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Abstract Pure de Bruijn graphs are defined over nodes that num-
berd* for some integerd andk. Each node in such graphs
De Bruijn graphs possess many characteristics that is assigned a unique identifier from the set of possible
make them a suitable choice for the topology of an overlay k-words from an alphabet of sizé (typically, a binary
network. These include constant degree at each nodealphabetis used; i€ = 2.) The connectivity of a de Bruijn
logarithmic diameter and a highly-regular topology that graph is determined by the identifier assigned to each node.
permits nodes to make strong assumptions about the globalConsider a node: with identifier b1bs...b5, b; € {0, 1}.
structure of the network. n has an out-edge to the nodes with identifigr..b,0
We propose a distributed protocol that constructs an andbs...b;1. This adjacency scheme, based on shifting the
approximation of a de Bruijn graph in the presence of an identifier strings associated with a node yields a simple
arbitrary number of nodes. We show that the degree of eachprefix based routing policy. The result is dg(N) bound
node is constant and that the diameter of the network is noon the diameter of the graph. By construction, the degree
worse than2logN, where N is the number of nodes. The 0f each node is constant.
cost of the join and the departure procedures @@ogN) The requirement that the number of nodes is precisely
in the worst case. To the best of our knowledge, this is the2® has made it difficult to use de Bruijn graphs in a
first distributed protocol that provides suaeterministic practical setting. Our protocol, A&LO, provides a gener-
guarantees. alization of the de Bruijn graph to the case where the
number of nodes is not a power of two. We achieve this
by partitioning the whole graph into regions that locally
. exhibit precise de Bruijn connectivity. The boundaries of
| Introduction these regions are populated by nodes that emulate the
behavior of more than one node. This enables us to “glue
De Bruijn graphs are a class of directed graphs that havetogether” each of the regions that together constitute the
been proposed as a near-optimal topology for a DHT [5]. entire graph. The graph constructed retains the degree and
The reasons for this include constant degree at each nodéliameter bounds as well as the routing scheme of de Bruijn
of the graph which indicates low control overhead per graphs in the presence of an arbitrary number of nodes.
node; a deep structure that allows each node to make The paper is organized as follows. In Section Il we
strong assumptions about the behavior of other nodes; angresent a high-level summary of our protocolald.
a large bisection width when compared to other constantin Section Ill we describe the connectivity structure of
degree graphs. There have been attempts to construct peethe network and show how packets are routed through
to-peer overlay networks according to a de Bruijn topology it. Section IV describes the procedure by which new
([4], [3]), but these proposals provide only high probakili  nodes enter the network. Techniques for maintaining im-
guarantees of performance. Our principal contribution is portant network invariants are described in Section V. The
a distributed protocol to constructe Bruijn-like graphs. preservation of these invariants suggests a procedure for
Our protocol comes with the following deterministic guar- permitting nodes to leave the network. This is described in
antees: (1) the number of neighbors for each node in theSection VI. In Section VIl we state and prove the theorems
network is no more than a constant; and (2) the diameterthat provide deterministic guarantees on the behavioreof th
of the network is logarithmic in the number of nodes. network. We conclude with a discussion of related work.



Il. Overview would have labels; ands». Note however that in this case
s1 and sy share a common prefix of length Togethers;

Our approach takes the view of the overlay network as gqand se cover a set of hash-identifiers that is identical to

distributed hash table. We consider the space of hash-keydhat covered by the common prefix ef ands,. We use
to be all binary strings of length exactly. Each node this insight to place nodes that emulate the behavior of

in the network is assigned one or more labels from this MOre than one node on the boundary between regions of
space. The scheme for assigning labels to nodes maintaind1€ nNetwork that are at levels that differ by one.
the invariant that the labels of all the nodes in the network __WWhen a request to join the network is received at a node

forms anuniversal prefix setthat is, for everyk-length ?t is typically fc_)rwarded to the nearest node Fhat is emulgt—
binary strings there exists ainiquenoden such that a N9 the behavior of more than one node. Since emulation
label associated with. shares a common prefix with of a node’s behavior is costly, this makes intuitive sense

