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Every quantum system subjected to measurements is an open quantum sys-

tem. The cavity QED system is elegant in that it probes the interaction between

two quantum systems, the atom and the field, while its loss mechanisms are well un-

derstood and can be externally monitored. The study of cross-correlations in cavity

QED is important for understanding how entanglement evolves in open quantum

systems. As quantum information science grows we need to learn more about en-

tanglement and how it can be quantified and measured.

Correlation functions have been used to compare an electromagnetic field (in-

tensity) of one mode with the electromagnetic field (intensity) of the same mode at

a later time or different spatial location. In quantum optics, correlation functions

have been calculated and measured to probe the nonclassical field that results from

the interaction of a single mode of the electromagnetic field and an ensemble of two-

level atoms (the canonical cavity QED system). This field can exhibit antibunching,

squeezing, and can violate inequalities required for a classical field.



Entanglement in the steady state of a cavity QED system cannot be measured

directly with traditional correlation functions (Hanbury-Brown and Twiss type ex-

periments). Cross-correlations, however, interrogate directly both modes of the

entangled pair, the transmitted (cavity) and the fluorescent (atom) intensities, and

can act as an entanglement witness.

This thesis presents the implementation of a cross-correlation measurement in

a cavity QED system. The work has required the construction of an apparatus that

incorporates laser cooling and trapping with quantum optics to carefully control

both the external (center of mass motion) and internal (atomic state) degrees of

freedom of a collection of atoms that interact with a single mode of a high finesse

Fabry-Perot cavity. We examine theoretically and experimentally a new intensity

cross-correlation function g
(2)
TF (τ) which probes the evolution of the cavity field con-

ditioned on the detection of a fluorescent photon from an atom in the cavity. The

results open the possibility to generalize the dynamics of entanglement as a physical

resource necessary for the nascent quantum information science.
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Chapter 1

Introduction

Cavity quantum electrodynamics (QED) is a subset of a broad area of study

which encompasses electromagnetism and quantum mechanics. Its main components

are the cavity, a resonator for electromagnetic radiation, and a medium coupled to

the electromagnetic field mode defined by the cavity. Since its inception the number

of physical realizations of cavity QED systems has grown dramatically. Examples

of such systems include: Rydberg atoms in microwave cavities [1], quantum dots

imbedded in micropillar cavities [2], and trapped ions [3] or neutral atoms in optical

cavities [4]. Each system has its advantages and disadvantages from an experimental

point of view, but they all are common in that they study the interaction between

a single mode of the electromagnetic field and the matter within.

Jaynes and Cummings considered the interaction of a single two-level atom

with a single mode of a quantized field [5]. Simultaneously in East Germany, Paul

developed an equivalent model [6], however the Hamiltonian that describes the in-

teraction is commonly referred to as the Jaynes and Cummings (JC) Hamiltonian.

HJC =
1

2
h̄ωaσ

z + h̄ωca
†a + h̄g(σ−a† + σ+a) (1.1)

The first term describes the state of the atom, where σz is the population operator

of a two-level atom. The following term is the field Hamiltonian where a† and a are

the field raising and lowering operators respectively. Last is the term that describes
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the interaction of the field with the atom in the rotating wave approximation with

a coupling strength given by g. Here σ+ and σ− are respectively the atomic raising

and lowering operators.

The eigenstates of the Hamiltonian are the ground state

|n, g〉 (1.2)

and the excited states

|±〉 =
1√
2
(|n, e〉 ± |n + 1, g〉), (1.3)

where |n, g(e)〉 represent the bipartite bare state of the atom-cavity system with n

photons in the mode and an atom in the ground (excited) state. The dressed states,

|±〉, differ from that of the degenerate excited states of the uncoupled system. A

doublet is formed by a splitting of the excited states of ±g
√

n, lifting the degeneracy.

This is the so-called vacuum Rabi splitting of cavity QED [7].

The Jaynes and Cummings model discussed above is a simplified picture of

the interaction between light and matter in cavity QED. While it illustrates how

energy changes between the two constitute systems, it does not account for dissipa-

tion. An excitation in the atom or the field can couple to modes outside the cavity

via a spontaneous emission event or a photon escaping the cavity due to finite mir-

ror transmission. These modes of decay into the two available reservoirs allow an

observer to interrogate the system.

The cavity QED system, in the presence of dissipation, is characterized by

three rates; the coherent coupling rate, g, between the atom and the cavity mode,

the spontaneous emission rate γ, and the escape of photons from the mode of the
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ε

Figure 1.1: Cavity QED System.

cavity 2κ. Here g is given by

g =

√
µ2ω

2h̄ε0V
(1.4)

where µ and ω are the dipole matrix element and the frequency of the atomic

transition, respectively, and V is the volume of the mode. 2g represents the Rabi

frequency associated with the field of a single photon inside the resonator.

Quantum systems and their interactions with external reservoirs have been of

interest since the birth of quantum mechanics, however new quantum information

protocols demand that these interactions be understood to a much higher level. The

cavity QED system is an ideal system for probing the nature of open quantum sys-

tems. The mechanisms to lose information to external reservoirs are well understood

and are exactly the avenues by which the system can be interrogated.

There are many measurements in cavity QED that illuminate the dynamical

exchange of energy between the atoms and the cavity mode. Here we will charac-

terize these measurements into two broad categories, frequency (spectral) [8, 9] and

time (correlation) [10] measurements.
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Spectral measurements can be performed by driving a cavity on the TEM00

mode by a weak classical field, ε. This field typically derives from an attenuated

laser beam and is resonant with both the atom and the cavity. Detuning the laser

frequency with respect to the atomic and cavity resonance reveals the probe spec-

trum of the coupled system. The coupling of the atoms to the cavity mode lifts the

degeneracy of excited states, resulting in a doublet in the probe spectrum. The sep-

aration of this so-called vacuum Rabi splitting in the weak excitation regime (n < 1)

is given by g
√

N in the limit of strong coupling, g >> κ, γ. Here N represents the

number of maximally coupled atoms in the mode.

Two-time correlation measurements of cavity emitted photons reveal the non-

classical nature of the cavity QED through effects such as photon antibunching

[11, 12, 13] and violations of inequalities required for a classical field [14]. A com-

mon correlation function is the autocorrelation of the type used by Hanbury-Brown

and Twiss [15] for stellar interferometry, g(2)(τ), where τ is the time in between

two detection events. An autocorrelation function of this type cannot measure the

entanglement between the atoms and the cavity mode as it does not measure both

components of the entangled pair.

Although the JC model does not account for dissipation in the system, it

reveals the underlying entanglement between the atom and the field in the absence

of higher order excitations. Entanglement can be described as a property of two or

more composite quantum systems that are in some way intertwined such that they

can no longer be thought of as independent despite the physical distance that may

separate them. It is a measure of how much information can be learned about one

4



subsystem by making a measurement on the other.

Entanglement remains a complicated subject, despite the passage of over sev-

enty years since Einstein, Podolsky, and Rosen discussed it in their seminal pa-

per [16]. Schrodinger responded to this discussion by proposing the now infamous

Schrodinger cat thought experiment [17]. The tone of these discussions reflect the

internal struggles of these prominent physicists with a concept that seemingly defies

reality.

Entanglement is often described in a mathematical sense as the inability to

write the total wave function for the combined system as the product of separate

wave functions for the individual subsystems. A state that is not separable is said

to be entangled.

The probing question of the nature of entanglement in quantum mechanics

was formalized by Bell [18] with the introduction of an inequality that cannot be

violated by a classically correlated system with local hidden variables. The study of

nonlocality in nature eventually spawned a series of measurements [19], which show

how entangled quantum states violate, in particular circumstances, Bell’s inequality.

The emphasis on entanglement has shifted from a mere curious property of quantum

mechanics to an invaluable resource with the emergence of the nascent quantum

information. The possibility to teleport quantum states [20], communicate securely

[21], and build a quantum computer [22] relies intrinsically on entanglement.

Cross-correlations between spontaneously emitted light (atomic state informa-

tion) and light emitted from the cavity (field mode information) have the possibility

to probe entanglement. This measurement is experimentally challenging because
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a direct measurement of the fluorescence is required. An atom inside the cavity

can emit in all directions out of the sides of the cavity, complicating the detection

process.

The goal of this work is to measure entanglement in cavity QED through an

experimental realization of a cavity QED experiment. To accomplish this we ex-

amine the use of correlation functions which correlate fluctuations (photons) in two

modes: one for the cavity, the other for spontaneous emission of the atoms. This

thesis describes cross-correlations and its relationship to entanglement. The results

described here are relevant for the understanding of how entanglement evolves in

open quantum systems. Chapter 2 introduces the theoretical background. Chapter

3 elaborates on this discussion with new theoretical calculations of entanglement

in a driven cavity QED system. Chapter 4 describes the experimental apparatus.

Chapter 5 explains our results of a measurement of the probe spectrum of spon-

taneously emitted light into the mode of the cavity. Chapter 6 discusses quantum

auto- and cross-correlation measurements on a two-mode cavity QED system and

chapter 7 presents the conclusions.
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Chapter 2

Cavity QED: Theoretical Background

This chapter reviews current theoretical models for cavity QED. We begin with

a semiclassical description that provides a guiding principle for predicting the steady

state behavior. This leads naturally to a discussion of optical bistability in cavity

QED and the vacuum Rabi splitting, both steady state semiclassical phenomenon.

Quantum models give an intuitive sense of the dynamical evolution of the system

wave function after a detection event. This guide provides a background for the

following chapters that describe the experiments, results, and further modifications

to the theory. Throughout this work we characterize the cavity QED system with

two dimensionless parameters that weigh the influence of the atom and light on

the system: the single atom cooperativity C1 = g2/(κγ) and the saturation photon

number n0 = (γ2/(8g2))b, where b depends on the mode function of the cavity. For a

travelling plane wave cavity, b = 1, and for a standing wave Gaussian cavity, b = 8/3

(see article by Kimble in Ref. [4]). For N atoms the cooperativity, C, scales as NC1.

2.1 Semiclassical Model

2.1.1 Maxwell-Bloch Equations

The Maxwell-Bloch equations give a semiclassical treatment of cavity QED.

These consist of (1) an equation for the mode of the cavity which is driven classically

7



by a field, ε, and (2) the Bloch equations that describe how a two-level atom couples

to this field. In a cavity QED system there is a feedback mechanism due to the

light traversing the atomic sample many times before exiting the cavity, imposing

boundary conditions on the field [23]. For a plane wave ring cavity the Maxwell-

Bloch equations are:

dx

dt
= −κ(x− y − 2CP ) (2.1)

dP

dt
=

γ

2
(xD − P ) (2.2)

dD

dt
= −γ

[
1

2
(xP ∗ + x∗P ) + D + 1

]
(2.3)

Here x ≡ 〈a〉/√n0 is the field inside the cavity in the presence of atoms, y ≡

ε/(κ
√

n0) is the field without atoms, P is the normalized atomic polarization, and

D is the normalized atomic inversion, where D = -1 represents all the atoms in the

ground state.

For the case of a weak driving field x ¿ 1, we can safely assume that all the

atoms remain in the ground state and can set D = -1. In steady state this results

in a linear relationship between the intracavity fields with and without atoms.

y = x(1 + 2C), (2.4)

for x¿1.

Detunings between the driving laser field and the atomic and cavity resonances,

∆ and Θ are respectively defined as

∆ =
ωa − ωl

γ/2
(2.5)
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Θ =
ωc − ωl

κ
(2.6)

where ωa, ωc, ωl are the frequencies of the atomic and cavity resonances, and the

probing laser. These detunings are incorporated into this semiclassical picture by

making the following substitutions [24].

γ/2 → γ/2(1 + i∆), κ → κ(1 + iΘ) (2.7)

Departing from the weak field limit we now can express the state equation for

the cavity QED system under the assumption of a plane wave ring cavity as

y = x
[(

1 +
2C

1 + ∆2 + x2

)
+ ix

(
Θ− 2C∆

1 + ∆2 + x2

)]
, (2.8)

for all x. Here we have solved the Maxwell-Bloch equations using the substitutions

of Eq. 2.7 to allow for detunings. Note that Eq. 2.8 reduces to Eq. 2.4 in the

resonant weak driving limit.

2.1.2 Optical Bistability

The state equation reveals the intrinsic nonlinearity of the system. A two-

level atom in the excited state cannot be excited to a higher energy level, but can

only decay through spontaneous or stimulated emission; in contrast, the cavity is a

harmonic oscillator and its energy can increase without bound. For a weak driving

field, x, y ¿ 1, the linearity is restored as the atom spends very little time in the

excited state.
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Taking the absolute value squared of both sides of Eq. (2.8) relates the intra-

cavity intensities with and without atoms respectively (X = |x|2, Y = |y|2). Here the

system can have two stable output intensities for a given drive intensity, commonly

referred to as optical bistability [23]. The system chooses the appropriate solution

depending on its past history. For a very weak driving field the atoms absorb most

of the light, spontaneously emitting a photon randomly with a dipolar pattern. As

the driving field increases, the atoms saturate and a field builds up quickly. This

field constructively interferes inside the cavity and the resulting field is equivalent to

the driving field minus a small amount due to absorption and spontaneous emission

of the atomic sample. The system resides in the upper branch of the bistability

curve. As the driving field decreases the field remains strong inside the cavity until

the drive is sufficiently low that the atoms scatter more photons than the drive can

provide. The field drops rapidly and the system shifts back to the lower branch.

2.1.3 Vacuum Rabi Splitting

The response of a resonantly driven cavity QED system that resides on the

lower branch of the bistability curve is analogous to a pair of coupled oscillators.

Here the oscillators are the cavity mode and the atomic polarization, coupled to-

gether by the radiating dipole. This assumption is valid when there is at most one

excitation in the system. Like its classical counterpart, the atom-cavity system can

exchange energy from one oscillator to the other. This energy exchange occurs at

the rate 2g (for a single atom in the strong coupling limit), which is the Rabi fre-

10
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Figure 2.1: Optical bistability. Plot of the state equation for a cavity QED system

with C = 10.

quency associated with the field of a single photon inside the cavity. This coupling

is enhanced by the cavity compared to the free space coupling. Because g depends

inversely on
√

V many optical cavity QED experiments employ cavities with very

small mirror separation (L < 100 µm) to maximize the coupling.

