
ABSTRACT

Title of dissertation: Optimization Schemes for Variability-Driven
VLSI Design Automation
Azadeh Davoodi, Doctor of Philosophy, 2006

Dissertation directed by: Professor Ankur Srivastava
Department of Electrical and Computer
Engineering

Today’s IC design is facing several challenges due to increasing circuit complex-

ity and decreasing feature size, as it pushes to extend Moore’s law into nano-scale

dimensions. Apart from the challenges that arise directly as a result of feature

scaling (e.g., increasing leakage power, reliability issues), imperfections in the man-

ufacturing process have recently turned into a major design hurdle, due to the varia-

tions they cause in the device and interconnect parameters from their target values.

From an IC design automation perspective, a shift in paradigm, from deterministic

to probabilistic, is needed to handle the unpredictable nature of these fabrication

variations.

In such a probabilistic paradigm, the varying circuit parameters such as leakage

power or delay should be accurately modeled, and their correlations due to com-

mon sources of variations or physical location on the chip should be well captured.

Moreover, variability-driven (probabilistic) design automation needs to efficiently

generate a high quality solution.

A particular challenge in variability-driven design automation is to define op-

timality measures among candidate solutions, which allow for inferior solutions to

be removed from the solution space thus reducing the run-time complexity. In this

dissertation, the superiority probability is introduced as such an optimality measure,

and two methods are proposed to compute this probability: an accurate Conditional

Monte Carlo simulation method, and an efficient moment-matching approximation

method. The effectiveness of using the superiority probability is shown in the context

of two important design automation applications: 1) the buffer insertion problem,

2) the dual-Vth leakage optimization problem.

Another important task in variability-driven design automation is to develop

optimization techniques that can provably generate the optimal solution in an effi-

cient way. In this dissertation, the application of the gate sizing problem is explored

to optimally reduce the loss due to fabrication variations in the presence of a timing

constraint. The presented formulation, in contrast with the existing variability-

driven approaches which are all based on heuristics, is provably optimal. Moreover,

unlike existing approaches, it is independent of any assumption on the source and

nature of variations.

Optimization Schemes for

Variability-Driven VLSI Design Automation

by

Azadeh Davoodi

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Commmittee:

Professor Ankur Srivastava, Chair/Advisor
Professor Joseph F. JaJa
Professor Bruce Jacob
Professor Andre L. Tits
Professor Robert W. Newcomb
Professor Jian-Guo Liu

c© Copyright by

Azadeh Davoodi

2006

DEDICATION

to my family: my parents, my brother, and my husband,

and to the memory of my grandmother

who will always be my role model.

ii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Professor Ankur

Srivastava for his continuous guidance and support. Working with him has been an

invaluable experience. He has been a continuous source of motivation for me, and I

want to sincerely thank him for all I have achieved.

I would also like to thank the members of my dissertation committee, Profes-

sors Joseph JaJa, Bruce Jacob, Andre Tits, Robert Newcomb, and Jian-Guo Liu,

for their time and feedback.

I am much indebted to Professor Joseph JaJa for believing in me; his strong

support has been crucial in achieving my goals.

I am sincerely grateful to Professor Andre Tits for his feedback, advice, and

continuous encouragement.

I would also like to thank Professor Newcomb who has always been supportive

in my decisions during the past six years. I will forever cherish his warm welcome

in the airport when I first landed in this country.

I am also thankful to the Graduate School at University of Maryland for

honoring me with the dissertation fellowship, as well as the members of the Electrical

and Computer Engineering Department for nominating me for this award.

Finally, I would like to thank my family: my husband, my parents and my

brother for standing by me and for being a constant source of energy, and morale.

iii

Publications:

Journal:

1. Davoodi A., Khandelwal V., Srivastava A., “Probabilistic evaluation of solu-

tions in variability-driven optimization”, To Appear in IEEE Transactions on

CAD.

2. Davoodi A., Srivastava A., “Effective techniques for the generalized low power

binding problem”, Proceedings of ACM Transactions on Design Automation

of Electronic Systems, Vol. 11, No. 1, pp. 52-69, January 2006.

3. Davoodi A., Srivastava A., “Power-driven simultaneous resource binding and

floorplanning: a probabilistic approach”, Proceedings of IEEE Transactions

on VLSI Systems, Vol. 13, No. 8, pp. 934-942, August 2005.

4. Davoodi A., Srivastava A., “Voltage scheduling under unpredictabilities: a

risk management paradigm”, Proceedings of ACM Transactions on Design

Automation of Electronic Systems, Vol. 10, No. 2, pp.354-368, April 2005.

5. Davoodi A., Khandelwal V., Srivastava A., “Empirical models for net-length

probability distribution and applications”, Proceedings of IEEE Transactions

on VLSI Systems, Vol. 12, No. 10, pp. 1066-1075, October 2004.

iv

6. Wong J., Davoodi A., Khandelwal V., Srivastava A., Potkonjak M., “A statisti-

cal methodology for wire-length prediction”, To Appear in IEEE Transactions

on CAD, 2006.

7. Khandelwal V. and Davoodi A., Srivastava A., “Simultaneous Vt selection and

assignment for leakage optimization”, Proceedings of IEEE Transactions on

VLSI Systems, Vol. 13, No. 6, pp. 762-765, June 2005.

8. Wang L., French M., Davoodi A., Agarwal D., “FPGA dynamic power mini-

mization through placement and routing constraints”, Proceedings of Eurasip

Journal on Embedded Systems, April 2006.

Conference and Workshop:

1. Davoodi A., Srivastava A., “Variability-driven gate sizing for binning yield

optimization”, To appear in Design Automation Conference, July 2006.

2. Davoodi A., Srivastava A., “Probabilistic evaluation of solutions in variability-

driven optimization”, Proceedings of International Symposium on Physical

Design, April 2006.

3. Davoodi A., Srivastava A., “Variability-driven buffer insertion considering cor-

relations”, Proceedings of International Conference on Computer Design, Oc-

tober 2005.

4. Davoodi A., Srivastava A., “Probabilistic dual-Vth leakage optimization under

variability”, Proceedings of International Symposium on Low Power Electron-

ics and Design, August 2005.

v

5. Davoodi A., Srivastava A., “Wake-up protocols for controlling current surges

in MTCMOS-based technology”, Proceedings of Asia South Pacific Design

Automation Conference, January 2005.

6. Davoodi A., Srivastava A., “Simultaneous floorplanning and binding: a proba-

bilistic approach”, Proceedings of Asia South Pacific Design Automation Con-

ference, January 2005.

7. Davoodi A., Khandelwal V., Srivastava A., “Variability inspired implementa-

tion selection problem”, Proceedings of International Conference on Computer

Aided Design, November 2004.

8. Wong J., Davoodi A., Khandelwal V., Srivastava A., Potkonjak M., “Wire-

length prediction using statistical techniques”, Proceedings of International

Conference on Computer Aided Design, November 2004.

9. Khandelwal V., Davoodi A., Srivastava A., “Efficient statistical timing anal-

ysis through error budgeting”, Proceedings of International Conference on

Computer Aided Design, November 2004.

10. Davoodi A., Khandelwal V., Srivastava A., “High level techniques for power-

grid noise immunity”, Proceedings of Great Lakes Symposium on VLSI, April

2004.

11. Khandelwal V., Davoodi A., Nanavati A., Srivastava A., “A Probabilistic Ap-

proach to Buffer Insertion”, Proceedings of International Conference on Com-

puter Aided Design, November 2003.

vi

12. Davoodi A., Srivastava A., “Voltage scheduling under unpredictabilities: a

risk management paradigm”, Proceedings of International Symposium on Low

Power Electronics and Design, August 2003.

13. Davoodi A., Srivastava A., “Effective graph theoretic techniques for the gener-

alized low power binding problem”, Proceedings of International Symposium

on Low Power Electronics and Design, August 2003.

14. Davoodi A., Srivastava A., “Variability driven gate sizing for binning yield

optimization”, Proceedings of International Workshop on Logic and Synthesis,

June 2006.

15. Davoodi A., Srivastava A., “Variability driven buffer insertion considering cor-

relations”, Proceedings of International Workshop on Logic and Synthesis,

June 2005.

16. Davoodi A., Srivastava A., “Efficient stochastic pruning for variability-driven

dual-Vth leakage optimization”, Proceedings of International Workshop on

Logic and Synthesis, June 2005.

17. Davoodi A., Srivastava A., “Simultaneous floorplanning and binding: a prob-

abilistic approach”, Proceedings of International Workshop on Logic and Syn-

thesis, June 2004.

vii

TABLE OF CONTENTS

List of Tables x

List of Figures xi

1 Motivation and Background 1
1.1 Existing Issues in Deep Sub Micron Chip Design 1
1.2 Process Variations: The New Challenge in Sub-90nm Design 2

1.2.1 Components . 4
1.2.2 Handling Process Variations 4

1.3 Contributions . 6

2 Variability-Driven Design Framework: A Futuristic Perspective 8
2.1 Hierarchical Design-Automation Flow 8
2.2 Modification of Existing Deterministic Approach 10
2.3 Probabilistic Design Framework . 12

2.3.1 Components: Modeling and Optimization 14
2.3.2 Properties and Challenges . 16

3 Probabilistic Comparison of Solutions in Variability-Driven Optimization 18
3.1 Deterministic Optimization in Design Automation 18
3.2 Superiority Probability: Metric for Comparison of Solutions 19

3.2.1 Challenges . 20
3.3 Application: Variability-Driven Buffer Insertion 23

3.3.1 Introduction to Buffer Insertion 23
3.3.2 Preliminaries . 27
3.3.3 Variation-Aware Delay of A Buffered Interconnect Tree 31
3.3.4 Variability-Driven Buffer Insertion: The Algorithm 36
3.3.5 Results . 46

3.4 Computing the Superiority Probability: The Theory 55
3.4.1 Monte Carlo Simulation . 55
3.4.2 Using jpdf Approximation . 56
3.4.3 Using Conditional Monte Carlo Simulation 58

3.5 Superiority Probability for Polynomials 62
3.5.1 Motivation: A Variability-Driven Perspective 63
3.5.2 Monte Carlo Simulation for Polynomials 64
3.5.3 Approximating jpdf Using Bivariate Normal Density 64
3.5.4 Conditional Monte Carlo Simulation 68

3.6 Application: Variability-Driven Dual-Vth Leakage Optimization 75
3.6.1 Conventional Approach . 76
3.6.2 Variability-Driven Implementation and Algorithm 79
3.6.3 Results . 81

viii

4 Variability-Driven Gate Sizing Formulation and Generalizations 86
4.1 Preliminaries . 89

4.1.1 Conventional Gate Sizing Formulation 89
4.1.2 Convex Representation . 91

4.2 Objective: Minimizing the Binning Yield-Loss (BYL) 92
4.3 Gate Sizing for Minimizing the BYL 93

4.3.1 Effects of Variability on the Traditional Formulation 94
4.3.2 Minimizing BYL: Mathematical Formulation 94
4.3.3 A Two-Stage Stochastic Programming Formulation 95
4.3.4 Proof of Convexity of the Optimization Set 97

4.4 Some Generalizations . 99
4.4.1 Generalized Penalty Function 99
4.4.2 Relation with Minimizing the Yield-Loss 100
4.4.3 Generalizing the BYL Definition 101

4.5 Solving the Convex Formulation . 102
4.5.1 Kelley’s Cutting Plane Algorithm 102
4.5.2 Integration with STA . 104

4.6 Results . 106

5 Conclusions and Future Work 112
5.1 Conclusions . 112
5.2 Open Problems . 113

5.2.1 Additional Speedup and Accuracy in Computing the
Superiority Probability . 113

5.2.2 Extending the Definition of BYL to Consider the
Joint-Timing and Power Loss 113

5.2.3 Speedup in Solving the Convex Formulation 114

Bibliography 116

ix

LIST OF TABLES

3.1 Probability of meeting the required arrival time constraint at the
source node. 50

3.2 Number of buffers of different techniques. 51

3.3 Probability of meeting the required arrival time for different correla-
tion coefficients. 51

3.4 Run-time of different techniques (sec). 54

3.5 Comparison of quality of solution and runtime (sec). 84

4.1 Comparison of binning yield-loss (in psec) and area 108

4.2 Comparison of run-time (sec) and number of iterations 110

4.3 Comparison of yield-loss. 111

x

LIST OF FIGURES

2.1 The hierarchical computer-aided design flow. 9

2.2 Deterministic approach can not accurately compute operations such
as “max” in the presence of variations. 11

2.3 Components of a probabilistic framework. 14

2.4 Parametric yield: a variability-driven objective. 16

3.1 Example of an RC tree network. 24

3.2 Example: Buffering solution of different techniques for net n1. 48

3.3 Comparison of different techniques for net n1. 49

3.4 Conditional Monte Carlo framework. 61

3.5 Frequency of error in bivariate normal approximation 67

3.6 Bernstein Coefficients defining boundaries on polynomials. 70

3.7 Solution at a node . 77

3.8 Normalized frequency of %error in computation of the superiority
probability. 82

3.9 Normalized frequency of speedup in computation of the superiority
probability. 83

4.1 Binning yield-loss based on a linear penalty function. 92

4.2 Convergence of BYL to its lower bound (C1908, Tcons =3500 psec). . 106

4.3 Binning yield-loss vs. time (C1908, Tcons =3500 psec). 109

4.4 BYL vs. area generated at different iterations of Kelley’s algorithm. . 110

xi

Chapter 1

Motivation and Background

1.1 Existing Issues in Deep Sub Micron Chip Design

Today’s IC design is driven by the demand for having more functionalities on

a single chip. This includes having multiple processor cores, caches, multimedia

engines, etc. embedded all on the same chip.

To realize this demand, the existing thrust has been to follow up with Moore’s

Law to double the number of transistors on a chip every generation (typically every

18 months). This is accompanied by the increasing fabrication cost, currently in the

range of $1B, and the small timing window to have the product to market.

Following Moore’s Law translates into decreasing the minimum (fabricated)

feature size that is currently around 90nm dimensions. This decreasing or scaling

into Deep Sub Micron (DSM) feature sizes introduces many design challenges that

didn’t exist before, or amplifies many of the effects that used to be ignored. As an

example interconnect delay used to be ignored in many stages of the design over the

gate delay, while now it is the dominant component.

Some of these DSM issues are as follows:

• Exponential increase in leakage power beyond the 250nm feature size, and its

dominance over dynamic power as scaling continues [6].

1

• Thermal issues and hot spots on the chip due to increasing transistor density,

which cause challenges in cooling and packaging of ICs [7].

• Deterioration in reliability due to increase in various types of noise (e.g., cross-

coupling noise, power-grid noise), soft errors due to cosmic radiation and con-

tinuous scaling of supply voltage, and fabrication defects [53].

• Dominance of the interconnect delay over gate delay beyond the 250nm feature

size [31]. The interconnects on the chip decrease in size as scaling continu-

ous. This shrinking in size increases their resistance (R). In addition because

interconnects are placed closer to each other on the chip, their cross-coupling

capacitance (C) also increases. Therefore the interconnect delay which is pro-

portional to both R and C increases [6].

1.2 Process Variations: The New Challenge in Sub-90nm Design

The outlined DSM issues appeared from 250nm CMOS technology nodes.

However as scaling continues beyond 90nm dimensions, process variations appear as

a new, and yet very significant challenge.

Process variations refer to those variations caused due to the imperfections

in different steps of the IC manufacturing process [48]: These could be due to the

limited resolution of the photolithographic stage within the fabrication process which

results in variations in the width and length of transistors on the chip. It could also

be from non-uniform conditions during the diffusion stage in which impurities are

introduced.

2

The stated manufacturing imperfections cause variations in the electrical prop-

erties of the transistors and interconnects on the chip from their designed values.

These could be caused by variations in the geometries of the transistors on the chip

(e.g., effective channel length, oxide thickness), or due to random dopant fluctua-

tions (affecting the threshold voltage of the transistors).

Some of the variations in the device and interconnect parameters are uncor-

related to each other. For example, variations in the channel length of MOSFET

transistors are independent of variations in their threshold voltage because they are

caused by different stages of the fabrication process [48]. Variations at transistor-

level, although are not very significant but result in significant chip-level variations.

The measurable effect of the process variations may be a substantial deviation of

the circuit behavior from its nominal response, which could be either positive or

negative. It has been shown that for 1000 samples representing the same design in

0.13μ technology, up to 30% variation in frequency and 20X variation in leakage

power exist [7].

In high performance applications such as microprocessor design, the goal is

to meet a target frequency. The significant degree of variation in frequency makes

the decision making very difficult for the designer. A common approach has been

based on a worst-case estimate of all parameters in the presence of variations. Even

though this approach is safe but it is too pessimistic, and underestimates the true

potentials of a design [16, 17].

3

1.2.1 Components

Process variations could be identified at different levels depending on various

stages of the manufacturing process: wafer-to-wafer, die-to-die, and within-die [46].

As an example radial variation seen at each wafer is due to the spin stage of the

fabrication process. Within-die variations on the other hand is position dependent:

potential location of a component on various parts on the chip determines the degree

of variations in its parameters at a within-die level.

Process variations have an overall unpredictable nature because of not having

enough control over different steps of fabrication process for sub-90nm technology

nodes. These imperfections in the fabrication process translate into uncertain behav-

ior of transistors and interconnects on the chip. From a higher level of abstraction

different performance metrics of a design (such as frequency and power) will be

uncertain and effectively become random variables [7].

1.2.2 Handling Process Variations

Process variations could be handled at different stages. One could reduce

the source of variations by focusing on perfecting the fabrication process, or by

introducing new transistor structures that could more accurately be fabricated.

As an example FinFET is a new transistor structure that could be realized

with a gate-length of about 10 nanometer [29]. Another example is the trigate

transistor from Intel which has also been successfully manufactured in nanometer

scale featuring higher speed and lower power [22].

4

To handle process variations, one could also reduce the effects of variation,

either pre- or post- fabrication:

The pre-fabrication techniques are those “design-time” techniques that could

potentially reduce variations. These design-time techniques could be at different

stages of the hierarchical design framework based on their levels of abstraction.

These include techniques at micro-architectural level [24], circuit-level [61], or

techniques that use different design styles such as asynchronous (clock-less) designs

which are inherently more tolerant to variations [58]. These would be integrated

as new techniques within the design-aid framework and tools. On the other hand

the existing design-aid framework could be modified to consider process variations

[16, 17]. This could be by including process variations during different stages of

design analysis and optimization.

The effect of process variations could also be reduced post-fabrication, using

tuning techniques such as adaptive body biasing [62] and adaptive supply voltage

[63]. In these techniques controlling of the body bias / supply voltage of different

transistors could be done after fabrication which affects the variation in parameters

of transistors. For example changing the voltage of the body (substrate) of a tran-

sistor impacts its threshold voltage, which results in speed / power tradeoffs which

directly relate to sensitivity to process variations in that transistor [62].

Tunable elements could also exist for post-fabrication tuning. As an example

[60] proposes a tunable buffer that could be programmed in order to change its

effective capacitive loading, hence its delay. Another example is [69] which proposes

an automatically tunable delay element for domino logic.

5

Given the broad levels of handling process variations, in this work I have fo-

cused on reducing the effects of variations, pre-fabrication, by considering variations

within the existing design-automation tools. This means the existing computer aided

design framework will be modified to consider process variations. This could be in

terms of adding bounds on the maximum variation as a design constraint, or trying

to minimize the effects of variations as a design objective, as will be explained in

detail in the following chapters. Such a design-automation framework will hence be

called a variability-driven framework through-out this dissertation.

Please note that process variations are considered to be static. Dynamic vari-

ations also exist, which refer to fluctuations in supply voltage or temperature as a

function of the input vector [7, 46], which are not considered in this dissertation.

1.3 Contributions

The contributions of this work are listed as follows:

• Proposing the “superiority probability” as a metric for comparison of potential

solutions in the presence of process variations.

• Proposing and evaluating two methods to compute the superiority probability:

1) an accurate Conditional Monte Carlo simulation method, 2) an efficient

moment matching method.

• Evaluating the effectiveness of using the superiority probability in two De-

sign Automation applications in the presence of process variations: 1) buffer

insertion, 2) dual-Vth assignment for leakage optimization.

6

• Formulating the gate sizing problem in the presence of process variations as a

mathematical program with the following properties:

– The formulation is provably convex, which means it can efficiently be

solved to obtain the optimal solution.

– The formulation is not restricted by the sources and the models of process

variations.

– To solve the convex formulation, “any” statistical timing analysis can be

used.

– The optimization objective is to minimize the loss associated with violat-

ing a frequency constraint due to process variations, which is applicable

in speed-binning of microprocessors.

7

Chapter 2

Variability-Driven Design Framework: A Futuristic Perspective

In this chapter I will describe a design-automation framework that could ac-

count for the effects of process variations. First the existing hierarchical design-

automation flow is explained. Then modification of the existing flow is discussed to

consider process variations in a “deterministic” fashion. Finally my focus would be

on a “probabilistic” extension of the design-automation framework in which all the

varying circuit parameters are modeled as random variables.

2.1 Hierarchical Design-Automation Flow

The existing design-automation flow is composed of different optimization al-

gorithms that automate the process of transferring an abstract specification of a

design, at Register Transfer Level (RTL), to a low-level layout description that

could be sent to fabrication. These steps are shown in Figure 2.1 and are as follows:

Initially the design is described in a Hardware-Description Language (HDL).