We say that the label associated withcoversthe string in that the nodes with the heaviest burden are permitted

s. This invariant suggests a simple prefix-based scheme forl@ "educe their load by sharing it with the joining node. It
routing packets across the network. also has the effect of distributing the introduction of new

We usen and subscripted/superscripted varieties to nodes in the network and ensuring that the difference in
denote network nodes. We usgé to refer to the set of levels across the entire network is kept small. Forwarding
all nodes, or the size of that set depending on the contextJOIN requests in this manner requires that a node in the

The set of labels of a nodeis denotedab(n). Each label network keep track of the state of its neighbors. In the
is a binary strings of lengthk. A noden is addressedy next section, we define precisely the state of a node and

the prefix of each label ifab(n). That is, a node can "€ structure of connectivity in the network.
have more than one address. Each nadis assigned a

level such thatlevel(n) < k, that specifies the length of |11. States and Adjacencies
the prefix used to address For instance, given a node
with level(n) = ¢ and lab(n) = {b1b2 ... by, bib5 ... 0L} The state of a node in the HALO network is a pair

for some binary digit$; andb;, thenn is addressed by the  S(n) = (ST,!) and is denotedT; where! is the level
strings{by ... b, b} ... b, }. We write by by ... by to refer of the nodev. The state identifieST is taken from the

to the set of all binary strings that begin wibhbs . . . b,. set{IN,EM, AT}. The state of a node is a function of both
Since the set of node labels forms a universal prefix set,its own internal state as well as the state of its immediate
we use writebiby ... b, - x to refer to a label associated neighbors in the network. The states (and their relation to
with a particular node as well as the set of labels in the node identifiers) are enumerated below.

hash-spaceoveredby the label. 1) INy A node that wishes to join the ALlo network

If the number of nodes in the network & then it is initially at level 0. It issues a join request to a
is straightforward to construct a pure de Bruijn graph by bootstrap node.
ensuring that the level of all nodes in the network.i§o 2) EM; A node n in this state emulates the behavior
handle the more general setting of an arbitrary number of of two nodes. Specificallylab(n) = {by...bs—10-
nodes we allow the level of nodes in network to vary. We *,b1 ...by—11-x}. Note that the length of both labels
attempt to maintain the invariant that nodes at a similar in lab(n) is ¢ and both labels share a common prefix
level remain adjacent to each other. For instance, given of length? — 1
nodesn, n, andngs at levelst, £+1 and/+2 respectively, 3) AT; A noden the stateAT; is said to beatomic —
we may permitn; and ny to be adjacent and, and it has only a single label. i.dab(n) = {b;1 ... bgy*}.
n3 to be adjacent, but; andns may not be adjacent. The state of a node: is in part determined by the

Nodes at the same level can also be adjacent. This pattergtate of nodes:; that are adjacent te. The adjacencies
of connectivity permits the network to be structured into themselves are defined purely in terms of the identifiers

regions of nodes that are of similar level. The local view of 3 node. We define two types of adjacencies that are
of the network to a node at levélis as if it were a de  maintained at, — SUCC(n) and SIB(n).

Bruijn graph of levell. ,
Piecing together different regions of the network that succ(n) = {n’ e N |\ by be0-x € lab(n,) }
are locally de Bruijn connected requires some care. To by ... bel-x € lab(n)
achieve this, certain nodes in the network have more than
one label. By doing so, these nodes emulate the behavioiSUCC(n) are the normal de Bruijn successors of a nods
of as many nodes as they have labels. For instance, a nodkvel /. These are the edges that are used to route packets
might have labelss; = by ...0,0-% and sy = by ... byl % in the network using a prefix-based routing procedure. For
and emulates the behavior of two nodes at lévell that instance, the path taken in the network from a node with

where by...bg-* € lab(n)



label b, ... b to a node with labeb’ . .. b}, is through the
nodes with the labels beldw

/

bo...bpbl, bs...bpbibh, bbb,

ey

then enters into stat®’*!(u) and presentsiyy with its
identifier, adjacencies, and sta$&*! (ngy).

It is straightforward fom to compute the new identifiers
and adjacencies for itself andy. If S'(n) = EM, thenn

The other type of edges maintained at a node are used':\lready emulates the behavior of two nodes; in this case

to handle node failures. The structure of the connectivity
of “sibling” edges is given below.

