizen class 
  self.name = tname 
  self.home = ehome 
  self.empHome = ehome 
  self.empMain = emain 
  self.empRec1 = erec1 
  self.empRec2 = erec2 
  self.empPathNodes = ePathNodeList 
  self.unempHome = uhome 
  self.unempMain = umain 
  self.unempRec1 = urec1 
  self.unempRec2 = urec2 
  self.unempPathNodes = uPathNodeList 
  self.currentNode = self.home 
 
 
def payCitizens(): 
  #print "Inside Pay Citizens" 
   
  # Each employed citizen gets paid at designated intervals 
   
  if self.employmentStatus == true: 
    #print "Agent Name: ",self.name 
    #print "Agent Old Wealth: ", self.wealth 
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    self.wealth = self.wealth + 5 
     
    #print "Agent New Wealth: ", self.wealth 
 
Active Node Actions 
(none) 
 
 
Cop Actions 
 
def step(): 
Java imports 
java.lang.Object 
java.lang.String 
uchicago.src.sim.util.SimUtilities 
java.util.Arrays 
java.util.List 
Code 
  # Every cop moves with each model tick 
  places = self.model.getPlaces() 
  #print "Old node: ", self.strnode 
   
  # Shuffle the adjacent nodes of the Place where the cop is located    
  # Identify number of neighbor nodes 
  numNeighs = self.location.myNeighbors.size()   
  maxValue = numNeighs-1 
     
  # Generate a value 
  index = Random.uniform.nextIntFromTo(0,numNeighs -1) 
     
  #print "Move to index: " + index 
     
  # Verification code 
  #for node in range (0, numNeighs): 
    #print "Neighbor " + node + " is :" + String.valueOf(self.location.getMyNeighbors().get(node)) 
   
  # Get the new node and assign it to strnode field  
  # (can't just use index because index and strnode do not correspond) 
  newNode = self.location.getMyNeighbors().get(index) 
  self.strnode = int(String.valueOf(newNode)) 
   
  #print "New strnode: ", self.strnode     
   
  # Do the assignment directly of the strnode to a place 
  nodeFL = Float(self.strnode) 
  newLocation = (Place)self.model.placeMap.get(nodeFL) 
  self.location = newLocation 
  #print "New location: ", self.location.STRCL_   
 
Sequence Graph 
 
totalRobberies 
return self.totRob 
 
totalDeterred 
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return self.totDeter 
 
totalIntersect 
return self.totIntersect 
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Appendix 5:  Street Robbery Model:  Activity Space Version Code  

Street Robbery Activity Space Actions 
 
def initAgents(): 
Java imports 
uchicago.src.simbuilder.util.MessageDisplay 
java.lang.String 
anl.repast.gis.data.dbf.DBFReader 
anl.repast.gis.data.dbf.JDBField 
java.Array 
java.util.Vector 
java.util.List 
java.lang.Object 
java.util.ArrayList 
uchicago.src.sim.util.Random 
java.io.PrintWriter 
 
Code 
  print "Inside initAgents" 
  if (self.messageDisplay == None): 
    self.messageDisplay = MessageDisplay() 
    self.messageDisplay.display("Street Robbery Messages") 
  else: 
    self.messageDisplay.clear() 
     
  # Explicitly set the random number generator seed and initialize Random distributions  
  # Create RNG and set seed                  
  mtRNG = MersenneTwister(100) 
  Random.setSeed(100) 
  Random.createUniform() 
   
  # Create log file for model run 
  self.writeModelRunData() 
    
  # Initialize model level variables 
  self.initModel() 
   
  # Process the street nodes for use in the model 
  self.setupPlaces() 
   
  # Initialize the activity spaces of agents 
  self.initActivitySpaces() 
   
  # Initialize the activity spaces of agents 
  self.initCitizens() 
   
  # Create a normal random number distribution for agent movement 
  self.NORM_TRAVEL = Normal(6,1,mtRNG) 
   
  # Create output files for analysis 
  self.createCitizenTravelOutputFiles() 
   
  # Check to make sure values in shapefile fields are zero 
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  for node as Place in self.places: 
    if node.totalRob > 0 or node.totalVisit > 0 or node.totPrevent > 0: 
      print "WARNING:  Shapefile had non-zero values in counter fields" 
   
  # Initialize the cop agents 
  self.initCops() 
 
 
def updateDisplay(): 
  #print "Inside updateDisplay" 
  self.updateGISDisplay() 
 
 
def writeAgents(): 
  #print "Inside writeAgents-Model level" 
  baseFilePath = ".\\projects\\rob_model\\shapefiles\\" 
  self.writeAgents(self.places, baseFilePath + "strnodes2.shp") 
 
 
def setupPlaces(): 
Java imports 
java.io.BufferedReader 
java.io.FileReader 
java.util.StringTokenizer 
 
Code 
  print "Inside setupPlaces" 
   
  # Put Places in a HashMap where the key is the strnode-id  
  # Creates the map 
  self.placeMap = LinkedHashMap() 
   
  # Add the places to the hashmap  
  for currentPlace as Place in self.places:  
    specNode = "0" 
    specNode = String.valueOf(currentPlace.getSTRCL_()) 
    specNodeNew = Float(specNode) 
    self.placeMap.put(specNodeNew, currentPlace) 
    #print "PLACE node info: ", specNodeNew 
    currentPlace.setMyNeighbors(ArrayList()) 
  
  # Read the neighbors file and set each nodes neighbors. 
  # The neighbors files lists the active node and the neighboring 
  # nodes of that active node.  The map created above is used to 
  # get the neighbors for each active node. 
   
  fileName = "./projects/rob_model/neighborFiles/nodenghbrs.csv" 
  reader = BufferedReader(FileReader(fileName)) 
  line = reader.readLine() 
     
  while(line): 
    tokenizer = StringTokenizer(line, ",") 
    if(tokenizer.hasMoreTokens()): 
      activeNode = tokenizer.nextToken().trim() 
      actNodeObject = Float(activeNode) 
      currentPlace = (Place)self.placeMap.get(actNodeObject)    
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      #print "Current variable ", activeNode #prints out the variable strcl_ 
      #print "Current node from place object:  ", currentPlace.getSTRCL_() 
      nghs = currentPlace.getMyNeighbors() 
      while (tokenizer.hasMoreTokens()): 
        ngh = tokenizer.nextToken() 
        currentPlace.myNeighbors.add(ngh) 
        #print "Neighbor node ", ngh 
    # Read the line 
    line = reader.readLine() 
  # Close the reader   
  reader.close() 
   
  #This code enables verification that the myNeighbors array has the correct values 
  for currentPlace as Place in self.places: 
    #print "Streetnode: ", node.strcl_ 
    if currentPlace.getMyNeighbors() == None: 
      print "Neighbor arraylist is empty for node " + currentPlace.strcl_ 
 
 
def showMessage(String message): 
Java imports 
javax.swing.JOptionPane 
 
Code 
  print "Inside showMessage" 
  JOptionPane.showMessageDialog((JComponent)None, message) 
 
 
def incrementModel(): 
  #print "Inside incrementModel" 
   
   # Increment the modelStep field 
  #if self.modelStep < self.MODEL_DAY:     #1,440 
  #if self.modelStep < self.MODEL_WEEK:      
  #if self.modelStep <  self.MODEL_YEAR:       #525,600 
  if self.modelStep < 40320:      # month is 40,320         
    self.modelStep = self.modelStep + 1 
  else: 
    self.writeFinalAgents() 
    for node as Place in self.places: 
      node.totalVisit = 0 
      node.totalRob = 0 
      node.totPrevent = 0 
      node.copStart = 0 
      node.citiStart = 0 
      node.crimStart = 0 
    self.writeAgents() 
    self.writeStatistics() 
    self.dataRecorder() 
    print "YEAR OVER" 
    self.stop() 
  #print "MODEL STEP = ", self.modelStep 
   
  # ActiveNode - call a method to write out a file of the nodes and their  
  # associated agents at each step 
  #print "Called writeOccupiedNodes" 
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  #self.writeOccupiedNodes() 
   
  # Write out citizen position 
  #self.writeCitizenInfoPaths() 
   
  # Make the decision to commit a crime 
  # print "Total Active Nodes: ", self.activeNodes.size() 
  self.decideRob()       
   
  # Clear the agents from the activeNodes class   
  self.activeNodes.clear() 
  #print "Total active nodes after clear: ", self.activeNodes.size() 
   
   # Increment the timers for agents with criminal propensity 
  for citizen as Citizen in self.citizens: 
    if citizen.criminalPropensity == true: 
      if citizen.timerRepeat > 0 and citizen.timerRepeat < self.REPEAT: 
        citizen.timerRepeat = citizen.timerRepeat + 1 
        #print "Agent " + citizen.name + " repeat timer incremented to: " + citizen.timerRepeat 
      elif citizen.timerRepeat == self.REPEAT: 
        #print "REPEAT value: " + self.REPEAT 
        citizen.timerRepeat = 0 
        #print "Agent " + citizen.name + " timer reset to 0: " + citizen.timerRepeat 
      else: 
        citizen.timerRepeat = citizen.timerRepeat 
     
  #print "TOTAL Robberies in society: ", self.totRob 
 
 
def initModel(): 
Java imports 
cern.jet.random.* 
cern.jet.random.engine.MersenneTwister 
uchicago.src.sim.util.Random 
cern.jet.random.Normal 
 
Code 
  print "Inside initModel" 
   
  # Open log file 
  logoutput = self.LOG_FILE 
  logWriter = BufferedWriter(FileWriter(logoutput, true))   
   
  # Set static field values for model run 
  self.modelStep = 0 
  self.MODEL_HOUR = 60  #360 steps per hour, Travel occurs at 6 steps per minute 
  self.MODEL_DAY = (24 * self.MODEL_HOUR) 
  self.MODEL_WEEK = (7 * self.MODEL_DAY) 
  self.MODEL_YEAR = (365 * self.MODEL_DAY) 
   
 # Print to file to document model run 
  temp =  self.SOCIETAL_TIMEAWAY *100 
  logData = "Experimental condition: " + temp + "% time spent away from home" + "::::" + "Number 
of Agents in model " + self.AGENTS  
  intSize = int(logData.length()) 
  logWriter.write(logData,0,intSize) 
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  logWriter.newLine() 
  logData = "" 
  logData = "Number of cops: " + self.COPS 
  intSize = int(logData.length()) 
  logWriter.write(logData,0,intSize) 
  logWriter.newLine() 
  logData = "" 
  logData = "Limit on Repeat Offending: " + self.REPEAT 
  intSize = int(logData.length()) 
  logWriter.write(logData,0,intSize) 
  logWriter.newLine() 
  logData = "" 
   
  #Close the log file   
  logWriter.close() 
 
 
def initActivitySpaces(): 
  print "Inside initActivitySpaces" 
  print "Number of Citizen Agents in model: " + self.citizens.size() 
   
  ##Read two types of files to get the activity nodes and the path nodes for each  
  # Civilian agent and populate the Civilian agents     
  # Each civilian agent has a list of activity nodes in a separate file: 
  # Order of activity nodes in file: 
    # Node 0:  HOME 
    # Node 1:  MAIN 
    # Node 2:  REC1 
    # Node 3:  REC2 
  # FILE 1:  Read in the list of activity nodes for each agent from individual files and  
  ##assign to the generic agent class of ActivityNode (group name: activityNodes). 
   
  # Initialize variables 
  theAgentName = "0" 
  theEmpHome = 0 
  theEmpMain = 0 
  theEmpRec1 = 0 
  theEmpRec2 = 0 
  theUnempHome = 0 
  theUnempMain = 0 
  theUnempRec1 = 0 
  theUnempRec2 = 0 
  strNode = 0  
  j = 0 
   
  #outside loop to run through files for activity space information files (counter is used for both files) 
  for i in range (1000):               
    j = i + 1 
    theAgentName = "a" + String.valueOf(j)  
    fileName = "./projects/rob_model/activityNodeFiles/" + theAgentName + "empnodes" + ".csv" 
    txtreader = BufferedReader(FileReader(fileName)) 
    line = txtreader.readLine() 
    lineNumber = 0 
   
    # Loop to read one line at a time, each file in turn 
    while (line): 
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      tokenizer = StringTokenizer(line, ",") 
      #counter for the four records in each actNode file 
      if lineNumber > 3:       
        lineNumber = 0 
     
      # Loop to get all the fields in a particular line 
      if (tokenizer.hasMoreTokens()): 
        strnode = tokenizer.nextToken().trim() 
        stringNode = int(strnode) 
        x = tokenizer.nextToken().trim() 
        y = tokenizer.nextToken().trim() 
        #Conditions to assign strnode number in first line of file  
        #to Home, second record to Main ....etc. 
        #print "Strnode :", strnode 
        if lineNumber == 0: 
          theEmpHome = stringNode 
        elif lineNumber == 1: 
          theEmpMain = stringNode 
        elif lineNumber == 2: 
          theEmpRec1 = stringNode 
        else: 
          theEmpRec2 = stringNode 
         
        lineNumber = lineNumber + 1 
        line = txtreader.readLine() 
     
    # Close the file of activity nodes 
    txtreader.close() 
     
    # FILE 2: Each EMPLOYED civilian agent has a list of path nodes they travel to get to  
    # their activity nodes (one file for each agent): 
   
    # Read in the list of path nodes for each agent from individual files and  
    # assign to the generic agent class. 
    shpFilePath = "./projects/rob_model/pathFiles/" + theAgentName + "empnodespath" + ".dbf" 
    
    # Create reader and get first field 
    reader = DBFReader(shpFilePath) 
    fieldCount = reader.getFieldCount() 
    
    # Declaring the list here creates a new one for each file read.   
    theEmpPathNodeList = ArrayList() 
    while (reader.hasNextRecord()):          
      theObject = reader.nextRecord()         
      objList = Arrays.asList(theObject) 
      #print "Field value ", objList.get(0).toString()  
      theEmpPathNodeList.add(objList.get(0)) 
       
       
  # UMEMPLOYED -- Read the file of unemployed activity nodes for each agent 
    #theAgentName = "a" + String.valueOf(j)  
    fileName = "./projects/rob_model/activityNodeFiles/" + theAgentName + "unempnodes" + ".csv" 
    txtreader = BufferedReader(FileReader(fileName)) 
    line = txtreader.readLine() 
    lineNumber = 0 
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    # Loop to read one line at a time, each file in turn 
    while (line): 
      tokenizer = StringTokenizer(line, ",") 
      #counter for the four records in each actNode file 
      if lineNumber > 3:       
        lineNumber = 0 
     
      #Loop to get all the fields in a particular line 
      if (tokenizer.hasMoreTokens()): 
        strnode = tokenizer.nextToken().trim() 
        stringNode = int(strnode) 
        x = tokenizer.nextToken().trim() 
        y = tokenizer.nextToken().trim() 
        #Conditions to assign strnode number in first line of file  
        #to Home, second record to Main ....etc. 
        #print "Strnode :", strnode 
        if lineNumber == 0: 
          theUnempHome = stringNode 
        elif lineNumber == 1: 
          theUnempMain = stringNode 
        elif lineNumber == 2: 
          theUnempRec1 = stringNode 
        else: 
          theUnempRec2 = stringNode 
         
        lineNumber = lineNumber + 1         
        line = txtreader.readLine() 
     
    # Close the file of activity nodes 
    txtreader.close()                      
     
    # FILE 2: Each civilian agent has a list of UNMEMPLOYED path nodes they travel to get to  
    # their activity nodes (one file for each agent): 
   
    # Read in the list of path nodes for each agent from individual files and  
    # assign to the generic agent class. 
    shpFilePath = "./projects/rob_model/pathFiles/" + theAgentName + "unempnodespath" + ".dbf" 
    
    # Create reader and get first field 
    reader = DBFReader(shpFilePath) 
    fieldCount = reader.getFieldCount() 
    
    # Declaring the list here creates a new one for each file read.   
    theUnempPathNodeList = ArrayList() 
    while (reader.hasNextRecord()):         # while reads until there are no more records 
      theObject = reader.nextRecord()         
      objList = Arrays.asList(theObject) 
      #print "Field value ", objList.get(0).toString()  
      theUnempPathNodeList.add(objList.get(0)) 
      