The technology library is the database containing the data that models the pre-

designed cells in the underlying process technology for the logic synthesis and phys-

ical design tools. User constraints convey limitations regarding the speed, area and

power of the design. Logic synthesis transforms the HDL description into a graph

called a netlist. Netlist is a graph in which each vertex represents a cell in the

8

Extraction

Verification
Timing
Optimization/
Logic

Technology
Library

Design
Physical

Layout

Routing

Placement

RC

TechFiles

Generator
Delay Module

Delays
Cell/Wire

Logic

User ConstraintsRTL Desciption

Synthesis

Netlist

Figure 2.1: The hierarchical computer-aided design flow.

technology library and each edge represents a wired connection between the cells.

Logic synthesis optimizes the circuit according to user constraints and ensures

that design rules are met. Typical tasks in this step include logic minimization,

structuring, mapping, gate sizing and buffering [20].

Physical design is the process by which the synthesized netlist is transformed

into a layout, which is used to fabricate the integrated circuit. Information con-

tained in technology library and user constraints ensure that the output of physical

design could be fabricated in the designated semiconductor process. User constraints

restrict the location of pads and signals, the area resources available for implemen-

tation and the timing behavior. Typical steps in this category are cell placement,

global and detailed routing, sizing and clock/power distribution [54].

9

Both logic synthesis and physical design tremendously suffer from insufficient

parameter estimations. In a typical design flow, one popular method of dealing with

estimation uncertainty is that after the layout generation if the constraints are not

satisfied, the synthesized netlist is back-annotated with more accurate values of pa-

rameters through parasitic extraction. This is illustrated in Figure 2.1. These could

get incorporated to generate more accurate delay models which will be fed back

to logic synthesis and physical design steps resulting in another round of optimiza-

tion. For designs with performance priorities several iterations between synthesis

and physical design are required to converge to a desired solution.

A variability-driven design framework considers process variations and their

effects within different stages of the flow explained above. This is done by modi-

fying or extending the optimization algorithms involved in these stages to become

variability-driven. This could be done in either two ways: 1) modifying the existing

algorithms to consider process variations deterministically, 2) considering process

variations as random variables within the algorithms, which changes their inherent

deterministic nature. Next I will elaborate on these two alternatives to consider

process variations, and in particular focus on the probabilistic approach.

2.2 Modification of Existing Deterministic Approach

To consider process variations within the existing design-automation frame-

work the first natural choice would be to extend the existing design-automation

algorithms to consider variations, without really changing the algorithms. These al-

gorithms are deterministic, meaning they are based on fixed estimates of parameters.

10

Figure 2.2: Deterministic approach can not accurately compute operations such as

“max” in the presence of variations.

To consider process variations, these deterministic estimates could be replaced by

new deterministic estimates that account for variations. This could be a worst-case

or an average-case estimate [16, 17], or an empirical one. Given these new estimates

the same algorithm will be used in a variability-driven deterministic approach.

In these deterministic approaches it would be difficult to model possible corre-

lations that exist among the varying circuit parameters. In addition, a good deter-

ministic analysis requires accurate computation of different operations that might

be involved, while considering variations.

As an example to find the circuit delay, one needs to compute the “maximum”

of the delays of all the paths in the circuit. In the presence of process variations,

the delay of each path in the circuit is a random variable that has a corresponding

Probability Density Function (pdf) as shown in Figure 2.2. When applying the

max operation to these pdfs, the resulting pdf representing the outcome of the max

will be stretched towards higher delay values because of the way max operates on

random variables. To estimate the circuit delay deterministically, the best estimate

should be the highest probability delay value in the output pdf (tn in Figure 2.2).

11

However making that estimate in the deterministic approach is not easy. This is

because a good deterministic estimate would need the information embedded in the

pdfs of individual path delays which is ignored in a deterministic approach.

This variability-driven deterministic extension could become too optimistic

(e.g., in an average-case estimate), or too pessimistic (e.g., in a worst-case estimate)

[16, 17]. The most effective of deterministic approaches would be the one in which

variations are incorporated based on an empirical factor [44]. However it is usu-

ally very difficult to build empirical models to capture sub-90nm process variations

because of inaccessibility to accurate statistics. Next an alternative approach is

proposed in which all the varying parameters are represented as random variables.

2.3 Probabilistic Design Framework

In a probabilistic design framework, all the varying circuit parameters are

modeled as random variables. These random variables may or may not be corre-

lated to each other. At the lowest level, variations happen in the geometries of

interconnects (e.g., length, width) and of transistors (e.g., effective channel length,

oxide thickness), transistor doping (as well as other possibilities). These low-level

factors are modeled as random variables that in general have a Joint-Probability

Density Function (jpdf) [18]. Given the jpdf of these low-level factors, one could

model the effects of variations at higher levels by finding the pdf of performance

metrics of a design such as its frequency and power, as these performance metrics

are ultimately a function of the low-level factors [11, 37].

12

The modeling of jpdf should be done to capture different ways that varying

circuit parameters might be correlated to each other. These are the followings:

1) Global correlations exist because of having a common manufacturing process

that would affect all the components on a chip similarly. Example is [65] that models

the circuit delay assuming common (global) variables representing the delays of

different components in the circuit.

2) Spatial correlations are due to the locations of different components on the

chip. Those components that are physically closer are more likely to have similar

variations in their parameters, as they are more likely to be affected in a similar way

by the imperfections in the fabrication process at a within-die level. One example

is [11] that models variations in leakage power considering spatial correlations.

3) Path-based correlations are due to the topology of the design. If we consider

a design as a circuit with different paths, some of these paths might be partially

overlapping with each other. The parameters of these paths such as their individual

delays will be correlated because of these overlaps. One example of path-based

correlations is in circuit topologies that contain many “reconvergent-fanout” gates.

These are gates with multiple outputs, in which different output-paths converge to

each other later on in the circuit [21].

In a probabilistic design framework, variation-aware models are random vari-

ables that should be expressed in a way to capture the above-mentioned sources of

correlations. The conventional algorithms should then be changed to incorporate

these models in a probabilistic framework. Next I will discuss the details of such a

probabilistic framework, its properties and challenges.

13

Figure 2.3: Components of a probabilistic framework.

2.3.1 Components: Modeling and Optimization

A probabilistic design framework has the following two components:

1) Modeling

Modeling is one essential component of any design framework. Models could be

used to evaluate potential solutions in a design. Accuracy of the models determine

the effectiveness of the design techniques to find the highest-quality solution under

constraints for performance, power, area, etc. [11, 36, 37].

In the presence of process variations, the existing models should be modified to

capture variations. As Figure 2.3 shows statistics on the effects of process variations

could be combined with existing models to build variation-aware models.

One way of building such models is to describe different parameters of interest

as functions of random variables that represent variations in low-level design param-

eters. As an example the circuit delay could be modeled in terms of the gate delays

which could further be modeled in terms of the geometries of the transistors inside

14

each gate [36, 37]. Under process variations the circuit delay could be modeled as

a random variable described as a function of those random variables representing

the varying transistor geometries. These variation-aware models will then be used

within an optimization framework in the context of different design techniques.

2) Optimization

The second component in variability-driven design is optimization. There are

different ways to capture variations in an optimization framework:

New metrics could be defined to represent the degree of variation in a design,

and could be alternatively used as the objective in variability-driven optimization.

One such metric is the timing yield (or in general parametric yield) which is defined

as the probability of a design to meet its timing requirement (or other requirements)

in the presence of variations. Analysis on the effects of variations could be done for

any potential realization of a design, to evaluate its corresponding timing yield. This

could be an indication of the quality of that potential realization in the presence

of process variations. Optimizing in order to maximize the timing-yield has been a

popular objective under variations [13, 28, 55, 57]. This metric could be used for

parameters other than timing, such as power, as illustrated in Figure 2.4. In the

generic case that the timing and power of a potential realization of a design might

be of concern, a joint-yield could be defined in terms of meeting a timing constraint,

and a power constraint under process variations.

The constraints in variability-driven optimization could also incorporate vari-

15

Figure 2.4: Parametric yield: a variability-driven objective.

ations [43]. A variability-driven constraint could be in the form of bounding the

probability of violating certain design criteria to be at most a designer’s maximum

allowed risk under process variations. For the example of the circuit delay, one

could add a constraint to ensure the timing-yield is at least a certain desired level

given as input by the designer. This will be helpful in the conventional hierarchial

design-automation framework, for which different levels of risk exist based on the

level of abstraction for different optimization algorithms.

2.3.2 Properties and Challenges

Given the two components of modeling and optimization, a variability-driven

design framework should have the following properties:

On one hand considering modeling, accurate models are required that not only

capture variations but also capture different types of correlations that might exist

between different design parameters. These models also need to be evaluated fast

to be applicable in an optimization framework.

On the other hand considering optimization, efficiency is an important desired

property in the presence of variations. Particularly a probabilistic framework should

16

not be significantly slower than the corresponding deterministic one. Quality of

solution is another important property. Identification of a good quality solution

in the presence of variation is another challenge. Metrics such as parametric yield

are just one way of evaluating potential solutions. Overall, a variability-driven

framework needs to generate a good quality solution within a reasonable run-time.

Such a framework on the other hand should be flexible to incorporate possible

variation-aware models. These models could be presented using different expres-

sions, and the optimization framework should not be constrained on representation

of the variation-aware models in a particular format.

A variability-driven framework should also be compatible with different opti-

mization formulations that represent design-automation techniques such as dynamic

programming formulations (e.g., buffer insertion problem [16, 17, 67]), mathematical

programming formulations (e.g., gate sizing problem [13, 19, 55, 57]), etc.

In this thesis, variability-driven optimization algorithms are studied for dif-

ferent design-automation techniques. Important challenges in a variability-driven

framework will be explained in the upcoming chapters.

17

Chapter 3

Probabilistic Comparison of Solutions in Variability-Driven

Optimization

In this section an important challenge in a variability-driven optimization (in

which characteristics of a potential solution could be random variables) will be

studied. Initially, the generic characteristics of solutions in design automation are

discussed, and then the superiority probability is introduced as a metric that can be

used to compare potential solutions in the presence of process variations. Applica-

tion of this metric is then illustrated in the context of the buffer insertion problem,

in which variations are modeled using linear expressions. The case in which varia-

tions are modeled as polynomial expressions will be studied afterwards, and will be

illustrated in the context of the dual-Vth leakage optimization problem.

3.1 Deterministic Optimization in Design Automation

Typical optimizations in design automation minimize a cost function such as

power or area, while satisfying a timing requirement. Several strategies such as

gate sizing, buffer insertion, leakage and dynamic power optimization fall under this

generic optimization scenario.

Depending on the structure of the problem and application, several techniques

for optimizing design cost under timing constraint have been proposed. These in-

18

clude dynamic programming (popularly used in buffer insertion [17, 35, 67], and

iterative techniques [55, 57]). Most of these optimization methods compare poten-

tial solutions to the problem to determine the one with better quality. Any potential

solution Si, is characterized by two fields; an associated timing ti and cost ci. While

comparing two potential solutions Si and Sj, the superior solution is the one that

has better timing and cost:

Si superior Sj ⇔ ti ≤ tj , ci ≤ cj (3.1)

In this work, it is assumed that a smaller timing and cost to be desirable. Other

possibilities can be converted to the form above. For two potential solutions and

their associated timings and costs, this superiority evaluation is decided in constant

time, as fixed deterministic values are compared.

3.2 Superiority Probability: Metric for Comparison of Solutions

The manufacturing process of the Deep Sub Micron (DSM) technology causes

significant variations on design parameters. These variations cause fluctuations in

the device properties such as the channel length or oxide thickness, which directly

affect the device characteristics such as its delay and power. It is crucial to account

for these variations in the optimization framework. A popular method to consider

process variations, is by representing the varying design parameters as random vari-

ables [12, 15, 56, 70]. This corresponds to the timing and cost of each potential

solution to be random variables as well. The random variables for the timing and

cost of a solution Si, are denoted by Ti and Ci respectively.

19

Having the timing and cost of a solution Si as random variables, Si is superior

to Sj if with an approximate probability of 1 it has better timing and cost:

Si superior Sj ⇔ P (Ti ≤ Tj, Ci ≤ Cj) ≈ 1 (3.2)

For two solutions Si and Sj , the probability Pij is the value of the probability above

and is called the superiority probability in this thesis. For two solutions Si and Sj ,

the superiority probability can alternatively be written as:

Pij = P (T ≥ 0, C ≥ 0) =

∫ ∞

0

∫ ∞

0

fT,C(t, c)dtdc (3.3)

where T=Tj − Ti and C=Cj − Ci are newly defined random variables.

These two random variables are correlated to each other, due to correlated

timings and costs of the solutions. This correlation occurs because both timing and

cost are affected by common sources of variations. Therefore a joint probability

density function (jpdf) is defined for T and C (fT,C(t, c) in the above equation).

The superiority probability is defined as the computation of the double integral of

the above equation.

3.2.1 Challenges

As described earlier, comparison of solution pairs is a very important step, that

is explicitly or implicitly performed in most design optimization algorithms. When

the cost and timing are deterministic values, the evaluation is performed in constant

time (equation 3.1). Unfortunately in presence of variability-induced randomness,

the superiority evaluation (computing equation 3.3) is very challenging.

The superiority probability defined in equation 3.3 denotes the probability that

20

one solution is better than the other, by generating a value ranging between 0 and

1. The superiority probability can be used to effectively prune out solutions that

are probabilistically sub-optimal, as will be explained in detail later. In an iterative

optimization framework, it can be used to drive the direction of optimization towards

probabilistically better solutions. Hence computing the superiority probability is

highly imperative in variability-driven optimizations. To compute the superiority

probability the following challenges exist:

1. Accuracy: Computation of equation 3.3 requires accurate characterization of

the Joint Probability Density Function (jpdf) of random variables T anc C.

This includes accurately capturing their existing correlation. In addition, in-

tegration of the jpdf also needs to be accurately computed.

2. Speed: The computation in equation 3.3, which corresponds to evaluation

of one solution pair, must be performed in an efficient way to be applicable

in the optimization framework. Any optimization framework would involve

comparison of many solution pairs to determine the highest quality solution.

In this chapter three methods are proposed / evaluated to address the above

challenges to compute the superiority probability. The first method is regular Monte

Carlo simulation, used as the basis of comparison. The second method approximates

the jpdf by well-known jpdfs (such as bi-variate Normal) and uses closed-form

expressions to compute the integral in equation 3.3. The last method referred as

Conditional Monte Carlo uses analytical bounds to quickly compute the integral for

certain integration regions, combined with regular Monte Carlo for the rest.

21

Within the probabilistic comparison of solutions the T and C random variables

could be approximated as linear expressions and therefore would have a Normal den-

sity function individually and bi-variate Normal density function jointly. However

in general, the assumption is that the joint density function of T and C could be of

any type, and then effective methods are proposed to compute the superiority prob-

ability. Initially the importance of the superiority probability in the context of the

buffer insertion problem is illustrated. Then the theory behind the three proposed

methods are presented and the details of the proposed methods are elaborated in

variability-inspired optimization problems, and in particular when potential solu-

tions are characterized to be in general polynomial expressions. Another important

design automation application, the dual-Vth leakage optimization, is then studied as

an example in which characteristics of solutions are modeled as polynomial expres-

sions.

In the simulations conducted on these problems, it is shown that regular Monte

Carlo simulation is very slow, therefore infeasible to get incorporated in an optimiza-

tion framework. The jpdf approximation method is very fast but generates solution

of lower quality, when compared to Conditional Monte Carlo method, due to lack

of accuracy in computation of the superiority probability. The Conditional Monte

Carlo method is on average 25 times faster than regular Monte Carlo method, but it

is slower than jpdf approximation technique. It generates solutions of better quality

compared to jpdf approximation technique, because of better accuracy.

In the next section, I will show the application of the pruning probability in

the context of the buffer insertion problem.

22

3.3 Application: Variability-Driven Buffer Insertion

In this section the effects of process variations in the buffer insertion problem

is studied in a variability-driven (probabilistic) framework in order to illustrate the

application of the superiority probability for more effective comparison of solutions.

3.3.1 Introduction to Buffer Insertion

Buffer insertion is a critical step in design automation and is one of the most

successful techniques for timing optimization. In Deep Sub Micron (DSM) era, the

long interconnect delay has particularly turned into a serious obstacle [31]. Each

interconnect typically has a source representing an originating gate and a set of

sinks representing the fanouts or loads of the source. In practice there is a required

arrival time for a signal to travel from the source of an interconnect and reach any

of its sinks. A good example is the clock network in which the clock signal should

arrive the fanouts of the clock network (in this case flip-flops) at certain required

arrival times. These required arrival times at the sinks in general might be different

from each other.

Figure 3.1 illustrates a typical fanout interconnect tree with one source con-

nected to a set of sinks. Each node in the interconnect tree illustrates a bifurcation

comprising of two or more children. Each interconnect segment in the tree is repre-

sented as a lumped RC network. The resistance (R) and capacitance (C) values for

any segment depends on the segment length and the parasitics.

23

c2

1

sink

3

2

sink

4 sink

5

r01

Source
r13

r12

r35

r34

c1

c5

c4

c3

Figure 3.1: Example of an RC tree network.

In order to make sure the required arrival times are satisfied at the sinks,

buffers are inserted in the interconnect tree. This tree has potential buffer locations

at some of the nodes to improve the delay. For a given interconnect tree, the

delay of each segment depends on the resistances and capacitances of all the other

segments that are located in its downstream path to the sink. The delay of each

interconnect path from the source to any of its sink is the summation of the delays

of the individual segments on the path.

If the delay from the source to any sink in this tree is larger then what is

required, buffer(s) could be placed along the path to decrease the delay. For example

in Figure 3.1 if the path from the source to node 5 has a large delay, a buffer can

be inserted in node 3. Inserting buffer at node 3 reduces the capacitance that is

seen downstream to the sink, because effectively only the buffer will be seen in the

downstream path, and the capacitance of the buffer in practice is much smaller than

the remaining interconnect segments (capacitances of nodes 4 and 5 in this case).

In the buffer insertion problem, given an interconnect tree, a set of nodes of

this tree is also provided which represents the potential buffer locations. The goal

of the buffer insertion problem is to assign buffers to these potential locations in

order to meet the required arrival times at all the sink nodes on the tree.

24

The van Ginneken algorithm is a dynamic programming formulation that can

efficiently find an optimal solution to this problem [26]. This is assuming the delay

of each interconnect segment is modeled using a first-order expression known as the

Elmore delay model [23]. This delay model in general is shown to be extensively

overestimating the actual delay. More accurate delay models have also been applied

to solve this problem [4]. They result in a higher quality solution.

These approaches assume that the interconnect and buffer parasitics are fixed

values. However under process variations, these parameters become random vari-

ables, resulting in the arrival times of the signals to become random variables too.

Probabilistic buffer insertion has been studied recently. The approach in [35] is

one such example assuming uncertainty in the interconnect-length. This approach

does not take into account correlations among the lengths of different intercon-

nect segments, and is applicable only when interconnect delay are modeled using

a first-order approximation (Elmore delay model [23]). The approach in [67] does

probabilistic buffer insertion considering correlated interconnect and buffer varia-

tions, however the presented method is formulated for the Elmore delay model only,

and the comparison of solutions is not very effective because it does not consider

the correlation among solutions. The paper [39] investigates the impact of process

variation in effective channel length of a device and Chemical Mechanical Polishing

to build a model for RC parasitics, and uses it to solve for the simultaneous buffer

insertion, interconnect-sizing and fill insertion problem. However this technique

does not consider correlations among variables while estimating the characteristics

of potential solutions.

25

In this study the interconnect and buffer parasitics are random variables that

in general might be correlated to each other due to getting affected by common

sources of variation. It has been shown in [10, 65] that ignoring correlations results

in tremendous over-estimation of signal path delays in a circuit. Because of con-

sidering correlations, the proposed buffer insertion approach has a better estimate

of the delays and costs of a solution. In addition different buffering solutions are

also correlated to each other. Ignoring this type of correlation results in mislead-

ing comparison of potential solutions during optimization, resulting in inaccurately

identifying a sub-optimal solution as optimal. As will be illustrated comparison of

potential solutions are effectively done using the metric: superiority probability.

In summary the proposed comprehensive buffer insertion approach has the

following contributions:

• Variations are assumed to affect both the interconnect and buffer parameters.

• Correlations among design parameters due to common sources of variation are

considered.

• Higher order delay models for interconnects in addition to the Elmore delay

model can be used.

• The superiority probability effectively compares potential solutions while con-

sidering their correlations.

26

In the upcoming subsections initially the methods to compute the signal prop-

agation in a buffered interconnect tree using different interconnect delay models are

reviewed. Then these models will be modified to consider process variations. The

probabilistic algorithm to buffer insertion that is an extension of the van Ginneken

algorithm will then be presented. Finally at the end of this section supporting

simulation results will be presented.

Simulation results indicate that the solutions from deterministic approaches

which met the timing requirement deterministically, under process variations on

average only had 0.19 probability of meeting the timing constraint. However, our

proposed probabilistic buffer insertion, generated solutions that met the timing con-

straint with an average probability of 0.63.

Next I will summarize the conventional buffer insertion problem which in-

cludes the formal definition of this problem, and different delay models of a buffered

interconnect tree, and then extend these to consider process variations.

3.3.2 Preliminaries

Definition of the Buffer Insertion Problem

Given the fanout interconnect tree with parasitic resistances and capacitances,

interconnect-lengths, potential buffer locations, sink required arrival times, sink

capacitive loads, the buffer insertion problem is the problem of placing buffers into

the tree such that required arrival time at input of the driving gate is maximum.

27

Buffer Delay Model

Each buffer has two intrinsic parameters rbuf and cbuf where rbuf is the driving

resistance and cbuf is the input pin capacitive loading. Given a buffer placed at a

certain node ni in the tree, the delay of the buffer dbuf is rbuf × CTi
, where CTi

is

the capacitance of the interconnect tree rooted at ni.