SIB(n) = {n’ € N | by...b0-x € lab(n')}
where
0=1 1=0
lab(n) ={s} = s=by...b*
R O A

The manner in whicl8IB(n) is used to handle node
failures will be presented in Section VI. It is worth noting
that theSIB() relation is not necessarily symmetric. 1tf
is not at the same level & B(n) thenSIB(SIB(n)) # n.

In determining the state of a node we often consider
the entire neighborhood of the node. We u&®&S(n) to
refer to the set of nodes thatrefers to, as well as nodes
that refer ton using bothSucC(n) andSIB(n) edges.

IV. The Join Procedure

We make use of join redirections to ensure than a new
node joins at an “appropriate” part of the graph. Typically
the redirection is limited to a radius of two hops from the
site of the original join request, but in the worst case this
might require uptdog N hops.

A node n1y that wishes to join the network uses an
out-of-band method to contact an arbitrary nodé the
network. Initially, S(nmy) = INo. The noden that receives
the request may chose to satisfy the request itself, or it
may forward to join request to some other node in its
neighborhood. The rules that determine the manner in
which a join request is forwarded are presented in Table I.

HereS*(n) represents the state of the node that receives

the join request at time ?; lab’(n) represents its labels at
that time. If the condition in the third column is satisfied
for somenode in the neighborhood af then the join

is forwarded to that node and the state 'ofremains
unchanged. In case the join is not forwarded, the node
n computes a fresh pair of identifiers and adjacencies
for itself and forngy. At the next time step, the node

1it is possible to optimize the routing scheme to take advantdge
similarities between the labels of the source and destimatades. We
exclude this to keep the presentation simple.

2For the purpose of describing our protocol an informal treatnod
time is sufficient. We adopt a discrete approach, where a esitigie
unit passes when a node receives or sends a control messapeh\d/i
definition time is a local (i.e. node-specific) property igach node keeps
track of its own time.

n simply hands over half of its state to the new node.
If St(n) = AT; and lab’(n) = {biby...b;-*} thenn
gives itself the new identifieb, b ... b,0-x and givesniy
bibs ... b 1-x thereby splitting the space of hash identifiers
exactly in half. We show in Section VIl that the resulting
SUCC(+) sets for botm andny is contained in the original
SUCC(n). After the join SIB(n) = ngy and SIB(ngy) = n.

V. State Consistency

To be able to guarantee logarithmic diameter with
constant degree at each node we require certain state
invariants to be maintained. These invariants are listed
below.

(Al) If an edge (ni,n2) is
|level(ny) — level(ng)| < 1.
(A2) An EM, node has at least one neighborsuch that
S’(n) S {AT@,EM4+1}.
The reasons for the exact choice of these invariants will
become evident in Section VII. Intuitively, (A1) maintains
the property that the local view of the network to any
particular node is de Bruijn like by ensuring that only
nodes of a similar level are adjacent. Invariant (A2) ensure
that nodes do not unnecessarily emulate the behavior of
more than one node.

To enforce these invariants, we require a nad® no-
tify all its neighbors each time its state changes. Consider
the case where a nod€ receives a notification from a
noden of a change in the state af The noden’ responds
to this notification in two steps. First, in an attempt to
maintain invariant (A1), the state f may change due to
the change im’s state alone. Next, to maintain (A2y
may examine the state of all its neighbors and, if necessary,
change its state accordingly.7f state changes it issues a
notification to all its neighbors. We show that this chain of
state change notifications does not extend beyond a radius

of two hops from the node that started the notification.
The rule below indicates the action taken at nadef
it receives a notification from node.
")

St(n) =AT, A S'(n/)=AT;_,

lab*(n’) = {b1...be—1-%})

St+1(n) = AT, A (St+1(n') =EM, A
lab'™ (n') ={ bi...by—10-%,b1...by_11-% })

in the network then

(R1) ( ”

( )

For all other combinations of states @fandn’ no action
is taken atn’. This rule handles the following situation.
At time ¢ — 1, nodesn andn’ are at the same levél— 1.
At time t the level ofn increases, due to say the arrival



Fwd if 3n” € NBRS(n) s.t Else
St(n) lab®(n) Sttl(n)  lab*ti(n) S '(nm) lab't!(nw)
ATy by...bpx* S(n’) = EMy AT, b1 ...b00-% AT; 4 b1...bgl-%
M Zigﬁ: S(n') = EMg_y AT, bi...bex AT, by... bpx

TABLE I. The Join Procedure

of a new node in the proximity of. The change in level
causes the region of adjacent nodes at lével1 to be
split. At this point, the node’ responds by emulating two
nodes so as to “glue” the two regions together.