    # Create an individual citizen agent called citizenSet within the loop to read the files in the directory  
    citizenSet = Citizen() 
    citizenSet.setModel(self) 
   
    # Assign the values from the file to the agent variables  #uncomment after testing 
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    citizenSet.assignNodeInfo(theAgentName, theEmpHome, theEmpMain, theEmpRec1, theEmpRec2, 
theEmpPathNodeList, theUnempHome, theUnempMain, theUnempRec1, theUnempRec2, 
theUnempPathNodeList) 
   
    # Add an agent to the ActivityNode class with the field values from above 
    self.citizens.add(citizenSet)                    #uncomment after testing 
     
 
def initCitizens(): 
  print "Inside initCitizens" 
   
  # Open log file 
  logoutput = self.LOG_FILE 
  logWriter = BufferedWriter(FileWriter(logoutput, true)) 
  logData =  "Log File Name: " + logoutput 
  intSize = int(logData.length()) 
  logWriter.write(logData,0,intSize) 
  logWriter.newLine() 
  logData = "Agents with Criminal Propensity: " 
  intSize = int(logData.length()) 
  logWriter.write(logData,0,intSize) 
  logWriter.newLine() 
  logData = "" 
   
  # Create new random normal distribution to ASSIGN WEALTH 
  Random.createNormal(self.WEALTH_MEAN,self.WEALTH_SD) 
   
  # ASSIGN wealth to agents 
  for citizens as Citizen in self.citizens: 
    #Get a new random number for each agent 
    citizens.wealth = Random.normal.nextInt() 
    #print "Name: ", citizens.getName() + " has been assigned Wealth of: "+ citizens.getWealth() 
   
  # Randomly assign criminal propensity to 20% of the Citizens  
  # Assign 200 agents criminal propensity (criminalPropensity = true) 
  for i in range (200):                           
    index = Random.uniform.nextIntFromTo(0, 999)  
    agent = (Citizen)self.citizens.get(index) 
    #print "Index ", String.valueOf(index) 
    #print "Agent Name: "+ agent.getName()+ " is a criminal" 
   
    # Condition to check and make sure citizen was not previously selected to have criminal propensity 
    if agent.criminalPropensity == false: 
      agent.criminalPropensity = true 
    else: 
      while agent.criminalPropensity == true: 
        index = Random.uniform.nextIntFromTo(0, 999)  
        agent = (Citizen)self.citizens.get(index) 
      agent.criminalPropensity = true 
     #print "Agent Name: "+ agent.getName()+ " is a criminal" 
   
    logData = agent.getName() + " is a criminal." 
    intSize = int(logData.length()) 
    logWriter.write(logData,0,intSize) 
    logWriter.newLine() 
    logData = "" 
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  # SET the employment status for all agents in the model 
  # Using a uniform distribution assign 6% of agents to be unemployed 
  for i in range (60):                       
   index = Random.uniform.nextIntFromTo(0, 999)  
   agent = (Citizen)self.citizens.get(index) 
   #print "Index ", String.valueOf(index) 
      
   # Condition to check and make sure citizen was not previously selected to be unemployed 
   if agent.employmentStatus == true: 
     agent.employmentStatus = false        #Agent is unemployed 
   else: 
     while agent.employmentStatus == false: 
       index = Random.uniform.nextIntFromTo(0, 999)   
       agent = (Citizen)self.citizens.get(index) 
     agent.employmentStatus = false 
   #print "Agent Name: "+ agent.getName()+ " is unemployed" 
   
   logData = agent.getName() + " is a criminal." 
   intSize = int(logData.length()) 
   logWriter.write(logData,0,intSize) 
   logWriter.newLine() 
   logData = "" 
    
   
  # SET the activity node and activity path to be used in assigning time spent at activities 
  for citizens as Citizen in self.citizens: 
    nodeFL = Float(citizens.empHome)   # empHome and UnempHome are the same value 
    node = (Place)self.placeMap.get(nodeFL) 
    #print "Street node home: " + citizens.empHome 
    node.citiStart = 1  
    #print "Citizen starts at node: " + node.STRCL_ 
    if citizens.employmentStatus == true: 
      citizens.main = citizens.empMain 
      citizens.rec1 = citizens.empRec1 
      citizens.rec2 = citizens.empRec2 
      citizens.pathNodes = citizens.empPathNodes 
      citizens.setLocation(node) 
      citizens.setStrnode(node.STRCL_) 
    else: 
      citizens.main = citizens.unempMain 
      citizens.rec1 = citizens.unempRec1 
      citizens.rec2 = citizens.unempRec2 
      citizens.pathNodes = citizens.unempPathNodes 
      citizens.setLocation(node) 
      citizens.setStrnode(node.STRCL_) 
    if citizens.criminalPropensity == true: 
      node.crimStart = 1 
             
    #print "Name ", citizens.name 
    #print "Status ", citizens.employmentStatus 
    #print "Main ", citizens.main 
    #print "UnempMain ", citizens.unempMain 
    #print "EmpMain ", citizens.empMain 
      
  ###Randomly assign time to stay at home to each agent 
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  ## Five experimental conditions: 
  #  30% timeAway = 70% of time at home (1008 minutes) 
  #  40% timeAway = 60% of time at home 
  #  50% timeAway = 50% of time at home 
  #  60% timeAway = 40% of time at home 
  #  70% timeAway = 30% of time at home 
  # Create a new random number generator to create a normal distribution  
  # with a mean of 70 and SD of 10.  Since there is no literature on the  
  ##split before and after midnight, randomly assign split. 
 
 
  # CREATE an output file of times at each node and traveling 
  # First create the buffered writer to write the activity times for each agent to a file 
   
  #Commented out code split times at home between start and end node 
  away = int(self.SOCIETAL_TIMEAWAY*100) 
  outFileName = "C:/model_output" +away+"/timeAtActivityNodes.csv" 
  txtWriter = BufferedWriter(FileWriter(outFileName)) 
  columnNames = "Agent,Home,Main,Rec1,Rec2,Travel" 
  intSize = int(columnNames.length()) 
  txtWriter.write(columnNames,0,intSize) 
  txtWriter.newLine() 
   
  # Normal distribution to assign amount of time to spend at home 
  # Mean is the society mean and SD is ten percent of the mean 
  societyPercHome = 1 - self.SOCIETAL_TIMEAWAY 
  standardDeviation = (self.MODEL_DAY * societyPercHome)*.10 
  meanTimeHome = self.MODEL_DAY * societyPercHome 
   
  # Create a normal distribution with specified mean and sd 
  Random.createNormal(meanTimeHome, standardDeviation) 
     
  # Allocate the times to remain at home, main, rec1 and rec2 and the time needed for travel 
  timeLeftForRec = 0 
  for citizens as Citizen in self.citizens:   
   
    # Get a new random number for each agent 
    timeAtHome = Random.normal.nextInt() 
    #print "Random time at home: ", totTimeAtHome 
         
    # Get a new proportion to split time not at home 
    randSplit = Random.uniform.nextDoubleFromTo(.1, .9) 
   
    # Loop through the agents and find out how many nodes are in the activityPath  
    totSteps = citizens.getPathNodes().size() 
    #print "Total Steps: ", totSteps 
   
    # Convert the travel time in steps to travel time in minutes 
    citizens.timeTraveling = totSteps / 6  
    timeAfterTravel = self.MODEL_DAY - citizens.timeTraveling 
   
    # While loop to check for negative numbers and reset timeAtHome until it is less than 
timeAfterTravel. 
    # This ensures the agents have time to spend at each activity node besides Home. 
    # while timeAfterTravel < totTimeAtHome:  
    while timeAfterTravel < timeAtHome: 
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      timeAtHome = Random.normal.nextInt() 
    
    extra = timeAtHome - timeAfterTravel 
    timeAfterTravel_Home = timeAfterTravel - timeAtHome 
    citizens.timeHome = timeAtHome 
     
    # Checks employment status before distributing time to main and recreations places 
    if citizens.employmentStatus:    #Employed 
      citizens.timeMain = (timeAfterTravel_Home/2) 
      citizens.timeRec1 = int(citizens.timeMain * randSplit) 
      citizens.timeRec2 = citizens.timeMain - citizens.timeRec1 
    else:                            #Unemployed 
      citizens.timeMain = int(timeAfterTravel_Home * randSplit) 
      timeLeftForRec = timeAfterTravel_Home - citizens.timeMain 
      citizens.timeRec1 = int(timeLeftForRec * randSplit) 
      citizens.timeRec2 = timeLeftForRec - citizens.timeRec1 
      #citizens.timeMain = (timeAfterTravel_Home/3)   
      #citizens.timeRec1 = int(citizens.timeMain * randSplit) 
      #citizens.timeRec2 = citizens.timeMain - citizens.timeRec1 
     
 
    #create a string of each data field to be written to the file 
    tempName = String.valueOf(citizens.getName()) 
    tempHome = String.valueOf(citizens.getTimeHome()) 
    tempMain = String.valueOf(citizens.getTimeMain()) 
    tempRec1 = String.valueOf(citizens.getTimeRec1()) 
    tempRec2 = String.valueOf(citizens.getTimeRec2()) 
    tempTravel = String.valueOf(citizens.getTimeTraveling()) 
    intSize = int(values.length()) 
    txtWriter.write(values,0,intSize) 
    txtWriter.newLine() 
    
    #print "Agent:", citizens.getName() 
    #print "Time Traveling: ", citizens.getTimeTraveling() 
    #print "Time at Home: ", citizens.getTimeHome() 
    #print "Time at Main: ", citizens.getTimeMain() 
    #print "Time at Rec1: ", citizens.getTimeRec1() 
    #print "Time at Rec2: ", citizens.getTimeRec2() 
     
  #close the file of activity path nodes 
  txtWriter.close() 
    
     
  # Write out initial values for each agent 
  # Header line 
  logData = "Name, Criminality, Wealth_Start, TimeHome, StartNode" 
  intSize = int(logData.length()) 
  logWriter.write(logData,0,intSize) 
  logWriter.newLine() 
  logData = "" 
  for citizens as Citizen in self.citizens: 
    # Write values 
    logData = citizens.getName() + "," + citizens.getCriminalPropensity() + "," + citizens.getWealth() + 
"," + citizens.getTimeHome() + "," + citizens.getStrnode() 
    intSize = int(logData.length()) 
    logWriter.write(logData,0,intSize) 

 274



 

    logWriter.newLine() 
    logData = "" 
     
  #Close the log file   
  logWriter.close() 
   
  #for citizens as Citizen in self.citizens: 
   #print "Name: " + citizens.getName() 
   #print "Home: " + citizens.getHome() 
   #print "Main: " +citizens.getMain() 
   #print "Rec1: " +citizens.getRec1() 
   #print "Rec2: " +citizens.getRec2() 
   #print "Employed?: " +citizens.getEmploymentStatus() 
 
 
def decideRob(): 
Java imports 
java.lang.Object 
java.lang.String 
uchicago.src.sim.util.SimUtilities 
java.util.Arrays 
java.util.List 
 
Code 
  #print "Inside decideRob" 
   
  # Open log file 
  logoutput = self.LOG_FILE 
  logWriter = BufferedWriter(FileWriter(logoutput, true)) 
  #data = "Inside Decide Rob Action" 
  #intSize = int(data.length()) 
  #logWriter.write(data,0,intSize) 
  #logWriter.newLine() 
  #data = "" 
   
  # Check each ActiveNode for list of agents 
  # Logical error check 
  if self.activeNodes.size() > self.AGENTS: 
    data = "Too Many Active Nodes during step: " + self.modelStep 
    intSize = int(data.length()) 
    logWriter.write(data,0,intSize) 
    logWriter.newLine() 
    data = "" 
  #else: 
    #data = "Number of Active Nodes in: " + self.modelStep + " is: "  + self.activeNodes.size() 
    #intSize = int(data.length()) 
    #logWriter.write(data,0,intSize) 
    #logWriter.newLine() 
    #data = "" 
  
  # Loop through the nodes with citizens and make the decision to commit a robbery 
  for occupied as ActiveNode in self.activeNodes: 
    # Check agents at each of the active nodes  
    #print "The Node being evaluated is: ", occupied.strnode 
     
    #################   

 275



 

    #data = "Street Node " + occupied.strnode 
    #intSize = int(data.length()) 
    #logWriter.write(data,0,intSize) 
    #logWriter.newLine() 
    #data = "" 
     
    # Initialize variables in action 
    numAgentsAtNode = occupied.getAgentList().size() 
    #data = "Number of Agents at Node (from size of agent list field): " + numAgentsAtNode 
    #intSize = int(data.length()) 
    #logWriter.write(data,0,intSize) 
    #logWriter.newLine() 
    #data = "" 
     
    numCrimAtNode = 0 
    numAgentAtRisk = 0 
    numCriminals = 0 
    offenderAtNode = false 
    curStreetNode = (Place)self.places.get(0) 
    #print "The default curStreetNode: ", curStreetNode.STRCL_ 
    curAgent = (Citizen)self.citizens.get(0) 
    targetAgent = (Citizen)self.citizens.get(0)    #used to initialize target variable 
    criminalAgent = (Citizen)self.citizens.get(0)  
    copPresent = false 
    robbery = true 
    crimWealth = 0 
    evalWealth = 0 
    targetWealth = 0 
    suitability = 0 
    targetSet = false 
     
    #################   
    #data = "START VALUES: Criminal Agent-- " + criminalAgent.name + "Current Agent-- " + 
curAgent.name + "Target agent- " + targetAgent.name 
    #intSize = int(data.length()) 
    #logWriter.write(data,0,intSize) 
    #logWriter.newLine() 
    #data = "" 
     
    # Log presence of agents on street node 
    # Retrieving the place by converting to a float object 
    occupiedObject = Float(occupied.strnode) 
    currentPlace = (Place)self.placeMap.get(occupiedObject) 
    #print "NEW Place node:", currentPlace.getSTRCL_() 
    #print "Number of agents at Node: ", numAgentsAtNode 
    #self.messageDisplay.addAlert("There are "+ numAgentsAtNode + " citizens at " + 
occupied.strnode) 
     
    # Log fact that agents visited a node in the shapefile 
    if (currentPlace != None): 
      currentPlace.totalVisit = currentPlace.totalVisit + numAgentsAtNode 
      #currentPlace.visits = currentPlace.visits + numAgentsAtNode 
      #print "NEW Number of Visits: ", currentPlace.totalVisit    
    else: 
      print "Unable to log visit at strnode: " + occupied.strnode + " during tick: " + self.modelStep 
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    #Loop through all the cops to find out if there is a cop at node 
    for copAtNode as Cop in self.cops: 
      copPlace = copAtNode.getLocation() 
      #When you find a cop at the place break out of loop and calculate variable 
      if copPlace == currentPlace: 
        #print "Cop at node: ", copAtNode.location.STRCL_  
        copPresent = true 
        break 
      else: 
        copPresent = false 
         
    #############################DEBUG 
    #if copPresent == true: 
      #data = "Cop is at node! "  
      #intSize = int(data.length()) 
      #logWriter.write(data,0,intSize) 
      #logWriter.newLine() 
      #data = ""     
    #if copPresent == true: 
      #print "Cop! at node "+ occupied.strnode 
         
    #Only evaluate nodes that have more than one citizen and there is no cop present   
    if numAgentsAtNode > 1:                #Change to > 1 for final testing 
     
      #################  DEBUG 
      #data = "Street Node " + occupied.strnode 
      #intSize = int(data.length()) 
      #logWriter.write(data,0,intSize) 
      #logWriter.newLine() 
      #data = "" 
      ############################# 
      #data = "Number of Agents at Node is: " + numAgentsAtNode 
      #intSize = int(data.length()) 
      #logWriter.write(data,0,intSize) 
      #logWriter.newLine() 
      #data = "" 
               
      # Calculate the level of GUARDIANSHIP 
      guardianship = (numAgentsAtNode - 2) + 
Random.uniform.nextIntFromTo(self.MIN_GUARDIANSHIP,self.MAX_GUARDIANSHIP) 
      #print "Guardianship is: ", guardianship 
      
      # Outside loop that checks each of the agents at a particular node using the citizen name 
      # Use code to randomly shuffle the agents at a node so they have an equal chance of being  
      # selected first and thus are not always evaluated in the same order. 
       
