
A Distributed Algorithm for Constructing a Generalization of de Bruijn Graphs

Nikhil Swamy∗, Nikolaos Frangiadakis∗, Konstantinos Bitsakos∗

{nswamy,ntg,kbits}@cs.umd.edu

∗Department of Computer Science
University of Maryland, College Park, MD 20742

Abstract

De Bruijn graphs possess many characteristics that
make them a suitable choice for the topology of an overlay
network. These include constant degree at each node,
logarithmic diameter and a highly-regular topology that
permits nodes to make strong assumptions about the global
structure of the network.

We propose a distributed protocol that constructs an
approximation of a de Bruijn graph in the presence of an
arbitrary number of nodes. We show that the degree of each
node is constant and that the diameter of the network is no
worse than2logN , whereN is the number of nodes. The
cost of the join and the departure procedures areO(logN)
in the worst case. To the best of our knowledge, this is the
first distributed protocol that provides suchdeterministic
guarantees.

I. Introduction

De Bruijn graphs are a class of directed graphs that have
been proposed as a near-optimal topology for a DHT [5].
The reasons for this include constant degree at each node
of the graph which indicates low control overhead per
node; a deep structure that allows each node to make
strong assumptions about the behavior of other nodes; and
a large bisection width when compared to other constant
degree graphs. There have been attempts to construct peer-
to-peer overlay networks according to a de Bruijn topology
([4], [3]), but these proposals provide only high probability
guarantees of performance. Our principal contribution is
a distributed protocol to constructde Bruijn-like graphs.
Our protocol comes with the following deterministic guar-
antees: (1) the number of neighbors for each node in the
network is no more than a constant; and (2) the diameter
of the network is logarithmic in the number of nodes.

Pure de Bruijn graphs are defined over nodes that num-
berdk for some integersd andk. Each node in such graphs
is assigned a unique identifier from the set of possible
k-words from an alphabet of sized (typically, a binary
alphabet is used; i.ed = 2.) The connectivity of a de Bruijn
graph is determined by the identifier assigned to each node.
Consider a noden with identifier b1b2...bk, bi ∈ {0, 1}.
n has an out-edge to the nodes with identifierb2...bk0
andb2...bk1. This adjacency scheme, based on shifting the
identifier strings associated with a node yields a simple
prefix based routing policy. The result is a alog(N) bound
on the diameter of the graph. By construction, the degree
of each node is constant.

The requirement that the number of nodes is precisely
2k has made it difficult to use de Bruijn graphs in a
practical setting. Our protocol, HALO, provides a gener-
alization of the de Bruijn graph to the case where the
number of nodes is not a power of two. We achieve this
by partitioning the whole graph into regions that locally
exhibit precise de Bruijn connectivity. The boundaries of
these regions are populated by nodes that emulate the
behavior of more than one node. This enables us to “glue
together” each of the regions that together constitute the
entire graph. The graph constructed retains the degree and
diameter bounds as well as the routing scheme of de Bruijn
graphs in the presence of an arbitrary number of nodes.

The paper is organized as follows. In Section II we
present a high-level summary of our protocol, HALO.
In Section III we describe the connectivity structure of
the network and show how packets are routed through
it. Section IV describes the procedure by which new
nodes enter the network. Techniques for maintaining im-
portant network invariants are described in Section V. The
preservation of these invariants suggests a procedure for
permitting nodes to leave the network. This is described in
Section VI. In Section VII we state and prove the theorems
that provide deterministic guarantees on the behavior of the
network. We conclude with a discussion of related work.

II. Overview

Our approach takes the view of the overlay network as a
distributed hash table. We consider the space of hash-keys
to be all binary strings of length exactlyk. Each node
in the network is assigned one or more labels from this
space. The scheme for assigning labels to nodes maintains
the invariant that the labels of all the nodes in the network
forms anuniversal prefix set; that is, for everyk-length
binary strings there exists aunique noden such that a
label associated withn shares a common prefix withs.
We say that the label associated withn coversthe string
s. This invariant suggests a simple prefix-based scheme for
routing packets across the network.

We use n and subscripted/superscripted varieties to
denote network nodes. We useN to refer to the set of
all nodes, or the size of that set depending on the context.
The set of labels of a noden is denotedlab(n). Each label
is a binary strings of lengthk. A noden is addressedby
the prefix of each label inlab(n). That is, a node can
have more than one address. Each noden is assigned a
level, such thatlevel(n) ≤ k, that specifies the length of
the prefix used to addressn. For instance, given a noden
with level(n) = ℓ and lab(n) = {b1b2 . . . bk, b′1b

′

2 . . . b′k}
for some binary digitsbi andb′i, thenn is addressed by the
strings{b1 . . . bℓ, b

′

1 . . . b′ℓ}. We write b1b2 . . . bℓ·∗ to refer
to the set of all binary strings that begin withb1b2 . . . bℓ.
Since the set of node labels forms a universal prefix set,
we use writeb1b2 . . . bℓ · ∗ to refer to a label associated
with a particular node as well as the set of labels in the
hash-spacecoveredby the label.

