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Prognostics and health management (PHM) is a method that permits the 

reliability of a system to be evaluated in its actual application conditions. Thus by 

determining the advent of failure, procedures can be developed to mitigate, manage 

and maintain the system. Since, electronic systems control most systems today and 

their reliability is usually critical for system reliability, PHM techniques are needed 

for electronics. 

 

To enable prognostics, a methodology was developed to extract load-

parameters required for damage assessment from irregular time-load data. As a part 

of the methodology an algorithm that extracts cyclic range and means, ramp-rates, 

dwell-times, dwell-loads and correlation between load parameters was developed. 

The algorithm enables significant reduction of the time-load data without 

compromising features that are essential for damage estimation. The load-parameters 



  

are stored in bins with a-priori calculated (optimal) bin-width. The binned data is then 

used with Gaussian kernel function for density estimation of the load-parameter for 

use in damage assessment and prognostics. The method was shown to accurately 

extract the desired load-parameters and enable condensed storage of load histories, 

thus improving resource efficiency of the sensor nodes. 

 

An approach was developed to assess the impact of uncertainties in 

measurement, model-input, and damage-models on prognostics. The approach utilizes 

sensitivity analysis to identify the dominant input variables that influence the model-

output, and uses the distribution of measured load-parameters and input variables in a 

Monte-Carlo simulation to provide a distribution of accumulated damage. Using 

regression analysis of the accumulated damage distributions, the remaining life is 

then predicted with confidence intervals. The proposed method was demonstrated 

using an experimental setup for predicting interconnect failures on electronic board 

subjected to field conditions.  

 

A failure precursor based approach was developed for remaining life 

prognostics by analyzing resistance data in conjunction with usage temperature loads. 

Using the data from the PHM experiment, a model was developed to estimate the 

resistance based on measured temperature values. The difference between actual and 

estimated resistance value in time-domain were analyzed to predict the onset and 

progress of interconnect degradation. Remaining life was predicted by trending 



  

several features including mean-peaks, kurtosis, and 95% cumulative-values of the 

resistance-drift distributions. 
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Chapter 1: Prognostics and Health Management 

 

1.0 Introduction 

There has been a growing interest in monitoring the ongoing “health” of 

products and systems in order to predict failures and provide warning to avoid 

catastrophic failure. Here, health is defined as the extent of degradation or deviation 

from an expected normal condition. “Prognostics” is the prediction of future state of 

health based on current and historic health conditions [1]. While the application of 

health monitoring and diagnostics is well established for assessment of mechanical 

systems, this is not the case for electronic systems.  However, electronic systems are 

integral to the functionality of most systems today, and their reliability is often critical 

for system reliability [1] [2]. This dissertation is about developing techniques to 

enable the prognostics of electronic systems.  

1.1 Reliability and Prognostics 

Reliability is the ability of a product or system to perform as intended (i.e., 

without failure and within specified performance limits) for a specified time, in its life 

- cycle environment. Commonly-used electronics reliability prediction methods 

generally do not accurately account for the life cycle environment of electronic 

equipment. This arises from fundamental flaws in the reliability assessment 

methodologies used [3], and uncertainties in the product life cycle loads [4]. In fact, 

traditional reliability prediction methods based on the use of handbooks have been 
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shown to be misleading and provide erroneous life predictions [3] [4], a fact that led 

the U. S. military to abandon their electronics reliability prediction methods [4]. 

Although the use of stress and damage models permits a more accurate account of the 

physics-of-failure [5], their application to long-term reliability predictions based on 

extrapolated short-term life testing data or field data, is typically constrained by 

insufficient knowledge of the actual operating and environmental application 

conditions of the product. 

 

 Prognostics and health monitoring techniques combine sensing, recording, and 

interpretation of environmental, operational, and performance-related parameters that 

are indicative of a system’s health. Product health monitoring can be implemented 

through the use of various techniques to sense and interpret the parameters indicative 

of: i) Performance degradation, such as deviation of operating parameters from their 

expected values; ii) Physical or electrical degradation, such as material cracking, 

corrosion, interfacial delamination, increase in electrical resistance or threshold 

voltage; or iii) Changes in a life cycle environment, such as usage duration and 

frequency, ambient temperature and humidity, vibration, and shock. Based on the 

product’s health, determined from the monitored life cycle conditions, maintenance 

procedures can be developed.  Health monitoring therefore permits new products to 

be concurrently designed for a life cycle environment known through monitoring [1] 

[2]. The framework for prognostics is shown in Figure 1. Sensor data from various 

levels in an electronic product or system will be monitored in-situ and analyzed using 

prognostic algorithms. Different implementation approaches can be adopted 
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individually or in combination. These approaches will be discussed in detail in the 

next chapter. Ultimately, the objective is to predict the advent of failure in terms of a 

distribution of remaining life, level of degradation, probability of mission survival 

etc.  

 

Figure 1. Framework for prognostics and health management 

1.2 Motivation for Electronic Prognostics 

Safety critical mechanical systems and structures, such as propulsion engines, 

aircraft structures, bridges, buildings, roads, pressure vessels, rotary equipment, and 

gears, have been known to benefit from advanced sensor systems and models, 

developed specifically for in-situ fault diagnosis and prognosis (often called health 

and usage monitoring or condition monitoring) [6], [7], [8], [9], [10], [11]. Thus, for 

mechanical systems, there is a considerable body of knowledge on health monitoring. 

 

Today, most products and systems contain significant electronics content to 

provide the needed functionality and performance.  However, the application of PHM 

concepts to electronics is rare. If one can assess the extent of deviation or degradation 

from an expected normal operating condition for the electronics, this data can be used 
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to meet several powerful goals, which includes: 1) advanced warning of failures; 2) 

minimizing unscheduled maintenance, extending maintenance cycles, and 

maintaining effectiveness through timely repair actions; 3) reducing life cycle cost of 

equipment by decreasing inspection costs, downtime, and inventory; and 4) 

improving qualification and assisting in the design and logistical support of fielded 

and future systems.  In other words, because electronics are playing an increasingly 

large role in providing operational capabilities for today’s systems, prognostic 

techniques are needed. 

 

In recent years, PHM has emerged as one of the key enablers for achieving 

efficient system-level maintenance and lowering life-cycle costs. In November 2002, 

the U.S. Deputy Under Secretary of Defense for Logistics and Materiel Readiness 

released a policy called condition-based maintenance plus (CBM+ ) [12]. CBM+ 

represents an effort to shift unscheduled corrective equipment maintenance of new 

and legacy systems to preventive and predictive approaches that schedule 

maintenance based upon the evidence of need.  

 

The importance of PHM implementation was explicitly stated in the DoD 

5000.2 policy document on defense acquisition, which states that “program managers 

shall optimize operational readiness through affordable, integrated, embedded 

diagnostics and prognostics, and embedded training and testing, serialized item 

management, automatic identification technology (AIT), and iterative technology 

refreshment” [13]. Thus, PHM has become a requirement for any system sold to the 



 

 5 
 

DOD. A 2005 survey of eleven CBM programs highlighted “electronics prognostics” 

as one of the most needed maintenance-related features or applications, without 

regard for cost [14], a view also shared by the avionics industry [15]. 

 

1.3 Objectives of Thesis 

PHM concepts have been rarely applied to electronics, despite the fact that 

most mechanical systems contain significant electronics content that are often the first 

to fail [16] [17] [18].  This may be due to the fact that wear and damage in electronics 

is comparatively more difficult to detect and inspect due to geometric scale of 

electronic parts being of the order of micro- to nano-scale, and their complex 

architecture.  In addition, faults in electronic parts may not necessarily lead to failure 

or loss of designated electrical performance or functionality, making it difficult to 

quantify product degradation and the progression from faults to final failure.  

Consequently, it is generally difficult to implement prognostic or diagnostic systems 

in electronics, that can directly monitor the faults or conditions in which fault occurs.  

In addition, there is a significant shortage of knowledge about failure precursors in 

electronics.   

 

The broad objective of this work is to develop techniques to enable electronic 

prognostics. Two specific research areas have been identified. i) Development of a 

methodology to extract load parameters required for damage assessment from large 

irregular time-load history. ii) Develop and demonstrate a prognostic approach for 

predicting the remaining life of electronic board in its application environment.  
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1.4 Overview of Thesis 

The different approaches to prognostics, the state-of-art and the state-of-

research in electronics PHM is reviewed in chapter 2. Three current approaches 

include, use of fuses and canary devices, monitoring and reasoning of failure 

precursors, and modeling accumulated damage based on measured life-cycle loads. 

Examples are provided for these different approaches, and the implementation 

challenges are discussed. Chapter 3 presents the approach that combines 

environmental and usage loads, data simplification techniques, and damage models to 

provide in-situ damage assessment and prognostics. The experimental setup for 

demonstrating the PHM techniques is discussed.  

 

 Environmental and usage load profiles need to be efficiently and accurately 

captured in the application environment, and utilized in real time or near real time 

health assessment and prognostics. Chapter 4 outlines generic strategies both for load 

monitoring and conversion of the sensor data into a format that can be used in 

physics-of-failure models, for both damage estimation and remaining life prediction 

due to specific failure mechanisms.  The selection of appropriate parameters to 

monitor, design of an effective monitoring plan, and selection of appropriate 

monitoring equipment are discussed.  Methods to process the raw sensor data during 

in-situ monitoring for reducing the memory requirements and power consumption of 

the monitoring device are suggested. The strategies presented are generically 

applicable to electronic health monitoring processes and are illustrated using a case-

study of in-situ monitoring of a note-book computer. 
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Chapter 5 presents a novel method for processing the in-situ monitored load 

data to enable prognostic assessment of electronic products and systems. The 

proposed method processes the time-domain sensor data to extract load parameters 

including cyclic ranges, mean load, ramp-rates, and dwell times. The load parameters 

and their correlations are then used in conjunction with damage models for assessing 

and predicting the health due to commonly observed failure mechanisms in 

electronics. Methods for optimal binning and density estimation of load parameter are 

outlined. 

 

Remaining life predictions are made by assessing the accumulated damage 

due to measured environmental and usage exposure. However, often the effect of 

uncertainty and variability in the measurement and procedures used for making 

predictions is neglected.  In chapter 6, a generic method is developed for remaining 

life prognostics that accounts for the measurement, model-input, and model 

uncertainties. The method is demonstrated to predict the remaining life distributions 

of solder interconnects subjected to field temperature conditions. The details of the 

proposed method and the implementation case-study are presented.   

 

Chapter 7 presents a different approach for prognostics using the same setup 

described in chapter 3. Instead of assessing the accumulated damage due to 

temperature cycles, the performance of the electronic board is directly monitored and 

analyzed to provide an advance warning of failure and estimate remaining life. The 



 

 8 
 

challenges in monitoring the performance, the methodology adopted for analysis of 

failure precursors and the results are presented. The contributions of this research are 

listed in chapter 8. 
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Chapter 2: Literature Review  
 

 

2.0 Introduction 

Most products and systems contain some electronics to provide functionality 

and performance. These electronics are often the first item of the product or system to 

fail [16] [17] [18]. Assessing the extent of deviation or degradation from an expected 

normal operating condition (i.e., health) for electronics provides data that can be used 

to meet several critical goals, which include (1) advance warning of failures; (2) 

minimizing unscheduled maintenance, extending maintenance cycles, and 

maintaining effectiveness through timely repair actions; (3) reducing the life-cycle 

cost of equipment by decreasing inspection costs, downtime, and inventory; and (4) 

improving qualification and assisting in the design and logistical support of fielded 

and future systems. 

 

In this section the state-of-practice and the current state-of-research in the area 

of electronics prognostics and health management. Three current approaches include, 

use of fuses and canary devices, monitoring and reasoning of failure precursors, and 

modeling accumulated damage based on measured life-cycle loads. Examples are 

provided for these different approaches, and the implementation challenges are 

discussed. A brief discussion is included on Built-in test (BIT) the traditional 

diagnostic tool for electronics. 
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2.1 Built-In Test 

The first efforts in diagnostic health monitoring of electronics involved the 

use of built-in test (BIT). Built-in test is defined as an on-board hardware-software 

diagnostic means to identify and locate faults, and includes error detection and 

correction circuits, totally self-checking circuits, and self-verification circuits [19].  

The equipment manufacturer sometimes provides BIT circuitry and software to allow 

the user to verify system functionality by providing access to internal nodes for 

comparison with known voltages or data patterns. BIT can also be used to debug, 

troubleshoot, and perform preventive maintenance.  

 
Various levels of BIT include (1) circuit-level BIT (also referred as BIST - 

built-in self-test) for fault logging and diagnostics of individual circuits; (2) module- 

or assembly-level BIT that supports one or more circuit card assemblies, such as line-

replaceable units and (3) system-level BIT that performs diagnostics and operational 

testing of entire electronic systems. Among the earliest equipment available with BIT 

was the HP-3325A (1980) synthesizer function generator. BIT has since been used in 

diverse applications, including oceanographic systems, multichip modules, large-

scale integrated circuits, power supply systems, avionics, and even passenger 

entertainment systems for the Boeing 767 and 777 [20].  

 
Two types of BIT concepts are employed in electronic systems--interruptive 

BIT (I-BIT) and continuous BIT (C-BIT). The concept behind I-BIT is that normal 

equipment operation is suspended during BIT operation. Such BITS are typically 

initiated by the operator or occur during the power-up process. The concept behind C-
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BIT is that equipment is monitored continuously and automatically without affecting 

normal operation. Periodic BIT (P-BIT) is an I-BIT system that interrupts normal 

operation periodically in order to carry out a pseudocontinuous monitoring function. 

BIT concepts are still being developed to reduce the occurrence of spurious failure 

indications. 

 

The nature of BIT depends on the nature of the equipment that it monitors. 

System-wide BIT may be centralized, controlling all BIT functions, or may comprise 

a number of BIT centers (often at the level of line-replaceable units) that 

communicate with each other and with a master processing unit that processes the 

results. A centralized BIT will often require dedicated hardware. BIT can also be 

incorporated and processed at the level of line-replaceable units to test the 

functionality of key circuits within a unit or on individual circuit cards. The 

advantage of BIT at this level is to help identify problems closer to the root cause, 

thus allowing cost-effective assembly and maintenance [20].  

 

For example, a board-level BIT implemented by Motorola (MBIT), consisted 

of a diagnostic hardware and software package designed to verify the correct 

operation of board-mounted logical devices [21]. All tests could be executed at boot-

up and selected tests ran continuously in the background of user applications. An 

application programming interface (API) was included to provide access to test 

results and to control the operation of device tests. The board-level MBIT consisted 

of hardware diagnostics and an API to control operation of the test driver suite. 
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Examples of tested devices are the processor, L2 cache, VMEbus ASIC, ECC RAM, 

serial EPROM, Flash, NVRAM and real-time clock. Internal operation tests included 

checking register stuck-at conditions, register manipulations, and device setup 

instructions. The system-level MBIT, connects to all board-level versions to enable 

system-wide testing [21].  

 

One of the early efforts in using monitored BIT and operational loads for 

maintenance analysis was the development of the time stress measurement device 

(TSMD). Broadwater, et al., [22] [23] proposed the use of a microprocessor-based 

TSMD that can serve as a single-chip built-in-test (BIT) and maintain logs between 

users and depot repair facilities. The primary objective of the TSMD was to store sub-

system fault testing and environmental stress data. Thus, when a sub-system failure 

occurred, the TSMD would record the time stamp, the BIT fault code and the system 

mode. This data could be analyzed with the environmental stress data measured 

before, during, and after the fault event, and then used to constitute a fault signature 

for future diagnosis. However, this study identified intermittent failures and fault 

isolation ambiguity in electronic systems as a major obstacle in achieving the 

complete benefits of TSMD. Fault isolation ambiguity occurs in systems where the 

BIT is unable to discriminate failures between the BIT computer, various LRU’s, and 

system interconnections.  

 

Despite the apparent sophistication of BIT, there has been some concern that 

the requirement for BIT and the actual capabilities of BIT are not easy to match. For 
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example, airline experience with modern avionics systems has indicated that spurious 

fault detection is unacceptably high. In 1996, Johnson [24] reported that the 

Lufthansa Airbus A 320 had a daily average of two thousand error logs on its BIT. 

About seventy of these corresponded with faults reported by pilots, while another 

seventy or so pilot reports of faults had no corresponding BIT log. Of the seventeen 

line-replaceable units replaced daily, typically only two were found to have faults that 

correlated with the fault indicated by the reports. Several studies [20] [25] [26] [27] 

conducted on the use of BIT for fault identification and diagnostics showed that BIT 

can be prone to false alarms and can result in unnecessary costly replacement, re-

qualification, delayed shipping, and loss of system availability. However, there is also 

reason to believe that many of the failures were “real”, but intermittent in nature [28]. 

 

The persistence of such issues over the years is perhaps due to the fact that the 

use of BIT has been restricted to low-volume systems. Thus, BIT has generally not 

been designed to provide prognostics or remaining useful life due to accumulated 

damage or progression of faults. It has served primarily as a diagnostic tool. 

 

2.2 Fuses and Canaries 

 
Expendable devices such as fuses and canaries have been a traditional method 

of protection for structures and electrical power systems.  Fuses and circuit breakers 

are examples of elements used in electronic products to sense excessive current drain 

and to disconnect power from the concerned part.  Fuses within circuits safeguard 

parts against voltage transients or excessive power dissipation, and protect power 
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supplies from shorted parts.  For example, thermostats can be used to sense critical 

temperature limiting conditions, and to shut down the product, or a part of the system, 

until the temperature returns to normal.  In some products, self-checking circuitry can 

also be incorporated to sense abnormal conditions and to make adjustments to restore 

normal conditions, or to activate switching means to compensate for the malfunction 

[29].  

 

The word “canary” is derived from one of coal mining’s earliest systems for 

warning of the presence of hazardous gas using the canary bird.  Because the canary 

is more sensitive to hazardous gases than humans, the death or sickening of the 

canary was an indication to the miners to get out of the shaft.  The canary thus 

provided an effective early warning of catastrophic failure by providing advance 

warning that was easy to interpret.  The same approach, using canaries, has been 

employed in prognostic health monitoring (PHM). 