      #for position in range(0, numAgentsAtNode): 
        #print "Original Order: Node--" + occupied.strnode + " Position " + position + ", "+ 
String.valueOf(occupied.getAgentList().get(position)) 
            
      # Create a distribution using number of agents at node  
      maxValue = numAgentsAtNode-1 
             
      # Create arraylist variables 
      # Array to hold randomly shuffled agents 
      randList = ArrayList() 
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      # List of array positions that have been used 
      strList = ArrayList() 
      foundIt = false 
      #print numAgentsAtNode 
      # Outside while to create a new list of all the agents at the node in a new order 
 
      while randList.size() < numAgentsAtNode: 
        # Generate a random number 
        foundIt = false 
        #index = shuffleDist.nextInt() 
        index = Random.uniform.nextIntFromTo(0,numAgentsAtNode-1) 
        indexStr = String.valueOf(index) 
        #print "Original index generated is: " + index 
         
        ############################# 
        #data = "Index value: " + index 
        #intSize = int(data.length()) 
        #logWriter.write(data,0,intSize) 
        #logwriter.newLine() 
        #data = ""  
         
        # If this is the first agent generated then add it to the new randList array, otherwise check to see if  
        # the index has already been used 
        if strList.size() >= 1: 
          for p in range (0, strList.size()): 
            if String.valueOf(strList.get(p)) == indexStr: 
              foundIt = true 
              break 
          
        if foundIt == false:  
          agent = occupied.AgentList.get(index) 
          randList.add(agent) 
          strList.add(indexStr) 
          #print "randList size is ", randList.size() 
          #print "New size of list of index numbers is " + strList.size() 
       
      # Code to verify new order     
      #for position in range(0, numAgentsAtNode): 
        #print "New order at Node: " + occupied.strnode + " position " + position + ", " + 
String.valueOf(randList.get(position)) 
 
      for i in range (0,numAgentsAtNode): 
        #Bunch of code that get the agent name (e.g. a1) and then strips off the first character 
        #and pulls the correct Citizen agent using the agent name  
        fullName = randList.get(i) 
        fullStrName = String.valueOf(fullName) 
        partName = fullStrName.substring(1) 
        #print "Agent: " + partname + " in agentList" 
        # Use the agent's name to find the index number of correct Citizen agent 
        index = int(partName) - 1 
        curAgent = (Citizen)self.citizens.get(index) 
        #print "Citizen in agentList: ", curAgent.name 
        #print "Current agent: " + curAgent.name + " is criminal? " + curAgent.criminalPropensity 
         
        ################################# 
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        #data = "Loop through current agents to find Criminal: " + i + "," + 
String.valueOf(randList.get(i)) + "," + "criminal: " + curAgent.criminalPropensity + "," + " at risk?: " + 
curAgent.atRisk  
        #intSize = int(data.length()) 
        #logWriter.write(data,0,intSize) 
        #logWriter.newLine() 
        #data = ""       
                 
        # Identifies if any of the agents have criminal propensity and are 'atRisk' and selects the 
        # first one it finds to be the active criminal in this interaction 
        if curAgent.criminalPropensity == true and curAgent.atRisk == true: 
          criminalAgent = curAgent 
          if criminalAgent.timerRepeat == 0: 
            offenderAtNode = true 
          #else: 
            #print "Agent " + criminalAgent.name + " Offender unable to offend yet" 
          break        #go directly to next if statement (if offenderAtNode == true:) 
           
      #################################DEBUG 
      #data = "Criminal in interaction: " + criminalAgent.name + "," + "timer: " + 
criminalAgent.timerRepeat  
      #intSize = int(data.length()) 
      #logWriter.write(data,0,intSize) 
      #logWriter.newLine() 
      #data = ""      
       
       
      # Loop that uses formulas to evaluate guardianship and target suitability 
      if offenderAtNode == true: 
        #print "Offender: " + criminalAgent.name + " is at Node and evaluating opportunity" 
         
        # Find out how many civilians are 'at risk' and  
        # which 'at risk' civilian at the active node has the most wealth 
        for i in range (0,numAgentsAtNode): 
          # Get the first agent in the randomly ordered list 
          fullName = randList.get(i) 
          fullStrName = String.valueOf(fullName) 
          partName = fullStrName.substring(1) 
          # Use the agent's name to find the index number of correct Citizen agent 
          index = int(partName) - 1 
          evalAgent = (Citizen)self.citizens.get(index) 
          evalWealth = evalAgent.wealth 
          crimWealth = criminalAgent.Wealth 
          #print "Criminal's Wealth: ", crimWealth 
          #print "Evaluated agent: ", evalAgent.name 
          #print "Evaluated agent's wealth: ", evalWealth 
           
          # Counter for number of criminals at node 
          if evalAgent.criminalPropensity == true: 
            numCrimAtNode = numCrimAtNode + 1 
           
           
          #############################DEBUG 
          #data = "Evaluate Wealth for eval agent: " + evalAgent.name + " has wealth of: " + evalWealth 
+ " CrimAgent: " + criminalAgent.name + "has wealth of: " + crimWealth 
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          #data = "Eval agent: " + "," + evalAgent.name + "," + "Wealth: " + "," + evalWealth + " 
CrimAgent: " + criminalAgent.name + "has wealth of: " + crimWealth  
          #intSize = int(data.length()) 
          #logWriter.write(data,0,intSize) 
          #logWriter.newLine() 
          #data = "" 
           
          # Counter for number of agents at node who are 'at risk' of being robbed (only is counted 
          # if there is an offender at the node) 
          if (evalAgent.atRisk == true) and (evalAgent.name != criminalAgent.name): 
            numAgentAtRisk = numAgentAtRisk + 1 
             
          ############################# 
          #data = "Number of agents at risk: " + numAgentAtRisk  
          #intSize = int(data.length()) 
          #logWriter.write(data,0,intSize) 
          #logWriter.newLine() 
          #data = ""  
             
          # Identify the 'at risk' agent with the most wealth 
          if criminalAgent.name != evalAgent.name:  
            ############################# 
            #data = "Comparing " + criminalAgent.name + " with " + crimWealth + " to evaluated agent: " 
+ evalAgent.name + " with " + evalWealth 
            #intSize = int(data.length()) 
            #logWriter.write(data,0,intSize) 
            #logWriter.newLine() 
            #data = ""  
           
            #print "Comparing " + criminalAgent.name + " with " + crimWealth + " to evaluated agent: " + 
evalAgent.name + " with " + evalWealth 
            if (crimWealth <= evalWealth) and (evalAgent.atRisk == true): 
              if evalWealth > targetWealth: 
                targetWealth = evalWealth 
                #targetAgent = (Citizen)self.citizens.get(index) 
                targetAgent = evalAgent 
                targetSet = true 
                #print "Current Agent with highest wealth ," + targetAgent.name 
         
        ######################## DEBUG 
        #data = "Identity of selected targetAgent: " + "," + targetAgent.name + "," + 
targetAgent.criminalPropensity  
        #intSize = int(data.length()) 
        #logWriter.write(data,0,intSize) 
        #logWriter.newLine() 
        #data = ""       
        #print "Number of agents at risk", numAgentAtRisk 
         
        ######################Print summary 
        #if numCrimAtNode >= 2: 
          #data = "Two or more criminals present at node during Model Step: " + "," + self.modelStep 
          #intSize = int(data.length()) 
          #logWriter.write(data,0,intSize) 
          #logWriter.newLine() 
          #data = "" 
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          #data = "Number Criminals: " + "," + numCrimAtNode + "," + "Number Agents at Risk: " + 
numAgentAtRisk 
          #intSize = int(data.length()) 
          #logWriter.write(data,0,intSize) 
          #logWriter.newLine() 
          #data = "" 
                   
        # Decide to Commit Robbery 
        # Calculate SUITABILITY of victim but first check to see if there is a targetAgent found 
        targetExists = false 
        if targetSet == true: 
          #print "Current Agent with highest wealth ", targetAgent.name 
          suitability = targetWealth - crimWealth + 
Random.uniform.nextIntFromTo(self.MIN_SUITABILITY, self.MAX_SUITABILITY) 
          targetExists = true 
             
        # Series of checks necessary to evaluate guardianship value calculated earlier 
        # If G < 1 then there is a lack of capable guardians so commitCrime = true 
        # If G = 1 then randomly assign T or F with equal probability 
        # If G >= 2 then too many guardians so commitCrime = false 
        #print "PreCommit Crime Guardianship is: ", guardianship 
        #print "Suitability is: ", suitability 
         
        # Check to make sure a target exists and evaluate suitability and guardianship 
        if targetExists == true and suitability >= 0 and guardianship < 1 and copPresent == false:    
#commit crime 
          # Exchange one units of wealth 
          # Subtract one unit from victim 
          #print "Victim Name ", targetAgent.name 
          #print "Victims current wealth ", targetAgent.wealth 
          targetAgent.wealth = targetAgent.wealth - 1 
          #print "Victims new wealth ", targetAgent.wealth 
          #print "Offender Name: " + criminalAgent.name + "Timer value of: " + 
criminalAgent.timerRepeat 
          #print "Offenders current wealth ", criminalAgent.wealth 
           
          # Add one unit of wealth to criminal 
          criminalAgent.wealth = criminalAgent.wealth + 1 
          #print "Offenders new wealth ", criminalAgent.wealth 
           
          # Start the timer until citizen can offend again 
          criminalAgent.timerRepeat = 1 
           
          # Code to log the offense for that specific place 
          if (currentPlace != None): 
            currentPlace.totalRob = currentPlace.totalRob + 1 
            #print "Robbery at Node: ", currentPlace.STRCL_ 
            #print "Total Robberies at Specific Node  ", currentPlace.totalRob  
            # Log the offense at model level 
            self.totRob = self.totRob + 1 
           
            # Log offending and victimization for agents involved 
            criminalAgent.numOffen = criminalAgent.numOffen + 1 
            targetAgent.numVict = targetAgent.numVict + 1   
             
            ##################################DEBUG 
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            #data = "ROBBERY:  CriminalAgent: " + criminalAgent.name + "," + "TargetAgent: " + 
targetAgent.name  
            #intSize = int(data.length()) 
            #logWriter.write(data,0,intSize) 
            #logWriter.newLine() 
            #data = ""  
            
            ##################################DEBUG 
            #data = "WEALTH:  CriminalAgent: " + criminalAgent.wealth + "," + "TargetAgent: " + 
targetAgent.wealth  
            #intSize = int(data.length()) 
            #logWriter.write(data,0,intSize) 
            #logWriter.newLine() 
            #data = "" 
                          
            #if targetAgent.criminalPropensity == true: 
                ################################## 
                #data = "Model step:  " + self.modelStep 
                #intSize = int(data.length()) 
                #logWriter.write(data,0,intSize) 
                #logWriter.newLine() 
                #data = ""  
                #data = "Target Agent: " + targetAgent.name + "is a criminal" 
                #intSize = int(data.length()) 
                #logWriter.write(data,0,intSize) 
                #logWriter.newLine() 
                #data = ""  
             
          else: 
              print "Unable to log robbery at strnode: " + occupied.strnode + " during tick: " + 
self.modelStep 
                 
        # Random decision to commit robbery 
        elif targetExists == true and suitability >= 0 and guardianship == 1 and copPresent == false:      
          randDecision = guardianship + Random.uniform.nextIntFromTo(self.MIN_SUITABILITY, 
self.MAX_SUITABILITY) 
          #print "Random Decision: ", randDecision   
          if randDecision == 1: 
            break 
          elif randDecision < 1: 
            # Exchange one units of wealth 
            #print "Random: Victim Name ", targetAgent.name 
            #print "Random: Victims current wealth ", targetAgent.wealth 
            targetAgent.wealth = targetAgent.wealth - 1 
            #print "Victims new wealth ", targetAgent.wealth 
            #print "Random: Offender Name " + criminalAgent.name + "Timer value of: " + 
criminalAgent.timerRepeat 
            #print "Random: Offenders current wealth ", criminalAgent.wealth 
            criminalAgent.wealth = criminalAgent.wealth + 1 
            #print "Offenders new wealth ", criminalAgent.wealth 
             
            # Start the timer until citizen can offend again 
            criminalAgent.timerRepeat = 1 
               
            # Log the offense at the specific place                             
            if (currentPlace != None): 
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              currentPlace.totalRob = currentPlace.totalRob + 1 
              #print "Robbery at Node: ", currentPlace.STRCL_ 
              #print "Total Robberies at Specific Node  ", currentPlace.totalRob  
              # Log the offense at model level 
              self.totRob = self.totRob + 1 
             
              # Log offending and victimization for agents involved 
              criminalAgent.numOffen = criminalAgent.numOffen + 1 
              targetAgent.numVict = targetAgent.numVict + 1 
               
              ################################## 
              #data = "ROBBERY:  CriminalAgent: " + criminalAgent.name + "," + "TargetAgent: " + 
targetAgent.name  
              #intSize = int(data.length()) 
              #logWriter.write(data,0,intSize) 
              #logWriter.newLine() 
              #data = ""  
               
              #if targetAgent.criminalPropensity == true: 
                ################################## 
                #data = "Target Agent: " + targetAgent.name + "is a criminal" 
                #intSize = int(data.length()) 
                #logWriter.write(data,0,intSize) 
                #logWriter.newLine() 
                #data = ""  
             
            else: 
              print "Unable to log random decision robbery at strnode: " + occupied.strnode + " during tick: 
" + self.modelStep 
        
      ################################## 
      #data = "FINAL:  CriminalAgent: " + criminalAgent.name + "," + "TargetAgent: " + 
targetAgent.name  
      #intSize = int(data.length()) 
      #logWriter.write(data,0,intSize) 
      #logWriter.newLine()  
            
    # Loop that logs deterrence effect of cops 
    #print "Cop was present and I made it inside for loop" 
    if offenderAtNode == true and copPresent == true and numAgentAtRisk >= 1 and targetWealth > 0: 
      currentPlace.totPrevent = currentPlace.totPrevent + 1 
      self.totDeter = self.totDeter + 1 
      #print "Running total of crimes DETERRED is: ", self.totDeter     
             
    # Log occurrence of potential crime situation - offender and victims present 
    if offenderAtNode == true and numAgentAtRisk >= 1: 
      self.totIntersect = self.totIntersect + 1   
      #print "Running total of potential robbery situations: ", self.totIntersect 
                      
    #else: 
      #print "Only one agent at node or cop at node." 
       
