
Encryption to the Future

A Paradigm for Sending Secret Messages to Future
(Anonymous) Committees

Matteo Campanelli1⋆, Bernardo David3, Hamidreza Khoshakhlagh2,
Anders Konring3, and Jesper Buus Nielsen2

1 Protocol Labs
matteo@protocol.ai

2 Aarhus University, Denmark
{hamidreza,jbn}@cs.au.dk

3 IT University of Copenhagen, Denmark
{beda,konr}@itu.dk

Abstract. A number of recent works have constructed cryptographic
protocols with flavors of adaptive security by having a randomly-chosen
anonymous committee run at each round. Since most of these protocols
are stateful, transferring secret states from past committees to future,
but still unknown, committees is a crucial challenge. Previous works
have tackled this problem with approaches tailor-made for their specific
setting, which mostly rely on using a blockchain to orchestrate auxil-
iary committees that aid in the state hand-over process. In this work,
we look at this challenge as an important problem on its own and ini-
tiate the study of Encryption to the Future (EtF) as a cryptographic
primitive. First, we define a notion of an EtF scheme where time is de-
termined with respect to an underlying blockchain and a lottery selects
parties to receive a secret message at some point in the future. While
this notion seems overly restrictive, we establish two important facts: 1. if
used to encrypt towards parties selected in the “far future”, EtF implies
witness encryption for NP over a blockchain; 2. if used to encrypt only
towards parties selected in the “near future”, EtF is not only sufficient
for transferring state among committees as required by previous works,
but also captures previous tailor-made solutions. To corroborate these
results, we provide a novel construction of EtF based on witness encryp-
tion over commitments (cWE), which we instantiate from a number of
standard assumptions via a construction based on generic cryptographic
primitives. Finally, we show how to use “near future” EtF to obtain “far
future” EtF with a protocol based on an auxiliary committee whose com-
munication complexity is independent of the length of plaintext messages
being sent to the future.

⋆ Work done in part while the author was affiliated to Aarhus University.
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1 Introduction

Most cryptographic protocols assume that parties’ identities are publicly known.
This is a natural requirement, since standard secure channels are identified by a
sender and a receiver. However, this status quo also makes it easy for adaptive (or
proactive) adversaries to readily identify which parties are executing a protocol
and decide on an optimal corruption strategy. In more practical terms, a party
with a known identity (e.g. IP address) is at risk of being attacked.

A recent line of work [BGG+20,GHK+21,GHM+21] has investigated means
for avoiding adaptive (or proactive) corruptions by having different randomly
chosen committees of anonymous parties execute each round of a protocol. The
rationale is that parties whose identities are unknown cannot be purposefully
corrupted. Hence, having each round of a protocol executed by a fresh anonymous
committee makes the protocol resilient to such powerful adversaries. However,
this raises a new issue:

How can past committees efficiently transfer secret states to future
yet-to-be-assigned anonymous committees?

1.1 Motivation: Role Assignment

The task of sending secret messages to a committee member that will be elected
in the future can be abstracted as role assignment, a notion first introduced
in [BGG+20] and further developed in [GHK+21]. This task consists of sending
a message to an abstract role R at a given point in the future. A role is just a
bit-string describing an abstract role, such as R =“party number j in round sl
of the protocol Γ”. Behind the scenes, there is a mechanism that samples the
identity of a random party Pi and associates this machine to the role R. Such
a mechanism allows anyone to send a message m to R and have m arrive at Pi

chosen at some point in the future to act as R. A crucial point is: no one should
know the identity of Pi even though Pi learns that it is chosen to act as R.

The approaches proposed in [BGG+20,GHK+21,GHM+21] for realizing
role assignment all use an underlying Proof-of-Stake (PoS) blockchain (e.g.
[DGKR18]). On a blockchain, a concrete way to implement role assignment is
to sample a fresh key pair (skR, pkR) for a public key encryption scheme, post
(R, pkR) on the blockchain and somehow send skR to a random Pi without leak-
ing the identity of this party to anyone. Once (R, pkR) is known, every party has
a target-anonymous channel to Pi and is able to encrypt under pkR and post
the ciphertext on the blockchain. Notice that using time-lock puzzles (or similar
notions) is not sufficient for achieving this notion, since only the party or parties
elected for a role should receive a secret message encrypted for that role, while
time-lock puzzles allow any party to recover the message if they invest enough
computing time.

A shortcoming of the approaches of [BGG+20,GHK+21,GHM+21] is that,
besides an underlying blockchain, they require an auxiliary committee to aid in
generating (skR, pkR) and selecting Pi. In the case of [BGG+20], the auxiliary
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committee performs cheap operations but can adversarially influence the prob-
ability distribution with which Pi is chosen. In the case of [GHK+21,GHM+21],
the auxiliary committee cannot bias this probability distribution but must per-
form very expensive operations (using Mix-Nets or FHE; see also Section 1.3).
Moreover, these approaches have another caveat: they can only be used to select
Pi to act as R according to a probability distribution already known at the time
the auxiliary committee outputs (R, pkR). Hence, they only allow sending mes-
sages to future committees that have been recently elected. Later we explicitly
consider this weaker setting—where we want to communicate with a “near-
future” committee (i.e., whose distribution is known)—and dub it “Encryption
to the Current Winner4” (ECW).

In this paper we further investigate solutions to the role-assignment prob-
lem5. Taking a step back from specific solutions to this problem, we strive to
obtain non-interactive solutions to encrypting to a future role with IND-CPA
security without the aid of an auxiliary committee. We improve on solutions re-
lying on interaction with an auxiliary committee and shed light on the hardness
of achieving a fully non-interactive solution. We also discuss how to extend our
approach to IND-CCA2 security and how to allow winners of a role to authen-
ticate themselves when sending a message, achieving both goals using standard
assumptions.

1.2 Our Contributions

We look at the issue of sending messages to future roles as a problem on its
own and introduce the Encryption to the Future (EtF) primitive as a central
tool to solve it. Apart from defining this primitive and showing constructions
based on previous works, we propose constructions based on new insights and
investigate limits of EtF in different scenarios. Our general constructions for EtF
work by lifting a weaker primitive, namely encryption for the aforementioned

4 The word “winner” here refers to the party who is selected to perform a role according
to the underlying lottery of the PoS blockchain (see remainder of introduction).

5 The family of protocols we consider actually has two role-related aspects to solve.
The first—and the focus of this paper—is the aforementioned role assignment (RA)
which deals with the sending of messages to parties selected to perform future roles of
a protocol while hiding the identities of such parties. The other aspect is role execution
(RX) which focuses on the execution of the specific protocol that runs on top of the
RA mechanism, i.e., what messages are sent to which roles and what specification
the protocol implements. In [GHK+21] the so-called You Only Speak Once (YOSO)
model is introduced for studying RX. In the YOSO model the protocol execution
is between abstract roles which can each speak only once. Later these can then be
mapped to physical machines using an RA mechanism. The work of [GHK+21] shows
that given RA in a synchronous model, any well-formed ideal functionality can be
implemented in the YOSO model with security against malicious adaptive corruption
of a minority of machines. Concretely, [GHK+21] gives an ideal functionality for RA
and shows that a YOSO protocol for abstract roles can be compiled into the RA-
hybrid model to give a protocol secure against adaptive attacks.
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“near-future” setting, or ECW. Before providing further details, we summarize
our contributions as follows:

– A definition for the notion of Encryption to the Future (EtF) in terms of an
underlying blockchain and an associated lottery scheme that selects parties
in the future to receive messages for a role. We study the strength of EtF
as a primitive and prove that a non-interactive EtF scheme allowing for
encryption towards parties selected at arbitrary points in the future implies
a flavor of witness encryption for NP over a blockchain (referred to as BWE).

– A novel construction of Encryption to the Current Winner (ECW), i.e. EtF
where the receiver of a message is determined by the current state of the
blockchain, which can be instantiated without auxiliary committees from
standard assumptions via a construction based on generic primitives.

– A transformation from ECW to EtF through an auxiliary committee holding
a small state, i.e., with communication complexity independent of plaintext
size |m| (in contrast to [BGG+20,GHK+21,GHM+21] where a committee’s
state grows with |m|).

– An application of ECW as a central primitive for realizing role assignment
in protocols that require it (e.g. [BGG+20,GHK+21,GHM+21]).

Our EtF notion arguably provides a useful abstraction for the problem of
transferring secret states to secret committees. Our ECW construction is the first
primitive to realize role assignment without the need for an auxiliary committee.
Moreover, building on new insights from our EtF notion and constructions, we
show the first protocol for obtaining role assignment with no constraints on when
parties are chosen to act as the role. While our protocol uses auxiliary commit-
tees, it improves on previous work by only requiring a communication complexity
independent of the plaintext length. We elaborate on our results, discussing the
intuition behind the notion of EtF, its constructions and its fundamental limits.
We also invite the reader to use Fig. 1 as reference for the discussion below.

Encryption to the Future (EtF)—Section 3. As in previous works
[BGG+20,GHK+21,GHM+21], an EtF scheme is defined with respect to an un-
derlying PoS blockchain. We naturally use core features of the PoS setting to de-
fine what “future” means. The vast majority of PoS blockchains (e.g. [DGKR18])
associates a slot number to each block and uses a lottery for selecting parties
to generate blocks according to a stake distribution (i.e. the probability a party
is selected is proportional to the stake the party controls). Thus, in EtF, we
let a message be encrypted towards a party that is selected by the underly-
ing blockchain’s lottery scheme at a given future slot. We can generalize this
and let the lottery select parties for multiple roles associated to each slot (so
that committees consisting of multiple parties can be elected at a single point
in time). We note that the goal of defining EtF with respect to an underlying
blockchain is to construct it without having to assume very strong primitives
such as (extractable) witness encryption for NP6. Moreover, it is necessary to

6 While one might define EtF in more general settings, namely without a blockchain, it
is unclear how to obtain interesting instantiations, that is from standard primitives.
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provide a non-interactive EtF scheme with a means to publicly verify whether
a given party has won the lottery to perform a certain role. Since this lottery
predicate’s output must hold for all parties, we need a consensus mechanism
that allows for all parties to agree on lottery parameters/outputs while allowing
for third parties to verify this result. An important point of our EtF definition
is that it does not impose any constraints on the underlying blockchain’s lottery
scheme (e.g. it is not required to be anonymous) or on the slot when a party
is supposed to be chosen to receive a message sent to a given role (i.e. party
selection for a given role may happen w.r.t. a future stake distribution).

Relation to “Blockchain Witness Encryption” (BWE)—Section 8. In order to
study how hard it is to realize EtF, we show that EtF implies a version of witness
encryption [GGSW13] over a blockchain (similar to that of [GKM+20] but with-
out relying on committees). The crux of the proof: if we can encrypt a message
towards a role assigned to a party only at an arbitrary point in the future, then
we can easily construct a witness encryption scheme exploiting EtF and a smart
contract on the EtF’s underlying blockchain. We also prove the opposite direction
(BWE implies EtF), showing that the notions are similar from a feasibility stand-
point. This shows another crucial point: to implement non-interactive EtF, we
would plausibly need strong assumptions (e.g., full-blown WE). This follows by
observing that existing constructions of WE over blockchains (e.g., [GKM+20])
are interactive in the sense that they rely on a committee that holds all en-
crypted messages in secret shared form and periodically re-share them. On the
other hand, in the interactive setting, we show a construction of EtF with im-
proved communication complexity that is independent from the size (or amount)
of EtF encrypted messages: the committee only needs to hold an IBE master
secret key (secret shared) and compute secret keys for specific identities. We
note that the goal of constructing BWE from EtF is not to provide a concrete
instantiation based on existing blockchains but rather to provide evidence that
EtF is hard to construct from standard assumptions. The underlying blockchain
protocol and lottery we use are standard Proof-of-Stake based blockchains with
a VRF-based lottery and smart contracts. The only non-realistic assumption we
make is that the stake is distributed in arbitrarily (i.e. it is all locked inside
one smart contract) which is an assumption on how the blockchain is operated
rather than on how it is constructed or why it is secure.

Encryption to the Current Winner (ECW)—Section 3. By the previous result
we know that, unless we turn to strong assumptions, we may not construct a
fully non-interactive EtF (i.e., without auxiliary committees); therefore, we look
for efficient ways to construct EtF under standard assumptions while minimizing
interaction. As a first step towards such a construction, we define the notion of
Encryption to a Current Winner (ECW), which is a restricted version of EtF
where messages can only be encrypted towards parties selected for a role whose
lottery parameters are available for the current slot, the one in which we encrypt
(this is as in previous constructions [BGG+20,GHK+21,GHM+21]). Unrestricted
EtF, on the other hand, allows for encrypting a message toward lottery winners
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that will be determined at any arbitrary point in the future, including parties
who only join the protocol execution far in the future (after the ciphertext has
been generated).

Constructing ECW (non-interactively)—Section 5. We show that it is possible
to construct a fully non-interactive ECW scheme from standard assumptions.
Our construction relies on a milder flavor of witness encryption, which we call
Witness Encryption over Commitments (cWE) and define it in Section 4. This
primitive is significantly more restricted than full-fledged WE (see also discus-
sion in Remark 2), but still powerful enough: we show in Section 5.1 that ECW
can be constructed in a black-box manner from cWE, which in turn can be
constructed from oblivious transfer and garbled circuits (Section 4.2). This con-
struction improves over the previous results [BGG+20,GHK+21,GHM+21] since
it does not rely on auxiliary committees.

Instantiating YOSO MPC using ECW—Section 6. The notion of ECW is more
restricted than EtF, but it can still be useful in applications. We show how to
use it as a building block for the YOSO MPC protocol of [GHK+21]. Here,
each of the rounds in an MPC protocol is executed by a different committee.
This same committee will simultaneously transfer its secret state to the next
(near-future) committee, which in turn remains anonymous until it transfers its
own secret state to the next committee, and so on. This setting clearly matches
what ECW offers as a primitive, but it also introduces a few more requirements:
1. ECW ciphertexts must be non-malleable, i.e. we need an IND-CCA secure
ECW scheme; 2. Only one party is selected for each role; 3. A party is selected
for a role at random with probability proportional to its relative stake on the
underlying PoS blockchain; 4. Parties selected for roles remain anonymous until
they choose to reveal themselves; 5. A party selected for a role must be able
to authenticate messages on behalf of the role, i.e. publicly proving that it was
selected for a certain role and that it is the author of a message. We show that
all of these properties can be obtained departing from an IND-CPA secure ECW
scheme instantiated over a natural PoS blockchain (e.g. [DGKR18]). First, we
observe that VRF-based lottery schemes implemented in many PoS blockchains
are sufficient to achieve properties 1, 2 and 3. We then observe that natural block
authentication mechanisms used in such PoS blockchains can be used to obtain
property 4. Finally, we show that standard techniques can be used to obtain an
IND-CCA secure ECW scheme from an IND-CPA secure ECW scheme.

Constructing EtF from ECW (interactively)—Section 7. Since we argued the im-
plausibility of constructing EtF non-interactively from standard assumptions, we
study how to transform an ECW scheme into an unrestricted EtF scheme when
given access to an auxiliary committee but with “low communication” (and still
from standard assumptions). We explain what we mean by “low communication”
by an example of its opposite: in previous works ([BGG+20,GHK+21,GHM+21])
successive committees were required to store and reshare secret shares of every
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EtF + ECW

tIBE

cWE

BWE msNISC GC OT

+

Fig. 1. Dependency diagram for primitives in this work. Legend: primitives wrapped
in circles are introduced in this work; A→ B: “We can construct B from A”; A 99K B:
“A is a special case of B”.

message to be sent to a party selected in the future. That is, their communi-
cation complexity grows both with the number and the amount and length of
the encrypted messages. In contrast, our solution has communication complexity
independent of the plaintext length. How our transformation from ECW to EtF
works: we associate each role in the future to a unique identity of an Identity
Based Encryption scheme (IBE); to encrypt a message towards a role we apply
the encryption of the IBE scheme. When, at any point in the future, a party
for that role is selected, a committee generates and delivers the corresponding
secret key for that role/identity. To realize the latter step, we apply YOSO MPC
instantiated from ECW as shown in Section 6. In contrast to previous schemes,
our auxiliary committee only needs to hold shares of the IBE’s master secret
key and so it performs communication/computation dependent on the security
parameter but not on the length/amount of messages encrypted to the future.

1.3 Previous Works

We compare previous works related to our notions of EtF and ECW (encryption
to future and current winner, respectively) in Fig. 2.
Encryption to the Current Winner (ECW). We recall that ECW is an easier
setting than EtF: both the stake distribution and the randomness extracted
from the blockchain are static and known at the time of encryption. This means
that all of the parameters except the secret key of the lottery winner are available
to the encryption algorithm. We now survey works that solved this problem and
compare them to our solutions:

– “Can a Blockchain Keep a Secret?” (CaBKaS) [BGG+20]. The work
of [BGG+20] addresses the setting where a dynamically changing committee
(over a public blockchain) maintains a secret. The main challenge in order
for the committee to securely reshare its secret can be summarized as: how
to select a small committee from a large population of parties so that every-
one can send secure messages to the committee members without knowing
who they are? The solution of [BGG+20] is to select the “secret-holding”
committee by having another committee, a “nominating committee”, that
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Type Scheme Communication Committee? Interaction?

ECW

CaBKaS [BGG+20] O(1) yes yes
RPIR [GHM+21] O(1) yes yes

cWE (MS-NISC) (Sec. 4.2) O(N) no no*
cWE (GC+OT) (Sec. 4.2) O(N) no no*

EtF
IBE (Sec. 7) O(1) yes yes

WEB [GKM+20] O(M) yes yes
Full-fledged WE O(1) no no

Fig. 2. The column “Committee?” indicates whether a committee is required. The col-
umn “Communication” refers to the communication complexity in terms of the number
of all parties N , and the number of plaintexts (called deposited secrets in [GKM+20])
M of a given fixed length. We denote by an asterisk non-interactive solutions that
require sending a first reusable message during the initial step.

nominates members of the former (while the members of the nominating
committee are self-nominated).