 

Canary devices mounted on the actual product can also be used to provide 

advance warning of failure due to specific wearout failure mechanisms. Mishra, et al., 

[30] studied the applicability of semiconductor-level health monitors by using pre-

calibrated cells (circuits) located on the same chip with the actual circuitry. The 

prognostics cell approach has been commercialized by Ridgetop Group (known as 

Sentinel SemiconductorTM technology) to provide an early-warning sentinel for 

upcoming device failures [31]. The prognostic cells are available for 0.35, 0.25, and 

0.18 micron CMOS processes; the power consumption is approximately 600 
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microwatts. The cell size is typically 800 µm2 at the 0.25 micron process size. 

Currently, prognostic cells are available for semiconductor failure mechanisms such 

as electrostatic discharge (ESD), hot carrier, metal migration, dielectric breakdown, 

and radiation effects.  

 

The time to failure of these prognostic cells can be pre-calibrated with respect 

to the time to failure of the actual product. Because of their location, these cells 

contain and experience substantially similar dependencies as does the actual product. 

These stresses that contribute to degradation of the circuit include voltage, current, 

temperature, humidity, and radiation. Since the operational stresses are the same, the 

damage rate is expected to be the same for both the circuits. However, the prognostic 

cell is designed to fail faster through increased stress on the cell structure by means of 

scaling.   

 

Scaling can be achieved by controlled increase of the current density inside 

the cells. With the same amount of current passing through both circuits, if the cross-

sectional area of the current-carrying paths in the cells is decreased, a higher current 

density is achieved. Further control in current density can be achieved by increasing 

the voltage level applied to the cells. A combination of both of these techniques can 

also be used. Higher current density leads to higher internal (joule) heating, causing 

greater stress on the cells. When a current of higher density passes through the cells, 

they are expected to fail faster than the actual circuit [30]. 
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Figure 2 shows the failure distribution of the actual product and the canary 

health monitors. Under the same environmental and operational loading conditions, 

the canary health monitors wearout faster to indicate the impending failure of the 

actual product. Canaries can be calibrated to provide sufficient advance warning of 

failure (prognostic distance) to enable appropriate maintenance and replacement 

activities. This point can be adjusted to some other early indication level. Multiple 

trigger points can also be provided, using multiple cells evenly spaced over the 

bathtub curve. 

 

Figure 2. Advance warning of failure using canary structures 
 

The extension of this approach to board-level failures was proposed by 

Anderson, et al., [32], who created canary components (located on the same printed 

circuit board) that include the same mechanisms that lead to failure in actual 

components. Anderson et al., identified two prospective failure mechanisms: (1) low 

cycle fatigue of solder joints, assessed by monitoring solder joints on and within the 

canary package; and (2) corrosion monitoring using circuits that will be susceptible to 

corrosion. The environmental degradation of these canaries was assessed using 
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accelerated testing, and degradation levels are calibrated and correlated to actual 

failure levels of the main system. The corrosion test device included an electrical 

circuitry susceptible to various corrosion-induced mechanisms. Impedance 

Spectroscopy was proposed for identifying changes in the circuits by measuring the 

magnitude and phase angle of impedance as a function of frequency. The change in 

impedance characteristics would be correlated to indicate specific degradation 

mechanisms. 

 
There remain unanswered questions with the use of fuses and canaries. For 

example, if a canary monitoring a circuit is replaced, what is the impact when the 

product is re-energized? What protective architectures are appropriate for post-repair 

operations? What maintenance guidance must be documented and followed when 

fail-safe protective architectures have or have not been included? This approach is 

difficult to implement in legacy systems, because it may require re-qualification of 

the entire system with the canary module.  Also, the integration of fuses and canaries 

with the host electronic systems could be an issue with respect to real estate on 

semiconductors and boards.  Finally, the company has to ensure that the additional 

cost of implementing PHM can be recovered through increased operational and 

maintenance efficiencies.  

2.3 Monitoring Precursors to Failure 

A failure precursor is an event that signifies impending failure.  A precursor 

indication is usually a change in a measurable variable that can be associated with 

subsequent failure. For example, a shift in the output voltage of a power supply would 
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suggest impending failure due to damaged feedback regulator and opto-isolator 

circuitry. Failures can then be predicted by using a causal relationship between a 

measured variable that can be correlated with subsequent failure.  

 

A first step in PHM is to select the life-cycle parameters to be monitored.  

Parameters can be identified based on factors that are crucial for safety, that are likely 

to cause catastrophic failures, that are essential for mission completeness, or that can 

result in long downtimes.  Selection can also be based on knowledge of the critical 

parameters established by past experience and field failure data on similar products 

and on qualification testing.  More systematic methods, such as failure mode 

mechanisms and effects analysis (FMMEA) [33], can be used to determine 

parameters that need to be monitored.   

 

Born and Boenning, [34] and Pecht et al., [35] proposed several measurable 

parameters that can be used as failure precursors for electronic switching power 

supplies, cables and connectors, CMOS integrated circuits, and voltage-controlled 

high-frequency oscillators (see Table 1).  Testing was conducted to demonstrate the 

potential of select parameters to be viable for detection of incipient failures in 

electronic systems.    

Table 1. Potential failure precursors for electronics 
 

Electronic Subsystem Failure Precursor Parameter 

Switching power 

supply 

• DC output (voltage and current levels) 

• Ripple  

• Pulse width duty cycle 
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• Efficiency 

• Feedback (voltage and current levels) 

• Leakage current 

• RF noise 

Cables and connectors • Impedance changes 

• Physical damage 

• High-energy dielectric breakdown 

CMOS IC • Supply leakage current 

• Supply current variation 

• Operating signature 

• Current noise 

• Logic level variations 

Voltage controlled 

oscillators 

• Output frequency 

• Power loss 

• Efficiency 

• Phase distortion 

• Noise 

FET • Gate leakage current/resistance 

• Drain-source leakage current/resistance 

Ceramic chip 

capacitors 

• Leakage current/resistance 

• Dissipation factor 

• RF noise 

General purpose 

diodes 

• Reverse leakage current 

• Forward voltage drop 

• Thermal resistance 

• Power dissipation 

• RF noise 

Electrolytic capacitors • Leakage current/resistance 

• Dissipation factor 

• RF noise 

RF power amplifier • Voltage standing wave ratio (VSWR) 
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• Power dissipation 

• Leakage current 

 

Supply current monitoring is routinely performed for testing of CMOS ICs. 

This method is based upon the notion that defective circuits produce an abnormal or 

at least significantly different amount of current than the current produced by fault-

free circuits. This excess current can be sensed to detect faults. The power supply 

current (Idd) can be defined by two elements: the Iddq-quiescent current and the Iddt-

transient or dynamic current. Iddq is the leakage current drawn by the CMOS circuit 

when it is in a stable (quiescent) state. Iddt is the supply current produced by circuits 

under test (CUT) during a transition period after the input has been applied. Iddq has 

been reported to have the potential for detecting defects such as bridging, opens, and 

parasitic transistor defects. Operational and environmental stresses such as 

temperature, voltage, and radiation can quickly degrade previously undetected faults 

and increase the leakage current (Iddq). There is extensive literature on Iddq testing, 

but only little has been done on using Iddq for in-situ PHM. Monitoring Iddq has 

been more popular than monitoring Iddt [36] [37] [38]. 

 

Smith and Campbell, [36] developed a quiescent current monitor (QCM) that 

can detect elevated Iddq current in real time during operation. The QCM performed 

leakage current measurements on every transition of the system clock to get 

maximum coverage of the IC in real time. Pecuh, et al., [37] and Xue and Walker, 

[38] proposed a low-power built-in current monitor for CMOS devices. In the Pecuh, 

et al., study, the current monitor was developed and tested on a series of inverters for 
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simulating open and short faults. Both fault types were successfully detected and 

operational speeds of up to 100 MHz were achieved with negligible effect on the 

performance of the circuit under test. The current sensor developed by Xue and 

Walker enabled Iddq monitoring at a resolution level of 10 pA. The system translated 

the current level into a digital signal with scan chain readout. This concept was 

verified by fabrication on a test chip.  

 

It has been proposed by GMA Industries [39] [40] [41] to embed molecular 

test equipment (MTE) within ICs to enable them to continuously test themselves 

during normal operation and to provide a visual indication that they have failed. The 

molecular test equipment could be fabricated and embedded within the individual 

integrated circuit in the chip substrate. The molecular-sized sensor "sea of needles" 

could be used to measure voltage, current, and other electrical parameters, as well as 

sense changes in the chemical structure of integrated circuits that are indicative of 

pending or actual circuit failure.  This research focuses on the development of 

specialized doping techniques for carbon nanotubes to form the basic structure 

comprising the sensors.  The integration of these sensors within conventional IC 

circuit devices, as well as the use of molecular wires for the interconnection of sensor 

networks, is an important factor in this research.  However, no product or prototype 

has been developed to date. 

 

Kanniche and Mamat-Ibrahim, [42] developed an algorithm for health 

monitoring of pulse width modulation - voltage source inverters. The algorithm was 
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designed to detect and identify transistor open circuit faults and intermittent misfiring 

faults occurring in electronic drives. The mathematical foundations of the algorithm 

were based on discrete wavelet transform (DWT) and fuzzy logic (FL).  Current 

waveforms were monitored and continuously analyzed using DWT to identify faults 

that may occur due to constant stress, voltage swings, rapid speed variations, frequent 

stop/start-ups, and constant overloads.  After fault detection, “if-then” fuzzy rules 

were used for VLSI fault diagnosis to pinpoint the fault device. The algorithm was 

demonstrated to detect certain intermittent faults under laboratory experimental 

conditions.  

 

Lall, et al. [43] [44] have developed a damage pre-cursor based residual life 

computation approach for various package elements to prognosticate electronic 

systems prior to the appearance of any macro-indicators of damage.  In order to 

implement the system-health monitoring, precursor variables have been identified for 

various package elements and failure mechanisms.  Model-algorithms have been 

developed to correlate precursors with impending failure for computation of residual 

life.  Package elements investigated include, first-level interconnects, dielectrics, chip 

interconnects, underfills and semiconductors.  Examples of damage proxies include, 

phase growth rate of solder interconnects, intermetallics, normal stress at chip 

interface, and interfacial shear stress.  Lall et al., suggest that the pre-cursor based 

damage computation approach eliminates the need for knowledge of prior or posterior 

operational stresses and enables the management of system reliability of deployed 

non-pristine materials under unknown loading conditions.  The approach can be used 
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on re-deployed parts, sub-systems and systems, since it does not depend on 

availability of prior stress histories.   

 

Self-monitoring analysis and reporting technology (SMART) currently 

employed in select computing equipment for hard disk drives (HDD) is another 

example of precursor monitoring [45] [46].  HDD operating parameters, including the 

flying height of the head, error counts, variations in spin time, temperature, and data 

transfer rates, are monitored to provide advance warning of failures (see Table 2).  

This is achieved through an interface between the computer’s start-up program 

(BIOS) and the hard disk drive.   

Table 2. Monitoring parameters based on reliability concerns in hard drives 
 

Reliability Issues Parameters Monitored 

• Heads/head assembly 

- crack on head 

- head contamination or 

resonance 

- bad connection to electronics 

module 

• Motors/bearings 

- motor failure 

- worn bearing 

- excessive run-out 

- no spin 

• Electronic module 

- circuit/chip failure 

- interconnection/solder joint 

failure 

• Head flying height: A downward 

trend in flying height will often 

precede a head crash.  

• Error Checking and Correction 

(ECC) use and error counts: The 

number of errors encountered by the 

drive, even if corrected internally, 

often signals problems developing 

with the drive.  

• Spin-up time: Changes in spin-up 

time can reflect problems with the 

spindle motor.  

• Temperature: Increases in drive 

temperature often signal spindle 
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- bad connection to drive or bus 

• Media 

- scratch/defects  

- retries 

- bad servo 

- ECC corrections 

motor problems.  

• Data throughput: Reduction in the 

transfer rate of data can signal 

various internal problems.  

 

Systems for early fault detection and failure prediction are being developed 

using variables such as current, voltage, and temperature, continuously monitored at 

various locations inside the system. Sun Microsystems refers to this approach as 

continuous system telemetry harnesses [47]. Along with sensor information, soft 

performance parameters such as loads, throughputs, queue lengths, and bit error rates 

are tracked. Prior to PHM implementation, characterization is conducted by 

monitoring the signals (of different variables) to learn a multivariate state estimation 

technique (MSET) model. Once the model is established using this data, it is used to 

predict the signal of a particular variable based on learned correlations among all 

variables [48]. Based on the expected variability in the value of a particular variable 

during application, a sequential probability ratio test (SPRT) is constructed. During 

actual monitoring the SPRT will be used to detect the deviations of the actual signal 

from the expected signal based on distributions (and not on single threshold value) 

[49] [50].  

  

During implementation, the performance variables are continuously monitored 

using sensors already existing in Sun’s servers and recorded in a circular file 

structure. The file retains data collected at high sampling rates for seventy-two hours 
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and data collected at a lower sampling rate for thirty days. For each signal being 

monitored, an expected signal is generated using the MSET model. This signal is 

generated in real time based on learned correlations during characterization (see 

Figure 3). A new signal of residuals is generated, which is the arithmetic difference 

of the actual and expected time-series signal values. These differences are used as 

input to the SPRT model, which continuously analyses the deviations and provides an 

alarm if the deviations are of concern [48].  The monitored data is analyzed to (1) 

provide alarms based on leading indicators of failure, and (2) enable use of monitored 

signals for fault diagnosis, root cause analysis of no-fault-founds (NFF), and analysis 

of faults due to software aging [47] [51].  

  
 

Figure 3. SUN's approach to PHM 
    

Brown, et al., [52] demonstrated that the remaining useful life of a 

commercial global positioning system (GPS) system can be predicted by using 

precursor to failure approach. The failure modes for GPS included precision failure 

due to an increase in position error and solution failure due to increased outage 

probability. These failure progressions were monitored in-situ by recording system-

level features reported using the national marine electronics association (NMEA) 
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protocol 0183. The GPS was characterized to collect the principal feature value for a 

range of operating conditions. The approach was validated by conducting accelerated 

thermal cycling of the GPS with the offset of the principal feature value measured in-

situ. Based on experimental results, parametric models were developed to correlate 

the offset in the principal feature value with solution failure. During the experiment 

the BIT provided no indication of an impending solution failure [52]. 

 

In general to implement a precursor reasoning-based PHM system, it is 

necessary to identify the precursor variables for monitoring, and then develop a 

reasoning algorithm to correlate the change in the precursor variable with the 

impending failure. This characterization is typically performed by measuring the 

precursor variable under an expected or accelerated usage profile. Based on the 

characterization, a model is developed - typically a parametric curve-fit, neural-

network, Bayesian network, or a time-series trending of a precursor signal. This 

approach assumes that there is one or more expected usage profiles that are 

predictable and can be simulated in a laboratory setup. In some products the usage 

profiles are predictable, but this is not always true.  

 

For a fielded product with highly varying usage profiles, an unexpected 

change in the usage profile could result in a different (non-characterized) change in 

the precursor signal. If the precursor reasoning model is not characterized to factor in 

the uncertainty in life-cycle usage and environmental profiles, it may provide false 

alarms. Additionally, it may not always be possible to characterize the precursor 
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signals under all possible usage scenarios (assuming they are known and can be 

simulated). Thus, the characterization and model development process can often be 

time-consuming and costly and may not work. 

 

2.4 Monitoring Environmental and Usage Loads 

The life-cycle environment of a product consists of manufacturing, storage, 

handling, operating and non-operating conditions.  The life-cycle loads (Table 3), 

either individually or in various combinations, may lead to performance or physical 

degradation of the product and reduce its service life [53].  The extent and rate of 

product degradation depends upon the magnitude and duration of exposure (usage 

rate, frequency, and severity) to such loads. If one can measure these loads in-situ, the 

load profiles can be used in conjunction with damage models to assess the 

degradation due to cumulative load exposures.  

Table 3. Examples of life-cycle loads 
Load Load Conditions 

Thermal Steady-state temperature, temperature ranges, temperature 

cycles, temperature gradients, ramp rates, heat dissipation 

Mechanical Pressure magnitude, pressure gradient, vibration, shock load, 

acoustic level, strain, stress 

Chemical Aggressive versus inert environment, humidity level, 

contamination, ozone, pollution, fuel spills 

Physical Radiation, electromagnetic interference, altitude 

Electrical Current, voltage, power 
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The assessment of the impact of life-cycle usage and environmental loads on 

electronic structures and components was studied by Ramakrishnan and Pecht [53]. 

This study introduced the life consumption monitoring (LCM) methodology (Figure 

4), which combined in-situ measured loads with physics-based stress and damage 

models for assessing the life consumed.  

 

Figure 4. CALCE life consumption monitoring methodology 
 

The application of the LCM methodology to electronics PHM was illustrated 

with two case studies [53] [54].  The test vehicle consisted of an electronic 

component-board assembly placed under the hood of an automobile and subjected to 

normal driving conditions in the Washington, DC, area.  The test board incorporated 

eight surface-mount leadless inductors soldered onto an FR-4 substrate using eutectic 

tin-lead solder.  Solder joint fatigue was identified as the dominant failure 
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mechanism.  Temperature and vibrations were measured in-situ on the board in the 

application environment.  Using the monitored environmental data, stress and damage 

models were developed and used to estimate consumed life. The LCM methodology 

accurately predicted remaining life.  

 

Mathew, et al., [55] applied the LCM methodology in conducting a prognostic 

remaining-life assessment of circuit cards inside a space shuttle solid rocket booster 

(SRB). Vibration time history recorded on the SRB from the pre-launch stage to 

splashdown were used in conjunction with physics-based models to assess the 

damage caused due to vibration and shock loads. Using the entire life-cycle loading 

profile of the SRBs, the remaining life of the components and structures on the circuit 

cards were predicted. It was determined that an electrical failure was not expected 

within another forty missions. However, vibration and shock analysis exposed an 

unexpected failure of the circuit card due to a broken aluminum bracket mounted on 

the circuit card. Damage accumulation analysis determined that the aluminum 

brackets had lost significant life due to shock loading. 