  # Close the writer   
  logWriter.close() 
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def writeOccupiedNodes(): 
  #print "Inside writeOccupiedNodes from model level" 
   
  away = int(self.SOCIETAL_TIMEAWAY*100) 
   
  # Write out contents of ACTIVE NODES class 
  # CREATE an output file and the buffered writer to write the activity times for each agent to a file 
  currTick = int(self.getTickCount()) 
  #print "Current Tick: ", currTick 
  outFileName = "C:/model_output"+away+"/occupiedSnapshot"+currTick+".csv" 
  txtWriter = BufferedWriter(FileWriter(outFileName)) 
  columnNames = "StreetNode,NumAgents,Agent1,Agent2,Agent3,Agent4,Agent5" 
  intSize = int(columnNames.length()) 
  txtWriter.write(columnNames,0,intSize) 
  txtWriter.newLine() 
   
  # Loop through all the active nodes and write the agents at each node to a file 
  for occupied as ActiveNode in self.activeNodes: 
    #print "Number of agents at node ", occupied.agentList.size() 
    #create a string of each data field to be written to the file 
    tempNode = String.valueOf(occupied.strnode) 
    numAgents = String.valueOf(occupied.agentList.size())   
    temp = tempNode + "," + numAgents 
     
    for i in range (0,occupied.agentList.size()): 
      temp = temp + "," 
      temp = temp + String.valueOf(occupied.agentList.get(i)) 
    
    intSize = int(temp.length()) 
    txtWriter.write(temp,0,intSize) 
    txtWriter.newLine() 
   
  #print "Agent:", citizens.getName() 
  #print "Time Traveling: ", citizens.getTimeTraveling() 
  #print "Time at Home: ", citizens.getTimeHome() 
  #print "Time at Main: ", citizens.getTimeMain() 
  #print "Time at Rec1: ", citizens.getTimeRec1() 
  #print "Time at Rec2: ", citizens.getTimeRec2() 
   
  # Close the file of activity path nodes 
  txtWriter.close() 
 
 
def idChangingEmploymentStatus(): 
  #print "ID CHANGE AGENTS loop" 
   
  #SWITCH the employment status for 3% of agents in the model using a uniform distribution  
  for i in range (30):                      #change to 30 for the full model 
   index = Random.uniform.nextIntFromTo(0,999)    #change to 999 for full model 
   agent = (Citizen)self.citizens.get(index) 
   agent.changeEmpStatus = true 
   #print "Changed agent name ", agent.name 
 
 
def switchActivitySpace(): 
  # Switch the activity spaces of agents whose employment status changed 
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  # Allocate the times to remain at home, main, rec1 and rec2 and the time needed for travel 
  # RN Distribution has been verified 
   
  #print "Inside switchEmploymentStatus -- Model" 
   
  for citizens as Citizen in self.citizens: 
    # Get a new random number for each agent 
    timeAtHome = Random.normal.nextInt() 
    #print "Random time at home: ", totTimeAtHome 
         
    # Get a new proportion to split time not at home 
    randSplit = Random.uniform.nextDoubleFromTo(.1, .9) 
    timeLeftForRec = 0 
    if citizens.changeEmpStatus == true: 
      #print "Index ", String.valueOf(index) 
      #print "Agent Name: ", citizens.getName() 
      #print "PreChange empStatus ", citizens.employmentStatus 
      if citizens.employmentStatus == true: 
        #print "My Values should be for unemployed" 
        citizens.employmentStatus = false        #Employed becomes unemployed 
        citizens.main = citizens.unempMain 
        citizens.rec1 = citizens.unempRec1 
        citizens.rec2 = citizens.unempRec2 
        citizens.pathNodes = citizens.unempPathNodes 
        citizens.changeEmpStatus = false 
        #print "Main Node ", citizens.main 
        #print "Unemp Node ", citizens.unempMain 
   
        # Start of code to reallocate time at activity nodes based on length of circuit 
        # Loop through the agents and find out how many nodes are in the activityPath  
        totSteps = citizens.getPathNodes().size() 
        #print "Total Steps: ", totSteps 
   
        # Convert the travel time in steps to travel time in minutes 
        citizens.timeTraveling = totSteps / 6  
        timeAfterTravel = self.MODEL_DAY - citizens.timeTraveling 
   
        # If loop to check for negative numbers 
        while timeAfterTravel < timeAtHome: 
          timeAtHome = Random.normal.nextInt() 
        extra = timeAtHome - timeAfterTravel 
        timeAfterTravel_Home = timeAfterTravel - timeAtHome 
        citizens.timeHome = timeAtHome 
        citizens.timeMain = int(timeAfterTravel_Home * randSplit) 
        timeLeftForRec = timeAfterTravel_Home - citizens.timeMain 
        citizens.timeRec1 = int(timeLeftForRec * randSplit) 
        citizens.timeRec2 = timeLeftForRec - citizens.timeRec1 
      else:  
        #print "I am employed" 
        citizens.employmentStatus = true         #Unemployed becomes employed  
        citizens.main = citizens.empMain 
        citizens.rec1 = citizens.empRec1 
        citizens.rec2 = citizens.empRec2 
        citizens.pathNodes = citizens.empPathNodes 
        citizens.changeEmpStatus = false 
        #print "Main Node ", citizens.main 
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        #print "Emp Node ", citizens.empMain 
   
        # Start of code to reallocate time at activity nodes based on length of circuit 
        # Loop through the agents and find out how many nodes are in the activityPath  
        totSteps = citizens.getPathNodes().size() 
        #print "Total Steps: ", totSteps 
   
        # Convert the travel time in steps to travel time in minutes 
        citizens.timeTraveling = totSteps / 6  
        timeAfterTravel = self.MODEL_DAY - citizens.timeTraveling 
   
        # If loop to check for negative numbers 
        while timeAfterTravel < timeAtHome: 
          timeAtHome = Random.normal.nextInt() 
         
        extra = timeAtHome - timeAfterTravel    
        timeAfterTravel_Home = timeAfterTravel - timeAtHome 
        citizens.timeHome = timeAtHome 
        citizens.timeMain = (timeAfterTravel_Home/2) 
        citizens.timeRec1 = int(citizens.timeMain * randSplit) 
        citizens.timeRec2 = citizens.timeMain - citizens.timeRec1 
    
      #print "PostChange ", citizens.employmentStatus 
 
 
def initCops(): 
  print "Inside init cops" 
  #Randomly assign the cops to a starting location.   
   
  # Use the Places to get the strnode 
  for i in range (self.COPS):            #assign 2000 cop agents for testing and 200 cops for final model 
    index = Random.uniform.nextIntFromTo(0, self.NUM_PLACES - 1) 
    #print "Index ", index 
    cop = Cop() 
    cop.setModel(self) 
      
    node = (Place)self.places.get(index) 
    #print "FOUND a place " , node.STRCL_ 
     
    # Log that cop started at this node 
    node.copStart = 1 
    cop.setLocation(node) 
    cop.setStrnode(node.STRCL_) 
    self.cops.add(cop) 
 
 
def resetAgentsDaily(): 
  #print "Inside resetAgentsDaily" 
   
  for citizen as Citizen in self.citizens: 
    citizen.atActivity = true 
    citizen.atRisk = false 
    citizen.moveStatus = false 
    citizen.position = 0 
    citizen.timeCounter = 0 
    citizen.timerHome = 0 
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    citizen.timerMain = 0 
    citizen.timerRec1 = 0 
    citizen.timerRec2 = 0 
    #print "Counter at reset agent: " + citizen.timerRepeat 
 
 
def createCitizenTravelOutputFiles(): 
  print "Inside createCitizenTravelOutputFiles" 
   
  away = int(self.SOCIETAL_TIMEAWAY*100) 
     
  # Create an output file for model runtime statistics  
  # Average number of agents unemployed, average wealth, robbery rate, exposure rate, etc. 
  currTick = int(self.getTickCount()) 
  outFileName = "C:/model_output"+away+"/citizenChar.csv" 
  dataWriter = BufferedWriter(FileWriter(outFileName)) 
  columnNames = 
"Tick,NumChangeEmp,NumUnemployed,TotWealth,AvgWealth,RobRate,TotVictims,RepeatVict,Tot
Offen,RepeatOffen,NumExp,PercExposed,NumTravel,PercTraveling,numActiveOffenders,numWaitin
gOffenders,cumDeter,cumIntersect,cumRobberies" 
  intSize = int(columnNames.length()) 
  dataWriter.write(columnNames,0,intSize) 
  dataWriter.newLine() 
  dataWriter.close() 
 
 
def writeCitizenTravInfotoFiles(): 
  #print "Inside writeCitizenTravInfotoFiles" 
  away = int(self.SOCIETAL_TIMEAWAY*100) 
   
 # Loop through all citizen agents and write out the specified fields 
  for citizen as Citizen in self.citizens: 
    # Create a string of each data field to be written to the file, two fields at a time 
    agentName = String.valueOf(citizen.name) 
    # Write the fields describing citizen agents 
    # CREATE an output file and the buffered writer to write the activity times for each agent to a file 
    currTick = int(self.getTickCount()) 
    #print "Current Tick: ", currTick 
    outFileName = "C:/model_output"+away+"/citizens"+agentName+".csv" 
    txtWriter = BufferedWriter(FileWriter(outFileName, true)) 
  
    tempName = currTick 
    home = String.valueOf(citizen.timerHome)   
    temp = tempName + "," + home 
    main = String.valueOf(citizen.timerMain) 
    temp = temp + "," + main 
    rec1 = String.valueOf(citizen.timerRec1) 
    temp = temp + "," + rec1 
    rec2 = String.valueOf(citizen.timerRec2) 
    temp = temp + "," + rec2 
    travel = String.valueOf(citizen.totTimeTraveling) 
    temp = temp + "," + travel 
    expose = String.valueOf(citizen.totTimeExposed) 
    temp = temp + "," + expose 
    vict = String.valueOf(citizen.numVict) 
    temp = temp + "," + vict 
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    offen = String.valueOf(citizen.numOffen) 
    temp = temp + "," + offen 
    ahome = String.valueOf(citizen.timeHome)   
    temp = temp + "," + ahome 
    amain = String.valueOf(citizen.timeMain) 
    temp = temp + "," + amain 
    arec1 = String.valueOf(citizen.timeRec1) 
    temp = temp + "," + arec1 
    arec2 = String.valueOf(citizen.timeRec2) 
    temp = temp + "," + arec2 
    atravel = String.valueOf(citizen.timeTraveling) 
    temp = temp + "," + atravel 
     
    intSize = int(temp.length()) 
    txtWriter.write(temp,0,intSize) 
    txtWriter.newLine() 
    txtWriter.close() 
 
 
def writeModelRunData(): 
  print "Inside writeModelRunData" 
  away = int(self.SOCIETAL_TIMEAWAY*100) 
  print away 
   
  # CREATE an output file and the buffered writer to write the activity times for each agent to a file 
  modelRun = 1 
  self.LOG_FILE = "C:/model_output"+away+"/RunDatav"+ modelRun + ".csv" 
  txtWriter = BufferedWriter(FileWriter(self.LOG_FILE)) 
   
  # Put a model run header 
  header =  "Model run: " + modelRun 
  intSize = int(header.length()) 
  txtWriter.write(header,0,intSize) 
  txtWriter.newLine() 
   
  # Add parameter information 
  seed = Random.getSeed() 
  nxtLine = "Random Number Seed: " + seed 
  intSize = int(nxtLine.length()) 
  txtWriter.write(nxtLine,0,intSize) 
  txtWriter.newLine() 
   
  nxtLine = "Time to reoffend: " + self.REPEAT 
  intSize = int(nxtLine.length()) 
  txtWriter.write(nxtLine,0,intSize) 
  txtWriter.newLine() 
   
  nxtLine = "Wealth: " + "Mean " + self.WEALTH_MEAN + ", Standard Deviation " + 
self.WEALTH_SD 
  intSize = int(nxtLine.length()) 
  txtWriter.write(nxtLine,0,intSize) 
  txtWriter.newLine() 
     
  # Close text writer 
  txtWriter.close() 
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def writeStatistics(): 
  # Writes out final statistics for all agents in one file to provide summary statistics 
  # Aggregate time spent at home, main, rec1, rec2, travel, and exposed. 
  # Assigned time to spend at home, main, rec1, rec2, travel. 
  # Total number of offenses and victimizations. 
   
  # Create a file  
  away = int(self.SOCIETAL_TIMEAWAY*100) 
   
  outFileName = "C:/model_output"+away+"/statistics.csv" 
  txtWriter = BufferedWriter(FileWriter(outFileName)) 
  columnNames = 
"Agent,timerHome,timerMain,timerRec1,timerRec2,totTimeTraveling,totTimeExposed,numVict,num
Offen,assignHome,assignMain,assignRec1,assignRec2,assignTravel,criminal,wealth" 
  intSize = int(columnNames.length()) 
  txtWriter.write(columnNames,0,intSize) 
  txtWriter.newLine() 
   
  for citizen as Citizen in self.citizens: 
    # Create a string of each data field to be written to the file, two fields at a time 
    name = String.valueOf(citizen.name) 
    home = String.valueOf(citizen.timerHome)   
    temp = name + "," + home 
    main = String.valueOf(citizen.timerMain) 
    temp = temp + "," + main 
    rec1 = String.valueOf(citizen.timerRec1) 
    temp = temp + "," + rec1 
    rec2 = String.valueOf(citizen.timerRec2) 
    temp = temp + "," + rec2 
    travel = String.valueOf(citizen.totTimeTraveling) 
    temp = temp + "," + travel 
    expose = String.valueOf(citizen.totTimeExposed) 
    temp = temp + "," + expose 
    vict = String.valueOf(citizen.numVict) 
    temp = temp + "," + vict 
    offen = String.valueOf(citizen.numOffen) 
    temp = temp + "," + offen 
    ahome = String.valueOf(citizen.timeHome)   
    temp = temp + "," + ahome 
    amain = String.valueOf(citizen.timeMain) 
    temp = temp + "," + amain 
    arec1 = String.valueOf(citizen.timeRec1) 
    temp = temp + "," + arec1 
    arec2 = String.valueOf(citizen.timeRec2) 
    temp = temp + "," + arec2 
    atravel = String.valueOf(citizen.timeTraveling) 
    temp = temp + "," + atravel 
    acriminal = String.valueOf(citizen.criminalPropensity) 
    temp = temp + "," + acriminal 
    awealth = String.valueOf(citizen.wealth) 
    temp = temp + "," + awealth 
     
    intSize = int(temp.length()) 
    txtWriter.write(temp,0,intSize) 
    txtWriter.newLine() 
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  # Close the file   
  txtWriter.close() 
 
 
def dataRecorder(): 
  #print "DATA RECORDER T0 FILE" 
   
  # Writes out model runtime statistics  
  # Average number of agents unemployed, average wealth, robbery rate, exposure rate, etc. 
   
  away = int(self.SOCIETAL_TIMEAWAY*100) 
   
  # Open the output file and the buffered writer to write the information to a file 
  currTick = int(self.getTickCount()) 
  outFileName = "C:/model_output"+away+"/citizenChar.csv" 
  dataWriter = BufferedWriter(FileWriter(outFileName, true)) 
   
  # Count number of agents to change employment status  
  numChange = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.changeEmpStatus == true: 
      numChange = numChange + 1 
      citizens.changeEmpStatus = false 
   
  # Count unemployed agents  
  numUnemployed = 0 
  numEmployed = 0 
  for agent as Citizen in self.citizens: 
    if agent.employmentStatus == false: 
      numUnemployed = numUnemployed + 1 
    elif agent.employmentStatus == true: 
      numEmployed = numEmployed + 1   
    else: 
      print "Employment status not assigned"   
  #print "Number unemployed is: ", numUnemployed 
  #print "Number employed is: ", numEmployed 
   
  # Calculate average wealth of agents  
  totWealth = 0 
  for citizens as Citizen in self.citizens: 
    totWealth = totWealth + citizens.wealth 
  aveWealth = totWealth / self.AGENTS 
   
  # Calculate the robbery rate  
  robRate = 0 
  robRate = self.totRob / self.AGENTS 
   
  # Count number of agents victimized 
  totNumVict = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.numVict > 0: 
      totNumVict = totNumVict + 1 
       
  # Count number of repeat victims 
  numRepeatVict = 0 
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  for citizens as Citizen in self.citizens: 
    if citizens.numVict > 1: 
      numRepeatVict = numRepeatVict + 1 
       
  # Count number of offenders 
  totNumOffenders = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.numOffen > 0: 
      totNumOffenders = totNumOffenders + 1 
       
  # Count number of repeat offenders 
  numRepeatOffen = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.numOffen > 1: 
      numRepeatOffen = numRepeatOffen + 1    
       
  # Calculate the number of citizens at risk of victimization 
  numExp = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.atRisk: 
      numExp = numExp + 1    
  percExp = ((numExp / self.AGENTS) * 100) 
   
  # Calculate the number of citizens traveling 
  numTravel = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.atActivity == false: 
      numTravel = numTravel + 1    
  percTravel = ((numTravel / self.AGENTS) * 100) 
   
  # Calculate the number of active offenders (able to offend) 
  numActiveOffen = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.criminalPropensity and citizens.atRisk and citizens.timerRepeat == 0: 
      numActiveOffen = numActiveOffen + 1    
       
  # Calculate the number of waiting offenders (not able to offend) 
  numWaitingOffen = 0 
  for citizens as Citizen in self.citizens: 
    if citizens.criminalPropensity and citizens.atRisk and citizens.timerRepeat > 0: 
      numWaitingOffen = numWaitingOffen + 1   
       