One can see the nominating committee as a tool providing the ECW func-
tionality. A major caveat in such a solution, however, is that to guarantee an
honest majority in the committees, [BGG+20] can only tolerate up to 1/4 as
the fraction of corrupted parties. This is because corrupted nominators can
always select corrupted parties, whereas honest nominators may select cor-
rupted parties by chance. We can improve this through our non-interactive
ECW: we can remove the nominating committee and just let the current com-
mittee ECW-encrypt their secret shares to the roles of the next committee.

– “Random-Index PIR” (RPIR) [GHM+21]. The recent work of [GHM+21]
defines a new flavour of Private Information Retrieval (PIR) called Random-
index PIR (or RPIR) that allows each committee to perform the nomination
task by themselves. While RPIR improves on [BGG+20] (not requiring a
nominating committee and tolerating up to 1/2 of corrupted parties), its
constructions are inefficient, either based on Mix-Nets or Fully Homomorphic
Encryption (FHE). The construction based on Mix-Nets uses k shufflers,
where k is the security parameter, and has an impractical communication
complexity of O(nk2), where n is the number of public keys that each shuf-
fler broadcasts. The FHE-based construction gives a total communication
complexity of O(k3) where O(k) is the length of an FHE decryption share.

WE over commitments (cWE). Benhamouda and Lin [BL20] defined a type of
witness encryption, called “Witness Encryption for NIZK of Commitments”. In
their setting, parties first commit to their private inputs once and for all. Later,
an encryptor can produce a ciphertext so that any party with a committed in-
put that satisfies the relation (specified at encryption time) can decrypt. More
accurately, who can decrypt is any party with a NIZK showing that the com-
mitted input satisfies the relation. The authors construct this primitive based on
standard assumptions in asymmetric bilinear groups.
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In our work, we generalize the encryption notion in [BL20], formalize it
as cWE and finally use it to construct ECW. While the original construction
of [BL20] fits the definition of cWE, we observe it is an overkill for our appli-
cation. Specifically our setting does not require NIZKs to be involved in en-
cryption/decryption. We instead give more efficient instantiations based on two-
party Multi-Sender Non-Interactive Secure Computation (MS-NISC) protocols
and Oblivious Transfer plus Garbled Circuits.

Encryption to the Future (EtF). The general notion of EtF is significantly harder
to realize than ECW (as we show in Section 8). Below we discuss natural ideas to
obtain EtF. They can be seen as illustrating two extremes where our approach
(Section 7) lies in the middle.

– Non-Interactive—Using Witness Encryption [GGSW13]: One trivial ap-
proach to realize EtF is to use full-fledged general Witness Encryp-
tion [GGSW13] (WE) for the arithmetic relation R being the lottery pred-
icate such that the party who holds a winning secret key sk can de-
crypt the ciphertext. However, constructing a general witness encryption
scheme [GGSW13] which we can instantiate reliably is still an open problem.
Existing constructions rely on very strong assumptions such as multilinear
maps, indistinguishability obfuscation or other complexity theoretical con-
jectures [BIOW20]. The challenges in applying this straightforward solution
are not surprising given our result showing that EtF implies a flavor of WE.

– Interactive—Multiple Committees and Continuous Executions of ECW: A
simple way to achieve an interactive version of EtF is to first encrypt secret
shares of a message towards members of a committee that then re-share their
secrets towards members of a future anonymous committee via an invocation
of ECW (in our instantiations or those in [BGG+20] and [GHM+21]). This
is essentially the solution proposed in CaBKaS [BGG+20] where committees
interact in order to carry a secret (on the blockchain) into the future. Notice
that, for a fixed security parameter and corruption ratio, the communica-
tion complexity of the protocol executed by the committee in this solution
depends on the plaintext message length. On the other hand, for a fixed
security parameter and corruption ratio, the communication complexity of
our committee-based transformation from ECW to EtF is constant.

Other works. Using blockchains in order to construct non-interactive primi-
tives with game-based security has been previously considered in [GG17]. Other
approaches for transferring secret state to future committees have been pro-
posed in [GKM+20], although anonymity is not a concern in this setting. On
the other hand, using anonymity to overcome adaptive corruption has been pro-
posed in [GGJ+15], although this work considers anonymous channels among a
fixed set of parties.
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2 Preliminaries

Notation. For any positive integer n, [n] denotes the set {1, . . . , n}. We use λ

to denote the security parameter. We write a
$←− S to denote that a is sampled

according to distribution S, or uniformly randomly if S is a set. We write A(x; r)
to denote the output of algorithm A given an input x and a random tape r.

2.1 Proof-of-Stake (PoS) Blockchains

In this work we rely on PoS-based blockchain protocols. In such a protocol, each
participant is associated with some stake in the system. A process called leader
election encapsulates a lottery mechanism that ensures (of all eligible parties)
each party succeeds in generating the next block with probability proportional
to its stake in the system. In order to formally argue about executions of such
protocols, we depart from the framework presented in [GG17] which, in turn,
builds on the analysis done in [GKL15] and [PSs17]. We invite the reader to re-
visit the abstraction used in [GG17]. We present a summary of the framework in
Appendix A.1 and discuss below the main properties we will use in the remainder
of this paper. Moreover, we note that in [GG17] it is proven that there exist
PoS blockchain protocols with the properties described below, e.g. Ouroboros
Praos [DGKR18].

Blockchain Structure. A genesis block B0 = {(Sig.pk1, aux1, stake1), . . . ,
(Sig.pkn, auxn, staken), aux} associates each party Pi to a signature scheme pub-
lic key Sig.pki, an amount of stake stakei and auxiliary information auxi (i.e. any
other relevant information required by the blockchain protocol, such as verifiable
random function public keys). A blockchain B relative to a genesis block B0 is
a sequence of blocks B1, . . . , Bn associated with a strictly increasing sequence
of slots sl1, . . . , slm such that Bi = (slj , H(Bi−1), d, aux)). Here, slj indicates the
time slot that Bi occupies, H(Bi−1) is a collision resistant hash of the previ-
ous block, d is data and aux is auxiliary information required by the blockchain
protocol (e.g. a proof that the block is valid for slot slj). We denote by B⌈ℓ the
chain (sequence of blocks) B where the last ℓ blocks have been removed and if
ℓ ≥ |B| then B⌈ℓ = ϵ. Also, if B1 is a prefix of B2 we write B1 ⪯ B2. Each party
participating in the protocol has public identity Pi and most messages will be a
transaction of the following form: m = (Pi, Pj , q, aux) where Pi transfers q coins
to Pj along with some optional, auxiliary information aux.

Blockchain Setup and Key Knowledge. As in [DGKR18], we assume
that the genesis block is generated by an initialization functionality FINIT

that registers all parties’ keys. Moreover, we assume that primitives speci-
fied in separate functionalities in [DGKR18] as incorporated into FINIT. FINIT

is executed by the environment Z as defined below and is parameterized
by a stake distribution associating each party Pi to an initial stake stakei.
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Upon being activated by Pi for the first time, FINIT generates a signature
key pair Sig.ski,Sig.pki, auxiliary information auxi and a lottery witness skL,i,
which will be defined as part of the lottery predicate in Section 2.1, sending
(Sig.ski,Sig.pki, auxi, skL,i, stakei) to Pi as response. After all parties have ac-
tivated FINIT, it responds to requests for a genesis block by providing B0 =
{(Sig.pk1, aux1, stake1), . . . , (Sig.pkn, auxn, staken), aux}, where aux is generated
according to the underlying blockchain consensus protocol.

Since FINIT generates keys for all parties, we capture the fact that even cor-
rupted parties have registered public keys and auxiliary information such that
they know the corresponding secret keys. Moreover, when our EtF construc-
tions are used as part of more complex protocols, a simulator executing the EtF
and its underlying blockchain with the adversary will be able to predict which
ciphertexts can be decrypted by the adversary by simulating FINIT and learning
these keys. This fact will be important when arguing the security of protocols
that use our notion of EtF.

Evolving Blockchains. In order to define an EtF scheme, some concept of
future needs to be established. In particular we want to make sure that the initial
chain B has “correctly” evolved into the final chain B̃. Otherwise, the adversary
can easily simulate a blockchain where it wins a future lottery and finds itself with
the ability to decrypt. Fortunately, theDistinguishable Forking property provides
just that (see Appendix A.1 and [GG17] for more details). A sufficiently long
chain in an honest execution can be distinguished from a fork generated by the
adversary by looking at the combined amount of stake proven in such a sequence
of blocks. We encapsulate this property in a predicate called evolved(·, ·). First,
let ΓV = (UpdateStateV ,GetRecords,Broadcast) be a blockchain protocol with
validity predicate V and where the (α, β, ℓ1, ℓ2)-distinguishable forking property
holds. And let B← GetRecords(1λ, st) and B̃← GetRecords(1λ, s̃t).

Definition 1 (Evolved Predicate). An evolved predicate is a polynomial time
function evolved that takes as input blockchains B and B̃

evolved(B, B̃) ∈ {0, 1}

It outputs 1 iff B = B̃ or the following holds (i) V (B) = V (B̃) = 1; (ii) B
and B̃ are consistent i.e. B⌈κ ⪯ B̃ where κ is the common prefix parameter; (iii)
Let ℓ′ = |B̃| − |B| then it holds that ℓ′ ≥ ℓ1 + ℓ2 and u-stakefrac(B̃, ℓ′ − ℓ1) > β.

Blockchain Lotteries. Earlier we mentioned the concept of leader election in
PoS-based blockchain protocols. In this kind of lottery any party can win the
right to become a slot leader with a probability proportional to its relative stake
in the system. Usually, the lottery winner wins the right to propose a new block
for the chain, introduce new randomness to the system or become a part of a
committee that carries out some computation. In our encryption scheme we take
advantage of this inherent lottery mechanism.
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Independent Lotteries. In some applications it is useful to conduct multiple
independent lotteries for the same slot sl. Therefore we associate each slot with
a set of roles R1, . . . ,Rn. Depending on the lottery mechanism, each pair (sl,Ri)
may yield zero, one or multiple winners. Often, a party can locally compute if it,
in fact, is the lottery winner for a given role and the evaluation procedure may
equip the party with a proof for others to verify. The below definition details
what it means for a party to win a lottery.

Definition 2 (Lottery Predicate). A lottery predicate is a polynomial time
function lottery that takes as input a blockchain B, a slot sl, a role R and a
lottery witness skL,i and outputs 1 if and only if the party owning skL,i won the
lottery for the role R in slot sl with respect to the blockchain B.
Formally, we write

lottery(B, sl,R, skL,i) ∈ {0, 1}

It is natural to establish the set of lottery winning keys WB,sl,R for parameters
(B, sl,R). This is the set of eligible keys satisfying the lottery predicate.

2.2 Commitment Schemes

We recall the syntax for a commitment scheme C = (Setup,Commit) below:

– Setup(1λ)→ ck outputs a commitment key. The commitment key ck defines
a message space Sm and a randomizer space Sr.

– Commit(ck, s; ρ) → cm outputs a commitment given as input a message s ∈
Sm and randomness ρ ∈ Sr.

We require a commitment scheme to satisfy the standard properties of binding
and hiding. It is binding if no efficient adversary can come up with two pairs
(s, ρ), (s′, ρ′) such that s ̸= s′ and Commit(ck, s; ρ) = Commit(ck, s′; ρ′) for ck ←
Setup(1λ). The scheme is hiding if for any two s, s′ ∈ Sm, no efficient adversary
can distinguish between a commitment of s and one of s′.

Extractability. In our construction of ECW from cWE (Section 5.1), we require
our commitments to satisfy an additional property which allows to extract mes-
sage and randomness of a commitment. In particular we assume that our setup
outputs both a commitment key and a trapdoor td and that there exists an algo-
rithm Ext such that Ext(td, cm) outputs (s, ρ) such that cm = Commit(ck, s; ρ).
We remark we can generically obtain this property by attaching to the commit-
ment a NIZK argument of knowledge that shows knowledge of opening, i.e., for
the relation Ropn(cmi; (s, ρ)) ⇐⇒ cmi = Commit(ck, s; ρ).

2.3 Oblivious Transfer

A 2-round oblivious transfer (OT) protocol between a receiver R and a sender
S consists of three polynomial-time algorithms ΠOT = (ΠR

OT, Π
S
OT, Π

O
OT):
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Choose. On input (receive, sid, b) from R , where b ∈ {0, 1}, if no messages of the
form (receive, sid, b) is stored, store (receive, sid, b) and send (receive, sid)
to S.

Transfer. On input (send, sid, x0, x1) from S, with x0, x1 ∈ {0, 1}k, if no mes-
sages of the form (send, sid, x0, x1) is stored and a message of the form
(receive, sid, b) is present, send (sent, sid, xb) to R.

Fig. 3. The ideal functionality FOT for oblivious transfer

mR ← ΠR
OT(b; r

R). In the first round, the receiver R on input b ∈ {0, 1} and
random tape rR ∈ {0, 1}poly(λ) generates the OT first message mR.

mS ← ΠS
OT(m

R, (x0, x1); rS). In the second round, the sender S on input
(x0, x1), where xl ∈ {0, 1}poly(λ) for l ∈ {0, 1}, generates the second message
mS using random tape rS ∈ {0, 1}poly(λ).

x← ΠO
OT(m

S , b, rR). R computes the output x = ΠO
OT(m

S , b, rR).

We require an OT protocol to securely implement the ideal functionality FOT

given in Fig. 3 in the presence of malicious adversaries.

2.4 Garbled Circuit

We recall the definition of garbling schemes formalized by Bellare et al.
in [BHR12].

Definition 3 (Garbling Scheme). Let C = {Cλ}λ∈N be a polynomial-size cir-
cuit class. A garbled circuit scheme GC for C consists of four polynomial-time
algorithms GC = (Garble,Encode,Eval,Decode):

(C, e, d)← Garble(1λ, C): On input a boolean circuit C ∈ Cλ, outputs (C, e, d),
where C is a garbled circuit, e is encoding information, and d is decoding
information.

X ← Encode(e, x): On input e and x, where x is a suitable input for C, outputs
a garbled input X.

Y = Eval(C, X): On input (C, X) as above, outputs a garbled output Y .
y ← Decode(d, Y ): On input (d, Y ) as above, outputs a plain output y.

For our construction, we are interested in garbling schemes with the following
properties.

Correctness. For any security parameter λ ∈ N, for any circuit C ∈ Cλ, for
(C, e, d)← Garble(1λ, C), and for all suitable input x:

Decode(d,Eval(C,Encode(e, x))) = C(x)
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Authenticity. For all circuits C : {0, 1}n → {0, 1}, inputs x ∈ {0, 1}n, where
n = poly(λ), and for all PPT adversaries A,

Pr

[
Ŷ ̸= Eval(C, X) ∧
Decode(d, Ŷ ) ̸= ⊥

:
(C, e, d)← Garble(1λ, C)

X = Encode(e, x); Ŷ ← A(C, x,C, X)

]
≈λ 0

2.5 (Threshold) Identity Based Encryption

In an IBE scheme, users can encrypt simply with respect to an identity (rather
than a public key). Given a master secret key, an IBE can generate secret keys
that allows to open to specific identities. In our construction of EtF (Section 7.1)
we rely on a threshold variant of IBE (TIBE) where no single party in the sys-
tem holds the master secret key. Instead, parties in a committee hold a partial
master secret key mski. Like other threshold protocols, threshold IBE can be
generically obtained by “lifting” an IBE through a secret sharing with homo-
morphic properties (see for example [Nie03]).

Threshold IBE. A TIBE system consists of the following algorithms.

ΠTIBE.Setup(1
λ, n, k)→ (sp, vk, m⃗sk) : It outputs some public system parame-

ters sp (including mpk), verification key vk, and vector of master secret key

shares m⃗sk = (msk1, . . . ,mskn) for n with threshold k. We assume that all
algorithms takes sp as input implicitly.

ΠTIBE.ShareKG(i,mski, ID)→ θ = (i, θ̂) : It outputs a private key share θ = (i, θ̂)
for ID given a share of the master secret key.

ΠTIBE.ShareVerify(vk, ID, θ)→ 0/1 : It takes as input the verification key vk, an
identity ID, and a share of master secret key θ, and outputs 0 or 1.

ΠTIBE.Combine(vk, ID, θ⃗)→ skID : It combines the shares θ⃗ = (θ1, . . . , θk) to pro-
duce a private key skID or ⊥.

ΠTIBE.Enc(ID,m)→ ct : It encrypts message m for identity ID and outputs a
ciphertext ct.

ΠTIBE.Dec(ID, skID, ct)→ m : It decrypts the ciphertext ct given a private key
skID for identity ID.

Correctness. A TIBE scheme ΠTIBE should satisfy two correctness properties:
1. For any identity ID, if θ = ΠTIBE.ShareKG(i,mski, ID) for mski ∈ m⃗sk,

then ΠTIBE.ShareVerify(vk, ID, θ) = 1.

2. For any ID, if θ⃗ = {θ1, . . . , θk} where θi = ΠTIBE.ShareKG(i,mski, ID),

and skID = ΠTIBE.Combine(vk, ID, θ⃗), then for any m ∈ M and ct =
ΠTIBE.Enc(ID,m) we have ΠTIBE.Dec(ID, skID, ct) = m.

Structural Property: TIBE as IBE + Secret Sharing. We model threshold IBE
in a modular manner from IBE and assume it to have a certain structural prop-
erty: that it can be described as an IBE “lifted” through a homomorphic secret-
sharing [BGI+18,BBH06,Nie03]. TIBE constructions can often be described as
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such. We assume this structural property to present our proofs for EtF mod-
ularly, but we remark our results do not depend on it and they hold for an
arbitrary TIBE. For lack of space we defer the reader to Appendix A.2 for de-
tails.