 

Shetty, et al. [56] applied the LCM methodology for conducting a prognostic 

remaining-life assessment of the end effector electronics unit (EEEU) inside the 

robotic arm of the space shuttle remote manipulator system (SMRS). A life-cycle 

loading profile for thermal and vibrational loads was developed for the EEEU boards. 

Damage assessment was conducted using physics-based mechanical and 

thermomechanical damage models. A prognostic estimate using a combination of 
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damage models, inspection, and accelerated testing showed that there was little 

degradation in the electronics and they could be expected to last another twenty years.   

 

Vichare, et al. [2] [57] outlined generic strategies for in-situ load monitoring, 

including selecting appropriate parameters to monitor and designing an effective 

monitoring plan. Methods for processing the raw sensor data during in-situ 

monitoring to reduce the memory requirements and power consumption of the 

monitoring device were presented.  Approaches were also presented for embedding 

intelligent front-end data processing capabilities in monitoring systems to enable data 

reduction and simplification (without sacrificing relevant load information) prior to 

input in damage models for health assessment and prognostics.  

 

Embedding the data reduction and load parameter extraction algorithms in to 

the sensor modules as suggested by Vichare et al., [57] can lead to reduction in on-

board storage space, low power consumption, and uninterrupted data collection over 

longer durations.  A time-load signal can be monitored in-situ using sensors, and 

further processed to extract (in this case) cyclic range (∆s), cyclic mean load (Smean), 

and rate of change of load (ds/dt) using embedded load extraction algorithms. The 

extracted load parameters can be stored in appropriately binned histograms to achieve 

further data reduction.  After the binned data is downloaded, it can be used to 

estimate the distributions of the load parameters.  The usage history is used for 

damage accumulation and remaining life prediction. 
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Efforts to monitor life-cycle load data on avionics modules can be found in 

time-stress measurement device (TSMD) studies. Over the years the TSMD designs 

have been upgraded using advanced sensors [58], and miniaturized TSMDs are being 

developed due to advances in microprocessor and non-volatile memory technologies 

[59]. 

 

Searls, et al., [60] undertook in-situ temperature measurements in both 

notebook and desktop computers used in different parts of the world.  In terms of the 

commercial applications of this approach, IBM has installed temperature sensors on 

hard drives (Drive-TIP) [61] to mitigate risks due to severe temperature conditions, 

such as thermal tilt of the disk stack and actuator arm, off-track writing, data 

corruptions on adjacent cylinders, and outgassing of lubricants on the spindle motor. 

The sensor is controlled using a dedicated algorithm to generate errors and control fan 

speeds. 

 

Strategies for efficient in-situ health monitoring of notebook computers were 

provided by Vichare, et al., [62]. In this study the authors monitored and statistically 

analyzed the temperatures inside a notebook computer, including those experienced 

during usage, storage, and transportation, and discussed the need to collect such data 

both to improve the thermal design of the product and to monitor prognostic health. 

The temperature data was processed using two algorithms: (1) ordered overall range 

(OOR) to convert an irregular time-temperature history into peaks and valleys and 

also to remove noise due to small cycles and sensor variations, and (2) a three-
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parameter Rainflow algorithm to process the OOR results to extract full and half 

cycles with cyclic range, mean and ramp rates. The effects of power cycles, usage 

history, CPU computing resources usage, and external thermal environment on peak 

transient thermal loads were characterized.   

 

The European Union funded a project from September 2001 through February 

2005 named environmental life-cycle information management and acquisition for 

consumer products (ELIMA), which aimed to develop ways of better managing the 

life cycles of products using technology to collect vital information during a product’s 

life to lead to better and more sustainable products [63] [64]. Though the focus of this 

work was not on prognostics, the project demonstrated the monitoring of the life-

cycle conditions of electronic products by field trials. ELIMA partners built and 

tested two special prototype consumer products with data collection features, and 

investigated the implications for producers, users, and recyclers. The ELIMA 

technology included sensors and memory built into the product to record dynamic 

data such as operation time, temperature, and power consumption. This was added to 

static data about materials and manufacture. Both a direct communication (via GSM 

module) as well as a two-step communication with the database (RFID data retrieval 

followed by an Internet data transfer) was applied. As a case study, the member 

companies monitored the application conditions of a game console and a household 

fridge-freezer.   
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Skormin, et al., [65] developed a data mining model based for failure 

prognostics of avionics units. The model provides a means of efficiently clustering  

data on parameters measured during operation, such as vibration, temperature, power 

supply, functional overload, and air pressure. These parameters are monitored in-situ 

on the flight using time-stress measurement devices. The objectives of the model are 

(1) to investigate the role of measured environmental factors in the development of 

particular failure; (2) to investigate the role of combined effects of several factors; 

and (3) to reevaluate the probability of failure on the basis of known exposure to 

particular adverse conditions. Unlike the physics-based assessments made by 

Ramakrishnan and Pecht [53], the data mining model relies on the statistical data 

available from the records of a time-stress measurement device (TSMD) on 

cumulative exposure to environmental factors and operational conditions. The TSMD 

records, along with calculations of probability of failure of avionics units, are used for 

developing the prognostic model. The data mining enables an understanding of the 

usage history and allows tracing the cause of failure to individual operational and 

environmental conditions.   

 

2.5 PHM Integration 

Implementing an effective PHM strategy for an entire system will involve 

integrating different health monitoring approaches. An extensive analysis may be 

required to determine the weak link(s) in the system to enable a more focused 

monitoring process. Once the potential failure modes, mechanisms, and effects have 

been identified, a combination of BIT, canaries, precursor reasoning, and life-cycle 
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damage modeling may be necessary, depending on the failure attributes. In fact, 

different approaches can be implemented based on the same sensor data. For 

example, operational loads, such as temperature, voltage, supply current, and 

acceleration, can be collected by BIT. The current and temperature data can be used 

with damage models to calculate the susceptibility to electromigration between 

metallizations. Also, the supply-current data can be used with precursor reasoning 

algorithms for identifying signs of transistor degradation.  

 

Case studies of the integration of different approaches of PHM can be found 

in work by CALCE [66] [56] and R. Orsagh, et al., [67], which used physics-based 

models for damage accumulation and precursor reasoning for system assessment. A 

detailed FMMEA [33] was conducted and time to failure was assessed for the failure 

mechanisms identified by the FMMEA using appropriate failure models. The time-to-

failures were ranked and a risk assessment was made based on severity and 

occurrence before PHM implementation [66]. In another PHM study [68], an off-the-

shelf 50-watt, DC-to-DC converter from a commercial power supply manufacturer 

was used. As in the CALCE studies [66] [56], a detailed a-priori analysis of power 

supply reliability issues was conducted in this case using the Pareto analysis of 

failures reported by the manufacturer. PHM techniques were then aimed at 

monitoring and predicting the most common failures.  

 

Future electronic system designs will integrate sensing and processing 

modules that will enable in-situ PHM. Advances in sensors, microprocessors, 
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compact non-volatile memory, battery technologies, and wireless telemetry have 

already enabled the implementation of sensor modules and autonomous data loggers.  

For in-situ health monitoring, integrated, miniaturized, low-power, reliable sensor 

systems operated using portable power supplies (such as batteries) are being 

developed. These sensor systems have self-contained architecture requiring minimum 

or no intrusion into the host product in addition to specialized sensors for monitoring 

localized parameters. Sensors with embedded algorithms will enable fault detection, 

diagnostics, and remaining life prognostics that would ultimately drive the supply 

chain. The prognostic information will be linked via wireless communications to 

relay needs to maintenance officers and automatic identification techniques (RFID 

being the most common current example) will be used to locate parts in the supply 

chain--all integrated through a secure web portal to acquire and deliver replacement 

parts quickly on an as-needed basis. 
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Chapter 3: Prognostics Using Environmental and Usage Loads 

 

3.0 Introduction 

This chapter presents the prognostic approach that is based on accumulating 

damage due to environmental and usage exposures. This chapter discusses the 

approach and its implementation setup for electronic prognostics used in this 

research. The key challenges in implementing this approach are presented. These 

challenges and proposed solutions will be discussed in more details in individual 

chapters. 

3.1 Approach 

The basic philosophy underlying the type of PHM approach is that damage is 

a function of the loads experienced by the product in the life cycle environment. The 

life cycle environment of a product consists of manufacturing, storage, handling, 

operating and non-operating scenario. The life cycle loads consists of thermal 

(steady-state temperature, temperature ranges, temperature cycles, temperature 

gradients), mechanical (pressure levels, pressure gradients, vibrations, shock loads, 

acoustic levels), chemical (aggressive or inert environments, humidity levels, 

contamination), physical (radiation, electromagnetic interference, altitude), 

environmental (ozone, pollution, fuel spills) and usage loads (usage frequency, usage 

severity, usage time, power, heat dissipation, current, voltage etc.) [2] [57]. These 

loads either individually or in various combinations may lead to performance or 

physical degradation of the product and subsequently reduce its service life. The 
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extent and rate of product degradation depends upon the nature, magnitude, and 

duration of exposure to such loads 

 
For implementation of this approach, strategies are required to design an 

effective PHM process for the product and application specific needs.  Environmental 

and usage load profiles need to be efficiently and accurately captured in the 

application environment, and utilized in real time or near real time health assessment 

and prognostics.  It is essential to simplify or pre-process the “raw” sensor data to 

make it compatible with the damage models and algorithms needed to conduct 

prognostics. In particular, it may be necessary to extract the relevant load parameters 

including cyclic mean, amplitudes, ramp rates, hold periods, power spectral densities, 

etc. Commonly used load parameter extraction methods include: cycle counting 

algorithms for extracting cycles from time-load signal, Fast Fourier transforms (FFT) 

for extracting the frequency content of signals, etc.  Depending on the application and 

type of signal, custom load extraction methods may be required. 

 

Figure 5 is a schematic of the in-situ monitoring, pre-processing, and storage 

of environmental and usage loads. A time-temperature signal is monitored in-situ 

using sensors, and further processed to extract (in this case) cyclic temperature range 

(∆T), cyclic mean temperature (Tmean), ramp rate (dT/dt), and dwell time (tD) using 

embedded load extraction algorithms.  The extracted load parameters are stored in 

appropriate bins to achieve further data reduction.  The binned data is downloaded to 

estimate the distributions of the load parameters for use in damage assessment, 

remaining life estimation, and the accumulation of the products use history. 
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Figure 5. Prognostic approach using environmental and usage loads 
 

Once these load parameters are obtained, they can then be used in conjunction 

with damage models in Table 4 to assess the damage at various failure sites due to 

different failure mechanisms for a given electronic assembly. A comprehensive 

listing of loads, models, and failure mechanisms can be found in the following 

documents JESD659-A: Failure-mechanism-driven reliability monitoring, JEP143A: 

Solid-state reliability assessment and qualification methodologies, JEP150: Stress-

test-driven qualification of and failure mechanisms associated with assembled solid 

state surface-mount components, JESD94: Application specific qualification using 

knowledge based test methodology, JESD91A: Method for developing acceleration 

models for electronic component failure mechanisms, SEMATECH, #00053955A-

XFR: Semiconductor device reliability failure models, SEMATECH, #00053958A-

XFR: Knowledge-based reliability qualification testing of silicon devices, and 
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SEMATECH, #99083810A-XFR: Use condition based reliability evaluation of new 

semiconductor technologies [69] [70]. 

Table 4. Failure mechanisms, relevant loads, and models in electronics 
Failure Mechanisms Failure Sites Relevant Loads Sample Models 

Fatigue Die attach, 
Wirebond/TAB, Solder 
leads, Bond pads, 
Traces, Vias/PTHs, 
Interfaces 

∆ T,  Tmean, 
dT/dt, dwell 
time, ∆H, ∆V 

Nonlinear Power 
 Law (Coffin-
Manson) 

Corrosion Metallizations M, ∆V, T Eyring (Howard) 
Electromigration Metallization T, J Eyring (Black) 
Conductive Filament 
Formation 

Between Metallization M, ∇ V Power Law 
(Rudra) 

Stress Driven 
Diffuison Voiding 

Metal Traces s, T Eyring 
(Okabayashi) 

Time Dependant 
Dielectric 
Breakdown 

Dielectric layers V, T Arrhenius 
(Fowler-
Nordheim) 

∆: Cyclic range 
∇ : gradient 

V: Voltage 
M: Moisture 

T: Temperature 
J:Current density 

s: Stress 
H: Humidity 

 

3.2 Implementation Setup 

The experiment was setup to implement the PHM methodology based on 

damage accumulation due to environmental and usage exposures for predicting 

remaining life of solder joint interconnects under temperature cycling loads. An 

electronic test board was exposed to a completely irregular temperature profile. The 

test board used for this research is shown in Figure 6. The board contains 12 surface 

mount components soldered on a 62 mil thick high Tg FR-4 substrate using eutectic 

Sn-Pb solder. The components are dummy packages with small size silicon die. All 

components are daisy chained to facilitate continuity monitoring during testing. A 

daisy chain is a conductive path that connects several interconnections of a 
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component. In this experiment a failure (refer to failure definitions in the main 

document) of any daisy chain indicates the failure of the component. The overall 

dimensions of the board are 8” X 5.5” and the pad finish is immersion silver 

 

The profile simulated field conditions by exposing the board to random 

temperature variations similar to those experienced due to random usage. This profile 

was generated in a programmable oven, such that each successive profile has 

completely different peak temperatures, ramp rates, and dwell times. The 

environmental chamber used for this work was the Thermatron 2800 S1.2, which is 

capable of storing 255 discrete time-temperature intervals and sequencing them in 

different loops. An example of the temperature profile for the first 20 days is shown 

in Figure 7. During testing, the temperatures at various locations of the board were 

measured in-situ using sensors placed on the board. The temperature was monitored 

every 10 seconds. Two instruments were used, one is a prototype miniature sensing 

and data recording systems (HUMS) provided by European Aeronautics and Defense 

Space (EADS) systems. However, for most part of the experiment, a multi-channel 

data logger (from Agilent) with multiplexing units was used.  
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Figure 6. Experimental setup for PHM implementation on electronic board 
 

The test board was thoroughly characterized in the oven with thermocouples 

on all components and at various locations of the board. However, we found that the 

temperature variation on the board was within 5oC. Hence, the temperature was 

monitored using 3 sensors, two on components and one on the board. The raw sensor 

data was fed in the novel load parameter extraction algorithm discussed in the chapter 

5, to extract the cyclic range, mean, ramp-rate and the dwell times (with temperature 

of dwell). 

 

The next step in the PHM process is the damage estimation and accumulation. 

The results of load parameter extraction algorithm were fed in the first order thermal 

fatigue model. This model is based on the work of CALCE researchers and has been 

implemented using custom software after calibrating against various experimental 
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studies. Using this thermal fatigue model and the board and component specific 

information on material properties and geometry, the model was used to assess the 

damage of solder joints on the test board. The model has been used extensively for 

calculating solder fatigue and provides rapid assessment which makes it more 

attractive for in-situ assessments for PHM application.  

 

The package geometries namely, the size, shape, and areas of the solder balls 

and the gull wing interconnects were supplied by the manufacturer. Some of these 

values were verified by actual measurement. The material properties of solder, board, 

interconnect, and packages were obtained from the manufacturer. For routinely used 

materials such as Pb-Sn solder, and FR-4, these properties are stored in the database 

of the CalcePWA software that was used for building the model. These properties 

have been derived from several experimental results and from literature.   

 

Figure 7. Illustration of temperature measured on the board for first 20 days 
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Prior to exposing the test board to irregular cycles, another board of the exact 

same design was exposed to constant thermal cycling profile ranging from -40oC to 

125oC, with a 15 minute and 10 minute dwell at maximum and minimum 

temperatures. The temperature ramp-up and ramp-down rate was set at 5.5oC/minute 

and 8.5oC/minute. The accuracy of the damage model was assessed by comparing the 

model predictions with results from testing to actual failure due to temperature 

cycling. Additionally, a range of different thermal cycling conditions were simulated. 

The results from testing were compared with modeling. Four thermal cycling 

parameters namely the temperature amplitude (∆T), cyclic mean temperature (Ts), 

ramp rate from low to high temperatures, and dwell time at high temperature (tD), 

were studied and the impact of each parameter on the life of solder joints was 

assessed by sensitivity studies. 

 

The thermal-fatigue model provides a damage fraction due to each thermal 

cycle exposure, which is accumulated linearly using Miner’s hypothesis. The damage 

fraction greater than or equal to 1 indicates failure or end of life of the product being 

monitored. Along with the temperature, the daisy chain resistance (actual electrical 

performance) of the solder interconnects is measured in-situ. The failure criteria for 

the solder joints was set as per IPC standard IPC-SM 785 [71], that states that failure 

manifests itself in form of resistance spikes of short durations >300 Ω and failure is 

defined as the first interruption of electrical continuity that is confirmed by 9 

additional interruptions with an additional 10% of cycle life.  The failure of the solder 

joints obtained from the resistance measurement indicates the actual failure. The 
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actual (measured) failure of the solder joint is compared with the prediction made 

using PHM (temperature measurement and damage accumulation) to validate the 

PHM methodology. The details of damage assessment and life prediction will be 

presented in chapter six. 

 

3.3 Summary 

The prognostic approach based on monitoring and modeling of environmental 

and usage loads was presented. The experimental setup for demonstrating the PHM 

technique for an electronic board was discussed. The temperature data from this 

experiment was used for demonstrating the load parameter extraction algorithm and 

the method for optimal binning (chapter 5). Also, the temperature data was used with 

damage models for enabling prognostics of solder joints in thermal cycling (Chapter 

6). Finally, the in-situ resistance measurements, along with the temperature were used 

for identification and trending of failure precursors (chapter 7). 
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Chapter 4: Methods for In-situ Monitoring 

 

4.0 Introduction 

A major challenge in PHM is its implementation in the application 

environment.  Strategies are required to design an effective PHM process for the 

product and application specific needs.  Environmental and usage load profiles need 

to be efficiently and accurately captured in the application environment, and utilized 

in real time or near real time health assessment and prognostics.  This paper outlines 

generic strategies both for load monitoring and conversion of the sensor data into a 

format that can be used in physics-of-failure models, for both damage estimation and 

remaining life prediction due to specific failure mechanisms.  The selection of 

appropriate parameters to monitor, design of an effective monitoring plan, and 

selection of appropriate monitoring equipment are discussed.  Methods to process the 

raw sensor data during in-situ monitoring for reducing the memory requirements and 

power consumption of the monitoring device are suggested.  Conceptual approaches 

are also presented for embedding such processing capabilities in monitoring systems 

to enable data reduction and simplification (without sacrificing relevant load 

information) prior to model input for health assessment and prognostics.  The 

strategies presented are generically applicable to electronic health monitoring 

processes and are illustrated using a case-study of in-situ monitoring of a note-book 

computer. 
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4.1 In-situ Monitoring of Environmental and Usage Loads 

The requirements for data collection may be well known or already specified 

for some applications.  However, in many applications, it is not always à priori 

known what parameters need to be measured, nor with what frequency or precision.  