           
       
  # Create a string of each data field to be written to the file 
  temp = currTick + "," + numChange + "," + numUnemployed + "," + totWealth 
  temp = temp + "," + aveWealth 
  temp = temp + "," + robRate  
  temp = temp + "," + totNumVict 
  temp = temp + "," + numRepeatVict 
  temp = temp + "," + totNumOffenders 
  temp = temp + "," + numRepeatOffen 
  temp = temp + "," + numExp + ","+ percExp 
  temp = temp + "," + numTravel + ","+ percTravel 
  temp = temp + "," + numActiveOffen 
  temp = temp + "," + numWaitingOffen 
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  temp = temp + "," + self.totDeter 
  temp = temp + "," + self.totIntersect 
  temp = temp + "," + self.totRob 
  intSize = int(temp.length()) 
  dataWriter.write(temp,0,intSize)  
  dataWriter.newLine() 
  
  #Close the file 
  dataWriter.close() 
 
 
def writeFinalAgents(): 
  print "Writing Final Agents" 
  away = int(self.SOCIETAL_TIMEAWAY*100) 
  baseFilePath = "C:/model_output"+away+"/" 
  self.writeAgents(self.places, baseFilePath + "strnodes"+away+".shp") 
 
 
def writeCitizenInfoPaths(): 
  #print "Inside writeCitizenTravInfotoFiles" 
  away = int(self.SOCIETAL_TIMEAWAY*100) 
   
  # Loop through all citizen agents and write out the specified fields 
  for citizen as Citizen in self.citizens: 
    # Create a string of each data field to be written to the file, two fields at a time 
    agentName = String.valueOf(citizen.name) 
    # Write the fields describing citizen agents 
    # CREATE an output file and the buffered writer to write the activity times for each agent to a file 
    currTick = int(self.getTickCount()) 
    #print "Current Tick: ", currTick 
    outFileName = "C:/model_output"+away+"/path"+agentName+".csv" 
    txtWriter = BufferedWriter(FileWriter(outFileName, true)) 
    node = citizen.strnode 
    temp = node + "," + currTick 
    intSize = int(temp.length()) 
    txtWriter.write(temp,0,intSize) 
    txtWriter.newLine() 
       
    txtWriter.close() 
 
__________________________________________________________________ 
Classes 
 
Place Actions 
(none) 
 
 
Citizen Actions 
 
def step(): 
Java imports 
java.lang.Object 
java.lang.Double 
java.lang.Number 
java.lang.Integer 
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Code 
  #print "INSIDE CITIZEN STEP" 
   
  # Every citizen agent evaluates their move status, if they are moving they are added to the active 
nodes 
  # class and are part of the decision to commit a crime.  Then the values (atRisk, atActivity, moving, 
and  
  # position are set for the next turn.  
  isActNodePosition = 0 
  isActNode = 0 
   
  #Obtain a random number of positions to move while traveling                      
  #randMoveSize = Random.normal.nextInt() 
  randMoveSize = int(self.model.NORM_TRAVEL.nextDouble()) 
   
  #print "AGENT: ", self.name 
  #print "POSITION: ", self.position 
   
  #<CONDITION 1 - Start (Check to make sure there is another node in the pathNodes arrayList) 
  if self.position < self.pathNodes.size()-1: 
    #print "Agent: " + self.name + " is at POSITION " + self.position + " in path node array" 
    #print "Position: ", self.position 
    #print "Total Path Nodes in List: ", self.pathNodes.size() 
    #print "ModelStep Counter: ", counter 
     
    # Associate all agents with a current street node so we can test whether they are are atRisk  
    # and/or moving. 
    # Read the pathNodes arrayList and convert the number with a decimal to an integer or string. 
     
    theStrCurrentNode = self.pathNodes.get(self.position).toString() 
    #print "Node as String: ", theStrCurrentNode 
    token = "." 
    thePartialString = theStrCurrentNode 
    #searches for decimal point 
    index = theStrCurrentNode.indexOf(token) 
    #print "index is :", index 
    thePartialString = theStrCurrentNode.substring(0, index) 
    #print "Second Node as String: ", thePartialString 
    self.currentNode = Integer.valueOf(thePartialString).intValue() 
  
    # Collect all agents who are moving or recreating are at risk and need to be logged  
    # at active nodes and put them in the activeNode class. 
       
    #<<CONDITION 2 - Start  
    if self.moveStatus == true or self.atRisk == true: 
       
      # ADD an agent to the ActiveNode class.  If there is an ActiveNode agent  
      # that exists with a particular strnode value then add the name of the  
      # citizen agent to the agentList (an arrayList).  If there is no ActiveNode  
      # with the same value as the currentNode then add a new ActiveNode agent and  
      # populate the strnode number with the currentNode and add the name of the  
      # citizen agent to the agentList (an arrayList).   
       
      #print "Current Node: ", self.currentNode 
      #print "The Size is : ", self.model.activeNodes.size() 
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      # Test to see if this is the first ActiveNode 
      nodeisEqual = false 
      #<CONDITION 2.1 - Start 
      if self.model.activeNodes.size() <> 0: 
        for occupied as ActiveNode in self.model.activeNodes: 
          if self.currentNode == occupied.strnode: 
            occupied.agentList.add(self.name) 
            nodeisEqual = true 
      #CONDITION 2.1 - End >  
       
      #<CONDITION 2.2 - Start 
      if self.model.activeNodes.size() == 0 or nodeisEqual == false: 
        newAgent = ActiveNode() 
        newAgent.setModel(self.model) 
        newAgent.strnode = self.currentNode 
        newAgent.agentList = ArrayList() 
        newAgent.agentList.add(self.name) 
        self.model.activeNodes.add(newAgent) 
        #print "First agent of Total Agents: ", self.model.activeNodes.size() 
        #print "Inside Assignment: Strnode = ", newAgent.strnode 
        #print "ArrayList Value = ", newAgent.agentList.get(0) 
      #CONDITION 2.2 - End > 
          
 
      #print "Current Node as Integer: ", Integer.toString(self.currentNode) 
      #print "Home Node: " + self.home +  " Main Node: " + self.main + " Rec 1: " + self.rec1 + " Rec 2: 
" + self.rec2 
    #CONDITION 2 - End >>  
     
    #print "Home Node: " + self.home +  " Main Node: " + self.main + " Rec 1: " + self.rec1 + " Rec 2: 
" + self.rec2 
     
    # RESET values for next turn.   
    # Check to see if currentNode equal to an activity node.   
    # If yes, do not move but update time that agent has been at node.  If no, move to next node. 
    #<<<CONDITION 3 - Start  
    if self.currentNode == self.home: 
      #print "Time assigned to be at HOME: ", self.timeHome 
      ##print "Time Spent at Home: ", self.timeCounter 
      if self.timeCounter < self.timeHome: 
        self.atActivity = true 
        self.atRisk = false 
        self.moveStatus = false 
        #Increment the timer  
        self.timeCounter = self.timeCounter + 1 
        self.timerHome = self.timerHome + 1 
      else: 
       self.atActivity = false 
       self.atRisk = true 
       self.moveStatus = true 
       self.timeCounter = 1            
       self.position = self.position + 1    #move agent to next position in pathNode array 
       ##print "Agent Leaving Home and moving to position: ", self.position 
    elif self.currentNode == self.main: 
      #print "Time Assigned Main ", self.timeMain 
      ##print "TimeCounter for Main", self.timeCounter  
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      if self.timeCounter < self.timeMain: 
        self.atActivity = true 
        self.atRisk = false 
        self.moveStatus = false 
        #Increment the timer  
        self.timeCounter = self.timeCounter + 1 
        self.timerMain = self.timerMain + 1 
      else: 
        self.atActivity = false 
        self.atRisk = true 
        self.moveStatus = true 
        self.timeCounter = 1 
        self.position = self.position + 1   #move agent to next position in pathNode array 
        ##print "Agent Leaving Main and moving to position: ", self.position 
        self.totTimeTraveling = self.totTimeTraveling + 1 
        self.totTimeExposed = self.totTimeExposed + 1 
    elif self.currentNode == self.rec1: 
      #print "Time Assigned REC1", self.timeRec1 
      ##print "TimeCounter for Rec1: ", String.valueOf(self.timeCounter) 
      if self.timeCounter < self.timeRec1: 
        self.atActivity = true 
        self.atRisk = true                  #Agents at activities are also at risk 
        self.moveStatus = false 
        #Increment the timer  
        self.timeCounter = self.timeCounter + 1 
        self.timerRec1 = self.timerRec1 + 1 
        self.totTimeExposed = self.totTimeExposed + 1 
      else:  
        self.atActivity = false 
        self.atRisk = true 
        self.moveStatus = true   
        self.timeCounter = 1  
        self.position = self.position + 1   #move agent to next position in pathNode array 
        ##print "Agent Leaving Rec1 and moving to position: ", self.position  
        self.totTimeTraveling = self.totTimeTraveling + 1 
        self.totTimeExposed = self.totTimeExposed + 1 
    elif self.currentNode == self.rec2: 
      #print "Time assigned Rec2 ", self.timeRec2 
      ##print "Time spent at Rec2: ", String.valueOf(self.timeCounter) 
      if self.timeCounter < self.timeRec2: 
        self.atActivity = true              #Agents at activities are also at risk 
        self.atRisk = true 
        self.moveStatus = false 
        #Increment the timer  
        self.timeCounter = self.timeCounter + 1 
        self.timerRec2 = self.timerRec2 + 1 
        self.totTimeExposed = self.totTimeExposed + 1 
      else: 
        self.atActivity = false 
        self.atRisk = true 
        self.moveStatus = true 
        self.timeCounter = 1 
        self.position = self.position + 1   #move agent to next position in pathNode array 
        ##print "Agent Leaving Rec2 and moving to position: ", self.position 
        self.totTimeTraveling = self.totTimeTraveling + 1      
        self.totTimeExposed = self.totTimeExposed + 1 
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    else: 
      ##print "AGENT enters ELSE loop for travellers--needs to check for intervening activity node 
      #print "Agent time traveling incremented to " + self.totTimeTraveling + "in else of Condition 3" 
 
      # Check to make sure the random number is positive and nonzero 
      while randMoveSize <= 0: 
        #randMoveSize = Random.normal.nextInt() 
        randMoveSize = int(self.model.NORM_TRAVEL.nextDouble()) 
      target = self.position + randMoveSize   #temporarily move agent the number of randomly 
generated positions 
      beginRange = self.position + 1 
       
      #print "Randommovesize: ", randMoveSize 
      #print "Target position", target 
       
      #<CONDITION 3.1 - Start 
      # Check to make sure move does not take agent beyond the number of pathNodes in list 
      if target >= self.pathNodes.size()-1: 
        #print "Agent at end of path" 
        #print self.name + "Travelling agent RETURNED HOME at Model step: " + 
self.model.modelStep 
        self.currentNode = self.home 
        self.position = 0 
        self.timeCounter = 0    
        self.atActivity = true 
        self.atRisk = false 
        self.moveStatus = false 
        self.timerHome = self.timerHome + 1 
      else: 
        # Test to make sure none of the skipped nodes are activity nodes 
        ##print "Main node of agent ", self.main 
        ##print "Target position ", target 
        for i in range(beginRange, target): 
          # Get each position between the current one and the target and evaluate each 
          currentPosition = i 
          #print "TempTarget in loop ", tempTarget 
          # Associate a position with a node 
          theStrTestNode = self.pathNodes.get(i).toString() 
          token = "." 
          #print "theStrTestNode ", theStrTestNode 
          thePartialStrTestNode = theStrTestNode 
          index1 = theStrTestNode.indexOf(token) 
          #print "Index 1 ", index1 
          thePartialStrTestNode = theStrTestNode.substring(0, index1) 
          testNode = Integer.valueOf(thePartialStrTestNode).intValue() 
           
          # If testnode is an activity node, hold its information until all nodes  
          # are checked from fartherest to nearest. 
          ##print "Test node being compared: ", testNode 
          ##print "Current test position ", currentPosition 
          if testNode == self.home: 
            #print "Node " + testNode + " is the home node " + self.home  
            #print "Found home activity position at: ", currentPosition 
            isActNodePosition = currentPosition 
            isActNode = testNode 
            break 
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          if testNode == self.main:  
            #print "Node " + testNode + " is the main node " + self.main 
            ##print "Found activity position at: ", currentPosition 
            isActNodePosition = currentPosition 
            isActNode = testNode 
            break 
          if testNode == self.rec1:  
            #print "Node " + testNode + " is the rec1 node " + self.rec1 
            ##print "Found activity position at: ", currentPosition 
            isActNodePosition = currentPosition 
            isActNode = testNode 
            break 
          if testNode == self.rec2: 
            #print "Node " + testNode + " is the rec2 node " + self.rec2 
            ##print "Found activity position at: ", currentPosition 
            isActNodePosition = currentPosition 
            isActNode = testNode 
            break 
 
        # Final setting of self.position and activity node status for traveling agents ONLY 
        #<CONDITION 3.1.1 - START 
        #print "BEFORE isActNodePosition value: ", isActNodePosition 
        #print "Redirected Node before if <= 0 ", isActNode 
        if isActNodePosition > 0: 
          #print "AFTER isActNodePosition > 0", isActNodePosition 
          self.position = isActNodePosition 
          self.currentNode = isActNode 
          if isActNode == self.home or isActNode == self.main: 
            self.atActivity = true 
            self.atRisk = false 
            self.moveStatus = false 
            self.timeCounter = 1 
            ##print "Redirected to home or main at Position " + self.position 
            if isActNode == self.home: 
              self.timerHome = self.timerHome + 1 
            else: 
              self.timerMain = self.timerMain + 1 
          elif isActNode == self.rec1 or isActNode == self.rec2: 
            self.atActivity = true 
            self.atRisk = true 
            self.moveStatus = false 
            self.timeCounter = 1 
            self.totTimeExposed = self.totTimeExposed + 1 
            ##print "Redirected to rec1 or rec2 at position " + self.position 
            if isActNode == self.rec1: 
              self.timerRec1 = self.timerRec1 + 1 
            else: 
              self.timerRec2 = self.timerRec2 + 1 
        else: 
          self.position = target   
          self.totTimeTraveling = self.totTimeTraveling + 1  
          ##print "Agent time traveling incremented to " + self.totTimeTraveling + " in else of Condition 
3.1.1"     
          self.totTimeExposed = self.totTimeExposed + 1 
          ##print "MOVED TO TARGET position", target 
          #print "Agent is Traveling" 
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        #CONDITION 3.1.1 - END>   
      #CONDITION 3.1 - END> 
       
        #print "ISACTNODE", isActNodePosition 
    #print "SELF.POSITION Step", self.position 
    #CONDITION 3 - END>>> 
       
  else: 
    # Reset agent to home position and reset timer to 0 
    #print "RESET agent to home position" 
    #print "Agent: " + self.name + "RETURNED HOME at Model step: " + self.model.modelStep 
    self.position = 0   
    self.timeCounter = 1    
    self.atActivity = true 
    self.atRisk = false 
    self.moveStatus = false 
    self.timerHome = self.timerHome + 1 
     
  #CONDITION 1 - End > 
 
def assignNodeInfo(String tname, int ehome, int emain, int erec1, int erec2, ArrayList 
ePathNodeList, int uhome, int umain, int urec1, int urec2, ArrayList uPathNodeList): 
  # Assigns the variable values read from the files in initCitizens() to the fields in Citizen class 
  self.name = tname 
  self.home = ehome 
  self.empHome = ehome 
  self.empMain = emain 
  self.empRec1 = erec1 
  self.empRec2 = erec2 
  self.empPathNodes = ePathNodeList 
  self.unempHome = uhome 
  self.unempMain = umain 
  self.unempRec1 = urec1 
  self.unempRec2 = urec2 
  self.unempPathNodes = uPathNodeList 
  self.currentNode = self.home 
 
def payCitizens(): 
  #print "Inside Pay Citizens" 
   
  # Each employed citizen gets paid at designated intervals 
   
  if self.employmentStatus == true: 
    #print "Agent Name: ",self.name 
    #print "Agent Old Wealth: ", self.wealth 
     
    self.wealth = self.wealth + 5 
     
    #print "Agent New Wealth: ", self.wealth 
 
Active Node Actions 
(none) 
 