If the number of nodes in the network is2ℓ then it
is straightforward to construct a pure de Bruijn graph by
ensuring that the level of all nodes in the network isℓ. To
handle the more general setting of an arbitrary number of
nodes we allow the level of nodes in network to vary. We
attempt to maintain the invariant that nodes at a similar
level remain adjacent to each other. For instance, given
nodesn1, n2 andn3 at levelsℓ, ℓ+1 andℓ+2 respectively,
we may permitn1 and n2 to be adjacent andn2 and
n3 to be adjacent, butn1 and n3 may not be adjacent.
Nodes at the same level can also be adjacent. This pattern
of connectivity permits the network to be structured into
regions of nodes that are of similar level. The local view
of the network to a node at levelℓ is as if it were a de
Bruijn graph of levelℓ.

Piecing together different regions of the network that
are locally de Bruijn connected requires some care. To
achieve this, certain nodes in the network have more than
one label. By doing so, these nodes emulate the behavior
of as many nodes as they have labels. For instance, a node
might have labelss1 = b1 . . . bℓ0·∗ and s2 = b1 . . . bℓ1·∗
and emulates the behavior of two nodes at levelℓ + 1 that

would have labelss1 ands2. Note however that in this case
s1 ands2 share a common prefix of lengthℓ. Togethers1

and s2 cover a set of hash-identifiers that is identical to
that covered by the common prefix ofs1 and s2. We use
this insight to place nodes that emulate the behavior of
more than one node on the boundary between regions of
the network that are at levels that differ by one.

When a request to join the network is received at a node
it is typically forwarded to the nearest node that is emulat-
ing the behavior of more than one node. Since emulation
of a node’s behavior is costly, this makes intuitive sense
in that the nodes with the heaviest burden are permitted
to reduce their load by sharing it with the joining node. It
also has the effect of distributing the introduction of new
nodes in the network and ensuring that the difference in
levels across the entire network is kept small. Forwarding
join requests in this manner requires that a node in the
network keep track of the state of its neighbors. In the
next section, we define precisely the state of a node and
the structure of connectivity in the network.

III. States and Adjacencies

The state of a noden in the HALO network is a pair
S(n) = (ST, l) and is denotedSTl where l is the level
of the nodev. The state identifierST is taken from the
set{IN, EM, AT}. The state of a node is a function of both
its own internal state as well as the state of its immediate
neighbors in the network. The states (and their relation to
node identifiers) are enumerated below.

1) IN0 A node that wishes to join the HALO network
is initially at level 0. It issues a join request to a
bootstrap node.

2) EMl A node n in this state emulates the behavior
of two nodes. Specifically,lab(n) = {b1 . . . bℓ−10 ·
∗, b1 . . . bℓ−11·∗}. Note that the length of both labels
in lab(n) is ℓ and both labels share a common prefix
of length ℓ − 1

3) ATl A noden the stateATl is said to beatomic —
it has only a single label. i.e.lab(n) = {b1 . . . bℓ·∗}.

The state of a noden is in part determined by the
state of nodesni that are adjacent ton. The adjacencies
themselves are defined purely in terms of the identifiers
of a node. We define two types of adjacencies that are
maintained atn — SUCC(n) andSIB(n).

SUCC(n) ≡ {n′ ∈ N |
∨ b2 . . . bℓ0·∗ ∈ lab(n′)

b2 . . . bℓ1·∗ ∈ lab(n′)
}

where b1 . . . bℓ ·∗ ∈ lab(n)

SUCC(n) are the normal de Bruijn successors of a noden at
level ℓ. These are the edges that are used to route packets
in the network using a prefix-based routing procedure. For
instance, the path taken in the network from a node with

label b1 . . . bk to a node with labelb′1 . . . b′k is through the
nodes with the labels below1:

b2 . . . bkb′1, b3 . . . bkb′1b
′

2, . . . , bkb′1 . . . b′k−1

The other type of edges maintained at a node are used
to handle node failures. The structure of the connectivity
of “sibling” edges is given below.

SIB(n) ≡ {n′ ∈ N | b1 . . . b̄l0·∗ ∈ lab(n′)}
where

0̄ ≡ 1 1̄ ≡ 0
lab(n) = {s} ⇒ s = b1 . . . bl ·∗

lab(n) = {s1, s2} ⇒
∧ s1 = b1 . . . bl0·∗

s2 = b1 . . . bl1·∗

The manner in whichSIB(n) is used to handle node
failures will be presented in Section VI. It is worth noting
that theSIB() relation is not necessarily symmetric. Ifn

is not at the same level asSIB(n) thenSIB(SIB(n)) 6= n.
In determining the state of a node we often consider

the entire neighborhood of the node. We useNBRS(n) to
refer to the set of nodes thatn refers to, as well as nodes
that refer ton using bothSUCC(n) andSIB(n) edges.