The computation of CTi
is explained in the following example. Assume buffers

exist at n1 and n3 in figure 3.1. The delay in the buffer at n1 is dbuf1 = rbuf1 ×CT1 ,

where CT1 = C1 + C2 + cbuf3 . Here cbuf3 is the capacitance of the buffer placed at

n3. If there is no buffer at n3 then CT1 = C1 +C2 +C3 +C4 +C5. Therefore having

a buffer shields off the downstream capacitive loading.

Interconnect Delay Model: First-Order Approximation

Several delay models have been proposed that estimate the arrival time at the

source of a buffered tree. The simplest one is the Elmore delay model [23], which is

a first-order approximation of delay. Using the Elmore delay model, the delay of an

interconnect segment (i, j from ni to nj) is:

di,j = ri,j × CTj
(3.4)

Here ri,j is the resistance of the segment connecting the two nodes, where nj is the

child of ni (in the fanout tree). CTj
is calculated as explained in section 3.3.2. The

delay of a path P from ni to a sink nt in the tree is:

di,t =
∑

∀net−segment:k,j∈P

dk,j +
∑
∀buf∈P

dbuf (3.5)

28

For a tree with appropriate placement of buffer locations, the required arrival time

at the source is computed in the following procedure using the Elmore delay model.

The tree is traversed topologically from the sinks to the source. At each node ni,

two important parameters denoted by Ri and CTi
are computed, where Ri is the

required arrival time at ni, and CTi
is the capacitive loading seen at ni. These

parameters are computed bottom-up using the following equations:

Ri = Min∀j∈child(i)(Rj − di,j) (3.6)

CTi
= Ci +

∑
∀j∈child(i)

CTj
(3.7)

where di,j is the Elmore delay between ni and its child nj .

If a buffer exists at ni then Ri and CTi
are adjusted as: Ri = Ri − dbuf and

CTi
= cbuf , where dbuf is computed as explained in section 3.3.2. The required

arrival time at the source of the driving gate is Rsource which is computed using the

above equations in topological interconnect tree traversal.

Interconnect Delay Model: Second-Order Approximation

A second-order delay model from a node ni to a sink nt requires computation

of the first and second moments between these two nodes. Note sink nt can either be

a buffer or an actual sink of the interconnect tree rooted at ni. The second moment

from a node ni to sink nt denoted by m2i,t can be computed recursively in terms of

a node nj in the path between i to t as proposed in [42]:

m2i,t = m2i,j +m2j,t + Pi,t
(3.8)

29

where

m2i,j = ri,jZi,j

Zi,j = m1i,jCTj
+

∑
k∈child(j)Zj,k

Pi,t = m1i,j ×m1j,t

Here m1i,j is the first moment (Elmore delay model). The variables Pi,t and Zj,k

can be thought of as auxiliary variables. The variable CTj
refers to the total lumped

capacitance seen from nj , where nj is the child of ni that contains sink nt in its

fanout tree. Using these first and second moments, the second-order delay model,

denoted by D2M, from ni to sink nt denoted by di,t is computed as follows [3]:

di,t =
(m1i,t)

2√
m2i,t

ln2 (3.9)

This is an empirical model that is always upper bounded by the Elmore delay model

(m1). To obtain this empirical expression, it was observed in [3] that in general for

any path, such as the path from ni to nt, the ratio of
(m1i,t)

2

m2i,t
is much smaller than 1

at ni, and slighter lager than 1 at the nt. Consequently, this “scaled Elmore delay”

was adjusted, resulting in the above D2M expression.

Compared to other delay models, D2M has the following advantages [3]:

• It is simpler than higher order delay models of [34, 41] and therefore better

suited in optimization.

• It is more accurate than the Elmore model with a significant decrease in the

error of approximating the delay.

30

Given a buffered interconnect tree, the required arrival time at the source is

calculated as follows: As the tree is traversed topologically from POs to the source,

for each node ni in the tree, the required arrival time and capacitive loadings (Ri

and CTi
) are computed. CTi

is found using equation 3.7. Required time Ri is:

Ri = Min∀sinks:t(Rt − di,t) (3.10)

where di,t is the D2M delay model found by equation 3.9 using first and second

moments that are already computed. In equation 3.10 the sinks of ni are buffers

or tree sinks that are reachable directly (without any intermediate buffers) from

ni. If a buffer exists at ni then Ri and CTi
are adjusted as: Ri = Ri − dbuf and

CTi
= cbuf . The required arrival time at the source of the driving gate is Rsource

which is computed bottom-up using the above equation in topological tree traversal.

3.3.3 Variation-Aware Delay of A Buffered Interconnect Tree

In the previous section, fixed delay calculation from any node ni to any sink nt

in a buffered fanout tree of a driving gate was explained. This delay was caused due

to interconnect and buffer parasitics. One method to consider process variations, is

by representing the varying device and interconnect parameters as random variables

similar to [10, 35, 39, 67], for which probability density functions (pdfs) are modeled.

Given the pdf for each of the interconnect and buffer parasitics, computing the pdf

of the arrival time in the source of a buffered interconnect tree is explained in this

section, while considering the correlations among random variables due to common

sources of process variation.

31

Modeling Variability in Parasitics and Their Correlations

For each segment i, j in the interconnect tree, the resistance ri,j and capac-

itance Cj are random variables. These random variables are expressed in a linear

form, as in [1, 10, 65]:

Vj = μvj +
n∑

i=1

a
(v)
ij Xi + b

(v)
j Yj (3.11)

Here Vj represents the random variable for the resistance or capacitance of an in-

terconnect segment or buffer parasitics. In the above equation Xis are independent

random variables representing variable chip parameters such as effective channel

length or oxide thickness. In practice if the Xi random variables are correlated to

each other, using a principal component analysis [33], one can always transform

the set of correlated random variables into a set of independent random variables.

These principal components are assumed to have a standard Normal distribution

(N∼(0,1)) [37, 40, 65]. Also in the above equation the variable Yj has a standard

Normal random distribution and represents uncorrelated variation in the intercon-

nect segment (or buffer) and is assumed to be independent of the other Xi variables.

The constant μvj is the expected value of Vj. All parasitics share the common prin-

cipal components and therefore illustrate correlated behavior. The buffer parasitics

rbuf , cbuf are also approximated using this linear expression.

Linear representation provides a very elegant way of capturing global corre-

lations, due to the common Xi random variables. Similar to the approaches in

[1, 10, 65], all delay and capacitance random variables at each node of a buffered

interconnect tree are presented as linear expressions, which is explained next.

32

First-Order Approximation

In computing the arrival time of a buffered tree using Elmore delay model, the

total capacitance in any subtree rooted at node ni is the sum of parasitic capacitance

terms (equation 3.7). Each parasitic capacitance is described in a linear expression

using the commonXi principal components and a Yj variable indicating uncorrelated

behavior in the system. Addition of capacitances, each expressed in a linear form is

represented in a linear form by summation of corresponding coefficients of Xi and

Yj variables:

CTi
=

∑
Cj =

∑
μcj +

∑
∀k

(
∑

a
(c)
kj)Xk +

∑
b
(c)
j Yj (3.12)

In this representation, the total number of variables are the sum of principal com-

ponents and random terms Yj.

Delay of an interconnect segment i, j from node ni to its child nj denoted

by di,j is computed using Elmore delay, where ri,j = μrij
+

∑
a

(r)
ij Xi + b

(r)
j Yj and

Cj = μcj
+

∑
a

(c)
ij Xi + b

(c)
j Yj, each represented in a linear form, are multiplied,

resulting in the following expression:

di,j = rij × Cj = μri,j
μcj

+
∑

(a
(r)
i,j + a

(c)
i,j)Xi +

∑
(b

(r)
i,j + b

(c)
i,j)Yi + ... (3.13)

The multiplication result is approximated in a linear form by ignoring the second

order terms. Once the delay of an interconnect segment is represented in a linear

form, the required arrival time at node ni is computed bottom-up. Recall this

was done by topologically traversing the nodes from the sink nodes to the source.

Given the required arrival time Rj for any child nj of node ni expressed in a linear

33

form, the required arrival time of ni, denoted as Ri, is computed using equation 3.6

(Min∀j∈child(i)(Rj −di,j)). The required arrival time of ni is approximated in a linear

form as follows:

• Initially the linear expressions of Rj and di,j are subtracted:

Rj − di,j = μRj
− μdi,j

+
∑

(a
(R)
i,j − a

(d)
i,j)Xi +

∑
(b

(R)
i,j − b

(d)
i,j)Yi

• Then a Min operation (equation 3.6) is done on required arrival times.

The Min of two linear expressions is approximated as a linear expression, as

will be explained. If node ni has more than two children, Min is iteratively done.

Let R3 = Min(R1, R2). We have:

R1 = a10 +
∑n

i=1 a1iXi +
∑m1

i=1 b1iYi

R2 = a20 +
∑n

i=1 a2iXi +
∑m2

i=1 b2iYi

R3 = Min(R1, R2) = a30 + k(
∑n

i=1 a3iXi +
∑m1+m2

i=1 b3iYi)

(3.14)

The coefficients a30, a3i and b3i are computed using [14]:

a30 = a10φ(α) + a20φ(−α) + θϕ(α)

a3i = a1iφ(α) + a2iφ(−α); b3i = b1iφ(α) + b2iφ(−α)

θ2 = a2
10 + a2

20 − 2a10a20ρ; α = (a20 − a10)/θ

(3.15)

where ϕ(α) and φ(α) are the pdf and cumulative distribution function (cdf) for a

standard normal (N∼(0,1)) random variable. The parameter ρ is the correlation

coefficient between R1 and R2. Constant k=σactual/σapprox is defined such that the

34

variance of the actual and approximate distributions match:

σ2
actual = (a2

10 + σ2
R1)φ(α) + (a2

20 + σ2
R2)φ(−α)

+(a10 + a20)θϕ(α) − a2
30

σ2
approx =

∑n
i=1 a

2
3i +

∑m1+m2

i=1 b23i

(3.16)

Therefore using this technique the output of the Min operation is approximated

back in a linear form. Note if the node has a buffer location, then Ri = Ri − dbuf

and CTi
= cbuf . Here dbuf and cbuf are represented in a linear form and the result

is a linear expression once again. Finally the required arrival time at Rsource is

computed bottom-up using equation 3.6.

Second-Order Approximation

In order to compute the second order delay di,k from node ni to any node nk,

the first and second moments between these two nodes are calculated. The first

moment is calculated using equation 3.5, where the delays of buffers dbuf and of

interconnect segments dk,j are all expressed in a linear form and the results of their

additions are in a linear form. The second moment is computed using equation 3.8,

by adding and multiplying linear forms, also expressed in linear form.

The D2M delay model is computed using the first and second moments using

equation 3.9. Assuming the first and second moments are represented in a linear

form, the D2M delay model is approximated back in the linear form similar to the

approach in [1]. If

m1i,t = m10 +
∑n

i=1 a1iXi +
∑m1

i=1 b1iYi

m2i,t = m20 +
∑n

i=1 a2iXi +
∑m2

i=1 b2iYi

35

then according to [1]:

D2Mi,t = ln2 × m2
10√
m20

(1 +
n∑

i=1

a3iXi +

m1+m2∑
i=1

b3iYi) (3.17)

where

a3i =
2a1i

m10
− a2i

2m20
b3i =

2b1i

m10
− b2i

2m20
(3.18)

Once the delay is computed using the D2M model, the required arrival time at each

node is computed using equation 3.10 during the topological traversal of the tree

from POs to the source. This involves subtraction and Min of linear expressions,

which are all presented back in linear form. Finally the required arrival time at

Rsource is found as a linear expression during the topological traversal of tree.

3.3.4 Variability-Driven Buffer Insertion: The Algorithm

A probabilistic approach to design optimization should be able to handle the

variability in DSM fabrication technology. Such an approach takes the probabilistic

estimates of critical design metrics such as timing and perform design optimiza-

tion such that the likelihood of satisfying all design constraints simultaneously are

maximized. In this work such an approach to the buffer insertion problem is pre-

sented. The primary objective is to decide the locations of buffers in a tree such

that the overall likelihood of satisfying a required timing constraint at the source is

maximized:

Objective = Maximize

∫ ∞

D

f(t)dt (3.19)

where D is the arrival time constraint at the source of the tree and f(t) is the pdf

of the arrival time of a solution at the source. Through linear representation, the

36

proposed approach can effectively consider correlations while performing probabilis-

tic optimization. The variability-driven algorithm is generic enough in capturing all

kinds of parametric variability (as compared to only interconnect-length variabil-

ity in [35]) including buffer parasitic variability. Finally, the formulation uses the

second order delay model and is therefore significantly more accurate and practical.

Algorithm

The overall structure of the algorithm is similar to [4] and is generalizable

both to the Elmore delay model and the second order D2M model. The algorithm

traverses the tree topologically from the sinks to the source.

At each node a set of potential buffering solutions for the fanout subtree rooted

at the node is determined. This is followed by pruning of the sub-optimal solutions.

This procedure is repeated at each node until the source where the solution with

the best probability of meeting the timing constraint is chosen.

Any solution S(n) at a node n is characterized by four parameters: S(n).req,

S(n).ceff , S(n).bufs and S(n).sinks. Here S(n).req and S(n).ceff are the re-

quired arrival time and the effective capacitive loading respectively for the buffering

solution of the subtree rooted at n. Both these parameters are random variables ex-

pressed in a linear form. S(n).buff remembers the buffer locations and S(n).sinks

contains the list of all nodes in the buffer sub-tree rooted at n directly within reach

from n (without any intermediate buffers). The first and second moments to these

sinks from n are also stored.

37

Algorithm I illustrates how to calculate the set of solutions for a node n. As

the tree is traversed topologically from the sinks to the source. For each node n,

the following steps are done:

• If node n is a sink, one solution is formed for which the required arrival time,

S.req, and the effective capacitance, C.eff , is set to the required arrival time

and effective capacitance of that sink, provided as input. Since the assumption

is that the sink itself is not a potential buffer location then S.bufs will be the

empty set. S.sink which stores the sinks that are seen so far, will be the node

itself.

• If node n has one child, the solution set formed for the child will be used to

generate the solution set of the node. For each solution of the child (Schild(i)),

one solution is initially generated for the node (S(i)). Here S(i).ceff is found

by the addition of the linear expressions of Schild(i).ceff with Cn of node

n. The stored sink nodes and buffers will remain the same (S(i).sinks =

Schild(i).sinks, S(i).bufs = Schild(i).bufs).

To find the required arrival time S(i).req, the delay from node n should be

computed to any of its sink k that is in S(i).sinks. This delay is computed

as a linear expression using the Elmore delay model or the second order delay

model as previously explained. The required arrival time S(i).req of the node

for solution i is the minimum of these required arrival times which is found

using equation 3.6.

38

• Finally if node n has more than one child, initially a new solution set is

generated by merging all the solutions of all the children.

Algorithm II shows how to merge two such solutions from the node’s children.

To merge solutions Si and Sj from two children of node n, the union of Si.sinks

and Sjsinks will be the new set of sinks. Also the union of Si.bufs and

Sjbufs will be the new set of stored buffers. The required arrival time is found

similarly by finding the minimum of the required arrival times of solution Si

and Sj . The effective capacitance is found by adding the linear expressions of

Si.ceff and Sj.ceff . For more details please refer to algorithm II.

This merging is done for all combinations of all solutions of the children of the

node to generate the new solution set for n.

• Once the solution set of node n is generated, possibility of adding a buffer

is investigated. If n is a potential buffer location, each solution S(i) of n is

replaced by two solutions, to store both possibilities of adding / or not adding

a buffer. If a buffer is not added, the attributes of the solution will stay the

same. If a buffer is added, node n will be added to the set of stored buffers

for that solution. The effective capacitance of the buffered solution will be set

to the effective capacitance of the buffer. The sinks of the buffered solution

will be only node n itself, and finally the required arrival time of the buffered

solution will be the required arrival time of the unbuffered solution minus the

buffer delay. These details are shown in Algorithm I.

39

Algorithm 1 Probabilistic Buffer Insertion

INPUTS: Fanout tree of node n, Required Arrival times at the sinks

OUTPUT: Set of co-optimal solutions for fanout tree of n

S = ø

if(n is a sink)

S.req = Rn /*Rn = required arrival time at sink n*/

S.ceff = 0 S.bufs = ø S.sinks = n

else if(n has one child)

for(i=1;i ≤ |S|; i++)

S(i).sinks = Schild(i).sinks

/* Compute the first and second moments to each sink */

S(i).ceff = ProbSum(Schild(i).ceff , Cn)

S(i).bufs = Schild(i).bufs

for each sink k in S.sinks

Delay = ComputeDelay(n, k) /*Using D2M or Elmore Delay*/

ReqT imes(k) = k.req −Delay

/* k.req = required arrival time at sink k*/

S(i).req = ProbMin(ReqT imes)

else

for(i=1; i ≤ |Schild1|; i++)

for(j=1; j ≤ |Schild2|; j++)

Si = Schild1(i)

Sj = Schild1(j)

S = Union(S, Merge(Si, Sj))

if(n has a feasible buffer location)

BufferSols = ø

for(i=1; i ≤ |S|; i++)

BufferSols(i).req = S(i).req −BufDelay

/*Note Subtraction is on canonical expressions*/

BufferSols(i).ceff = buffer.ceff

BufferSols(i).bufs = Union(S.bufs,n)

BufferSols.sinks = {n}

S = Union(S, BufferedSols)

Prune(S)

return(S)

40

Algorithm 2 Merge Solutions

INPUTS: Solution Si of child1 and Solution Sj of child2 of child n

OUTPUT: Combined solution S

S.sinks = Union(Si.sinks,Sj .sinks)

ReqT imes = ø

for each sink l in S.sinks

Delay = ComputeDelay(n, k)

/*Using D2M or Elmore Delay*/

ReqT imes[k] = k.req −Delay

S.req = ProbMin(ReqT imes)

S.ceff = ProbSum(Si.ceff , Sj .ceff)

S.bufs = Union(Si.bufs, Sj .bufs)

Algorithm I is called for all the nodes in topological order from the sinks to

the source. Once the solution set in the source node is generated, among all the

solutions, the one that has the maximum probability of meeting the required arrival

time constraint (computed from equation 3.19) is selected, and its corresponding

buffer locations will be the result of the algorithm.

As can be seen when a node has more than one child, the size of the new

solution set after combining the solution of the node’s children will exponentially

grow, because all the possibilities are stored. More over if the node is a potential

buffer location, the size of the solution set is doubled. Unfortunately in practice it

is not possible to store and evaluate all the possibilities, and it is also important to

efficiently obtain a high quality solution.

To do this at each node pruning is done using the concept of the superiority

probability introduced in this chapter. As Algorithm I shows, once the solution

set of the node is generated, pruning is done to identify and store only a limited

41

number of “co-optimal” solutions (or high-quality solutions). The number of stored

co-optimal solutions will be summation of the number of solutions of the node’s

children. Storing only a “linear” number of solutions ensures practical run-time

for this algorithm. Next the use of the superiority is explained to effectively prune

sub-optimal solutions in this problem.

Probabilistic Pruning of Solutions

Given a set of buffer insertion solutions at a node, the goal of the pruning

criterion is to select a set of co-optimal solutions of these. In a deterministic case,

two solutions Si and Sj are co-optimal if (Ci ≤ Cj , Ri ≥ Rj) or (Cj ≤ Ci, Rj ≥ Ri).

Given a set of solutions van Ginneken [26] proposes a criteria to identify these co-

optimal solutions (assuming the Elmore delay model is used). This is done as follows:

For a given solution set, among all the solutions that have the same required arrival

time, the one with minimum capacitive loading can be stored and the rest of them

can be pruned (removed). Therefore for each required arrival time only one solution

is stored. This criteria ensures that only a linear number of solutions are stored.

To understand this, assume two solutions sets of size m and n are combined. The

combination of these two sets results in m× n number of solutions. However these

m × n solutions could have at most m + n values for their corresponding required

arrival times. This is because the required arrival time is always the minimum of

the required arrival times. The stored m+n solutions are guaranteed to include the

optimal solution as the interconnect tree is traversed topologically.

42

In the probabilistic case, it is extremely important how co-optimality among

solutions are defined, when the required arrival time and capacitive loading of each

solution are random variables. The superiority probability proposed in this section

can be directly applied in this case as follows:

For any two potential solutions Si and Sj , their effective capacitive loadings

and required arrival times, denoted by Ci, Ri, Cj, Rj respectively, are random vari-

ables that are presented in a linear combination of the Xi and Yi random variables.

Solution Si is said to be superior to Sj if with a probability of almost 1 it has better

arrival time and capacitance:

Si superior Sj ⇔ P (Ri ≥ Rj, Ci ≤ Cj) ≈ 1

Recall that the superiority probability is the value of the probability above:

Pij = P (R ≤ 0, C ≤ 0) =

∫ 0

−∞

∫ 0

−∞
fR,C(r, c)drdc (3.20)

where R=Rj−Ri and C=Ci−Cj are newly defined random variables, which are also

presented as linear combination of Xi and Yi variables. These two random variables

are correlated to each other, due to correlated arrival times and capacitive loadings

of the solutions. Therefore a joint probability density function (jpdf) is defined for

R and C (fR,C(r, c) in the above equation).

The superiority probability Pij of solution Si over Sj expresses the extent to

which Si is better than Sj , by generating a value ranging between 0 and 1. It can be

used to effectively prune out solutions that are probabilistically sub-optimal. This is

due to considering correlations between the capacitive loading and arrival time of a

solution together with the correlation between two solutions.