Assume a secure IBE (the non-threshold variant of TIBE). We can trans-
form it into a threshold IBE using homomorphic secret sharing algorithms
(Share,EvalShare,Combine). A homomorphic secret sharing scheme is a secret
sharing scheme with an extra property: given a shared secret, it allows to com-
pute a share of a function of the secret on it. The correctness of the homomorphic
scheme requires that running yi ← EvalShare(mski, f) on mski output of Share
and then running Combine on (a large enough set of) the yi-s produces the same
output as f(msk). We also require that Combine can reconstruct msk from a large
enough set of the mski-s. For security we assume we can simulate the shares not
available to the adversaries (if the adversary holds at most T = k shares). For
the resulting TIBE’s security we assume that, for an adversary holding at most T
shares, we can simulate: master secret key shares not held by the adversary (msk
shares simulation) and shares of the id-specific keys (key-generation simulation)
for the same shares. We finally assume we can verify that each of the id-specific
key shares are authenticated (robustness) and that shares of the master secret
key can be reshared (proactive resharing).

3 Modelling EtF

In this section, we present a model for encryption to the future winner of a
lottery. In order to argue about a notion of future, we use the blocks of an
underlying blockchain ledger and their relative positions in the chain to specify
points in time. Intuitively, our notion allows for creating ciphertexts that can
only be decrypted by a party that is selected to perform a certain role R at a
future slot sl according to a lottery scheme associated with a blockchain protocol.
The winner of the lottery at a point in the future with respect to a blockchain
state B̃ is determined by the lottery predicate defined in Section 2.1, i.e. the
winner is the holder of a lottery secret key sk such that lottery(B̃, sl,R, sk) =
1. However, notice that the winner might only be determined by a blockchain
state produced in the future as a result of the blockchain protocol execution.
This makes it necessary for the ciphertext to encode an initial state B of the
blockchain that allows for verifying that a future state B̃ (presented at the time of
decryption) has indeed been produced as a result of correct protocol execution.
This requirement is captured by the evolving blockchain predicate defined in
Section 2.1, i.e. evolved(B, B̃) = 1 iff B̃ is obtained as a future state of executing
the blockchain protocol departing from B.

Definition 4 (Encryption to the Future). A pair of PPT algorithms E =
(Enc,Dec) in the context of a blockchain ΓV is an EtF-scheme with evolved
predicate evolved and a lottery predicate lottery. The algorithms work as follows.
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Encryption. ct← Enc(B, sl,R,m) takes as input an initial blockchain B, a slot
sl, a role R and a message m. It outputs a ciphertext ct - an encryption to
the future.

Decryption. m/⊥ ← Dec(B̃, ct, sk) takes as input a blockchain state B̃, a ci-
phertext ct and a secret key sk and outputs the original message m or ⊥.

An EtF must satisfy the following properties:

Correctness. An EtF-scheme is said to be correct if for honest parties i and j,
there exists a negligible function µ such that for all sk, sl,R,m:∣∣∣∣∣∣∣∣∣∣

Pr


view← EXECΓ (A,Z, 1λ)
B = GetRecords(viewi)

B̃ = GetRecords(viewj)
ct← Enc(B, sl,R,m)

evolved(B, B̃) = 1

:
lottery(B̃, sl,R, sk) = 0

∨ Dec(B̃, ct, sk) = m

− 1

∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)

Security. We establish a game between a challenger C and an adversary A.
In Section 2.1 we describe how A and Z execute a blockchain protocol. In
addition, we now let the adversary interact with the challenger in a game
GameIND-CPAΓ,A,Z,E described in Algorithm 1. The game can be summarized as
follows:
1. A executes the blockchain protocol Γ together with Z and at some round

r chooses a blockchain B, a role R for the slot sl and two messages m0

and m1 and sends it all to C.
2. C chooses a random bit b and encrypts the message mb with the param-

eters it received and sends ct to A.
3. A continues to execute the blockchain until some round r̃ where the

blockchain B̃ is obtained and A outputs a bit b′.
If the adversary is a lottery winner for the challenge role R in slot sl, the
game outputs a random bit. If the adversary is not a lottery winner for the
challenge role R in slot sl, the game outputs b⊕b′. The reason for outputting
a random guess in the game when the challenge role is corrupted is as follows.
Normally the output of the IND-CPA game is b⊕ b′ and we require it to be
1 with probability 1/2. This models that the guess b′ is independent of b.
This, of course, cannot be the case when the challenge role is corrupted. We
therefore output a random guess in these cases. After this, any bias of the
output away from 1/2 still comes from b′ being dependent on b.

Definition 5 (IND-CPA Secure EtF). An EtF-scheme E = (Enc,Dec) in the
context of a blockchain protocol Γ executed by PPT machines A and Z is said
to be IND-CPA secure if, for any A and Z, there exists a negligible function µ
such that for λ ∈ N: ∣∣∣2 · Pr [GameIND-CPAΓ,A,Z,E = 1

]
− 1

∣∣∣ ≤ µ(λ)
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Algorithm 1 GameIND-CPAΓ,A,Z,E

viewr ← EXECΓ
r (A,Z, 1λ) ▷ A executes Γ with Z until round r

(B, sl,R,m0,m1)← A(viewr
A) ▷ A outputs challenge parameters

b
$←− {0, 1}

ct← Enc(B, sl,R,mb)
st← A(viewr

A, ct) ▷ A receives challenge ct
viewr̃ ← EXECΓ

(viewr,r̃)(A,Z, 1λ) ▷ Execute from viewr until round r̃

(B̃, b′)← A(viewr̃
A, st)

if evolved(B, B̃) = 1 then ▷ B̃ is a valid evolution of B
if skA

L,j /∈ WB̃,sl,R then ▷ A does not win role R
return b⊕ b′

end if
end if
return b̂

$←− {0, 1}

Remark 1 (On the requirement of Proof-of-Stake for EtF). The EtF notion re-
quires the guarantee that an honest chain should be verifiable without interaction
with the network (i.e. verified by the EtF ciphertext). While this is possible for
Proof-of-Stake (PoS) blockchains, in a Proof-of-Work (PoW) blockchain the ad-
versary can always simulate a chain where it generates all blocks. In general we
require a blockchain in order to model time (via block height) for EtF.

3.1 ECW as a Special Case of EtF

In this section we focus on a special class of EtF. We call schemes in this class
ECW schemes. ECW is particularly interesting since the underlying lottery is
always conducted with respect to the current blockchain state. This has the
following consequences

1. B = B̃ means that evolved(B, B̃) = 1 is trivially true.
2. The winner of role R in slot sl is already defined in B.

It is easy to see that this kind of EtF scheme is simpler to realize since there
is no need for checking if the blockchain has “correctly” evolved. Furthermore,
all lottery parameters like stake distribution and randomness extracted from the
blockchain are static. Thus, an adversary has no way to move stake between
accounts in order to increase its chance of winning the lottery.
Note that, when using an ECW scheme, the lottery winner is already decided at
encryption time. In other words, there is no delay and the moment a ciphertext
is produced the receiver is chosen.

4 Witness Encryption over Commitments (cWE)

Here, we describe witness encryption over commitments that is a relaxed notion
of witness encryption. In witness encryption parties encrypt to a public input for
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some NP statement. In cWE we have two phases: first parties provide a (honestly
generated) commitment cm of their private input s. Later, anybody can encrypt
to a public input for an NP statement which also guarantees correct opening
of the commitment. Importantly, in applications, the first message in our model
can be reused for many different invocations.

Remark 2 (Comparing cWE and WE). We observe that cWE is weaker than
standard WE because of its deterministic flavor. In standard WE we encrypt
without having any “pointer” to an alleged witness, but in cWE it requires the
witness to be implicitly known at encryption time through the commitment (to
which it is bound). That is why—as for the weak flavors of witness encryption in
[BL20]—we believe it would be misleading to just talk about WE. This is true
in particular since we show cWE can be constructed from standard assumptions
such as oblivious transfer and garbled circuits (Section 4.2), whereas construc-
tions of WE from standard assumptions are still an open problem or require
strong primitives like indistinguishability obfuscation. Finally we stress a dif-
ference with the trivial “interactive” WE proposed in [GGSW13] (Section 1.3):
cWE is still non-interactive after producing a once-and-for-all reusable commit-
ment.

4.1 Definition

The type of relations we consider are of the following form: a statement x =
(cm, C, y) and a witness w = (s, ρ) are in the relation (i.e., (x, w) ∈ R) iff “cm
commits to some secret value s using randomness ρ, and C(s) = y”. Here, C is
a circuit in some circuit class C and y is the expected output of the function.
Formally, we define witness encryption over commitments as follows:

Definition 6 (Witness encryption over commitments). Let
C = (Setup,Commit) be a non-interactive commitment scheme. A cWE-
scheme for witness encryption over commitments with circuit class C and
commitment scheme C consists of a pair of algorithms ΠcWE = (Enc,Dec):

Encryption phase. ct← Enc(ck, x,m) on input a commitment key ck, a state-
ment x = (cm, C, y) such that C ∈ C, and a message m ∈ {0, 1}∗, generates
a ciphertext ct.

Decryption phase. m/⊥ ← Dec(ck, ct, w) on input a commitment key ck, a
ciphertext ct, and a witness w, returns a message m or ⊥.

A cWE should satisfy correctness and semantic security as defined below.

(Perfect) Correctness. An honest prover with a statement x = (cm, C, y) and
witness w = (s, ρ) such that cm = Commit(ck, s; ρ) and C(s) = y can always
decrypt with overwhelming probability. More precisely, a cWE with circuit
class C and commitment scheme C has perfect correctness if for all λ ∈ N,
C ∈ C, ck ∈ Range(C.Setup), s ∈ Sm, randomness ρ ∈ Sr, commitment
cm← C.Commit(ck, s; ρ), and bit message m ∈ {0, 1}∗, it holds that

Pr
[
ct← Enc(ck, (cm, C, C(s)),m);m′ ← Dec(ck, ct, (s, ρ)) : m = m′] = 1
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(Weak) Semantic Security. Intuitively, encrypting with respect to a false
statement (with honest commitment) produces indistinguishable ciphertexts.
Formally, there exists a negligible function µ such that for all λ ∈ N, all
auxiliary strings aux and all PPT adversaries A:∣∣∣∣∣∣∣∣∣∣∣∣∣
2 · Pr



ck← C.Setup(1λ)

(st, s, ρ, C, y,m0,m1)← A(ck, aux)

cm← C.Commit(ck, s; ρ); b
$←− {0, 1}

ct← Enc(ck, (cm, C, y),mb)

ct := ⊥ if C(s) = y, C ̸∈ C or |m0| ≠ |m1|

: A(st, ct) = b


− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)

To show the construction of ECW from cWE, we need a stronger notion of
semantic security where the adversary additionally gets to see ciphertexts of the
challenge message under true statements with unknown to A witnesses. Below
we formalize this property and show that weak semantic security together with
hiding of the commitment imply strong semantic security.

Strong Semantic Security. Informally, this property states that encrypting
a message m with respect to a false statement x = (cm, C, y) produces indistin-
guishable ciphertexts to an adversary A who knows the commitment opening,
even if A gets to see encryptions of m under other (possibly true) statements
xi = (cmi, C, y) but with unknown commitment opening. Formally, there exists
a negligible function µ such that for all λ ∈ N, all auxiliary strings aux and all
PPT adversaries A:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2 · Pr



ck← C.Setup(1λ)

(st, s, ρ, C, y,m0,m1)← AOcom(·)(ck, aux)

cm← C.Commit(ck, s; ρ); b
$←− {0, 1}

ct← Enc(ck, x = (cm, C, y),mb)

∀cmi ∈ Q : cti ← Enc(ck, xi = (cmi, C, y),mb)

ct := {ct} ∪ {cti}i∈[|Q|]

ct := ⊥ if C(s) = y or C ̸∈ C

: A(st, ct) = b


− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)

where Ocom(·) is a commitment oracle parametrized by ck and defined as fol-
lows: on input si, computes and returns cmi ← C.Commit(ck, si; ρi) for some
randomness ρi, and stores cmi in Q.

Lemma 1. Let C = (Setup,Commit) be a non-interactive commitment scheme.
Let ΠcWE be a witness encryption over commitments for some circuit class C
over commitment scheme C. If ΠcWE has weak semantic security, and C has
hiding property, then ΠcWE has strong semantic security.

Proof. Assume A is a PPT adversary against strong semantic security. We con-
struct an efficient adversary B that breaks weak semantic security of ΠcWE with
non-negligible advantage.
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First, B runs A with the commitment key ck received from the challenger.
B then simulates the oracle Ocom for A in the natural way. Namely, for any
input si, it outputs cmi ← C.Commit(ck, si; ρi) for some randomness ρi ∈ Sr,
and stores cmi in Q. Upon receiving a tuple (st, s, ρ, C, y,m0,m1) from A, B
forwards the tuple to the challenger. Upon receiving the challenge ciphertext
ct (for the encryption of mb) from the challenger, B generates a ciphertext cti

for each commitment cmi ∈ Q. To do so, B selects c
$←− {0, 1} and computes

cti ← Enc(ck, (cmi, C, y),mc) for any cmi ∈ Q. Next, B checks whether C(s) ̸= y,
and if so forwards ct := {ct} ∪ {cti}i∈[|Q|] to A. Otherwise, B outputs a random

guess b′
$←− {0, 1} for the bit b. Finally, upon receiving a guess b′ from A, B

forwards b′ to the challenger. It is easy to see that if c = b, then B is perfectly
simulating strong semantic security game for A.

To prove the lemma, we define |Q| + 2 hybrid distributions such that the
first hybrid corresponds to the strong semantic security and the last hybrid cor-
responds to the above game simulated by B. We conclude the proof by showing
that an adversary with non-negligible advantage in the first hybrid implies the
existence of an efficient adversary with non-negligible advantage in the last hy-
brid.
Hybrid 0. This is the strong semantic security game. Namely,

1. The adversary A receives the commitment key ck, where ck← C.Setup(1λ).
2. A adaptively makes commitment queries for messages si, and for each re-

ceives cmi ← C.Commit(ck, si; ρi).
3. After some number of queries listed in Q, A outputs a tuple

(st, s, ρ, C, y,m0,m1) for which C(s) ̸= y. The challenger samples a random

bit b
$←− {0, 1}, generates encryptions of mb via ct← Enc(ck, (cm, C, y),mb),

and cti ← Enc(ck, (cmi, C, y),mb) for all cmi ∈ Q, and sends ct := {ct} ∪
{cti}i∈[|Q|] to A as the challenge ciphertext.

4. Eventually, A outputs a guess b′ for the bit b.

Hybrids k = 1, . . . , |Q|. Same as the previous hybrid, except the first k ci-
phertexts {cti}i∈[k] are computed with respect to cmi being a commitment of s.
Namely,

1. Identical to Hybrid 0.
2. Identical to Hybrid 0.

3. The challenger samples a random bit b
$←− {0, 1}, generates encryptions of

mb via ct← Enc(ck, (cm, C, y),mb), and cti ← Enc(ck, (cmi, C, y),mb) (i =
1, . . . , |Q|) computed as before, except in the first k ciphertexts {cti}i∈[k],
the commitment cmi is computed as cmi ← C.Commit(ck, s; ρi) for some
randomness ρi ∈ Sr.

4. Identical to Hybrid 0.

Hybrid k = |Q| + 1. Same as the previous hybrid, except the ciphertexts

{cti}i∈[|Q|] are encryptions of mc for a uniformly random c
$←− {0, 1}. Namely,

1. Identical to Hybrid |Q|.
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2. Identical to Hybrid |Q|.
3. The challenger samples random bits b

$←− {0, 1} and c
$←− {0, 1}, and generates

encryptions of mb and mc respectively via ct← Enc(ck, (cm, C, y),mb), and
cti ← Enc(ck, (cmi, C, y),mc) (i = 1, . . . , |Q|).

4. Identical to Hybrid |Q|.

For k = 0, . . . , |Q| + 1, denote by advi the advantage of A in guessing the bit
b in Hybrid i. It is easy to see that for any 0 ≤ i < |Q|, we have |advi −
advi+1| ≤ negl(λ), where negl(λ) is some negligible function. This is because
the distributions Di and Di+1 respectively defined by the hybrids i and i + 1
only differ in their (i + 1)-th ciphertext, which is the encryption of mb under
a commitment of si+1 for Di and encryption of mb under a commitment of s
for Di+1. Thus, the difference |advi − advi+1| is exactly equal to the adversary’s
advantage in the hiding experiment. By the hiding property of the commitment
scheme, it thus follows that this difference is negligible.
Furthermore, observe that in the last hybrid, c = b with probability 1/2 and
hence we have that with probability at least 1/2, the two distributions D|Q|
and D|Q|+1 are identical. This, together with the fact that D0 and D|Q| have a
negligible difference imply that having an efficient adversary with non-negligible
advantage ε against hybrid 0 results in a non-negligible advantage ε/2 against
hybrid |Q|+ 1. This completes the proof of the lemma. ⊓⊔

4.2 Constructions of cWE

From Multi-Sender 2P-NISC [AMPR14]. A cWE scheme can be con-
structed from protocols for Multi-Sender (reusable) Non-Interactive Secure Com-
putation (MS-NISC) [AMPR14]. In such protocols, there is a receiver R with
input x who first broadcasts an encoding of its input, and then later every sender
Si with input yi can send a single message to R that conveys only f(x, yi). This
is done while preserving privacy of inputs and correctness of output. The ideal
functionality of MS-NISC as presented in [AMPR14] is depicted in Fig. 4.

In Fig. 5, we show how to construct cWE by having black-box access to
FMS-NISC. The main idea is that a party acts as a receiver and sends the first
message in MS-NISC containing its witness w in order to provide a “commitment”
to that witness. Later on, any other party can use this “commitment” to create
a cWE ciphertext by sending an encryption of the message and acting as the
sender of the MS-NISC to provide a second message that allows for evaluating a
function f(w, y) that outputs a decryption key iff the witness w satisfies a given
relation. Note that the ideal functionalities used in the construction are stated
for clarity and is not compatible with our game-based notion of security for cWE.
By assuming a concrete secure realization of the above functionalities, one can
argue about security using the corresponding simulator and use that to extract
witnesses from commitments and make the proof go through.

We observe that the above construction actually yields a stronger notion
of cWE where the statement x is private which is not a requirement in our
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Assume f(⊥, ·) = f(·,⊥) = ⊥.