IV. The Join Procedure

We make use of join redirections to ensure than a new
node joins at an “appropriate” part of the graph. Typically
the redirection is limited to a radius of two hops from the
site of the original join request, but in the worst case this
might require uptolog N hops.

A node nIN that wishes to join the network uses an
out-of-band method to contact an arbitrary noden in the
network. Initially,S(nIN) = IN0. The noden that receives
the request may chose to satisfy the request itself, or it
may forward to join request to some other node in its
neighborhood. The rules that determine the manner in
which a join request is forwarded are presented in Table I.

HereSt(n) represents the state of the node that receives
the join request at timet 2; lab

t(n) represents its labels at
that time. If the condition in the third column is satisfied
for somenode in the neighborhood ofn then the join
is forwarded to that node and the state ofn remains
unchanged. In case the join is not forwarded, the node
n computes a fresh pair of identifiers and adjacencies
for itself and fornIN. At the next time step, the noden

1It is possible to optimize the routing scheme to take advantageof
similarities between the labels of the source and destination nodes. We
exclude this to keep the presentation simple.

2For the purpose of describing our protocol an informal treatment of
time is sufficient. We adopt a discrete approach, where a single time
unit passes when a node receives or sends a control message. With this
definition time is a local (i.e. node-specific) property i.e.,each node keeps
track of its own time.

then enters into stateSt+1(u) and presentsnIN with its
identifier, adjacencies, and stateSt+1(nIN).

It is straightforward forn to compute the new identifiers
and adjacencies for itself andnIN. If St(n) = EMℓ thenn

already emulates the behavior of two nodes; in this case
n simply hands over half of its state to the new node.
If St(n) = ATl and lab

t(n) = {b1b2 . . . bl · ∗} then n

gives itself the new identifierb1b2 . . . bℓ0·∗ and givesnIN

b1b2 . . . bl1·∗ thereby splitting the space of hash identifiers
exactly in half. We show in Section VII that the resulting
SUCC(·) sets for bothn andnIN is contained in the original
SUCC(n). After the joinSIB(n) = nIN andSIB(nIN) = n.

V. State Consistency

To be able to guarantee logarithmic diameter with
constant degree at each node we require certain state
invariants to be maintained. These invariants are listed
below.
(A1) If an edge (n1, n2) is in the network then

|level(n1) − level(n2)| ≤ 1.
(A2) An EMℓ node has at least one neighborn such that

S(n) ∈ {ATℓ, EMℓ+1}.
The reasons for the exact choice of these invariants will
become evident in Section VII. Intuitively, (A1) maintains
the property that the local view of the network to any
particular node is de Bruijn like by ensuring that only
nodes of a similar level are adjacent. Invariant (A2) ensures
that nodes do not unnecessarily emulate the behavior of
more than one node.

To enforce these invariants, we require a noden to no-
tify all its neighbors each time its state changes. Consider
the case where a noden′ receives a notification from a
noden of a change in the state ofn. The noden′ responds
to this notification in two steps. First, in an attempt to
maintain invariant (A1), the state ofn′ may change due to
the change inn’s state alone. Next, to maintain (A2)n′

may examine the state of all its neighbors and, if necessary,
change its state accordingly. Ifn′ state changes it issues a
notification to all its neighbors. We show that this chain of
state change notifications does not extend beyond a radius
of two hops from the node that started the notification.

The rule below indicates the action taken at noden′ if
it receives a notification from noden.

(R1)

�
St(n) = ATℓ ∧ St(n′) = ATl−1 ∧
lab

t(n′) = {b1 . . . bℓ−1 ·∗})

�
⇒�

St+1(n) = ATℓ ∧ (St+1(n′) = EMℓ ∧
lab

t+1(n′) = { b1 . . . bl−10·∗, b1 . . . bl−11·∗ })

�
For all other combinations of states ofn andn′ no action

is taken atn′. This rule handles the following situation.
At time t− 1, nodesn andn′ are at the same levelℓ− 1.
At time t the level ofn increases, due to say the arrival

Fwd if ∃n′ ∈ NBRS(n) s.t Else
St(n) lab

t(n) St+1(n) lab
t+1(n) St+1(nIN) lab

t+1(nIN)
ATℓ b1 . . . bℓ ·∗ S(n′) = EMℓ ATl+1 b1 . . . bℓ0·∗ ATl+1 b1 . . . bℓ1·∗

EMℓ

b1 . . . bℓ ·∗
b1 . . . b̄ℓ ·∗

S(n′) = EMℓ−1 ATl b1 . . . bℓ ·∗ ATl b1 . . . b̄ℓ ·∗

TABLE I. The Join Procedure

of a new node in the proximity ofn. The change in level
causes the region of adjacent nodes at levelℓ − 1 to be
split. At this point, the noden′ responds by emulating two
nodes so as to “glue” the two regions together.