It may be useful to conduct preliminary field tests and collect additional data that may 

not be justified in a fully operating system, so as to understand what data is actually 

relevant.  If the objective of data collection is for use in an ongoing product design 

phase, the aim would be to gather maximum data in a minimum time frame.  For 

health assessment as well as design decisions, monitoring plans are required to 

capture the distribution of loading parameters and usage profiles. The life cycle loads 

further depend on the usage conditions such as usage frequency, severity, and period 

of use.  The following sections outline the steps in implementing a process for 

effective monitoring of life cycle loads. 

4.1.1 Selection of Load Parameters for Monitoring 

The first step in the data collection process is to select the life cycle 

parameters to be monitored.  Parameters can be identified based on factors that are 

crucial for safety, are likely to cause catastrophic failures, are essential for mission 

completeness, or can result in long downtimes.  Selection can also be based on 

knowledge of the critical parameters established from past experience and field 

failure data on similar products, and qualification testing.  More systematic methods 

such as failure mode and effects analysis (FMEA) or failure mode mechanisms and 

effects analysis (FMMEA) [33] can be used to determine parameters that need to be 

monitored.   
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Table 4 (previous chapter) provides a listing of common failure mechanisms 

in electronics with the relevant loads and associated models compiled from JEDEC 

standards JEP122B (Failure Mechanisms and Models for Semiconductor Device) and 

JEP 148 (Reliability Qualification of Semiconductor Devices Based on Physics of 

Failure Risk and Opportunity Assessment).  The failure mechanisms and models can 

serve as a starting point for selecting the appropriate parameters.   

4.1.2. Selection of Monitoring Equipment 

The main attributes of a sensor system for environmental and usage 

monitoring include level of integration, power consumption and management, on-

board memory and utilization, size and weight, wireless communication, embedded 

computational power, software support, and product maturity. Each attribute is 

discussed in detail below. 

 

Level of Integration 

A completely integrated sensor system consists of the sensing elements, on-

board analog to digital converter, on-board memory, embedded computational 

capabilities, ability to communicate with other sensor nodes, and completely 

supported by indigenous power supply.  For in-situ monitoring, the requirements for 

data collection may be well known or already specified for some applications.  

However, in many applications, it is not always a-priori known what parameters need 

to be measured, nor with what frequency or precision.  Hence, sensor systems with 

modular architecture consisting of integrated core central nodes and easy add-on 

nodes are preferred. 



 

 48 
 

 

Sensor systems for environmental monitoring need to be a self-contained, 

requiring minimum or no intrusion into the host product.  This can facilitate 

monitoring of legacy systems without the need for any testing or qualification.  

Flexible sensor ports that support a wide variety of sensors (such as ports for all 

sensors with input requirements between 0-3V) are preferred over rigid customized 

ports (such as ports designed specifically for particular sensor types say 

thermocouples). An example of integrated sensor system is shown Figure 8. 

 

Figure 8. Conceptual schematic of integrated sensor system 
 

Autonomous Power and Power Management Features 

One of the major constraints that strongly influences the selection of 

components and hence the size, weight, and cost of the monitoring system is power 

consumption.  The power consumption of sensor systems can be divided into three 

domains: sensing, communication, and processing.  The power consumed for sensing 
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varies depending on the parameter being monitored.  Periodic sensing can consume 

less power than continuous monitoring; however there is a risk of missing important 

data.  Power consumption is also controllable by making measurements at events 

triggered by defined thresholds.  The need for power management is even more 

challenging in wireless sensor systems running on batteries.  In the case of wireless 

sensors, maximum energy is expended in communication, which involves both the 

data transmission and reception.   

 

On- board Memory and Utilization  

Effective utilization of memory is also an important attribute in setting up the 

sensor system.  Memory requirements are affected by the monitoring interval and 

frequency.  In selecting the monitoring frequency, the user has to ensure that the 

relevant loads are recorded and, at the same time, the memory is not flooded by 

irrelevant load data.  The user should be able to define threshold values for 

measurement.  Appropriate setting of thresholds can facilitate efficient data 

collection.  For example, measurements can be recorded or a scan can be triggered 

only if the stimulus meets the set threshold.  Events can be set to trigger above or 

below an absolute value, for example, recording acceleration levels above 2g or 

humidity levels above 80% R.H.  Users can also set thresholds based on the value of 

the slope (positive or negative) of the curve formed by the measurements made by the 

sensor.  This strategy allows usage-based data recording, which can result in a 

substantial saving in disk space and extend the battery life of the equipment.  Other 

means of memory utilization involve effectively dividing the memory between 
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periodic measurements and threshold based measurements.  A strategic combination 

of measurement intervals (for periodic measurements) and thresholds can enable 

recording a higher number of relevant measurements.   

 

Miniature Size and Low Weight  

In some applications, the size of the sensor may become the significant 

selection criteria due to limited space available for mounting the sensor or due to the 

inaccessibility of locations to be sensed.  The weight of the sensor may be important 

in certain applications such as vibration and shock measurements using 

accelerometers, since the added mass can change the system response.  In the case 

where a fixture is required to mount the sensor, the added mass of the sensor and 

fixture may change the system characteristics.  Users should consider the entire 

weight of the sensor system, which includes the battery and other accessories such as 

communication antennas and cables.   

 

Wireless Capabilities 

Wireless monitoring has emerged in recent years as a promising technology 

that can impact in-situ environmental monitoring.  Wireless sensor nodes can be used 

to remotely monitor inhospitable and toxic environments.  In some applications, 

sensor(s) must operate remotely with data stored and downloaded by telemetry to a 

centrally located processing station.  Also, wireless sensor systems are not dependent 

on extensive lengths of coaxial wires for the transfer of sensor measurements, thus 

saving installation and maintenance costs.  The real benefit from wireless sensor 
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nodes can be achieved by embedding micro-controllers with the sensor nodes to 

improve the data analysis capabilities within the wireless sensing nodes themselves. 

 

The use of portable devices (such as a PDA) in conjunction with wireless 

sensor systems can enable efficient fault diagnosis and prognostics by integrating 

more complex algorithms in the hand-held device.  Customized processing and 

reporting tools can be programmed on portable devices for efficient maintenance 

activities.  For example, the data collected by a Bluetooth-enabled accelerometer 

system can be downloaded on a hand-held device by maintenance technicians and can 

be processed further using Fast Fourier Transforms (FFT) embedded on the hand-held 

device.  

 

Embedded Computation Capability  

Integrating embedded computational capabilities with on-board processors 

can reduce the power consumption of wireless sensor systems.  These processing 

capabilities would enable immediate and localized processing of the raw sensor data.  

This in turn enables transmitting fewer amounts of data (processed instead of raw 

data) to the base station, and hence results in lower power consumption.  In the case 

of a large number of sensor systems working in a network, this would allow 

decentralization of computational power and facilitate efficient parallel processing of 

data.   
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Additionally, embedding computational power with on-board processors can 

also facilitate efficient data analysis for environmental monitoring applications.  

Embedded computations can be set to provide real time updates for taking immediate 

action such as powering off the equipment to avoid accidents or catastrophic failures, 

and also for providing prognostic horizons for conducting next repair and 

maintenance activities. Power consumption and flash memory of the microprocessor 

may limit computationally intensive algorithms to be embedded with on-board 

processors.  However, even using simple algorithms and routines to process the raw 

sensor data significant gains can be achieved for in-situ analysis.   

 

Software Support  

 Sensor systems need host software that can effectively control and 

communicate with the hardware. Host software can include capabilities to guide the 

user in selecting measurement scans and thresholds values, communicating with the 

sensor module to check operational status, enabling operation based power 

management, and trouble-shooting or diagnosing the hardware in case of problems. 

Software modules with low memory requirement that can be operated from portable 

device such as PDA are advantageous for health monitoring applications. For certain 

applications modules for immediate data analysis can be a part of the host software. 

 

4.1.3. Design of Monitoring Plan 
 

The important aspect of the in-situ load monitoring process is the setup of data 

collection equipment before dispatching in the application environment.  Once the 
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parameters to be monitored are selected the next step is to design the complete 

monitoring process.  The user needs to select the monitoring equipment (sensors and 

data recorders), and setup the monitoring process. The important items in the setup 

include deciding the monitoring interval and frequency.  In making this decision the 

user has to ensure that the relevant loads are recorded and at the same time the 

memory is not flooded by irrelevant load data.  Table 5 provides a list of challenges 

and possible solutions that can guide in setting up the monitoring equipment.  

 

Effective utilization of memory is also an important parameter in setting up 

the sensor system.  The user should be able to define threshold values for 

measurement.  Appropriate setting of thresholds can facilitate efficient data 

collection.  Measurement will be recorded or a scan will be triggered only if the 

stimulus meets the set threshold.  Events can be set to trigger above or below an 

absolute value, for example, recording acceleration levels above 2g or humidity levels 

above 80%R.H.  Users can also set thresholds based on the value of the slope 

(positive or negative) of the curve formed by the measurements made by the sensor.  

This strategy allows usage based data recording, which can result in substantial 

saving in disk space and extend the battery life of the equipment.   

 

Higher levels of threshold lead to greater abbreviation of the load history. 

However, it can also introduce errors in the damage assessment.  The monitored loads 

are simplified and used as inputs to physics-based models for assessing the damage 

and failure susceptibility due to a particular failure mechanism. Hence, the threshold 
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selection strongly depends on the failure mechanism being monitored and is often a 

trade-off between the data reduction and error in the damage assessment process.   

 

This is explained by a recent analysis conducted by the authors. The 

temperatures on an electronic board mounted on the exhaust manifold of a car were 

monitored in-situ. This data was processed using ordered overall range (OOR) 

method to convert the irregular temperature variations into a sequence of peaks and 

valleys. The OOR output was used in Rainflow cycle counting algorithm to extract 

the temperature cycles. The temperature cycles and a thermal fatigue model were 

used to assess the damage on the terminals of the components mounted on the board.  

 

In case of the OOR a reversal elimination index, S (< 1) can be selected to 

filter amplitudes that differ from the largest measured amplitude by the specified 

fraction. This data was screened using different values of reversal elimination index 

(threshold). The accumulated damage was estimated using each data set. For 

simplicity it was assumed that the error in damage accumulation is zero when all 

amplitudes are considered for the analysis (S = 0). The error in damage accumulation 

due to use of reduced data for all other data sets was obtained by the formula 

Error =  0)(S damage dAccumulate
0)(S damage dAccumulate0)(S damage dAccumulate

=
>−=

 

Figure 9 illustrates the percentage error in damage accumulation and the 

percentage data reduction with change in S-parameter. It is observed that even when 

the S is zero, the data reduction is 84%. This is due to filtering all data points that are 

in a monotonic increasing or decreasing sequence. Also small values of S, ranging 
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from 0 to 0.1 resulted in more than 90% data reduction with only 1% error in the 

damage calculation. Higher values of S result in increasing error in damage 

accumulation. This is due to elimination of reversals with large magnitude and the 

dependence of the fatigue model on the temperature amplitude. 

 

The answer to the question on selecting the S parameter can be answered by 

assessing the distribution of cycles that are obtained after screening the data. Figure 

10, compares the number of temperature cycles obtained after processing the data 

with S = 0.1 against S = 0. By choosing S value as 0.1, all cycles with amplitude < 

15oC are eliminated. It cannot be directly concluded from Figure 10 that all the 

temperature cycles with amplitude < 15oC contributed negligibly to the fatigue 

damage and can be always neglected. For example, in this case, the failure 

mechanism being monitored is creep and stress relaxation enhanced fatigue due to 

thermal cycling. Hence, temperature cycles with small amplitude (say < 10oC) but 

higher mean temperatures (say > 100oC) can cause more damage than cycles with 

same small amplitude but low mean temperatures (say < 30oC). 

 

Figure 11, investigates the cyclic mean temperatures of the 2489 cycles with 

amplitudes < 10oC that were eliminated from the analysis in Figure 10. The 

histogram shows that more than 60% of the thermal amplitudes have a mean 

temperature within 21oC-30oC, and only 6% of the cycles have a mean temperature 

greater than 100oC. Figure 9, 10 and 11 provide the analysis on the trade-off that can 

guide the selection of threshold. A-priori estimate of the threshold can be based on 



 

 56 
 

conducting simulation using the selected damage model, to understand what can be 

eliminated. As monitoring continues the threshold can be updated based on the 

measured data.    

 

Figure 9. Example of percentage data reduction and error in damage accumulation 
 
 

Figure 10. Comparison of histograms of filtered and non-filtered load cycles 
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Figure 11. histogram of mean loads associated with the filtered cycles 
 

The monitoring equipment should be setup by effectively dividing the 

memory between periodic measurements and threshold based measurements.  A 

strategic combination of measurement intervals (for periodic measurements) and 

thresholds can enable recording more number of relevant measurements.   

 

If the objective of data collection is to study the user behavior, the data 

collection process should be conducted across all board regions (continents or 

countries) where the product is used.  If possible the monitoring process should not be 

known to user to avoid any kind of bias.   
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Table 5. Assessing product environmental and usage conditions 
Environment and 

Usage 

Possible Options 

How is the product 

powered?  

• Always ON 

• ON only for operation 

• OFF at end of day (or shift) 

• Auto OFF if not in use 

• Switches to low power mode if not in use 

• Doesn’t matter 

What is the usage rate? • Continuously operated (e.g., production machine) 

• Irregular fixed number of times per day or week 

• Irregular and unknown 

How may different users 

per day? 

• Completely unknown (e.g., paper copier at Kinko’s 

or clothes dryer in a commercial laundry) 

• Only qualified users 

• Doesn’t matter 

Average operating period 

per usage 

• Fixed period every usage (e.g., starter motors) 

• Operating time varies within known intervals (e.g., 

electronics operating a bank ATM) 

• Predictable but depends on loading conditions (e.g., 

electronics for induction motor control)  

• Unpredictable operating time per usage (e.g., 

television, cell phone, etc.) 

What are the special 

usage conditions if any?  

• E.g., Regular battery operated products operating in 

low temperature environments 
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What does the life cycle 

environment comprise 

of? 

• One time transportation, handling, installation 

followed by operation and maintenance in 

controlled environment.  (e.g., electronics in 

machines tools) 

• One time transportation, handling, installation but 

operation and maintenance in uncontrolled 

environment.  (e.g., telecommunication equipment 

in the field) 

• Portable and uncontrolled e.g., electronics in 

automobiles 

What are the typical 

environmental extremes 

(temperature, humidity, 

radiation, altitude etc.) 

the product is expected to 

experience? (without 

considering usage loads) 

• Controlled room or office environment 

• Atmospheric ambient in the region of use 

• More severe than atmospheric ambient (e.g., 

equipment used in oil well drilling ) 

What are the special 

environmental conditions 

unique for the product 

• E.g., underwater installations, high shock loading, 

vacuum, etc. 

 

4.1.4 Data Preprocessing for Model Input 

The raw environmental and usage data from sensors is usually not in a form 

that is compatible with the required damage analysis and reliability prediction 

models.  Hence for further analysis of the acquired data, it is essential to simplify the 

raw sensor data to a form compatible with the input requirements of the selected 

models. 
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Data reduction is often the first step in preprocessing and is important for 

reducing both data storage space and calculation time.  By using information that is 

most relevant to the failure models, an efficient data reduction method should: 1) 

permit gains in computing speed and testing time, 2) condense load histories without 

sacrificing important damage characteristics, 3) preserve the interaction of load 

parameters if any, 4) provide an estimate of the error introduced by reducing and 

simplifying the data.  Data reduction can be achieved using a variety of tools such as 

filters, Fourier transforms, wavelets, Hayes method, Ordered Overall Range (OOR), 

etc. 

 

Subsequently the data may have to be processed to extract the relevant load 

parameters (such as cyclic mean, amplitudes, ramp rates, hold periods, power spectral 

densities, etc.) for PoF model input.  In some cases the data reduction may be a part 

of the load parameter extraction algorithms. Commonly used load parameter 

extraction methods include: cycle counting algorithms for extracting cycles from 

time-load signal, Fast Fourier transforms (FFT) for extracting the frequency content 

of signals, etc.  Depending on the application and type of signal, custom load 

extraction methods can be developed. 

 

Embedding the data reduction and load parameter extraction algorithms with 

the sensor modules can lead to: reduction in on-board storage space, low power 

consumption, and uninterrupted data collection over longer durations.  
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4.2 In-situ Monitoring Case Study of Notebook Computer 

 
The notebook computer characterized was a primarily-passively-cooled 

design, which incorporated a heat sink-fan assembly for managing peak transient 

loads.  The processor, a Pentium II (233 MHz), had a worst-case power dissipation of 

35 Watts, and a maximum base plate temperature rated at 75oC.  In such designs, the 

CPU heat sink fan is automatically activated when the processor base plate 

temperature exceeds its maximum rated temperature. 

 

The microprocessor heat sink and Hard Disk Drive (HDD) housing were 

found to experience the largest absolute surface temperatures.  Their surface 

temperatures were dynamically monitored using thin film RTD sensors calibrated to 

an accuracy of ±1oC.  Figure 12 shows the microprocessor temperature recorded at 

the center of the heat sink base.  Due to thermal contact resistance, the temperature 

drop between the heat sink base and base plate, was measured around 7oC for the 

maximum CPU power dissipation.  This was in line with the corresponding vendor 

specification.  The HDD housing temperature was recorded at the center of its 

external top surface. 

 

Measurements were recorded using an external battery powered portable data 

logger, having an integrated temperature sensor for external ambient air temperature 

measurement.  The data logger had no physical interaction with the notebook 

computer.  All data were recorded at a rate of one sample per minute.  The 

experiments were conducted in College Park, MD, from October to December 2003. 