– Initialize a list, L, of pairs of strings.
– Upon receiving a message (input, x) from R, store x and continue.

1. Upon receiving message (input, y) from Si, insert the pair (Si, y) into
L. If R is corrupted send (Si, f(x, y)) to the adversary. Otherwise, send
(messageReceived, Si) to R.

2. Upon receiving a message getOutputs from R, send {(Si, f(x, y))}(Si,y)∈L

to R.

Fig. 4. MS-NISC Functionality FMS-NISC

Initialization: Initialize FMS-NISC by instantiating a list L of pairs of strings.
Commit: R proceeds as follows:
– Commits to its witness w by calling FMS-NISC on input (input, w).

Encryption: S proceeds as follows:
– Generates a key k of length |m| and encrypts the messagem as ct← k⊕m.
– Calls FMS-NISC on input (x, k) and sends ct directly to R.

Decryption: R receives (messageReceived, S) from FMS-NISC and ct from S
and proceeds as follows:
– Calls FMS-NISC on input getOutputs.
– Upon receiving k from FMS-NISC, outputs m← k ⊕ ct.

Fig. 5. Construction of cWE based on MS-NISC

setting. This asymmetry between sender and receiver privacy was also observed
by others [JKO13] and it opens the door for efficient constructions using oblivious
transfer (OT) and privacy-free garbled circuits as described in [ZRE15].

cWE using Garbled Circuits and Oblivious Transfer. Instead of relying
on the full MS-NISC functionality in a black-box way, we now do a careful anal-
ysis resulting in a protocol which uses only the properties of MS-NISC needed
to obtain a protocol that satisfies the definition of cWE.

We observe that the correctness property in the definition of cWE only re-
quires that a correctly generated ciphertext can be decrypted by the decryption
algorithm. Thus, we expect the second message of MS-NISC functionality to be
generated correctly. In particular, when looking into the internals of the protocol
in [AMPR14], we observe that we can construct cWE from a MS-NISC protocol
without the precautions against a malicious sender S. However, we still want to
make sure that we preserve authenticity of the underlying garbled circuit scheme.
This property guarantees that no garbled output can be constructed different
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from what is dictated by the function and its inputs. In other words, the only
thing a malicious receiver can do with the garbled circuit is Evaluate it on the
committed input. Finally, we observe that privacy of input is not a requirement
for the sender. Thus, we can consider variants of garbled circuit schemes without
privacy guarantees.

Privacy-free Garbled Circuits. One of the most efficient GC schemes in terms
of communication is the scheme by [ZRE15] based on a technique called half-
gates. Using their technique in the privacy-free setting results in garbled circuits
containing one ciphertext for each AND gate and no ciphertexts for XOR gates.

cWE from privacy-free GC and OT. We now present an efficient construction
of cWE using only a privacy-free garbled circuit and oblivious transfer.

Let GC = (Garble,Encode,Eval,Decode,Verify) be a garbled circuit with cor-
rectness and authenticity, and ΠOT = (ΠR

OT, Π
S
OT, Π

O
OT) be an oblivious transfer

protocol that realizes FOT. We consider two parties E and D that respectively
play the role of the encryptor and the decryptor in an execution of the cWE
scheme. The construction of ΠcWE = (Enc,Dec) with commitment ΠR

OT for cir-
cuit class C is given in Fig. 6.

Theorem 1. Let C be a class of circuits. Let ΠOT be an OT protocol that realizes
FOT and GC be a correct and authentic garbling scheme. The cWE scheme ΠcWE

for C in Fig. 6 is correct and semantically secure as defined in Definition 6.

Proof. (Correctness). Follows directly from the correctness property of the
ΠOT and GC.
(Semantic Security). Assume that A is a PPT adversary against semantic se-
curity ofΠcWE such that, for adversarially chosen values (s, ρ, C, y,m0,m1), given
an encryption of mb under statement x = (cm, C, y), where cm = Commit(s; ρ)
and y ̸= C(s), A can guess the bit b with non-negligible advantage. We first
observe that by the construction of ΠcWE, A can guess b correctly only by dis-
tinguishing the correct label k1 from random. Informally, given that C(s) ̸= y,
there are only two possible cases in which A can distinguish k1 from random:
either by the ability to gain knowledge about invalid labels k

1−sj
j that do not

correspond to A’s committed value, or by the ability to gain knowledge about
k1 directly. We show that a successful adversary in the first case can be used to
break the sender security of ΠOT whereas a successful adversary in the second
case can be exploited to break the authenticity of GC.

In order to formally prove semantic security, we first define the experiment
ExpSS-bA,λ in Algorithm 2. We define b′ as the output of ExpSS-bA,λ . Note that ExpSS-bA,λ

corresponds to the semantic security experiment of ΠcWE in Definition 6, except
that b is fixed.

To prove the theorem, let us assume by contradiction that there is an adver-
sary A that breaks the semantic security of ΠcWE. That is, for a non-negligible
function ϵ, we have∣∣∣Pr[1← ExpSS-0A,λ ]− Pr[1← ExpSS-1A,λ ]

∣∣∣ ≥ ϵ(λ)
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Primitives: A correct and authentic garbling scheme GC =
(Garble,Encode,Eval,Decode), and a 2-round OT ΠOT = (ΠR

OT, Π
S
OT, Π

O
OT).

Commit: D with secret s ∈ {0, 1}n plays the role of the receiver in n instances
of ΠOT and computes (cm, w) as follows:

– Select ρRj
$←− {0, 1}λ, and compute mR

j ← ΠR
OT(sj ; ρ

R
j ) for j ∈ [n].

– Define cm = {mR
j }j∈[n], and w = (s, {ρRj }j∈[n]). Note that w can be seen as an

opening of cm.

Common inputs: A security parameter λ, a circuit C ∈ C, a commitment key
ck, and a statement x = (cm, C, y).
Encryption.: E plays the role of the sender in n instances of ΠOT and computes
a ciphertext ct = (ct1, ct2) as follows:

1. Let Cx be a circuit that realizes the following relation R on x: R(x =

(cm, C, y), (s, d⃗)) = 1 iff (s, d⃗) opens cm and C(s) = y. Compute (C, e, d) ←
Garble(1λ, Cx), where e := {k0

j , k
1
j}j∈[n], and d := (k0, k1) ∈ {0, 1}2|m|.

2. For j ∈ [n], select ρSj
$←− {0, 1}λ, and compute mS

j = ΠS
OT(k

0
j , k

1
j ,m

R
j ; ρ

S
j ).

3. Compute ct1 = k1 ⊕m and ct2 = (C, {mS
j }j∈[n]).

4. Send ct = (ct1, ct2) to D.

Decryption: Given ct = (ct1, ct2) and w = (s, {ρRj }j∈[n]), D proceeds as follows:

1. Parse ct2 as (C, {mS
j }j∈[n]).

2. Execute k
sj
j = ΠO

OT(m
S
j , sj , ρ

R
j ) for j ∈ [n], and Y = Eval(C, {ksj

j }j∈[n]).
3. Compute m = Y ⊕ ct1.

Fig. 6. cWE based on GC and OT

We now use a standard hybrid argument and define several games, where the
first is ExpSS-0A,λ , the last is ExpSS-1A,λ , and the intermediate hybrids are defined as
follows:
Hybrid 0 is defined as ExpSS-0A,λ .

Hybrid 1 is the same as Hybrid 0, except that the messages {mS
j }j∈[n] are

computed by the OT simulator i.e., as {mS
j }j∈[n] ← Sim(1λ, {mR

j }j∈[n]).

Hybrid 2 is the same as Hybrid 1, except that ct1 is defined as ct1 := k1⊕m1.
Hybrid 3 is defined as ExpSS-1A,λ .

By assumption, A must distinguish some pair of adjacent intermediate hy-
brids. That is, for some i ∈ {0, 1, 2}, we must have∣∣∣Pr[1← HybridiA,λ − Pr[1← Hybridi+1

A,λ]
∣∣∣ ≥ 1

3
ϵ(λ)

We now analyze all three cases:

– i = 0. Notice that the only difference between Hybrid 0 and Hybrid 1 is
that in the former, the sender’s message {mS

j }j∈[n] is computed by a real
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Algorithm 2 ExpSS-bA,λ

(st, s, ρ, C, y,m0,m1)← A(1λ)
ρ = ρ1|| . . . ||ρn; cm = {mR

j }j∈[n], where mR
j ← ΠR

OT(sj ; ρj) ∀j ∈ [n].
x := (cm, C, y); (C, e, d)← Garble(1λ, Cx) where e := {k0

j , k
1
j}j∈[n], and d := (k0, k1).

ρSj
$←− {0, 1}λ; mS

j = ΠS
OT(k

0
j , k

1
j ,m

R
j ; ρ

S
j ) (∀j ∈ [n]).

ct1 = k1 ⊕mb and ct2 = (C, {mS
j }j∈[n]); ct := (ct1, ct2).

ct := ⊥ if C(s) = y or C ̸∈ C or |m0| ≠ |m1|
b′ ← A(st, ct)

sender (World 0), whereas in the latter, it is computed by the simulator
(World 1). Assuming that A can distinguish hybrids 0 and 1, we construct
an adversary B against sender security of ΠOT that distinguishes the two
worlds with the same probability. B works as follows:

1. B invokes A(1λ) and obtains (s, ρ, C, y,m0,m1).

2. If |m0| ≠ |m1| or C(s) = y, B aborts; otherwise, it parses ρ = ρ1|| . . . ||ρn
and defines cm = {mR

j }j∈[n], where mR
j ← ΠR

OT(sj ; ρj) for j ∈ [n].
Let x = (cm, C, y). As an environment controlling the OT execution, B
provides the input of sender and receiver to the OT challenger as follows:

• computes a garbling of circuit Cx (as defined in Fig. 6) by (C, e, d)←
Garble(1λ, Cx) and sends the input keys to the OT challenger as the
sender’s input.
• sends s to the OT challenger as the receiver’s choice bits.

3. The OT challenger computes the sender’s message {mS
j }j∈[n] either by

invoking a real sender (World 0), or by invoking the simulator (World
1), and sends it to B.

4. B parses d = (k0, k1), and forwards ct := (ct1, ct2) to the cWE adversary
A, where ct1 = k1 ⊕m0 and ct2 = (C, {mS

j }j∈[n]).

It is clear that B has the same advantage in breaking sender security of ΠOT

as A in distinguishing the two hybrids.

– i = 1. The only difference in Hybrid 1 and Hybrid 2 is in how we
generate ct1 (that is ct1 := k1 ⊕ mi−1 in Hybrid i). To argue indistin-
guishability of the two hybrids, it suffices to show that k1 is indistinguish-
able from random. To achieve this, we observe that because in both hy-
brids, the sender’s message {mS

j }j∈[n] is computed by the simulator i.e., as

{mS
j }j∈[n] ← Sim(1λ, {mR

j }j∈[n]), A cannot distinguish k1 from random by
the ability of knowing invalid labels. Thus, the only way A can distinguish
k1 from random should be by directly forging an output key k1 for the gar-
bled circuit C. It is therefore straightforward to use a successful adversary
that distinguishes the two hybrids with non-negligible advantage to break
the authenticity of the underlying garbling scheme.

– i = 2. This is handled identically to i = 0, except that in this case ct1 :=
k1 ⊕m1 encrypts m1 instead of m0.

26



We conclude the proof by this observation that in any of the three cases, we
reach a contradiction and thus our assumption of the existence of A against the
semantic security of ΠcWE cannot be true. ⊓⊔

Remark 3. The commitment scheme in ΠcWE is the receiver’s algorithm of ΠOT

and therefore by UC-security of ΠOT, it satisfies both extractability and hiding
property. Using Lemma 1 and weak semantic security shown in Theorem 1, one
can then conclude that ΠcWE also achieves strong semantic security.

5 Construction of ECW

Here we show a novel construction of ECW from cWE. We then show alternative
constructions through instantiations from previous work.

5.1 ECW from cWE

In this section we realize the notion of ECW from cWE. We define our scheme
with respect to a set of parties P = {P1, . . . , Pn} executing a blockchain protocol
Γ as described in Section 2.1, i.e. each party Pi has access to the blockchain
ledger and is associated to a tuple (Sig.pki, auxi, sti) registered in the genesis
block for which it has corresponding secret keys (Sig.ski, skL,i). Our construction
uses as a main building block a witness encryption scheme over commitments
ΠcWE = (EnccWE,DeccWE); we assume the commitments to be extractable. The
class of circuits C of ΠcWE includes the lottery predicate lottery(B, sl,R, skL,i).
We let each party publish an initial commitment of its witness. This way we can
do without any interaction for encryption/decryption through a one-time setup
where parties publish the commitments over which all following encryptions are
done. We construct our ECW scheme ΠECW as follows:

System Parameters: We assume that a commitment key Setup(1λ) → ck is
contained in the genesis block B0 of the underlying blockchain.

Setup Phase: All parties Pi ∈ P proceed as follows:
1. Compute a commitment cmi ← Commit(ck, skL,i; ρi) to skL,i using ran-

domness ρi. We abuse the notation and define Pi’s secret key as skL,i||ρi.
2. Compute a signature σi ← SigSig.ski(cmi).

3. Publish (cmi, σi) on the blockchain by executing Broadcast(1λ, (cmi, σi)).
Encryption Enc(B, sl,R,m): Construct a circuit C that encodes the predicate
lottery(B, sl,R, skL,i), where B, sl and R are hardcoded and skL,i is the witness.
Let PSetup be the set of parties with non-zero relative stake and a valid setup
message (cmi, σi) published in the common prefix B⌈κ (if Pi has published
more than one valid (cmi, σi), only the latest one is considered). For every
Pi ∈ PSetup, compute cti ← EnccWE(ck, xi = (cmi, C, 1),m). Output ct =(
B, sl,R, {cti}Pi∈PSetup

)
.

Decryption Dec(B, ct, sk): Given sk := skL,i||ρi such that cmi =
Commit(ck, skL,i; ρi) and lottery(B, sl,R, skL,i) = 1 for parameters B, sl,R from
ct, output m← DeccWE(ck, cti, (skL,i, ρi)). Otherwise, output ⊥.
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Theorem 2. Let C = (Setup,Commit) be a non-interactive extractable commit-
ment scheme and ΠcWE = (EnccWE,DeccWE) be a strong semantically secure cWE
over C for a circuit class C encoding the lottery predicate lottery(B, sl,R, skL,i)
as defined in Section 4. Let Γ be a blockchain protocol as defined in Section 2.1.
ΠECW is an IND-CPA-secure ECW scheme as per Definition 5.

Proof. Assume by contradiction that there exists an adversary AECW with non-
negligible advantage in GameIND-CPA

Γ,A,Z,E in the ECW setting as described in Section
3.1. We construct an adversary AcWE with black-box access to AECW that has
non-negligible advantage in breaking strong semantic security of ΠcWE as defined
above. We assume (w.l.o.g.) that AECW only corrupts one party Pa

7. AcWE

proceeds as follows:

1. Upon receiving the commitment key ck from the challenge, AcWE proceeds
as follows:
(a) AcWE acts as the environment Z orchestrating the execution of the

blockchain protocol Γ towards AECW, placing the commitment key ck
in the genesis block. AcWE acts exactly as Z in GameIND-CPA

Γ,A,Z,E .
(b) AcWE simulates honest parties Ph executing the setup phase and pub-

lishing a valid (cmh, σh) on the blockchain. To simulate cmh for each
honest party, AcWE calls the oracle Ocom on some random input skL,h

and sets cmh to be Ocom’s output.
(c) At some point, AECW outputs challenge parameters B, sl,R,m0,m1 from

its view of the blockchain. AcWE constructs a circuit C that encodes the
predicate lottery(B, sl,R, skL,i), where B, sl and R are hardcoded and
skL,i is the witness.

(d) Finally, if there exists a valid setup message (cma, σa) published in
the common prefix B⌈κ by Pa (i.e. the corrupted party Pa is in
PSetup), AcWE extracts skL,a, ρa from cma using the extractability of
the commitment scheme C and outputs (st, skL,a, ρa, C, 1,m0,m1) to
the challenger. Otherwise, AcWE outputs (st, skL,k, ρk, C, 1,m0,m1) to
the challenger, where skL,k, ρk are chosen at random and such that
C(skL,k) ̸= 1.

2. Upon receiving ciphertexts ct = {ct} ∪ {cth}Ph∈PSetup
from the challenger,

if Pa ∈ PSetup, then ct = cta was computed w.r.t. Pa’s commitment cma

and cth computed w.r.t. the honest party’s commitment cmh. Otherwise, if
only honest parties are in PSetup, AcWE forwards the ECW ciphertexts ct =
{cth}Ph∈PSetup

toAECW.AcWE continues the execution of Γ withAECW from
the round where it stopped when AECW outputted challenge parameters
B, sl,R,m0,m1.

3. Upon receiving a guess b′ from AECW, AcWE forwards b′ to the challenger.

First, notice that AECW has the same access to the underlying blockchain pro-
tocol Γ (and to the system parameters in the genesis block) as in GameIND-CPA

Γ,A,Z,E .