The probe spectrum of cavity QED with low excitation shows a doublet in the

first excited state of the system. The degeneracy between the bare atomic and cavity

resonances (ωe − ωg = ωc) is lifted as g surpasses a threshold given by the decay

rates which determine the linewidth of the double peaks. For N atoms this coupling

is enhanced due to the cooperative nature of the cavity QED system. The N atoms

generate a collective atomic dipole in the mode of the cavity with a strength
√

N

times larger than that of a single atom.
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This doublet is dubbed the vacuum Rabi splitting, a misnomer as it is the

excited state that is split, not the vacuum. In a quantum mechanical picture it can

be viewed as a dressing of the transition, however this quantum description is not

required. Semiclassically, using the formalism we describe above, we can rewrite the

intensity state equation (square of Eq. 2.8) in the low intensity regime as

X

Y
=

1
(
1 + 2C

1+Ω2/κ2

)2
+

(
2Ω/γ − 2CΩ/κ

1+Ω2/κ2

)2 (2.9)

where Ω = ∆κ = Θγ/2 is the probe frequency detuning. The expression for the

peak positions follow [25]

Ω± = ±
√√√√−

(
γ

2

)2

+ g2N

√
1 +

γ

g2N

(
γ

2
+ κ

)
(2.10)

and they have been found to match very well with experimental observations at low

intensity done previously in our laboratory [8, 26].

2.2 Quantum Model

2.2.1 Steady State Wave Function

The model for a realistic cavity QED system in the optical regime starts with

the JC Hamiltonian and incorporates dissipation and external drives. A consistent

treatment of dissipation requires a master equation approach, which allows for the

system to interact with external reserviors (modes other than the cavity mode).

These external modes are connected to the system through the processes of atomic

12
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Figure 2.2: Probe spectrum for cavity QED system with g = κ = γ/2 = 3, N = 10,

C = 5. For this case ωc = ωa.

polarization and cavity decay. The master equation describes the evolution of a

density matrix for the system.

We follow the treatment of Carmichael [27] to elucidate the master equation

using as a guiding principle the detection process and the quantum trajectory for-

malism. For a driven cavity QED system with N atoms defined by a density operator

ρ, the master equation describing its time evolution is

dρ

dt
= ε[a† − a, ρ] + g[a†J− − aJ+, ρ] + κ(2aρa† − a†aρ− ρa†a) (2.11)

+
γ

2

N∑

j=1

(2σ−j ρσ+
j − σ+

j σ−j ρ− ρσ+
j σ−j )

We use here the collective raising and lowering operators

J+ =
N∑

j=1

σ+
j (2.12)
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J− =
N∑

j=1

σ−j . (2.13)

For a sufficiently weak driving field, ε, the system will evolve into a steady state that

is nearly a pure state. This assumption is valid when photodetections occur only

infrequently compared with the timescales that govern the evolution of the system,

namely 1/g, 1/κ, and 1/γ. This pure steady state can be written in a basis of up to

two excitations. At this point we abandon the semiclassical treatment and can no

longer assume that the atom is never in the excited state [28].

Expansion of the master equation to leading order in ε/κ with the substitution

ρ = |Ψ(t)〉〈Ψ(t)| where,

|Ψ(t)〉 = |0, g〉+ A1g(t)|1, g〉+ A0e(t)|0, e〉+ A1e(t)|1, e〉+ A2g(t)|2, g〉, (2.14)

leads to rate equations for the coefficients of the basis states. Solving these rate

equations in the steady state results in a steady state wave function

|ΨSS〉 = |0, g〉+ A1g|1, g〉+ A0e|0, e〉+ A2g|2, g〉+ A1e|1, e〉 (2.15)

where the Aij are known [28, 24]. They are

A1g = α (2.16)

A0e = β (2.17)

A1e = αβq (2.18)

A2g = α2pq/
√

2. (2.19)

where α is the mean cavity field and β is the mean atomic polarization. The quan-

tities p and q are equal to 1 for coupled harmonic oscillators. In cavity QED they
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differ from unity due to the nonlinear, or saturable, nature of the atom. The squares

of coefficients of single excitation, A1g and A0e, give the probabilities of detecting

single photons through the output mirror or in fluorescence (steady state). The

squares of the double excitation coefficients, A1e and A2g, give the probabilities of

detection of two photons either in coincidence (one through the mirror, and one in

fluorescence) or both out of the mirror. The variables are

α =
ε

κ(1 + 2C1)
(2.20)

β =
−2g

γ
α (2.21)

p = 1− 2C ′
1 (2.22)

q =
(1 + 2C1)

(1 + 2C1 − 2C
′
1)

(2.23)

C1 =
g2

κγ
(2.24)

C
′
1 = C1

2κ

(2κ + γ)
(2.25)

The one-excitation amplitudes, A1g and A0e, are proportional to the driving field ε;

the two-excitation amplitudes, A2g and A1e, are proportional to the square of the

driving field, ε2 [28]. The norm of this wave function is ||Ψ〉| =
√

1 + O(ε2); hence

to lowest order in ε, the coefficient of the vacuum should be (1− (1/2)O(ε2)).

2.2.2 Correlation Functions

Correlation functions derive formally from coherence theory in classical optics.

A simple example comes from the interference of two monochromatic fields. For two

overlapping fields with the same frequency, the interference term can be written

as a cross-correlation, 〈E1(t)E
∗
2(t + τ)〉, where τ represents a relative time delay
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between the two fields, E1 and E2. The brackets represent an average over times

typically long compared to the optical frequency. Classical coherence theory reveals

how correlations of this type can be used to measure the degree of coherence of a

light source as well as the spectrum through the Wiener-Khintchine theorem.

In 1956, Hanbury-Brown and Twiss proposed an optical stellar interferometer

based on measuring correlations of intensity fluctuations. The proposed second order

(in intensity) correlation function, 〈I(t)I(t+ τ)〉, represents two-time correlations of

the intensity I.

The normalized form for a single source,

g(2)(τ) =
〈I(t)I(t + τ)〉

〈I(t)〉2 (2.26)

illustrates the differences between classical and quantum mechanical sources. The

intensity can be written as I(t) = 〈I〉 + ∆I(t) where ∆I(t) represents the variance

of the intensity at time t from the average. Inserting this into Eq. 2.26 gives

g(2)(τ) = 1 +
〈∆I(t)∆I(t + τ)〉

〈I〉2 . (2.27)

The second term above is always positive for a classical source with fluctuations,

therefore, g(2)(0) ≥ 1 . A laser operating well above threshold obeys Poissonian

statistics, g(2)(0) = 1, while for a chaotic source, g(2)(0) = 2, exhibiting super-

Poissonian statistics. A chaotic source exhibits bunching, g(2)(0) > g(2)(τ), indicat-

ing that photons emitted from the source are more likely to be emitted in bunches.

The foundation of quantum coherence theory was primarily laid by Glauber in

a series of articles in 1963 [29, 30]. His contributions to the field earned him a Nobel
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prize in 2005. The formalism of classical coherence theory is replaced by quan-

tum mechanical normal and time ordered operators which act on a quantum state.

The second order correlation function can exhibit behavior for quantum mechanical

systems that is forbidden by classical mechanics. An example is a measurement

of g(2)(τ) for resonance fluorescence [31]. A perfect measurement would result in

subPoissonian statistics, g(2)(0) < 1, and antibunching, g(2)(0) < g(2)(τ), due to the

time that it takes for an atom to get reexcited after emitting a photon.

A general normalized second order correlation function for a quantum system

is

g(2)(τ) =
〈Ψ|a†(t)a†(t + τ)a(t + τ)a(t)|Ψ〉

〈ΨSS|a†a|ΨSS〉2 (2.28)

where |Ψ〉 is the wave function for the system. A weakly driven cavity QED sys-

tem in the steady state is described as a pure state by the wave function of Eq.

2.15. Here the delicate nature of the quantum state is revealed. The finite mirror

transmission allows an intracavity photon to escape, collapsing the wave function.

This conditioned state, |Ψc〉 = a|Ψss〉/
√
〈a†a〉, is the same for all photodetections if

we regard the system as pure. This is a good approximation when photodetections

occur infrequently, less than one per several lifetimes of the system: 1/κ, 1/γ. The

second order correlation function can be considered as the expectation value of the

field at time t + τ , conditioned a photodetection at time t.

g(2)(τ) =
〈Ψc|a†(t + τ)a(t + τ)|Ψc〉

〈Ψss|a†a|Ψss〉 (2.29)

An analytical expression for g(2)(τ) for a weakly driven cavity QED system is
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derived in [28]

g(2)(τ) =

(
1 + (∆α/α)exp [−1/2(κ + γ/2)τ ]

[
coshχτ +

1

2
(κ + γ/2)

sinhχτ

χ

])2

(2.30)

where

∆α/α = −2C
′
1

[
2C/(1 + 2C − 2C

′
1)

]
(2.31)

and

χ =

√
κ− γ/2

4
−Ng2. (2.32)

This correlation function can exhibit nonclassical behavior such as photon anti-

bunching as well as violation of inequalities required for a classical field, such as

|g(2)(τ)− 1| < |g(2)(0)− 1|.
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Chapter 3

Steady State Entanglement in Cavity QED and Cross Correlations

Two particles (or systems), A and B are said to be in an entangled state if

the wave function of the complete system does not factorize, that is |AB〉 6= |A〉|B〉.

One consequence of this form of the wave function is that a measurement on system

A yields information about system B without any direct interaction with system

B. An example that is of relevance to this work is the maximally entangled state

of an atom and a field mode, |Ψ〉 = (1/
√

2) (|1, g〉+ |0, e〉). A measurement of the

state of the atom immediately tells us the number of photons in the field mode; or

a measurement of the photon number immediately tells us the state of the atom.

Quantifying the amount of entanglement present in a quantum state is a topic

of much debate. Until recently, measurements of violations of Bell’s inequalities have

been thought to serve as an indicator of entanglement. However it has been shown

that not all entangled states violate Bell’s inequalities [32]. For a pure bipartite

state the Von Neumann entropy, E = −(trAρAlog2ρA), quantifies the entangle-

ment. Here ρA is the reduced density matrix after tracing over the states of the

subsystem B, ρA = trBρAB. For mixed states, on the other hand, quantifying the

amount of entanglement in a partially entangled state is not, in general, simple.

The natural generalization of the pure-state measure indicated above is known as

the entanglement of formation. This utilizes a decomposition of the quantum state
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ρ =
∑

j Pj|ψj〉〈ψj| =
∑

j Pjρj, and then defines E = min(
∑

j PjEj) where Ej is the

von Neumann entropy for the density matrix ρj = |ψj〉〈ψj|, and the minimum is

taken over all the possible decompositions, which is in general a very challenging

task [33, 34]. As a result of this, alternative measures have been proposed, such as

the logarithmic negativity [35]. It is also possible that some particular measurement

scheme may result in a most natural unraveling of the density operator, in the sense

of the quantum trajectories approach [36] (especially for systems that are contin-

ually monitored), and in that case it may be physically meaningful to focus only

on the entanglement of the (conditionally pure) states obtained via that particular

unraveling.

Another measure of entanglement is the concurrance, first introduced by Woot-

ers for two qubits [34]. In the case of a mixed state of two qubits it can be shown

that the concurrance is equivalent to the entanglement of formation. This chapter

discusses how entanglement in a steady state cavity QED system can be quantified

and measured using cross-correlations.

3.1 Quantifying Entanglement in a Steady State Cavity QED System

Recall from chapter 2 the wave function of cavity QED under a weak drive,

|Ψ(t)〉 = |0, g〉+ A1g(t)|1, g〉+ A0e(t)|0, e〉+ A1e(t)|1, e〉+ A2g(t)|2, g〉. (3.1)

The entanglement of formation for this system is calculated from the density matrix

after tracing over the field variables:

ρatom = Trfield|Ψ〉〈Ψ| (3.2)
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=




1 + A2
1g + A2

2g A1eA1g + A0e

A1eA1g + A0e A2
1e + A2

0e


 (3.3)

The eigenvalues of this matrix are, to lowest nonvanishing order,

λ1 = (A1gA0e − A1e)
2

= |A1g|2|A0e|2(q − 1)2

=
(

ε

κ

)4

ξ2 (3.4)

λ2 = 1− (A1gA0e − A1e)
2

= 1−
(

ε

κ

)4

ξ2 (3.5)

where q is defined in Eq. (2.23), and we have defined

ξ =
2g

γ(1 + 2C1)2
(q − 1) (3.6)

The entropy E = −λ1 log2 λ1−λ2 log2 λ2 is then (again to lowest leading order)

E = −
(

ε

κ

)4

ξ2 log2

[(
ε

κ

)4

ξ2

]
−

(
1−

(
ε

κ

)4

ξ2

)
log2

(
1−

(
ε

κ

)4

ξ

)

≈ −
(

ε

κ

)4

ξ2

(
log2

(
ε

κ

)4

+ log2(ξ
2)− 1

)

≈ −
(

ε

κ

)4

log2

(
ε

κ

)4

ξ2. (3.7)

where we have taken the weak field limit, ε/κ ¿ 1. The approximation (3.7) will

hold provided (ε/κ)2 ¿ |ξ|. This entropy is the same as that obtained by using the

density matrix for the field alone, traced over the atomic degrees of freedom.