 

 62 
 

 

 

Figure 12. Location of RTD temperature sensor on CPU heat sink base 
 

The recorded data were converted into a sequence of peaks and valleys using 

the Ordered Overall Range (OOR) method.  The screening level was specified at 0% 

to include all peaks or valleys for cycle counting.  The computed sequence of peaks 

and valleys (time-temperature history) was converted to temperature cycles that 

utilize the 3-parameter Rainflow cycle counting algorithm.  The software calculates 

temperature cycle magnitude, cycle mean temperature, and cycle temperature ramp 

rate. The time-temperature history recorded for the CPU heat sink, HDD, and external 

ambient air temperature are shown in Figure 13.  Three forms of temperature cycling 

are observed; that represent the notebook on-off cycles, variations in power 

dissipation associated with different usage intensity of the computing resources, and 

the external ambient air temperature variations. 

 

The effect of computing resource usage on the CPU heat sink temperature is 

illustrated in Figure 14.  As a computationally intensive numerical simulation is 

executed, CPU usage increases up to 80%, resulting in a 10oC rise in CPU heat sink 

temperature.  Such data can be valuable for the design of hybrid thermal management 
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solutions, that address peak transient thermal loads.  The cooling effect of the fan on 

the CPU heat sink temperature is shown in Figure 15, where regions A-B and C-D 

denote the operating periods of the fan. 

 

Figure 13. Measured temperature profiles of CPU heat sink, hard disk drive, and 
external ambient air. 
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Figure 14. Measured CPU usage and CPU heat sink absolute temperature. Event A: 
notebook is powered on. Events B to C: numerical simulation is executed. Event D: 

Notebook is powered off 
 

 

Figure 15. . Cooling fan operation in time periods A-B and C-D 
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The recorded temperatures presented in Figure 13 range from 2oC, to 63oC 

for the HDD and 71oC for the CPU heat sink.  The 2oC corresponded to the minimum 

external ambient air temperature recorded when the notebook was exposed to outdoor 

environments.  The product usage profile observed in Figure 13 is characterized by a 

large number of on-off cycles, relative to typical desktop computer usage, as well as 

temperature cycles of larger magnitude.  The latter observation is attributed to 

exposure to large variations in external ambient temperature, covering both indoor 

and outdoor environments. 

 

Using the data simplification methodology summarized in previous section, 

the distributions of absolute temperatures, temperature cycle magnitudes, and 

temperature ramp rates for both the CPU heat sink and HDD were extracted from the 

measurements in Figure 13.  These analyses are presented in Figure 16 to 18.  

Figure 16 shows the fraction of total time during which the product experienced a 

given range of absolute temperature.  Figure 17 represents the number of occurrences 

of a range of temperature cycle magnitudes. Figure 18 provides the fraction of total 

time during which the product experienced a given range of temperature ramp rate. 

 

Figure 16 shows that the CPU heat sink base temperature exceeds its 

maximum rating, 68oC, over approximately 1% of the monitored time period.  This 

may be due to the fact that the fan was not accurately synchronized with the CPU 

base plate temperature in the system design.  However, the heat sink temperature does 

not exceed 55oC and 60oC over 90% and 95% of the time.  This highlights the 
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potential conservativeness of thermal management solutions optimized based on 

worst-case operating conditions, 68oC. 
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Figure 16. Distributions of measured absolute temperature for the CPU heat sink and 
hard disk drive 

 

 

0

10

20

30

40

50

0-5 5-10 10-20 20-30 30-40 40-50 50+
Cyclic Temperature Range

O
cc

ur
re

nc
e

Heatsink

HDD

937 739

 

Figure 17. Occurrence of CPU heat sink and hard disk drive temperature cycles as a 
function of cycle magnitude. 
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Figure 18. Distribution of measured temperature cycle ramp rates for the CPU heat 
sink and hard disk drive. R refers to temperature cycle ramp rate 

 

Figure 17 indicates that about 97% of the temperature cycles experienced by 

either the CPU heat sink or HDD have amplitude of less than 5oC.  In addition, the 

CPU heat sink experiences about 25% more such cycles than the HDD.  While it is 

generally perceived that temperature cycles of small amplitude may not significantly 

impact on the reliability of electronic packaging interconnections, the potential 

damage induced also depends on variables such as the mean cyclic temperature, ramp 

rate, and dwell temperature, as highlighted by [118], [119] for solder joint fatigue.  

Pump-out of the thermally-conductive grease at CPU-heat sink interfaces, which lead 

to increased interface thermal resistance, has been attributed to temperature cycling 

having an amplitude comparable to those measured in this study, around 5oC [120].  

The monitored temperature data therefore suggests that the effect of such multiple 

mini-cycles on interconnection reliability should be further investigated for the range 

of measured mean cyclic temperatures and ramp rates.  This highlights the 

importance of recording such data.  On the other extreme, temperature cycle 
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magnitudes of up to 50oC were also measured (see Figure 17).  This exceeds the 

worst-case use condition specified by standard IPC SM-785 [71] for consumer and 

computer products, namely 30oC and 20oC respectively.  Such a discrepancy between 

standardized and actual conditions provides a strong motivation for monitoring actual 

product application environments. 

 

The measured temperature ramp rate distribution shown in Figure 18 would 

also permit more accurate predictions of solder joint fatigue life to be obtained than 

using worst-case ramp rate specifications [71].  For example, Figure 18 shows that 

over 80% of the total time period, the temperature cycles experienced by the CPU 

heat sink have a ramp rate of less that 4oC/min, while temperature ramp rates 

exceeding 10oC/min are observed over less than 3% of the total time. 

 

Monitored life cycle temperature data, such as presented in Figure 16 to 18, 

could be applied in a life consumption monitoring methodology, to provide both 

damage estimation and remaining life prediction due to specific failure mechanisms 

influenced by temperature.  For example, measured heat sink base temperature data 

could be used to assess the reliability of component-to-heat sink adhesive 

attachments.  Examples include [72], [73], [74] and [75], which evaluated the impact 

of differential thermal expansion and creep-induced degradation on component-heat 

sink adhesive joints, respectively.  The measured data could also be used to determine 

the stress levels to be imposed in accelerated testing, refining product specifications, 

and setting product warranties. 
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While a comprehensive health monitoring process would involve other 

environmental variables, such as humidity, vibration and shock, apart from 

temperature, a line of approach similar to that presented in this study could be applied 

to monitor such life cycle loads.  Similarly, the proposed approach could be extended 

to other electronic products. A list of variables (not exhaustive) for monitoring the 

entire laptop is proposed in Table 6. 

Table 6. Environmental, usage and performance parameters for PHM of notebook 
computers 

Parameters Examples 

Environmental 

and Usage  

- Temperatures of microprocessor, hard disk drive, video card, 

RAM etc. 

- Vibrations/shock in application and handling, disk spin 

- Processor usage, memory usage, processor queue length, Cache 

fast reads/second etc. 

- Power cycles, number of on/off  

- Hard disk and monitor on/off  

- Strain in mother board flexing and torsion during handling and 

due to ageing 

- Pressure on keyboard and buttons 

- Force on latch, hinge, and connectors 

- Humidity and radiation exposure 

Performance 

and system 

setup 

- Fan ON/OFF, Fan speed  

- CPU core voltage, CPU I/O voltage 

- Hard disk parameters: spin-up time, flying head height, ECC 

count, data transfer rate 

- Power management settings (power schemes, hibernate, and 

stand-by settings) 
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4.3 Conclusions 

A method of environmental, operational and usage data collection for 

enabling health monitoring of electronic products was presented.  To implement this 

methodology in a real system, guidelines were provided on the selection of 

monitoring parameters and the design of a monitoring plan.  An integrated hardware-

software module was suggested for in-situ monitoring and processing of load data in 

the life cycle environment.  The main attributes for selecting the sensor system for 

these applications were identified to be the level of integration, power consumption 

and management, on-board memory and utilization, low size and weight, wireless 

communication, embedded computational power, and software support. Methods to 

improve the efficiency of the data collection process by reducing power consumption, 

by making effective use of memory, and by integrating embedded computational 

power with sensor systems were discussed. Using field data the trade-off between 

data reduction and error in damage accumulation was demonstrated. The analysis 

showed that more than ninety percent data reduction only accounted for less than one 

percent error in damage accumulation. 

 

The thermal loads in a notebook computer were dynamically monitored in-situ 

for typical usage, transportation and storage environments, and statistically analyzed.  

The effects of power cycles, usage history, CPU computing resources usage and 

external thermal environment on internal peak transient thermal loads were 

characterized. 
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The CPU heat sink temperature was found to be 13oC and 8oC lower than its 

maximum rating over 90% and 95% of the monitored time period, respectively.  This 

highlights the potential conservativeness of thermal management solutions optimized 

based on worst-case operating conditions that rarely occur.  Such findings could 

contribute to the design of more sustainable, least-energy consumption thermal 

management solutions. 

 

About 97% of the temperature cycles experienced by either the CPU heat sink 

or HDD had amplitude of less than 5oC.  However, the maximum temperature cycle 

amplitudes measured were found to exceed those specified by environmental 

standards for computer and consumer equipment.  This provides a strong motivation 

for monitoring actual product application environments. 
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Chapter 5:  Methodology for Extracting Load Parameters from 
Time-Load Signals 
 

 

5.0 Introduction 

This paper presents a novel method for processing the in-situ monitored load 

data to enable prognostic assessment of electronic products and systems. The 

proposed method processes the time-domain sensor data to extract load parameters 

including cyclic ranges, mean load, ramp-rates, and dwell times. The load parameters 

and their correlations are then used in conjunction with damage models for assessing 

and predicting the health due to commonly observed failure mechanisms in 

electronics. An algorithm was developed that enables significant reduction of large 

irregular time-load data without compromising load parameters essential for damage 

estimation and enables compact storage of load histories. The approach was 

demonstrated using a case-study of an electronic board subjected to irregular 

temperature cycles. The methodology can be used for processing other load signals in 

time domain including strain, humidity, voltage etc. 

 

5.1 Review of Existing Load Parameter Extraction Methods 

 
Several methods have been developed and reported that can extract 

parameters from time-load data [76-86]. Currently available methods are briefly 

discussed in Table 7. A cycle is defined when the time-load signal crosses it previous 
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peak or valley before changing its direction. In Figure 19 b-c-b’ is a complete cycle, 

while a-b-d is a half cycle. 

 

Figure 19. Geometric definition of a cycle 
 

Table 7. Review of existing load parameter extraction methods 
Load Extraction 

Method 

Description 

Hayes Method Hayes’ method identifies small ranges, which are interruptions of 

a larger range. An interruption is found for a peak-valley pair 

when the next peak is higher than the current peak. An 

interruption is found for a valley-peak pair when the next valley is 

lower than the current valley. Once damage is calculated for these 

cycles, they are screened out of the original block of data, 

producing the abbreviated blocks. The procedure is repeated to 

cover all blocks.  

Ordered Overall 

Range 

The OOR method (also called the Racetrack method) converts 

irregular data in sequence of peaks and valleys. The sequence of 

reversals in the original profile into a racetrack by offsetting the 

profile by a selected track width or screening level (S). Peaks and 

valleys that were originally separated by smaller interrupting 

ranges now become adjacent, creating larger overall ranges.    

Level Crossing In this method a count is recorded whenever an increasing 
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Counting (positively sloped) portions of the load history crosses a certain 

level above the reference level. Likewise, a count is recorded 

when a decreasing (negatively sloped) portion of the load history 

crosses a certain level above the reference level. Cycles are 

constructed by counting in an order to form most damaging 

reversals.  

Peak Counting Peak counting records relative maxima and minima in the load 

history and their load levels. Generally only peaks and valleys 

above and below set reference levels are counted. Similar to level 

crossing the most damaging cycle is recorded between the largest 

peak and valley.  

Simple-Range 

Counting 

Simple range refers to the difference in the load levels of the 

successive reversals. Both positive and negative slopes can be 

counted. The method can be non-conservative and miss an overall 

large cycle.   

Range-Pair 

Counting 

In range pair counting, two subsequent ranges of opposite sign are 

considered together. If the second range is greater than or equal to 

the first range in size, the first range is counted, and the peak and 

valley are removed from consideration. If the second range is 

smaller then the next range is considered, and so on.  

Rainflow 

Counting 

In Rainflow counting two consecutive ranges are considered 

together. Based on a set of rules the algorithm scans the entire 

time-load history to identify full cycle and half cycles. The 

Rainflow method provides the mean stress in addition to the 

stress range during counting. 

 

5.2 Limitations of Existing Methods 

The limitations with existing load extraction methods for application in 

electronic prognostics and health assessment include (1) inability to extract ramp 
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rates and dwell time, (2) need for smart data reduction and filtering techniques, and 

(3) need for assessing correlation of load parameters, are discussed below.  

 

5.2.1 Extracting ramp rates and dwell information 

The existing load extraction methods provide the load range and mean load. 

These parameters can be adequate parameters for fatigue life estimation in elastic-

plastic fatigue analysis of materials. However, for example, in case of thermal-fatigue 

loads (frequently observed in electronic systems), wherein the damage is 

characterized by plastic yielding and creep deformations, the estimation of dwell time 

and ramp rates is required in addition to the stress range and mean stress for accurate 

fatigue assessment. Ramp rates can be estimated with modifications in the Rainflow 

algorithm. However, extracting dwell times and corresponding load levels is more 

challenging since it depends on both the amplitude and ramp rate of the monitored 

load cycles. 

 
Along with electronic applications, dwell times are also crucial in estimating 

fatigue life of other components. For examples of fan disk failures have been reported 

due to dwell sensitivity [87]. Hold periods of few minutes to several hours are applied 

in gas turbines [87], [88] and for weeks or more for power plant components that 

affect the remaining life of components. Other examples of applications were 

components are affected by creep-fatigue data are; electronic packaging, space shuttle 

nozzle liners, power plant components, gas turbine nozzles [89], furnace tubes [90]. 
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Various materials that have been studied and have shown dwell sensitivity: 

solder alloys (96.5% Pb-3.5% Sn) and other solders commonly used in PCB 

assembly, copper alloy (NARloy and AMZIRC), low alloy steels (1-Cr-Mo-V, 1.25 

Cr – Mo, and 2.25Cr-Mo), stainless steel (SS 316), titanium alloys (IMI 318 and IMI 

829), and super-alloys (MAR M 002, waspaloy, Rene 95, Rene 90, inconel 617, In 

100, PWA 1480 and MA 754) [91], [92]. 

5.2.2 Concerns with data reduction  

Analysis of complex load histories typically involves a data reduction stage to 

enable efficient data processing and eliminating undesired load reversals. However, 

data reduction methods can eliminate important load information and avoid the 

extraction of certain loading parameters in subsequent stages. For example the 

Ordered Overall Range (OOR) can eliminate small cycles (as a fraction of large 

cycles) by choosing an appropriate value of S-parameter (S < 1). However, in the 

process it also deletes the dwell-time information. In Figure 20, the points and lines 

in light shade depict the original data before reduction. The dark line connecting the 

end points depicts the results obtained after OOR. The load information of 0.2 hours 

of dwell time at 60oC is important for assessing damage due to creep mechanisms at 

various locations on the electronic assembly such as solder joints, plated through 

holes, and die-attaches. 



 

 77 
 

 

Figure 20. Data reduction methods can potentially eliminate dwell regions 

5.2.3 Correlation of load parameters 

Distributions of in-situ monitored temperature load parameters can be 

randomly sampled and used with the damage model in a Monte Carlo simulation. For 

accurate damage assessment the correlation between load parameters is important. 

Quantifying and using the correlations for damage assessment, enables generating 

realistic scenarios during random sampling.  For example, the distributions of 

measured ∆T and Tmean can be used for assessing the solder joint damage due to 

cyclic thermal loading. However, it is essential to know the correlation between these 

two parameters, as cycles with small ∆T but higher Tmean values will cause more 

damage than the cycles with same ∆T values but lower Tmean.    

 

5.3 Methodology for Load Extraction  

An algorithm was developed to process a given a time (t) versus temperature 

(T) signal, to extract cyclic range ∆T, cyclic mean temperatures (Tmean), ramp rate 

(dT/dt) , dwell time tD and temperature of dwell. Additionally, the correlation 
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between, dwell times versus temperature of dwell, cyclic range versus mean 

temperatures, and cyclic range versus ramp rates are quantified in terms of correlation 

coefficient. These load parameters can then be used in conjunction with damage 

models in Table 4 to assess the damage at various failure sites due to different failure 

mechanisms for a given electronic assembly.  The entire process is implemented in a 

software program, which contains the details of the electronic board and component 

material properties and geometries, to enable rapid assessment. 

 

The algorithm starts by processing the irregular time-load data using a moving 

average filter to remove the noise.  

 

 

In the above equation ‘a’ is the smoothening parameter. For the moving 

average to reduce the random noise while retaining the sharp response, the value of 

smoothening parameter ‘a’ is selected as the nearest integer of the square root of 

sampling frequency in Hz. 

 

Typically a filter with a smoothing factor derived from above equation has 

been reported to provide adequate noise reduction for various signal types without 

changing the original signal (Figure 21). 

 

In the next step small ranges are merged into overall increasing, decreasing, or 

dwell data streams. A range threshold value is selected to merge small ranges. All 
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ranges in the given data set that are less than delta s are merged in the larger overall 

range. An optimal range threshold value enables efficient load data reduction method, 

permits gains in computing speed, condenses load histories without sacrificing 

important damage characteristics and preserves the most damaging reversals in the 

original loading 

 

Figure 21. Results of MA filter with different smoothening parameter based sampling 
frequency 

 

Range threshold value is based on the significance of the range in the damage 

model. For e.g., If, Damage α (∆T)n , then for all n > 1, threshold  range can be 

selected as the nth root of the maximum ∆T measured i.e., = (∆Tmax/2)^(1/n). For 

damage models with n between 0 and 1, the threshold range value = 

(∆Tmax/2)^(0.75) can eliminate small cycles without introducing significant errors in 

the damage estimations (Figure 22).  
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Figure 22. Threshold level increases as value of power in damage law (n) decreases 
 

In case of measured field data it can be challenging to identify dwell 

temperature regions. This is because dwell regions may appear as a series of small 

cycles with a constant or near constant mean (Figure 23c), or it can also appear as a 

relatively large cycle with an extremely slow ramp rate (Figure 23c). For example, if 

the range threshold is ∆T less than 5oC, then several consecutive cycles with ∆T< 5oC 

is considered dwell. However, a cycle with say, ∆T = 10oC but a slower ramp-rate is 

also considered as dwell. Based on these criteria, the algorithm scans the time-

temperature data and identifies the dwell temperatures and dwell times.  