In order to satisfy the invariant (A2) we require that a
noden periodically examine the state ofall its neighbors
and apply the rule below. As previously, if the state ofn
changes as a result of this rule,n notifies its neighbors of
the change.

(R2)

0� St(n) = EMℓ ∧
lab

t(n) = {b1 . . . bℓ ·∗, b1 . . . b̄ℓ ·∗}
∀n′ ∈ NBRS(n).St(n′) ∈ {EMℓ, ATℓ−1}

1A ⇒�
St+1(n) = ATℓ−1

lab
t+1(n) = {b1 . . . bℓ−1 ·∗}

�
In Section VII we show that this procedure for main-

taining state consistency prevents the network from ever
entering an erroneous state, and is sufficient to guarantee
the two invariants stated at the start of this section.

−→ EMl−1 EMl EMl+1 ATl−1 ATl ATl+1

ATl X R S X S X
EMl R S S S S X

TABLE II. The valid states at the two nodes of
an edge in the network.

The result of this state maintenance procedures, namely
the permitted states of interconnected nodes, are sum-
marized in Table II. For a directed edge(n1, n2) in the
network, the table shows the possible states ofn1 andn2.
The state ofn1, the starting point of the edge, appears in
the left-most column. The state ofn2 appears in the top
row. A table entry “X” indicates that such an edge is not
permitted in the network; an “R” indicates that(n1, n2)
can only be a successor or “routing” edge; an “S” indicates
that (n1, n2) may be either a successor or a sibling edge.

VI. The Departure Procedure

When a noden wishes to leave the network we must
find another noden1 that can take its place. If such a node
n1 is identified we are faced with the obvious problem of
finding, in turn, a node to take the place ofn1, since it
will fulfill the role of the departed node. The task of the
departure protocol then, is to identify a noden1 that has

a sibling n2 such thatn2 can take over the hash-space
assigned ton1 thus freeingn1 to take over the hash-space
of n, the departing node.

The inductive nature of this problem is captured by the
recursive rules that define the node departure algorithm in
Table III. The presentation of this algorithm assumes that
the noden departs from the network gracefully. In the
event of a catastrophic failure the sibling ofn detects the
failure and executes the departure procedure on behalf of
n.

The correctness of this protocol depends on the follow-
ing partial order defined over the states of nodes.

EMℓ < ATℓ < EMℓ+1

In (case 1a) of Table III the search for the node has
arrived at a noden1 in stateATℓ which has a siblingn2

which is also in stateATℓ. n1⊓n2 is the node that covers the
label obtained by computing the maximum common prefix
of lab(n1) and lab(n2). This operation is well defined
since both nodes are in stateATℓ and thus have only a
single identifier each. Noden3 represents the sibling of the
node thus computed. If it can be ensured thatn3 is at the
same level asn1 andn2, then we can causen2 to emulate
the behavior of bothn1 and n2 without introducing any
pointers that violate the invariants of Section V. Ifn3

happens to be at a deeper level, thus exceedingn1 in the
partial order, we forward the search procedure ton3.

In cases 1b, 2a, and 2bn2 already exceedsn1 in
the partial order. In each of these cases we immediately
forward the search to noden2.

Finally, in case 2c, even though the sibling ofn1

precedesn1 in the partial order, we are guaranteed by
invariant (A2) of Section V that a noden3 must exist in
the neighborhood ofn1 that succeeds it in the partial order.
We forward the search to any such node.

Note that in each case the search is forwarded to a node
that is further along in the partial order. This guarantees
the termination of this process.

VII. Properties of HALO

An important property of the HALO network is illus-
trated in Figure 1. This figure is a schematic illustration
of the HALO graph – hence the name. The graph is
partitioned such that all edges in the graph are only

S(n1) S(n2 = SIB(n1)) Action

ATℓ ATℓ (case 1a)

let n3 = SIB(n1 ⊓ n2)
if level(n3) ≤ ℓ then

id(n2) := lab(n1) ∪ lab(n2); S(n2) = EMℓ

found n1

else forward to n3 (case 1 or 2)
EMℓ (case 1b) forward to n2 (case 2)

EMℓ EMℓ+1 (case 2a) forward to n2 (case 2)
ATℓ (case 2b) forward to n2 (case 1)
EMℓ (case 2c)
ATℓ−1

∃n3 ∈ NBRS(n1) | S(n3) ∈ {ATℓ, EMℓ+1}
forward to n3 (case 1 or 2)

wheren1 ⊓ n2 is a noden with the lab(n) contains the maximum common prefix oflab(n1) and lab(n2).