In order to satisfy the invariant (A2) we require that a
noden periodically examine the state afl its neighbors
and apply the rule below. As previously, if the statenof
changes as a result of this rule notifies its neighbors of

(R2) ( Vn' € NBRS(n).S*(n') € {EMy, AT,—1}

the change.
) .

In Section VII we show that this procedure for main-

S'(n) =EM; A B
lab (n) = {b1...be-*,b1 ... bg-%}

S'(n) = AT,
labH'l(n) = {bl N be,1 *}

taining state consistency prevents the network from ever
entering an erroneous state, and is sufficient to guarante%v

the two invariants stated at the start of this section.

— EM;_1 EM; EM;41 AT; ¢ AT, AT 1
AT, X R S X S X
EM, R S S S S X

TABLE IlI. The valid states at the two nodes of
an edge in the network.

a sibling ny such thatn, can take over the hash-space
assigned ta; thus freeingn; to take over the hash-space
of n, the departing node.

The inductive nature of this problem is captured by the
recursive rules that define the node departure algorithm in
Table 1ll. The presentation of this algorithm assumes that
the noden departs from the network gracefully. In the
event of a catastrophic failure the sibling ofdetects the
failure and executes the departure procedure on behalf of
n.

The correctness of this protocol depends on the follow-
ing partial order defined over the states of nodes.

EMy < ATy < EMy4q

In (case la) of Table lll the search for the node has
arrived at a node:; in stateAT, which has a sibling,
hich is also in stat@T,. n;Mns is the node that covers the
abel obtained by computing the maximum common prefix
of lab(ny) and lab(ng). This operation is well defined
since both nodes are in stas@, and thus have only a
single identifier each. Node; represents the sibling of the
node thus computed. If it can be ensured thats at the
same level as; andn,, then we can cause, to emulate
the behavior of both; andn, without introducing any
pointers that violate the invariants of Section V.§
happens to be at a deeper level, thus exceedino the

The result of this state maintenance procedures, namelyPartial order, we forward the search procedureuo

the permitted states of interconnected nodes, are sum-

marized in Table Il. For a directed edde,,n») in the
network, the table shows the possible statesoéndns.
The state ofny, the starting point of the edge, appears in
the left-most column. The state af, appears in the top
row. A table entry “X” indicates that such an edge is not
permitted in the network; an “R” indicates that,,ns)

In cases 1b, 2a, and 2h, already exceeds:; in
the partial order. In each of these cases we immediately
forward the search to node,.

Finally, in case 2c, even though the sibling of
precedesn; in the partial order, we are guaranteed by
invariant (A2) of Section V that a nodes must exist in
the neighborhood af; that succeeds it in the partial order.

can only be a successor or “routing” edge; an “S” indicates We forward the search to any such node.

that (n1,n2) may be either a successor or a sibling edge.

VI. The Departure Procedure

When a noden wishes to leave the network we must
find another node; that can take its place. If such a node
ny is identified we are faced with the obvious problem of
finding, in turn, a node to take the place »f, since it
will fulfill the role of the departed node. The task of the
departure protocol then, is to identify a node that has

Note that in each case the search is forwarded to a node
that is further along in the partial order. This guarantees
the termination of this process.