 

The correlation coefficient between dwell time and dwell temperatures is 

calculated and stored. The actual values of dwell time and dwell temperatures are 

then stored in a histogram with optimal bin-widths. The bin-data is used with kernel 

functions to estimate the probability density of the measured values. This method 

enables enormous on-board storage reduction and improves the ability of the sensor 

module to monitor for longer time durations. The significance of optimal binning and 

density estimation will be discussed in section 5.6. 
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The time-temperature data is then scanned for identifying full cycles. The 

geometric definitions of full and half cycle are well documented [80]. The time-

temperature data is scanned to identify if ∆Ti is a full cycle based on the condition 

∆Ti-1 > ∆Ti ≤ ∆Ti+1 (Figure 23d). For each cycle the mean temperature and ramp-rate 

is recorded. The full cycle is then removed from the stream and the residual time-

temperature containing half cycles is data is merged with original time stamp being 

retained. The process is iterated till all full cycles are identified and stored in the 

appending matrix. The remaining half cycles are then converted into full cycles. At 

the end of cycle counting the correlations between temperature range versus mean 

temperatures, and temperature range versus ramp rate are assessed and recorded. The 

load parameter values are then stored in histogram with optimal bins as described 

previously. The entire procedure for load parameter extraction is shown in Appendix 

I. The on-board memory is cleared by deleting the matrix containing the load 

parameters and only the histograms and correlation values are retained.  
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Figure 23. (a) Reduces noise using moving average filter (b) Eliminates monotonic 
data patterns and merges small ranges into overall data streams  (c) Identifies dwells 

temperatures and time using ramp-rate and range  (d) Scans the time-temperature data 
to extract cyclic load parameters 

 

5.4 Demonstration 

 
The proposed load parameter extraction method was first tested using simple 

data sets. Various time-temperature data series were generated to evaluate the ability 

of the algorithm to correctly identify dwell regions based on small cycles and ramp-

rates. For the cycle counting part, the algorithm is primarily based on the proven and 

tested Rainflow cycle counting method, and hence additional rigorous testing was not 

required.  
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The application of the proposed method was then demonstrated for electronic 

prognostics by processing in-situ monitored temperature data. An electronic assembly 

was exposed to irregular temperature cycles using a programmable oven to simulate 

field conditions. The irregular profile was generated produce temperature cycles with 

a different ranges, means, ramp-rates, and dwell times. Temperature extremes ranged 

from -50oC to 160oC and dwell times were randomly selected as multiples of five 

between 0 to 30 minutes. Also long dwell times were recorded at room temperatures 

when the oven was shut-down to simulate non-operating conditions. A snapshot of 20 

days of temperature exposure out of 110 days is shown in Figure 7.  

 

The time-temperature data was processed using the steps shown in Figure 23 

and Appendix-I that were implemented in a visual basic for applications environment. 

The resulting distribution of cyclic temperature ranges, means, ramp rates, and dwell 

times is shown in Figure 22-25. The histogram of dwell times shows that the 

algorithm correctly identified the dwell regions that were programmed between 0 to 

30 minutes (Figure 26). Also, the longer temperature dwell periods (> 160 minutes) 

programmed to represent the non-operating periods were correctly identified.  

 

The correlation between the load parameters is shown in Figure 26-28. From 

Figure 27 shows that the occurrence of the longer temperature dwell corresponds to 

temperatures in the range of 25-27oC. The correlation coefficients (ρ) of -0.84 shows 

an inverse correlation, i.e., a low value from dwell time distribution corresponds to 

high value in dwell temperature distribution and vice versa. The use of these 
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correlations in Monte Carlo simulation for damage assessment will be discussed in 

the next chapter. 
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Figure 24. Histogram of cyclic range 
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Figure 25. Histogram of cyclic mean temperatures 
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Figure 26. Histogram of ramp-rates 
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Figure 27. Histogram of temperature dwell times 
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Figure 28. Correlation between dwell time and temperature 
 
 

Figure 29. Correlation between delta T and mean temperatures 
 
 

Figure 30. Correlation between delta T and ramp-rate 
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5.5 Method for Binning and Density Estimation 

The extracted load parameters are stored in appropriate bins to achieve further 

data reduction.  The binned data is downloaded to estimate the distributions of the 

load parameters for use in damage assessment, remaining life estimation, and the 

accumulation of the products use history. Since the accuracy of the damage 

assessment and remaining life prognostics depend on the accurate estimate of the 

probability density functions (pdf) of the loads derived from the binned data, it is 

essential to select the appropriate bin-width and number of bins a-priori.  

 

This paper provides a method for applying optimal binning techniques for 

enabling condensed storage of in-situ monitored load histories. Optimal bin-widths 

relations are used in conjunction with non-parametric density estimation techniques, 

namely the histograms and kernels. The approach is then demonstrated. 

5.5.1 Optimal Binning and Density Estimation 

If the entire data set, without data binning, is retained, a parametric method 

can be used for density estimation. In that case the objective is to find a best fitting 

parametric function to the given data. Standard parametric functions include normal, 

lognormal, exponential, and Weibull, described by parameters such as mean and 

standard deviation. If the underlying distribution is non-standard (e.g., multi-modal), 

fitting a single standard parametric function to the data can result in errors, and fitting 

multiple parametric functions can make the problem solution non-unique. Non-

parametric methods can be used to estimate the pdf without assuming any parametric 
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structure [93], [94]. Examples of non-parametric density estimation methods include 

histograms, Kernels, orthogonal series estimation, and nearest neighbor method. In 

our study, histograms and kernel estimators were used. 

Histograms 

A histogram is a graphical representation of a frequency distribution in which 

the height of the bins represents the observed frequencies. The choice of bin-width 

primarily controls the representation of the actual data. Smaller bin-widths may 

present too much details (undersmoothing) and larger bin-widths may present or too 

less details (oversmoothing), of the true distribution [93].  Histograms are based on an 

equally spaced bin-width hn where n denotes the sample size. If          is the estimate 

of the true density f(x), then the global accuracy of the estimate can be evaluated by 

the integrated mean square error that is defined by. 

(1) 

The IMSE is the sum of the integrated square bias and integrated variance, the 

bias being the difference between the true density and the estimate. The bin-width 

that minimizes the IMSE is required for accurate estimation of the true pdf f(x). Scott, 

[95], derived the asymptotically optimal choice of bin width, hn
* as; 

(2) 

 

Since hn
* depends on the unknown pdf f(x), an estimate          of f(x) can be 

plugged into equation 2. For the normal distribution, the approximate optimal bin-

width is; 

(3) 
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where s is the sample standard deviation and n is the sample size. Freedman 

and Diaconis [96] suggested another bin width formula that can be applied to non-

Gaussian data; 

(4) 

where IQR is the inter-quartile range of the data (Q3-Q1). Several other 

studies have focused on more quantitative and qualitative aspects of bin width 

selection [96]–[100]. Once the bin width is calculated, the histogram is defined as; 

 nh
xf 1)(ˆ =   (number of Xi in the same bin as x)            (5) 

 

Kernel Estimators 

Kernel density estimators [101] are non-parametric methods used to estimate 

f(x) using the kernel estimator K (also called a window function) defined as; 

          (6) 

 

where h is the bin width, also called as smoothing parameter or band width. 

Equation 6 can be considered as a pdf obtained by averaging the effect of a set of 

local functions K centered at each data point x. A variety of kernel functions with 

different mathematical properties have been reported [102]-[106]. Commonly used 

kernel functions include uniform, Gaussian, triangle, Epanechnikov, and biweight. 

Kernel functions are generally chosen based on the ease of computation and desired 

properties of the function.  For example, the Gaussian kernel is used for its continuity 

and differentiability. The optimal bin width for the Gaussian kernel (equation 7) is 

obtained by minimizing the integrated mean square error (equation 8). 
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          (7) 

(8) 

 

where ŝ  is the estimate of standard deviation. The Gaussian kernel can be 

used for non-Gaussian data, since the kernel is used only as a local weighting 

function [94]. 

5.5.2 Implementation Approach for PHM 

For in-situ monitoring over long durations, one can use the load measurements 

obtained in the past or the data monitored over initial few periods to obtain the 

estimate of sample size and standard deviation. The relations provided in equation (3) 

and (7) are then used for bin width calculations. Once the bin-widths are calculated, 

the data for the subsequent time periods is stored directly in the bins. At the end of the 

monitoring period, the bin-widths and frequency is used in conjunction with 

equations (5) and (6) to obtain the probability distributions. These distributions are 

then used for damage assessment and prognostics (see Figure 31).   

 

The load parameters obtained during monitoring depend on the usage and 

environmental conditions during the monitoring period. Thus, depending on usage 

conditions, there could be differences between the estimated and actual values of 

sample size and standard deviation. These differences can lead to inaccuracies in the 

subsequent density estimation process. One approach to overcome this problem is by 

recording the actual values of standard deviation and sample size during monitoring 

5/1ˆ06.1 −= nshopt

2/22/1)2()( xexK −−= π
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and using these values for density estimation. One can update the value of standard 

deviation every time a data point is added to the bins and also keep a track on the 

sample size. The advantage of continuously updating the standard deviation is that it 

does not require storing the complete data set. Optimal bin-widths can then be 

recalculated based on actual values of sample size and standard deviation to estimate 

the probability distribution (see Figure 31). 

 

Figure 31. Approach for binning and density estimation of monitored load parameters 

5.5.3 Results 

The rest of the discussion will focus only on binning and density estimation of 

cyclic Tmean, values extracted using methods discussed in section 5.3. The same 

procedure used for binning and density estimation of all other load parameters. For 

the first five days of the experiment, the cyclic Tmean data was extracted and stored 

without any binning. The average samples size (n), standard deviation (s), and inter-

quartile range (IQR) for each load parameter was then calculated (see Table 8). These 

values were used as estimates of s, n, and IQR in equations (3), (4), and (7) to 

calculate the optimal bin widths for both histograms and kernels. For the histograms, 

Calculate optimal bin width based on 
estimate of standard deviation and

sample size from historic sensor data

Monitor and store load parameter in 
bins based on optimal bin width 

Estimate density based on bin-widths 
and frequencies with Gaussian kernel

Calculate optimal bin width based on 
estimate of standard deviation and

sample size from historic sensor data

Monitor and store load parameter in 
bins based on optimal bin width 

Estimate density based on bin-widths 
and frequencies with Gaussian kernel
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the optimal bin widths obtained from equations (3) and (4) were within +/- 5%. This 

is in agreement with results reported in the literature [96].  

 

After the fifth day, the load parameters were extracted and stored in the bins 

calculated from the five day estimate. The bin frequencies were downloaded and 

distributions of load parameters were derived using histograms (see equation 5) and 

kernel functions (see equation 6). The percentage of data reduction due to use of the 

bins was measured. The ability of histograms and kernel functions (using binned 

data) to represent the complete data set was assessed by comparing the histograms 

and kernel plots with the parametric distributions that were best fitted to the complete 

data set. 

 
Table 8. Estimate of parameters used for the bin width calculation 

Day Sample size 

(n) 

Inter-quartile 

range (IQR) 

Standard 

deviation (s) 

1 97 110.77 59.10 

2 80 131.20 66.70 

3 72 101.81 60.94 

4 80 36.63 48.89 

5 90 135.96 68.68 

Average 84 103.27 60.68 

 

The best fitting distribution for the complete data set of Tmean values obtained 

on day 6 was found to be a normal distribution (see Figure 32). The distribution 

obtained using histogram (equation 5), based on data binned as per equation 3, is 

shown in Figure 32. The solid dark line in the Figure 32 shows the distribution of 
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Tmean values obtained from binned data and using the Gaussian kernel. It is observed 

that the true shape of the distribution obtained from the data is bi-modal, which is 

accurately represented by the kernel and histogram. This bi-modal nature of Tmean 

values was hidden by the smooth normal distribution.  

 

When the distributions were used in the Monte Carlo simulation model for 

damage assessment, the samples of Tmean values drawn from the kernel resulted in 

more accurate estimates of damage, since the samples were drawn from a distribution 

that accurately represented the measured data. In comparison to the histogram, the 

kernel density estimate is smoother. Hence during random sampling, more number of 

distinct samples were drawn from the kernel distribution as compared to the 

histogram. This further improved the accuracy of the damage distribution resulting 

from the Monte Carlo.  

 

In terms of data reduction, the use of kernels and histograms resulted in 78% 

and 85% less data per day compared to using the complete monitored data set. 

Assuming the same amount of data reduction, the sensor system with binning can 

now be used uninterrupted for 6.6 more days with histogram and 4.7 more day with 

kernels to consume the same storage space without binning. Similar results were 

obtained when the analysis was conducted from day seven onwards. This clearly 

demonstrates the importance of these methods to enable uninterrupted monitoring at 

low power and memory consumption. 
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Figure 32. Comparison of density estimates for Tmean values of day 6 
 

 

The sensitivity of the kernel densities to the difference between estimated and 

actual standard deviation and sample size were investigated by analyzing the 

experimental data for different time periods. For example, Figure 33 compares three 

density estimates estimated using Gaussian kernel; distribution (1) is obtained using 

the complete data set and actual values of standard deviation and sample size for 

calculating is hopt. Distribution (2) is based on binned data and estimated values 

standard deviation and sample size for calculating is hopt. Distribution (3) is obtained 

from binned data and updated values standard deviation and sample size using the 

approach in Figure 31. In this example, the difference between the actual and 

estimated s was 38%. It is observed that the distribution (3) using updated value is a 

better estimate of the actual distribution (1).  Similar results were obtained for 
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different sets of data collected in the study. More information is available in a paper 

on this work by the author [107]. 

 

Figure 33. Comparison of distributions obtained from estimated versus actual 
parameters 

5.6 Conclusions 

 
A novel method was developed for extracting cyclic range, mean, ramp rates, 

dwell times and their correlations, from irregular time-temperature history. The 

application of this method for electronic prognostics and health management was 

demonstrated.  The method for parameter extraction combined with storage of load 

parameters in bins resulted in 99.03% storage reduction per day, without 

compromising dwells regions. Thus embedding this algorithm with the sensor module 

can significantly enhance the ability of the module to monitor for longer durations 
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without running out of memory. The method can also be used for processing different 

time-load signals such as strain, acceleration, and humidity. 

 
For prognostics and health management, the application of optimal binning 

and density estimation using histogram and kernel estimators for condensed storage 

of load histories, can significantly improve the ability of the sensor nodes to monitor 

for extended durations without interruptions and conserve memory and power. It was 

found that optimal bin widths can be calculated a-priori based on estimates of sample 

size and standard deviation of representative data sets. In using the binned data for 

representing the entire data set, kernel methods provided a better estimate of the 

probability density compared to histograms. It was shown that the difference between 

the estimated and actual bin-width and the resulting error in density estimation can be 

minimized by recording the sample size and standard deviation during in-situ 

monitoring, and using the recorded (true) values for density estimation. 
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Chapter 6:  Prognostics Approach Considering Uncertainties 

 

6.0 Introduction 

The ability to predict a product’s remaining life with the associated 

confidence limits, based on current and historic “health” conditions can enable 

effective maintenance and reduce the life cycle cost by decreasing inspection, 

downtime, and inventory costs. Remaining life predictions are made by assessing the 

accumulated damage due to measured environmental and usage exposure. However, 

often the effect of uncertainty and variability in the measurement and procedures used 

for making predictions is neglected.  In this chapter, a generic method is developed 

for remaining life prognostics that accounts for the measurement, model-input, and 

model uncertainties. The method is demonstrated to predict the remaining life 

distributions of solder interconnects subjected to field temperature conditions. The 

details of the proposed method and the implementation case-study are presented.          

6.1 Background 

For electronics prognostics, a method to predict remaining life using life cycle 

loads was proposed by Ramkrishnan and Pecht 2003 [53], referred as life 

consumption monitoring (LCM). LCM methodology is a six-step process, (see 

Figure 34), that combines systematic study of the different failure modes and 

mechanisms of the product under consideration, monitoring of relevant environmental 

and/or operational parameters, and use of physics of failure models to asses the 

damage and ultimately predict remaining life. For demonstration of this approach to 
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electronic assembly, Mishra et al. 2002 [54] and Ramakrishnan and Pecht, 2003 [53] 

monitored the temperature, humidity, vibration and shock loads experienced by an 

electronic assembly operated in automotive under-hood environments.  This 

monitored data was applied in conjunction with physics-of-failure models to estimate 

damage and predict remaining life.  The PHM methodology was shown to accurately 

predict remaining life in the application environment.   

 

Figure 34. CALCE Life consumption monitoring methodology 
 

One of the major drawbacks of this approach was the use of discrete values of 

loads for making damage assessments, which results in discrete values of damage 

fractions and remaining life. This approach did not consider the various uncertainties 

and variability that can significantly influence the prognostics. These uncertainties 

include i) measurement uncertainty, due to inaccuracies in the sensing, recording, use 
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of sampled information, and assumptions in data conditioning techniques. ii) 

Parameter uncertainty, which arises due to variability in the material and geometric 

parameters that are used in the damage model for health evaluations. iii) Model 

uncertainty, which may arise due to limitations in analyst’s knowledge of 

phenomenon and deliberate simplifications introduced for modeling.  

 

The essence of prognostics is the estimation of remaining life in terms that 

have consequence in the maintenance decisions process [108]. Using the life 

consumption monitoring approach with single point estimates of remaining life, 

without confidence intervals and confidence level, it may not be possible to take 

logistics decisions with certainty. Hence it is necessary to identify the uncertainties in 

the prognostic approach and assess the impact of these uncertainties on the remaining 

life distribution, in order to make risk-informed decisions. 