TABLE III. The Departure Procedure

between nodes of a similar level. The states in the network
are maintained such that nodes in theEMℓ state act as a
buffer area between nodes at levelℓ and those at levels
ℓ − 1. The following lemma shows that with sequential
joins and departures the difference in levels between the
endpoints of an edge is at most 1. Or, that edges in the
HALO graph do not extend across adjacent levels in
Figure 1.

AT9AT9 AT10AT10 EM10EM10

EM9

Fig. 1. A schematic illustration of a HALO net-
work. Nodes of various levels are arranged
in “concentric” rings. This figure shows two
local regions with AT10 nodes surrounded by
EM10 and AT9 nodes. All these regions occur
within a region of EM9 nodes. The arrowed line
segments indicate edges between nodes that
reside in each of the regions.

Lemma 7.1 (No Steep Edges):If (n1, n2) is an edge in
the HALO graph, then eitherlevel(n1) = level(n2), or
S(n1) = EMℓ andS(n2) ∈ {ATℓ−1, EMl+1, EMl−1}.

Proof: The proof is by induction on the number of
vertices in the graph. Clearly with a single node in the
graph there is no edge that violates the above constraint.
Let us assume the property holds for a graph withN nodes.
From this state the graph can go to a new state only if a
new node joins the network or an existing node leaves it.
We examine the two cases separately.
Case 1: A node nnew joins the network

When a nodennew joins the graph its request is received
by an existing node of the network. The request might be

forwarded to other nodes, until it at timet reaches node
n ∈ N which processes it.

1) S
t(n) = EMℓ: If n had a neighborn′ in stateEMℓ−1

the join request would be forwarded ton′. Thus we
are guaranteed that allEM neighbors ofu are at a
level no less thanℓ.
Let lab

t(n) = {b1 . . . bℓ−10 · ∗, b1 . . . bℓ−11 · ∗}.
After the join lab

t+1(n) = {b1 . . . bℓ−10 · ∗} and
lab

t+1(nnew) = {b1 . . . bl−11 ·∗}. Since no new ids
have been introduced by the join, we trivially have
that the set of the successor edges ofn before the
join is equal to the union of the sets of the successor
edges ofn and nnew after the join.
After the join St+1(n) = St+1(nnew) = ATℓ. It re-
mains to be shown that none of the edges introduced
violate the property. We handle each of the cases
for nodesn′ adjacent ton and nnew using SUCC(·)
edges only — i.e{(n′, n), (n′, nnew)} ⊆ SUCC(n′)
or {(n, n′), (nnew, n

′)} ⊆ SUCC(n) ∪ SUCC(nnew).
a) S

t+1(n′) = ATℓ: Since St+1(n) =
St+1(nnew) = St+1(n′) the property is
satisfied.

b) S
t+1(n′) = EMℓ Since the level ofn′ is the

same as the level ofn and nnew the property
is satisfied.

c) S
t+1(n′) = EMℓ+1 The level ofn′ is only one

greater than the level ofn and nnew and n′ is
in the stateEM; thus the property is satisfied.

d) S
t+1(n′) = ATℓ−1 The noden′ receives a noti-

fication from eithern or nnew and, according to
rule (R1), transitions to stateSt+2′(n′) = EMℓ

thus confining the edge to a single level.
2) S

t(n) = ATℓ: If ∃n′ ∈ NBRS(n) s.t. S(n′) = EMℓ

then the join request is forwarded ton′. Thus we
need only consider the case when all neighbors ofn

are eitherATℓ or EMℓ+1.
If lab(n) = {b1 . . . bl · ∗} after the join we have
lab

t+1(n) = {b1 . . . bl0·∗} and(·∗nnew) = {b1 . . . bl1·
∗}. The neighbors ofn according to theSUCC(·)
relation at timet are nodes with labels in

L = {
b2 . . . bl0·∗, b2 . . . bl1·∗,
0b1 . . . bl−1 ·∗, 1b1 . . . bl−1 ·∗

}

As in the previous case, after the join, the neighbors
of n andnnew according to theSUCC(·) relation after
join are those with labels belonging to the setL

above. Thus, we need only consider nodes that were
in the original neighborhood ofn.
St+1(nnew) = St+1(n) = ATℓ+1. All the nodes
n′ ∈ NBRS()t + 1n ∪ NBRS()t + 1(nnew) must have
S(n′) ∈ {ATℓ, EMℓ+1}. For nodes in stateEMl+1 the
edges ton andnnew no longer cross a level boundary.
Nodes in staten′ such thatSt(n′) = ATℓ receive
a notification that by rule (R1) causes a transition
to St+1(EMl+1) which then causes the edge to be
contained within a level.