43

Other probabilistic pruning criteria use less effective comparison techniques

in terms of the quality of final generated solution. As an example [67] uses the

following pruning criteria:

Threshold values are defined for the arrival time and cost of each solution. In

general any threshold α given by the designer specifies a corresponding value πα for

the time or cost of a solution given by:

α =

∫ πα

−∞
f(x)dx (3.21)

where f(x) is the pdf of the arrival time or cost of a solution. For example given

the threshold α = 0.1 might have a corresponding arrival time of πα = 100nsec,

meaning that with probability of 0.1, the timing of the solution is at most 100nsec.

Four threshold values are provided by the designer corresponding to the mini-

mum and maximum accepted thresholds for the arrival time (α
(r)
l , α

(r)
u) and capac-

itive loading (α
(c)
l , α

(c)
u) of each solution. In this pruning criteria [67], a solution Si

is better than Sj if the following two conditions hold: π
(i)

α
(r)
l

> π
(j)

α
(r)
u

and π
(i)

α
(c)
u

< π
(j)

α
(c)
l

.

These two inequalities indicate that Si is better than Sj if its corresponding

worst-case arrival time (π
(i)

α
(r)
l

) is still better (larger) than the best-case arrival time of

Sj (π
(j)

α
(r)
l

), and similarly for the capacitive loading, the worst-case capacitive loading

of Si (π
(i)

α
(c)
u

) is better(smaller) than the best-case capacitive loading of Si (π
(j)

α
(c)
l

),

where the definition of the “best-case” and “worst-case” depend on the threshold

levels defined by the designer.

The effectiveness (quality of solution and efficiency) of this pruning criteria

depends on how the four threshold are defined by the designer, and how fast the

44

corresponding πα given a threshold α can be determined. Our pruning criteria on

the other hand uses the notion of superiority probability which can more effectively

compare potential solutions.

Assuming the principal components (Xi random variables) and the Yi random

variables representing random noise are independent with standard Normal distribu-

tion (N∼(0,1)), the following observation is made: All random variables represented

as linear combination of the Xi and Yi random variables have a Normal distribution

individually and multivariate normal distribution jointly.

This observation follows from the definition of multivariate Normal variables:

Two random variables are jointly Normal iff all their linear combinations are Normal.

In our case any linear combination of the arrival time or cost is written as a linear

expression in terms of Xi and Yi random variables (that have standard Normal

distribution), that are independent. Therefore any linear combination has a Normal

distribution as well. Therefore the jpdf in equation 3.20 (fR,C(r, c)) is bivariate

Normal.

For computing the superiority probability, or equivalently the double integral,

[27] has reviewed many approximation methods. Here the standard procedure using

tetrachroric series is used:

Pij = φC(−μC

σC
)φR(−μR

σR
) + ϕC(−μC

σC
)ϕR(−μR

σR
)

+
∑∞

k=0
1

(k+1)!
Hek

(−μR

σR
)Hek

(−μC

σC
)ρk+1

where ϕC , ϕR are the pdfs and φC and φR are cdfs of the normally distributed R

and C random variables. The parameter ρ is the correlation coefficient between R

45

and C. Finally Hek
(x) is the Hermite polynomials described as:

Hek
(x) =

∑[k
2
]

m=0
k!

m!(k−2m)!
(−1)m2−mxk−2m

It has been shown that the above polynomial description, estimates the superiority

probability Pij with an accuracy of 1% if expanded until the 5th order [64]. Therefore,

the computation of the double integral is hugely simplified to computation of a 5th

order polynomial.

For each solution pair Si and Sj, P (Si prunes Sj) and P (Sj prunes Si) are

calculated. For each solution Si, a co-optimality metric is defined which reflects the

likelihood that it prunes the rest of the solutions:

co− optimality(Si) =
∑
∀j �=i P (Si prunes Sj)

Once the co-optimality metric for each solution is determined, a number of co-

optimal solutions equal to the sum of the total number of solutions at the children

of the node is chosen. For example if the node has 2 children with p and q number

of solutions, p+ q solutions are chosen out of the p× q solution set.

The p + q solutions with the largest value of their co-optimality metric are

chosen. Note that selecting linear number of solutions enforces a linear growth of

solution space which allows for reasonable run-time of the algorithm. This pruning

criterion is applied at each node while traversing the tree in topological order.

3.3.5 Results

The goal of the simulations is to illustrate that probabilistic buffer insertion

considering correlations under more accurate delay model is the most effective ap-

46

proach in presence of variability. The following approaches are compared:

• D2-PC: Probabilistic with D2M model and correlations

• D1-PC: Probabilistic, Elmore delay and correlations

• D2-D: Deterministic with D2M delay model (such as [4])

• D1-D: Deterministic with Elmore delay[26]

D2-PC and D1-PC are the proposed probabilistic methods with correlations

for D2M and Elmore delay models. D2-D and D1-D are based on the D2M and

Elmore delay model and are deterministic methods similar to the approach of [4]

and van Ginneken algorithm [26].

To consider process variations, the linear expression for resistance and capac-

itance of each interconnect segment was constructed as follows:

Each interconnect tree has segments of length between 10λ to 100λ for 0.18u

technology. This defined the mean value for the parasitic interconnect resistances

and capacitances. In the simulations, variations in the interconnect-width and thick-

ness, and the buffer channel length were assumed to exist. These were assumed to

have Normal distribution with a standard deviation of 20% from their mean. Ad-

ditionally a random variable was considered to reflect uncorrelated variation for

each interconnect segment and one for each buffer. These variables were assumed

to have Normal distribution with mean 0 and standard deviation of 1% from the

mean. Then all these random variables were normalized to new random variables

that have standard Normal distributions similar to [5]. For capturing correlations,

47

D2−D: {8, 16}

4

7

8

1820

1

9

12

5

14

15

16

17

11

2

D2−PC: {4, 8, 14, 16}

D1−PC: {4, 8, 16}

Figure 3.2: Example: Buffering solution of different techniques for net n1.

random correlation coefficients were assumed among these variables.

Figure 3.2 shows the topology of an example net with 6 sinks. For this net the

4 presented techniques were applied. The buffering solution of these techniques are

also given in this Figure. Figure 3.3 shows the probability density function of the

required arrival time at the source (node 1) of this tree.

The required arrival-time at the sink nodes is 3 nsec. The required arrival

time at the source node is 2.6 nsec. For each technique, the probability of meeting

this timing constraint is the area under their corresponding pdf from the required

arrival time of 2.6 nsec to ∞, which are accepted signal arrival-times at the source.

Among different techniques the D2M model considering correlations has the highest

probability (of 0.84). After that D1-PC has the best solution (probability of 0.73).

Deterministic approach with D2M model has a probability of 0.62. D1-D method

did not generate a good solution, and hence was not plotted.

Table 3.1 reports the results of these methods for different nets. Columns 2

reports the relative required arrival time at the sinks (Rcons) of the tree (the actual

arrival times at the sink and the source nodes are reported in Table 3.3). For each

48

2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80
0

0.2

0.4

0.6

0.8

1

Required Arrival Time (nsec)

C
D

F

2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80
0

0.02

0.04

0.06

0.08

0.1

0.12

Required Arrival Time (nsec)

P
D

F

2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80
0

0.2

0.4

0.6

0.8

1

Required Arrival Time (nsec)

C
D

F

D2−PC

D1−PC

D2−D

D2−PC

D2−D

D1−PC

Figure 3.3: Comparison of different techniques for net n1.

technique the probability of meeting Rr and the mean μ and variance σ of the

arrival-time of the buffered solution is reported here.

It can be seen that both D2-PC and D1-PC result in higher probability of

satisfying timing constraint than other approaches. D2-PC is also superior than D1-

PC on some nets since it incorporates a better delay model. Therefore considering

correlations is imperative in probabilistic optimization.

Table 3.2 reports the number of buffers for each of these techniques. The num-

ber of sinks for each net is also reported in column 2 of Table 3.2. In deterministic

D2-D and D1-D approaches, a solution is created only if it satisfies the timing con-

49

net Rcons D2-PC D1-PC D2-D D1-D

P μ σ P μ σ P μ σ P μ σ

n1 0.40 0.84 2.64 0.04 0.73 2.63 0.06 0.62 2.62 0.07 - - -

n2 0.60 0.54 9.42 0.19 0.54 9.42- 0.19 - - - - - -

n3 0.74 0.58 9.27 0.05 0.54 9.27 0.11 0.58 9.27 0.05 - - -

n4 1.50 0.38 8.42 0.26 0.38 8.42 0.26 - - - - - -

n5 1.70 0.68 7.86 0.25 0.68 7.86 0.25 - - - - - -

n6 1.10 0.56 8.98 0.55 0.56 8.98 0.55 - - - - - -

n7 1.85 0.52 8.16 0.75 0.48 8.14 0.88 - - - - - -

n8 1.10 0.89 59.72 0.71 0.74 59.16 0.41 - - - - - -

n9 1.50 0.43 58.33 0.36 0.43 58.33 0.36 - - - - - -

n10 6.73 0.68 93.58 0.78 0.68 93.58 0.78 - - - - - -

Av. 0.61 0.58 0.12 - - -

Table 3.1: Probability of meeting the required arrival time constraint at the source

node.

straint deterministically. If a solution cannot be created the tree with no buffers is

taken. These are indicated by dashed lines in Table 3.2. Deterministic approaches

did not create a solution at many instance due to the stringent timing constraint.

The next experiment explores how the probability of meeting the timing con-

straint is affected by varying the degree of correlation among principal components.

Since access to actual correlation data was not possible, I assumed 4 different cases

where the correlation coefficients of the linear expressions of interconnect and buffer

parasitics were varied. In all these cases the D2M delay model was used.

For the 4 techniques for each interconnect-segment and buffer, the variance of

the linear expressions of the parasitics were equal.

50

#sinks D2-PC D1-PC D2-D D1-D

n1 6 4 3 2 -

n2 8 2 2 - -

n3 10 5 4 5 -

n4 16 3 3 - -

n5 16 2 2 - -

n6 32 4 5 - -

n7 32 5 6 - -

n8 64 3 2 - -

n9 69 4 4 - -

n10 73 3 3 - -

Table 3.2: Number of buffers of different techniques.

net Rs Rr P

RC HC FC NC

n1 3 0.26 0.84 0.78 0.65 0.89

n2 10 9.40 0.54 0.49 0.45 0.61

n3 10 9.26 0.58 0.58 0.52 0.62

n4 10 8.50 0.38 0.38 0.34 0.43

n5 10 8.30 0.68 0.46 0.56 0.65

n6 10 8.90 0.56 0.53 0.23 0.64

n7 10 8.15 0.52 0.41 0.49 0.59

n8 60 58.90 0.89 0.86 0.84 0.88

n9 60 58.50 0.43 0.38 0.23 0.41

n10 100 93.23 0.68 0.71 0.55 0.83

Av. 0.61 0.56 0.49 0.65

Table 3.3: Probability of meeting the required arrival time for different correlation

coefficients.

51

Table 3.3 reports the probability of meeting the timing constraint. The first

method is the case in which the correlation coefficients among the interconnect-

segment parasitics were randomly generated. This is indicated as RC (for Random

Correlation) in column 4 of the Table. The second case was at the extreme, in which

all correlation coefficients were 0. This was done by setting the coefficients of all

principal components to be 0. This is given by NC (for No Correlation) in column 7.

Third method reflects the Full Correlation case, in which the coefficients of the linear

expressions of all principal components were set such that the interconnect-segment

parasitics were fully correlated to each other. This is given by FC in column 5. A

Half Correlation case was also explored, indicated by HC in column 6, in which the

coefficients of the principal component corresponding to the interconnect-width was

set to 0.

In all methods of Table I, correlation were assumed to exist between the un-

derlying variables. However here in NC method, it is assumed that the underlying

variables are not correlated at all.

When considering the average case, NC has the highest probability, ignoring

correlations. On the other hand, FC has the lowest probability, considering highest

correlation. The probability of HC is slightly smaller than RC but higher than FC.

In general it was observed that the required arrival time corresponding to the NC

case to have a much higher variance than the other cases, but it also had a higher

mean, which resulted for it to have a better probability. On the other hand was the

FC case, that had the smallest variance of the arrival time, but also had a smaller

mean, resulting in the lowest probability. This could be happening due to different

52

places in the formulation that the correlation coefficient plays a role:

First when approximating the min of two random variables as a linear ex-

pression, the correlation coefficient is seen in equation 17, which affects the mean,

variance, and all the coefficients of the approximated variable. Second, when com-

puting the pruning probability using Hermite Polynomials, the correlation coefficient

plays a role in equation 29, which might affect pruning.

So far, it was assumed that all the random variables for the buffer and in-

terconnect parasitics to have standard Normal distribution. This resulted in the

arrival-time and capacitive loading random variables at each node to have a Nor-

mal distribution, as they are written as linear combination of these independent

standard Normally-distributed variables.

To consider how the assumption of having Normal distribution for arrival-

time and capacitive loadings affect the quality of solution, a uniform distribution

for the principal components and random terms was assumed, and Monte Carlo

simulation was used to compute the superiority probability among solutions using

the D2M delay model. Interestingly it was observed that the buffering tree of the

final solution is the same as D2-PC approach, where in the D2-PC approach the

principal components and random terms had standard Normal distribution. This

can be explained as follows. When comparing two potential buffering tree solutions

in pruning, the superiority of a solution over another is a relative relationship. This

superiority is correctly identified in the D2-PC approach when compared to Monte

Carlo. Even though the actual values of the superiority probabilities in these two

cases might be different, but the superiority among two solutions is maintained in

53

net D2-MC D2-PC D1-PC D2-D D1-D

n1 58.2 11.3 10.6 0.1 0.1

n2 6.4 1.7 1.4 0.1 0.1

n3 745.1 133.6 123.7 25.1 23.5

n4 12.7 4.3 3.9 0.3 0.3

n5 92.3 18.6 17.4 1.2 1.1

n6 547.2 99.4 97.2 3.6 1.2

n7 105.0 19.5 18.3 8.7 7.4

n8 115.5 24.5 16.3 10.6 9.5

n9 136.3 26.4 25.6 15.4 13.1

n10 157.1 28.1 25.4 14.2 12.9

Table 3.4: Run-time of different techniques (sec).

most cases, such that the final buffering tree solution is the same.

The Monte Carlo technique was observed to have a much higher run-time.

The run-time of Monte Carlo technique indicated by D2-MC and the rest of the

techniques are compared in Table 3.4. In the rest of the techniques the principal

components and random terms had a standard Normal distribution. The longest

run-time of our proposed techniques is about 134 seconds for n3, which is about 0.18

of the Monte Carlo method. All simulations were run on a SunOS 5.8 with 650MHz

CPU and 512MB memory.

These results indicate the following 1) D2-PC is superior to all other ap-

proaches since it considers variability, correlations and a superior delay model. 2)

D1-PC is slightly inferior to D2-PC since it does not consider accurate delay mod-

eling. 3) Deterministic approaches are often incapable of generating a solution.

This section was just an example showing the effectiveness of using the supe-

riority probability as a metric for comparison of potential solutions in the presence

54

of process variations. The buffer insertion example however assumed that the ex-

pressions of the timing and cost of each solution are linear. This might not be true

in the general case. In the next section three generic ways are presented to compute

the superiority probability.

3.4 Computing the Superiority Probability: The Theory

In this section three methods to compute the superiority probability are dis-

cussed. The first method is Monte Carlo simulation, which is accurate but im-

practical due to high run-time complexity, and will only be used as a reference to

evaluate the accuracy of the two other methods. The second method approximates

the jpdf in equation 3.3 with a density function for which the probability integral is

computable. This technique is shown to be very fast, however it does not have high

accuracy. The third method is based on Conditional Monte Carlo sampling which

is very accurate and yet much faster than regular Monte Carlo.

3.4.1 Monte Carlo Simulation

Monte Carlo (MC) simulation can be used to directly compute the superiority

probability without the need for an analytical expression for the jpdf in equation

3.3. In MC simulation, several random samples of the possible values of T and C

are computed. The superiority probability equals the percentage of the times that

the values for T and C are both positive, which is equivalent to determining the

probability that Si has better timing and cost than Sj in equation 3.3.

55

In MC simulation, the superiority probability is accurately computed with

enough number of samples. However the downside of this approach is in its high

run-time complexity, as T and C need to be computed and evaluated for each sample

and in practice many samples are necessary to obtain an acceptable accuracy.

3.4.2 Using jpdf Approximation

This method approximates the jpdf (fT,C in equation 3.3) with a simplified

jpdf , such that the probability integral of equation 3.3 can be computed. This means

that the jpdf of T and C denoted by fT,C(t, c) is approximated with a simpler jpdf

fX,Y (x, y). The bivariate density fX,Y should well approximate the actual density

fT,C . In addition computing the probability integral should analytically be possible

for fX,Y . This approximation is done by matching the characteristic functions of

fT,C and fX,Y . The characteristic function of any joint density fX,Y between random

variables X and Y is defined as the Fourier transform of that joint density function:

Φ(t1, t2) =

∫ ∞

−∞

∫ ∞

−∞
ei(t1x+t2y) × fX,Y (x, y)dxdy (3.22)

Expanding the exponential term in the above equation gives a series representation

of Φ(t1, t2) as:

Φ(t1, t2) = 1 + it1

∫ ∫
xfX,Y (x, y)dxdy + it2

∫ ∫
yfX,Y (x, y)dxdy

− t21
2

∫ ∫
x2fX,Y (x, y)dxdy − t22

2

∫ ∫
y2fX,Y (x, y)dxdy

− t1t2

∫ ∫
xyfX,Y (x, y)dxdy + ... (3.23)

56

In equation 3.23, the coefficients of t1 and t2 are defined as the moments of fX,Y ,

which are formalized as:

mij =

∫ ∞

−∞

∫ ∞

−∞
xiyjfX,Y (x, y)dxdy = E[X iY j] (3.24)

Therefore the characteristic function of fX,Y can be represented as an infinite series

in terms of the moments:

Φ(t1, t2) = 1 + it1m10 + it2m01 − t21
2
m20 − t22

2
m02 − t1t2m11 + .. (3.25)

To approximate fT,C with fX,Y , the moments of the two distributions are matched, or

equivalently the corresponding terms of the two characteristic functions are matched.

In general if the approximate density function, fX,Y , has K underlying parameters

to be completely specified, the first K + 1 terms of the two characteristic functions

are matched, which corresponds to matching the 1st to the Kth moments. For fT,C ,

the moments mij can be expressed as:

m10 = E[T], m01 = E[C]

m20 = E[T 2], m02 = E[C2], m11 = E[TC], ...

(3.26)

where E[.] is the expectation operator. The first K moments of fT,C is computed

using the above equations. The approximate density function is usually a standard

jpdf , for which closed form expressions of the moments, in terms of the underlying

parameters are often provided [50]. The presented method demands addressing the

following challenges:

• The expression of the first K moments should be computable for f(T,C).

• Once equating the moments, solving for the K unknowns should be possible.

57

• The approximate density function should accurately model the actual one.

• Probability integral of the approximate density function should be computable.

3.4.3 Using Conditional Monte Carlo Simulation

Motivation The third method for finding the pruning probability is a bound-

based technique based on Conditional Monte Carlo (CMC) simulation. The idea is

that although it is difficult to analytically compute the double integral of equation

3.3, it maybe possible to evaluate part of the integral analytically and use simulation

to obtain the other part. This is done by generating bounds on T and C, and then

using the bounds to predict the integral value for certain ranges of T and C. Monte

Carlo simulation is done on the remaining ranges.

The idea is that if the bounds are accurate, it will not be necessary to evaluate

the expressions of T and C for each MC sample, and only evaluating the bounds is

sufficient. Moreover if the bounds are simple and easily computable, speedup will be

gained. To better illustrate the idea behind CMC, introduce another representation

of the superiority probability will be introduced using an indicator function, which

is inspired by [30]. Let us assume the indicator functions ΦT and ΦC are defined as:

ΦT =

⎧⎪⎪⎨
⎪⎪⎩

1;T ≥ 0

0;T < 0

ΦC =

⎧⎪⎪⎨
⎪⎪⎩

1;C ≥ 0

0;C < 0

(3.27)

The function Φ = ΦT × ΦC is then equal to:

Φ =

⎧⎪⎪⎨
⎪⎪⎩

1; T ≥ 0, C ≥ 0

0; other wise

(3.28)

58

The superiority probability in equation 3.3 is the same as the expected value of

indicator Φ (P (T ≥ 0, C ≥ 0) = E[ΦT × ΦC] = E[Φ]).

Assume lower and upper bounds for T and C are denoted as: TL ≤ T ≤ TU

and CL ≤ C ≤ CU . Then the following inequalities hold:

ΦT L ≤ ΦT ≤ ΦT U , ΦCL ≤ ΦC ≤ ΦCU (3.29)

where ΦT L , ΦT U , ΦCL and ΦCU are indicator functions that are 1 only if their

arguments are positive, defined similar to the previous indicator functions (such

as equations 3.27 and 3.28). Given the above defined bounds and functions, the

following inequality holds: ΦT L ×ΦCL ≤ Φ ≤ ΦT U ×ΦCU . This is the multiplication

of the inequalities of equation 3.29, which is valid since the indicator functions are

either 0 or 1. We denote ΦL = ΦT L × ΦCL and ΦU = ΦT U × ΦCU .