Cop Actions 
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def step(): 
Java imports 
java.lang.Object 
java.lang.String 
uchicago.src.sim.util.SimUtilities 
java.util.Arrays 
java.util.List 
 
Code 
  # Every cop moves with each model tick 
  places = self.model.getPlaces() 
  #print "Old node: ", self.strnode 
   
  # Shuffle the adjacent nodes of the Place where the cop is located    
  # Identify number of neighbor nodes 
  numNeighs = self.location.myNeighbors.size()   
  maxValue = numNeighs-1 
     
  # Generate a value 
  index = Random.uniform.nextIntFromTo(0,numNeighs -1) 
     
  #print "Move to index: " + index 
     
  # Verification code 
  #for node in range (0, numNeighs): 
    #print "Neighbor " + node + " is :" + String.valueOf(self.location.getMyNeighbors().get(node)) 
   
  # Get the new node and assign it to strnode field  
  # (can't just use index because index and strnode do not correspond) 
  newNode = self.location.getMyNeighbors().get(index) 
  self.strnode = int(String.valueOf(newNode)) 
   
  #print "New strnode: ", self.strnode     
   
  # Do the assignment directly of the strnode to a place 
  nodeFL = Float(self.strnode) 
  newLocation = (Place)self.model.placeMap.get(nodeFL) 
  self.location = newLocation 
  #print "New location: ", self.location.STRCL_   
 
 
Sequence Graph 
 
totalRobberies 
return self.totRob 
 
totalDeterred 
return self.totDeter 
 
totalIntersect 
return self.totIntersect 
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Appendix 6:  Java Code to Develop Activity Nodes  

NodeAssignment.java 

Package AssignNodesToAgents; 
 
/** 
 * Title: Assignment 
 * Description: Main program to assign nodes 
 * Copyright: Copyright (c) 2005 
 * @author Liz Groff 
 * @version 1.0 
 */ 
 
//Import classes 
import java.io.*; 
import java.util.*; 
import java.lang.Math; 
 
public class NodeAssignment { 
  public static void main(String [] args){ 
 
   //Read the first record from the source file that has the number of nodes 
   //to be allocated per blockgroup or zip  
   //Create an instance of the FileInputStream class for a particular 
   //file. 
   FileInputStream stream = null; 
    
   //CHANGE --Change name of input file to reflect the type of node 
   try { 
    //File for homes 
     //stream = new FileInputStream 
         //("C:/Projects/Dissertation/GISData/TestData/homesperblkgrpall.csv"); 
     //File for jobs 
     //stream = new FileInputStream 
         //("C:/Projects/Dissertation/GISData/TestData/empperzip.csv"); 
     //File for activities 
     stream = new FileInputStream 
         ("C:/Projects/Dissertation/GISData/TestData/actperblkgrp.csv"); 
   } 
   catch (FileNotFoundException e) { 
     e.printStackTrace(System.err); 
    System.exit(1); 
   } 
    
   //CHANGE --Create and open new file to write.  Change for different nodes. 
   PrintWriter out = null; 
    
   try { 
    //Create a file to hold the random "home" street node info 
    //String allHomes =  
    //"C:/Projects/Dissertation/GISData/TestData/allHomes.csv"; 
     
    //Create a file to hold the random "work" nodes 
    //String allHomes =  
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    //"C:/Projects/Dissertation/GISData/TestData/allJobs.csv"; 
     
    //Create a file to hold the random "work" nodes 
    String allHomes =  
    "C:/Projects/Dissertation/GISData/TestData/allAct.csv"; 
     
  //Create a PrintWriter based on File parameter 
  out = new PrintWriter(new FileWriter(allHomes)); 
 
  } 
  catch (IOException exc) { 
       System.out.println(exc.toString()); 
  } 
  
   //Create an InputStreamReader 
   InputStreamReader reader=new InputStreamReader(stream); 
  
   //Create a Buffered Reader that gets data from the InputStreamReader and  
   //allows it to be read by the program 
   BufferedReader buffer = new BufferedReader(reader); 
    
   //Variables 
   String line; 
   String templine; 
    
   //Create line variable and read line into buffer 
   try { 
     //Loop through the rows to get each blkgrpid and number of homes to be  
     //allocated per blkgrpid 
     while ((line = buffer.readLine()) != null && !line.equals("")){ 
       line = line.trim(); 
       templine = line; 
       int nextSpace = line.indexOf(","); 
       String blkgrpid= line.substring(0, nextSpace); 
       int homes = Integer.parseInt(templine.substring(++nextSpace).trim()); 
       //System.out.println("Blockgroupid passed: " + blkgrpid + "," + homes); 
        
       //Call to method to extract vector of streetnodeids,x,y   
       BlkgrpNodes curBlkgrpset = collectNodes(blkgrpid);//make sure this will create a new 
vector each time 
        
       //Add call to new method 
       System.out.println("Size of the current blkgrpset is:  "+ 
       curBlkgrpset.size()); 
       System.out.println("Blockgrp id of current blkgrpset is:  "+ 
       blkgrpid); 
        
       BlkgrpNodes blkgrpRand = selectRandomNodes(curBlkgrpset,homes); 
       System.out.println(blkgrpid + ", Assigned " + blkgrpRand.size() + " homes");  
        
       //Write to the allHomes file 
       StrNodeLoc aStrnodeRand = null; 
        
       for(int i=0; i < blkgrpRand.size(); i++){ 
        aStrnodeRand = blkgrpRand.get(i); 
   out.println(aStrnodeRand.toString()); 
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   out.flush(); 
       } 
        
       //System.exit(0); 
  }   
   
   //close the connection to file 
   out.close(); 
   stream.close(); 
  
   } 
   catch (IOException e) { 
    System.err.println("\nStack Trace Output:\n"); 
     e.printStackTrace(System.err); 
     System.err.println("\nEnd of Stack Trace Output:\n"); 
       System.exit(1); 
   } 
    
   System.exit(0); 
   return; 
   } 
   
  //Method to loop through the data file and populate the fields 
  public static BlkgrpNodes collectNodes(String blkgrpid){ 
       
   //Create a file input stream and try to open the file 
   FileInputStream stream2 = null; 
  
 //CHANGE -  
   try { 
     
    //use this for blkgrps/homes and activities 
     stream2 = new FileInputStream 
         ("C:/Projects/Dissertation/GISData/TestData/blkgrp_stnodeall.csv"); 
          
     //use this for zip codes/jobs 
     //stream2 = new FileInputStream 
         //("C:/Projects/Dissertation/GISData/TestData/zip_stnodeall.csv"); 
    } 
   catch (FileNotFoundException e) { 
     e.printStackTrace(System.err); 
    System.exit(1); 
   } 
  
   //Create an InputStreamReader 
   InputStreamReader reader2=new InputStreamReader(stream2); 
  
   //Create a Buffered Reader 
   BufferedReader buffer2 = new BufferedReader(reader2); 
  
  
   /* File format must be strnode,blkgrpid,x,y with no headers for program  
    *to read properly.  File type must be csv. 
    */ 
   //Create new object to hold StrNodeLoc object 
   StrNodeLoc astrnodeLoc; 
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   BlkgrpNodes blkgrpSet = new BlkgrpNodes(); 
   String line2; 
   String templine2; 
   String blkgrpid1= null; 
   String strnode = null; 
   String x = null; 
   String y = null; 
     
   try { 
     //Loop through the rows and read each one 
     while ((line2 = buffer2.readLine()) != null && !line2.equals("")){ 
      line2 = line2.trim(); 
      templine2= line2; 
      int nextSpace2 = line2.indexOf(","); 
      strnode = line2.substring(0, nextSpace2); 
      line2 = line2.substring(++nextSpace2).trim(); 
      nextSpace2 = line2.indexOf(","); 
      blkgrpid1 = line2.substring(0,nextSpace2); 
      line2 = line2.substring(++nextSpace2).trim(); 
      nextSpace2 = line2.indexOf(","); 
      x = line2.substring(0,nextSpace2); 
      y = line2.substring(++nextSpace2).trim(); 
     
      //Test for current blockgrp and loop to collect the streetnodes that are  
      //associated with a blkgrpid. 
      //System.out.println(blkgrpid1); 
      //System.out.println(blkgrpid + "," + blkgrpid1); 
      if (blkgrpid1.compareTo(blkgrpid) == 0){ 
          System.out.println(blkgrpid + "," + blkgrpid1); 
       int count = 0; 
        
       // create the new StrNodeLoc object and populate it 
    astrnodeLoc = new StrNodeLoc(strnode,x,y); 
          //System.out.println(astrnodeLoc.toString()); 
     
    // add the StrNodeLoc object to the vector of BlkgrpNodes 
    blkgrpSet.add(astrnodeLoc);  
   } 
       } 
      //close the connection to file 
      stream2.close(); 
   } 
   catch (IOException e) { 
    System.err.println("\nStack Trace Output:\n"); 
     e.printStackTrace(System.err); 
     System.err.println("\nEnd of Stack Trace Output:\n"); 
       System.exit(1); 
   } 
    
   //System.exit(0); 
   return blkgrpSet; 
   } 
  
  
 /*Nested for loop to generate random numbers and then choose the  
 * correct number of random street nodes. 
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 * 1) Find number of random street nodes needed.  
 * 2) Generate a random number and compare it to list of streetnodes 
 * 3) Write out matched StrNodeLoc objects to a file along with the 
 *    blockgroupid number 
 */ 
  
 public static BlkgrpNodes selectRandomNodes(BlkgrpNodes curBlkgrpset,  
  int homes){ 
   
  Random randstrnodeValues = new Random(100); //creates random number 
generator 
  //Mersenne randnum = new Mersenne(1); 
  StrNodeLoc aStrnodeRand = null; 
  BlkgrpNodes blkgrpRand = new BlkgrpNodes(); 
    
  for (int i = 0; i < homes; i++){ 
   int filecount = 1; 
   //Generate random index number 
   int index = Math.abs(randstrnodeValues.nextInt(curBlkgrpset.size())); 
   System.out.println("Random index is: " + index);  
   //int index = Math.abs(randnum.genrand()); 
   //do while (index > curBlkgrpset.size()) {//look this up 
    //index = Math.abs(randnum.genrand()); 
        
   //System.out.println("Index = " + index); 
   aStrnodeRand = curBlkgrpset.get(index); 
   //System.out.println("Assigned Node #" + i + ": " + 
aStrnodeRand.toString()); 
   blkgrpRand.add(aStrnodeRand); //Put it in blkgrpRand 
   //System.out.println("Size of new vector: " + blkgrpRand.size()); 
   } 
   
 return blkgrpRand; 
 } 
} 
 
 
StrNodeLoc.java 

package AssignNodesToAgents; 
 
/** 
 * Title: StrNodeLoc 
 * Description: StrNodeLocs are objects that represent the streetnode 
 * number and x,y of a particular streetnode.   
 * 
 * @author Liz Groff 
 * @version 1.0 
 */ 
  
 //Import classes 
  import java.io.*; 
  import java.util.*; 
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  public class StrNodeLoc { 
  //Constructors -- BlkgrpNodes object 
  StrNodeLoc (String strnode, String x, String y){     
  this.strnode = strnode; 
  this.x = x; 
  this.y = y; 
  } 
   
  public String toString(){ 
   return strnode + " , " + x + "," + y; 
  } 
   
  //variables 
  private String strnode; 
  private String x; 
  private String y; 
} 
 

Appendix 7:  Visual Basic Code to Identify Paths Among Activity Nodes  

frmAgentPaths.frm 

' Copyright 1995-2005 ESRI 
 
' All rights reserved under the copyright laws of the United States. 
 
' You may freely redistribute and use this sample code, with or without modification. 
 
' Disclaimer: THE SAMPLE CODE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED 
' WARRANTIES, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND 
FITNESS 
' FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ESRI OR 
' CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 
EXEMPLARY, 
' OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 
OF 
' SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
' INTERRUPTION) SUSTAINED BY YOU OR A THIRD PARTY, HOWEVER CAUSED AND ON 
ANY 
' THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
ARISING IN ANY 
' WAY OUT OF THE USE OF THIS SAMPLE CODE, EVEN IF ADVISED OF THE POSSIBILITY 
OF 
' SUCH DAMAGE. 
 
' For additional information contact: Environmental Systems Research Institute, Inc. 
 
' Attn: Contracts Dept. 
 
' 380 New York Street 
 
' Redlands, California, U.S.A. 92373 
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' Email: contracts@esri.com 
 
Option Explicit 
 
Private m_pNetworkDataset As INetworkDataset 
Private m_pNAContext As INAContext 
Private m_pNALayer As INALayer 
 
Private Sub cmbLayer_Change() 
   
  Dim pEnumLayer As IEnumLayer 
  Dim pLayer As ILayer 
  Dim pNetworkLayer As INetworkLayer 
   
  Set pEnumLayer = MapControl1.Map.Layers 
  pEnumLayer.Reset 
   
  pEnumLayer.Reset 
  Set pLayer = pEnumLayer.Next 
  Do While Not pLayer Is Nothing 
    If pLayer.Name = cmbLayer.Text Then 
      Set pNetworkLayer = pLayer 
      Set m_pNetworkDataset = pNetworkLayer.NetworkDataset 
    End If 
    Set pLayer = pEnumLayer.Next 
  Loop 
   
  'cleanup 
  Set pEnumLayer = Nothing 
  Set pLayer = Nothing 
  Set pNetworkLayer = Nothing 
   
End Sub 
 
Private Sub cmdGo_Click() 
 
  Dim fs As FileSystemObject 
  Dim inputFolder As Folder 
  Dim inputFiles As Files 
  Dim agentFile As File 
  Dim shapefileName As String 
  Dim counter As Integer 
   
  Dim pStopFeatureClass As IFeatureClass 
   
  Me.MousePointer = vbHourglass 
   
  Set fs = CreateObject("Scripting.FileSystemObject") 
   
  'Get the files to read and create shapefiles from 
  Set inputFolder = fs.GetFolder(txtInputDir.Text) 
  Set inputFiles = inputFolder.Files 
   
  'Delete temporary files if they exist 
  Dim oldFiles As Files 
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  Dim oldFile As File 
  Dim tempFolder As Folder 
  Set tempFolder = fs.GetFolder(txtTempLoc.Text) 
  Set oldFiles = tempFolder.Files 
  For Each oldFile In oldFiles 
    oldFile.Delete (True) 
  Next 
     
  'Delete the output files 
  Set tempFolder = fs.GetFolder(txtOutputDir.Text) 
  Set oldFiles = tempFolder.Files 
  For Each oldFile In oldFiles 
    oldFile.Delete True 
  Next 
   
  'Loop through each file in the input Directory 
  For Each agentFile In inputFiles 
     counter = counter + 1 
     Label5.Caption = counter 
      
     'Create a shapefile from the agentFile 
     shapefileName = Left(agentFile.Name, Len(agentFile.Name) - 4) 
     Set pStopFeatureClass = CreateShapefile(txtTempLoc.Text, shapefileName) 
     
     'Add the points to the newly created shapefile 
     AddPoints agentFile, pStopFeatureClass, True 
   
     ' Create NAContext and NASolver 
     Set m_pNAContext = CreateSolverContext(m_pNetworkDataset) 
      
     ' Get Cost Attributes 
     Dim pNetworkAttribute As INetworkAttribute 
     Dim i As Long 
     For i = 0 To m_pNetworkDataset.AttributeCount - 1 
       Set pNetworkAttribute = m_pNetworkDataset.Attribute(i) 
       If pNetworkAttribute.UsageType = esriNAUTCost Then 
         cmdCostAttribute.AddItem pNetworkAttribute.Name 
       End If 
     Next i 
     cmdCostAttribute.ListIndex = 0 
 
     ' Load locations from FC 
     LoadNANetworkLocations m_pNAContext, "Stops", pStopFeatureClass, 100 
     