In both cases we need to also consider sibling
edges. After the join procedure we haveSIB()t + 1n =
SIB()t + 1nnew and level(n) = level(nnew); so the newly
introduced sibling edges do not violate the hypothesis.
A node n′ ∈ NBRS()t + 1n | n = SIB()t + 1n′ (recall
that theSIB(·) relation is not always symmetric) receives
a state change notification just as any other node in
NBRS()t + 1n and will make the necessary state transition
using rule (R1). Finally, it is worth noting that the state
change notifications are confined to a radius of 2 from the
location of the join. This can be seen by noting that a
notification from anEMℓ node causes no state change in
the recipient of the message.
Case 2: A node nd departs the network

When a nodend leaves the network, the departure
protocol discovers at timet a noden that will take the
place of nd in the network. The state ofn at time t,
St(n) is alwaysATℓ, and n has a siblingn′ that is also
in stateATℓ. On completion of the departure procedure,
the state ofn′ is St+1(n′) = EMℓ. We consider the newly
introduced successor and sibling edges separately. Since
n takes the place ofnd, it adjacencies at the end of the
departure protocol are the same as those ofnd prior to the
departure. Hence all adjacencies ofn after the departure
protocol is complete are legal.

After the departure is complete,n′ takes on all adjacen-
cies ofn that were present prior to the departure ofnd. The
set of non-sibling adjacencies ofn′ after the departure are
the non-sibling edges inNBRS()t(n) ∪ NBRS()t(n′). Since
the level ofn′ did not change no new edge violates the
property.

For sibling edges, the new sibling ofn′, n′′ =
SIB()t + 1(n′) is precisely the node computed by
SIB(()uv), and its level is is checked to ensure that it
is no greater thanℓ. level(n′′) can in fact be no less than
ℓ − 1, since otherwiselabn′′ would contain a label that

with a prefix of lengthℓ − 1 that was also a prefix of a
label in lab(n′).

Corollary 7.2 (Degree Bound):The degree of a node
is, in the worst case, 8.

Proof: Clearly, nodesn in stateEMℓ are the only
nodes with degree greater than4. We proceed by induction
on the number of nodes.

If the noden makes the state transitionEXTℓ−1 →
EMℓ, then there must have been a join of the nodennew at
n′ ∈ NBRS(n). After the join n is at worst adjacent to
both n′ andnnew, thus at most increasing its degree to 5.

If, however, n is already in the stateEMℓ and a join
occurs atn′ ∈ NBRS(n). The noden′ must be in state
S(n′) = EMℓ or EMℓ−1. n′ cannot be in stateATℓ since
otherwise the join would have been forwarded ton, nor
cann′ be in stateEMℓ+1 since once again the join would
have been forwarded ton.

By the hypothesis, the degree ofn is at most 8, implying
lab(n) = {b0 . . . bℓ−10·∗, b0 . . . bℓ−11·∗}. Thus,

NBRS(n) = {

b1 . . . bℓ−100·∗, b1 . . . bℓ−101·∗,
b1 . . . bℓ−110·∗, b1 . . . bℓ−111·∗,
0b1 . . . bℓ−10·∗, 0b1 . . . bℓ−11·∗,
1b1 . . . bℓ−10·∗, 1b1 . . . bℓ−11·∗

}

But sincen′ ∈ NBRS(()n) andS(n′) = EMℓ thenid(n′)
is a prefix cover of at least 2 elements ofNBRS(()n). Thus
the degree ofn can be no more than7. After the join n

can at worst become adjacent to bothn′ andnnew, further
increasing its degree only by 1, to 8.

In other words, in the worst case, a node emulates no
more than two nodes.

Lemma 7.3 (Level Inequality):Let ℓmin andℓmax de-
note the lowest and highest level of a node in the graph.
ℓmin − 1 ≤ logN ≤ ℓmax, where N is the number
of nodes. Proof: We first note that theℓmin ≤
logN . This can be observed as follows: Letλ denote the
maximum length of a identifier. Since the set of nodes in
the HALO graph form a universal prefix set we require
that the entire space of identifiers2λ be covered by the
identifiers of all the nodes in the graph. A node at levelℓ

covers2λ−l elements of the identifier space. Therefore, a
conservative upper bound3 on the proportion of the space
covered by a single node is2λ−ℓmin+1. Thus we require
N ·2λ−ℓmin+1 = 2λ to satisfy the universal prefix property.
Or, ℓmin ≤ logN + 1.

To boundℓmax, we note that2λ−ℓmax is a lower bound
on the number of identifiers covered by a node. Since there
is no redundancy in the universal prefix set, we require
N · 2λ−ℓmax ≤ 2λ. Thus logN ≤ ℓmax. This argument
also shows thatℓmax = logN implies ℓmax = lmin.