The concurrence can also be used to characterize entanglement between two

quantum systems of arbitrary dimension [37, 38, 39, 40]. The concurrence for our

system is
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C =
√

2(1− Trρ2
atom)

=
√

4 (A1gA0e − A1e)
2

= 2
(

ε

κ

)2

|ξ| (3.8)

which is closely related to the square root of the entropy, of Eq. 3.7, with the absence

of the log factor [41]. To see why |ξ| ∝ |A1e − A0eA1g| may be a good indication of

entanglement, consider what happens if the wave function is a product state. We

could write the steady state wave function for the cavity QED system as a product

state

|Ψ〉P = |ψC〉 ⊗ |φA〉

= (D0|0〉+ D1|1〉+ D2|2〉)⊗ (Cg|g〉+ Ce|e〉)

= D0Cg|0, g〉+ D1Cg|1, g〉+ D0Ce|0, e〉+ D2Cg|2, g〉+ D1Ce|1, e〉 (3.9)

where the Cg(e) and Dn coefficients represent the probability amplitudes for the

respective atomic and cavity wave functions. For weak excitations, the coefficient

of the ground state of the system is D0Cg = 1, or Cg = D0 = 1. Then the product

state is

|Ψ〉P = |0, g〉+ D1|1, g〉+ Ce|0, e〉+ D2|2, g〉+ D1Ce|1, e〉 (3.10)

Just knowing the one excitation amplitudes does not yield any information about

entanglement, as it is possible to have A1g = D1 and A0e = Ce. The coefficient

of |2, g〉 gives no information about entanglement, just nonclassical effects in the

field, as it only involves field excitation. For weak fields D2 is exactly A2g. The
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entanglement shows up in the value of the coefficient of |1, e〉, A1e; if this value does

not satisfy A1e = D1Ce = A0eA1g, then it is not possible to write the state as a

product state.

In the presence of a non-zero vacuum contribution (as any real quantum state

will have), one can learn nothing about entanglement simply by measurement of one-

excitation amplitudes or probabilities. For example, the state |0, g〉+α(|1, g〉+|0, e〉)

is entangled, but only if one is certain that the probability amplitudes for higher

excitation are truly zero. A state of the form |0, g〉+α(|1, g〉+ |0, e〉)+O(ε2) cannot

be said to be entangled without information on the relative size of the probability

amplitude A1e. Measurement of one-excitation amplitudes conditioned by a previous

measurement can yield information about entanglement. This can be accomplished

by utilizing cross-correlation functions.

Equation (3.8) gives the amount of entanglement in the system as a function

of the one and two excitation amplitudes. In terms of specific system parameters

the concurrence is:

C = |2αβ(q − 1)| = 16 g3 ε2 κ

(2 g2 + γ κ)2 (2 g2 + κ (γ + 2 κ))
. (3.11)

Here we analyze the sensitivity of the concurrence to the different parameters that

appear in Eq. (3.11), while trying to give physical reasons for their influence on the

entanglement. Despite the fact that the rates of decay could be the same through the

two reservoirs, spontaneous emission (γ) reduces entanglement more than cavity loss

(κ). This is due to the fact that a γ event (spontaneous emission) must come from

the atom, while a κ event (cavity transmission) could come from either the drive or
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Figure 3.1: A plot of C scaled by (ε/γ)2 as a function of κ/γ and g/γ for weak

excitation.

a photon emitted by the atoms into the cavity mode. A spontaneous emission event

unambiguously leaves the atom in the ground state, and the system wave function

factorizes.

Figure 3.1 shows a remarkable result in the entanglement of the system as

a function of the three rates in the problem. There is an optimal value for the

coupling constant g given a set of dissipation rates κ, γ. For many interesting cavity

QED effects, stronger coupling is generally better, such as the enhancement of the

spontaneous emission by a factor of 1 + 2C1 = 1 + 2g2/(κγ) (this formula strictly

holds only in the bad cavity limit κ >> g, γ). However, here increasing the coupling

of the atom and field mode eventually decreases the amount of entanglement [41]. To

explain this it is instructive to recall that the concurrence C = |2αβ(q−1)|, where α
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is the mean cavity field, and β = −gα/γ is the mean atomic dipole. As the coupling

g increases, for a fixed weak driving field ε, the intracavity field α = ε/(κ + 2g2/γ)

decreases. The intracavity field is the sum of the driving field in the cavity ε/κ, and

the field radiated by the atom, (−2C1/(1 + 2C1))ε/κ; the minus sign resulting from

the fact that the radiated field is π out of phase with the driving field on resonance.

We see that as g and C1 increase, the intracavity field decreases. This means that

the steady-state wave function has a larger vacuum component, and consequently

less entanglement. Another way to view this is that the cavity enhancement of the

spontaneous emission rate means a larger loss rate for the system as the coupling

increases, which is bad for entanglement.

More formally, consider what happens if the two-excitation amplitudes in

Eq. (2.15) are arbitrarily set to zero, which amounts to setting q = 0 in Eq. (3.11),

in which case the entanglement is only determined by the prefactor |αβ|. The

steady-state wave function becomes

|ψ〉ss = |0, g〉+ α(|1, g〉 − g

γ
|0, e〉). (3.12)

There are two interesting limits on this Eq. (3.12) for the parameter f = g/γ. If f À

1, the steady state wave function is approximately |ψ〉ss = |0〉(|g〉 − fα|e〉), which

is a product state. Also, if f ¿ 1, the steady state wave function is approximately

|ψ〉ss = |g〉(|0〉+α|1〉), which again is a product state. To have entanglement between

the atom and cavity mode, we must have the parameter f ' 1, so as to prepare a

steady state wave function of the form |ψ〉ss = |0, g〉+α(|1, g〉−|0, e〉) = |0, g〉+α|−〉,

a mixture of the vacuum with a small entangled state component.
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The decrease of the prefactor |αβ| is the dominant reason why the concurrence

decreases with increasing g for large coupling. Close inspection of Fig. 3.1 also shows

that there is an optimal cavity loss rate, κ, for entanglement for a fixed g and γ.

This is a result of reaching a maximum in the population of the states different from

the vacuum (Eq. (2.15)). Our results here are consistent with the numerical results

of Nha and Carmichael [36].

When the system is driven off resonance, its response is typically character-

ized by transmission and fluorescent spectra [25, 42]. Although these are important

probes of the system, they do not, in this limit, carry information about the entan-

glement, since they are derived from only the one-excitation amplitudes.

The concurrence as a function of the detuning of the driving laser shows that

the steady state entanglement decreases typically by a factor of 1/∆ for large de-

tuning, where ∆ = (ω − ωl) with ω the resonant frequency of the atom and cavity,

and ωl the frequency of the driving probe laser. But in the case where g is larger

than κ and γ, the response is maximized at the vacuum-Rabi peaks [43]. Figure 3.2

shows a contour plot of C for parameters in the regime of cavity QED where the two

decay rates are similar: 2κ/γ = 1.0. The concurrence increases with increasing g on

resonance up to a saddle point, and then decreases. However the entanglement per-

sists for detunings on the order of g, the approximate location of the vacuum-Rabi

peaks in the spectra of the system.

Detuning to a vacuum-Rabi peak (∆ = ±g), generates a steady state wave
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Figure 3.2: Contour plot of C as a function of g/γ and ∆/γ for κ/γ = 0.5

function of the form

|ψ〉ss = |0, g〉+ αΓ1(g/γ)|1,±〉+ α2Γ2(g/γ)|2,±〉, (3.13)

where |n,±〉 = (1/
√

2)(|n, g〉±|n−1, e〉) is the n photon dressed atom-field state one

is tuned near and Γ1(g/γ) and Γ2(g/γ) are functions that are maximal when g ' γ.

This is a state of mainly vacuum, plus a part that has entanglement between the

atom and the cavity. It would seem that by continuing to tune to a vacuum-Rabi

peak as g increases, it would be possible to maintain the entanglement, but Fig. 3.2

shows that this is not the case. Rather, as argued (for the on-resonance case) above,

the crucial parameter for maximizing entanglement is f = g/γ ∝ 1/
√

n0, where

n0 = γ2/3g2 is the saturation photon number (recall from chapter 2) [41]. Recall
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Figure 3.3: Contour plot of C as a function of g/γ and ∆/γ for κ/γ = 10

that, if these were two driven coupled harmonic oscillators, q = 1 and there would

be no entanglement. A nonlinear interaction between the two harmonic oscillators

would be needed to entangle them, as in the signal and idler modes in optical

parametric oscillation. Even though the driving field is weak and the atom never

nears saturation, there can only be entanglement with a linear atom-field coupling

if the atom has a nonlinear response, as two-level atoms do.

The concurrence shows its sensitivity to different parameters. Figure 3.3 shows

a contour plot of C versus g/γ and ∆/γ for a case where the cavity decay rate is

larger than the spontaneous emission rate (κ/γ = 10.0). The entanglement is largest

near g/γ = 4.0, before the vacuum-Rabi splitting of the spectrum, which does not

occur in this case until g/γ ∼ 10.0, at which point the entanglement is already
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diminishing. The size of the maximum concurrence decreases by increasing κ/γ

from 0.5 to 10.0 by a factor of about 30.

3.2 Cross-correlations for Entanglement Measurements

The calculation of entanglement leads now to the question of how to implement

measurements that give the full information in the case of this cavity QED system

under weak excitation. The previous section shows that the concurrence is related to

the probability of single photon counts and coincidence counts from the cavity and

fluorescence. These are the quantities associated in quantum optics with correlation

functions, first introduced by Glauber [29, 30, 44, 45]. Generally these correlation

functions involve comparing a field (intensity) of one mode with the field (intensity)

of the same mode at a later time (or different spatial location), with some exceptions

[46, 47, 48, 49, 50, 51]. However, entanglement in cavity QED has two components:

atom and cavity mode. It is natural to look at cross-correlations between the cavity

mode and the fluorescent light that falls in the mode of the detector [41].

Consider a general cross-correlation function for two modes of the electromag-

netic field:

G = 〈fb(b
†, b)fc(a

†, a)〉/〈fb(b
†, b)〉〈fc(a

†, a)〉. (3.14)

with fb and fc well behaved functions, in the sense of a convergent Taylor series on

the Hilbert space of interest. If |ψ〉 is a product state, the correlation function G(a, b)

factorizes and then is unity. If it is not a product state, then this will manifest itself

in a non-unit value for the normalized cross-correlation functions.
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The simplest cross correlation function to consider is j(1)(τ). This could be

obtained by measuring the visibility of the fringe pattern formed by interfering the

transmitted and fluorescent light. For the weakly driven cavity QED system, this is

j(1)(τ) =
〈σ+(0)a(τ)〉
〈σ+〉〈a〉

=
αβ

αβ

= 1 (3.15)

so to lowest order, there is no information in this correlation function about entan-

glement.

To obtain information about entanglement the correlation function has to

probe the two-excitation part of the state. A possibility to do this is the intensity

cross correlation:

j(2)(τ) =
〈σ+(0)a†(τ)a(τ)σ−(0)〉

〈a†a〉ss〈σ+σ−〉ss (3.16)

This yields the probability that a transmitted photon is detected at time τ con-

ditioned on the detection of a fluorescent photon at τ = 0. For simultaneous de-

tection of a fluorescent and transmitted photon, j(2)(0) = q2. This normalized

correlation function is directly related to the coefficient of double excitations (See

Eqs. (2.15), (2.18), (2.23)). If q = 1 then j(2)(0) = 1 and there is no entanglement;

so a non-unit value of q indicates entanglement. Using second-order intensity corre-

lations has been proposed in the context of entangled coherent states by Stobińska

and Wódkiewicz [52].

The cross-correlation function j(2)(τ) contains information about the average

photon number after a measurement of the fluorescence relative to the average pho-
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ton number in the absence of any interrogation of the fluorescence.

j(2)(0) =
|A1e|2

|A1gA0e|2 = q2, (3.17)

and j(2)(0)− 1 = q2 − 1 is an indicator of entanglement.

A way to measure q directly utilizes a field-intensity correlation function hθ(τ)

[53], that can be implemented as a homodyne measurement conditioned on the

detection of a fluorescent photon,

hTF
θ=0(0) =

〈IF ET 〉
〈IF 〉〈ET 〉

=
〈(a† + a)σ+σ−〉
〈a† + a〉〈σ+σ−〉

=
A1e

A0eA1g

= q (3.18)

So hTF
θ=0(0)−1 = q−1 is also an indicator of entanglement in this system. What

makes this measurement possible experimentally is the conditioning that selects only

times when there is a fluctuation and the rest of the time (when the vacuum is

present) no data is collected [54]. For one mode, the homodyned transmitted field

conditioned by detection of a photon from that mode, is a measure of squeezing

in that mode [53]. A homodyne measurement of the transmitted field conditioned

by detection of a fluorescent photon is a measure of the two-mode squeezing, with

the cavity field and atomic dipole as the two components. Generally, two-mode

squeezing is an indicator of entanglement between the two modes. Gea Banacloche

et al. explored this correlation function in a different regime of cavity QED and

found it to be a witness of the dynamics of entanglement [55].
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Non-classicality and entanglement are not necessarily simultaneously present.

For example for two oscillators one could have |ψ〉 = (1/
√

2)(|A,B〉+ |B, A〉), where

A and B are coherent state amplitudes. In this state, there is entanglement, but

each individual mode shows no non-classical behavior. Conversely, one can have non-

classical behavior with no entanglement, say for example the atom in the ground

state and the field in a squeezed coherent state.
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Chapter 4

Experimental Apparatus

This chapter gives an overview of the experimental hardware used in the cav-

ity QED experiments described in the following chapters. There are three main

components to the apparatus: the optical components, including the optical cavity,

the atomic source, and the photon counting detectors and hardware.

4.1 Optical Components

4.1.1 Optical Cavity

The heart of the apparatus is the optical cavity. The requirements for mechan-

ical stability are daunting. A typical cavity finesse is about 10,000. A reasonable

condition for measurements of nonclassical features requires the cavity to be locked

to within one tenth of the lesser of the cavity and atomic linewidths. This translates

to stabilizing the separation of the mirrors over a large bandwidth (10 kHz) to an

rms deviation of λ/(2× 105), less than a Bohr radius for λ = 780 nm. The mirrors

of the cavity are highly reflective at 780 nm, the frequency of the D2 line of rubid-

ium which we use as our atomic transition. The mirrors are custom ordered from

Research Electro-Optics (Boulder, CO) for specified reflectivity and curvature. We

use two mirrors with different reflectivities to define a preferential output port. The

input and output mirrors transmit approximately 15 ppm and 300 ppm and have
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radii of curvatures of 25 cm and 10 cm respectively. Losses due to absorption on

the coatings are low (< 5 ppm). A stable Fabry-Perot cavity is formed from these

mirrors when they are facing each other with the center of curvature of each mirror

in the direction of the opposite mirror.