7 In reality there will be more than one corrupted party; the main argument underlying
our proof holds regardless.

28



In case AECW provided a valid setup message, it receives ct containing a cWE
ciphertext cta generated with respect to its commitment cma and the circuit
encoding the lottery predicate lottery(B, sl,R, skL,i), where B, sl and R pro-
vided by AECW are hardwired. Moreover, ct contains ciphertexts cth for each
cmh, encrypting the same mb as in cta. Hence, ct is distributed exactly as in
GameIND-CPA

Γ,A,Z,E . If AECW has non-negligible advantage in GameIND-CPA
Γ,A,Z,E , it is able

to distinguish whether cta contains m0 or m1 with non-negligible advantage
even though it does not have skL,a and cma ← Commit(ck, skL,a; ρa) such that
lottery(B, sl,R, skL,a) = 1, i.e. it does not have skL,a such that C(skL,a) = 1.
This means that, by forwarding guess b′ from AECW, AcWE in the cWE seman-
tic security game has the same advantage as AECW in GameIND-CPA

Γ,A,Z,E . In case
it did not provide a valid setup message, AECW only sees ct = {cth}Ph∈PSetup

with cth being an encryption of mb with respect to the commitments cmh for
which it does not know the opening. Hence, ct is again distributed exactly as
in GameIND-CPA

Γ,A,Z,E with probability 1. In this case, by an analogous argument as
before, the advantage of the adversary AcWE must be the same as the advantage
of the adversary AECW in GameIND-CPA

Γ,A,Z,E .
Since we assume that AECW has a non-negligible advantage, AcWE will also

obtain a non-negligible advantage and thus break the cWE scheme we assume
is secure. Hence, ΠECW is an IND-CPA-secure ECW scheme. ⊓⊔

5.2 Other Instantiations

ECW from target anonymous channels [GHM+21,BGG+20]. As mentioned be-
fore, another approach to construct ECW can be based on a recent line of work
that aims to design secure-MPC protocols where parties should remain anony-
mous until they speak [GHM+21,BGG+20,GHK+21]. The baseline of these re-
sults is to establish a communication channel to random parties, while preserving
their anonymity. It is quite clear that such anonymous channels can be used to
realize our definition of ECW for the underlying lottery predicate that defines
to whom the anonymous channel is established. Namely, to encrypt m to a role
R at a slot sl with respect to a blockchain state B, create a target anonymous
channel to (R, sl) over B by using the above approaches and send m via this
channel. Depending on the lottery predicate that specifies which random party
the channel is created for, a recipient with the secret key who wins this lottery
can retrieve m. To include some concrete examples, the work of Benhamouda
et al. [BGG+20] proposed the idea of using a “nomination” process, where a
nominating committee chooses a number of random parties P, look up their
public keys, and publish a re-randomization of their key. This allows everyone
to send messages to P while keeping their anonymity. The work of [BGG+20]
answered this question differently by delegating the nomination task to the previ-
ous committees without requiring a nominating committee. That is, the previous
committee runs a secure-MPC protocol to choose a random subset of public keys,
and broadcasts the rerandomization of the keys. To have a MPC protocol that
scales well with the total number of parties, they define a new flavour of private
information retrieval (PIR) called random-index PIR (or RPIR) and show how
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each committee—playing the role of the RPIR client—can select the next com-
mittee with the complexity only proportional to the size of the committee. There
are two constructions of RPIR proposed in [GHM+21], one based on Mix-Nets
and the other based on FHE. Since the purpose of the constructions described
is to establish a target-anonymous channel to a random party, one can consider
them as examples of a stronger notion of ECW with anonymity and a specific
lottery predicate that selects a single random party from the entire population
as the winner.

ECW from [DS15]. Derler and Slamanig [DS15] (DS) constructed a variant of
WE for a restricted class of algebraic languages. In particular, a user can conduct
a Groth-Sahai (GS) proof for the satisfiability of some pairing-product equations
(PPEs). Such a proof contains commitments to the witness using randomness
only known by this user. The proof can be used by anyone to encrypt a message
resulting in a ciphertext which can only be decrypted by knowing this random-
ness. More formally, they consider a type of WE associated with a proof system
Π = (Setup,Prove,Verify) consisting of two rounds. In the first round, a recipient
computes and broadcasts π ← Prove(crs, x, w). Later, a user can verify the proof
and encrypt a message m under (x, π) if Verify(crs, x, π) = 1. We note that the
proof π does not betray the user conducting the proof and therefore it can use
an anonymous broadcast channel to communicate the proof to the encrypting
party in order to obtain anonymous ECW. Moreover, although GS proofs may
look to support only a restricted class of statements based on PPEs, they are
expressive enough to cover all the statements arising in pairing-based cryptog-
raphy. This indicates the applicability of this construction for any VRF-based
lottery where the VRF is algebraic and encodable as a set of PPEs. Further
details are provided in Appendix B. This interactive ECW just described yields
an improvement in communication complexity at the cost of having an extra
round of interaction.

From Signatures of Knowledge. Besides the above instantiations, we point out
a (potentially more inefficient) abstract construction from zero-knowledge sig-
natures of knowledge (SoK) [CL06] (roughly, a non-malleable non-interactive
zero-knowledge proof). This is similar in spirit to the previous instantiation and
can be seen as a generalization. Assume each party has a (potentially ephemeral)
public key. At the time the lottery winner has been decided, the winners can
post a SoK showing knowledge of the secret key corresponding to their pk and
that their key is a winner of the lottery. To encrypt, one would first verify the
SoK and then encrypt with respect to the corresponding public key.

6 YOSO Multiparty Computation from ECW

In this section we show how ECW can be used as the crucial ingredient in setting
up a YOSO MPC. So far we have only focused on IND-CPA secure ECW, which
falls short of role assignment in the sense of [GHK+21]. In general role assignment
requires the following properties which are not provided by ECW (or EtF):
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1. Multiple parties must be able to send messages to the same role (in most
applications this requires IND-CCA).

2. Parties must authenticate messages on behalf of a role they executed in the
past (authentication from the past)

3. A party assigned to a given role must stay covert until the role is executed.

We will define a number of properties needed for EtF to realize applications such
as role assignment. We start by looking at CCA security for an EtF scheme. We
then introduce the notion of Authentication from the Past (AfP) and definition
of unforgeability and privacy guarantees. Finally, we introduce the notion of
YOSO-friendly blockchains that have inbuilt lotteries with properties that are
needed to conduct YOSO MPC and corresponding EtF and AfP schemes.

6.1 IND-CCA EtF

In this section we define what it means for an EtF to be IND-CCA secure.
This security property is useful in many applications where more encryptions
are done towards the same slot and role. As in the definition of IND-CPA, we
establish a game between a challenger C and an adversary A. We introduce a
decryption oracle, OEtF, which on input ct returns the decryption of ciphertext.
Furthermore, the OEtF maintains a list of ciphertext queries QEtF. Algorithm 3
shows the details of the game.

Algorithm 3 GameIND-CCA2
Γ,A,Z,E

viewr ← EXECΓ
r (AOEtF ,Z, 1λ) ▷ A executes Γ with Z until round r

(B, sl,R,m0,m1)← AOEtF(viewr
A) ▷ A outputs challenge parameters

b
$←− {0, 1}

ct← Enc(B, sl,R,mb)
st← AOEtF(viewr

A, ct) ▷ A receives challenge ct
viewr̃ ← EXECΓ

(viewr,r̃)(AOEtF ,Z, 1λ) ▷ Execute from viewr until round r̃

(B̃, b′)← AOEtF(viewr̃
A, st)

if evolved(B, B̃) = 1 then ▷ B̃ is a valid evolution of B
if skAL,j /∈ WB̃,R,sl ∧ ct /∈ QEtF then ▷ A does not win role R

return b⊕ b′

end if
end if
return g

$←− {0, 1}

Definition 7 (IND-CCA2 Secure EtF). Formally, an EtF-scheme E is said to
be IND-CCA2 secure in the context of a blockchain protocol Γ executed by PPT
machines A and Z if there exists a negligible function µ such that for λ ∈ N:∣∣∣2 · Pr [GameIND-CCA2

Γ,A,Z,E = 1
]
− 1

∣∣∣ ≤ µ(λ)
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To add IND-CCA2 security to an IND-CPA secure EtF scheme (as defined
in Definition 5) we can use standard transformations such as [FO99,Sah99]. In
the transformation based on [Sah99] we could add to the setup of the blockchain
a CRS for a simulation-sound extractable NIZK. When encrypting m to a role
R the sender will send along a proof of knowledge of the plaintext m. We get
the challenge ciphertext from the IND-CPA game and use the ZK property
to simulate the NIZK proof. We can use the extraction trapdoor of the proof
system to simulate the CCA decryption oracles by simulation soundness. When
the IND-CCA2 adversary makes a guess, we make the same guess. The details
of the construction and proof follow using standard techniques and are omitted.
On the other hand, the popular transformation of [FO99] allows for simulating
CCA decryption oracles by observing the adversary’s queries to a random oracle,
which should not be an issue since an EtF scheme is likely already running on
top of a blockchain which is secure in the random oracle model. We leave the
construction of concretely efficient IND-CCA2 EtF as future work.

6.2 Authentication from the Past (AfP)

When the winner of a role R1 sends a message m to a future role R2 then it
is typically also needed that R2 can be sure that the message m came from
a party P which, indeed, won the role R1. Most PoS blockchains deployed in
practice have a lottery where a certificate can be released proving that P won
the role R1. In order to formalize this concept, we introduce an AfP scheme with
a corresponding EUF-CMA game representing the authentication property.

Definition 8 (Authentication from the Past). A pair of PPT algorithms
U = (Sign,Verify) is a scheme for authenticating messages as a winner of a
lottery in the past in the context of blockchain Γ with lottery predicate lottery.

Authenticate. σ ← AfP.Sign(B, sl,R, sk,m) takes as input a blockchain B, a
slot sl, a role R, a secret key sk, and a message m. It outputs a signature σ
that authenticates the message m.

Verify. {0, 1} ← AfP.Verify(B̃, sl,R, σ,m) uses the blockchain B̃ to ensure that
σ is a signature on m produced by the secret key winning the lottery for slot
sl and role R.

Furthermore, an AfP-scheme has the following properties:

Correctness. An AfP-scheme is said to be correct if for honest parties i and
j, there exists a negligible function µ such that for all sk, sl,R,m:∣∣∣∣∣∣∣∣Pr


view← EXECΓ (A,Z, 1λ)
B = GetRecords(viewi)

B̃ = GetRecords(viewj)
σ ← AfP.Sign(B, sl,R, sk,m)

:

lottery(B, sl,R, sk) = 0

∨ lottery(B̃, sl,R, sk) = 0

∨ AfP.Verify(B̃, sl,R, σ,m) = 1

− 1

∣∣∣∣∣∣∣∣ ≤ µ(λ)

In other words, an AfP on a message from an honest party with a view
of the blockchain B can attest to the fact that the sender won the role R
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in slot sl. If another party, with blockchain B̃ agrees, then the verification
algorithm will output 1.

Security. We here describe the game detailed in Algorithm 4 representing the
security of an AfP scheme. The algorithm represents a standard EUF-CMA
game where the adversary has access to a signing oracle OAfP which it can
query with a slot sl, a role R and a message mi and obtain AfP signatures
σi = AfP.Sign(B, sl,R, skj ,mi) where skj ∈ WB,sl,R i.e. lottery(B, sl,R, skj) =
1. The oracle maintains the list of queries QAfP.
Formally, an AfP-scheme U is said to be EUF-CMA secure in the context of
a blockchain protocol Γ executed by PPT machines A and Z if there exists
a negligible function µ such that for λ ∈ N:

Pr
[
GameEUF-CMA

Γ,A,Z,U = 1
]
≤ µ(λ)

Algorithm 4 GameEUF-CMA
Γ,A,Z,U

view← EXECΓ (A,Z, 1λ) ▷ A executes Γ with Z
(B, sl,R,m′, σ′)← AOAfP(viewA)
if (m′ ∈ QAfP) ∨ (skAL,j ∈ WB,sl,R) then ▷ AOAfP won or queried illegal m′

return 0
end if
viewr̃ ← EXECΓ

(viewr,r̃)(A,Z, 1λ) ▷ Execute from viewr until round r̃

B̃← GetRecords(viewr̃
i )

if evolved(B, B̃) = 1 then
if AfP.Verify(B, sl,R, σ′,m′) = 1 then ▷ A successfully forged an AfP

return 1
end if

end if
return 0

General AfP. In general we can add authentication to a message as follows.
Recall that Pi wins R if lottery(B, sl,R, skL,i) = 1. Here, R(x = (B, sl,R), w) =
lottery(x, w) is an NP relation where all parties know x but only the winner
knows a witness w such that R(x, w) = 1. We can therefore use a signature
of knowledge (SoK) [CL06] to sign m under the knowledge of skL,i such that
lottery(B, sl,R, skL,i) = 1. This will attest that the message m was sent by a
winner of the lottery for R. In Section 6.4, we show more efficient construction
of AfP by exploring the structure of PoS-based blockchains with VRF lotteries.

6.3 AfP Privacy

Just EUF-CMA security is not sufficient for an AfP mechanism to be YOSO
friendly. It must also preserve the privacy guarantees of the lottery predicate,
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guaranteeing that the adversary does not gain any undue advantage in predicting
when a party is selected to perform a role after it uses AfP to authenticate a
message. To appreciate this fact, we consider the case where instead of creating a
signature of knowledge of skL,i on message m we simply use a regular EUF-CMA
secure signature scheme to sign the message concatenated with skL,i, revealing
the signature public key, the resulting signature and skL,i itself as a means of
authentication. By definition, this will still constitute an existentially unforgeable
AfP but will also reveal whether the party who owns skL,i is the winner when
future lotteries are conducted. The specific privacy property we seek is that an
adversary, observing AfP tags from honest parties, cannot use this information
to enhance its chances in predicting the winners of lotteries for roles for which an
AfP tag has not been published. On the other hand, the identity of a party who
won the lottery for a given role is not kept private when it publishes an AfP tag
on behalf of this role, which is not an issue in a YOSO-setting since corruption
after-the-fact is futile. Specifically, we allow an AfP tag to be linked to the
identity of the party who generated it. Note, that this kind of privacy is different
from notions like k -anonymity since the success of the adversary in guessing
lottery winners with high accuracy depends on the stake distribution. The stake
distribution is public in most PoS-settings and, thus, a privacy definition must
take into account this inherent leakage.

Definition 9 (AfP Privacy.). An AfP scheme U with corresponding lottery
predicate lottery is private if a PPT adversary A is unable to distinguish between
the scenarios defined in Algorithm 5 and Algorithm 6 with more than negligible
probability in the security parameter.

Scenario 0 (b = 0). In this scenario (Algorithm 5), A is first running the
blockchain Γ together with the environment Z. At round r, A is allowed to
interact with the oracle OAfP (see Definition 8). The adversary then continues
the execution until round r̃ where it outputs a bit b′.

Scenario 1 (b = 1). This scenario (Algorithm 6) is identical to scenario 0 but
instead of interacting with OAfP, the adversary interacts with a simulator Sim.

Algorithm 5 b = 0

viewr ← EXECΓ
r (A,Z, 1λ)

AOAfP(viewr
A)

viewr̃ ← EXECΓ
(viewr,r̃)(A,Z, 1λ)

return b′ ← AOAfP(viewr̃
A)

Algorithm 6 b = 1

viewr ← EXECΓ
r (A,Z, 1λ)

ASim(viewr
A)

viewr̃ ← EXECΓ
(viewr,r̃)(A,Z, 1λ)

return b′ ← ASim(viewr̃
A)

We let GameAfP-PRIVΓ,A,Z,U denote the game where a coin-flip decides whether the
adversary is executed in scenario 0 or scenario 1. We say that the adversary wins
the game (i.e. GameAfP-PRIVΓ,A,Z,U = 1) iff b′ = b. Finally, an AfP scheme U is called
private in the context of the blockchain Γ executed together with environment Z
if the following holds for a negligible function µ.∣∣∣2 · Pr [GameAfP-PRIVΓ,A,Z,U = 1

]
− 1

∣∣∣ ≤ µ(λ)
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6.4 More Efficient AfP based on VRF

VRF-based Lottery. This section introduces a specific lottery mechanism
which will be the underlying lottery predicate for the AfP described in the next
section. The backbone of the lottery is a VRF scheme VRF as described in
[DGKR18]. This VRF has the properties of simulatability and unpredictability
under malicious key generation which will become useful when arguing about se-
curity of the AfP. The VRF scheme is a tuple (VRF.Gen,VRF.Prove,VRF.Verify)
where VRF.Gen(1κ) outputs a pair of keys (VRF.pk,VRF.sk). The VRF.Prove
takes as input a value x and outputs a pair (y, π) ← VRF.ProveVRF.sk(x) which
is the output value y and the correctness certificate π. The verification is then
done by evaluating VRF.VerifyVRF.pk(x, y, π) which outputs 1 iff π attests to the
correctness of y as the output of the VRF evaluated on x with key VRF.sk.
We recall the blockchain setup described in Section 2.1 where each party
Pi is represented by a pair (Sig.ski, skL,i) associated with public data
(Sig.pki, auxi, stakei). Let auxi contain a VRF public key VRF.pki as described
above and let the lottery secret key be skL,i = (Sig.pki,VRF.ski).
Finally, we introduce a function param(B, sl). This function outputs a tuple
({Sig.pki,VRF.pki, stakei}i∈[n], η, ϕ) associated with the specific blockchain B
and slot sl. Beyond obtaining the public information (Sig.pki,VRF.pki, stakei)
the function also returns a nonce, η, as well as a public function ϕ(·) which on
input stakei computes the threshold for winning the lottery.
The lottery predicate based on the VRF is described in Algorithm 7.

Algorithm 7 lotteryVRF(B, sl,R, skL,j)

({Sig.pki,VRFL,i, stakei}i∈[n], η, ϕ)← param(B, sl)
(Sig.pkj ,VRF.skj)← skL,j

(y, π)← VRF.ProveskL,j (sl||R||η)
if y < ϕ(stakej) then

if VRF.VerifyvkL,j
(sl||R||η, y, π) = then

return 1
end if

end if
return 0

VRF-based AfP. With the VRF-based lottery lotteryVRF in place, we are now
ready to introduce the VRF-based AfP. We first note that our general approach
of applying a SoK for the knowledge of a secret key still applies. However, using
the structure of the lottery, and in particular the VRF, allows for a much more
efficient AfP which has applications in most PoS settings as well.
The AfP scheme uses a NIZKPoK which has a setup executed as a part
of the blockchain setup such that the CRS is in the genesis block.
The algorithms for the scheme are π ← NIZKPoK.Prove(crs, x, w) and
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{0, 1} ← NIZKPoK.Verify(crs, x, π).

Protocol ΠAfP The VRF-based AfP protocol ΠAfP is described below.