     'Create a Network Analysis Layer and add to ArcMap 
     Set m_pNALayer = m_pNAContext.Solver.CreateLayer(m_pNAContext) 
     Dim pLayer As ILayer 
     Set pLayer = m_pNALayer 
     pLayer.Name = m_pNAContext.Solver.DisplayName 
     MapControl1.AddLayer pLayer 
     
     SetSolverSettings m_pNAContext, cmdCostAttribute.Text, False, False 
 
     ' Compute the route 
     Dim strMsg As String 
     Dim pGPMessages As IGPMessages 
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     Set pGPMessages = New GPMessages 
     strMsg = Solve(m_pNAContext, pGPMessages) 
 
   If strMsg = "OK" Then 
     lstOutput.AddItem "Solve: Route length: " + Format(GetRouteOutput(m_pNAContext, "Routes"), 
"######0.00") + " " + "" 
   Else 
     lstOutput.AddItem "Solve: " + strMsg 
     
     ' Display  Error/Warning/Informative Messages 
     If Not pGPMessages Is Nothing Then 
       For i = 0 To pGPMessages.Count - 1 
         Select Case pGPMessages.GetMessage(i).Type 
           Case esriGPMessageTypeError 
             lstOutput.AddItem "Error " & Str(pGPMessages.GetMessage(i).ErrorCode) & " " & 
pGPMessages.GetMessage(i).Description 
           Case esriGPMessageTypeWarning 
             lstOutput.AddItem "Warning " & Str(pGPMessages.GetMessage(i).ErrorCode) & 
pGPMessages.GetMessage(i).Description 
           Case Else 
             lstOutput.AddItem "Information " & pGPMessages.GetMessage(i).Description 
         End Select 
       Next i 
     End If 
   End If 
   
   Call AddResultsLayer 
   
   Dim pFC1 As IFeatureClass 
   Dim pL1 As IFeatureLayer 
   Set pL1 = MapControl1.Layer(0) 
   Set pFC1 = pL1.FeatureClass 
   Dim pFC2 As IFeatureClass 
   Dim pL2 As IFeatureLayer 
   Set pL2 = MapControl1.Layer(2) 
   Set pFC2 = pL2.FeatureClass 
    
   Call RelQryTabExample(pL1, pFC1, "SourceOID", pFC2, "Strcl_") 
    
   'MapControl1.Refresh 
   
   'routine to read the junctions and write out the nodes visited 
   Call NodesVisited(pL1, txtOutputDir, shapefileName, pStopFeatureClass) 
   'Remove the junctions and route layer from the map to get ready to create a new one 
   MapControl1.DeleteLayer 0 
   MapControl1.DeleteLayer 0 
   'MapControl1.Refresh 
    
  Next 
   
  'cleanup 
  Set fs = Nothing 
  Set inputFolder = Nothing 
  Set inputFiles = Nothing 
  Set agentFile = Nothing 
  Set pStopFeatureClass = Nothing 
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  Set oldFiles = Nothing 
  Set oldFile = Nothing 
  Set tempFolder = Nothing 
  Set pStopFeatureClass = Nothing 
   
  Me.MousePointer = vbDefault 
   
  MsgBox "DONE" 
End Sub 
 
Private Sub dirInput_Change() 
 
  txtInputDir.Text = dirInput.Path 
   
End Sub 
 
Private Sub dirOutputDir_Change() 
 
  txtOutputDir.Text = dirOutputDir.Path 
   
End Sub 
 
Private Sub dirTempLoc_Change() 
 
  txtTempLoc.Text = dirTempLoc.Path 
   
End Sub 
 
Private Sub Form_Load() 
     
  Dim pEnumLayer As IEnumLayer 
  Dim pLayer As ILayer 
   
  Set pEnumLayer = MapControl1.Map.Layers 
  pEnumLayer.Reset 
  Set pLayer = pEnumLayer.Next 
  Do While Not pLayer Is Nothing 
    If TypeOf pLayer Is INetworkLayer Then 
      cmbLayer.AddItem pLayer.Name 
    End If 
    Set pLayer = pEnumLayer.Next 
  Loop 
   
  Dim pNetworkLayer As INetworkLayer 
   
  If cmbLayer.ListCount > 0 Then 
    cmbLayer.Text = cmbLayer.List(0) 
    pEnumLayer.Reset 
    Set pLayer = pEnumLayer.Next 
    Do While Not pLayer Is Nothing 
      If pLayer.Name = cmbLayer.Text Then 
        Set pNetworkLayer = pLayer 
        Set m_pNetworkDataset = pNetworkLayer.NetworkDataset 
      End If 
      Set pLayer = pEnumLayer.Next 
    Loop 
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  End If 
   
  'cleanup 
  Set pEnumLayer = Nothing 
  Set pLayer = Nothing 
   
End Sub 
 
'**********************************************************************************
*** 
' Get the Total_impedance from Route Output Class 
Public Function GetRouteOutput(pContext As INAContext, strNAClass As String) As Double 
    Dim intRow As Long 
    Dim pTable As ITable 
    Set pTable = pContext.NAClasses.ItemByName(strNAClass) 
    If pTable Is Nothing Then 
        GetRouteOutput = -1 
        Exit Function 
    End If 
     
    Dim pCursor As ICursor 
    Dim pRow As IRow 
    Set pCursor = pTable.Search(Nothing, False) 
     
    Dim pSolverSettings As INASolverSettings 
    Set pSolverSettings = pContext.Solver 
     
    Set pRow = pCursor.NextRow 
    If Not pRow Is Nothing Then 
        GetRouteOutput = pRow.Value(pTable.FindField("Total_" + 
pSolverSettings.ImpedanceAttributeName)) 
    End If 
     
    'cleanup 
    Set pTable = Nothing 
    Set pCursor = Nothing 
    Set pRow = Nothing 
    Set pSolverSettings = Nothing 
     
End Function 
 
Public Sub AddResultsLayer() 
 
  Dim pFLayer As IFeatureLayer 
  Dim pTraversalResultQuery As INATraversalResultQuery 
  Dim pNATraversalResultEdit As INATraversalResultEdit 
 
  Set pTraversalResultQuery = m_pNALayer.Context.Result 
  Set pNATraversalResultEdit = pTraversalResultQuery 
 
  Dim pTrackCancel As ITrackCancel 
   
  pNATraversalResultEdit.InferGeometry "", Nothing, pTrackCancel 
 
  Set pFLayer = New FeatureLayer 
  Set pFLayer.FeatureClass = pTraversalResultQuery.FeatureClass(esriNETJunction) 
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  pFLayer.Name = pFLayer.FeatureClass.AliasName 
 
  MapControl1.AddLayer pFLayer 
 
  'MapControl1.Refresh 
   
  'cleanup 
  Set pFLayer = Nothing 
  Set pTraversalResultQuery = Nothing 
  Set pNATraversalResultEdit = Nothing 
  Set pTrackCancel = Nothing 
   
End Sub 
 
Private Sub Form_Terminate() 
   
  Set m_pNetworkDataset = Nothing 
  Set m_pNAContext = Nothing 
  Set m_pNALayer = Nothing 
 
End Sub 
 
Private Sub MapControl1_OnMouseDown(ByVal button As Long, ByVal shift As Long, ByVal x As 
Long, ByVal y As Long, ByVal mapX As Double, ByVal mapY As Double) 
 
  MapControl1.Extent = MapControl1.TrackRectangle 
   
End Sub 
 

Basutil.bas 

Attribute VB_Name = "basUtil" 
' Copyright 1995-2005 ESRI 
 
' All rights reserved under the copyright laws of the United States. 
 
' You may freely redistribute and use this sample code, with or without modification. 
 
' Disclaimer: THE SAMPLE CODE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED 
' WARRANTIES, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND 
FITNESS 
' FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ESRI OR 
' CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 
EXEMPLARY, 
' OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 
OF 
' SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
' INTERRUPTION) SUSTAINED BY YOU OR A THIRD PARTY, HOWEVER CAUSED AND ON 
ANY 
' THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
ARISING IN ANY 
' WAY OUT OF THE USE OF THIS SAMPLE CODE, EVEN IF ADVISED OF THE POSSIBILITY 
OF 
' SUCH DAMAGE. 
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' For additional information contact: Environmental Systems Research Institute, Inc. 
 
' Attn: Contracts Dept. 
 
' 380 New York Street 
 
' Redlands, California, U.S.A. 92373 
 
' Email: contracts@esri.com 
 
 
Option Explicit 
'********************************************************************************** 
'Routine CreateShapefile to create a shapefile containing the points that will be * 
'used as stops on the during the route calculations                               * 
'********************************************************************************** 
Public Function CreateShapefile(sPath As String, sName As String) As IFeatureClass ' Dont include 
.shp extension 
   
  ' Open the folder to contain the shapefile as a workspace 
  Dim pFWS As IFeatureWorkspace 
  Dim pWorkspaceFactory As IWorkspaceFactory 
  Set pWorkspaceFactory = New ShapefileWorkspaceFactory 
  Set pFWS = pWorkspaceFactory.OpenFromFile(sPath, 0) 
   
  ' Set up a simple fields collection 
  Dim pFields As IFields 
  Dim pFieldsEdit As IFieldsEdit 
  Set pFields = New Fields 
  Set pFieldsEdit = pFields 
   
  Dim pField As IField 
  Dim pFieldEdit As IFieldEdit 
   
  ' Make the shape field 
  ' it will need a geometry definition, with a spatial reference 
  Set pField = New Field 
  Set pFieldEdit = pField 
  pFieldEdit.Name = "Shape" 
  pFieldEdit.Type = esriFieldTypeGeometry 
   
  Dim pGeomDef As IGeometryDef 
  Dim pGeomDefEdit As IGeometryDefEdit 
  Set pGeomDef = New GeometryDef 
  Set pGeomDefEdit = pGeomDef 
  With pGeomDefEdit 
    .GeometryType = esriGeometryPoint 
    Set .SpatialReference = New UnknownCoordinateSystem 
  End With 
  Set pFieldEdit.GeometryDef = pGeomDef 
  pFieldsEdit.AddField pField 
 
  ' Add sndcl-id field 
  Set pField = New Field 
  Set pFieldEdit = pField 
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  With pFieldEdit 
      .Length = 20 
      .Name = "sndcl-id" 
      .Type = esriFieldTypeDouble 
  End With 
  pFieldsEdit.AddField pField 
   
  ' Add x field 
  Set pField = New Field 
  Set pFieldEdit = pField 
  With pFieldEdit 
      .Length = 19 
      .Name = "x" 
      .Type = esriFieldTypeDouble 
      .Precision = 18 
      .Scale = 11 
  End With 
  pFieldsEdit.AddField pField 
   
  ' Add y field 
  Set pField = New Field 
  Set pFieldEdit = pField 
  With pFieldEdit 
      .Length = 19 
      .Name = "y" 
      .Type = esriFieldTypeDouble 
      .Precision = 18 
      .Scale = 11 
  End With 
  pFieldsEdit.AddField pField 
   
  ' Create the shapefile 
  ' (some parameters apply to geodatabase options and can be defaulted as Nothing) 
  Dim pFeatClass As IFeatureClass 
  Set pFeatClass = pFWS.CreateFeatureClass(sName, pFields, Nothing, _ 
                                           Nothing, esriFTSimple, "Shape", "") 
                                            
  Set CreateShapefile = pFeatClass 
   
  'cleanup 
  Set pFWS = Nothing 
  Set pWorkspaceFactory = Nothing 
  Set pFields = Nothing 
  Set pFieldsEdit = Nothing 
  Set pField = Nothing 
  Set pFieldEdit = Nothing 
  Set pGeomDef = Nothing 
  Set pGeomDefEdit = Nothing 
   
End Function 
 
'**********************************************************************************
****** 
'Route AddPoints which takes the rows in the textfile (csv) and puts them into the      * 
'shapefile which will be used as the stops for the routes.                              * 
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'**********************************************************************************
****** 
 
Public Function AddPoints(textFile As File, pFeatClass As IFeatureClass, bVal As Boolean) 
 
  Dim pFC As IFeatureCursor 
  Dim pFB As IFeatureBuffer 
  Dim pFieldsNew As IFields 
   
  'Get an insert cursor and a feature buffer 
  Set pFC = pFeatClass.Insert(True) 
  Set pFB = pFeatClass.CreateFeatureBuffer 
  Set pFieldsNew = pFB.Fields 
   
  'Get the column index in the table for sndcl-id, x, y 
  Dim indSndclid As Long 
  Dim indX As Long 
  Dim indY As Long 
  indSndclid = pFieldsNew.FindField("sndcl-id") 
  indX = pFieldsNew.FindField("X") 
  indY = pFieldsNew.FindField("Y") 
   
  'Open the textfile for reading 
  Dim fs As FileSystemObject 
  Set fs = CreateObject("Scripting.FileSystemObject") 
  Dim theStream As TextStream 
  Set theStream = fs.OpenTextFile(textFile.Path, ForReading) 
   
  Dim theLine As String 
  Dim sndclid As Double 
  Dim thePosition As Integer 
  Dim sx As String 
  Dim sy As String 
  Dim tempLine As String 
   
  Dim pPoint As IPoint 
  Dim pGeom As IGeometry 
   
  'Read through the file and populate the shapefile with the points and id's 
  Do While Not theStream.AtEndOfStream 
    theLine = theStream.ReadLine 
    sndclid = Val(theLine) 
    thePosition = InStr(theLine, ",") 
    tempLine = Right(theLine, Len(theLine) - thePosition) 
    sx = Val(tempLine) 
    thePosition = InStr(tempLine, ",") 
    tempLine = Right(tempLine, Len(tempLine) - thePosition) 
    sy = Val(tempLine) 
    Set pPoint = New Point 
    pPoint.x = sx 
    pPoint.y = sy 
    Set pGeom = pPoint 
    Set pFB.Shape = pGeom 
     
    pFB.Value(indX) = sx 
    pFB.Value(indY) = sy 
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    pFB.Value(indSndclid) = sndclid 
     
    pFC.InsertFeature pFB 
    pFC.Flush 
  Loop 
   
  pFC.Flush 
   
  'cleanup 
  Set pFC = Nothing 
  Set pFB = Nothing 
  Set pFieldsNew = Nothing 
  Set fs = Nothing 
  Set theStream = Nothing 
  Set pPoint = Nothing 
  Set pGeom = Nothing 
   
End Function 
 
'********************************************************************************* 
' Create NASolver and NAContext 
'********************************************************************************* 
Public Function CreateSolverContext(pNetDataset As INetworkDataset) As INAContext 
    'Get the Data Element 
    Dim pDENDS As IDENetworkDataset 
    Set pDENDS = GetDENetworkDataset(pNetDataset) 
     
    Dim pNASolver As INASolver 
    Dim pContextEdit As INAContextEdit 
    Set pNASolver = New esriNetworkAnalyst.NARouteSolver 
    Set pContextEdit = pNASolver.CreateContext(pDENDS, "Route") 
    pContextEdit.Bind pNetDataset, New GPMessages 
     
    Set CreateSolverContext = pContextEdit 
     
    'cleanup 
    Set pDENDS = Nothing 
    Set pNASolver = Nothing 
    Set pContextEdit = Nothing 
     
End Function 
 
Public Sub LoadNANetworkLocations(ByRef pContext As INAContext, _ 
                                    ByVal strNAClassName As String, _ 
                                    ByVal pInputFC As IFeatureClass, _ 
                                    ByVal SnapTolerance As Double) 
     
    Dim pNAClass As INAClass 
    Dim pClasses As INamedSet 
    Set pClasses = pContext.NAClasses 
    Set pNAClass = pClasses.ItemByName(strNAClassName) 
     
    ' delete existing Locations except if that a barriers 
    pNAClass.DeleteAllRows 
         
    ' Create a NAClassLoader and set the snap tolerance (meters unit) 
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    Dim pLoader As INAClassLoader 
    Set pLoader = New NAClassLoader 
    Set pLoader.Locator = pContext.Locator 
    If SnapTolerance > 0 Then pLoader.Locator.SnapTolerance = SnapTolerance 
    Set pLoader.NAClass = pNAClass 
     