VII. Properties of HALO

An important property of the WLO network is illus-
trated in Figure 1. This figure is a schematic illustration
of the HaLo graph — hence the name. The graph is
partitioned such that all edges in the graph are only



S(n1) | S(n2 =SIB(n1)) | Action
let ng = SIB(TL1 [l n2)
i f level(ng) < ¢ then
AT, AT, (case la) id(n2) := lab(n1) U lab(n2); S(n2) = EM,

found n;
else forward to ng (case 1 or 2)

EM; (case 1b)

forward to ny (case 2)

EMp EM,; (case 2a)

forward to ny (case 2)

AT, (case 2b)

forward to ny (case 1)

EM, (case 2c)
ATp_g

dn; € NBRS(nl) | S(ng) (S {AT@,EM@+1}
forward to nz (case 1 or 2)

wheren; Mny is a noden with the lab(n) contains the maximum common prefix b (n1) andlab(ns2).

TABLE lll. The Departure Procedure

between nodes of a similar level. The states in the networkforwarded to other nodes, until it at timereaches node

are maintained such that nodes in ¢ state act as a
buffer area between nodes at levehnd those at levels

¢ — 1. The following lemma shows that with sequential
joins and departures the difference in levels between the
endpoints of an edge is at most 1. Or, that edges in the
HaLo graph do not extend across adjacent levels in
Figure 1.

Fig. 1. A schematic illustration ofa  HALO net-
work. Nodes of various levels are arranged

in “concentric” rings. This figure shows two
local regions with  AT;q nodes surrounded by
EM;, and ATy nodes. All these regions occur
within a region of EMg nodes. The arrowed line
segments indicate edges between nodes that
reside in each of the regions.

Lemma 7.1 (No Steep Edges):(n1,n2) is an edge in
the HaLO graph, then eithelevel(n;) = level(ns), or
S(nl) = EM, and S(ng) € {ATg_l,EMl+1,EMl_1}.

Proof: The proof is by induction on the number of
vertices in the graph. Clearly with a single node in the

graph there is no edge that violates the above constraint. 2)

Let us assume the property holds for a graph vithodes.
From this state the graph can go to a new state only if a
new node joins the network or an existing node leaves it.
We examine the two cases separately.
Case 1: A node nye, joins the network

When a nodeu,, joins the graph its request is received
by an existing node of the network. The request might be

n € N which processes it.
1) S*(n) = EMg: If n had a neighbor’ in stateEM,_;

the join request would be forwarded #d. Thus we
are guaranteed that aiiM neighbors ofu are at a
level no less thard.

Let lab'(n) = {b1...bp10-%,by...by11 - %}
After the join lab"t*(n) = {b1...b,_10-%} and
10" (npey) = {b1...bi_11-%}. Since no new ids
have been introduced by the join, we trivially have
that the set of the successor edgesnobefore the
join is equal to the union of the sets of the successor
edges ofn and ny,, after the join.

After the join S™*1(n) = S (nye,) = ATy. It re-
mains to be shown that none of the edges introduced
violate the property. We handle each of the cases
for nodesn’ adjacent ton and ny,e, using SUCC(:)
edges only — i.e{(n’,n), (n’, npey)} € SUCC(n')

or {(n,n'), (Npew,n’)} C SUCC(n) U SUCC(nyey)-

a) S***(n’) = AT,:  Since S'tl(n) =
St (npew) = S'TL(n') the property is
satisfied.

b) s**'(n’) = EM, Since the level ofn’ is the
same as the level af and n,e, the property
is satisfied.

c) s*t'(n’) = EMyy4 The level ofn’ is only one
greater than the level af andn,., andn’ is
in the stateEM; thus the property is satisfied.

d) s***(n’) = AT,_; The noden’ receives a noti-
fication from eithem or n,e, and, according to
rule (R1), transitions to staté**2/(n’) = EM,
thus confining the edge to a single level.

S*(n) = AT,: If 3n’ € NBRS(n) s.t. S(n') = EM,
then the join request is forwarded td. Thus we
need only consider the case when all neighbors of
are eitherAT, or EM;.

If lab(n) = {by...b-*} after the join we have
lab™ ™ (n) = {by ... b0} and (+ngey) = {by ... b1
«}. The neighbors ofn according to theSucc(:)
relation at timet are nodes with labels in



b2 . .blO‘*,
Ob1 ce blfl-*7

bg...bll-*7

L=A 1by .. by -*

}

As in the previous case, after the join, the neighbors
of n andn,e, according to theSucc(-) relation after
join are those with labels belonging to the det

with a prefix of length/ — 1 that was also a prefix of a
label in lab(n').
[ ]
Corollary 7.2 (Degree Bound)The degree of a node
is, in the worst case, 8.
Proof: Clearly, nodesn in stateEM, are the only
nodes with degree greater th&anWe proceed by induction

above. Thus, we need only consider nodes that weregn the number of nodes.

in the original neighborhood af.