The cavity design allows optical access to the cavity volume from nearly all

directions. Figure 4.1 shows the design of our cavity. The base is a 2.0 cm ×

6.0 cm × 0.5 cm piece of polished stainless steel. The hole drilled through the

center of the base allows for atoms or light to propagate through the piece to the

center of the cavity. Two flat, rectangular piezo-electric transducers (PZTs) are

glued to the steel base with a metallic epoxy. The glue connects electrically the

bottom of the PZTs to the base which serves as ground. The importance of this

cannot be understated. Extreme care must be taken in attaching the PZTs to

the base. Previous attempts to glue the PZTs with nonmetallic epoxy from the

side resulted in a partially elevated PZT. Although the electrical connection was

sufficient, the combination of the partially elevated PZT with a mirror attached

acted like a springboard with a resonant frequency < 1 kHz. The use of the metallic

epoxy eliminated this resonance.

The mirrors are glued to the top of the PZTs with a nonmetallic epoxy one at

a time using a HeNe laser to guide the placement of the mirrors with respect to an

axis defined by the laser beam. Translation and tilt of the the mirrors are controlled

as the mirrors are placed on the epoxy while the final placement is determined by

monitoring the reflections and transmission of the HeNe reference beam.

The spacing of the cavity mirrors, 2.2 mm, is determined by measuring the
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Figure 4.1: Cavity Design

frequency change needed to traverse one free spectral range. The free spectral range

(FSR)is equal to c/2L where c is the speed of light in vacuum and L is the length

of the cavity. A figure of merit for the cavity is the finesse given by FSR/2κ.

We measure 2κ by putting FM sidebands on the cavity beam with an electro-optic

modulator and applying a linear ramp voltage to one of the PZTs, scanning the

cavity length. The transmission of the cavity is detected with a photomultiplier

tube. From the profile of the transmission, 2κ can be determine by relating the

FWHM of the resonance to the spacing of the sidebands. For our system 2κ = 6.5

MHz, FSR = 68 GHz and the cavity finesse is 10,000. The mode waist of the cavity

is calculated from the cavity dimensions as 56 µm. For the experiments described

in the following chapters, the cavity is driven with linearly polarized light, driving π

transitions in the atom. We take the maximum dipole matrix element for the atomic

transition and apply the appropriate correction factor to account for the reduction

of strength when driving these π transitions. With these parameters we determine

g/2π for our system as 1.5 MHz and a single atom cooperativity of C1 = 0.12.
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4.1.2 Vacuum System

The cavity is placed under high vacuum (better than 1 x 10−8 Torr) in a

cubical vacuum chamber (Kurt Lesker). This chamber connects to either a secondary

chamber or a glass cell for the atomic source used in the experiments described in

the following chapters. A 20 L/s ion pump (Varian) with no moving parts provides

the vacuum. The ion pump has a finite lifetime and cannot operate at pressures

above 1 mTorr. A vacuum tee connects the chamber to the pump where a valve

opens a port for mechanical pump to prepump the system. A turbo pump is used

to bring the chamber well below 1 mTorr before closing the valve and starting the

ion pump. The turbo pump is removed from the system once the ion is on.

4.1.3 Main Laser

The cavity is driven on-axis with a Coherent MBR Ti:Sapph laser which sup-

plies most of the light for the experiment. The laser is stabilized to the atomic

crossover transition resulting from the saturated spectroscopy signal between the

85Rb 5S1/2 → 5P3/2, F = 3 → F ′ = 3 and F = 3 → F ′ = 4 transitions.

4.1.4 Cavity and Laser Stabilization

The cavity probe beam derives from the MBR laser and is sent through a

double-passed acousto-optical modulator to control the frequency. Stabilization of

the cavity requires the use of an auxiliary laser with a wavelength far from the atomic

resonance. This auxiliary Toptica DL100 diode laser has a center frequency of 820
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nm and can be tuned over 20 GHz without mode-hopping. The frequency is tuned

to match the resonance condition imposed by the transmission of the 780 nm probe

beam. When the two lasers are simultaneously resonant to the cavity, the auxiliary

diode laser is locked to a 25 cm confocal Fabry-Perot cavity that has mirrors with

high reflectivity at 780 nm and 820 nm and a finesse of 200. This transfer-lock

cavity resides on the optical table and is not under vacuum and is stabilized using a

Pound-Drever-Hall technique (see reference [56] for a review of this technique) with

a beam deriving from the stabilized Ti:sapph laser. The frequency of the auxiliary

laser must match the resonance condition for both cavities, which are set by the

MBR laser locked to the rubidium atomic resonance. To accomplish this, the beam

going to the transfer cavity is frequency shifted by a double-passed acousto-optical

modulator before entering the cavity. In addition, the transfer cavity can be scanned

over several free spectral ranges to aide in finding a cavity length that is resonant

with both lasers.

There are four separate lock circuits (see Fig. 4.2 for a schematic drawing)

in all, for successful stabilization of the physics cavity. All of the locks use the

Pound-Drever-Hall technique, or slight variations of this method. For the Ti:sapph

laser lock and transfer cavity lock, sidebands at 12 MHz are written on the beams

using a New Focus electro-optic phase modulator. For the auxiliary laser and cavity

lock the sidebands derive from direct modulation of the diode laser current at 26

MHz. The reflected beams off the front mirror of the cavities (or the transmitted

saturated spectroscopy signal for the Ti:sapph lock) are detected with fast photodi-

odes. The photocurrents are demodulated and sent to Stanford Research Systems
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Figure 4.2: Lock schematic.

PID controllers for proportional and integral gain. Finally the output of the PIDs

are feed back to control either the cavity length or the laser frequency.

The cavity is stabilized to better than 1/10 of the linewidth with a detection

bandwidth of 1 MHz, fulfilling the requirements for stabilization discussed at the

beginning of the chapter. Long term drifts in both cavity locks as well as the

auxiliary laser lock can be externally monitored and corrected for. The entire lock

system is held for several hours without tripping, an essential requirement for cavity

QED experiments.
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4.2 Atomic Source

4.2.1 Pushed Magneto-Optical Trap

The first generation optical cavity QED experiments in the group utilized a

thermal beam of alkali atoms as a source for atoms [11, 57, 58]. Although the beams

had a high atomic flux, the mean velocity of the atoms was several hundred m/s.

This high velocity results in broadening that washes out or lessens quantum mechan-

ical effects. These mechanisms include Doppler and transit broadening discussed in

detail in Ref. [59].

The starting point for most investigations involving cold atoms is the magneto-

optical trap (MOT). This trap is widely used in atomic physics experiments (see

[60] for a review of magneto-optical trapping). Consider an atom illuminated at

the intersection of three pairs counterpropragating beams. If the beams are red-

detuned with respect to the atomic resonance the atom can be cooled by optical

molasses. The internal structure of the atom can be used to confine these atoms

when a magnetic field gradient is introduced to the region. To illustrate this consider

an atom with a J = 0 ground state and J = 1 excited state. In the presence of a

magnetic field the magnetic sublevels of the excited state m = 0, ±1 are split. In

one dimension (see Fig. 4.3 ) it is easy to see that for a red-detuned laser, the atom

becomes resonant with the light as the atom moves away from the origin. Applying

the appropriate beam polarizations the atom can be preferentially excited by the

beam pointing towards the center of the trap. This is done by applying a circular

polarization, σ+ in one direction and σ− in the counterpropagating direction. In
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Figure 4.3: Diagram of energy levels for J = 0 → J = 1 MOT transition. ∆ is the

MOT beam detuning. The m = ±1 sublevels of the excited state shift due to the

linear magnetic field gradient.

three dimensions the magnetic field gradient is generated using a standard anti-

Helmholtz coil configuration.

The experimental apparatus used for the study described in chapter 4 utilizes

a three-dimensional MOT of 85Rb collected from the low-velocity tail of a thermal

vapor from a dispenser (SAES getters). The MOT is formed in a glass cell with

dimensions 1” × 1” × 3” (Hellma). The glass cell is attached to a conflat flange

which connects to the cubical chamber that houses the cavity. The MOT is formed

approximately 25 cm below the cavity. An additional resonant push beam, which

is pulsed on for < 1 ms after the MOT beams are turned off, delivers atoms to the

cavity.
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Push Beam

MOT Cell

Cavity Chamber

Figure 4.4: Experimental Apparatus: Pushed MOT. Three sets of counterprogat-

ing beams intersect in a glass cell where the atoms are released from a rubidium

dispenser (SAES getters). The MOT is turned on for a variable time before being

released and subsequently pushed from below by a near-resonant push beam towards

the cavity chamber.
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The pushed atom cloud traverses the cavity mode typically over a timescale

of order 1 ms. This is not to be mistaken with the transit time of a single atom

across the mode. The mean velocity of the cloud ranges from 5 - 15 m/s, and can

be varied by changing the intensity and frequency of the push beam. For a cavity

waist of 56 µm the single atom transit time is on the order of several µs.

The initial alignment is achieved by a simple technique. The push beam is

aligned to two points: the MOT and the cavity. With the push beam on and passing

through the MOT, the effect of the additional beam is to destroy the MOT due to

the radiation pressure imbalance. The push beam is aligned to the MOT with

one mirror then a second mirror closer to the glass cell is used to align the beam

through the center of the cavity. This process is repeated until the beam is walked

into perfect alignment between the MOT and cavity.

The cavity serves as a detector for the atoms. Recall from Eq. 2.8 that the

transmission of the cavity on the lower branch drops by a factor of (1 + 2C)2 corre-

sponding to a dip in the transmission of 35 % for a single maximally coupled atom

in our cavity. The atoms in the cloud are randomly distributed across the cavity

mode. We can speak only of an effective number of atoms due to the averaging that

takes place naturally due to this distribution of coupling strengths.

The major drawback to this method of atom delivery is the efficiency. The

MOT must be reloaded after each push cycle, which requires at least a 50 ms MOT

loading period. The number of effective atoms delivered to the cavity for a cycle of

this length is typically less than 5. An extended loading time increases the number

of atoms delivered at the expense of lowering the duty cycle. For most experiments
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Figure 4.5: Transmission profile of a single-shot measurement of an atom cloud

passing through the cavity mode. The detection bandwidth is 1 MHz. The elapsed

time is referenced to the push trigger.
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we require a MOT loading time of approximately 200 ms, drastically lowering the

fractional time the atoms spend in the cavity mode.

4.2.2 LVIS

Next we describe a different apparatus, based on similar principles, which de-

livers a continuous beam of Rb to the cavity. The Low Velocity Intense Source

(LVIS) is a continuous beam of atoms extracted from a modified MOT. The group

of Wieman [61] first demonstrated the LVIS using a Cs MOT with a hole drilled

through one of the MOT retroreflection mirrors located inside of the vacuum sys-

tem. They used a gold-coated λ/4 waveplate mounted inside of the MOT vacuum

chamber with a mm-sized hole for atom extraction. The hole casts a shadow on the

retroreflected beam, which results in a radiation pressure imbalance in one direction.

The Wieman group reported a beam flux of 5 x 109 atoms/s with a beam size and

divergence given geometrically by the size of the hole and the distance from the

mirror to the MOT.

Our implementation of an LVIS system was motivated by the success of the

Wieman group and the need to realize a continuous source of atoms for photon

counting experiments. The LVIS source constructed consists of an additional cham-

ber for the trap connected above the cubical cavity chamber. A 1.5 mm diameter

hole was drilled (done at the NIST Optical Shop) through the center of a 1” diame-

ter gold mirror and λ/4 waveplate. The optics are mounted 3-4 cm above the cavity.

Alignment of the extraction column and cavity was done carefully by eye with the
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Figure 4.6: Diagram of LVIS apparatus.
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aid of a thin ceramic rod fed through the hole and the center of the cavity.

An additional beam counterpropagating the atomic beam passes through the

cavity to plug the hole and form a normal MOT. By turning off the plug beam,

initial observations are made of atom cloud transits through the cavity. These

initial observations showed an increase in the flux from the pushed MOT apparatus.

The LVIS beam alignments are adjusted to minimize the transmitted light as the

atom cloud passes through the cavity. After maximizing the pulsed LVIS signal, a

continuous beam is observed by blocking the plug beam, switching on and off the

magnetic field gradient and monitoring the steady state transmission of the cavity.

A maximal 30 percent drop in the transmission has been observed with our

LVIS implementation, corresponding to ≈ 1 effective atoms in the cavity in steady

state. Work by Sanders and Carmichael [62] show that, for a thermal beam at

300 m/s, 7 atoms randomly distributed in a Gaussian cavity mode corresponds to

the equivalent of 1 maximally coupled atom. This number serves us as a guide for

assessing the performance of the LVIS and making sure that there will be of order

one atom in the cavity mode at all times. The atoms are moving and may not

be optimally coupled, but with conditional measurements we are able to extract

important information on the quantum properties of the field.
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Figure 4.7: LVIS operation: Cavity transmission normalized to the transmission

with no atoms present in the cavity. Black trace (LVIS off), red trace (LVIS on).
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4.3 Photon Counting Apparatus

4.3.1 Detectors and Hardware

The following chapters discuss cavity QED experiments that rely on the polar-

ization of the input and output cavity beams. Here we will describe the experimental

apparatus used to detect single photons emitted from the cavity with different po-

larizations.

Figure 4.8 shows a schematic of the optics after the cavity and the detectors.