3Nodes in stateEMℓ cover q2 · 2λ−l identifiers

Lemma 7.4 (Tree Edges):The out-degree of all but two
internal nodes in the shortest path tree4 is at least 2.
Proof: Let the root of the shortest path tree benr and
r1 . . . rℓ1·∗ ∈ lab(nr). Consider a noden with b1 . . . bℓ2·∗ ∈
lab(n). First of all, there can be no path fromr to n of
length less than|ℓ1 − ℓ2|. This follows directly from the
No Steep Edge lemma. Without loss of generality, assume
the successors ofn are n1 and n2 with labels that cover
b2 . . . bℓ20 ·∗ and b2 . . . bℓ21 ·∗, respectively. The noden1

need not be at the same level asn2 but by the No Steep
Edges lemma, and since bothn1 and n2 are adjacent to
n, the levels ofn1 and n2 may differ by at most 2. We
will demonstrate that either both edges{(n, n1), (n, n2)}
are tree edges, or neither edge is a tree edge.

We defineoverlap(s1, s2) be the length of the longest
prefix of of the strings1 that is also a suffix of the string
s2. For instance, ifs1 = 111000 and s2 = 000111, then
overlap(s1, s2) = 3. Let lr, l, l1, l2 denote the labels ofr,
n, n1 and n2 respectively. Sincel1 and l2 are identical
up to bit positionℓ2, and the level ofn1 is at most two
greater than the length ofn2, i = overlap(l1, l) and j =
overlap(l2, l) differ by at most 3. The edge(n, n1) is a
tree edge iffb1 = bℓ1−i

5. Similarly for (n, n2).
Without loss of generality let’s assume thati ≥ j. If

we want only one edge in the set{(n, n1), (n, n2)} to be
a tree edge, we require the following:

(T1) rl1−i 6= rlq−j . This is necessary since we wantb1 to
match only one of these values, and hence contribute
only a single edge to the tree.

(T2) overlap(l2, lr) = ℓ2 − 1. Sincen1 andn2 share the
first ℓ2 − 1 bits, for condition (T1) to be satisfied at
leastℓ2 − 1 bits must be in the overlap for bothl1
and l2 with lr.

(T3) rℓ1−j . . . rℓ1 to be a prefix ofrℓ1−i . . . rℓ1 . This is
required since thel1 andl2 differ only in bit position
ℓ2, therefore the matched suffixes oflr must also be
prefixes of each other. This condition also implies
that the lasti bits of lr are identical.

For these conditions to be true simultaneously, the suffix
of lr that is i + 1 bits long must either be100 . . . or
011 For any value ofi, there is exactly one possible
pair of nodesn1 and n2 that satisfy the remainder of
the properties. In particular, for somei, pick i ≥ j ≥
i − 2; then l2 = 0j1 and l1 is any one element from
L = {0j0, 0j00, 0j01, 0j000, 0j001, 0j010, 0j011}, where
0j represents a string ofj zeroes). A similar case exists for
l2 = 1j0. This is true by the No Steep Edges lemma which
guarantees that nodes two hops from each other can at most

4We only consider successor edges in the shortest path tree
5This statement follows directly from the de Bruijn routing algorithm.

For instance, if the label of the root nodelr = 000111·∗, and the label
of n, l = 111000·∗, then for(n, n1) to be a tree edge, we must have
l1 = 011100

be two levels apart; and by the universal prefix property
which disallowsl2 to be a prefix ofl1. Furthermore, if there
exists more than one node with labels fromL adjacent to
n then by the above argument it is guaranteed that both
those edges will be tree edges. Thus, in the entire graph,
there exists only a single pair of nodes that have out-degree
of 1 in the shortest path tree. All other internal nodes have
out-degree 2.

Lemma 7.5 (Tree Depth):Let r be a node at the deep-
est levelℓmax, with r1 . . . rℓmax

·∗ ∈ lab(r). The maximum
depth of the shortest path tree rooted atr is O(logN),
where N is the number of nodes. Proof: First, if
ℓmax = logN , by Lemma 7.3 we trivially have that there
is only one level, and the HALO graph is a pure De Bruijn
graph. The diameter of a De Bruijn graph islogN and the
depth of the shortest path tree is bounded by the diameter.
We consider below the case whereℓmax > logN .

Consider a noden with b1 . . . bℓ · ∗ ∈ lab(n) with
successorsn1 andn2 with labelsb2 . . . bℓ0·∗ andb2 . . . bℓ1·∗,
respectively. By the Lemma 7.4 we have that either(n, n1)
and (n, n2) are both tree edges, or neither. We refine the
conditions under which(n, n1) and(n, n2) are tree edges.

Once again, let lr, l, l1, l2 denote the labels of
r, n, n1, n2 respectively. If thei = overlap(l, lr) ≥ 2
then l2 = r1 . . . b1b2 . . . ui · ∗. Thus overlap(l1, lr) and
overlap(l2, lr) are both preciselyi−1 6 Both edges(n, n1)
and(n, n2) are tree edges sincel has a greater overlap with
lr, and b1 matchesrℓmax−i, the necessary bit position in
lr. We also have that the distance fromr to u is ℓmax − i.
SincelogN < ℓmax, we have all nodes within(logN −1)
distance from the rootr are internal nodes in the tree.