Let us define the random variable V = E[Φ|ΦL,ΦU], where E[.|.] operator

denotes the conditional expectation. The desired superiority probability can then

be expressed in terms of V as:

E[Φ] = E[E[Φ|ΦL,ΦU]] = E[V] (3.30)

The above equation suggests that for finding the pruning probability, one can eval-

uate V instead of Φ and gain speedup, if V has a smaller variance. In fact it can be

shown that since:

V ar(Φ) = E[V ar(Φ|ΦL,ΦU)] + V ar(E[Φ|ΦL,ΦU]) = E[V ar(Φ|ΦL,ΦU)] + V ar(V) and

E[V ar(Φ|ΦL,ΦU)] ≥ 0 (because V ar(.) is a positive quantity), the random vari-

59

able V always has a smaller variance than Φ [30], therefore it is better to use MC

simulation on V rather Φ to compute the double integral.

Conditional Monte Carlo Framework

The indicator Φ defined in equation 3.28 can be written by conditioning on

the combination of the values of ΦL and ΦU :

E[Φ] = E[Φ|ΦL = 1,ΦU = 0]P (ΦL = 1,ΦU = 0)

+ E[Φ|ΦL = 0,ΦU = 0]P (ΦL = 0,ΦU = 0)

+ E[Φ|ΦL = 1,ΦU = 1]P (ΦL = 1,ΦU = 1)

+ E[Φ|ΦL = 0,ΦU = 1]P (ΦL = 0,ΦU = 1) (3.31)

In the above equation E[Φ|ΦL = 1,ΦU = 0] = 0, because the lower bound ΦL can

never be larger than ΦU . In addition E[Φ|ΦL = 0,ΦU = 0] = 0 and E[Φ|ΦL =

1,ΦU = 1] = 1 because both the lower and upper bounds of Φ have the same value.

Therefore equation 3.31 is simplified to:

E[Φ] = P (ΦL = 1,ΦU = 1) + E[Φ|ΦL = 0,ΦU = 1]P (ΦL = 0,ΦU = 1) (3.32)

The terms of the equation 3.32 are re-written as:

P (ΦL = 1,ΦU = 1) = P (ΦL = 1) = E[ΦL] (3.33)

because ΦL can only be 0 or 1. Also:

E[Φ|ΦL = 0,ΦU = 1] = P (T ≥ 0, C ≥ 0|ΦL = 0,ΦU = 1)

= P (T ≥ 0, C ≥ 0|(TL ≤ 0, TU ≥ 0)or(CL ≤ 0, CU ≥ 0)) = PCMC (3.34)

60

PCMC

φL φUE[], E[]
φL φU φL

CMCP=E[]+(E[]−E[])P

Compute

Conditional
Monte Carlo

Compute Bounds
T , T , C , C

T,Cf
ULUL

Figure 3.4: Conditional Monte Carlo framework.

where denote the conditional probability in the above equation as PCMC . The third

term in equation 3.32 is:

P (ΦL = 0,ΦU = 1) = P (ΦU = 1) − P (ΦL = 1) = E[ΦU] − E[ΦL] (3.35)

Therefore equation 3.32 is simplified to:

E[Φ] = E[ΦL] + (E[ΦU] − E[ΦL]) × PCMC (3.36)

This is the final version of the equation used to find the pruning probability. In

the above equation the values of E[ΦL] and E[ΦU] are determined separately from

the bounds. The conditional probability, PCMC, in the above equation, corresponds

to the case when the value of the function cannot be predicted by its bounds,

where the expressions for T and C should actually be evaluated. This corresponds

to calculating the superiority probability of equation 3.3 in a smaller integration

region where ΦL = 0 and ΦU = 1, which results in speedup when compared to pure

Monte Carlo sampling.

The framework of the CMC method is shown in figure 3.4. Initially TU , CU ,

TL and CL are generated. Only if ΦL = 0 and ΦU = 1, the expressions for T and

C are evaluated to compute PCMC . The superiority probability is then found from

equation 3.32.

61

Challenges

The speedup gained from the bound-based CMC technique depends on two

important factors:

• The bounds ΦL and ΦU should be accurate enough to result in a small inte-

gration region.

• The bounds should be simple, so that their evaluation for each Monte Carlo

sample becomes faster and simpler than evaluating the jpdf in equation 3.3.

In the next section, the approach (proposed by [32]) is discussed to compute

such simple and accurate bounds, assuming the expressions for T and C are multi-

variate polynomials of arbitrary degree.

With the polynomial assumption for the T and C expressions, the simulation

results indicate a 25 times speedup of this method compared to pure MC simulation,

with a very high degree of accuracy.

3.5 Superiority Probability for Polynomials

In this section the superiority probability is computed for the three discussed

methods, assuming the expressions for the T and C random variables are polyno-

mials with arbitrary number of variables and of arbitrary degree.

62

3.5.1 Motivation: A Variability-Driven Perspective

For the generic optimization model, defined in section 3.1, the timing and cost

of a solution are expressed as functions of device or interconnect parameters, etc.,

which are written as:

Ti = gTi
(p1,, pn) Ci = gCi

(p1,, pn) (3.37)

In the above equations, the parameters can represent threshold voltage, interconnect

length, etc. depending on the application. Under process variations, it has been

shown in [12, 37, 40, 70] that the timing and cost of each solution can be expressed

as functions of common (global) random variables:

Ti = hTi
(X1,, Xn) Ci = hCi

(X1,, Xn) (3.38)

In the above equation Xis are independent random variables representing common

chip parameters. In practice if the Xi random variables are correlated to each other,

using a principal component analysis, one can always transform the set of correlated

random variables into a set of independent random variables. Therefore the T and C

random variables were assumed to be written as functions of independent common

random variables.

Due to the common Xi random variables, the timing and cost of each solution

are correlated random variables because they are affected by common sources of

variation. Similarly correlation also exists between the timings and costs of any

two solutions. For the above function, a polynomial representation can be obtained

using a Taylor series expansion with respect to the Xi random variables in their

63

local region of variation, that is written up to a desired degree of accuracy. Such

polynomial representations are frequently used to express timings or costs in circuits

as in [12, 37, 40]. In this section the functions for Ti and Ci random variables are

assumed to be polynomials:

Ti = a
(Ti)
0 +

n∑
k=1

b
(Ti)
k Xk +

n∑
k=1

n∑
j=k+1

c
(Ti)
kj XkXj +

n∑
k=1

d
(Ti)
k X2

k + . . .

Ci = a
(Ci)
0 +

n∑
k=1

b
(Ci)
k Xk +

n∑
k=1

n∑
j=k+1

c
(C)
kj XkXj +

n∑
k=1

d
(C)
k X2

k + . . . (3.39)

When comparing two solutions Si and Sj in equation 3.3, the random variables

T = Tj − Ti and C = Cj − Ci are similarly expressed as polynomials, because their

corresponding timings and costs are expressed as polynomials.

3.5.2 Monte Carlo Simulation for Polynomials

In the Monte Carlo simulation, it is assumed that the distribution of the Xi

random variables in equation 3.39 is known. Several random samples, following

the underlying distribution of the Xi variables are generated and used to compute

the values of T and C. The superiority probability equals the percentage of the

times that T and C are simultaneously positive. The run-time complexity of MC

simulation directly depends on the order of the polynomials in equation 3.39.

3.5.3 Approximating jpdf Using Bivariate Normal Density

Assume the polynomial expressions for the T and C random variables of ar-

bitrary degree are as in equation 3.39. In this method, the goal is to compute the

64

Superiority probability of equation 3.3 with a distribution for which the probability

integral is computable. One popular example that is shown in this section is the bi-

variate Normal distribution. Here, random variables T and C are approximated with

new random variables X and Y that have a bivariate Normal probability density

function:

fT,C(t, c) ≈ fX,Y (x, y) = 1

2πσ1σ2

√
1−ρ2

exp(− z
2(1−ρ2)

)

z = (x−μx

σx
)2 − 2ρ (x−μx)(y−μy)

σxσy
+ (y−μy

σy
)2

(3.40)

It can be seen that a bivariate Normal jpdf has 5 underlying parameters, μx, μy, σx, σy

and ρ to be completely specified. Moment matching is used to find these parame-

ters. This is done as expressed in equation 3.23 and 3.25 by matching the terms 2

to 6 of the characteristic function of the bivariate Normal jpdf . This results in the

following equations:
E[T] = μx, E[C] = μy

E[T 2] = σ2
x + μ2

x, E[C2] = σ2
y + μ2

y,

E[TC] = ρσxσy + μxμy

In the above equations the values of E[T], E[C], E[T 2], E[C2] and E[TC] can be

analytically determined, given the polynomial expressions of T and C, and the

distribution of the Xi random variables.

Therefore by matching the first 5 moments, all the underlying parameters of

the bivariate Normal distribution that approximates jpdf of T and C, are specified.

The next step is computing the superiority probability with bivariate Normal

approximation of equation 3.23. For computing the bivariate Normal distribution,

65

[27] has reviewed many approximation methods. Here the standard procedure using

tetrachroric series are used:

P (T ≥ 0, C ≥ 0) ≈ φX−(
−μX−

σX−
)φY −(

−μY −

σY −
)

+ ϕX−(
−μX−

σX−
)ϕY −(

−μY −

σY −
)

∞∑
k=0

Hek
(
−μY −
σY −

)Hek
(

μ−X−
σX−

)ρk+1

(1 + k)!
(3.41)

where X−=−X and Y −=−Y . Also ϕX− , ϕY − are the probability density functions,

and φX− and φY − are cumulative distribution functions of X− ∼ N(μX−, σX−) and

Y − ∼ N(μY −, σY −), that are assumed to be Normal. The parameter ρ is the cor-

relation coefficient between X− and Y −. Finally Hek
(x) is the Hermite polynomial

given by:

Hek
(x) =

[k
2
]∑

m=0

k!

m!(k − 2m)!
(−1)m2−mxk−2m (3.42)

It is shown in [64] that expanding the above series until the 5th degree is sufficient

for a 99% accuracy in computing the bivariate Normal integral. This makes the

proposed method extremely fast, since the series is expanded for a few terms.

To illustrate the accuracy of the bivariate Normal approximation, four-variate

polynomial pairs were generated which were of degree 1, 2, 3, and 4. For each

degree, 10000 number of polynomials of random coefficients were generated. The

Xi variables in each polynomial (equation 3.39) were assumed to have a standard

Normal distribution with mean 0 and variance of 1.

For each polynomial pair the superiority probability is computed by first ap-

proximating the jpdf to be bivariate Normal, and then using equation 3.41 to com-

pute the superiority probability. This approximated value of the probability ob-

tained using bivariate Normal is then compared against its correct value obtained

66

0

1000

2000

3000

4000

5000

-25 -20 -15 -10 -5 0 5 10 15 20

Fr
eq

ue
nc

y

Error in Probability Estimation

D4
D3
D2
D1

Figure 3.5: Frequency of error in bivariate normal approximation

using Monte Carlo Simulation. The error of the bivariate Normal approximation

with respect to the reference Monte Carlo simulation was recorded.

Figure 3.5 illustrates the frequency distribution of the error associated with

polynomials of degree 1, 2, 3, and 4. For degree 1, the accuracy is very high.

This is because the bivariate distribution in this case is precisely bivariate Normal.

However as the degree of the polynomial increases, the assumption of having a

bivariate Normal jpdf becomes inaccurate and the error increases.

So far an example of approximating the joint density function with bivariate

Normal was presented. However note that the presented method using moment

matching is generic and approximation using other distributions can similarly be

done.

67

3.5.4 Conditional Monte Carlo Simulation

Section 3.4.3 illustrated that by generating simple and accurate lower and

upper bounds on random variables T and C, the superiority probability of equation

3.3 is computed much faster than Monte Carlo simulation.

This section describes how such bounds can be generated for a general mul-

tivariate polynomial of arbitrary degree. This is done based on the work in [32]

that focuses on generating linear lower bounds for generic polynomials, which are

computed by using Bernstein coefficients. Initially the Bernstein coefficients of a

polynomial are explained and their properties are discussed. The Bernstein coef-

ficients and their use to generate bounds are valid only when the Xi variables in

equation 3.39 are between 0 and 1. A scaling scheme is presented to use the bounds

when the variables of the polynomial vary in arbitrary range. Then computation of

the bounds [32] will be explained.

Bernstein Form of A Polynomial

A general multivariate polynomial with n variables, x1,x2,..., xn, with degree

of each variable l1,l2...,ln respectively, can be represented as:

p(x1, .., xn) =

l1∑
i1=0

..

ln∑
in=0

ai1,..,inx
i1
1 x

i2
2 ..x

in
n (3.43)

where ai1,..,in is the coefficient for the term xi1
1 ...x

in
n . The above polynomial is repre-

sented in its Bernstein form, over the unit hyper-box I ∈ [0, 1]n (xi between 0 and

1), as [9]:

68

p(x1, .., xn) =

l1∑
i1=0

..

ln∑
in=0

bi1,..,inBi1,..,in(x1, .., xn) (3.44)

where Bi1,..,in(x1, .., xn) is given by [9]:

Bi1,..,in(x1, .., xn) =
(

l1
i1

)
..

(
ln
in

)
xi1

1 ..xin
n (1 − x1)i1 ..(1 − xn)in (3.45)

where
(

li
ij

)
denotes C

lj
ij

. In the above equation Bi1,..,in(x1, .., xn) describes a new basis

that can represent the polynomial, if each of the xi variables vary in the unit hyper-

box, i.e. between 0 and 1. For this generic polynomial the Bernstein coefficient

bi1,..,in is given by:

bi1,..,in =

i1∑
j1=0

..

in∑
jn=0

(
i1
j1

)
..
(

in
jn

)
(

l1
j1

)
..
(

ln
jn

)aj1,..,jn (3.46)

In practice, if the variables do not vary between 0 and 1, by knowing the actual

range of the variables x1,...,xn, a transformation is done to convert these variables

into variables that range between 0 and 1. Assume in the polynomial p(x1, ..., xn),

for each variable xi, we have ai ≤ xi ≤ bi. Each variable xi is converted to a new

variable yi as:

yi =
xi − ai

bi − ai
(3.47)

where yi ranges between 0 and 1. The polynomial is then represented in terms of

the yi variables:

p(x1, ..., xn) = q(y1, ..., yn) (3.48)

The new form of the polynomial in terms of yi = [0, 1], is used to obtain the Bernstein

coefficients and the bounds.

69

0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

x

P
(x

)

P1

P2
P3

P4

P(x)=1+0.5x−0.33x2+0.25x3

Lower Bound

Figure 3.6: Bernstein Coefficients defining boundaries on polynomials.

Properties of Bernstein Coefficients

The Bernstein coefficients of a polynomial, specify control points that define

a convex-hull that encloses the polynomial. A control point, pi1,..,in, is defined by

Bernstein coefficient bi1,..,in as:

(
i1
l1

; i2
l2

; .. in
ln

; bi1,..,in

)

This is a fundamental property of Bernstein coefficients that is used to find simple

bounds around the polynomial. Figure 3.6 illustrates this property. Here a uni-

variate polynomial is plotted with its control points in unit box. This function has

4 control points at P1,...,P4 at (0;-1), (0.33;0.83), (1;-0.58) and (0.67;-0.78), that

encapsulate p(x). These control points are used to define bounds on polynomials as

explained next.

70

Obtaining Hyper-plane Lower Bounds

The Bernstein coefficients define control points that encapsulate the polyno-

mial. These control points are used in [32] to define hyper-plane lower bound in

the form of L(x1, .., xn) =
∑n

i=0 cixi, for a generic n-variate polynomial of degree

(l1, .., ln) for the variables (x1, ..., xn), over the unit hyper-box. If the xi variables

do not range between 0 and 1, the presented scaling scheme is initially applied

to express the polynomial in terms of variables that range between 0 and 1. The

hyper-plane bounds have a very simple form, which makes them suitable to use in

the Conditional Monte Carlo framework. Next the algorithm proposed in [32] is

explained to obtain hyper-plane lower bounds.

Algorithm III illustrated this [32]: it has n iterations for an n-variate polyno-

mial, where at each iteration a linear system of equations with n − 1 unknowns is

solved. The algorithm uses the Bernstein coefficients of the polynomials to find a

lower bound. The obtained lower bound passes through the control point associated

with the Bernstein coefficient that is minimum, as well as n−1 other control points.

In the end the obtained hyper-plane passes through a lower facet of the convex-hull

spanned by the control points. Figure 3.6 shows the bound obtained using the above

algorithm for the example polynomial.

71

Algorithm 3 Algorithm to Compute Bounds (from [32])

INPUTS: Given a polynomial p(x1, ..., xn)

OUTPUT: A hyper-plane lower bound for the polynomial

1) Iteration 1:

Define u1
n×1 = (1;0;...;0)

1.1) Let b0 be the Bernstein coefficient with minimum value where i01, ..., i0n are its corresponding indices

1.2) Compute the slopes g1
i1,..,in

: g1
i1,..,in

=
bi1,...,in−b0

i1
l1

− i01
l1

/*if denominator �= 0 */

1.3) Find the indices i11, .., i1n that correspond to gi11,..,i1n
with the smallest absolute value.

1.4) Define w1
n×1 = (

i11−i01
l1

;...;
i1n−i0n

ln
)

1.5) Compute the lower bound at iteration 1 as: L1(x1, .., xn) = b0 + gi11,..,i1n
u1 � (x1 − i01

l1
;...;xn − i0n

ln
)

2) Iteration j (ranging 2 to n):

2.1) Find the �uj
n×1 = �uj

n×1 = (βj
1;...;βj

j−1;1;0;..;0) such that �uj �wk = 0 for k = 1, ..., j − 1.

2.2) Normalize u∼
j : uj = �uj

||�uj ||

2.3) Compute the slope: gj
i1,..,if n =

bi1,..,in−Lj−1(
i1
l1

,.., in
ln

)

(
i1−i0

l1
;..; in−i0

ln
)�uj

/* if denominator �= 0 */

2.4) Find the indices ij1, .., ijn that correspond to g
i
j
1,..,i

j
n

with the smallest absolute value.

2.5) wj
n×1 = (

i
j
1−i01
l1

;...;
ij
n−i0n
ln

)

2.6) Compute the lower bound at iteration j as: Lj(xi) = Lj−1(xi) + g
i
j
1,..,i

j
n
uj � (x1 − i01

l1
;...;xn − i0n

ln
)

3) Output the hyper-plane from iteration n in the form Ln(x1, .., xn) =
�n

i=0 cixi.

Obtaining Upper Bounds

For a generic multivariate polynomial expressed in equation 3.43, an upper

bound is found using the algorithm for finding the lower bound as follows:

• Let L be the hyper-plane that forms a lower bound for the multivariate poly-

nomial p.

• Find the lower bound L− for the polynomial p−=−p.

• The upper bound of p, denoted by U will be: U = −L−.

72

Computing the Superiority Probability

For computing the superiority probability using equation 3.36, recall that Con-

ditional Monte Carlo sampling was used, as explained in section 3.4.3. Initially

hyper-plane lower and upper bounds for the polynomially-expressed random vari-

ables T and C are computed using the presented technique above. The bounds

are denoted by TL,TU ,CL,CU . The superiority probability is found from equation

3.36, which is also illustrated in figure 3.4. Many samples were generated for the

Xi random variables following their underlying density function. For each sample

of Xi random variables, the corresponding values of TL, TU , CL, CU were evaluated

to determine their sign. If TL < 0 or CL < 0 and TU ≥ 0 and CU ≥ 0, the sign of

T and C for that sample is known from its bounds and we have:

TU =
∑n

i=0 c
(1)
i Xi ≥ 0 and CU =

∑n
i=0 c

(2)
i Xi ≥ 0

TL =
∑n

i=0 c
(3)
i Xi < 0 or CL =

∑n
i=0 c

(4)
i Xi < 0

(3.49)

In the above inequalities, c
(1)
i , c

(2)
i , c

(3)
i , c

(4)
i are the coefficients of the hyper-plane

bounds. Only if the upper bounds are both positive (or zero) and at least one the

lower bounds is negative, the polynomial expressions of T and C are computed, in

order to compute the conditional probability of equation 3.34. Once the conditional

probability is computed, the probability value is found using equation 3.36. The

smaller integration region corresponds to smaller MC samples and results in speedup.

In addition, in equation 3.36, E[ΦL] and E[ΦU] are:

E[ΦL] = E[ΦT L × ΦCL] = P (TL ≥ 0, CL ≥ 0)

E[ΦU] = E[ΦT U × ΦCU] = P (TU ≥ 0, CU ≥ 0)

73

where TL, TU , CL, CU are hyper-planes.

These hyper-planes can be expressed in terms of standard Normal random

variables (with mean 0 and variance 1) using a transformation similar to equations

3.47, 3.48. With this assumption, TL, TU , CL, CU will each have a Normal distribu-

tion, where the pairs (TL, CL), (TU , CU) have bivariate Normal density functions.

Therefore the probabilities in the above equation can get computed using equation

3.41. Note that this assumption is true since the Xi variables are assumed to have

a Normal distribution.

The speedup of computing the superiority probability depends on how accurate

the bounds predict the polynomial behavior. In general if a small change in the

variables results in a large change in the value of the polynomial, the resulting

bounds might not be very tight, which results in evaluating T and C expressions

too many times, for a large integration region. To address this problem, hyper-plane

bounds are computed for different regions of the Xi random variables. Generating

the piecewise hyper-plane bounds is explained next.

Generating Piecewise Hyper-plane Bounds

Depending on the application, if the behavior of the polynomial is such that

the generated hyper-plane bounds are not accurate, piecewise hyper-plane bounds

are generated by dividing the polynomial into different regions. This is done by

imposing separate ranges for some or all of the variables of the polynomial. As

an example a variable xi that is initially in the range [0,1], can be divided into

74

two ranges (i.e. [0,0.5),[0.5,1]). The combination of these different ranges of the xi

variables, divides the polynomial into different regions. For each region, a lower and

upper bound is found and stored.