S (Npey) St1(n) AT,y1. All the nodes
n' € NBRS('t 4+ 1n U NBRS(t + 1(nme,) Must have
S(n') € {AT;,EMy41}. For nodes in stateéM;;; the
edges to andn,,,, no longer cross a level boundary.
Nodes in staten’ such tha$?(n’) = AT, receive

a notification that by rule (R1) causes a transition
to S'T1(EM;, ;) which then causes the edge to be
contained within a level.

In both cases we need to also consider sibling
edges. After the join procedure we haSeB()t 4 1n =
SIB(t + 1npey and level(n) = level(nyey); SO the newly
introduced sibling edges do not violate the hypothesis.
A node n’ € NBRS(t + 1n | n = SIB(t + 1n’ (recall
that theSIB(:) relation is not always symmetric) receives
a state change notification just as any other node in
NBRS(’t + 1n and will make the necessary state transition
using rule (R1). Finally, it is worth noting that the state
change notifications are confined to a radius of 2 from the
location of the join. This can be seen by noting that a
notification from anEM, node causes no state change in
the recipient of the message.

Case 2: A node n, departs the network

When a noden, leaves the network, the departure
protocol discovers at timé a noden that will take the
place of ng in the network. The state of at time ¢,
St(n) is alwaysAT,, andn has a siblingn’ that is also
in state AT,. On completion of the departure procedure,
the state ofn’ is S'™1(n’) = EM,. We consider the newly
introduced successor and sibling edges separately. Sinc
n takes the place of4, it adjacencies at the end of the
departure protocol are the same as thoseofrior to the
departure. Hence all adjacenciesrofafter the departure
protocol is complete are legal.

After the departure is complete; takes on all adjacen-
cies ofn that were present prior to the departurewgf The
set of non-sibling adjacencies af after the departure are
the non-sibling edges iNBRS()t(n) U NBRS()t(n’). Since
the level ofn’ did not change no new edge violates the
property.

For sibling edges, the new sibling of’, n”
S1B(t + 1(n’) is precisely the node computed by
SIB(()u¥), and its level is is checked to ensure that it
is no greater thaw. level(n”) can in fact be no less than
£ — 1, since otherwisdabn” would contain a label that

e

If the noden makes the state transitioBX7T,_; —
EM, then there must have been a join of the nagdg, at
n’ € NBRS(n). After the joinn is at worst adjacent to
both n’ andn,e,, thus at most increasing its degree to 5.

If, however, n is already in the stat&M, and a join
occurs atn’ € NBRS(n). The noden’ must be in state
S(n') = EMp or EM;_;. n/ cannot be in stataT, since
otherwise the join would have been forwardedrtonor
cann’ be in stateEM,,; since once again the join would
have been forwarded to.

By the hypothesis, the degreerofs at most 8, implying
lab(n) = {bg...be—10-%,by...be_11-x}. Thus,

by...bp—100-%, by...bp_101-x%,

o bl...bz_llo'*, bl...bg_lll-*,
NBRS(n) _{ Obl...bg_l()'*, Obl...bg_ll-*, }

1b1...bg_10~*, ].bl‘..bg_llwk

But sincen’ € NBRS(()n) and S(n') = EM, thenid(n’)
is a prefix cover of at least 2 elementsNBRS(()n). Thus
the degree of can be no more thafi. After the joinn
can at worst become adjacent to bathandn,.,, further
increasing its degree only by 1, to 8.