 

In this work we have developed an approach to account for the measurement, 

parameter, and model uncertainties in the prognostics process. The approach 

combines sensitivity analysis and Monte Carlo based random sampling to provide a 

distribution of accumulated damage. Using regression analysis of the accumulated 

damage distributions, the remaining life is then predicted with confidence intervals 

and levels. The approach is demonstrated using a PHM setup discussed in chapter 3. 

6.2 Overview of Methodology 

A generic approach was developed for making predictions by considering the 

measurement, parameter, and model uncertainty. Figure 35 presents the schematic of 
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the approach adopted in this work for estimating the confidence bounds on the 

remaining life predictions. The next few sections will discuss in detail on the building 

blocks of the approach. 

 

6.2.1 Measurement Uncertainty 

Environmental and usage load profiles are captured in the application 

environment, for utilizing in real time or near real time health assessment and 

prognostics using sensors and data loggers.  This raw sensor data is simplified or pre-

processed to make it compatible with the damage models and algorithms that are used 

to conduct prognostics. In particular, it may be necessary to extract the relevant load 

parameters including cyclic mean, amplitudes, ramp rates, hold periods, power 

spectral densities, etc. Commonly used load parameter extraction methods include: 

cycle counting algorithms for extracting cycles from time-load signal, Fast Fourier 

transforms (FFT) for extracting the frequency content of signals, etc.  Depending on 

the application and type of signal, custom load extraction methods may be required. 

 

Figure 5 (chapter 3), provides a schematic of the in-situ monitoring, pre-

processing, and storage of environmental and usage loads. A time-temperature signal 

is monitored in-situ using sensors, and further processed to extract (in this case) 

cyclic temperature range (∆T), cyclic mean temperature (Tmean), ramp rate (dT/dt), 

and dwell time (tD) using embedded load extraction algorithms.  The extracted load 

parameters are stored in bins with optimal bin-widths [107]. The binned data is 

downloaded to estimate the distributions of the load parameters using kernel 
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estimator for use in damage assessment, remaining life estimation, and the 

accumulation of the products use history. The kernel estimators are non-parametric 

methods of density estimation and hence the environmental and usage exposures are 

now expressed in terms of the load distributions that account for the uncertainties in 

each load parameter. These non-parametric distributions of individual load 

parameters reflect the uncertainties in measurement, sampling, and data simplification 

(such as cycle counting, FFT) combined. 

 
 

Figure 35. Prognostic health monitoring methodology considering uncertainty 
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The parameter variables consist of decision variables and model-input 

parameters. Decision variables are the parameters over which the decision maker 

exercises control, such as sampling rate, measurement interval, download interval, 

variables in data conditioning etc. These variables can be explored and optimized 

based on accuracy and operational constraints. It is assumed that these decision 

variables are not a direct input to the mathematical or logical model used for damage 
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assessment. However, the selection of these variables can directly or indirectly 

influence the inaccuracies in the damage assessment process. The sensitivity analysis 

of decision variables has to be done just once, at the time of PHM implementation. 

This sensitivity analysis can probably lead to valuable recommendations such as need 

of different sensor, change of sensor location etc.  

 

Model parameters are the terms in the mathematical model used for damage 

assessment. These can be geometric dimensions of the structure being analyzed, the 

material properties, constants used for fitting etc. Given a model there are various 

methods for sensitivity analysis. In this case a local sensitivity analysis method was 

selected as described below [109], 

 
Let      be the model used in the PHM process   
 
Wherein,     denotes the model parameters  
 

denotes the nominal value of the parameters  
 

For each parameter of interest, the first partial differentials were evaluated for 

values around a nominal value.  

 
 

A sensitivity index was obtained by considering the variability of the 

individual parameter by multiplying the sensitivity index by the standard deviation of 

the parameter. This accounts for considering the natural variability of the parameter, 

instead of the arbitrary selected criteria of say +/- 1%.  Finally, we find the 
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dimensionless nominal sensitivity index by normalizing the results with the 

sensitivity index of all parameters considered. This enables the more accurate 

identification of the dominant parameters that influence the output of the damage 

model.  

 
        
 

 

Based on the sensitivity analysis the parameters that results in the maximum 

variation in the time to failure can be selected. Probability distributions are then 

assigned for the selected parameters. The distributions were based on manufacturer 

data, tolerance limits, published literature, or prior knowledge.  

 

This method is also known as the nominal range sensitivity method. It 

assumes that the user know the nominal values of the parameters and an expected 

range. There are several other sensitivity analysis methods such as global sensitivity, 

response surface, ANOVA, etc. However, our objective is to identify and rank the 

most sensitive variables for use in further analysis, which can be efficiently analyzed 

using this method [110] [111]. 

 

6.2.3 Model Uncertainty 

Model uncertainty arises due to limitations in analyst’s knowledge of 

phenomenon and the deliberate simplifications introduced for modeling. Thus model 

uncertainty would change significantly with the model being used. There have been 

several efforts to quantify the model uncertainty [112] [113] [114]. In this study, 
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model uncertainty has been accounted by using a multiplicative factor (or calibration 

factor) to the model output. This multiplicative factor is yi, and is defined as the ratio 

of measured value by the value estimated using the model under consideration. Here, 

yi is a random variable and has a distribution. yi can be obtained by fitting a best 

parametric distribution to data obtained from studies conducted to validate the model.  

Such data is often available from the model designer. However, data from multiple 

sources should be used to obtain un-biased results. Also, it needs to be ensured that 

the data used to generate yi belongs to studies with similar package, geometry and 

material configurations.  

 

6.2.4 Random Sampling for Damage Assessment 

The distributions of measured load parameters and the distributions of 

dominant model-inputs are then sampled randomly in a Monte Carlo technique using 

the damage model. In random variates are generated using the inverse cumulative 

function. The cut-off truncation method was used for generating random samples 

from truncated distributions for use in Monte Carlo.  

 

Let f(x) is the pdf with 0 < x < ∞  and F(x) is the cdf of random variable x. If 

the variates have to be between values ‘a’ and ‘b’. We use the inverse cumulative 

function of that particular distribution for generating the random variates. However, 

the truncation is done as follows, 

Generate x from F(x) 

If x ≤ a, let x = a, 
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If x ≥ b, let x = b 

In this case, the truncated distribution is given by, 

   0, for x < a 

Ft(x) =   F(x) for a ≤ x , b 

   1, for x ≥ b 

 

Also, since the load distributions were in form of Gaussian kernels or 

histograms, the random variates from these distributions were derived using the 

following procedure in [115]. Kernels are non-parametric distributions with output in 

the form specified in Table 9. 

Table 9. Format of load distribution obtained in Gaussian kernel format 
 

   

To generate the random variates, we first define R a random variable 

uniformly distributed over [0,1].  

 

Using values in Table 9, we calculate empirical slope as; 

 

The inverse cdf is given by; 
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The stopping criteria for Monte Carlo simulation were based on minimizing 

the variance over the mean of the simulation results (Figure 36). For example,  

If, d1, d2, …..dm are the results of Monte Carlo. Then, Stop Monte Carlo 

when, standard error of the mean (µ): 

 

Here, mean, variance, and standard error over the mean are calculated as follows: 

 

 

Before Monte Carlo simulations, the correlations between load parameter 

distributions were assessed using correlation coefficient. This is conducted to ensure 

that only meaningful scenarios are generated during Monte Carlo. If the distributions 

are correlated, then the procedure used for sampling these distributions is given below 

[116], 

Let the two load parameter distribution that are correlated be f(x) and f(y). Let 

the correlation coefficient between these two distribution be ρ. If, N = number of 

iterations of Monte Carlo, sample f(x), N times to get X = {x1, x2,….xN}. For each 

value of xi estimate the value of yi based on ρ, and variance in x and y, given by: 

 

 

Here, correlation coefficient:  
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The standard deviations of x and y are given by: 

 

 

 

Use new pairs of (xi, yi) together in the Monte Carlo simulation 

 

This assessment provides a distribution of damage fractions. Each damage 

fraction is due to the effect each measured load parameter. However, the combined 

damage distribution (accumulated over the assessment period) has to reflect the effect 

of all load parameters that were measured. Since the output of Monte Carlo 

simulation is over 10000 data points, a large number of random samples n, each of 

size N (where N = number of cycles counted over the monitoring period being 

assessed) are drawn from the Monte Carlo results (Figure 36). Accumulated damage 

fraction is then defined as accumulated damage ADi; 

 
      
 

 

As this procedure is continued for n number of samples, we get accumulated 

damage fractions AD1, AD2, …..ADn. Using these data points the accumulated 

damage distribution is obtained, which is the best fit to given data points (Figure 36). 
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Figure 36. Accumulated damage distribution for the monitoring period being assessed 
 
 
 
6.2.5 Damage Accumulation and Remaining Life Prediction 

As the accumulated damage distributions over the monitoring period are 

obtained, these distributions can then be updated using the following procedure: 

 

 
 

Here, AD’n is the accumulated damage distribution at the end of day n. ADn is 

the accumulated damage distribution estimated over day n, and AD’n-1 is the 

accumulated damage distribution estimated at the end of day n-1. E denotes the 

expected value of the distribution and Var is the variance. 

 

As the monitoring process continues the damage distributions are updated 

using the above procedure. The failure criteria is defined by Miner’s rule, as the 

accumulated damage of greater than or equal to one. Thus if accumulated damage 

distributions are obtained at the end of time period X1, X2,….Xn. Then using 

regression analysis we can formulate the relation: 
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Here, Y is the accumulated damage distribution, which has a mean of mX+c, 

and a standard deviation of Syx which is the standard error of y estimate. 

 
 
 
 

Using the regression equation one can obtain the accumulated distribution of 

future time period by plugging the values of Xi, and calculating the corresponding 

Syx. Thus based on our failure criteria, the remaining life and its probability can be 

calculated for any value of Xi. 

6.3 Case Study 

The approach presented above was demonstrated for prognostics of an 

electronic printed circuit assembly. The experimental setup, in-situ monitoring and 

analysis, damage accumulation and life prediction considering uncertainty and 

variability are already discussed in chapter 3. 

 
The demonstration process is explained by an example of BGA 225 a 

component on the test board. The potential sources of uncertainty in the damage 

assessment of this component were investigated (Figure 37). The sources are 

classified as geometric parameters, material parameters, model constants, and loads. 

This is the first step in the PHM uncertainty analysis. The next step is to determine 

which of these sources influence the damage assessment and hence the remaining life 

prediction. 
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6.3.1 Decision Variables 

The decision variables are investigated first. One of the decision variables is 

the reversal elimination index (or threshold) in the ordered overall range algorithm, 

which is used for processing measured temperature data. The data reduction due to 

reversal elimination can be an important variable for remote monitoring systems 

working on portable power supplies. In such applications memory and power 

consumption can be most critical operational constraints.  For OOR a reversal 

elimination index, S (< 1) can be selected to filter amplitudes that differ from the 

largest measured amplitude by the specified fraction. This data was screened using 

different values of reversal elimination index (threshold). The accumulated damage 

was estimated using each data set. For simplicity it was assumed that the error in 

damage accumulation is zero when all amplitudes are considered for the analysis (S = 

0). The error in damage accumulation due to use of reduced data for all other data sets 

was obtained by the formula 

 

Error =  0)(S damage dAccumulate
0)(S damage dAccumulate0)(S damage dAccumulate

=
>−=

 

 
Figure 9 illustrates the percentage error in damage accumulation and the 

percentage data reduction with change in S-parameter. It is observed that even when 

the S is zero, the data reduction is 84%. This is due to filtering all data points that are 

in a monotone increasing or decreasing sequence. Also small values of S, ranging 

from 0 to 0.1 resulted in more than 90% data reduction with only 1% error in the 

damage calculation. Higher values of S result in increasing error in damage 
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accumulation. This is due to elimination of reversals with large magnitude and the 

dependence of the fatigue model on the temperature amplitude.  

 
 

Figure 37. Sources of uncertainty in damage estimation and prognostics for BGA225 
 

Another example of analysis of decision variable is the download frequency. 

The term download frequency denotes the number of times the monitoring system 

was interrogated for checking the status or making predictions. Interrogating the 

system more often results in breaking the data sets. Assuming the user is planning to 

download on a periodic basis, the decision on download frequency can be made based 

on analysis shown in Figure 38.  Using the temperature data used for analysis in 

Figure 9, the damage analysis was conducted by using the complete data sets, 

breaking the data set into 3 parts, 5 parts and 10 parts. This is referred as signal 

interruption on the y-axis of Figure 38. The error was normalized with respect to the 

data set with no reversal elimination and signal interruptions. In this case all values 

are low, also it seems like the error has started to become constant. i.e., there is a 
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large change between 0 to 3 days. However, the difference between 5-10 days is not 

as much. 

 
 

Figure 38. Error in damage accumulation due to reversal elimination and signal 
interruption 

 

6.3.2 Model Parameters 

Sensitivity analysis was conducted for the thermal fatigue model for BGA 

225. The second column in Table 10 shows the change in the cycles to failure for a 

one percent change in the input variable around the nominal value. These values are 

then multiplied with the standard deviation of the model-input parameters, obtained 

from manufacturer data, literature, and measurements. The normalized range 

sensitivity index was calculated as shown in the approach (section 2). The final 

column shows that the ranks are rearranged by considering the natural variability of 

the model-input parameters. As per the new ranks, the top four model-input 
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parameters were assigned probability distributions and were used for in random 

sampling for damage assessment.  

 
Table 10. Sensitivity analysis of model-input parameters 

Model Parameters % change in 

predicted cycles to 

failure* 

Normalized 

sensitivity index

Rank 

Collapsed ball height 2.45 0.00295 3 

Board CTE 2.20 0.00412 1 

Component CTE 1.26 0.00321 2 

Diagonal length 1.26 0.00139 4 

Overmold thickness 0.57 0.00091 6 

Overmold modulus 0.50 0.00075 7 

Package substrate CTE 0.44 0.00101 5 

Package substrate 

modulus 

0.19 0.00033 8 

Pkg. substrate thickness 0.19 0.00028 9 

 

6.3.3 Random Sampling 

The four model-input parameters that were selected for Monte Carlo analysis 

for the damage assessment of the BGA 225 included, coefficient of thermal 

expansion (CTE) of the printed circuit board, CTE of component, collapsed solder 

ball height, and diagonal length of the component. The normal distributions assigned 

to each of these parameters are shown in Figure 39. The model-input parameter 

distributions and the measured load parameter distributions were randomly sampled 

using a Monte-Carlo technique within the damage model. The Monte-Carlo was 

stopped when the standard error over the mean was less than 1 percent of the mean 
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value. The resulting data on damage fractions was analyzed using the procedure in 

section 2 to obtain a distribution of accumulated damage. The stopping criteria of 

stabilizing the variance over the mean were utilized. Typically it required 10,000 runs 

of the Monte Carlo to satisfy this criterion (Figure 40). 

 

Figure 39. Monte-Carlo simulation for damage assessment 
 

6.3.4 Model Uncertainty 

The model used in this study is the first order thermal fatigue model for plastic 

ball grid arrays [117]. This model has been extensively used for various studies in 

industry and academia. The studies have compared the cycles to failure of BGA 

components obtained from accelerated testing with the results obtained from the 

model (estimated). Using the approach presented in section 2, the distribution of yi 

was derived using 48 data points obtained from CalcePWA manual for the model. 

The distribution of yi was randomly sampled and used as a multiplicative constant 

(Figure 41).   
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Figure 40. Monte Carlo results and stopping criteria 
 
 

 

Figure 41. Distribution of calibration parameter for model uncertainty 
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used for prognostics. The spread of the remaining life distribution decreases as the 

time in use increases, i.e., the spread of the remaining life distribution made on day 

60 is higher than the spread on day 84.  

 

Figure 42. Accumulated damage distributions with time for BGA 225 
 

Table 11. Remaining life distributions for BGA 225 
Remaining life with probability Day of assessment 

0.5% 50% 95% 

60 24 32 37 

72 15 20 22 

84 1 5 9 

 

6.3.6 Damage Histories for Prognostics 

For products and systems operated over long durations, the accumulated 

damage distribution can be stored in a condensed form. The user can track the change 
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in the damage distributions over time and use this information for assessing the future 

usage conditions, which can affect the remaining life prognostics. The normal 

distribution curves on the left corner of Figure 43 shows the accumulated damage 

distributions of BGA 225. Each curve represents the distribution over a period of 

three days. The graph in the top right corner tracks the change in the mean of the 

damage distributions with time. This can enable to identify, periods of severe usage. 

The three histograms in the bottom contain the parameters of the accumulated 

damage distributions, specifically the mean, standard deviation, and kurtosis. Such 

damage histories can be stored for the entire product and can be used for generating 

scenarios for assessing mission survival under different usage conditions.  

 

Figure 43. Distributions of accumulated damage over time 
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In the above experiment, each 3 day period can be considered as a mission. 

The prognostic assessments can be conducted at the end of each mission to ensure the 

number of failure free missions and the probability of surviving the next mission. 

Also, the load distributions can be stored in compact format (per mission) and 

retrieved for prognostic assessments when needed (Figure 44). The normal 

distributions represent the distributions of delta T over each 3 day (mission) period. 

The variations in the mean of the distributions over time are shown in the top right 

graph of Figure 44. The two graphs in the bottom show the histograms for the mean 

and standard deviation of the delta T distributions. The four graphs in Figure 43 can 

be used to reconstruct the temperature loading history of the entire missions. 

 
 

Figure 44. Condensed storage of load histories based on missions 
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mission would be as severe as the mean value of all previous missions, and 2) the 

future mission will have a severity value equivalent to the worst case severity based 

on the previous missions. Actual failures were observed in mission 29 and 31. 

 

Table 12. Remaining life prognostics in terms of missions 
 

  

6.4 Conclusion 

The sources of uncertainty in the prognostic approach based on environmental 

and usage exposure were identified. A generic approach to prognostics that can 

account for uncertainties in measurement, model-input, and damage models was 

developed and demonstrated to provide a distribution of remaining life.  

 

It was found that given the measurement, parameter and model uncertainties, 

the actual failures in testing were observed within the predicted failure distribution. 