Assume for any region Ri and for any variable xi we have ai ≤ xi ≤ bi. The

polynomial is initially represented in terms of the yi variables that range between 0

and 1 using equations 3.47 and 3.48. Then lower and upper bounds are determined

for region Ri using the presented technique. At each region E[Φ] is estimated and

in the end the superiority probability is determined by combining these estimates.

Imposing the piecewise scheme results in very accurate bounds. It was found

that a few number of piecewise bounds, results in a very small integration region

in equation 3.34, which results in huge speedups for our selected CAD application,

explained next.

3.6 Application: Variability-Driven Dual-Vth Leakage Optimization

In this section the variability-driven dual-Vth leakage optimization problem

is presented in which the models describing fabrication variation are polynomial

expressions. The effectiveness of the use of the superiority probability is illustrated

for this application.

Initially this optimization problem is formally defined, and the conventional

formulation of this problem is presented (assuming variations are ignored). Then

the variability-driven version of the problem will be presented.

75

3.6.1 Conventional Approach

Problem Definition

Given a gate-level netlist, the dual-Vth leakage optimization [38] technique

decides the threshold voltage of each gate, out of two possible Vth choices. This

allows to minimize leakage under a given timing constraint. For each gate, the

decided threshold voltage, determines its sub-threshold leakage current and its delay.

The sub-threshold leakage current denoted by Il, is expressed as a function of

Vth by the following equation:

Il = I0e
Vgs−Vth

nVT (3.50)

Here I0 = μ0Cox(W/L)V 2
T e

1.8, where Cox is the gate oxide capacitance, (W/L) is the

width to length ratio of the leaking MOS device, μ0 is the zero bias mobility. In

equation 3.52, Vgs is the gate to source voltage, VT is the thermal voltage and n is

the sub-threshold swing coefficient. From equation 3.52, it is evident that a higher

threshold voltage results in lower sub-threshold leakage current.

The delay of a gate denoted by D, is expressed in terms of its Vth by the

following equation[45] :

D ∝ CLVdd

(Vdd − Vth)α
(3.51)

Here CL is the load capacitance at the gate output and α is the velocity saturation

index which is about 1.3 for the 0.18 μm CMOS technology. Equations 3.50 and

3.51 show that a higher Vth, results in smaller leakage for a gate but higher delay.

76

kkni S = {D, I, {Vthj | for all nj in subtree}}
(ni)

Figure 3.7: Solution at a node

Deterministic Approach

The given gate-level netlist is described as a Directed Acyclic Graph (DAG)

where each gate is represented as a node and the nets are represented as directed

edges in the graph that connect any source gate to its fanout(s). A virtual sink node

is also added that has incoming edges from all the primary outputs.

A popular dynamic programming approach to solve the dual Vth assignment

problem, traverses the nodes in topological order from the primary inputs to the

primary outputs [59]. Each node ni contains a set of pareto-optimal solutions as it is

encountered in the topological traversal. The j-th pareto optimal solution, denoted

by S
(ni)
j , contains the Vth assignment to all the nodes that are located in the fanin

subtree of ni, including ni itself. In addition, S
(ni)
j contains the arrival time at the

node output denoted by Dni
j , and the estimated leakage of the node subtree which

includes ni, denoted by Ini
j . (Figure 3.7 illustrates this). For solution j of node ni,

the signal arrival time and the leakage of the node subtree are respectively denoted

by d
(ni)
j and c

(ni)
j . During the topological traversal, the co-optimal solution set of the

77

current encountered node denoted by ni, is determined in the following 3 steps: 1)

Initially the solutions of the children (fanins) of the node are combined to generate

a new solution set. 2) This solution set is then combined with the two possibilities

of Vth choices of ni, therefore it’s size is doubled. 3) The resulting solutions are then

compared and the sub-optimal solutions are removed.

In step 1, every solution combination of the children of ni is considered. For

any combination, the arrival time is computed as the maximum of the arrival times

of the node’s children. The leakage is the summation of the leakage of the node’s

children for that combination. The assigned Vths, for the gates in the subtree of

ni, is the union of the Vth assignments of all the children’s solutions. This resulting

solution set is denoted by S
(ni)
fanin. Note that the number of solutions in S

(ni)
fanin is the

multiplication of the number of solutions of ni’s children.

The resulting solution set is combined with the two possibilities of the Vths of

ni in step 2. For each solution Sj ∈ S
(ni)
fanin, a new solution is generated. For this new

solution, the arrival time is the summation of the arrival time of Sj and the delay of

ni for that Vth (determined by equation 3.53). The leakage is the summation of the

leakage of Sj and ni for that Vth (determined by equation 3.52). Finally the union

of the Vths of Sj and the Vth of ni will be the Vth assignment for the nodes in the

fanin subtree of ni. The number of solutions at this point is twice the size of S
(ni)
fanin.

The solution set generated in step 2 is then evaluated such that sub-optimal

solutions are pruned out. This is a necessary step, otherwise the number of solutions

will grow exponentially, resulting in impractical runtime. In the pruning step, the

number of stored solutions is set to be proportional to the summation of the number

78

of the solutions of the node’s children plus 2 (for the two Vth choices of ni). The

stored pareto-optimal solutions are determined as follows. Among all solutions that

have the same arrival time, the one with minimum leakage is a pareto-optimal

solution and the rest are sub-optimal, thus are pruned out. Please note that this a

purely heuristic approach.

In the end, in the virtual primary output node, among all solutions that have

an arrival time smaller than the given timing constraint, the one with minimum

leakage is selected.

3.6.2 Variability-Driven Implementation and Algorithm

The manufacturing process causes variations in different chip parameters such

as the effective channel length or oxide thickness, which randomizes the timing and

leakage of each solution. The leakage of each solution is presented in [70] as function

of such random variables. The Taylor series of the leakage expression is [16]:

I(X1, .., Xn) = Is0
Weffi

ai0

e
Vigs−Vith0

nV T (1 +
(β − 1)

2ai0

n∑
j=1

aijXj + ...)K (3.52)

In the above equation, the Xi random variables are independent random variables

that reflect variability in effective channel length and threshold voltage. They were

obtained using a Principal Component Analysis on correlated global variables.

The subthreshold leakage current of each gate for each threshold voltage choice

is written in the form above. The rest of the parameters are constant coefficients

defined in [16, 70]. For leakage the Taylor series was expanded until the second

degree. Similarly [12] represents delay as a linear expression. This linear expression

79

is obtained from the Taylor series expansion of the delay expression:

DX1,...,Xn =
CLVdd

(Vdd − Vith0)α
(1 +

αβ

ai0(Vdd − Vith0)

n∑
j=1

aijXj) (3.53)

With polynomial representation of leakage and delay, the variability-driven dual-Vth

leakage optimization is defined as: Given a gate-level netlist, a constraint Tcons for

the arrival time at the primary outputs, two choices of threshold voltages of the

gates and a maximum allowed timing violation probability, denoted by Pviol, under

variability decide one threshold voltage for each gate, such that the expected value

of the subthreshold leakage current is minimized while the probability of violating

the timing constraint is at most Pviol.

For each solution Si, the corresponding arrival time Ti and leakage Ii are

polynomially-expressed random variables. In the variability-driven dual-Vth assign-

ment, the probability that the arrival time Ti, meets the given timing constraint

Tcons, should be less than Pviol, for any selected solution. Moreover the superior

solution is the one with minimum expected leakage.

The algorithm for the variability-driven problem is similar to the traditional

method. At each node, the steps in the traditional method are applied to com-

bine the solutions of the node’s children. During these steps, the summation and

max operations conducted on leakage and arrival times of the solutions, are per-

formed statistically on random variables. The summation of two random variables

expressed as polynomials, is a new polynomially-expressed random variable, ob-

tained by adding the corresponding coefficients of the polynomials. The statistical

max operation on two linear delay expressions is based on [12].

80

At each node, the timing and leakage random variables of the solutions are

compared based on equation 3.2. The superiority probability among any pair of

solutions is computed, and any solution that is pruned out by another solution with

a probability of more than 0.95 is removed. In the end, at the primary output,

among all solutions that violate the timing constraint with probability smaller than

Pviol, the one with minimum expected leakage is chosen. Next, the results of using

these techniques were presented for computing the superiority probability for this

application.

3.6.3 Results

The proposed methods to compute the superiority probability were applied

and evaluated in the dual-Vth leakage optimization framework, using the SIS [52]

programming environment and MCNC benchmarks. A variability of 15% was as-

sumed, with respect to the mean value, in the effective channel length of a gate, and

consequently in its threshold voltage [70]. Next polynomial expressions for delay

and leakage of a gate were obtained using equations 3.52 and 3.53. Four principal

components (variables in equation 3.52 and 3.53) were assumed to represent these

variations, each with a Standard Normal distribution (mean=0 and variance=1).

Initially the accuracy and speedup in computation of the superiority probabil-

ity were investigated using different techniques. In the simulations 2600 solutions

pairs from the dual-Vth framework were evaluated for the MCNC benchmarks. The

superiority probability was computed for each solution pair using the bivariate nor-

81

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-25 -15 -5 5

N
or

m
al

iz
ed

 F
re

qu
en

cy

Percentage Error

Conditional Monte Carlo
Bivariate Normal Appr.

Figure 3.8: Normalized frequency of %error in computation of the superiority prob-

ability.

mal approximation of jpdf , and the Conditional MC technique, and compared the

accuracy and speedup with MC simulation.

Figure 3.8 shows the normalized frequency of percentage error in the superi-

ority probability, for the two applied methods. The figure shows the high accuracy

of the CMC method. In fact the small error associated with CMC is due to the

round-off error in computation of the bounds. The bivariate normal approximation

has higher associated error when compared to MC simulation.

Figure 3.9 shows the normalized frequency of the speedup of the two tech-

niques when compared to MC simulation. The speedup of the bivariate normal

approximation is extremely high, because the probability integral expressed as a

series in equation 3.41 is computed for only 5 terms. However the speedup of the

CMC method is also significant (on average 25 times), when compared to the MC

82

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200

N
or

m
al

iz
ed

 F
re

qu
en

cy

Speedup

Bivariate Normal Appro.
Conditional Monte Carlo

Figure 3.9: Normalized frequency of speedup in computation of the superiority

probability.

simulation. This is because, the lower and upper bounds defined in different re-

gions were predicting the behavior of the polynomials extremely well. On average

in 92.7% of the cases, the T and C expressions were not needed for evaluation.

Next the final solutions in the dual-Vth framework were compared when dif-

ferent proposed methods were used to compute the superiority probability. A max-

imum allowed risk of timing constraint violation (Pviol) of 0.3 was assumed. Also

worst-case deterministic approach was evaluated, with the proposed techniques.

In the deterministic approach, the delay and leakage of each gate was ap-

proximated with its worst-case value (expected value + 3-sigma) and performed

deterministic optimization as explained in section VA. Then, a statistical analysis

was done based on the assumed variability for the Vth assignment generated by the

worst-case deterministic approach.

83

Tcons Worst-Case Deterministic jpdf Appr. Conditional MC

(nsec) E[I] Pv(T) t E[I] %imp Pv(T) t E[I] %imp Pv(T) t

C432 33.0 10634 0.11 10 6910 35 0.27 13 5701 46 0.25 552

C499 17.5 14285 0.14 29 12186 15 0.17 51 11082 22 0.14 1582

C880 32.0 16650 0.11 12 10092 39 0.29 14 8294 49 0.30 610

C1355 18.0 17182 0.08 40 12187 29 0.11 50 11082 36 0.09 1572

C1908 29.0 13768 0.13 37 9179 33 0.18 40 8417 39 0.16 1025

C3540 42.0 38561 0.18 123 29662 23 0.23 181 22427 42 0.22 23582

C5315 31.0 42032 0.12 160 40031 5 0.13 173 26723 36 0.16 21449

C6288 110.0 45343 0.19 1131 44454 2 0.19 1699 44403 2 0.19 10539

alu2 8.0 13340 0.03 13 10262 23 0.04 20 8682 35 0.03 753

alu4 12.0 23317 0.06 65 19540 16 0.07 70 13894 40 0.07 1525

dalu 27.0 35812 0.12 68 28462 21 0.15 104 21748 39 0.17 1419

Ave. 0.12 21.9 0.17 35.1 0.16

Table 3.5: Comparison of quality of solution and runtime (sec).

Table 3.5 illustrates these results for the MCNC benchmarks. Here column 2 is

the timing constraint (in nsec). For each method, the expected leakage (E[I] in pA),

probability of violating the timing constraint (Pv(T)) and the run time (in seconds)

is reported in the table. For the jpdf and CMC methods, the %improvement in E[I]

was reported and compared to the worst-case deterministic approach. It can be seen

that on average the jpdf and CMC methods result in 21.9% and 33.7% improvement

in E[I] respectively. In these simulations, because the maximum probability of

timing violation is 0.3, there is no need to over-optimize the speed.

However the deterministic approach, over-estimates the timing and therefore

over-optimizes the speed, which directly translates into more leakage. Therefore it

results in a smaller probability of timing violation. However the timing violation

84

probability of jpdf and CMC methods are both acceptable as they are within the

maximum allowed risk of 0.3. The over-estimation in the worst-case deterministic

approach is to the extent that the expected leakage values in this case are much

higher than those generated by the other two methods.

The CMC method, results in solutions that have better cost (E[I]) and often

smaller probability of violating the timing constraint when compared to jpdf . (on

average about 17% additional improvement in E[I] compared to jpdf). However

the runtime of the jpdf approximation method is on average 29 times faster than

CMC method. The MC method did not converge in reasonable time.

In this chapter comparison of solutions was shown to be done using the su-

periority probability as an evaluation metric in the presence of process variations.

This was verified in the context of the buffer insertion problem where the timing

and cost of each solution was modeled as a linear expression. Also the dual-Vth

leakage optimization technique was studied, in which the timing and cost of each

solution were modeled as polynomials. These applications although demonstrated

the effectiveness of using the superiority probability to generate a good quality so-

lution compared to a deterministic case, however they could not provably generate

the optimal solution.

In fact another significant challenge of a variability-driven framework is guar-

anteeing that the final solution is indeed the optimal one. In the next chapter I will

present an example of a popular design automation technique, namely the gate sizing

problem, considering variations. This problem can provably generate the optimal

solution in the presence of variations, and will be discussed in detail next.

85

Chapter 4

Variability-Driven Gate Sizing Formulation and Generalizations

In this chapter a very important design automation problem, namely the gate

sizing problem is studied in the presence of process variations. Given a circuit

described at gate-level (the types of each gate and their interconnections are known),

the gate sizing problem decides a size-variable for each gate in order to minimize

a cost function such as area of power, while meeting a performance requirement.

The size-variable can be thought of as a scaling factor for the sizes of the transistors

inside each gate. This problem has been modeled as a convex program many years

ago when process variations were ignored [25, 51]. This chapter studies the effects

of process variations on this conventional formulation in the context of the problem

of the speed-binning which is defined as follows:

In high performance systems, fabrication variability results in a considerable

spread in the frequency of the chips (about 30% according to [7]). In some cases,

the chips that violate the timing constraint are simply discarded and in other cases

they are sold at a loss. In the latter case, those chips that fail to meet the nominal

frequency after fabrication are binned based on their speed. Some work such as [49]

design hardware to do speed binning in microprocessor design. For each speed bin

a loss value exists for selling the chips in that bin for a reduced price. Therefore,

depending on the spread in the circuit delay, there exists a binning yield-loss.

86

In this chapter minimization of the binning yield-loss is studied in the con-

text of the gate sizing problem. Many researchers have investigated the gate sizing

problem from a fabrication-variability perspective [2, 5, 13, 28, 43, 55, 57]. These

approaches could be grouped into worst case approaches [55], sensitivity-based ap-

proaches [2, 28, 13, 57], and the ones based on a mathematical programming frame-

work [5, 43]. These approaches try to addresses different objectives under variability.

For example, [55] minimizes area while considering the worst case uncertainty ellip-

soid of parameter variations in a convex formulation. Others minimize the yield-loss

[2, 57] or leakage power [5, 43] or combination of both [13].

Firstly none of these approaches consider the binning yield-loss and focus

on more traditional definitions of yield. Secondly these approaches they do not

guarantee convergence to the optimal solution in a general case, or at least not from

a yield perspective. Some of these approaches may converge to the optimal for their

own problem specification but that may not lead to the optimal solution from a

yield perspective. For example, the worst case approaches like [55], although look

promising do not guarantee optimality of the yield function.

The sensitivity-based approaches optimize the cost function in a neighborhood

and do not guarantee convergence to the optimal. The mathematical programming

approaches do consider optimality but make constraining assumptions like the Gaus-

sian nature of uncertainty [43] or work with specific models of fabrication variability

[5]. Also the approach of [5] approximates the yield percentiles by their upper

bounds, and thereby it is not provably optimal. In this chapter, a gate sizing ap-

proach is presented to optimize the binning yield.

87

The specific contributions of this work are enumerated below:

1. We optimize the binning yield and propose an optimal algorithm to minimize

the same using gate sizing. Our algorithm can be trivially extended to mini-

mize the binning yield under area/power constraints as well. The core of our

algorithm is based on the proof of convexity of the binning yield function w.r.t.

gate sizes, which allows usage of various convex optimization schemes.

2. The proof of convexity and consequently the optimality of the algorithm is not

constrained by any assumptions on the underlying nature of the fabrication

variability and/or the model of correlation used.

3. We use Kelley’s Cutting Plane algorithm [8] to optimize the binning yield

function. Usage of this scheme allows the integration of our approach with

any of the existing statistical timing analysis (STA) methods (Gaussian [65]

or Non-Gaussian [12], [37]).

4. In case the objective is optimizing the traditional yield, our binning yield-

based approach could be used as a heuristic to optimize this objective. We

prove that if there exists a solution in which the traditional yield-loss is 0, our

binning yield-loss approach will find such solution. Also, if the optimal value

of the binning yield-loss is non zero, then there does not exist a solution to

the traditional yield problem in which the yield loss is 0. This is an important

result if we are interested in generating solutions that have a yield-loss of 0.

In this chapter, initially the traditional gate sizing formulation is defined, and

88

then the impact of process variations on the formulation is shown. Then a variation-

aware objective is defined that represents the binning yield-loss, and then a convex

formulation is presented that describes minimization of the binning yield-loss using

gate sizing. One possible method to solve this formulation is discussed in this

chapter, while exploring other methods could be pursued as one future direction.

In the simulations comparison was made to a sensitivity-based alternative

to solve this problem, and an improvement of 72% in the binning yield-loss was

obtained with a small area overhead of on average 6%, while achieving a 2.69 times

speedup.

4.1 Preliminaries

4.1.1 Conventional Gate Sizing Formulation

Let si denote the size variable of gate i. The variable si is proportional to

the channel width of the gates’ transistors as the channel lengths are usually kept

uniform. Let ti denote the arrival time at the output of gate i from the primary

inputs, and di denote the delay of gate i. The gate sizing problem is formulated as:

Minimize
∑
∀gate i ci × si

Subject to :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

tj + di(�s) ≤ ti ∀j ∈ fanin(i); ∀i

ti ≤ Tcons ∀i ∈ PO

smin ≤ si ≤ smax ∀gate i

(4.1)

89

These constraints ensure that the delay of any path in the circuit is at most Tcons.

The objective is minimizing the area of the circuit given as summation of si variables

with a ci proportionality factor. The solution is the set of gate sizes given as �s =

{s1; s2; ...; sn}.

Minimizing area while meeting a timing constraint is a common gate sizing

objective [55, 28]. Other works optimize the yield-loss [2, 57, 13], or power [43, 5]

using gate sizing. The formulation could also be written so as to find the feasible

solution for a given timing constraint. The delay of gate i depends on its size and

of its fanouts sizes. In the above constraints, this dependence is shown as di(�s).

Therefore the objective and the arrival times in the formulation also depend on �s.

Computing Delay of A Gate As A Posynomial

The delay of a gate can be written as a posynomial function of its transistors

sizes using the Elmore delay model [25, 51]. Each transistor is represented using

an equivalent on-resistor (r), and a capacitor (c) given as a function of its channel

width (w) as [48]:

r = kr
1
w

kr = fr(vth, leff , vdd, tox)

c = kcw kc = fc(leff , tox)

(4.2)

where kr and kc are positive constants that are expressed as functions of parameters

such as threshold voltage, effective channel length, supply voltage or oxide thickness

as expressed above. The delay of each gate is the time to charge/discharge the

capacitors in the resistive path to vdd/ground.

90

Using the Elmore model, this delay is written as a posynomial function of the

resistors and capacitors in the gate and of the capacitors of the gates’ fanouts. Given

that si is proportional to the channel widths of the gates’ transistors, the delay of a

gate i is expressed as [51]:

di(�s) = a0i + a1i

�
∀j sj

si
j ∈ fanout(i) (4.3)

In the above posynomial expression, a0i and a1i are positive constants that

depend on kr and kc values of the transistors. The inequalities of 4.1 will therefore

be a posynomial formulation.

4.1.2 Convex Representation

The presented posynomial formulation is translated into a convex one by the

change of variable si = exi [8]. Therefore �s = {ex1; ex2; ...}. The formulation in

inequalities of 4.1 is then transformed to:

Minimize
∑
∀gate i ci × exi

Subject to :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

tj + di(�x) ≤ ti ∀j ∈ fanin(i)

ti ≤ Tcons ∀i ∈ PO

smin ≤ exi ≤ smax ∀gate i

(4.4)

The above formulation has been shown to be convex with respect to �x [51].

91

Probability Penalty

Tcons t

Figure 4.1: Binning yield-loss based on a linear penalty function.