In other words, in the worst case, a node emulates no
more than two nodes. [ ]

Lemma 7.3 (Level Inequality Y-et ¢,,;, and?,,,, de-
note the lowest and highest level of a node in the graph.
bopin — 1 < logN < L4z, Where N is the number
of nodes. Proof: We first note that thel,,;, <
logN. This can be observed as follows: Letdenote the
maximum length of a identifier. Since the set of nodes in
the HaLO graph form a universal prefix set we require
that the entire space of identifiel® be covered by the
identifiers of all the nodes in the graph. A node at lefel
covers2*~! elements of the identifier space. Therefore, a
conservative upper bouridon the proportion of the space
covered by a single node &' ~‘»i»*1 Thus we require
N -2\ —tmintl — 92X {0 satisfy the universal prefix property.
Or, bmin < logN + 1.

To bound’,,,,.., we note thaR*—¢ma= is a lower bound
on the number of identifiers covered by a node. Since there
is no redundancy in the universal prefix set, we require
N . 22 tmaz < 22 ThuslogN < fpq.. This argument
also shows that,,,,.. = logN implies £,,.. = Lnin. [ ]

3Nodes in stat&M, cover @ - 22! identifiers



Lemma 7.4 (Tree Edges)he out-degree of all but two
internal nodes in the shortest path tréds at least 2.
Proof: Let the root of the shortest path tree he and
r1...70,% € lab(n,). Consider a node with by ... by, €
lab(n). First of all, there can be no path fromto n of
length less than¢; — ¢5]. This follows directly from the

be two levels apart; and by the universal prefix property
which disallowd, to be a prefix of;. Furthermore, if there
exists more than one node with labels frdmadjacent to

n then by the above argument it is guaranteed that both
those edges will be tree edges. Thus, in the entire graph,
there exists only a single pair of nodes that have out-degree

No Steep Edge lemma. Without loss of generality, assumeof 1 in the shortest path tree. All other internal nodes have

the successors of aren; andn, with labels that cover
by...be,0-% and by ...be,1-%, respectively. The node;
need not be at the same level :as but by the No Steep
Edges lemma, and since both andn. are adjacent to
n, the levels ofn; andny may differ by at most 2. We
will demonstrate that either both edgé&:, n,), (n,n2)}
are tree edges, or neither edge is a tree edge. [ ]

We defineoverlap(s1, s2) be the length of the longest
prefix of of the strings; that is also a suffix of the string
so. For instance, ifs; = 111000 and s, = 000111, then
overlap(s1, s2) = 3. Letl,,1,11,l> denote the labels af,
n, ny andno respectively. Sincé,; and i, are identical
up to bit position/s, and the level ofn, is at most two
greater than the length ofy, i = overlap(l;,l) andj =
overlap(la,l) differ by at most 3. The edgén,n;) is a
tree edge iffb; = by, _; °. Similarly for (n,ns).

Without loss of generality let's assume that> j. If
we want only one edge in the sgfn,n1), (n,n2)} to be
a tree edge, we require the following:

(T1) 7y, # m1,—;. This is necessary since we wantto

out-degree 2.

Lemma 7.5 (Tree Depth).et » be a node at the deep-
est levell,,q., With 7y .. .7, = € lab(r). The maximum
depth of the shortest path tree rootedrais O(logN),
where N is the number of nodes. Proof: First, if
Lmaz = logN, by Lemma 7.3 we trivially have that there
is only one level, and the NLOo graph is a pure De Bruijn
graph. The diameter of a De Bruijn graphligyN and the
depth of the shortest path tree is bounded by the diameter.
We consider below the case whetg,, > logN.

Consider a noden with by ...b-*% € lab(n) with
successora; andny with labelsb, . .. b0« andb, . . . by 1,
respectively. By the Lemma 7.4 we have that eithem, )
and (n,ny) are both tree edges, or neither. We refine the
conditions under whiclin, n;) and(n,nq) are tree edges.

Once again, letl,,l,1;,lo denote the labels of
r,m,ny,ny respectively. If thei = overlap(l,1,) > 2
thenly = ry...b1by...u;-*. Thus overlap(ly,l,.) and
overlap(ls, 1,.) are both precisely—1 © Both edgegn, n,)
and(n,n2) are tree edges sinééas a greater overlap with

match only one of these values, and hence contributel-, andb, matchesr, . i, the necessary bit position in

only a single edge to the tree.