Authenticate. σ ← ΠAfP.Sign(B, sl,S, skL,j ,m) To authenticate a message, m,
a party first checks that lotteryVRF(B, sl,S, skL,j) = 1. It then obtains the
output and certificate (y, πVRF) ← VRFrf.ProveVRF.skL,j

(sl||R||η). Finally, it
produces πNIZKPoK ← NIZKPoK.Prove{σSIG | Sig.VerifySig.pkj (σSIG,m) = 1}
which is a NIZK-PoK of a signature produced under Sig.skj .
It then outputs a tuple σAfP ← (Sig.pkj , y, πVRF, πNIZKPoK)

Verify. {0, 1} ← ΠAfP.Verify(B̃, sl,S, σ,m) To verify an AfP tag the verifier ob-
tains parameters from the blockchain ({Sig.pki,VRF.pki, stakei}i∈[n], η, ϕ)←
param(B, sl). It then parses the tag as σAfP ← (Sig.pkj , y, πVRF, πNIZKPoK) and
gets the VRF verification key VRF.pkj for the party that the AfP points to.
It then checks the following
1. Makes sure that VRF.VerifyVRF.pkj (sl||R||η, y, πVRF) = 1 i.e. the VRF out-

put was correctly generated under lottery key of party Pj .
2. Checks that NIZKPoK.Verify(πNIZKPoK, (Sig.pkj ,m)) = 1 which verifies

the proof of signature knowledge.
3. And y < ϕ(stakej) which makes sure that the lottery was conducted

correctly with the stake of Pj .
If all checks go through, the algorithm outputs 1. Otherwise, it outputs 0.

Theorem 3. Let VRF be the VRF scheme described in [DGKR18] with a secure
NIZK-PoK scheme NIZKPoK. The protocol ΠAfP (described above) running in
the context of a blockchain protocol Γ with underlying lottery lotteryVRF (Algo-
rithm 7) is an AfP scheme according to Definition 8.

Proof. (Sketch) Assume that an adversary A obtains a non-negligible advantage
in GameEUF-CMA

Γ,A,Z,U . In other words, A is able to forge an AfP tag with noticeable
probability. We claim that such an adversary can do at least one of two things:

1. It can forge a signature under (Sig.ski, thus violating the EUf-CMA security
of the signature scheme.

2. It can produce a convincing proof πNIZKPoK of knowledge of a signature pro-
duced with a signature secret key where the corresponding lottery secret
key did not win the lottery. Since we assume that only Pi knows the pair
(Sig.ski, skL,i), such a convincing proof must violate the soundness of the
NIZKPoK scheme.

3. It can forge a VRF certificate such that the VRF.Verify algorithm accepts
a certificate πVRF under a different y′ ̸= y when evaluated with the VRF
public key VRF.pk of the adversary and thus convinces the authenticator.
This violates the simulator of the simulatable VRF introduced in [DGKR18].

Since we assume that NIZKPoK is a secure NIZK-PoK scheme and VRF a secure
scheme based on the functionality in [DGKR18], we conclude that ΠAfP is secure
with respect to Definition 8.
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AfP Privacy. This simple AfP mechanism for a VRF-based lottery predicate
does not only satisfy the existential unforgeability definition of an AfP. It has
AfP privacy.

Theorem 4. The AfP protocol ΠAfP described above with underlying lottery
predicate lotteryVRF running in the context of blockchain Γ has AfP privacy.

Proof (Sketch).
We use the notation D0 and D1 for the distribution of outputs when the adver-
sary is put in scenario 0 and scenario 1, respectively. Our aim is to show the
existence of a simulator such that D0 and D1 are computational indistinguish-
able.
We introduce 4 hybrids {Hi}i=1,...,4 where H1 = D0 and H4 = D1.

H2 This hybrid is identical to H1 but we use the simulator of the NIZKPoK
scheme to simulate the proof of signature knowledge that convinces. Due to
the security of the NIZKPoK scheme H2 and H1 are indistinguishable to the
PPT adversary A.

H3 The difference from H2 is that instead of invoking the VRF scheme VRF we
are using the simulatability of the construction to output valid proofs.

H4 This hybrid does not need access to any lottery winning secret keys and
thus can be completely simulated by Sim. It is still necessary to observe the
distribution of the stake to correctly simulate the output of the oracle OAfP.

Assume that an adversary can distinguish D0 and D1 with non-negligible prob-
ability ρ. It implies that there exists an i ∈ {1, 2, 3} such that Hi and Hi+1 can
be distinguished with non-negligible probability at least ρ/3. This contradicts
the indistinguishability of hybrids. Thus, we conclude that the distributions D0

and D1 are computationally indistinguishable due to the simulator Sim obtained
through the sequence of hybrids above.

6.5 Round and Committee Based YOSO Protocols

Having IND-CCA2 ECW and an EUF-CMA secure and Private AfP, we can
establish a round-based YOSO model, where there is a number of rounds r =
1, 2, . . . and where for each round there are n roles Rr,i. We call the role Rr,i

“party i in round r”. We fix a round length L and associate role Rr,i to slot sl =
L · r. This L has to be long enough that in each round the parties executing the
roles can decrypt ciphertexts sent to them, execute the steps of the role, compute
encryptions to the roles in the next round and post these to the blockchain in
time for these to be available to the committee of round r+1 before slot (r+1)·L.
Picking such an L depends crucially on the underlying blockchain and network,
and we will here simply assume that it can be done for the blockchain at hand.

Using this setup, the roles Rr,i of round r can use ECW and AfP with the
aforementioned properties to send secret authenticated messages to the roles
Rr+1,i in round r + 1. They find their ciphertexts on the blockchain before slot
r ·L, decrypt using ECW, compute their outgoing messages, encrypt using ECW,
authenticate using AfP, and post the ciphertexts and AfP tags on the blockchain.
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Honest Majority. In round based YOSO MPC it is critical that we can as-
sume some fraction of honesty in each committee Rr,1, . . . ,Rr,n. We discuss here
assumptions needed on the lottery for this to hold and how to guarantee it.
Assume an adversary that can corrupt parties identified by sk and a lottery as-
signing parties to roles Rr,i. We map the corruption status of parties to roles as
follows:

1. If a role Rr,i is won by a corrupted party or by several parties, call the role
Malicious. Even if Rr,i is won by two honest parties, they will both execute
the role and send outgoing messages, which might violate security.

2. If a role Rr,i is won by exactly one honest party, call it Honest.
3. If a role Rr,i is not won by any party, call it Crashed. These roles will not

be executed and are therefore equivalent to a crashed party.

Note that because we assume corrupted parties know their lottery witness
skL,i in our model, we can, in poly-time, extract those witnesses and compute the
corruption status of roles. This will be crucial in our reductions. Imagine that a
role could be won by an honest party but also by a corrupted party which stays
completely silent but decrypts messages sent to the role. If we are not aware
of the corrupted party winning the role, we might send a simulated ciphertext
to the apparently honest role. The corrupted party also having won the role
would be able to detect this. Since any role won by an honest party could also
be corrupted by a silent malicious party, simulation would become impossible.

In order to realize YOSO MPC, we will need committees where a majority of
the roles are honest according to the description above. We capture this require-
ment in the definition below and argue how it can be achieved in Appendix C.1.

Definition 10 (Honest Committee Friendly). We call a blockchain Γ hon-
est committee friendly if there exist n and H and T such that H > T s.t. we can
define a sequence of roles Rr,i for r = 1, . . . , poly(λ) and i = 1, . . . , n for a slot slr
and that for all r it holds that except with negligible probability there are at least
H honest roles in Rr,1, . . . ,Rr,n and at most T malicious roles. Furthermore, if
an honest party executing Rr,1, . . . ,Rr,n sends a message at slr, it is guaranteed
to appear on the blockchain before slot slr+1.

We are now ready to capture the above discussion using a definition.

Definition 11 (YOSO Friendly Blockchain). Let Γ be a blockchain with
a lottery predicate lottery(B, slr,Rr,i, skL,i) and let E = (Enc,Dec) and U =
(Sign,Verify) be an EtF and AfP for lottery(B, slr,Rr,i, skL,i), respectively. We
call (Γ, E ,U) YOSO MPC friendly if the following holds:

1. E is an IND-CCA2 secure EtF (Definition 7).
2. U is a secure and private AfP (Definition 8 and Definition 9).
3. Γ is honest committee friendly (Definition 10).

We will later assume a YOSO friendly blockchain, and we argued above that
the existence of a YOSO friendly blockchain is a plausible assumption without
having given formal proofs of this. It is interesting future work to prove that
a concrete blockchain is a YOSO friendly blockchain in a given communication
model. We omit this as our focus is on constructing flavours of EtF.
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7 Construction of EtF from ECW and Threshold-IBE

The key intuition about our construction is as follows: we use IBE to encrypt
messages to an arbitrary future (R, slfut) pair. When the winners of the role in slot
slfut are assigned, we let them obtain an ID-specific key for (R, slfut) from the
IBE key-generation algorithm using ECW as a channel. Notice that this key-
generation happens in the present while the encryption could have happened
at any earlier time. We generate the key for (R, slfut) in a threshold manner by
assuming that, throughout the blockchain execution, a set of committee members
each holds a share of the master secret key mski.

7.1 Construction

We now describe our construction. We assume an encryption to the current
winner ΠECW = (EncECW,DecECW) and a threshold IBE scheme ΠTIBE. In the
setup stage we assume a dealer acting honestly by which we can assign master
secret key shares of the TIBE.

Parameters: We assume that the genesis block B0 of the underlying blockchain
contains all the parameters for ΠECW.

Setup Phase: Parties run the setup stage for the ΠECW. The dealer produces
(mpk, m⃗sk = (msk1, . . . ,mskn)) from TIBE setup with threshold k. Then it
chooses n random parties and gives a distinct mski to each. All learn mpk.

Blockchain Execution: The blockchain execution we assume is as in Sec-
tion 3. We additionally require that party i holding a master secret key
share mski broadcasts ctsk,i(sl,R) ← EncECW(B, sl,R, ski(sl,R)), whenever the win-

ner of role R in slot sl is defined in the blockchain B, where ski(sl,R) ←
ΠTIBE.IDKeygen(mski, (sl,R)).

Encryption Enc(B, sl,R,m): Each party generates cti ← ΠTIBE.Enc(mpk, ID =
(sl,R),m). Output ct = (B, sl,R, {cti}Pi

).
Decryption Dec(B, ct, sk): Party i outputs ⊥ if it does not have skL,i such
that lottery(B, sl,R, skL,i) = 1 for parameters B, sl,R from ct. Otherwise, it

retrieves enough (above threshold) valid ciphertexts ctsk,j(sl,R) from the current

state of the blockchain and decrypts each through ΠECW obtaining skj(sl,R).

It then computes sk(sl,R) ← ΠTIBE.Combine(mpk, (skj(sl,R))j). It finally outputs

m← ΠTIBE.Dec(sk(sl,R), ct).

Resharing. We can ensure that the master secret key is proactively reshared
by modifying each party so that mski-s are reshared and reconstructed in the
evolution of the blockchain.

Correctness. Correctness of the construction follows from the correctness of the
underlying IBE and the fact that a winning role will be able to decrypt the
id-specific key by the correctness of the ECW scheme.
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7.2 Security and Proof Intuition

In the following we assume some of the extensions discussed in Section 6.

Theorem 5 (informal). Let ΓV be a YOSO MPC friendly blockchain, ΠTIBE

be a robust secure threshold IBE as in Section 2.5 with threshold n/2, and ΠECW

a secure IND-CCA2 ECW. The construction in Section 7.1 is a secure EtF.

At the high level we show security in two steps. We first show the security
of our construction for a simplified non-threshold setting with a standard IBE
instead of a threshold one with key-sharing. In other words we do not temporarily
consider the real case where there is a committee of parties holding a share
of the master secret key, but we assume the execution uses a “key provider”
oracle holding the master secret key of the IBE scheme. In particular, we define
the behavior of oracle Ok-provider

msk as follows: given in input a blockchain B and
a slot sl (such that the latest slot of B is sl), it broadcasts a ciphertext for
the winner8 of the slot computed as ctsksl ← EncECW(B, sl,R, sksl) where sksl ←
IBE.Keygen(msk, (sl,R)).

As a second step in the proof we show that, in the threshold-setting (where
the master secret key is actually shared), one can obtain an adversary with a
comparable advantage in the threshold-setting from an adversary in the non-
threshold setting. Intuitively, we can do this because of the low amount of stake
the adversary is controlling and the security of threshold-IBE.

Finally, our proof considers the case of an adversary with static corruptions,
but we point out it can be straightforwardly compiled to a full round and com-
mittee YOSO setting as described in Section 6.

Proof. We proceed in two steps: first we consider an idealized case where there
is no threshold committee; we then show we can prove security of our threshold
construction from this setting.

1. The non-threshold case. The simplified setting we will now show
security for is in Fig. 7. A point on the view of the adversary: we recall that,
at any given point in time, a valid blockchain execution contains ciphertexts
ctsksl , encrypting slot-specific secret keys for the winner of the slot sl in the chain.
In the non-threshold setting, they correspond to the output of the key-provider
oracle (in the actual construction, there are more ciphertexts, each containing a
share of the key).

Now assume an adversary Ano-thresh
EtF for the EtF security experiment control-

ling at most an α fraction of the stake with non-negligible success probability in
the EtF security experiment. We first to construct an adversary AIBE for IBE
security using Ano-thresh

EtF . Adversary AIBE works as follows:

– On receiving the IBE public parameters from the IBE challenger, it in-
jects into blockchain genesis block the IBE’s master public. The adversary
Ano-thresh

EtF declares a corrupted set of parties Scorr and then AIBE runs an

8 This is actually a vector, one for each winner in the slot. For clarity of discussion we
just consider the case for one winner. The general case follows straightforwardly.
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The non-threshold setting we consider is the same as that in Section 7.1 with the
following exceptions:

– At the beginning of the run of the blockchain, there is no sharing of the master
secret key of the IBE scheme.

– We let the honest parties run exactly as in the other construction, with the
exception that they validate and messages related to the shares of the master
secret keys, as well as of the secret keys for specific slots.

– We change the way we encapsulate the secret-key for a certain slot. While
in Section 7.1 we require committee members to each broadcast a ciphertext
containing a share of the secret-key for slot sl, here we instead replace that
stage with the execution of the following oracle Ok-provider

msk .

Ok-provider
msk (B, sl) :

• sksl ← IBE.Keygen(msk, (sl,R))
• ctsksl ← EncECW(B, sl,R, sksl)
• Broadcast ctsksl

Fig. 7. Hybrid non-threshold setting for proof of security

execution of the blockchain with Ano-thresh
EtF where AIBE simulates the honest

parties. In this execution AIBE acts as key-provider oracle, which it emulates
as follows. We distinguish two cases depending on whether the winner of the
slot is a corrupted party or an honest one9. On query (B, sl):

• if a corrupted party has won the role for slot sl (i.e. winners(B, sl,R) ∩
Scorr ̸= ∅) then invoke the IBE challenger oracle on identity sl obtaining
sksl and broadcast ctsksl ← EncECW(B, sl,R, sksl).

• if a corrupted party has not won the role for slot sl then broadcast the
encryption of a dummy plaintext ctsksl ← EncECW(B, sl,R, 0⃗) where 0⃗ is a
string of zeros of the appropriate length.

The intuitive reason for separating the two cases is that we want to query
the same slots that Ano-thresh

EtF wins and no more. In particular we do not
want to query the challenge slot sl∗ (defined next). Notice, in fact, that
only the slots for which the adversary has a corrupted winner will be asked
to the IBE key-generation oracle. At the end of this stage, Ano-thresh

EtF will
return (B, sl∗,R,m0,m1) and AIBE will forward ((sl∗,R),m0,m1) to the IBE
challenger.

– After receiving a ciphertext ct∗ from the IBE challenger, AIBE forwards it to
Ano-thresh

EtF . Then AIBE simulates the execution of the blockchain as described
above. At the end of the execution Ano-thresh

EtF outputs a guessing bit b∗ which
AIBE forwards to the IBE challenger.

9 Notice that we can check this for both types of parties as discussed in Section 2.1.
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We claim that the advantage of AIBE in the IBE experiment is negligibly
close to that of Ano-thresh

EtF in the EtF non-threshold experiment (the one without
threshold sharing). With that goal in mind, we first show that the inputs we
feed to Ano-thresh

EtF and the blockchain execution emulated by AIBE is indistin-
guishable from that in the EtF experiment. Notice that the only difference in
the distributions is in the ciphertexts for the non-corrupted winners. If we could
distinguish between the two cases, then we could break security of the ECW
scheme. Therefore the views of Ano-thresh

EtF in the two cases is indistinguishable.
Finally, we lower-bound the success probability of AIBE. Intuitively, we can ob-
serve that two adversaries return the same experiment bit. The only aspect that
could impair AIBE’s success probability compared to Ano-thresh

EtF ’s is the possibil-
ity of having asked the IBE key-generation oracle for the challenge slot sl∗. We
observe this does not affect the success probability of AIBE. Formal details are
in Section 7.2.

2. Security of threshold construction from non-threshold case. The
argument above had a simplified setting where we abstracted out all the thresh-
old aspects of the protocol. This includes the committee holding shares of the
master secret key and dealing shares of the slot-specific secret key. We now prove
security for the actual threshold scenario (Section 7.1) building an adversary for
our actual (threshold) construction using the adversary for the non-threshold
construction (Fig. 7).

The threshold adversary Athresh
EtF needs to emulate the setting for the other

adversary where there is a single ciphertexts containing the slot-specific secret
key (instead of several containing their shares). It works as follows. First, it
corrupts the same parties as Ano-thresh

EtF and executes a blockchain as Ano-thresh
EtF

does and broadcasting the same messages it does, with one exception which
we now describe. The views of two adversaries (threshold vs non-threshold)
differ in only one respect—and so do the two respective blockchains execu-
tions. The view of the threshold execution contains ciphertexts of this type
for each winning slot sl (we use bracket notation for shares for readability):((

cthonsl [j]
)
j ̸∈Scorr

, (ctcorsl [j])j∈Scorr

)
These contain the shares for the slot-specific

slot sl. The view for the non-threshold execution instead contains a single cipher-
text with slot-specific secret key. For a honest slot not corrupted by the adversary,

we denote it by ĉt
hon
sl , otherwise we denote it by ĉt

cor
sl . During the blockchain ex-

ecution Ano-thresh
EtF will expect to see some ciphertext (ĉt

hon
sl /ĉt

cor
sl ) whenever a

slot is won, which corresponds to a query of Ok-provider
msk . The threshold adversary

Athresh
EtF can emulate this as follows. For every query to Ok-provider

msk :

– if the slot is won by a honest party, then broadcast ĉt
hon
sl ← EncECW(B, sl, 0⃗)

for a vector of zeros of the appropriate length.