4.2 Objective: Minimizing the Binning Yield-Loss (BYL)

In high performance systems, fabrication variability results in a considerable

spread in the frequency of the chips (about 30% according to [7]). The chips that

have a frequency lower than the nominal frequency can either be discarded, or be

sold at a loss. For the latter case, the chips that violate the timing constraint are

sorted (binned) according to their speed. [49] is a recent work which presents the

hardware for doing this speed-binning. Depending on the degree of timing constraint

violation for each bit, the chips are sold at a loss. This loss is defined by a penalty

function; slower a chip, higher its penalty and loss. All the chips of at least the

nominal speed will not have any penalty.

Let t denote the delay of a chip. Let us define a linear penalty function as

follows:

penalty(t) =

⎧⎪⎪⎨
⎪⎪⎩

t− Tcons; t ≥ Tcons

0; else

(4.5)

where Tcons is the timing constraint (nominal delay) that the chips are designed for.

The chips that have a delay larger than Tcons have a penalty equal to their delay-

offsets from Tcons. This linearity assumption will be relaxed later. Let fT (t) denote

the probability density function (pdf) for the potential delay values of a design.

92

For the above penalty function, the overall binning yield-loss (BYL) is defined as

follows:

BY L =

∫ ∞

−∞
penalty(t)fT (t)dt =

∫ ∞

Tcons

(t− Tcons)fT (t)dt (4.6)

In this chapter, the objective is to minimize BYL based on the penalty func-

tion of equation 4.5. An optimal and efficient algorithm to minimize this objective

is presented. The optimality of the proposed approach holds even if the penalty

function is convex (and not necessarily linear).

The delay of a design and consequently our objective can be expressed in terms

of the gate sizes, among other parameters:

BY L(�s) =

∫ ∞

Tcons

(t(�s) − Tcons)fT (t(�s))dt (4.7)

where �s is a vector of the gate sizes in the design. In this chapter optimization of

BY L(�s) is done over �s (using gate sizing).

Most of the exiting related work have focused on gate sizing to minimize the

yield-loss (YL) under fabrication variability [57], [13], where the YL is given by:

Y L =

∫ ∞

Tcons

fT (t)dt (4.8)

4.3 Gate Sizing for Minimizing the BYL

In this section, minimization of the BYL over the gate sizes is shown to be

optimally achieved. Initially the effects of fabrication variability on the traditional

formulation is discussed, and then the proposed method is discussed.

93

4.3.1 Effects of Variability on the Traditional Formulation

Fabrication variability randomizes different device parameters such as Leff or

Tox etc.. The resistance and capacitance of a device expressed in equation 4.2 will

therefore be a random variable (r.v.), as they are expressed in terms of such varying

parameters.

Assume �Ψ is a random vector which represents a set of varying parameters

in equation 4.2 such as the effective channel length (Leff) or oxide thickness (Tox).

Each sample vector �ψ ∈ �Ψ represents a set of samples from the assumed field of

uncertainty (which can have any associated density function and any correlation).

In equation 4.3, the coefficients of the delay expression of each gate become

r.v.s, and are represented as a0i(�Ψ) and a1i(�Ψ). In equation 4.1 the delay of gate i

also becomes a r.v.:

di(�x, �Ψ) = a0i(�Ψ) + a1i(�Ψ)
�

∀j exj

exi

4.3.2 Minimizing BYL: Mathematical Formulation

Under fabrication variability our objective to minimize the BYL can be for-

mulated in terms of �x (defined in section 4.1.2) as:

Minimize BY L(�x)

Subject to :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

tj + di(�x, �ψ0) ≤ ti ∀j ∈ fanin(i); ∀i

ti(yi) ≤ Tcons ∀i ∈ PO

smin ≤ exi ≤ smax ∀gate i

(4.9)

94

In the above formulation �ψ0 represents the nominal value of �Ψ assuming no vari-

ations. The delay of each gate (di(�x, �ψ0)) is also at its nominal value. The above

formulation therefore ensures that Tcons is satisfied in the nominal case.

If the goal is to also have a small area, an upper bound on the overall area can

be added as a new constraint:
∑

cie
xi ≤ Amax.

4.3.3 A Two-Stage Stochastic Programming Formulation

In the above formulation BYL is a function of �x. To elaborate the consideration

for variability in the objective function, let us define the following r.v.:

V (�x, �Ψ) =

⎧⎪⎪⎨
⎪⎪⎩

T (�x, �Ψ) − Tcons; T ≥ Tcons

0; else

(4.10)

where T (�x, �Ψ) is a r.v. that represents the delay of the design. This r.v.

depends on both the gate size vector �x and also the random field �Ψ. The r.v.

V (�x, �Ψ) represents the degree of violating Tcons. For a given value of �x, the pdf of

V can be written in terms of the pdf of the delay of the circuit fT (t):

fV (v) =

⎧⎪⎪⎨
⎪⎪⎩

fT (t); v > 0

∫ Tcons

−∞ fT (t)dt; v = 0

(4.11)

Note that both fT (t) and fV (v) are functions of �x. Now the objective in equation

4.6 can be expressed in terms of V as:

BY L(�x) =

∫ ∞

Tcons

(t− Tcons)fT (t)dt =

∫ ∞

−∞
vfV (v)dv = E[V] (4.12)

Since both fT (t) and fV (v) are functions of �x, so will BYL be.

95

Also as illustrated, minimizing the BYL can be thought of minimizing the

expected value of violating the timing constraint. Now let v(�x, �ψ) be the value for

V for a given �x and a sample �ψ from the field of uncertainty. Equation 4.12 can be

written as:

BY L(�x) =

∫ ∞

−∞
v(�x, �ψ)f�Ψ(�ψ)d�ψ (4.13)

where f�Ψ(�ψ) is the pdf of �Ψ. Note that this is just another way of understanding

BYL. No approximation has been done and no assumption has been made on the

nature of the variabilities and their correlations. Therefore equation 4.13 states that

for a known �x the corresponding BY L(�x) can be found by finding the E[V (�x, �Ψ)]

for all values �ψ of �Ψ.

Conceptually v(�x, �ψ) is the degree of violating the delay constraint for a given

choice of �x and a sample �ψ. This itself can be written as a convex program as

follows:
v(�x, �ψ) = Minimize q

Subject to :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

tj + di(�x, �ψ) ≤ ti ∀j ∈ fanin(i); ∀i

ti ≤ Tcons + q ∀i ∈ PO

q ≥ 0

(4.14)

Solving this formulation results in the arrival times of the gates ti with the gate

delays di(�x, �ψ). The optimal value of q denoted by q∗ is the degree of delay violation

for a fixed �x and �ψ.

This falls within the classic formulation of Two-Stage Stochastic Programming

[66]. The optimization problem given by 4.9 is called the first stage problem and

96

the one given by equation 4.14 is called the second stage problem. The region of

feasibility for the first stage problem is a convex set (since it simply comprises of a

set of convex function constraints). The objective BYL is the expected value of a

random variable V which depends on (�x and �ψ) according to the optimization set

of 4.14. In the next subsection we will prove that E[V] is a convex function of �x.

In doing so we will extend the classic Two-Stage Stochastic Programming theory

to incorporate convex first and second stage problems. The traditional theory was

valid only for linear programs [66].

Please note that our presented formulation does not make any specific assump-

tions about the distribution of �Ψ and the correlation of components of �Ψ.

4.3.4 Proof of Convexity of the Optimization Set

In this section we will prove that the formulation of the inequalities of 9 is

convex. To do this it is sufficient to show the optimization’s objective (BY L(�x)) is

convex, as the constraints in equation 4.9 can be represented in an exponential form

similar to section 4.1.2 and therefore will be a convex set [8].

Theorem: BY L(�x) is convex.

Proof: As shown in equation 4.13, BY L(�x) = E[V (�x, �Ψ)]. The E[.] can be thought

of the weighted summation of all the samples v(�x, �ψ) of V . The weights are the

probability values f�Ψ(�ψ) that are always positive. Therefore we will show that any

v(�x, �ψ) is individually a convex function of �x to conclude that the BY L(�x) is convex,

because the summation of positively weighted convex functions is convex.

97

To show v(�x, �ψ) is a convex function we need to show for �x1 and �x2, the

following inequality holds (for 0 ≤ θ ≤ 1) [8]:

v(θ �x1 + (1 − θ) �x2, �ψ) ≤ θv(x1, �ψ) + (1 − θ)v(�x2, �ψ) (4.15)

where v(x1, �ψ) and v(x2, �ψ) are the optimal solutions of the optimization set ex-

pressed by the inequalities of 4.14. The constraints in the inequalities of 4.14 are

written for �x1 and �x2 as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t
(1)
j + di(�x1, �ψ) ≤ t

(1)
i

t
(1)
i ≤ Tcons + q(1)

q(1) ≥ 0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t
(2)
j + di(�x2, �ψ) ≤ t

(2)
i

t
(2)
i ≤ Tcons + q(2)

q(2) ≥ 0

(4.16)

Let {�t∗(1), q∗(1)} and {�t∗(1), q∗(2)} be the optimal solutions of the left and right in-

equalities respectively. Multiplying the left inequalities by θ and the right ones by

(1 − θ) (for 0 ≤ θ ≤ 1) and adding the corresponding inequalities we get:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θt
∗(1)
j + (1 − θ)t

∗(2)
j) + (θdi(�x1, �ψ) + (1 − θ)di(�x2, �ψ))

≤ θt
∗(1)
i + (1 − θ)t

∗(2)
i

θt
∗(1)
i + (1 − θ)t

∗(2)
i ≤ Tcons + (θq∗(1) + (1 − θ)q∗(2))

θq∗(1) + (1 − θ)q∗(2) ≥ 0

(4.17)

Since di(�x, �ψ) is convex in �x, we have:

di(θ �x1 + (1 − θ) �x2, �ψ) ≤ θdi(�x1, �ψ) + (1 − θ)di(�x2, �ψ) (4.18)

98

Therefore inequalities of 4.17 can be written as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θt
∗(1)
j + (1 − θ)t

∗(2)
j) + di(θ �x1 + (1 − θ) �x2, �ψ)

≤ θt
∗(1)
i + (1 − θ)t

∗(2)
i

θt
∗(1)
i + (1 − θ)t

∗(2)
i ≤ Tcons + (θq∗(1) + (1 − θ)q∗(2))

θq∗(1) + (1 − θ)q∗(2) ≥ 0

(4.19)

Let us introduce �x3 = θ �x1 + (1− θ) �x2 and {�t(3) = θ�t∗(1) + (1− θ)�t∗(2), q(3) = θq∗(1) +(1−

θ)q∗(2)}. By replacing these definitions in the inequalities of 4.19 we will obtain:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t
(3)
j + di(�x3, �ψ) ≤ t

(3)
i

t
(3)
i ≤ Tcons + q(3)

q(3) ≥ 0

(4.20)

This implies that for �x = �x3, the following set:

{�t(3) = θ�t∗(1) + (1 − θ)�t∗(2), q(3) = θq∗(1) + (1 − θ)q∗(2)} is a feasible solution to the

inequalities of 4.14. Therefore the optimal solution at �x = �x3 must be smaller than

(or equal to) θq∗(1) + (1 − θ)q∗(2).

The optimal solution is nothing but v(θ �x1+(1−θ) �x2). Therefore, v(θ �x1+(1−

θ) �x2), �ψ) ≤ θv(�x1, �ψ)+(1−θ)v(�x2, �ψ), and therefore v and consequently E[V (�x, �Ψ)]

are convex in �x.

4.4 Some Generalizations

4.4.1 Generalized Penalty Function

The proof of convexity of our objective outlined in section 4.3.4, assumed that

the penalty of violating the timing constraint is a linear function of the degree of

violation (equation 4.5). If we redefine this penalty as follows:

99

penalty(t) =

⎧⎪⎪⎨
⎪⎪⎩

p(T (�x) − Tcons); t ≥ Tcons

0; else

(4.21)

where p is any convex function (with respect to �x, then the convexity of the new

BYL still holds and optimality can still be achieved. The reason is as follows:

• Given a convex penalty function in the above form, the BY L can be expressed

as: BY L =
∫∞

Tcons
penalty(�x, �ψ)f�Ψ(�ψ)d�ψ.

• Similar to the previous proof, because f�Ψ(�ψ) is a non-negative quantity, con-

vexity of the BYL with respect to �x depends only on the convexity of penalty(�x, �ψ)

with respect to �x, and therefore as long as a convex penalty function is used,

the same conclusions can be drawn.

4.4.2 Relation with Minimizing the Yield-Loss

The previous few sections discussed optimal minimization of BYL. From our

simulations a high degree of correlation between optimizing BYL and Yield-Loss

(YL) was found. In fact the proposed approach could be used as a heuristic for

optimizing YL. But there are some important results that can be proved about the

optimality of YL as illustrated below:

Theorem: The optimal BYL will be 0 iff the optimal YL is 0.

Proof: Let us suppose we have a solution for which BY L = 0. Referring to equation

4.12, this can happen only if fV (v) = 0 for all v greater than (not equal to) 0. This

means that the pdf of the timing of the circuit (for the given gate sizes) lies entirely

100

within the timing constraint. Thus Y L = 0. Now let BYL be more than zero,

therefore fV (v) must have a positive value for some v greater than 0. Therefore,

some part of the timing pdf must be greater than Tcons. Thus YL cannot be zero.

This is an important result, since by optimizing BYL we can 1)achieve a

solution for which Y L = 0, 2) or by looking at the optimal value of BYL check if a

solution with Y L = 0 exists.

4.4.3 Generalizing the BYL Definition

Our definition of the BYL can be extended to consider not only the loss asso-

ciated with violating a timing constraint, but also other constraints that could be

of importance.

For example BYL could be defined with respect to meeting a power and a

timing constraint. Given a timing constraint Tcons and a power constraint Pcons, the

BYL in this case could be expressed as:

BY L =

∫ ∞

Tcons

∫ ∞

Pcons

penalty(T (�x), P (�x))fT,P (t, p)dtdp (4.22)

where fT,P is the joint density function of power and timing, as in general these two

quantities might be correlated to each other. The penalty function could be defined

in terms of power and timing, which both are ultimately a function of �x. The

optimality results can all be extended to this case as long as the penalty function is

convex with respect to �x.

101

4.5 Solving the Convex Formulation

In the previous sections the convexity of the proposed formulation to minimize

the BYL was proven. This means that our formulation is optimally solvable using

the convex optimization techniques. Kelley’s Cutting Plane technique is used [8]

(among other possible methods) to solve this formulation, which is explained below.

4.5.1 Kelley’s Cutting Plane Algorithm

Kelley’s algorithm is an iterative approach. At each iteration a linear lower

bound of the convex objective is generated. This lower bound together with the

lower bounds of the previous iterations develop a piecewise linear lower bound on

the objective function. As the number of iterations increase, the linear lower bounds

of the previous iterations converge to the accurate objective. At any iteration k,

the objective function represented by the piecewise linear lower bounds is optimized

while satisfying the feasibility criteria of the constraints. This gives us a solution

vector xk. At this point a new linear lower bound is computed for the true objective

function and the entire process is repeated. These steps can be summarized in

Algorithm 1:

Initially at Step 1 a feasible solution (�x1) is found for the inequalities of 4.9.

Kelley’s algorithm follows an iterative approach: In the kth iteration, the lower

bound at BY L(�xk−1) found in the previous iteration is used to generate a new

solution �xk. This lower bound is generated as follows: We find the sub-gradient

αk + �βk.�x of the BYL function such that at �x = �xk−1, BY L(�xk−1) = αk + �βk. �xk−1

102

Algorithm 4 Kelley’s Cutting Plane Algorithm

Step 1: Initialize

Let ε > 0 and �x1 be a feasible solution satisfying the constraints.

Let k ← 0 and define l0(�x) = −∞, u0(�x) =∞.

Step 2: Set k ← k + 1

Step 3: Define the Lower Bound at �xk

Evaluate αk and �βk such that lk ≥ αk+ < �βk, �x >:

αk = BY L(�xk)− �βk�xk
�βk = ∂BY L(�x)

∂�x
|�xk−1

Step 4: Update the Optimization Set

Add the following to the existing set of constraints:

lk ≥ lk−1 lk ≥ αk+ < �βk, �x >

Update the objective function to Minimize lk.

Step 5: Solve the Optimization to get �xk and Update the Bounds

Let upper bound uk = Min{uk−1, BY L(�xk)} and lower bound lk.

Step 6: Stopping Rule

Stop if uk − lk ≤ ε, otherwise go to Step 1.

where �βk is conceptually the slope of the BYL function at �x = �xk−1. By definition

this sub-gradient is the linear lower bound of the BYL function. A new �xk is now

chosen as follows: A new variable lk is incorporated in the optimization framework

which is constrained to be larger than all the lower bounds found so far. The actual

objective is then replaced by lk which approximates the BY L (Step 4 of Algorithm

1). This gives us a new value for �xk and the entire process is repeated till the

lower bound approximation and the upper bound are within a user specified range

of tolerance (note that each �xk corresponds to an upper bound BY L(�xk)). This

approach provably reaches the optimal solution in convex optimization [8].

Next the application of statistical timing analysis (STA) will be explained

within the Kelley’s algorithm.

103

Please note that in case that the optimization of area and/or power is neces-

sary, new constraints can be added to our formulation that bound the overall area or

power. These can be expressed as convex constraints which allows the use of Kelley’s

Cutting-Plane algorithm to solve the new optimization formulation.

Also please note that Kelleys Cutting-Plane algorithm is one of the possible

methods to solve the convex formulation. Our main contribution is the convex for-

mulation, and once there is a provably convex formulation, all possible algorithms

targeted for this class of problems can potentially be used. Kelleys algorithm is cho-

sen as it integrates very well with Statistical Timing Analysis techniques as will be

explained next.

4.5.2 Integration with STA

Computing the BYL

Given a gate-level circuit, statistical timing analysis can be used to efficiently

compute the BYL. In section 4.3.3 parametric computation of BYL was explained

over all samples �ψ in �Ψ and for a particular set of gate sizes using equation 4.13. It

can also be equivalently obtained using equation 4.12. This is equivalent to doing

an STA (for a given choice of gate sizes) on the circuit and then evaluating the

expected value of violating the timing constraint in order to find the BYL (equation

4.12). Assuming variability in �Ψ, STA provides the spread of delay at the primary

outputs (essentially the pdf fT (t)) for a given �x. This STA can be done based on

any possible approach such as [65] and [37].

104

Computing the Lower Bound in Kelley’s Algorithm

The linear lower bound on BYL is expressed as αk+ < �βk, �x > in Algorithm

1. As expressed in step 3 of the algorithm, �βk is found by evaluating the slope of

the BY L(�x) at �xk−1. The coefficient αk is found such that BY L(�xk−1) = αk+ <

�βk, �xk−1 >. Therefore in order to find the lower bound, it is sufficient to show the

computation of �βk.

Finding the sub-gradient of a non-differentiable function is an important re-

search problem. Many techniques have been proposed that can approximate the

sub-gradient. In this chapter the finite-difference method is used [8].

The vector �βk = {β1; β2; ...; βn}, where βi is the projection of �βk with respect

to component xi (or βi = ∂BY L(�x)
∂xi

|�xk−1
). In other words βi expresses the sensitivity

of the objective function with respect to xi. We approximate this sensitivity as:

βi =
BY L({x1; ...xi; ...; xn}) − BY L({x1; ...xi + Δxi; ...; xn})

Δxi

|�xk−1
(4.23)

Given an �xk−1 vector, the sensitivity βi is found using equation 4.23. Computation

of BY L in the above equation can be done using STA as explained in the previous

subsection. Therefore computation of βi in the above equation requires doing two

STAs for each component �xk−1 vector, assuming xi for gate i is slightly changed. The

paper [13] proposes ways that allows the sensitivity to be more efficiently computed.

Once �βk is found, αk and consequently the lower bound are determined.

Note that the STA at any of these stages can be done using any of the proposed

techniques in the literature such as [65] or [37], and can assume any distribution for

�Ψ and any correlation model for its components.

105

-50

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200

B
in

n
in

g
 Y

ie
ld

-L
o
ss

 (
p
se

c)
Time (sec)

Objective (BYL)
Lower Bound

Figure 4.2: Convergence of BYL to its lower bound (C1908, Tcons =3500 psec).

4.6 Results

Our experiments were conducted on the ISCAS bench suite. Each benchmark

was initially placed and correlation data between different gates were generated

based on the model of [37]. Variability in the Vth was assumed for each device

with a Normal distribution with a mean equal to the nominal value and a 12%

standard deviation from the mean. A convex expression for the delay of each gate

as a function of its size was determined assuming a 90nm technology (for which the

information was obtained from [68]).

The proposed method was implemented in the SIS [52] framework and the

MOSEK [47] convex optimization tool was also used. In the proposed method using

the Kelley’s algorithm, the STA method of [65] was used to compute BYL.

Figure 4.2 shows the values of our objective BYL and its lower bound as

iterations progress. At each iteration the value of the objective corresponds to the

upper bound of the optimal. Kelley’s algorithm iteratively improves the lower bound

106

till the lower and upper bounds converge. This algorithm guarantees optimality.

In order to make comparison with other methods, a sensitivity-based approach

as well as a worst-case method were implemented. The sensitivity method had a

framework as in [2] or [57]. In this method initially all the gates are set to their

minimum size. The sensitivity-based method is a greedy iterative approach, in

which at each iteration the most sensitive gate is determined and sized up. The

most sensitive gate is the one that results in the maximum change in the objective

due to a small change in its size. For comparison of this method, the objective of

the sensitivity-based approach was set to be the BYL.