The sensitivity analysis procedure revealed that it is important to consider the 

standard deviation of parameter variables for calculating sensitivity indices, as it can 
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It was observed that the prediction accuracy increased with the decrease in remaining 

life. This was attributed to the fact that with increased usage there was more data to 

support the prognostics.   
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Chapter 7:  Failure Precursors Based on Resistance Analysis 

 

7.0 Introduction 

The previous four chapters discussed the methodology and case-studies for 

prognostics based on monitoring and modeling of life cycle environmental and usage 

loads. This chapter presents a different approach for prognostics using the same setup 

described in chapter 3. Instead of assessing the accumulated damage due to 

temperature cycles, the performance of the electronic board is directly monitored and 

analyzed to provide an advance warning of failure and estimate remaining life. The 

next few sections discuss the challenges in monitoring the performance, the 

methodology adopted for analysis or failure precursors and the results. 

  

The failure mode being investigated here is solder joint cracking, which can 

introduce the complete fracture through the cross-section of the solder joint with the 

solder joint parts having none or partial adhesion to each other. The failure 

mechanism is creep and stress relaxation enhanced thermal fatigue due to temperature 

cycling. A failed solder joint is normally surrounded by solder joints that have not yet 

failed and therefore the solder joint fracture surfaces make compressively loaded 

contact.  During thermal changes shear is the primary force of stress on the solder 

joints.  As a result, the rough fractured surfaces of the failed solder joints slide 

relative to one another producing characteristic short duration electrical transients. 

There are several methods to detect solder joint failures, including destructive testing 
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to visually inspect cracks in the solder joints at periodic intervals, periodically 

measuring the electrical resistance of solder joints and define the failures based on the 

increase in original resistance, and continually monitoring electrical resistance of 

solder joints to detect electrical discontinuities as failures. 

 

As mentioned in chapter 3, the test board used in this experiment has 6 

different components and two components of each type making totally 12 

components on the board. All components have a daisy chain for monitoring 

resistance continuity. A daisy chain is a conductive path that connects several 

interconnections of a component. In this experiment a failure of any daisy chain 

indicates the failure of the component. The daisy chain resistance of all components 

except the QFP 100 was measured in-situ for the entire period of the experiment. The 

QFP100 was not monitored in-situ, since the damage models and previous testing had 

predicted that the component was not susceptible to failure under the given 

conditions. 

 

Thus in this experiment, the resistance of the daisy chains indicate the 

performance of the component. The daisy chains have a base resistance before start of 

the experiment. The daisy chain of the BGAs and QFPs extended onto the pads on the 

printed circuit board. Wires were soldered onto the pad and connected to an Agilent 

Model: 34970A data logger to take measurements of resistance every ten seconds. 

The base resistance of the daisy chain was measured and recorded prior to thermal 

cycling exposure. The data logger was operated in constant current mode at a source 
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current of 1mA, which passes through the daisy chains and reports the resistance of 

the path. 

 

The plot of resistance versus days in testing is shown in Figure 45. As the 

component approaches failure, the short duration electrical spikes are observed in the 

resistance values. After the first spike the subsequent spikes occur within a short 

duration of time and ultimately the solder joint shows a complete open (infinite 

resistance). It is evident from the Figure 45 that just by monitoring the resistance it is 

impossible to provide any indication of degradation prior to the occurrence of the first 

spike. The question asked here is that can we identify and estimate a degradation 

trend even before the occurrence of the first spike? 

 

Figure 45. No indication of degradation before the occurrence of the first spike 
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shown in Figure 46. This is a typical representation for component PBGA 225. 

However, the change in the temperature-resistance is dependant on the component, 

base resistance, temperature cycle, and also the damage accumulation of the 

component. For example, the change in resistance for a temperature cycle with ∆T of 

100oC is higher after 1000 cycles as compared to the start of the experiment. With 

continued thermal cycling the daisy chain resistance will gradually increase to 

indicate failure (crack growth leading to open connection), as shown in Figure 45. 

The resistance will increase with initial spikes and eventually lead to complete open 

with infinite resistance. 

Figure 46. Change in resistance with temperature 
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7.1 Approach 

Based on the above discussion there are two important issues: (1) the 

identification of resistance degradation trend before the occurrence of first spike and 

(2) the effect of temperature variations on resistance. The approach used to resolve 

both issues and enable the identification of the onset of degradation is shown in 

Figure 47. 

 

Figure 47. Approach for precursor identification and tracking using resistance drift 
values 

 
The core of the approach is the relationship between temperature and 

resistance R = F(T), which is developed using in-situ monitored temperature and 

resistance data at the beginning of the experiment. This is equivalent to establishing a 

base-line performance. Since all components are in almost pristine condition, using 

this relationship, the resistance can be predicted as a function of temperature. Thus as 

the testing continues, the actual resistance R(T) is measured and recorded for the 
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component. Also, based on the temperature – resistance (TR) relationship, a value of 

resistance is estimated Re(T). The actual resistance value is then subtracted from the 

estimated value in time domain, to provide a resistance drift (D).  

 

The resistance drift indicates a deviation from the expected normal condition. 

However, the values of drift in time domain also produce a noisy signal and cannot be 

directly used for identifying a degrading trend. Hence the values of drift are analyzed 

over windows of ten hours. Using these values on can track the shift in the 

distribution of drift values. Also the ten hour window covers the longest temperature 

cycle that can be observed in the experiment. Using the ten hour resistance drift data, 

various features were analyzed to identify the best (reliable) feature that can be used 

as a prognostic indicator. Failure criteria were set to 50% increase in the mean of the 

drift distribution. The 50% increase also corresponds to the first large spike that was 

measured during resistance monitoring. 

7.1.1 Temperature – Resistance Model 

A second order polynomial was fitted to predict the change in resistance with 

temperature. The coefficients α1, α2, and α3 were calculated based on the first 3600 

data points, with the corresponding 95% confidence intervals.  

R = f(T) = α1T2 + α2T + α3 

The fit for component QFP 256 is shown in Figure 48, the details of the fit are shown 

in Figure 49. Table 13 gives the mean and 95% confidence values for α1, α2, and α3. 

The R2 value for the fit is 98.9%. As observed from Figure 49, the residual values 

follow a normal distribution with a mean zero. The residual values are evenly 
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distributed around zero. Also, the scatter plot of fitted versus the residuals shows a 

uniform distribution with mean residual values around zero. The fitted values have a 

large spread from 0.2 to 0.45 ohms. Overall both Figure 48 and 45 indicate that the 

model fits the data reasonably accurately. 

 

Figure 48. Second order polynomial fit between temperature and resistance 
 

Table 13. Values of coefficients used in regression model 
 Value 95% C.I. 
α1 1.31E-5 0.13e-5, 2.6e-5 
α2 9.36E-4 9.11E-4, 9.52E-4 
α3 0.2559 0.2548, 0.2561 

 

Figure 49. Details of prediction model 
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7.1.2 Features Investigated 

The values of resistance drift and the features of the drift distributions over a 

ten hour period were monitored and analyzed to identify which features could be 

consistently used as a precursor to failure. The list of all feature investigated is shown 

in Table 14.  

Table 14. Features investigated for determining consistent precursor 
Feature Formula 

Resistance drift D = Re(T) – R(T) 

Mean drift values 
∑ iD

n
1  

Mean peaks [ ] )(*,*, iDMaxDDt =  

Standard deviation ( )21 DD
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Skewness 

 

 

Skewness peaks [ ] )(*,*, iii SMaxSSt =  
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feature(s) that could be most reliable used for prognostics. Here the word reliable is 

used to indicate a degree of confidence, and (2) feature(s) that provided degradation 

trend across all components being investigated. 

 

7.2 Results 

Using the procedure in the previous section the results for QFP 256 are shown 

in Figure 50 to 54. The following observations could be made about trending the 

different features. The values of resistance drift by itself were too noisy for trending 

and would lead to false alarms. The mean values of resistance drift distribution over a 

ten hour period were found to provide a good indication of degradation. As seen in 

Figure 46, for the component QFP 256, the mean drift values are close to zero or very 

low for the first 200 hours. This indicates that the data fits to the regression model 

and there is no deviation from the baseline performance.  

 

Figure 50. Trending mean values of resistance drift 
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After 200 hour to 500 hours, the value of mean drift fluctuates between zero 

to 0.7. However, after 500 hours a steep rise is observed, with a clear increasing 

trend. This would indicate a onset of fault and possible progression to failure. The 

mean drift value was found to be the most consistent feature across all components 

with similar trend. Figure 51, trends only the peak values of the mean drift (Figure 

50). This is a better feature as there is no up or down trend (as observed with mean 

drifts and also few other features). The peaks are always increasing and hence the 

indication of degradation is clear.  

 

Figure 51. Trending mean-peak values of resistance drift 
 

Figure 52, 51, and 52 show the standard deviation, skewness, and kurtosis 

values of the resistance drift. There is no change in the standard deviation values of 

the drift as the component approaches failure. One would expect that the standard 

deviation would increase with the mean (Figure 50), but it was not observed from the 

data. Skewness and kurtosis were considered to describe the drift distributions more 

accurately. High positive skewness values would indicate that the drift distribution is 

0

0.1

0.2

0.3

0.4

0.5

0 200 400 600 800 1000 1200 1400

Time (hours)

R
es

is
ta

nc
e 

D
rif

t

First large spike

0

0.1

0.2

0.3

0.4

0.5

0 200 400 600 800 1000 1200 1400

Time (hours)

R
es

is
ta

nc
e 

D
rif

t

First large spikeFirst large spike



 

 131 
 

getting skewed to the right, indicating more number of large positive drift values. 

However, for this component skewness values were not found to be a good indicator 

of degradation. Though, the peak skewness values (Figure 57) show a consistent 

increasing trend, it is difficult to use this trend directly, especially since the 

component failure is not defined in terms of skewness.  

 

Figure 52. Trending values of standard deviation of resistance drift 
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mean peaks, 95% cumulative and cumulative peaks were found to be more robust 

features for prognostics. 

 

 

Figure 53. Trending values of 95% cumulative distribution values of resistance drift 
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Figure 54. Trending values of 95% cumulative distribution peaks of resistance drift 
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Figure 55. Trending skewness values of resistance drift 
 
 

Figure 56. Trending kurtosis values of resistance drift 
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Figure 57. Trending skewness peak values of resistance drift 
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Figure 58. Failure prediction using two features 
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Chapter 8:  Contributions  

 

 

The application of environmental and usage monitoring for health assessment 

of mechanical systems has been well studied. However, these concepts have rarely 

been applied for electronic products and systems. Electronics prognostics is evolving, 

but most solutions are still in design concepts, prototypes, and product-specific 

configurations. There are few actual realizations and even fewer commercialized 

solutions.  

 

The specific contributions of this research include the development and 

demonstration of the algorithm to extract load parameters (cyclic range, mean loads, 

ramp rates, dwell times) required for assessing damage due to commonly observed 

failure mechanisms in electronics. The algorithm enables significant reduction of 

large irregular time-load data without compromising features such as load-dwell 

periods and small cycles with higher mean-load values that are essential for damage 

estimation. 

 

The unique feature of this algorithm is the identification of dwell times and 

corresponding load levels by considering cycles with small amplitudes and cycles 

with lower ramp rates. The method also estimates the correlation between load 

parameters (cyclic range vs. mean, dwell time vs. load, cyclic range vs. ramp-rate) 
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using correlation coefficients to enable accurate damage assessment in subsequent 

steps. 

 

This research is first to utilize the methods of optimal binning and non-

parametric density estimation for prognostics and health management applications. 

Method to enable condensed storage of in-situ monitored loads was demonstrated 

using a-priori assessment of optimal bins for storage of load parameters. The binned 

data was used with Gaussian kernel functions to estimate the probability density of 

the load parameter. The method has shown to improve the ability of the sensor nodes 

to monitor for extended durations without interruptions and conserve on-board 

memory of sensor modules. 

 

A generic approach for prognostics was proposed that accounted for 

measurement, parameter, and model uncertainties. This novel approach combines 

sensitivity analysis, Monte Carlo simulation, and regression modeling to predicting 

the distribution of remaining life. The approach was demonstrated for predicting the 

remaining life of solder interconnect failures on electronic boards under irregular 

thermal loading conditions. Methods were proposed for predicting the remaining life 

based on current and historic loads by utilizing the variations in the load distributions 

with time to assess future usage patterns and mission survivability. 

 

An approach for remaining life prognostics of electronic components due to 

interconnect degradation by analyzing usage loads (temperature cycles) and 
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performance (resistance continuity) data was developed. The novel approach was 

based on a regression model for predicting the resistance using measured temperature 

values. The difference between actual and estimated resistance was then analyzed to 

predict the onset and progress of degradation. The method was shown to accurately 

predict remaining life by trending several features including means, mean peaks, 

kurtosis, and 95% cumulative values of the resistance drift distributions. 
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Appendix I 
 

 Flow chart of the load parameter extraction algorithm. 
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Appendix II 
 
Models for Damage Estimation and Accumulation used for Assessing Solder 
Joints 
 

First order thermal fatigue model for BGAs and gull wing QFPs was used for 

damage calculations. The model used contains all the first order parameters 

influencing the shear fatigue life of solder joints and comes from the fundamental 

understanding of the response of surface mount solder joints to cyclically 

accumulating fatigue damage resulting from shear displacement due to thermal 

expansion mismatches between the components and the substrate. These shear 

displacements, the global thermal expansion mismatch, cause time independent 

yielding strains, and time, temperature, and stress dependant creep/stress relaxation 

strains. These strains, on a cyclic basis form a visco-plastic stain energy hysteresis 

loop which characterizes the solder joints response to thermal cycling and those areas 

is indicative of the cyclically accumulating fatigue damage. 
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Nf = Mean number of cycles to failure 

∆γp = Inelastic strain range considering the local and global mismatch.  

εf and c are material constants 

For eutectic solder, εf = 0.325 
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Where, Tsj = cyclic mean temperature of the solder in degrees C and tD = 

dwell time in minutes at maximum temperature. . In the fatigue model, the ramp time 
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is considered in calculating the mean cyclic temperature, using the following 

expression 

 
 
 
 

 
Where, 

τmax = Dwell time at maximum temperature 

τmin = Dwell time at minimum temperature 

τrampup = Ramp time from maximum to minimum temperature 

τrampdown = Ramp time from minimum to maximum temperature 

 
For BGAs the inelastic strain range due to global mismatch is given by 

h
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g
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Where, I is the calibration factor internal to the software program. F = 

empirical factor “non-ideal” factor that accounts for deviation of real solder joints 

from ideal solder joints. h (mils) is the nominal height of the solder joints. Ts and Tc 

are temperatures of the substrate and component.  

Similarly for gull wing QFPs the inelastic strain range due to global mismatch 

is given by 
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Where, KD is the diagonal flexural lead stiffness for the gull wings based on 

the work of Kotlowitz and Taylor [1991].  

 

The package geometries namely, the size, shape, and areas of the solder balls 

and the gull wing interconnects were supplied by the manufacturer. Some of these 

values were verified by actual measurement. The material properties of solder, board, 
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interconnect, and packages were obtained from the manufacturer. For routinely used 

materials such as Pb-Sn solder, and FR-4, these properties are stored in the database 

of the custom software (CalcePWA) that was used for building the model. These 

properties have been derived from several experimental results and from literature.   

 
Damage Accumulation 
  

 Liner damage rule by Miner was used for damage accumulation. The 

basic assumptions of this rule are constant work absorption per cycle and 

characteristic amount of work absorbed at failure. The energy accumulation, therefore 

leads to linear summation of cycle ratio or damage.  

 Damage ∑ ∑==
fi
i

N
n

irD  

Where, ni = applied cycle at load of constant amplitude i 

Nfi = total cycle to failure at load i 

Failure is deemed to occur when, ∑ = 1ir  
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Appendix III 
Publications Originated from Thesis Work 

Journals 
• Vichare, N., Pecht, M., “Prognostics and Health Management of Electronics”, 

IEEE Transactions on Components and Packaging Technologies, Vol. 29, No. 1, 
March 2006, pp.222-229. 

• Vichare, N., Rodgers, P., Pecht, M., “Methods for Binning and Density 
Estimation of Load Parameters for Prognostics and Health Management”, 
International Journal of Performability Engineering, Vol. 2, No. 2, April 2006, 
pp.149-161. 

• Vichare N., Rodgers P., Eveloy V., Pecht M. G., “In-Situ Temperature 
Measurement of a Notebook Computer - A Case Study in Health and Usage 
Monitoring of Electronics”, IEEE Transactions on Device and Materials 
Reliability, vol. 4., No. 4, December 2004, pp. 658-663. 

• Vichare N., Rodgers P., Eveloy V., Pecht M. G., “Environment and Usage 
Monitoring of Electronic Products for Health Assessment and Product Design”, 
Accepted in the Journal of Quality Technology and Quantitative Management. 

Conference Proceedings 
• Vichare N., Rodgers P., Eveloy V., Pecht M. G., “Environment and Usage 

Monitoring of Electronic Products for Health (Reliability) Assessment and 
Product Design”, IEEE Workshop on Accelerated Stress Testing and Reliability, 
Austin, Texas, Oct 3-5, 2005. 

• Rouet, V., Foucher, B., Vichare, N., Rodgers, P., and Pecht M., “Improvement of 
a Miniaturized Health Monitoring Device for Advanced Alerts”, International 
Conference on Condition Monitoring and Diagnosis, Changwon, Korea, April 2-
5, 2006. 

• Vichare N, and Pecht, M., “Enabling Electronic Prognostics Using Thermal 
Data”, Thermal Investigation of IC’s and Systems (THERMINIC), September 
2006.  

• Vichare, N., Rodgers, P., Azarian, M., and Pecht, M., “Application of Health 
Monitoring to Product Take-back Decisions”, Proceedings of the Joint 
International Congress and Exhibition - Electronics Goes Green 2004, 6-8 
September 2004, Berlin., Germany, pp. 945-951, 2004. 

 
Working Papers 

• Vichare, N. M., and Pecht, M., G., Load parameter Extraction Algorithm for 
Prognostic Health Monitoring 

• Vichare N., Rodgers P., Pecht M. G., Prognostic Health Monitoring Approach for 
Electronics Considering Uncertainty 

• Vichare N., Pecht M., Zhang, G., Kwan, C., Prognostics Using Resistance Drift as 
Failure Precursor 
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