The output light beam of the cavity is collimated with a 25 cm lens and passed

through a λ/2 waveplate. The polarization is rotated to the desired angle and the

light is passed through a Glan Taylor calcite polarizing beamsplitter. The vertical

polarization component is reflected and sent through a long lens tube attached to

an aluminium box that is coated on the inside with black paper and has a lid that

prevents light from entering. The lens tube houses a telescope with an aperture at

the focus to prevent stray light from entering the detector region. At the entrance

of the box is an Andover 780 nm spectral bandpass filter that transmits 85 percent

of the incident power at this wavelength.

The horizontal polarization beam consists of not only the 780 nm cavity drive,

but also the transmission of the 820 nm auxiliary cavity locking laser. The two

wavelengths transmit through the beamsplitter and are incident on a diffraction

grating (Jobin Yvon) that serves to separate the 780 nm cavity transmission from

the 820 nm lock beam. The 1st order diffracted beams are spatially separated by

several cm after propagating 25 cm. The 780 nm diffracted beam contains 75 percent
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Figure 4.8: Diagram of photon counting apparatus.

of the incident power. It is directed through a second lens tube assembly and into

the box.

This box (Fig. 4.8) contains pairs of Hamamatsu photomultiplier tubes (PMTs)

and Perkin Elmer avalanche photodiodes (APDs) for photodetection. All have ad-

ditional spectral filters for 780 nm. The PMTs are primarily used for aligning the

cavity, setting up the transfer cavity lock, and for experiments that do not require

single photon counting (see chapter 5). The photocurrents from the PMTs are am-

plified and sent to a digital oscilloscope. Flip mirrors redirect the cavity output to

the APDs for photon counting experiments. An additional waveplate and beam-

splitter have been included on the vertical polarization arm. This allows some of

the vertical beam to be split off and redirected to the second entrance to the box

for autocorrelation measurements.

The APDs generate a TTL pulse for each photon detected (35 percent quantum

efficiency), which are sent to a Lecroy 3377 time to digital converter (TDC). The
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TDC measures the time delay between the arrival of a start pulse and up to 16

subsequent stop pulses with a 0.5 ns time resolution. This data is transferred to

a Lecroy 4302 memory module which records up to 16,000 hits. The memory is

transferred over a GPIB cable to a computer where a LabWindows/CVI program is

used to collect, histogram, and plot the data. Copies of both APD signals are sent

to a Stanford Research Systems SR400 photon counter to monitor the stability of

the cavity lock and the density of the atomic beam. The arrival of a second start

pulse shortly after the arrival of the first restarts the TDC, which has the effect

of weighting conditional photon arrivals toward the shorter delay times. The start

pulses are stretched with a Lecroy Dual Gate Generator (222) to 1.3 µs to avoid

receiving a second start until after the time window we are interested in has elapsed.

Most of the conditional dynamics of the system are sufficiently damped after 1 µs.

The stop pulses are transmitted through a 350 ft cable before entering the TDC.

This allows us to view two-time correlations for negative delay times (stops that

arrive before a start).

4.3.2 Correlation Measurements

The measurement of correlation functions discussed in Sec. 2.2.2 requires the

binning of photon time arrivals conditioned on a fluctuation in the field. In a weakly

driven cavity QED system the detection of a photon is itself a large fluctuation, as

the mean intracavity photon number is typically well below one.

A drawback to the setup is a hardware limitation that only allows for an
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acquisition window of 2µs. While the conditional dynamics of the system occur on

timescales limited by 1/2κ and 1/γ, a longer window is needed to observe dynamical

effects related to individual atom transits through the cavity mode.

For low intensities we have found a simple method of measuring correlations

on these longer timescales. Eq. 2.29 states that g(2)(τ) can be written as an en-

semble average of a conditioned state. This method takes this definition to heart

by averaging a photocurrent of the detected mode conditioned on a single photon

detection. A Lecroy digital storage oscilloscope (Wavepro 7000) triggers on a fluc-

tuation of the photocurrent, while averaging a second photocurrent in real time. A

feature of this oscilloscope is a triggering mode, which enable multiple triggers to

occur sequentially without refreshing the screen. This drastically reduces dead time

between triggers, and can collect up to 1,000 triggers in a sequence.

To compare this new method with the traditional histogram we probe the pho-

ton statistics of light emitted from the cavity. A laser operated far above threshold

obeys Poissonian statistics, g(2)(τ) = 1 for all τ . However, a classical chaotic source

should exhibit bunching, g(2)(0) > g(2)(τ) [63]. To simulate a chaotic source, a white

noise signal with 10 MHz of bandwidth generated from a Stanford Research Systems

function generator was written onto the amplitude of the cavity beam through an

acousto-optical modulator [64]. The cavity acts as a low pass filter for amplitude

fluctuations with a bandwidth given by 2κ. The output of the locked cavity was

evenly split on the polarizing beamsplitter by rotating the λ/2. Figure 4.9 shows

bunching in the light as detected by both methods of detection.

Although the two methods show qualitatively similar results there are sig-
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nificant differences that must be highlighted. The correlation function g(2)(τ) is

normalized by the average number of photons in the field. For the photocurrent

averaging method it is not clear how this normalization should be performed. The

oscilloscope not only averages the photocurrents, but also any electronic noise in

the signal, adding an offset in the height of the averaged photocurrent that must be

accounted when normalizing the signal.

The resolution of the averaging method is limited by the width of the elec-

tronic signal generated by a photodetection. The PMT signals detected without

amplification through 50 Ω coupling generate pulses with a 5 - 10 ns width while

the APDs generate TTL pulses 30 ns long.

When PMTs are used, the averaging method strictly depends on the threshold

chosen for the trigger. Setting the threshold too high favors large fluctuations.

Despite these apparent disadvantages we have found the averaging method to be a

helpful diagnostic tool.

52



0.0

0.5

1.0

1.5

2.0

-400 -300 -200 -100 0 100 200 300 400

τ (ns)

g
(2)

(τ)
N

o
rm

a
li
z
e
d
 A

v
e
ra

g
e
d
 P

h
o
to

c
u
rr

e
n

t

0.0

0.5

1.0

1.5

2.0

-400 -300 -200 -100 0 100 200 300 400

τ (ns)

a

b

Figure 4.9: A comparision of two methods of measuring correlations simultaneously.

a) The traditional method of histogramming the arrival time of a photon conditioned

on a photodetection in a second detector. b) A new method of averaging the pho-

tocurrent of one detector conditioned on the detection of a fluctuation (photon) on a

second. The slight offset of the peak from τ = 0 is due to a trigger offset in the data

acquisition. The sharp feature here is due to an electrical reflection in our detector

apparatus. The normalization is done with respect to the signal for long τ .
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Chapter 5

Spontaneous Emission in the Mode of a Cavity QED System

Spontaneous emission in cavity QED has been regarded as a dissipative process

from which information is lost at a rate, γ, to modes other than the preferred cavity

mode. Most work in cavity QED spontaneous emission has focused on the enhance-

ment or suppression of the decay rate γ. In the bad cavity limit (κ >> γ, g) the

resonant spontaneous emission changes from its free space value as γ → γ(1 + 2C1)

[28]. The enhancement factor (2C1) is related to the ratio of the atomic cross sec-

tion to the cavity mode cross section multiplied by the average number of reflections

inside the cavity. This effect broadens the spectrum, but causes no splitting [65].

There are many experimental demonstrations of enhanced and suppressed sponta-

neous emission in this regime (see for example the article by Hinds in Ref. [4]). If

the reflectivity of the mirrors is high enough and the coupling between the atom

and the cavity can become comparable to the two decays (g ≈ κ, γ), spontaneous

emission into the cavity is reversible.

It is difficult to experimentally study the spontaneous emission in cavity QED.

Work in the past has focussed on geometries that allow observation of the atoms

from the side [66]. Another approach looks at the fluorescence into the mode of the

cavity with the atoms driven by a laser that propagates perpendicular to the cavity

axis [10, 67].
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Spontaneous emission plays a dual role; it is a decohererence source, but it is

also a way to extract information out of the system. An interrogation of the system

through spontaneous emission is an unambiguous probe of the state of the atomic

part of the atom-cavity system. We follow Birnbaum et al. [68] to directly access

a small part of the atomic inversion, using the internal structure of the atoms to

inform us when a transmitted photon originates in a fluorescence event. Instead

of utilizing 85Rb atoms in their stretched states (mF = F with ∆m = 1) to form

a closed two-level system when driven with circularly polarized light, we drive the

optical transition with π polarization (∆m = 0). See Fig. 5.1 a. We can then look at

the light emitted out of the cavity separating it into the two linear polarizations, one

parallel to the drive and the other orthogonal to the drive. The presence of any light

of orthogonal polarization indicates that it has come originally from a spontaneous

emission event of an atom that decays with ∆m± 1.

Figure 5.1 shows the full atomic structure involved in the experiment (a) and

the reduced atomic structure (b) that we utilize to model the system. The Zeeman

sublevels are practically degenerate in the experiment as the magnetic field applied

is of the order of 1 Gauss, causing the stretched states to be at most 1.4 MHz

detuned (less than the HWHM of the atomic transition).

Starting with the atoms in m = 0, the process of absorption and emission will

effectively create some optical pumping out to the stretched states. This process,

however, takes many spontaneous emissions to complete, and we are operating in

the low intensity limit where the probability of absorption is very small. We are

justified in reducing the full atomic structure to a four-level model. An additional
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experimental reason that justifies this simplification is the fresh input flow of atoms

that replaces atoms that have been in the cavity for about 10 µs.

The model captures an important feature of cavity QED, the possibility of

reabsorption. Although small, it is parameterized by the two coupling constants, g

and G, and allows for two different spontaneous emission rates, γ and Γ. G is the

atom-cavity coupling constant for the atomic transitions that connect the Zeeman

sublevels with ∆m = ±1. The relative weight of g and G, and the respective dipole

matrix elements are given by the appropriate Clebsh-Gordan coefficients.

5.1 Theory

We need to go beyond the theory of the two-level atom inside a cavity from

chapter 2 to describe this multilevel system. Here we present the details of a four-

level model of an atom in a driven cavity. The results are directly applicable to our

experiments described in the following section.

5.1.1 Two-Mode Cavity QED System

Our cavity QED system consists of a high finesse optical resonator where one

or a few atoms interact with two degenerate polarization modes of the cavity. The

two modes of the cavity have single atom coupling constants, g and G. The model

reduces to the case of a two-level atom in the limit G → 0, and no population in

state |3〉. Although the decay rates and coupling rates can be the same, there may be

slight differences arising from the specific Clebsch Gordan coefficients. The system
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Figure 5.1: a) Energy levels of 85Rb used in the experiment with light in a π tran-

sition. b) Simplified diagram used in the model.
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is driven on-axis by a classical field that is horizontally polarized, ε/κ, normalized

to photon flux units.

The Hamiltonian that governs the time evolution of the system is:

H = ih̄ε(a− a†) + ih̄g(aσ1
+ − a†σ1

−) + ih̄g(aσ2
+ − a†σ2

−)

+ih̄G
[
(a + ib)ΣR

+ − (a† − ib†)ΣR
−

]

+ih̄G
[
(a− ib)ΣL

+ − (a† + ib†)ΣL
−

]

−ih̄κ(a†a + b†b)

−ih̄γ(σ1
+σ1

− + σ2
+σ2

−)

−ih̄Γ(ΣR
+ΣR

− + ΣL
+ΣL

−) (5.1)

where a is the annihilation operator for the driven horizontally polarized cavity

mode, b is the annihilation operator for the vertically polarized cavity mode, and

the atomic operators are:

σ1
+ = |2〉〈1|, σ2

+ = |4〉〈3|, ΣR
+ = |4〉〈1|, ΣL

+ = |2〉〈3| (5.2)

The system can be accurately modelled, for weak excitation, as having either

zero or one excitations in the coupled modes of the field and the atoms. We follow

the quantum trajectory formalism [27] to find the state of the system to first order

in the excitation O(ε2). In a similar way used in chapter 2, if we assume fixed atomic

positions the equilibrium state is the pure state [69]:

|ψ(t)〉 = c001|0, 0, 1〉+ c003|0, 0, 3〉+ c002(t)|0, 0, 2〉+
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c004(t)|0, 0, 4〉+ c101(t)|1, 0, 1〉+ c011(t)|0, 1, 1〉+

c103(t)|1, 0, 3〉+ c013(t)|0, 1, 3〉+ O(ε4). (5.3)

The ket has three numbers, the first two represent the number of excitations in

cavity mode with horizontal and vertical polarizations respectively, and the third

represents the state of the atom. With these assignments, the first two kets of Eq.

5.3 are the vacuum and they do not have any time evolution. The other coefficients

can evolve in time, and the following set of rate equations governs their evolution:

ċ001 = 0 (5.4)

ċ003 = 0 (5.5)

ċ002 = gc101 − γ + Γ

2
c002 − iGc013 + Gc103 (5.6)

ċ004 = iGc011 + Gc101 + gc103 − γ + Γ

2
c004 (5.7)

ċ101 = −εc001 − κc101 − gc002 −Gc004 (5.8)

ċ011 = −κc011 + iGc004 (5.9)

ċ103 = −Gc002 − εc003 − κc103 − gc004 (5.10)

ċ013 = −iGc002 − κc013 (5.11)

These equations when solved in the steady state (setting the derivatives to zero)

give the following solutions,

(c002)ss =

[
ε(G− g)

2B−
− ε(G + g)

2B+

]
c001 +

[
ε(g −G)

2B−
− ε(g + G)

2B+

]
c003 (5.12)
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(c004)ss =

[
ε(g −G)

2B−
− ε(G + g)

2B+

]
c001 +

[
ε(G− g)

2B−
− ε(g + G)

2B+

]
c003 (5.13)

(c101)ss = −
[

εA

2B+

+
εA

2B−

]
c001 +

[
εA

2B−
− εA

2B+

]
c003 (5.14)

(c011)ss = i
G

κ
(c004)ss (5.15)

(c103)ss =

[
εA

2B−
− εA

2B+

]
c001 −

[
εA

2B−
+

εA

2B+

]
c003 (5.16)

(c013)ss = −i
G

κ
(c002)ss (5.17)

The most important result for our discussion comes from Eq. 5.15 and Eq. 5.17,

which states that the output on the vertical mode of the cavity comes from excita-

tions that originate in the atomic excited states |2〉 and |4〉, a spontaneous emission

event. Here A and B are defined by:

A =
G2

κ
+

γ + Γ

2
(5.18)

B = κA + (G± g)2 (5.19)

This formulation, to lowest order in the excitation, implies the following decorre-

lation: 〈aσ+〉 = 〈a〉〈σ+〉 + O(ε4). This is equivalent to the decorrelation of the

expectation value of the product of the field and atomic polarization, that recover

the Maxwell-Bloch equations [23].