A worst-case deterministic approach was also implemented. The worst-case

approach had a convex optimization framework similar to [51]. However the delay

expression for each gate was computed assuming the value of Vth is fixed at its worst

(μ + 3σ). In this approach the optimization objective was set to be minimization

of the arrival time at the primary output nodes. A new constraint was also added

to impose an upper bound on the maximum area of this approach. In order to

make comparison with our proposed method, this maximum area of the worst-case

approach was set to be the area of the optimal solution generated by the proposed

approach.

Table 4.1 compares the BYL and area of these three methods for two different

timing constrains for each benchmark. One of these timing constraints is more

stringent than the other one. For the stringent timing constraint, the deterministic

approach could not generate any solution as it was too pessimistic in approximating

the delay of each gate and consequently of the timing constraint. For the more

107

bench T1 T2

Tcons Sensitivity Kelley Convex Tcons Sensitivity Worst-Case Kelley Convex

BY L Area BY L Area BY L Area BY L Area BY L Area

C17 210 21.60 353 6.83 369 300 0.00 365 0.00 321 0.00 342

C432 2500 252.47 10446 45.76 11504 3000 46.58 8908 1.73 8789 1.65 8789

C499 2300 32.73 15279 32.36 21869 2700 9.59 14408 1.46 13920 1.42 14684

C880 3150 226.05 13502 19.92 13336 3500 45.82 13935 1.80 13353 1.65 13485

C1355 2050 105.28 15821 17.79 21410 2300 32.73 15279 2.50 14977 1.59 14977

C1908 3000 327.94 18624 29.38 21812 3500 101.56 17139 1.95 18009 1.32 18009

C3540 4000 270.00 37547 76.67 37574 5500 8.66 36778 3.73 36728 3.72 36728

C5315 4000 105.92 50192 61.19 50138 5500 9.45 49661 8.59 49584 8.32 49596

C6288 15000 323.41 89201 181.65 88503 23000 8.77 87750 8.77 87750 8.77 87750

Ave. 185.04 27884 52.35 29613 29.24 27135 3.39 27047 3.16 27151

Table 4.1: Comparison of binning yield-loss (in psec) and area

relaxed timing, the worst-case approach however was able to generate solutions of

good quality comparable to our method. Compared to sensitivity-based approach,

an average of 72% improvement in the BYL was achieved with only a 6% area

overhead given the stringent timing constraint. Also a better solution was generated

when the timing constraint was relaxed.

Figure 4.3 shows the optimization of objective over time using our approach

compared to the sensitivity-based method for C1908. It can be seen that our ap-

proach has clearly a faster convergence rate. In fact as the run-times are reported

in Table 4.2, our method achieves an average of 2.69 speed up due to fewer number

of iterations. Although each individual iteration takes longer in our method (as a

convex optimization set needs to be solved at each iteration in our case), but due

to the very few number of iterations, the overall run-time will be much smaller.

108

 0

 200

 400

 600

 800

 1000

 1200

 0 400 800 1200 1600

B
i
n
n
i
n
g

Y
i
e
l
d
-
L
o
s
s

(
p
s
e
c
)

Time (sec)

Kelley Convex
Sensitivity

Figure 4.3: Binning yield-loss vs. time (C1908, Tcons =3500 psec).

The traditional Yield-Loss of the solution generated by the proposed approach

was also compared to a sensitivity-based approach in which the most sensitive gate

was defined as the one with maximum change in Yield-Loss due to the change in its

size. Our method also improves the Yield-Loss on average by 61%. Table 4.3 shows

in the information on yield-loss comparison.

Finally figure 4.4 shows the curve generated by our approach between the

area and BYL. Each point corresponds to the solution of an iteration of Kelley’s

algorithm. It can be seen that as the iterations progress, increase in area results in

a decrease in BYL.

109

bench Tcons Sensitivity Kelley Convex

#itera. time #itera. time

C17 210 73 0.06 4 1.33

C432 2500 1636 894.18 30 438.13

C499 2300 390 739.27 13 537.60

C880 3150 339 475.48 7 150.11

C1355 3000 390 772.82 7 216.99

C1908 3500 711 1585.47 31 1172.77

C3540 4000 120 2004.22 5 776.28

C5315 4000 164 5127.82 7 1870.41

C6288 15000 138 13616 4 1802.47

Table 4.2: Comparison of run-time (sec) and number of iterations

 0

 200

 400

 600

 800

 1000

 1200

 14500 15500 16500

B
in

ni
ng

 Y
ie

ld
-L

os
s

(p
se

c)

Area

Kelley Convex

Figure 4.4: BYL vs. area generated at different iterations of Kelley’s algorithm.

110

bench Tcons Sensitivity Worst-Case Kelley Convex

C17 210 0.75 N/A 0.40

C432 2500 0.76 N/A 0.28

C499 2300 0.23 N/A 0.23

C880 3150 0.72 N/A 0.15

C1355 2050 0.53 N/A 0.15

C1908 3000 0.82 N/A 0.18

C3540 4000 0.71 N/A 0.24

C5315 4000 0.33 N/A 0.18

C6288 15000 0.64 N/A 0.39

Table 4.3: Comparison of yield-loss.

111

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this dissertation a variability-driven optimization framework is studied. In

this framework the effects of process variations were considered by modeling the

varying circuit parameters as random variables that in general might be correlated

to each other.

A particular challenge in variability-driven design automation is to define op-

timality measures among candidate solutions, which allow for inferior solutions to

be removed from the solution space thus reducing the run-time complexity. In this

dissertation the superiority probability is introduced as such an optimality measure,

and two methods are proposed to compute this probability: an accurate Conditional

Monte Carlo simulation method, and an efficient moment-matching approximation

method. The effectiveness of using the superiority probability is shown in the context

of two important design automation applications: 1) the buffer insertion problem,

2) the dual-Vth leakage optimization problem.

Another important task in variability-driven design automation is to develop

optimization techniques that provably converge to the optimal solution. One such

optimization technique known as gate sizing was explored and its application to the

domain of microprocessor speed-binning was illustrated.

112

The presented formulation, in contrast with the existing variability-driven ap-

proaches which are all based on heuristics, is provably optimal. Moreover, unlike

existing approaches, it is independent of any assumption on the source and nature

of variations.

5.2 Open Problems

5.2.1 Additional Speedup and Accuracy in Computing the

Superiority Probability

In the proposed techniques to compute the Superiority Probability, the Con-

ditional Monte Carlo method was on average 25 times faster than regular Monte

Carlo simulation, but it is still considered to be slow when compared to the moment-

matching technique. However the moment-matching technique lacks the desired ac-

curacy. One interesting future direction is to explore new techniques that can com-

pute the superiority probability faster than the Conditional Monte Carlo method,

and yet more accurate than the moment-matching technique.

5.2.2 Extending the Definition of BYL to Consider the

Joint-Timing and Power Loss

One of the interesting future directions in this problem is to investigate the

case in which the BYL is defined as the joint-loss associated with a timing and a

power constraint, as in practice those solutions that have a very fast timing have a

113

very high power consumption, and vice versa. Therefore in the case that the goal is

to find a medium point (reasonable timing with a reasonable power consumption),

the stated joint BYL could be used.

5.2.3 Speedup in Solving the Convex Formulation

Another interesting direction is to explore different ways to speedup the algo-

rithm used to solve the convex optimization. Currently Kelley’s algorithm is used

for this purpose.

Speeding Kelley’s Algorithm

• Kelley’s algorithm is an iterative method in which at each iteration a new op-

timization set is solved from scratch. However the two optimization problems

associated with two consecutive iterations in Kelley’s algorithm, only differ

in one constraint. Using the result of the previous optimization round could

potentially be very beneficial to speedup solving the next optimization prob-

lem. Therefore exploring the use of incremental techniques to solve Kelley’s

algorithm is one interesting future direction.

• In addition in each iteration of the Kelley’s algorithm the sub-gradient of ob-

jective function is required. To find the sub-gradient, currently the sensitivity

of the objective function is found with respect to the size of each individual

gate. This means a separate Statistical Timing Analysis is done to evaluate the

change of the objective function when the size of each gate is slightly changed.

114

The use of incremental timing analysis techniques could be very useful in this

case, and might significantly speedup the computation of the sub-gradient.

Use of More Efficient Convex Solvers

Finally Kelley’s algorithm does not have a good theoretical run-time complex-

ity. The use of interior point methods that have a better run-time complexity, could

be explored as another future direction.

115

BIBLIOGRAPHY

[1] Agarwal K., Sylvester D., Blaauw D. Variational delay metric for interconnect
timing analysis. In Proceedings of Design Automation Conference, pages 381–
384, June 2004.

[2] Agrawal A., Chopra K., Blaauw D., Zolotov V. Circuit optimization using sta-
tistical static timing analysis. In Proceedings of Design Automation Conference,
pages 338–342, June 2005.

[3] Alpert C., Devgan A., Kashyap C. A two moment RC delay metric for perfor-
mance optimization. In Proceedings of Design Automation Conference, pages
69–74, 2000.

[4] Alpert C., Devgan A., Quay S. Buffer insertion with accurate gate and inter-
connect delay computation. In Proceedings of Design Automation Conference,
pages 479–484, 1999.

[5] Bhardwaj S., Vrdhula S. Leakage minimization of nano-scale circuits in the
presence of systematic and random variations. In Proceedings of International
Conference on Computer-Aided Design, pages 282–292, November 2005.

[6] Borkar S. Getting gigascale chips: challenges and opportunities in continuing
Moore’s Law. In ACM Queue, Vol.1, No. 7, pages 30–33, October 2003.

[7] Borkar S., Karnik T., Narendra S., Tschanz J., Keshavarzi A., De V. Parameter
variations and impacts on circuits and microarchitecture. In Proceedings of
Design Automation Conference, pages 338–342, June 2003.

[8] Boyd S., Vandenberghe L. Convex optimization. Cambridge 2004.

[9] Cargo G., Shisha O. The Bernstein form of a polynomial. In J. Res. Nat. Bur.
Standards, pages 79–81, 70B 1966.

[10] Chang H., Sapatnekar S. Statistical timing analysis considering spatial corre-
lations using a single pert-like traversal. In Proceedings of International Con-
ference on Computer-Aided Design, pages 621–628, 2003.

[11] Chang H., Sapatnekar S. Full-chip analysis of leakage power under process vari-
ations, including spatial correlations. In Proceedings of International Confer-
ence on Compound Semiconductor Manufacturing Technology, pages 523–528,
June 2005.

[12] Chang H., Zolotov V., Visweswariah C., Narayan S., Zhan Y. Parameterized
block-based statistical timing analysis with non-Gaussian parameters and non-
linear delay functions. In Proceedings of Design Automation Conference, pages
71–76, 2005.

116

[13] Chopra K., Shah S., Srivastava A., Blaauw D., Sylvester D. Parameteric yield
maximization using gate sizing based on efficient statistical power and delay gra-
dient computation. In Proceedings of International Conference on Computer-
Aided Design, November 2004.

[14] Clark C. The greatest of a finite set of random variables. In Operations Re-
search, Vol. 9, pages 85–91, 1961.

[15] Davoodi A., Khandelwal V., Srivastava A. Variability inspired implementation
selection problem. In Proceedings of International Conference on Computer-
Aided Design, pages 423–427, 2004.

[16] Davoodi A., Srivastava A. Probabilistic dual-vth leakage optimization under
variability. In Proceedings of International Symposium on Low Power Electron-
ics and Design, pages 143–148, August 2005.

[17] Davoodi A., Srivastava A. Variability-driven buffer insertion considering corre-
lations. In International Conference on Computer Design, pages 425–430, April
2005.

[18] Davoodi A., Srivastava A. Probabilistic comparison of solutions in variability-
driven optimization. In Proceedings of International Conference on Computer-
Aided Design, pages 17–24, April 2006.

[19] Davoodi A., Srivastava A. Variability-driven gate sizing for binning yield opti-
mization. In Proceedings of Design Automation Conference, July 2006.

[20] Devadas S., Ghosh A,m Keutzer K. Logic synthesis. In McGraw-Hill, 1994.

[21] Devgan A., Kashyap C. Block based static timing analysis with uncertainty. In
Proceedings of International Conference on Computer-Aided Design, page 607,
June 2003.

[22] Doyle B., Datta S., Doczy M., Hareland S., Jin B., Kavalieros J., Linton T.,
Murthy A., Rios R., Chau R. High performance fully depleted tri-gate CMOS
transistors. In IEEE Electron Device Letters, Vol. 24, No. 4, pages 263–265,
April 2003.

[23] Elmore W. The transient response of damped linear networks with particular
regard to wideband amplifiers. In Journal of Applied Physics, vol. 19, pages
5–63, January 1948.

[24] Ernst D., Das S., Lee S., Blaauw D., Austin T., Mudge T., Kim N., Flautner
K. Razor: circuit-level correction of timing errors for low-power operation. In
IEEE Micro, Vol. 24, No.6, pages 10–20, November 2004.

[25] Fishburn J., Dunlop A. TILOS: A posynomial programming approach to tran-
sistor sizing. In Proceedings of International Conference on Computer-Aided
Design, pages 326–328, 1985.

117

[26] Ginneken L. Buffer placement in distributed RC-tree networks for minimal
Elmore delay. In Proceedings of International Symposium on Circuits and Sys-
tems, pages 865–868, December 1990.

[27] Gupta S. Probability integrals of multivariate normal and multivariate t. In
Annals of Mathematical Statistics, Vol. 34, pages 792–828, 1963.

[28] Guthaus M., Venkateswaran N., Visweswariah C., Zolotov V. Gate sizing us-
ing incremental parameterized statistical timing analysis. In Proceedings of
International Conference on Computer-Aided Design, November 2005.

[29] Hisamoto D., Lee W.-C. Kedzierski J., Takeuchi H., Asano K., Kuo C., Ander-
son E., King T.-J., Bokor J., Hu C. FinFET-a self-aligned double-gate MOS-
FET scalable to 20 nm. In IEEE Transactions on Electron Devices, Vol.47,
No.12, pages 2320–2325, December 2000.

[30] Huseby A., Naustdal M., Varli I. System Reliability Evluation Using Condi-
tional Monte Carlo Methods. In Statistical Research Report, No. 2, 2004.

[31] International Technology Roadmap for Semiconductors. [Online]:
http://www.itrs.net/Common/2005ITRS/Interconnect2005.pdf. page 9,
2005.

[32] J. Garloff, C. Jansson, A. Smith. An Improved Method for the Computation
of Affine Lower Bound Functions for Polynomials. In Frontiers in Global Opti-
mization, Aegean Conferences Series, 2003.

[33] Jolliffe I. Principal component analysis. In Springer Series in Statistics, Second
Edition.

[34] Kay R., Pileggi L. PRIMO: Probability interpretation of moments for delay
calculation. In Proceedings of Design Automation Conference, pages 463–468,
June 1998.

[35] Khandelwal V., Davoodi A., Nanavati A., Srivastava A. A probabilistic ap-
proach to buffer insertion. In Proceedings of International Conference on
Computer-Aided Design, pages 560–567, November 2003.

[36] Khandelwal V., Davoodi A., Srivastava A. Efficient statistical timing anal-
ysis through error budgeting. In Proceedings of International Conference on
Computer-Aided Design, pages 473–477, November 2004.

[37] Khandelwal V., Srivastava A. A general framework for accurate satistical tim-
ing analysis considering correlations. In Proceedings of Design Automation
Conference, pages 89–94, June 2005.

[38] Kuroda T. A 0.9 v 150 MHz 10MW 4mm2 2-d discrete cosine transform core
processor with variable threshold voltage scheme. In Proceedings of IEEE Jour-
nal of Solid-State Circuits, pages 1770–1779, Novemebr 1996.

118

[39] L. He, A. B. Kahng, K. Tam, J. Xiong. Simultaneous Buffer Insertion and Wire
Sizing Considering Systematic CMP Variation and Random Leff Variation. In
Proceedings of International Symposium on Physical Design, pages 78–85, April
2005.

[40] Li X., Le J., Gopalakrishnan P., Pileggi L. Asymptotic probability extraction
of non-Normal distributions of circuit performance. In Proceedings of Interna-
tional Conference on Computer-Aided Design, pages 2–9, November 2004.

[41] Lin T., Acar E., Pileggi L. h-gamma: an RC delay metric based on Gamma
distribution approximation to the homogenerous response. In Proceedings of
International Conference on Computer-Aided Design, pages 19–25, November
1998.

[42] Liu F., Lillis J., Cheng C. Design and implementation of a global router based
on a new layout-driven timing model with three poles. In Proceedings of Inter-
national Symposium on Circuits and Systems, pages 1548–1551, 1997.

[43] Mani M., Devgana A., Orshansky M. An efficient algorithm for statistical
minimization of total power under timing yield constraints. In Proceedings of
Design Automation Conference, pages 309–314, July 2005.

[44] Miller D. Deterministic process control using a multivariate model. In Proceed-
ings of International Conference on Compound Semiconductor Manufacturing
Technology, April 2003.

[45] Mutah S., Douseki T., Matsuya Y., Aoki T., Shigematsu S., Yamada J. 1-V
power supply high-speed digital circuit technology with multi threshold voltage
CMOS. In Proceedings of IEEE Journal of Solid-State Circuits, pages 847–853,
August 1995.

[46] Nassif S. Modeling and forecasting of manufacturing variations. In Proceedings
of Design Automation Conference, pages 145–150, 2001.

[47] [Online]: http://www.mosek.com.

[48] Rabaey J., Chandrakasan A., Nikolic B. . In Digital integrated circuits: a
design perspective (2nd Edition).

[49] Raychowdhury A., Ghosh S., Roy K. A novel on-chip delay measurement hard-
ware for efficient speed-binning. In Proceedings of International On-Line Test-
ing Symposium, Vol. 0, pages 287–292, July 2005.

[50] S. Kotz, N. Balakrishnan, N. L. Johnson. Continuous Multivariate Distribu-
tions, Models and Applications. In Vol. 1, 2000.

[51] Sapatnekar S., Rao V., Vaidya P., Kang S. An exact solution to the tran-
sistor sizing problem for CMOS circuits using convex optimization. In IEEE
Transactions on Computer Aided Design, pages 1621–1634, November 1993.

119

[52] Sentovich E., Singh K., Lavagno L., Moon C., Murgai R., Saldanha A., Savoj H.,
Stephan P., Brayton R., Sangiovanni-Vincentelli A. SIS: a system for sequential
circuit synthesis. Technical report, 1992.

[53] Shephard K., Narayan V. Noise in Deep Sub Micron digital design. In Proceed-
ings of International Conference on Computer Aided Design, pages 524–531,
January 1997.

[54] Sherwani N. Algorithms for VLSI physical design automation. In Kluwer, 1995.

[55] Singh J., Nookala V., Luo Z., Sapatnekar S. Robust gate sizing by geometric
programming. In Proceedings of Design Automation Conference, pages 315–320,
July 2005.

[56] Singh J., Nookala V., Luo Z., Sapatnekar S. Robust gate sizing by geometric
programming. In Proceedings of Design Automation Conference, pages 315–320,
June 2005.

[57] Sinha D., Shenoy N., Zhou H. Statistical gate sizing for timing yield optimiza-
tion. In Proceedings of International Conference on Computer-Aided Design,
November 2005.

[58] Spars J., Furber S. Principles of asynchronous circuit design - a systems per-
spective. In Kluwer Academic Publishers, 2001.

[59] Sundararajan V., Parhi K. Low power synthesis of dual threshold voltage
CMOS VLSI circuits. In Proceedings of International Symposium on Low Power
Electronics and Design, pages 139–144, August 1999.

[60] Tsai J., Zhang L., Chen C. Statistical timing analysis driven post-silicon-
tunable clock-tree synthesis. In Proceedings of International Conference on
Computer Aided Design, pages 575–581, November 2005.

[61] Tschanz J., Bowman K., De V. Variation-tolerant circuits: circuit solutions and
techniques. In Proceedings of Design Automation Conference, pages 762–763,
June 2005.

[62] Tschanz J., Kao J., Narendra S., Nair R., Antoniadis D., Chandrakasan A., De
V. Adaptive body bias for reducing impacts of die-to-die and within-die Pa-
rameter variations on microprocessor frequency and leakage. In IEEE Journal
of Solid-State Circuits, pages 1396–1402, November 2002.

[63] Tschanz J., Kao J., Narendra S., Nair S., V. De. Effectiveness of adaptive
supply voltage and body bias for reducing impact of parameter variations in
low power and high performance microprocessors. In IEEE Journal of Solid-
State Circuits, pages 826–829, May 2003.

[64] Vasicek O. A series expansion for the bivariate normal integral. In Journal of
Computational Finance, Vol.1, No.4, 1998.

120

[65] Visweswariah C., Ravindran K., Kalafala K., Walker S., Narayan S. First-order
incremental block-based statistical timing analysis. In Proceedings of Design
Automation Conference, pages 331–336, June 2004.

[66] Wets R. Stochastic programs with fixed recourse: the equivalent deterministic
program. In SIAM Review, pages 309–339, July 1974.

[67] Xiong J., Tam K., He L. Buffer insertion considering process variation. In
Proceedings of the Conference on Design, Automation and Test in Europe, Vol.
2, pages 970–975, March 2005.

[68] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu. New paradigm of
predictive MOSFET and interconnect modeling for early circuit design. In
Proceedings of Custom Integrated Circuits Conference, pages 201–204, 2000.

[69] Yee G., Sechen C. Post-fabrication automatically tunable programmable delay
elements for clock-delayed domino logic. In Proceedings of SRC TECHCON
Conference, September 2000.

[70] Zhang S., Wason V., Banerjee K. A probabilistic framework to estimate full-
chip subthreshold leakage power distribution considering Within-Die and Die-
to-Die P-T-V variations. In Proceedings of International Symposium on Low
Power Electronics and Design, pages 156–161, August 2004.

121