Since the degree of internal nodes in the tree is 2, and
with logN − 1 levels of the tree as internal nodes, the
shallowest leaf may only be at distancelogN . Since we
have at leastN2 internal nodes, this bounds the depth of
the deepest leaf to be less thanlogN + 3.

Lemma 7.6 (Level Bound):The number of levels in the
HALO graph isO(logN) in the worst case, whereN is
number of nodes in the graph. Proof: We have from
the Tree Depth lemma that the depth of the shortest path
tree rooted at the deepest node isO(logN). From the No
Steep Edges lemma, even if we assume conservatively that
every tree edge crosses a level boundary,ℓmax − ℓmin =
O(logN).

Theorem 7.7 (Diameter Bound):The diameter of the
HALO graph withN nodes isO(logN). Proof: We
trivially have that the diameter of the network is at most
ℓmax. This can be observed by recalling the procedure
used for routing in the De Bruijn network – it is always

6There are exactly two nodes in the graph for which this is not true.
Whenr endswith the sequence101010 or 01010, andu, v beginwith
the same sequence. By an argument identical to that in theTree Edge
lemma these cases are rendered irrelevant.

possible to reachn1 from n2 by following edges that shift
in lab(n1) one bit at a time. Since we never have to shift
more thatℓmax bits the diameter of the graph is less than
ℓmax.

By the Level Inequality lemma we haveℓmin − 1 ≤
logN ≤ ℓmax, and by the Level Bound we haveℓmax −
ℓmin = O(logN). Thus the maximum diameterlmax =
O(logN).

VIII. Related Work

Since their conceptualization in mid-40’s [1], de Bruijn
graphs have attracted significant attention in graph the-
ory and related areas such as communication networks
([8],[9]). Especially their elegant routing schema has been
widely studied ([6], [2], [7], [9]). With the introduction
of Peer-to-Peer computing in the last decade and the on
going research on Distributed Hash Tables (DHTs), interest
in network architectures and their characteristics has been
rekindled. To the best of our knowledge, two de Bruijn-
based schemas for building DHTs have been proposed,
Koorde ([4]) and D2B ([3]).

Koorde is an adaptation of the Chord protocol ([10]) for
use with de Bruijn graphs. The de Bruijn edges are only
used for routing, and for the remaining operations (namely
node joins and departures) the Chord algorithms are used.
Furthermore, only a probabilistic bound for logarithmic
data lookup (O(logN)) is provided.D2B, on the other
hand, attempts to organize its nodes such that they form
a de Bruijn network. As a result, D2B can guarantee only
with high probability that the out degree isO(1). D2B,
as well as our protocol, modifies the node identifiers by
redirecting joins appropriately, while Koorde doesn’t. In
general, we believe that our approach is closer to D2B than
Koorde. Nevertheless, our schema provides deterministic
guarantees ofO(1) edges per node andO(logN) diameter.

References

[1] N. De Bruijn. A combinatorial problem. InProc. Koninklijke
Nederlandse Akademie van Wetenschapper, volume 49, pages 758–
764, 1946.

[2] Abdol-Hossein Esfahanian and S. Louis Hakimi. Fault-tolerant
routing in debruijn communication networks. InIEEE Transactions
on Computers 34, volume 9, pages 777–788, 1985.

[3] P. Fraigniaud and P. Gauron. The content-addressable network d2b.
Technical Report 1349, CNRS Universie de Paris Sud, January
2003.

[4] M. Frans Kaashoek and David R. Karger. Koorde: A simple
degree-optimal distributed hash table. InProceedings of the 2nd
International Workshop on Peer-to-Peer Systems (IPTPS ’03), 2003.

[5] Dmitri Loguinov, Anuj Kumar, Vivek Rai, and Sai Ganesh. Graph-
theoretic analysis of structured peer-to-peer systems: routing dis-
tances and fault resilience. InProceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for com-
puter communications, pages 395–406. ACM Press, 2003.

[6] S. Perennes. Broadcasting and gossiping on de bruijn shuffle
exchange and similar networks. Technical Report 93-53, INRIA,
Sophia-Antipolis, October 1993.

[7] M. R. Samatham and D. K. Pradhan. The de bruijn multiprocessor
network: A versatile parallel processing and sorting network for
vlsi. IEEE Trans. Comput., 38(4):567–581, 1989.

[8] M. L. Schlumberger. De bruijn communications networks.PhD
thesis, Stanford University, 1974.

[9] Kumar N. Sivarajan and Rajiv Ramaswami. Lightwave networks
based on de bruijn graphs.IEEE/ACM Trans. Netw., 2(1):70–79,
1994.

[10] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. InProceedings of the 2001 conference
on applications, technologies, architectures, and protocols for com-
puter communications, pages 149–160. ACM Press, 2001.