If we assume the atom initially resides in the excited state we can use the steady

state results to solve for the average photon number in the driven and undriven

modes:

〈a†a〉 = 2

(
εA

2B+

)2

+ 2

(
εA

2B−

)2

(5.20)
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〈b†b〉 =
2G2

κ2
(C2

− + C2
+) (5.21)

Note that in the limit of G→ 0 and Γ → 0, the solution for 〈a†a〉 reduces to the

result for a two-level atom, Eq. 2.20. Figure 5.2 explores the parameter space of this

single-atom model to gain physical insight of the system. We plot the dependence

of the transmitted intensities of the two modes of the coupling constants, g and G,

for a fixed small driving field, ε/κ, in the resonantly driven system.

Experimentally changing the value of g dynamically can be done by moving

the atom across the cavity mode and using the spatial structure of the mode to alter

the effective coupling of the atom to the mode [3]. This type of control is difficult

to achieve and most of the efforts have been to maximize the coupling for quantum

information implementations [70]. In our experiments, we use the cooperative nature

of the cavity QED system to enhance the coupling of the cavity to a collective atomic

polarization. For a collection of two-level atoms the coupling is enhanced by
√

N .

To the experimentalist varying N is the equivalent to changing g.

To utilize the single atom model to explain our observations with multiple

atoms, we have to add the following assumption: to first order the coupling con-

stants, g and G, are scaled by the square root of the atomic numbers, N and N ′

(the number of atoms coupled to the undriven mode), as the σ and Σ operators

scale as collective operators j and J . This is an oversimplification as the coupling

constants depend on the position of the atoms, but it qualitatively shows some of

the important features.

The plots in Fig. 5.2 reflect two ways of simulating the resonant response of the
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Figure 5.2: Theoretical prediction of the transmission of the driven and undriven

modes, with κ/2π = 3.2 MHz and γ/2π = 3 MHz, as a function of g and G. (a)

Resonant transmission of the driven mode for g/G fixed to 6. (b) Resonant trans-

mission of the driven mode for G = 1. (c) Resonant transmission of the undriven

mode for g/G fixed to 6. (d) Resonant transmission of the undriven mode for g =

6.
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system to strong and weak coupling or equivalently high and low atom number. As

we would expect with no atoms, the average photon number of the undriven mode

should be zero. The system reduces to two levels, with no way for an atom to decay

to |3〉. Increasing the coupling between these levels makes it possible for population

to accumulate in |3〉 and subsequently, by absorption, into |4〉. Intuition suggests

that an increase of the coupling g should result in a larger G. It is convenient in

this case to think of the higher coupling arising from an increase in the intracavity

atoms. With more atoms, G should also increase by some factor,
√

N ′.

Plots 5.2 (a) and (b) show the transmission of the driven mode for two cuts in

the parameter space defined by g, G, γ, and Γ. The first keeps the ratio of g/G con-

stant and equal to 6 while varying g, the second varies g keeping G = 1. We use the

same convention for the relation between γ and Γ for all the plots shown. Though

there is little noticeable difference between the two plots, the predicted transmission

for the undriven mode, plots 5.2 (c) and (d) shows qualitatively different behavior.

Both plots start at zero transmission for G = 0. As G is increased beyond a thresh-

old value in plot (d), the transmission reaches a maximum and begins to decrease

monotonically with G. In plot (c) the transmission continues to grow as G is in-

creased. Although the behavior is different, the amount of fluorescence remains

within a factor of two of each other.

Off-resonant excitations are important in cavity QED for a complete under-

standing of the eigenvalue structure of the system. The probe spectrum can give

insights into the dynamics of the system, the most obvious example is the vacuum

Rabi splitting. The breaking of the degeneracy of the excited states reveals the ef-
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fect of the coupling between the two components; cavity and atom. Comprehension

of the spectrum is useful for understanding how the system is evolving, which is

especially important for a less intuitive system such as ours.

Using the transformations, Eq. 2.7, to introduce off resonance excitation (de-

tunings), we proceed to plot the steady state photon number for both the driven

and undriven modes. The response to an off-resonance probe with frequency Ω =

κΘ = γ∆/2 makes A → A(Ω), B± → B±(Ω), C± → C±(Ω) keeping the prefactor

of 〈b†b〉, G2/κ2 unchanged. The model then predicts probe spectra for the driven

mode, see Fig. 5.3, and for the undriven mode, see Fig. 5.4. Figure 5.3 was plotted

with a constant G = 0.07 MHz. This plot is nearly identical to the same plot with

a constant g/G ratio (not shown). Figure 5.4 shows both cases.

The spectrum of the driven mode is qualitatively similar to that of the two-level

atom, provided the ratio of g/G is sufficiently large. We chose a ratio of 100 as an

estimate of the relative coupling strengths of the two orthogonal modes. The driven

mode shows the usual Rabi splitting that agrees closely with the coupling rate g. The

decay of energy from this mode is due to enhancement of the spontaneous emission

with increased coupling as shown in Eq. 2.20. This loss consequentially results in

an increase in the energy of the undriven mode. The undriven mode also shows a

doublet for increased coupling, similar to the vacuum Rabi peaks, but with slightly

different frequencies. The specific shape of this spectrum is greatly influenced by the

value of g/G. If the ratio is close to unity, additional peaks appear; related to the

more complicated atomic system. We have restricted our theoretical exploration of

the two-mode cavity to ratios between 5 - 100 for g/G as an estimate of the relative
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Figure 5.3: Spectrum of the driven mode for κ = 2.6 MHz, γ/2 = 3 MHz, and G =

0.07 MHz.
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coupling strengths, and κ and γ determined by our experimental values.

5.2 Experimental Results

The atomic source used for this exploration of spontaneous emission in cav-

ity QED is the pushed magneto-optical trap described in section 4.2.1. A general

schematic of the apparatus is illustrated in Fig. 5.5. To excite the ∆m = 0 transi-

tions in the cavity, the cavity drive is linearly polarized to better than one part in

105 with a high quality Glan Thompson polarizer. As described above, the resulting

spontaneous decay can have a polarization component orthogonal to the drive po-

larization. These components are separated on the cavity output with a Glan Laser

polarizing beamsplitter with an extinction ratio of 100,000:1. The two beams are

detected with PMTs as described in detail in chapter 4.

The geometry that we use allows only π transitions (∆m = 0) and no Faraday

rotation of the light since an external uniform magnetic field is aligned with the

polarization direction of the incoming light. The observed light at the orthogonal

polarization must come from spontaneous emission. This light is emitted into the

cavity mode so its detection is straightforward. Residual birefringence of the cavity is

less than 1×104 and we excite the cavity on the axis that minimizes the birefringence

(about 8 degrees from the horizontal). The two modes are degenerate to better than

1 MHz.

With the magnetic field in the direction of the polarization, it is possible

to optically pump the atoms into the m = 0 ground state. This is done with
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an additional beam parallel to the cavity axis, in between the atomic source and

the cavity. The beam is retroreflected to minimize a radiation pressure mismatch,

which would divert the moving atomic sample away from the cavity. The light

is tuned to the 5S1/2 F = 3 → 5P3/2 F ′ = 3 transition. This has a forbidden

m = 0 → m′ = 0 transition which allows population to accumulate in the m = 0

ground state. Attempts to optically pump the sample cause no discernable effect in

the transmission signal of either polarization. The magnetic field was applied with

a Helmoltz coil configuration at the cavity region. Later this was replaced with the

residual field from LVIS quadrapole field, again with no discernable difference in the

signals.

As each launch of atoms (every 150 ms) traverses the cavity, we record the

transmission in a digital storage scope for a particular value of the detunings between

the probe and the cavity and atomic resonances. For the experiments described

below the resonant frequencies of the cavity and atom, ωc = ωa, agree to within

2 MHz. We extract from the raw data plots of the transmission spectrum for a

given N , where N is varied naturally as the atomic cloud passes through the cavity.

The timing of the loading and push sequence is controlled by a National Instruments

DAQ card with eight programmable voltages outputs which control various acousto-

optical modulators and other equipment. The digital storage scope is triggered by

the DAQ card to synchronize the data acquisition with the arrival of the atomic

cloud.

The transit of the atoms through the mode of the cavity is similar to a time

of flight measurement of the temperature of the atoms [60]. If the temperature is
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Figure 5.5: Schematic of the experimental apparatus. A polarizer at the output

separates the two orthogonal linear polarizations, one parallel to the driving field,

the other perpendicular and coming from the decay through ∆m = ±1 spontaneous

emission.
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very cold, there is very little dispersion in the initial velocities and the time it takes

for the atoms to traverse the mode is dominated by the distance from the source to

the cavity and the initial velocity. The distance between the MOT cloud and the

cavity mode is 8 cm. Attempts to see atoms passing by the cavity mode without

pushing, letting them fall due to gravity, were unsuccessful as the expansion from

the initial temperature (we do not apply optical molasses) is too large. Pushing

the atoms with a resonant beam gives them an initial velocity dependent on the

intensity of the beam, that can vary from 10 to 20 m/s, but also heats the cloud.

This initial velocity is sufficiently high to deliver the atom cloud to the cavity before

the expansion of the cloud has time to lower the atomic density to undetectable

levels. The range of velocities comes from the different arrival times of the atoms

as they arrive at the cavity.

We use our model for the transmission of a two-level atom in a single mode

(see chapter 2) to give the cavity transmission as a function of the number of atoms

N , X/Y = (1 + 2C1N)−2. Figure 5.7 shows the transmission dip as the atom cloud

arrives at the cavity. The solid line represents our model for the temperature of the

moving atomic sample. The long tail in the dip represent the coldest atoms in the

cloud, which are most likely to feel the effects of the standing wave in the cavity,

not accounted for in this our model.

We extract the 1-D temperature of the cloud assuming a Gaussian distribution

of velocities at the MOT, with an initial center of mass velocity in the range allowed

by the transit measurements (see Fig. 5.6). Fixing the distance and the velocity

yeilds a specific temperature. This temperature does not reflect the temperature
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Figure 5.6: The temperature of the atom cloud can be determined by the distribution

of atom arrival times at the cavity. The solid line is the fit and the squares are data.

of the MOT, as atoms are heated during the push process. The temperature ex-

tracted is an experimental check that nothing is amiss in the alignment and of the

performance of the system. The average expansion velocity, vave = (8kT/πm)1/2,

for this temperature is 0.66 m/s, assuming a Maxwell Boltzmann 1-D distribution.

The residual Doppler shift associated with this velocity will be ~k · ~vave = 0.85 MHz,

a negligible effect.

The cavity QED transmission is sensitive to the frequency of excitation. We

experimentally perform minor adjustments (less than 2 MHz) to ensure that the

cavity and the atoms are resonant (better than ± 2 MHz). This adjustment requires

simultaneous changes of the cavity lock frequency derived from the 820 nm laser that
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is locked to a transfer cavity and the probe laser, as described in chapter 4. The

transmission profile is monitored as the frequencies of the probe and locking laser

are adjusted to maximize the depth of the dip in the transmission. This provides a

good starting point for finding the atomic resonance of the system.

We optimize the frequency of the driving laser to ensure we are on resonance

and proceed to average over 200 launches of atoms. Figure 5.7 shows a typical

average over the transmission of both polarizations. The driven mode (horizontal

polarization) shown as the thin trace in Fig. 5.7 has a decrease in transmission as the

atoms pass through the cavity and start absorbing the light. Note the asymmetry in

the dip because of the distribution of initial atom velocities. The thicker trace is the

transmission of the vertical polarization (fluorescence) mode, showing an increase

in transmission starting from zero as atoms pass through. Then the transmission

reaches a maximum, then decreases and increases again as the number of atoms

diminishes again. The time axis is converted to the number of atoms by monitoring

the dip in the horizontal polarization signal on resonance (X/Y = (1+2C)−2), so a

single shot measurement probes the response of the system to a variable value of N .

The decrease in the signal to noise ratio of the fluorescence signal is due to the lower

optical power present in this mode compared to the driven mode. The fluorescence

signal has been multiplied by a factor of 250 in Fig. 5.7.

The probe spectrum is obtained by measuring the transmission profile in both

polarizations for a variable probe frequency, averaging for 200 launches of atoms for

each frequency. The transmitted intensity for a given time (or N equivalently) is

plotted versus the probe frequency to reveal the probe spectrum. Figure 5.8 shows
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Figure 5.7: Cavity transmission as a function of time for the two orthogonal polar-

izations: thin line (horizontal) driven mode, thick line (vertical) mode proportional

to the spontaneous emission. The transmission of the vertical mode has been mul-

tiplied by a factor of 250.

73



the spectra for the driven and undriven modes for a particular value of C where a

vacuum Rabi splitting is observed. The slight asymmetry in the peaks may be due

to an off-resonant lock of the cavity by less than a half linewidth (2.6 MHz). Note

that the separation of the Rabi doublet for the driven mode is larger than that of

the undriven mode, as predicted by the two-mode model with relevant experimental

parameters.

Figure 5.9 shows how the peaks evolve as N changes. The increase in the

splitting is equivalent to increasing the coupling g → g
√

N , as described above due

to the collective nature of the atoms in the cavity mode. Recall from chapter 2, Eq.