(T2) overlap(ls,l,.) = £5 — 1. Sincen; andns share the

first /5 — 1 bits, for condition (T1) to be satisfied at

least/; — 1 bits must be in the overlap for both

andl, with [,..

re,—j...re, 10 be a prefix ofry,_;...ry . This is
required since thé andl, differ only in bit position
/5, therefore the matched suffixes lpfmust also be

(T3)

prefixes of each other. This condition also implies

that the last bits of /,, are identical.

l.. We also have that the distance fromo w is 4,4, — ?.
SincelogN < {4, we have all nodes withiflogN — 1)
distance from the root are internal nodes in the tree.
Since the degree of internal nodes in the tree is 2, and
with logN — 1 levels of the tree as internal nodes, the
shallowest leaf may only be at distankgyN. Since we
have at Ieast%’ internal nodes, this bounds the depth of
the deepest leaf to be less thag N + 3. [ ]
Lemma 7.6 (Level Bound)l'he number of levels in the
HaLo graph isO(logN) in the worst case, wher® is

For these conditions to be true simultaneously, the suffix "Umber of nodes in the graph.  Proof: We have from

of [ that is¢ + 1 bits long must either bd00... or

011.... For any value ofi, there is exactly one possible

pair of nodesn; and n, that satisfy the remainder of
the properties. In particular, for some pick i > j >
i —2; thenly, = 071 and [, is any one element from
L = {070,0700, 0701, 07000, 07001, 07010, 07011}, where

0’ represents a string gfzeroes). A similar case exists for

the Tree Depth lemma that the depth of the shortest path
tree rooted at the deepest nodelifogN). From the No
Steep Edges lemma, even if we assume conservatively that
every tree edge crosses a level boundéry,. — Cin =
O(logN). [ |
Theorem 7.7 (Diameter BoundYhe diameter of the
HaLO graph with N nodes isO(logN). Proof: We

12 = 190. This is true by the No Steep Edges lemma which trivially have that the diameter of the network is at most
guarantees that nodes two hops from each other can at mogtnaz- This can be observed by recalling the procedure

4We only consider successor edges in the shortest path tree
5This statement follows directly from the de Bruijn routingjalithm.
For instance, if the label of the root nodie= 000111-x, and the label

of n, I = 111000-*, then for(n,n;) to be a tree edge, we must have

{1 = 011100

used for routing in the De Bruijn network — it is always

8There are exactly two nodes in the graph for which this is nee.t
Whenr endswith the sequenc&01010 or 01010, andu, v beginwith
the same sequence. By an argument identical to that inTtbe Edge
lemma these cases are rendered irrelevant.



possible to reach; from ns by following edges that shift
in lab(n,) one bit at a time. Since we never have to shift
more that/,,., bits the diameter of the graph is less than
Emaw-

By the Level Inequality lemma we havg,;, — 1 <
logN < {42, and by the Level Bound we havg, .
Lin = O(logN). Thus the maximum diametéy, .,
O(logN).

(20]

VIIl. Related Work

Since their conceptualization in mid-40’s [1], de Bruijn
graphs have attracted significant attention in graph the-
ory and related areas such as communication networks
([8],[9]). Especially their elegant routing schema hasrbee
widely studied ([6], [2], [7], [9]). With the introduction
of Peer-to-Peer computing in the last decade and the on
going research on Distributed Hash Tables (DHTS), interest
in network architectures and their characteristics has bee
rekindled. To the best of our knowledge, two de Bruijn-
based schemas for building DHTs have been proposed,
Koorde ([4]) and D2B ( [3]).

Koorde is an adaptation of the Chord protocol ([10]) for
use with de Bruijn graphs. The de Bruijn edges are only
used for routing, and for the remaining operations (namely

node joins and departures) the Chord algorithms are used.

Furthermore, only a probabilistic bound for logarithmic
data lookup Q(logN)) is provided.D2B, on the other
hand, attempts to organize its nodes such that they form
a de Bruijn network. As a result, D2B can guarantee only
with high probability that the out degree 3(1). D2B,

as well as our protocol, modifies the node identifiers by
redirecting joins appropriately, while Koorde doesn't. In
general, we believe that our approach is closer to D2B than
Koorde. Nevertheless, our schema provides deterministic
guarantees af)(1) edges per node ar@d(logN) diameter.
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