– if the slot is won by a corrupted party, then its view will contain (ctcorsl [j])j∈[n].

It can then decrypt them, combine the obtained shares into a slot key sksl
and broadcast ĉt

cor
sl ← EncECW(B, sl, sksl)
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After receiving challenge messages from Ano-thresh
EtF , adversary Athresh

EtF simply
forwards them to its challenger, then continues the execution as above. Finally
it outputs the same output guess as Ano-thresh

EtF .

We now claim that a successful non-threshold adversary Ano-thresh
EtF for the

construction in Fig. 7 would allow Athresh
EtF to have a similar advantage (up to

negligible additive factors). We proceed by a standard hybrid argument. We
define the first hybrid H0 as the output of running the Athresh

EtF adversary as just
described. The “terminal” hybrid H6 is defined as the output of running the
Ano-thresh

EtF adversary. The intermediate hybrids are as follows.

– H1: like H0 except that we change one step in how Athresh
EtF emulates

Ok-provider
msk . Specifically, for the case of the honest parties, we now run

(skIDi )i∈[n] ← Simkg(mpk, (mski)i∈Scorr
, sl) to simulate the shares of the honest

parties. This simulator exists by key-generation simulation of the threshold
IBE scheme. We can then combine all shares to obtain a slot-specific key,

encrypt it through ECW and then broadcast the encryption ĉt
hon
sl . We have

that H0 ≈ H1 because of the security of ECW, since otherwise we would be
able to distinguish encryptions of zeros from encryptions of the (combination
of) the simulated slot-specific key shares.

– H2: as previous item but now, instead of the actual secret shares, we give
Athresh

EtF produced by Simmsk, the simulator from master secret key shares sim-
ulation of the threshold IBE scheme. H1 ≈ H2 follows by the same property.

– H3: like the previous hybrid, but now we replace the blockchain execution

from H2 with one where we do not use the shares to produce ĉt
hon
sl and ĉt

cor
sl .

Instead we move to a blockchain execution as in Fig. 7 with the difference
that Ok-provider

msk has a master secret key computed as follows. Let msk be the
master secret key obtained by combining the (simulated) shares mski. Then

we just run Ok-provider
msk with this master secret key every time we need to

provide a ciphertext for a new winning slot. We have H2 ≈ H3 by definition
of Ok-provider

msk , by correctness of the underlying homomorphic secret sharing
scheme and the simulation of key-generation evaluations of IBE.

– H4: as before but we now define msk not as the combination of the shares,
but as the output of Simmsk on the master public key and the corruption
set. H3 ≈ H4 follows by simulation of the master secret-key property of the
threshold IBE.

– H5: Like previous item but now we do not use the key-generation simu-
lator and instead apply the key-generation of the IBE before providing a
ciphertext. H4 ≈ H5 again follows by the key-generation simulation of the
threshold IBE scheme. Also this is the same as H6 by construction.

Bounding the Advantage of AIBE in Proof of Theorem 5. Here we
formally claim that the advantage of AIBE in the IBE experiment is negligibly
close to that of Ano-thresh

EtF in the EtF non-threshold experiment:
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Pr [WinIBE] ≥Pr [¬QryClgSlot ∧ WinEtFHyb]

= (1− Pr [QryClgSlot |WinEtFHyb]) · Pr [WinEtFHyb]

≈ (1− Pr [Scorr ∩ winners(sl∗) ̸= ∅ |WinEtFHyb]) · Pr [WinEtFHyb]

=Pr [WinEtFHyb]

Above the QryClgSlot is the event where AIBE queries the challenge slot in the
IBE experiment; WinIBE is the event where AIBE wins in the IBE experiment;
WinEtFHyb is the event where Ano-thresh

EtF wins in the EtF experiment against the
non-threshold hybrid model (Fig. 7). The first inequality follows by construction
of AIBE. The following ones follow from elementary probability theory and from
observing that AIBE could query the challenge slot only if that was among the
corrupted set (but this does not occur condition on the success of Ano-thresh

EtF by
the definition of EtF security). ⊓⊔

8 Blockchain WE versus EtF

In this section we show that an account-based PoS blockchain with sufficiently
expressive smart contracts and an EtF scheme for this blockchain implies a
notion of witness encryption on blockchains, and vice versa. The construction of
EtF from BWE is completely straightforward and natural: encrypt to the witness
which is the secret key winning the lottery. The construction of BWE from EtF
is also straightforward but slightly contrived: it requires that we can restrict the
lottery such that only some accounts can win a given role and that the decryptor
has access to a constant fraction of the stake on the blockchain and are willing
to bind them for the decryption operation. The reason why we still prove the
result is that it establishes a connection at the feasibility level. For sufficiently
expressive blockchains the techniques allowing to construct EtF and BWE are
the same. To get EtF from simpler techniques than those we need for BWE we
need to do it in the context of very simple blockchains. In addition, the techniques
allowing to get EtF without getting BWE should be such that they prevent the
blockchain from having an expressive smart contract layer added. This seems like
a very small loophole, so we believe that the result shows that there is essentially
no assumptions or techniques which allow to construct EtF which do not also
allow to construct BWE. Since BWE superficially looks stronger than EtF the
equivalence helps better justify the strong assumptions for constructing EtF.

Definition 12 (Blockchain Witness Encryption). Consider PPT algo-
rithms (Gen,Enc,Dec) in the context of a blockchain ΓV is an BWE-scheme
with evolved predicate evolved and a lottery predicate lottery working as follows:

Setup. (pv, td)← Gen() generates a public value pv and an extraction trapdoor
td. Initially pv is put on B.

Encryption. ct ← Enc(B,W,m) takes as input a blockchain B, including the
public value, a PPT function W , the witness recogniser, and a message m.
It outputs a ciphertext ct, a blockchain witness encryption.
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Decryption. m/⊥ ← Dec(B̃, ct, w) in input a blockchain state B̃, including the
a public value pv, a ciphertext ct a witness w, it outputs a message m or ⊥.

Correctness. An BWE-scheme is correct if for honest parties i and j, PPT
function W , and witness w such that W (w) = 1 the following holds with over-
whelming probability: if party i runs ct ← Enc(B,W,m) and party j starts
running Dec(B̃, ct, w) in B̃ evolved from B, then eventually Dec(B̃, ct, w)
outputs m.

Security. We establish a game between a challenger C and an adversary A. In
section 2.1 we described how A and Z execute a blockchain protocol. In
addition, we now let the adversary interact with the challenger in a game
GameIND-CPA

Γ,A,Z,E which can be summarized as follows.
1. (pv, td)← Gen() and put pv on the blockchain.
2. A executes the blockchain protocol Γ together with Z and at some round

r chooses a blockchain B, a function W and two messages m0 and m1

and sends it all to C.
3. C chooses a random bit b and encrypts the message mb with the param-

eters it received and sends ct to A.
4. A continues to execute the blockchain until some round r̃ where the

blockchain B̃ is obtained and the A outputs a bit b′.
The adversary wins the game if it succeeds in guessing b with probability
notably greater than one half without W (Extract(td, B̃, ct,W )) = 1.

EtF from BWE. We first show the trivial direction of getting EtF from BWE.
LetΠBWE = (GenBWE,EncBWE,DecBWE) be an BWE scheme. Recall that one wins
the lottery if lottery(B, sl,R, sk) = 1. We construct a EtF scheme. To encrypt,
let W be the function W (w) = lottery(B, sl,R, w) and output EncBWE(B,W,m).
If winning the lottery for (sl,R) then let w be the secret key winning the lottery
and output Dec(B̃, ct, w). The proof is straightforward.

BWE from EtF. We now show how to construct BWE from EtF. Let
(EncEtF,DecEtF) be an EtF scheme. Assume a blockchain with Turing complete
smart contracts which can be programmed to send, receive, and reject stake. As-
sume furthermore that if a constant fraction of the stake is moved to an account
then within a polynomial number of slots it will begin winning the lottery with
constant probability.

We assume that the contract C of an account is hardcoded into the account
when created and cannot be changed. We also need to assume that the blockchain
reaches all slot numbers such that there is an independent chance to win at
all slot numbers. We also need that only polynomially many slot numbers are
reached in polynomial time. We need that the lottery can be filtered such that
only certain accounts can win a given role. We need that the filtering can depend
on the smart contract put on the account when the account was created.

The construction needs a notion of labelled simulation-sound NIZK proof of
knowledge. For such a scheme there is a label connected to a proof and a proof
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of instance x and label L cannot be mauled into a proof of instance x and label
L′ ̸= L. This can generically be constructed from an unlabelled scheme simply
by letting the label be part of the instance. Let pv of the BWE scheme be the
CRS of the NIZK and let td be the extraction trapdoor of the BWE scheme.

To encrypt proceed as follows.

1. Create a fresh account vk with a smart contract E and with no stake on it.
Program E with W hard-coded and such that E is willing to receive calls of
the form (Transfer, π, f, F ) from any other smart contract D. If D has f
stake available and π is a proof of knowledge of w such that W (w) = 1 and
with label F , then accept a transfer of f stake from D and send them to F .

2. Let filter be the filter which only accepts accounts which have no stake ini-
tially and which have smart contracts C of the form that it will only accept
stake from the account vk created by the encryptor above.

3. Use EncEtF to encrypt to roles E at slots 2i + j for i = 1, . . . , κ and j =
1, . . . , κ. Use the filter filter.

To decrypt create a new account F with a contract accepted by filter. Then
use w to transfer stake to F via E. Note that F is allowed to win the lotteries
used in the EtF encryptions. No matter when the decryption is performed, the
slots of the blockchain will eventually reach the next slot of the form 2i as at
most polynomially many slots were reached already. After this comes κ slots in
a row to which the encryptor encrypted using EtF. Each of these is won with a
constant probability. Therefore the probability of not decrypting is negligible.
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Supplementary Material

A Further Preliminaries

A.1 Proof-of-Stake (PoS) Blockchains

In this section, we give an overview of the framework from [GG17] for arguing
about PoS blockchain protocol security.

Blockchain Protocol Execution. Let the blockchain protocol ΓV =
(UpdateStateV ,GetRecords,Broadcast) be guarded by a validity predicate V . The
algorithms can be described as follows:

– UpdateState(1λ) → bst where bst is the local state of the blockchain along
with metadata.

– GetRecords(1λ, bst)→ B outputs the longest sequence B of valid blocks (wrt.
V ).

– Broadcast(1λ,m) Broadcast the message m over the network to all parties
executing the blockchain protocol.

An execution of a blockchain protocol ΓV proceeds by participants running
the algorithm UpdateStateV to get the latest blockchain state, GetRecords to ex-
tract the ledger data structure from a state and Broadcast to distribute messages
which are added to the blockchain if accepted by V . An execution is orchestrated
by an environment Z which classifies parties as either honest or corrupt. All hon-
est parties executes ΓV (1λ) with empty local state bst and all corrupted parties
are controlled by the adversary A who also controls network including delivery
of messages between all parties.

– In each round all honest parties receive a message m from Z and potentially
receive incoming network messages delivered by A. The honest parties may
do computation, broadcast messages and/or update their local states.

– A is responsible for delivering all messages sent by honest parties to all other
parties. A cannot modify messages from honest parties but may delay and
reorder messages on the network.

– At any point Z can communicate with adversary A or use GetRecords to
retrieve a view of the local state of any party participating in the protocol.

The result is a random variable EXECΓV

(A,Z, 1λ) denoting the joint view
of all parties (i.e. all inputs, random coins and messages received) in the above
execution. Note that the joint view of all parties fully determines the execution.

We define the view of the adversary as viewA(EXEC
ΓV

(A,Z, 1λ)) and the view of

the party Pi as viewPi
(EXECΓV

(A,Z, 1λ)). If it is clear from the context which
execution the argument is referring to, then we just write viewi. We assume
that it is possible to take a snapshot i.e. a view of the protocol after the first
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r rounds have been executed. We denote that by viewr ← EXECΓV

r (A,Z, 1λ).
Furthermore, we can resume the execution departing from this view and continue
until round r̃ resulting in the full view including round r̃ denoted by viewr̃ ←
EXECΓV

(viewr,r̃)(A,Z, 1λ).
We let the function stakei = stake(B, i) take as input a local blockchain B

and a party Pi and output a number representing the stake of party Pi wrt. to
blockchain B. Let the sum of stake controlled by the adversary be stakeA(B),
the total stake held by all parties staketotal(B) and the adversaries relative stake
is stake-ratioA(B). We also consider the PoS-fraction u-stakefrac(B, ℓ) as the
amount of unique stake whose proof is provided in the last ℓ mined blocks. More
precisely, let M be the index i corresponding to miners Pi of the last ℓ blocks
in B then

u-stakefrac(B, ℓ) =

∑
i∈M stake(B, i)

staketotal

A note on corruption. For simplicity in the above execution we restrict the
environment to only allow static corruption while the execution described in
[PSs17] supports adaptive corruption with erasures.

A note on admissible environments. [PSs17] specifies a set of restrictions on A
and Z such that only compliant executions are considered and argues that certain
security properties holds with overwhelming probability for these executions. An
example of such a restriction is that A should deliver network messages to honest
parties within ∆ rounds.

Blockchain Properties. We recall that running a protocol ΓV with ap-
propriate restrictions on A and Z will yield certain compliant executions

EXECΓV

(A,Z, 1λ) where some security properties will hold with overwhelming
probability. An array of prior works, including [GKL15,PSs17], have converged
towards a few security properties that characterizes blockchain protocols. These
include Common Prefix or Chain Consistency, Chain Quality and Chain Growth.
From these basic properties, a number of stronger properties were derived in
[GG17]. Among them, is the Distinguishable Forking property which will be the
main requirement when introducing the EtF scheme.

Definition 13 (Common Prefix). Let κ ∈ N be the common prefix parameter.
The chains B1, B2 possessed by two honest parties P1 and P2 in slots sl1 < sl2
satisfy B

⌈κ
1 ⪯ B2.

Definition 14 (Chain Growth). Let τ ∈ (0, 1], s ∈ N and let B1, B2 be as
above with the additional restriction that sl1+ s ≤ sl2. Then len(B2)− len(B1) ≥
τs where τ is the speed coefficient.

Definition 15 (Chain Quality). Let µ ∈ (0, 1] and κ ∈ N. Consider any set
of consecutive blocks of length at least κ from an honest party’s chain B1. The
ratio of adversarial blocks in the set is 1− µ where µ is the quality coefficient.
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Stake Contribution Property. At a high level, the sufficient stake contribution
property states that after sufficiently many rounds, the total amount of proof-of-
stake in mining the ℓ most recent blocks is at least β fraction of the total stake
in the system.

Definition 16 (Sufficient Stake Contribution). Let suf-stake-contr be the
predicate such that suf-stake-contrℓ(view, β) = 1 iff for any round r ≥ ℓ, and
any party i in view that is honest at round r with blockchain B, we have
u-stakefrac(B, ℓ) > β. A blockchain protocol Γ has (β(·), ℓ0(·))-sufficient stake
contribution property with adversary A in environment Z, if there is a negligible
function negl(·) such that for any λ ∈ N, ℓ ≥ ℓ0, it holds that

Pr
[
suf-stake-contrℓ(view, β(λ)) = 1

∣∣∣ view← EXECΓ (A,Z, 1λ)
]
≥ 1− negl(λ)

Bounded Forking Property. Roughly speaking, the bounded forking property
requires that no efficient adversary can create a sufficiently long fork so that its
total amount of proof of stake is higher than a certain threshold. In more detail,
it states that for property parameters α, ℓ1, ℓ2, the proof-of-stake fraction in the
last ℓ2 blocks in any adversarially created fork of length at least ℓ1 + ℓ2 should
not be more than α.

Definition 17 (Bounded Stake Forking). Let bd-stake-fork be the predicate

such that bd-stake-fork(ℓ1,ℓ2)(view, α) = 1 iff for any round r ≥ r̃, and any pair
of parties i, j in view such that i is honest at round r with blockchain B and j
is corrupt in round r̃ with blockchain B̃, if there exists ℓ′ ≥ ℓ1 + ℓ2 such that

B̃⌈ℓ′ ⪯ B and for all ℓ̃ < ℓ′, B̃⌈ℓ̃ ̸⪯ B, then u-stakefrac(B̃, ℓ′ − ℓ1) ≤ α.
A blockchain protocol Γ has (α(·), ℓ1(·), ℓ2(·))-bounded stake forking property with
adversary A in environment Z, if there exists negligible functions negl(·) and δ(·)
such that for any λ ∈ N, ℓ ≥ ℓ1(λ), ℓ̃ ≥ ℓ2(λ), it holds that

Pr
[
bd-stake-fork(ℓ,ℓ̃)(view, α(λ) + δ(λ)) = 1

∣∣∣ view← EXECΓ (A,Z, 1λ)
]
≥ 1−negl(λ)

Definition 18 (Distinguishable Forking). A blockchain protocol Γ satisfies
(α(·), β(·), ℓ1(·), ℓ2(·))-distinguishable forking property with adversary A in envi-
ronment Z, if there exists negligible functions negl(·), δ(·) such that for every
λ ∈ N, ℓ ≥ ℓ1(λ), ℓ̃ ≥ ℓ2(λ) it holds that

Pr

 α(λ) + δ(λ) < β(λ) ∧
suf-stake-contrℓ̃(view, β(λ)) = 1 ∧

bd-stake-fork(ℓ,ℓ̃)(view, α(λ) + δ(λ)) = 1

∣∣∣∣∣∣∣ view← EXECΓ (A,Z, 1λ)

 ≥ 1−negl(λ)

A.2 (Threshold) Identity Based Encryption

We recall the definition of an identity-based encryption (IBE) scheme [BF01].
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IBE An IBE scheme ΠIBE consists of the following algorithms:

Setup(1λ). The setup algorithm takes as input a security parameter λ and re-
turns a master key msk together with some publicly known system parame-
ters sp including a master public key mpk, message spaceM and ciphertext
space C. We assume that all algorithms takes sp as input implicitly.