2.1.3

Ω± = ±
√√√√−

(
γ

2

)2

+ g2N

√
1 +

γ

g2N

(
γ

2
+ κ

)
(5.22)

which gives the peak positions of the vacuum Rabi doublet. In Fig. 5.9 we plot

experimentally determined peak positions with the result of Eq. 2.1.3 for N given

by the on-resonance value of the transmission dip. We presently do not have a

generalized analytic formula for the location of the vacuum Rabi splittings in the

four-level, two-mode model. The many equations (more than four) and parameters

make it difficult to form a close solution. The theoretical line comes from numerical

solutions of the four-level two mode model with experimentally relevant parameters.

At a given time, N is determined by the size of the dip in the horizontal po-

larization. We use this to parameterize the change in the transmission of the two

modes. Figure 5.10 shows the transmission of the driven mode (horizontal polar-

ization) that allows less light as more atoms pass through it, while the orthogonal
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Figure 5.8: Intensity probe spectrum for driven (open triangles) and undriven (closed

squares) modes.
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and the undriven mode is fitted with the results of the two-mode theory with relevant
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Figure 5.10: Variation of the cavity transmission as a function of the number of

atoms in the cavity. Filled boxes driven mode (horizontal polarization). Open boxes

orthogonal mode (vertical polarization) proportional to spontaneous emission. The

scale for the transmission of the vertical polarization is multiplied by 250.

mode (vertical polarization) shows a maximum in the transmission as the number of

atoms increases. Carmichael and Sanders [62] have found that averaging the prob-

ability distribution of the atoms over the mode function gives a unique parameter,

the effective number of atoms. This parameter can characterize the distribution of

atoms in the system. It simplifies the calculations as the atoms are moving across

nodes, antinodes and the spatial mode of the cavity.

Figure 5.10 shows another important conclusion of this work, the enhancement
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of spontaneous emission into the cavity mode. The amount of spontaneous emission

going into the vertical mode is roughly 250 times smaller than what is emitted from

the driven mode. Its maximum is in the vicinity of where the driven mode starts

to show vacuum Rabi splitting. If the mode of the cavity was simply collecting the

spontaneous emission, then the solid angle subtended by the mode would determine

the amount of light exiting the vertical polarization mode. The solid angle of the

cavity is 3.7×10−4 strad, accounting for the fluorescence captured in both directions

from the two cavity mirrors. The power missing in the transmitted beam profile

(Fig. 5.7) in the horizontal mode is radiated into 4π which accounts for the 75

% drop of the total input power. The total expected fluorescence should be less

than 0.75 × 3.7 × 10−4/2 times the input intensity, where the factor of two in the

denominator arises from the two linear polarization components of the σ± light. We

find, however, that the measured signal is larger by a factor of 22. This difference

shows significant enhanced emission into the cavity mode. In the bad cavity limit

it is possible to extract this enhancement as the dynamics of the atom and cavity

are clearly delineated. We, however, operate in the intermediate regime of cavity

QED, where the bad cavity limit is not valid. The emitted light in the vertical

mode comes from spontaneous emission. Our two-mode model predicts the amount

of spontaneous emission that will be emitted into the mode (Eq. 5.15 and Eq. 5.17).

We see very good agreement in the ratio of detected light in the two polarizations

when we use a ratio of g/G=100 in the four level two mode model.
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Chapter 6

Photon Counting Measurements

This chapter describes photon counting measurements which utilize the two

mode system described in chapter 5. In chapter 4, the technical details of the

photon counting apparatus were presented in detail. The apparatus used for photon

counting measurements in our two-mode system is similar to the setup described in

that chapter, with two major exceptions: the replacement of the PMTs with APDs

and the implementation of the LVIS source.

The first change is done simply by placing flip mirrors before the PMTs. These

mirrors redirected the cavity output to the single photon detectors. The cavity

output beam polarization is temporarily rotated to evenly split the power to the two

photodetectors. 5 cm lenses in front of the detectors focus the cavity beam onto the

active area of the APDs. Bandpass and high wavelength pass filters placed directly

in front of the detectors reduces residual background light as well as eliminates light

that is emitted from the APDs during the avalanche process [71]. This light can lead

to false peaks in the measured correlation function, however the filters effectively

reduce this light to undetectable levels.

The implementation of the LVIS beam is instrumental for the success of photon

counting measurements. The pulsed MOT apparatus does not have the capability

to provide atoms in the cavity mode for times long enough for sufficient averaging
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to take place. The time required to load the MOT, apply the push beam, and the

atoms to travel to the cavity, typically requires a 50 ms duty cycle. For this 20 Hz

repetition rate the atoms and cavity interact for 20 ms for every 1 s of real time. A 10

percent feature in a correlation function would be resolved with a signal to noise ratio

of 1 would require 100 counts per bin, assuming a shot noise limited measurement.

Typical count rates are 100,000 counts/s per detector for a measurement of g(2)(τ)

in cavity QED.

Poissonian statistics predict the probability for n photon counts in a time

window, ∆t, as

Pn(R∆t) =
e−(R∆t)(R∆t)n

n!
(6.1)

where R is the count rate. The probability for two photon counts in a 1 µs window

for a total count rate of 200,000 counts/s is 0.0082, where we have taken the output

of Eq. 6.1 and divided by 2 to account for the permutations that result in both

photons incident on the same detector. This corresponds to a coincidence rate of

8200/s. Here we ignore higher order excitations.

To accumulate 100 counts per bin, assuming a bin size of 1 ns, it would take

approximate 12 s to achieve a signal to noise ratio of 1 for a 10 percent effect. The

pushed MOT apparatus delivers atoms to the cavity, however the transit time of

the atomic cloud across the cavity mode is about 1 ms per launch. With the pushed

MOT apparatus operating at 20 Hz it will take 10 minutes of real time to acquire

12 s of interaction time between the atoms and cavity. This illustrates a best case

scenario where we assume that the signal is shot noise limited, and there is no dead
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time associated with the collection and histogramming of the data. A more realistic

situation, which adequately describes our experiment, would require 2 minutes of

continuous data taking to accumulate 100 counts per bin. This translates to 100

minutes of real time using the pushed MOT apparatus. To achieve a signal to noise

ratio of 5, a more reasonable requirement, we have to multiply our data taking time

by a factor of
√

5, requiring about 220 minutes. This demonstrates the necessity to

implement a continuous beam of atoms for photon counting measurements in cavity

QED.

6.1 Single atom transits

Quantum information protocols require fast detection of single atoms. Two

approaches have been implemented in the laboratory: fluorescence detection with

large aperture optics [72, 73] and the change of the transmission of a strongly coupled

cavity QED system [74].

We start by estimating the signal to noise ratios of these two methods. The

fluorescence of a single Rb atom at saturation (radiative lifetime of 26 ns) captured

with an f# = 1 imaging system gives a flux, Φ = 1/16× 1/2τ = 1.2× 106 counts/s.

Assuming an overall efficiency of the optics and the detectors of 20 %, and no

background and negligible dark counts, the signal to noise ratio, S/N , is 490×√t,

where t is the counting time. To get a signal to noise ratio of 3 it is necessary for

the detector to integrate for 37 µs. If the S/N ratio is to reach 10, a counting time

420 µs is required.

81



The approach pioneered by the group of Kimble at Cal Tech utilizes cavity

QED to detect transits of atoms through the mode of the cavity. This approach

requires strong coupling cavity QED to make sure that the presence of a single

atom in the system induces a very large effect. Recall the relation between the

normalized input and output intensities, Y and X, for a weakly driven cavity with

a single maximally coupled atom is, Y = X(1 + 2C1)
2 [23]. This means that the

relative change in the transmission T = (Y −X)/Y is going to be:

δT = 1− 1

(1 + 2C1)2
(6.2)

For the Cal Tech group, the rates are (g, κ, γ)/2π = (11, 3.5, 2.5) MHz resulting

in a single atom cooperativity of 6.9. Mabuchi et al. [74] found that operating with

1 photon in steady state in the cavity is a reasonable for detection. If the number of

photons is too large (i.e. the system resides on the upper branch of the bistability

curve), the size of the change in the transmission decreases significantly. On the

lower branch the presence of a single atom at an antinode results in nearly total

extinction (δT = 1) of the probe beam.

A detection efficiency of 20 % and a steady state photon number of 1 results

in a S/N = 2970
√

t for the Cal Tech cavity. The time required to detect an atom

with a S/N = 3 is 1 µs and for S/N = 10 is 11 µs, a significant improvement over

the imaging method.

Quantum information protocols not only need to detect atoms on fast timescales

with high fidelity, but they also require the ability to manipulate the quantum state

to perform logic operations. The strong coupling in cavity QED is achieved by
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small mirror separations (< 100 µm), severely limiting optical access needed for

laser pulses to perform operations or provide trapping potentials. An increase in

the mode volume by a factor of 10 results in a decrease of δT of a factor of 40 in

the case of the Cal Tech cavity (keeping κ and γ the same). Now for a S/N = 3, a

40 µs integration time is required.

Here we present a new method of detecting single atom transits using our two-

mode cavity QED system discussed in detail in chapter 5. Detecting the light in the

orthogonal mode heralds the arrival of an atom. The method takes advantage of the

lack of light in the mode when no atoms are present. The detection of one or two

photons can signal the presence of an atom. This eliminates the need to average a

photocurrent with many photons to resolve a slight change in the transmission over

the shot noise.

An important difference between our cavity and that of Mabuchi et al. is the

separation between the two mirrors. We have more than 2 mm, compared to the

108 µm of Mabuchi, that permits access for laser beams to interrogate the atom or

trap the atom in an optical lattice. A suggested protocol for quantum information

processing with neutral atoms in optical lattices in the end requires measurement

of the state of the atom via cavity QED, which is sensitive to the hyperfine state of

the atom [75].

As an atom traverses the mode of the cavity, it can scatter photons from the

driven mode into the cavity mode with orthogonal polarization. The amount of

fluorescence emitted into the mode is on the order of 10−3 of the light scattered

out of the transmitted cavity mode. Typical count rates for the orthogonal mode
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in continuous operation using the LVIS beam are 100,000 counts/s, or one every 10

µs on average. Figure 6.1 shows a sample of a time series of photodetections of the

transmitted light in the orthogonal mode. The top trace is in the presence of atoms,

while the bottom is a background count.

When an atom enters the cavity at about 5 m/s it will remain in the mode for

almost 10 µs (mode waist 2ω0 = 112µm). There is a very high probability that the

atom will fluoresce a few times during its transit as the lifetime of the transition is 26

ns. The detection is aided by the statistics of the photoemissions. The probability

of detecting a second photon conditioned on the detection of the first is high on the

timescale of an atom transit. In other words, photons emitted from the same atom

will be correlated. We measure the autocorrelation of the photoelectric pulses in

the presence of atoms and clearly see a broad background peak with a width of a

few microseconds. Figure 6.2 shows the resulting autocorrelation function using the

photon counting apparatus and scope averaging method described in chapter 4 for

long time delays (τ).

The observed enhancement of the probability of two coincidences beyond the

uncorrelated coincidences (determined by long time delays) shows the bunching

nature of this light. The size of the bunching depends on how high the drive is

in the other mode, but does not show a clear saturation for the range of drives

explored, which cover up to > 108 counts/s out of the driven mode.

It is possible in principle to detect atoms with single photons if there were no

background light. Typical background counts are 10,000 counts/s for a fluorescence

signal of 30,000 counts/s. Measuring atom transits by single photon detection would
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Figure 6.1: Time series of photodetections out of the orthogonal mode of the cavity

in the presence (Top) and absence (Bottom) of atoms.
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Figure 6.2: Long term autocorrelation of the light emitted out of the orthogonal

mode. There is a large bunching background related to the transit of the atom

through the cavity mode. The sharp feature at τ = 0 is discussed in section 6.2.

The sharp feature shortly after τ = 0 is an electronic artifact.
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Figure 6.3: Schematic of the apparatus used to study the coincidences from atom

transit in the cavity.

result in a false detection 25 % of the time. The bunched signal, however, provides

an advantage when multiple photon emissions are used to detect the atoms. Photon

coincidences make it possible to detect atom transits with high fidelity in times

equal or faster than the methods described above.

Figure 6.3 shows the pulse processing apparatus used to detect the arrival of

atoms into the cavity. The first photon detection starts a gate that is opened for a

preset time, if a second photon arrives and passes through the gate it will produce

a valid count. This way of detecting captures no more than one fourth of all events

as we cannot count events that fall consecutively in the same photodetector, nor

are coincidences registered when the gated “start” photon arrives after the “stop”

photon. If an atom emits two stop photons that arrive after a start photon and

within the preset time interval, two coincidences are recorded. This remains a valid

trigger for an atom detection (with an even higher fidelity), but must be accounted

for if one is counting individual atom transits.

We perform a series of measurements of atom transits at three drive power
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levels and with three coincidence window lengths. The photon counting apparatus

is identical to that shown in Fig. 4.8 where the APDs are used in place of the

PMTs and the flip mirror on the vertical polarization beam redirects half of the

fluorescence beam to the detector box.

The pulses generated by the start detector are stretched by a Lecroy Dual Gate

Generator to a variable width. The stretched pulse is sent to a EGG linear gate

module which allows stop pulses to pass only when the stretched start signal is on.

The gated output is sent to a Stanford Research Systems SR400 Photon Counting

Module to count the number of coincidences. Figure 6.4 shows the histogram of

two photon coincidences as measured by our apparatus. The black bars are the

background coincidences, while the white bars are in the presence of atoms for three

time gate intervals: 500 ns, 1 µs, and 5 µs. The line shows the theoretic expectations

from a purely Poissonian distribution. There is a clear excess in the last bar, coming

from the bunching events when an atom fluoresces into the mode more than once

as it crosses the cavity. The results shown in Table 6.1 shows fidelities above 90%

for all gate lengths and input intensities. The fidelities are limited by the presence

of background counts, which can cause false triggers. Our fidelities are calculated

by measuring the coincidence counts with the LVIS beam off and dividing by the

coincidence counts with the beam on. Counts recorded due to one background and

one fluorescence photon are not counted as false, as they do herald the presence of

an atom. Also we do not account for multiple stops, which double count a small

fraction of the recorded coincidences. For low input drives these multi-photon events

are unlikely and account for a low percentage of the total atom counts (see Fig. 6.5).
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Figure 6.4: Histogram of two photon coincidences in the presence (white) and ab-

sence (black) of atoms. The line is the Poissonian prediction.
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Table 6.1: Atom transit results.