    'Create field map to automatically map fields from input class to naclass 
    Dim pFieldMap As INAClassFieldMap 
    Set pFieldMap = New NAClassFieldMap 
    pFieldMap.CreateMapping pNAClass.ClassDefinition, pInputFC.Fields 
    Set pLoader.FieldMap = pFieldMap 
     
    'Load Network Locations 
    Dim rowsIn As Long 
    Dim rowsLocated As Long 
    pLoader.Load pInputFC.Search(Nothing, True), Nothing, rowsIn, rowsLocated 
     
    'cleanup 
    Set pNAClass = Nothing 
    Set pClasses = Nothing 
    Set pLoader = Nothing 
    Set pFieldMap = Nothing 
     
End Sub 
 
'**********************************************************************************
***** 
' Get GetDENetworkDataset fom NetworkDataSet 
' 
**********************************************************************************
**** 
Public Function GetDENetworkDataset(pNetDataset As INetworkDataset) As IDENetworkDataset 
    'QI from the Network Dataset to the DatasetComponent 
    Dim pDSComponent As IDatasetComponent 
    Set pDSComponent = pNetDataset 
 
    'Get the Data Element 
    Set GetDENetworkDataset = pDSComponent.DataElement 
     
    'cleanup 
    Set pDSComponent = Nothing 
     
End Function 
'********************************************************************************* 
' Set Route Solver Settings 
'********************************************************************************* 
Public Sub SetSolverSettings(ByRef pContext As INAContext, _ 
                             ByVal sImpedanceName As String, _ 
                             ByVal bOneWay As Boolean, _ 
                             ByVal bUseHierarchy As Boolean) 
     
    'Set Route specific Settings 
    Dim pSolver As INASolver 
    Set pSolver = pContext.Solver 
     
    Dim pRteSolver As INARouteSolver 
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    Set pRteSolver = pSolver 
     
    pRteSolver.OutputLines = esriNAOutputLineTrueShapeWithMeasure 
    pRteSolver.CreateTraversalResult = True 
    pRteSolver.UseTimeWindows = False 
    pRteSolver.FindBestSequence = False 
    pRteSolver.PreserveFirstStop = False 
    pRteSolver.PreserveLastStop = False 
     
    'Set generic Solver settings 
    ' set the impedance attribute 
    Dim pSolverSettings As INASolverSettings 
    Set pSolverSettings = pSolver 
    pSolverSettings.ImpedanceAttributeName = sImpedanceName 
     
    ' Set the OneWay Restriction if necessary 
    Dim restrictions As IStringArray 
    Set restrictions = pSolverSettings.RestrictionAttributeNames 
    restrictions.RemoveAll 
    If bOneWay Then 
        restrictions.Add "oneway" 
    End If 
    Set pSolverSettings.RestrictionAttributeNames = restrictions 
 
    'Restrict UTurns 
    pSolverSettings.RestrictUTurns = esriNFSBNoBacktrack 
     
    ' Set the Hierachy attribute 
    pSolverSettings.UseHierarchy = bUseHierarchy 
    If bUseHierarchy Then 
        pSolverSettings.HierarchyAttributeName = "hierarchy" 
        pSolverSettings.HierarchyLevelCount = 3 
        pSolverSettings.MaxValueForHierarchy(1) = 1 
        pSolverSettings.NumTransitionToHierarchy(1) = 9 
         
        pSolverSettings.MaxValueForHierarchy(2) = 2 
        pSolverSettings.NumTransitionToHierarchy(2) = 9 
    End If 
     
    ' Do not forget to update the context after you set your impedance 
    pSolver.UpdateContext pContext, GetDENetworkDataset(pContext.NetworkDataset), New 
GPMessages 
     
    ' Update the StreetDirectionAgent context 
    Dim pNAAgent As INAAgent 
    Set pNAAgent = pContext.Agents.ItemByName("StreetDirectionsAgent") 
    pNAAgent.OnContextUpdated 
     
    'cleanup 
    Set pSolver = Nothing 
    Set pRteSolver = Nothing 
    Set pSolverSettings = Nothing 
    Set restrictions = Nothing 
    Set pNAAgent = Nothing 
     
End Sub 
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'********************************************************************************* 
' Solve the problem 
'********************************************************************************* 
Public Function Solve(ByVal pNAContext As INAContext, ByVal pGPMessages As IGPMessages) 
As String 
On Error GoTo FAIL 
     
    'Solving the Problem 
    Solve = "Error when solving" 
    Dim IsPartialSolution As Boolean 
    IsPartialSolution = pNAContext.Solver.Solve(pNAContext, pGPMessages, Nothing) 
 
    If IsPartialSolution = False Then 
        Solve = "OK" 
    Else 
        Solve = "Partial Solution" 
    End If 
 
    Exit Function 
FAIL: 
 
    If Err.Number Then 
        Solve = Solve + " Error # " + Str(Err.Number) + " Description " + Err.Description 
    End If 
End Function 
 
'**********************************************************************************
********* 
'Populate output file containing nodes visited in route for an agent                       * 
'**********************************************************************************
********* 
Public Sub NodesVisited(ByVal pJL As IFeatureLayer, outPath As String, outFile As String, 
pStopsFC As IFeatureClass) 
 
  'Create a new shapefile to put nodes into 
  Dim pOutputFeatureClass As IFeatureClass 
  Set pOutputFeatureClass = CreateShapefilePaths(outPath, outFile & "path") 
   
  'Set up file for output 
  Dim pOutputFC As IFeatureCursor 
  Dim pOutputFB As IFeatureBuffer 
  Dim pOutputFields As IFields 
   
  'Get an insert cursor and a feature buffer 
  Set pOutputFC = pOutputFeatureClass.Insert(True) 
  Set pOutputFB = pOutputFeatureClass.CreateFeatureBuffer 
  Set pOutputFields = pOutputFB.Fields 
   
  'Get the column index for the Output table for sndcl-id, x, y, step, path number,arc_ 
  Dim idxOutputSndclid As Long 
  Dim idxarcid As Long 
  Dim idxOutputX As Long 
  Dim idxOutputY As Long 
  Dim idxOutputPath As Long 
  Dim idxOutputStep As Long 
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  idxOutputSndclid = pOutputFields.FindField("sndcl-id") 
  idxarcid = pOutputFields.FindField("arc_") 
  idxOutputX = pOutputFields.FindField("X") 
  idxOutputY = pOutputFields.FindField("Y") 
  idxOutputPath = pOutputFields.FindField("path_num") 
  idxOutputStep = pOutputFields.FindField("step") 
   
  'Create a featurecursor with the records from our Original stops 
  Dim pStopsFeatureCursor As IFeatureCursor 
  Set pStopsFeatureCursor = pStopsFC.Search(Nothing, False) 
  Dim pStopFeature As IFeature 
  Set pStopFeature = pStopsFeatureCursor.NextFeature 
   
  'Get the column index for the Original stops 
  Dim idxStopsSndclid As Long 
  Dim idxStopsX As Long 
  Dim idxStopsY As Long 
  idxStopsSndclid = pStopsFC.FindField("sndcl-id") 
  idxStopsX = pStopsFC.FindField("x") 
  idxStopsY = pStopsFC.FindField("y") 
   
  'Get the first layer in the mapcontrol which should be our junctions 
  Dim pJunctionsLayer As ILayer 
  Set pJunctionsLayer = pJL 
  'Get the Junctions featureclass 
  Dim pJunctionsFeatureLayer As IFeatureLayer 
  Set pJunctionsFeatureLayer = pJunctionsLayer 
  Dim pJunctionsFeatureClass As IFeatureClass 
  Set pJunctionsFeatureClass = pJunctionsFeatureLayer.FeatureClass 
     
  'Create a featurecursor with the records from our junctions 
  Dim pJunctionFeatureCursor As IFeatureCursor 
  Dim pJunctionFeature As IFeature 
 
  'Get the column index for the Junctions file 
  Dim pTable As ITable 
  Dim pDisplayTable As IDisplayTable 
  Set pDisplayTable = pJL 
  Set pTable = pDisplayTable.DisplayTable 
  Set pJunctionFeatureCursor = pTable.Search(Nothing, False) 
  Set pJunctionFeature = pJunctionFeatureCursor.NextFeature 
   
  Dim idxSourceID As Long 
  Dim idxSourceOID As Long 
  Dim idxArcVal As Long 
  idxSourceID = pJunctionFeatureCursor.FindField("Junctions.SourceID") 
  idxSourceOID = pJunctionFeatureCursor.FindField("Junctions.SourceOID") 
  idxArcVal = pJunctionFeatureCursor.FindField("strnodes_astrnodes.Arc_") 
   
  'Other Variables needed to populate the output 
  Dim pPoint As IPoint 
  Dim pGeom As IGeometry 
  Dim pathnum As Integer 
  Dim counter As Integer 
  pathnum = 1 
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  Do While Not pJunctionFeature Is Nothing 
    Set pPoint = New Point 
    If pJunctionFeature.Value(idxSourceID) = 5 Then 
      pOutputFB.Value(idxOutputPath) = pathnum 
      pathnum = pJunctionFeature.Value(idxSourceOID) 
      pOutputFB.Value(idxOutputSndclid) = pStopFeature.Value(idxStopsSndclid) 
      Set pStopFeature = pStopsFeatureCursor.NextFeature 
    ElseIf pJunctionFeature.Value(idxSourceID) = 2 Then 
      pOutputFB.Value(idxOutputSndclid) = pJunctionFeature.Value(idxSourceOID) 
      pOutputFB.Value(idxOutputPath) = pathnum 
    End If 
    pOutputFB.Value(idxOutputStep) = counter 
    Set pPoint = pJunctionFeature.Shape 
    Set pOutputFB.Shape = pJunctionFeature.Shape 
    pOutputFB.Value(idxOutputX) = pPoint.x 
    pOutputFB.Value(idxOutputY) = pPoint.y 
    pOutputFB.Value(idxarcid) = pJunctionFeature.Value(idxArcVal) 
    pOutputFC.InsertFeature pOutputFB 
    pOutputFC.Flush 
    Set pJunctionFeature = pJunctionFeatureCursor.NextFeature 
    counter = counter + 1 
  Loop 
   
  'cleanup 
  Set pOutputFeatureClass = Nothing 
  Set pOutputFC = Nothing 
  Set pOutputFB = Nothing 
  Set pOutputFields = Nothing 
  Set pStopsFeatureCursor = Nothing 
  Set pStopFeature = Nothing 
  Set pJunctionsLayer = Nothing 
  Set pJunctionsFeatureLayer = Nothing 
  Set pJunctionsFeatureClass = Nothing 
  Set pJunctionFeatureCursor = Nothing 
  Set pJunctionFeature = Nothing 
  Set pPoint = Nothing 
  Set pGeom = Nothing 
  Set pTable = Nothing 
  Set pDisplayTable = Nothing 
   
End Sub 
 
'**********************************************************************************
********* 
'Create the shapefile that will contain the nodes that were visited for a particular agent * 
'**********************************************************************************
********* 
Public Function CreateShapefilePaths(sPath As String, sName As String) As IFeatureClass ' Dont 
include .shp extension 
   
  ' Open the folder to contain the shapefile as a workspace 
  Dim pFWS As IFeatureWorkspace 
  Dim pWorkspaceFactory As IWorkspaceFactory 
  Set pWorkspaceFactory = New ShapefileWorkspaceFactory 
  Set pFWS = pWorkspaceFactory.OpenFromFile(sPath, 0) 
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  ' Set up a simple fields collection 
  Dim pFields As IFields 
  Dim pFieldsEdit As IFieldsEdit 
  Set pFields = New Fields 
  Set pFieldsEdit = pFields 
   
  Dim pField As IField 
  Dim pFieldEdit As IFieldEdit 
   
  ' Make the shape field 
  ' it will need a geometry definition, with a spatial reference 
  Dim pSpatRef As ISpatialReference2 
  Set pSpatRef = frmAgentPaths.MapControl1.SpatialReference 
   
  Set pField = New Field 
  Set pFieldEdit = pField 
  pFieldEdit.Name = "Shape" 
  pFieldEdit.Type = esriFieldTypeGeometry 
   
  Dim pGeomDef As IGeometryDef 
  Dim pGeomDefEdit As IGeometryDefEdit 
  Set pGeomDef = New GeometryDef 
  Set pGeomDefEdit = pGeomDef 
  With pGeomDefEdit 
    .GeometryType = esriGeometryPoint 
    Set .SpatialReference = pSpatRef 
  End With 
  Set pFieldEdit.GeometryDef = pGeomDef 
  pFieldsEdit.AddField pField 
 
  ' Add sndcl-id field 
  Set pField = New Field 
  Set pFieldEdit = pField 
  With pFieldEdit 
      .Length = 20 
      .Name = "sndcl-id" 
      .Type = esriFieldTypeDouble 
  End With 
  pFieldsEdit.AddField pField 
   
  ' Add arc_ field 
  Set pField = New Field 
  Set pFieldEdit = pField 
  With pFieldEdit 
      .Length = 20 
      .Name = "arc_" 
      .Type = esriFieldTypeDouble 
  End With 
  pFieldsEdit.AddField pField 
   
  ' Add step field 
  Set pField = New Field 
  Set pFieldEdit = pField 
  With pFieldEdit 
      .Length = 4 
      .Name = "step" 
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      .Type = esriFieldTypeInteger 
  End With 
  pFieldsEdit.AddField pField 
   
  ' Add path number field 
  Set pField = New Field 
  Set pFieldEdit = pField 
  With pFieldEdit 
      .Length = 2 
      .Name = "path_num" 
      .Type = esriFieldTypeInteger 
  End With 
  pFieldsEdit.AddField pField 
  
 ' Add x field 
  Set pField = New Field 
  Set pFieldEdit = pField 
  With pFieldEdit 
      .Length = 19 
      .Name = "X" 
      .Type = esriFieldTypeDouble 
      .Precision = 18 
      .Scale = 11 
  End With 
  pFieldsEdit.AddField pField 
   
  ' Add y field 
  Set pField = New Field 
  Set pFieldEdit = pField 
  With pFieldEdit 
      .Length = 19 
      .Name = "Y" 
      .Type = esriFieldTypeDouble 
      .Precision = 18 
      .Scale = 11 
  End With 
  pFieldsEdit.AddField pField 
   
  ' Create the shapefile 
  ' (some parameters apply to geodatabase options and can be defaulted as Nothing) 
  Dim pFeatClass As IFeatureClass 
  Set pFeatClass = pFWS.CreateFeatureClass(sName, pFields, Nothing, _ 
                                           Nothing, esriFTSimple, "Shape", "") 
                                            
  Set CreateShapefilePaths = pFeatClass 
   
  'cleanup 
  Set pFWS = Nothing 
  Set pWorkspaceFactory = Nothing 
  Set pFields = Nothing 
  Set pFieldsEdit = Nothing 
  Set pField = Nothing 
  Set pFieldEdit = Nothing 
  Set pGeomDef = Nothing 
  Set pGeomDefEdit = Nothing 
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End Function 
 
Public Sub RelQryTabExample(ByVal pL As IFeatureLayer, ByVal pFCls As IFeatureClass, 
strFClsFld As String, ByVal pFCls2 As IFeatureClass, strFCls2Fld As String) 
 
  ' ++ Create the MemoryRelationshipClass that defines what is to be joined 
  Dim pMemRelClassFact As IMemoryRelationshipClassFactory 
  Set pMemRelClassFact = New MemoryRelationshipClassFactory 
  Dim pRelClass As IRelationshipClass 
  Set pRelClass = pMemRelClassFact.Open("Juntions_join", pFCls2, _ 
  strFCls2Fld, pFCls, strFClsFld, "forward", "backward", esriRelCardinalityOneToMany) 
 
  ' ++ Perform the join 
  Dim pRelQueryTableFact As IRelQueryTableFactory 
  Dim pRelQueryTab As ITable 
  Set pRelQueryTableFact = New RelQueryTableFactory 
   
  'Set pRelQueryTab = pRelQueryTableFact.Open(pRelClass, True, Nothing, Nothing, "", True, True) 
   
  Dim pDRC As IDisplayRelationshipClass 
  Set pDRC = pL 
  pDRC.DisplayRelationshipClass pRelClass, esriLeftInnerJoin 
   
   
End Sub 
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