IDKeygen(msk, ID). The identity key-generation algorithm takes as input msk
and an identity ID ∈ {0, 1}∗, and returns a decryption key skID for ID.

Enc(ID,m). The encryption algorithm takes as input an identity string ID ∈
{0, 1}∗ and m ∈M. It returns a ciphertext ct ∈ C.

Dec(ct, skID). The decryption algorithm takes as input ct ∈ C and a decryption
key skID. It returns m ∈M.

Correctness. An IBE scheme ΠIBE should satisfy the standard correctness
property, namely for skID ← IDKeygen(msk, ID) and for any m ∈ M, we
must have:

Dec(Enc(ID,m), skID) = m.

where (mpk,msk)← Setup(1λ)
Security. We use adaptive-identity security [BF01]. After the challenger runs

the setup algorithm, the adversary has access to an oracle Omsk that on
input any id, returns skid. A may query the oracle on arbitrary identities of
its choice even before selecting the messages m0,m1. More formally, we say
that ΠIBE is secure if any PPT adversary A has only negligibly greater than
1/2 probability of correctly guessing the bit b in the following game:

1. The challenger runs Setup and outputs sp to A.
2. A may query the oracle Omsk that on any input id returns skid.
3. A outputs a target identity id∗ and two equal-size messagesm0,m1 ∈M.
4. The challenger selects a random bit b and outputs c∗ ← Enc(id∗,mb) to
A.

5. A may continue to query Omsk on any input id ̸= id∗.
6. A outputs b′.

where Omsk(ID) outputs IDKeygen(msk, ID).

Constructing TIBE from IBE and Homomorphic Secret Shar-
ing. Assume a secure IBE = (Setup, IDKeygen,Enc,Dec). We can trans-
form it into a threshold IBE using homomorphic secret sharing algorithms
(Share,EvalShare,Combine). A homomorphic secret sharing scheme is a secret
sharing scheme with an extra property: given a shared secret, it allows to com-
pute a share of a function of the secret on it. It has the following syntax (which
we specialize for the IBE setting):

– Share(msk, k, n)→ (msk1, . . . ,mskn) shares the secret.
– EvalShare(mski, f)→ yi obtains a share for f(msk) where f is a function.
– Combine((yi)i∈T )→ y∗ where T is a set with size above threshold.
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We assume all the algorithms above take as input the master public-key for
simplicity. The correctness of the homomorphic scheme requires that running
yi ← EvalShare(mski, f) on mski output of Share and then running Combine on
(a large enough set of) the yi-s produces the same output as f(msk). We also
require that Combine can reconstruct msk from a large enough set of the mski-s.

The construction for threshold IBE is now straightforward:

– at setup time, we produce shares msk1, . . . ,mskn of the master secret key
using the Share algorithm on the master secret key output of Setup.

– encryption is syntactically and functionally the same in both cases.
– to produce a partial secret-key for a certain id, we just run skIDi ←

EvalShare(mski, IBE.IDKeygen(mpk, ·, ID)).
– for decryption, given enough shares for an ID ID, we run on them algorithm

Combine to obtain skID; we then simply run IBE.Dec.

Threshold IBE security. If the homomorphic secret sharing supports up to a
threshold k, then we obtain analogous properties for the threshold IBE construc-
tion. In particular the threshold IBE satisfies the following simulation proper-
ties for any n and threshold k supported by the homomorphic secret sharing
scheme10.

Master secret-key share simulation. For any PPT adversary A there exists a
simulator Simmsk such that the following two distributions are indistinguishable.

{(mpk, (mski)i∈Scorr
) :(mpk,msk)← IBE.Setup(1λ);

Scorr ← A(mpk); (mski)i∈n ← Share(msk, n, k)} ≈
{(mpk, (mski)i∈Scorr

) :(mpk,msk)← IBE.Setup(1λ);

Scorr ← A(mpk); (mski)i∈Scorr
← Simmsk(mpk, Scorr, n, k)}

Key-generation simulation. For any PPT adversary there exists a simulator
Simkg such that the following two distributions are indistinguishable.

{(mpk, (skIDi )i∈[n]) :(mpk,msk)← IBE.Setup(1λ);

Scorr ← A(mpk); (mski)i∈n ← Share(msk, n, k);

ID← A(mpk, (mski)i∈Scorr
);

skIDi ← EvalShare(mski, ID) for i ∈ [n]} ≈
{(mpk, (skIDi )i∈[n]) :(mpk,msk)← IBE.Setup(1λ);

Scorr ← A(mpk); (mski)i∈n ← Share(msk, n, k);

ID← A(mpk, (mski)i∈Scorr
);

(skIDi )i∈[n] ← Simkg(mpk, (mski)i∈Scorr
, ID)}

10 The security of this type of construction is proven for example in [Nie03] to which
we defer the reader for details.
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Robustness of TIBE. We assume a robust threshold IBE scheme, where we can
verify that each of the ID-specific shares are authenticated, i.e. they have been
produced by a party with the related master secret key share. This property
can be obtained by assuming an underlying secret sharing scheme which is itself
robust. This in turn can be obtained by attaching a NIZK or a homomorphic
signature to the share.

TIBE with Proactive Secret Sharing. We assume our TIBE to allow for the
shares of the master secret keys to be reshared among the committee members
which evolve through time. With this goal in mind we can consider a proactive
secret sharing scheme which includes a handover (each committee member can
reshare its share) and reconstruction stage (committee members in a new epoch
can reconstruct their secret from the output of the handover). We can directly
extend a TIBE with such syntax. The resulting scheme should provide the same
simulation properties as the ones described above for the non proactive case.

A.3 Smooth Projective Hash Function (SPHF)

Let Llpar be a NP language, parametrized by a language parameter lpar, and
Rlpar ⊆ Xlpar be its corresponding relation. A Smooth projective hash func-
tions (SPHFs, [CS02]) for Llpar is a cryptographic primitive with this prop-
erty that given lpar and a statement x, one can compute a hash of x in
two different ways: either by using a projection key hp and (x, w) ∈ Rlpar as
pH ← projhash(lpar; hp, x, w), or by using a hashing key hk and x ∈ Xlpar as
H← hash(lpar; hk, x).

Definition 19. A SPHF for {Llpar}lpar is a tuple of PPT algorithms
(setup, hashkg, projkg, hash, projhash), which are defined as follows:

setup(1λ): Takes in a security parameter λ and generates the global parameters
pp together with the language parameters lpar. We assume that all algo-
rithms have access to pp.

hashkg(lpar): Takes in a language parameter lpar and outputs a hashing key
hk.

projkg(lpar; hk, x): Takes in a hashing key hk, lpar, and a statement x and
outputs a projection key hp, possibly depending on x.

hash(lpar; hk, x): Takes in a hashing key hk, lpar, and a statement x and out-
puts a hash value H.

projhash(lpar; hp, x, w): Takes in a projection key hp, lpar, a statement x, and
a witness w for x ∈ Llpar and outputs a hash value pH.

A SPHF has to fulfill two properties:

Correctness. For all x ∈ Llpar and their corresponding witnesses w, we have
that hash(lpar; hk, x) = projhash(lpar; hp, x, w).

Smoothness. For any lpar and any x ̸∈ Llpar, the hash value hash(lpar; hk, x)
is indistinguishable from a random element in the set of hash values.
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B ECW from [DS15]

While general constructions of witness encryption
(WE) [GGH13a,GGH+13b,GLW14] are impractical, Derler and Slamanig [DS15]
puts forward a notion inspired by the standard definition of WE, but weakened
by having one extra round. A standard WE scheme consists of two algorithms
Enc and Dec (ignoring the setup phase), wherein a user, in a single flow, can
encrypt a message m under a specific statement x and produce a ciphertext ct. A
recipient of ct is then able to recover the message if they know a witness w which
certifies the truth of x. The weakened variant of WE in [DS15] is associated
with a proof system Π = (Setup,Prove,Verify) and consists of two rounds:
in the first round, a recipient computes and broadcasts π ← Prove(crs, x, w).
Later, a user can verify the proof and encrypts a message m under (x, π) if
Verify(crs, x, π) = 1.

In this section, we show how to realize ECW from [DS15] and provide addi-
tional details on their constructions for the sake of completeness.

ECW with respect to Groth-Sahai NIZK Proofs. Groth-Sahai (GS)
proofs work by using dual-mode commitments that are homomorphic with re-
spect to group operations and consist of two setup algorithms. If the commitment
parameters are generated by the first algorithm, one obtains perfectly binding
commitments. In contrast, the second algorithm generates the parameters in a
way that leads to perfectly hiding commitments. The GS protocol aims at con-
vincing a verifier that a set of equations are satisfied by the values inside the
commitments. The prover gives to the verifier a proof containing commitments
to the witness together with some additional group elements. Given such a proof
and based on the linearity of GS commitments, one can encrypt a message with
respect to the commitments used within the proof using a smooth projective hash
function (SPHF) for linear languages (see Appendix A.3).

Let us give more details. The commitment parameters in the perfectly binding
mode 11 are group elements [U1], [U2], [U3] ∈ G3 ×G3 ×G3 defined as follows:

[U1] = ([τ1], [0], [1]) ; [U2] = ([0], [τ2], [1])

[U3] = τ3 · [U1] + τ4 · [U2] = ([τ1τ3], [τ2τ4], [τ3 + τ4])

where τ1, τ2, τ3, τ4
$←− Zq. Setting these parameters, a commitment to a message

m ∈ G is by choosing r1, r2, r3
$←− Zq and computing

cmm = ([0], [0], [m]) + r1U1 + r2U2 + r3U3

= ([τ1(r1 + τ3r3)], [τ2(r2 + τ4r3)], [m+ r1 + r2 + r3(τ3 + τ4)]).

Now let lpar = ([U1], [U2], [U3]) and define

Llpar = {([m], cmm)|∃(r1, r2, r3) ∈ Z3
q : cmm = ([0], [0], [m])+r1U1+r2U2+r3U3}

11 Here we only focus on the perfectly binding mode. All the explanations can also be
applied to the perfectly hiding mode in a straightforward manner.
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It is not hard to see that Llpar is a linear language and therefore a SPHF for
it can be constructed as follows:

setup(1λ): Run the bilinear group generation algorithm and let pp be the bilinear
group description. Also, set the language parameters lpar = ([U1], [U2], [U3])
as defined above.

hashkg(lpar): Choose α1, α2, α3
$←− Z3

q and return hk = (α1, α2, α3).

projkg(lpar; hk, x): Parse lpar as ([U1], [U2], [U3]) and hk as (α1, α2, α3). Return
hp = (γ1, γ2, γ3) ∈ G3, where

γ1 = α1[τ1] + [α3]; γ2 = α2[τ2] + [α3]

γ3 = α1[τ1τ3] + α2[τ2τ4] + α3[τ3 + τ4]

hash(lpar; hk, x): Parse the statement x as ([m], cmm = ([u], [v], [e])), and hk as
(α1, α2, α3). Return H computed as H = [u] · α1 + [v] · α2 + ([e] − [m]) · α3.

projhash(lpar; hp, x, w): Parse hp as (γ1, γ2, γ3) and w as (r1, r2, r3). Return pH
computed as pH = γ1r1 + γ2r2 + γ3r3.

We refer the reader to [DS15] for the security proof of the above SPHF.

Equipped with this construction, one can now construct an ECW by encod-
ing the lottery statement into vectors of commitments satisfying pairing-product
equations (PPEs). In more details, the construction works as follows. All re-
ceivers who have skL,i such that lottery(B, sl,R, skL,i) = 1 publish a GS proof πi

that they have such secret key skL,i. The encrypting party encodes the lottery
predicate into a set of pairing-product equations (PPEs) and encrypts the mes-
sage under each of these GS proofs using the SPHF scheme described above. We
note that this construction can be used for any type of algebraic lottery that
can be represented as a set of pairing product equation (e.g., algebraic VRF-
based lotteries). Moreover, while this can be seen as a weaker variant of ECW
where the (claimed) winners are required to send a proof of winning the lottery
in advance and thus requires an extra round of communication, it results in a
construction with significant improvement on the ciphertext size published by
the encrypting party, i.e., only linear in the number of winners receiving the
message.

C Further Details on YOSO MPC

C.1 Extended Lotteries

So far the probability of winning a role can depend on the slot sl, the role R,
and the lottery witness skL,i. The dependence can be arbitrarily complex. We
sometimes need to assume that the lottery shows some level of structure to be
able to ensure that a given set of roles has enough honest machines winning
them.
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Smooth Lotteries. First we define that a lottery has individual winning prob-
abilities if for a given sl and a given account sk there exist a probability p such
that it holds for all R that Pr[lottery(B, sl,R, skL,i) = 1] ≈ p. This is the case for
most PoS lotteries as the probability of winning depends only on the stake that
skL,i has in a given slot.

We will also need to assume independence of winning events. It is useless
for the sake of using, e.g., the law of large numbers if in a given slot either all
honest parties win a role or none win a role. We typically needed that except
with negligible probability some large enough fraction wins roles.

We require that for all sl and all (Ri, skL,i) and (Rj , skL,j) ̸=
(R, skL,i it holds that Pr[lottery(B, sl,Ri, skL,i) = 1 | lottery(B, sl,Rj , skL,j)] ≈
Pr[lottery(B, sl,Ri, skL,i) = 1]. We extend this to n-independence where the
probability of an account winning a role does not depend on the outcome of
n− 1 other lotteries in the same slot.

We call a lottery with individual winning probabilities and n-independence
an n-smooth lottery. For an n-smooth lottery we can compute the probability
that a set of up to n roles are won by honest parties directly from the individual
winning probabilities of the slot.

Hardness Adjustment. We will sometimes need to assume that the hardness
of the lottery can be adjusted. This can in principle be captured in the current
formalism lottery(B, sl,R, skL,i) as we could have some roles be harder to win.
This would however ruin individual winning probabilities so we prefer an explicit
notation for it. We assume a new parameter hard ∈ [0, 1] which can be used to
control hardness of the lottery. For simplicity assume that hard ∈ [0, 1]. We
require that

Pr[∃sk (lottery(B, sl,R, skL,i, hard) = 1)] ≈ hard .

A more realistic model would have to assume that the probability can be con-
trolled to be in some interval, e.g., [hard/2, 2hard], but nothing essential is lost
in assuming the simplistic model in this work where the focus is on EtF and
not intricacies of the lotteries themselves. Scaling of hardness is typically easy
to construct as most PoS lotteries give each party a pseudo-random number and
say that the party won if the number is below some threshold. One can use
hard to adjust the threshold. We assume that adjusting the hardness maintains
n-smoothness.

Filtering. Another possible extension is having an extra parameter filter which
is a PPT predicate filtering the lottery. Given an account skL,i we assume it
can be computed in PPT from the information on B and the public parame-
ters pkL,i associated to skL,i. In particular, filter does not need skL,i to be effi-
ciently computable. We require that filter(B, skL,i) outputs ⊤ or ⊥. We require
from the lottery that if filter(B, skL,i) = ⊥ then lottery(B, sl,R, skL,i, filter) =
0. If filter(B, skL,i) = ⊤, then we require that lottery(B, sl,R, skL,i, filter) =
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lottery(B, sl,R, skL,i). Since the filter can be computed in PPT given the
blockchain it is typically trivial to augment existing lotteries with a filter. We can
simply let the lottery predicate include a check of the filter. We could again cap-
ture this in the existing formalism simply by letting lottery(B, sl,R, skL,i) ignore
the filtered winners, but this would again ruin individual winning probabilities
of the underlying mechanism.

Honest Majority. When realizing YOSO MPC, we must show that a lottery
selects parties for roles in such a way that achieve honest majority among roles,
according to the corruption statuses defined in Section 6.5. For simplicity of the
discussion we assume an n-smooth lottery, where we can control the hardness.
Assume that we set the hardness such that a given role is won with probability
ϕ. It is easy to see that when we have n-smoothness then if there is probability ϕ
that a role is won, then there is about probability ϕ2 that it is won twice, giving
a Malicious role. Clearly there is probability 1− ϕ that it is not won, giving a
Crashed role. The expression ϕ2 + 1− ϕ has a minimum of 75%, so 75% of all
roles will be malicious or crashed even if we start with perfect honesty. We can
therefore never expect to get honest majority. The trick is to design protocols
which can tolerate many crashed parties as long as there are more honest parties
than corrupted parties among the non-crashed parties.

Assume a lottery where a unique winner is honest with probability 1
2 + ϵ. In

that case the probability that a role is won by a single honest winner is ϕ( 12 + ϵ).
The probability that the role is won more than once is about ϕ/(1 − ϕ) by
an application of a geometric series. The probability that it is won by a single
corrupted party is ϕ( 12 − ϵ). To have more honest parties than corrupted parties
in expectation we therefore need that ϕ( 12 + ϵ) > ϕ/(1 − ϕ) + ϕ( 12 − ϵ), which
solves to ϕ > 1−2ϵ. By picking ϕ = 1−2ϵ+δ for a positive constant we get that
the expected number of honest parties is h = ϕ( 12 + ϵ)n and that the expected
number of corrupted parties is t = (ϕ/(1−ϕ)+ϕ( 12 − ϵ))n and that h− t > 2γn
for a positive constant γ.

By setting H = h−γn and using a Chernoff bound and n-smoothness we can
pick n large enough to ensure that there are more than H honest parties except
with negligible probability. By setting T = t + γn and picking n large enough
we can similarly ensure that there are less that T corrupted parties except with
negligible probability. Note that H > T . Hence, we can satisfy Definition 10 of
Section 6.5.
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