Input ∆t Gated Counts (in 10 s) Gated Counts (in 10 s) Fidelity

Power (nW) (µs) (beam off) (beam on)

0.5 122 2,313 0.947

1.6 1.0 215 4,318 0.950

5.0 968 20,885 0.954

0.5 374 8,897 0.958

4.2 1.0 684 16,203 0.958

5.0 3114 66,757 0.953

0.5 2,096 27,484 0.924

38.4 1.0 3,933 47,215 0.917

5.0 17,518 198,338 0.912

The time series of the APD signals (Fig. 6.1) also gives information on the

probability distribution of the process. Figure 6.5 shows the analysis of a time series

with atoms (white squares) and background (filled black squares). The analysis,

done off line with a computer algorithm, is for time periods of 5 µs. The algorithm

analyzes a sequence of APD signals recorded from our Lecroy 7000 scope. The

program takes the time interval of interest and counts the number of clicks measured.

Then it moves the window one bin (time point) at a time until it traverses the entire

sequence, counting the single, double, and triple count events for each iteration. In

the end it adds the total number of time windows where two counts, for instance,
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Figure 6.5: Extracted probability that there would be n counts in any interval of

5 µs of a measured time series. White squares represent the probabilities with the

atomic beam on, and the black squares with the beam off.

are recorded and divides by the total number of windows (time points) to get a

probability. Figure 6.1 shows a clear enhancement of the probabilities of single

counts and double coincidences. The triple coincidences are also enhanced, but

they are infrequent.

This new method of detecting atom transits is fast, reliable, and does not

require strong coupling in cavity QED.
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6.2 Cross-correlation Measurements

A measurement of entanglement in cavity QED is a difficult endeavor due to

the very small amount of entanglement in the system. A first glance of the system

wave function reveals the large vacuum component that dominates the steady state.

In other words, most of the time there are no excitations in the system at all. It is the

presence of rare excitations that can lead to an entanglement between the atoms and

the mode of the cavity. The measurement of this entanglement requires a powerful

tool that can neglect the vacuum component and extract information about the

one and two excitation probability amplitudes. In quantum optics, we have such a

tool at our disposal; the correlation function. As stressed in chapter 3 of this thesis,

traditional correlation functions (Hanbury-Brown and Twiss for example) are unable

to measure the entanglement, because they typically only probe one component of

the entangled pair. Cross-correlations, as the name implies, correlates fluctuations

from two separate systems, in our case the atom and cavity mode, making it possible

to extract a measurement or witness of entanglement

Recall from chapter 3 that a cross-correlation, j2(τ), is an entanglement wit-

ness for cavity QED

j(2)(τ) =
〈σ+(0)a†(τ)a(τ)σ−(0)〉

〈a†a〉ss〈σ+σ−〉ss (6.3)

An entanglement witness is not proportional to the entanglement. However, it does

track the entanglement and can give an indication as to how the entanglement is

affected by the environment. A common measure of entanglement is given by the

concurrence, C =
√

4(A1gA0e − A1e)2 for the cavity QED system. This depends on
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the probability amplitudes of the steady state wave function. In order to access the

probability of coincident cavity and fluorescent emissions, a cross-correlation, such

as j(2)(τ), is needed to simultaneously record these correlated events with respect

to the probability of having only one cavity or only one atomic excitation.

To gain an understanding of cross-correlations, we turn to the quantum trajec-

tory formalism pioneered by H. J. Carmichael (see his book [76] for detailed lectures

on the topic in the context of quantum optics). This approach to studying an open

quantum system derives formally from the master equation, and treats the time evo-

lution of the system as a sum over possible “trajectories” that can be interrupted by

a series of collapses. These collapses correspond directly to experimental measure-

ments, such as the detection of a transmitted photon from a cavity. This method

allows us to consider an initially pure state that evolves due to a non-Hermitian

Hamilitonian. The norm of the wave function is conserved after each time step in

the evolution by renormalizing the wave function. The collapses are probabilistically

determined. Summing over many trajectories recreates an ensemble average of the

quantum dynamics of the system. Correlation functions naturally arise from these

simulations by simply correlating collapses, exactly as is done in the laboratory.

Carmichael et. al. [77] have independently derived a two-mode model inspired

in part by our experimental endeavors. They have performed quantum trajectories

that simulate our system, with the appropriate experimental parameters. The model

is simplified in that it only contains two atomic levels, but the quantum trajectory

formalism allows for multiple excitations which make an analytical solution impos-

sible. Later we present the results of these quantum simulations to compare with
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our data.

As presented in the previous section, when an atom traverses the cavity mode

it emits photons in an otherwise “dark” mode. The detection of one or two photons

reliably heralds the arrival of an atom. On the other hand, for a small number

of atoms (Neff < 1) in the cavity, the driven mode is relatively insensitive to the

presence of an atom in the intermediate coupling regime. With no atoms in the

cavity the transmitted beam is a coherent state and the photon flux is large. For

these reasons it seems natural to first examine the autocorrelation of the undriven

mode. Light can only be emitted (neglecting the background) when atoms are

present. In a sense this is a purified measurement in that there is no contamination

of the statistics due to time intervals when no atoms are present.

Figure 6.6 presents our results of an autocorrelation, g
(2)
FF (τ), performed on the

fluorescence emitted in the vertical mode of our cavity QED system. We define this

autocorrelation in the language of the two-mode model presented in chapter 5 as:

g
(2)
FF (τ) =

〈Ψ|b†(0)b†(τ)b(τ)b(0)|Ψ〉
〈b†b〉2 (6.4)

where the the subscript, F , denotes the detection of fluorescence. The measurement

shows a clear bunching. The peak decays on a time scale that is consistent with 2κ.

Figure 6.2 is a measurement of the same signal using the scope averaging method

described in chapter 4. The bunching peak is clearly noticeable at τ = 0. The

feature sits on top of a large Gaussian shaped pedestal that is attributed to correlated

photons emitted by single atoms that transit the cavity mode. We compared our

results with Fig. 6.7, a quantum trajectory simulation of the autocorrelation with
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Figure 6.6: Bunching shown in an autocorrelation of the fluorescence mode.

a large driving field (15 photons in the driven mode). Our results are qualitatively

and quantitatively consistent with the quantum trajectory simulation of Carmichael

[77]. The bunching signal is clearly the main feature in the correlation function. It

becomes visible less than a minute after the start of data acquisition. The long term

oscillations in Fig. 6.6 depend on the magnetic field present at the cavity and sit

on top of the atomic transit induced bunched peak.

Next we define a new cross-correlation, again based on the two-mode model

of chapter 5:

g
(2)
TF (τ) =

〈Ψ|b†(0)a†(τ)a(τ)b(0)|Ψ〉
〈b†b〉〈a†a〉 (6.5)

where the subscript, T , represents the transmitted driven mode. This correlation

is similar to the j(2)(τ) function presented in chapter 3, but here the mode that

receives the spontaneous emission is used to measure the correlation.
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Figure 6.7: Quantum trajectory simulation of the autocorrelation, g
(2)
FF (τ) from H.

Carmichael and H. Eleuch. For this simulation there are 15 photons in the undriven

mode.
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The basic requirements for the measurement are: a high density LVIS beam,

stable cavity and laser locks, and fine control of the polarization of the input and

output cavity beams. The LVIS beam must produce enough atoms to produce a

count rate in the undriven mode on the order of 20,000-70,000 counts/s. There is a

background due to stray beams and dark counts of about 5,000 counts/s in the APD

aligned to this mode. In addition, the birefringence of the cavity is responsible for

5,000-20,000 counts/s depending on the strength of the input drive. Minimizing the

background due to the birefringence is a delicate procedure. The cavity transmission

is monitored while making small rotations of the polarizer before the cavity input.

The waveplate on the cavity output must then be rotated to extinguish as much

of the light in the driven mode as possible. We iterate many times until the input

polarization is extinguished by a factor greater than 104.

Figure 6.8 represents our first measurement of g
(2)
TF (τ). There is clearly an anti-

correlation in the signals defined by the dip at τ = 0, with count rates for the driven

and undriven modes of 4.7 × 107 photons/s and 2.3 × 104 photons/s respectively.

Decreasing the drive (see Fig. 6.9) by a factor of 10 results in a peak appearing

out of the depression at τ = 0 in the cross-correlation. The size of these effects are

on the order of 1− 2 % and require about 30 minutes of data taking to resolve the

features with a good signal to noise ratio.

Again the quantum trajectory simulations show behavior that qualitatively

similar to the data. Figure 6.10 is another plot from Carmichael that captures the

interesting features of the measured cross correlation. Carmichael has warned us

that he has not performed a careful check of all the experimental parameters, so
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Figure 6.8: Cross correlation between the driven (T) and undriven (F) modes with

≈ 1.2 photons in the driven mode.
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≈ 0.15 photons in the driven mode.
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Figure 6.10: Quantum trajectory simulation of g
(2)
TF (τ) from H. Carmichael and H.

Eleuch. For this simulation there are 3 photons in the driven mode and 0.1 photons

in the undriven mode.

there remains a mismatch of the timescale for these dynamics. Higher order excita-

tions (3 photons in the driven mode and 0.1 in the undriven mode) are needed in the

simulations to exhibit this type of behavior. While measuring the cross-correlations

we monitor the number of photons detected from the driven and undriven modes.

These rates are important as they allow us to extract information relevant for quan-

tifying the entanglement.

Recall from chapter 3 that the calculations of the concurrence for a driven cav-

ity QED are done in the weak driving limit with a two-level atom. The fluorescence
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detection in chapter 3 is assumed to be measured in free space with no cavity. Rather

than attempt a correction for this, we proceed here and use our measurements to

extract a value of j(2)(0) from g
(2)
TF (0) for these two cross-correlation measurements.

Strictly speaking any information obtained about entanglement would be related to

the entanglement between the two modes of our cavity. Recall, however, that the

light in the undriven mode comes from an excitation in the atom, Eq. 5.15 and Eq.

5.17.

Experimentally the ratio of steady state photons in the cavity is less than the

saturation photon number, n0; however formally speaking, we are away from the low

intensity limit. We have developed the theory in the low intensity limit but expect

the relationship between the probabilities of single counts and coincidences to hold.

We have some justification for this as Gea Banacloche et. al. [55] have found that

the correlation functions remain valid entanglement witnesses with strong driving

fields in cavity QED, where the steady state photon number is larger than n0.

Guided by the results of chapter 3, we can try to extract a concurrence estimate

from the plots of Fig. 6.8 and Fig. 6.9. This gives a lower bound or witness of

entanglement. Here we note the relationship between the concurrence and j(2)(0):

C =
√

4(A1gA0e − A1e)2 (6.6)

=

√
4(A1gA0e)2(1 + j(2)(0)− 2

√
|j(2)(0)|) (6.7)

≈
√

4(A1gA0e)2(1 + g
(2)
TF (0)− 2

√
|g(2)

TF (0)|) (6.8)

where j(2)(0) = |A1e|2/(|A0e|2|A1g|2). The value of j(2)(0), as indicated by the last

equation, comes from the fractional difference from unity of the normalized cross-
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correlations that we measure, g
(2)
TF (0). The rate, R, of single photon detections

can give us the probability of the single excitations by solving for the intracavity

photon number, n, for the two modes, where R = 4πnκ. Recall from chapter 2 that

X = 〈a†a〉/n0 where n0 is 5.3 for our system. The square root gives us the value of

the single excitation probability amplitude. Our calculation here does not account

for the quantum efficiencies of the detectors or other losses which raises the detected

counting rates and increases the concurrence. This is especially critical for a careful

measurement of entanglement as the efficiencies enter twice in the formula.

The results for the two measurements are plotted in Fig. 6.11. They gives

an estimate of the concurrence on the order of 10−5 with an uncertainty on the

individual measurements of ±4 × 10−5, with the error dominated by the residual

shot noise in the coincidence measurements. Here we calculate the uncertainty based

on the dominant contributions to be:

δC = A1GA0eδ(j
(2)(0)) (6.9)

Although our entanglement witness in cavity QED is not yet a good bound,

we should compare our measurement to the measurement of entanglement between

a single trapped ion and a single photon from the group of C. Monroe [78]. They

measure correlations between the state of the ion and the polarization of the photon

and obtain a success probability of 1.6 × 10−4 of entanglement, which is of the

same order as our concurrence. Further work is necessary to compare the two

measurement strategies and to improve our results.
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Figure 6.11: Measured concurrence for our system derived from two cross-correlation

measurements.
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Chapter 7

Conclusions

The cavity QED system provides a unique test bed for exploring the nature of

entanglement in open quantum systems. The mechanisms responsible for loss and

decoherence in the atom-cavity system, are avenues for interrogating the system.

This has long been known and exploited, but here we take advantage of both the

cavity decay and spontaneous emission to probe the dynamics of system in the time

and frequency domains.

The two-mode model we have presented is rich with physics not yet uncovered

by our experimental explorations. We have seen interesting probe spectrum that

hint at an underlying structure that is related to the presence of the second mode

and the relative coupling strengths of the two. Our first attempts to probe the

spontaneous emission from the atoms have revealed a far more interesting system

than expected.

The implementation of the LVIS beam for cavity QED experiments has been

a huge boost for our group. We are past the age of using thermal atomic beams for

these experiments. This next generation, cold atom beam apparatus will provide

many years of fruitful investigations without the adverse effects of fast, hot atoms

traversing the cavity mode.

The success of the LVIS apparatus is directly responsible for our new results
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in the photon counting regime. The continuous atom beam has made it possible

to measure cross-correlations of the two modes in our system as a step towards

developing a witness measurement of entanglement. A broad range of experiments

are now possible for measuring cross-correlations and their use as a probe to track

the time evolution of entanglement. The results of this experiment should prove

useful for developing a deeper understanding of entanglement in cavity QED.
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