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Abstract

Desktop grids use opportunistic sharing to exploit large
collections of personal computers and workstations across
the Internet and can achieve tremendous computing power
with low cost. However, current systems are typically based
on a traditional client-server architecture, which has inher-
ent shortcomings with respect to robustness, reliability and
scalability. In this paper, we propose a decentralized, ro-
bust, highly available, and scalable infrastructure to match
incoming jobs to available resources. The key idea behind
our proposed system is to leverage information provided by
an underlying peer-to-peer system to create a hierarchical
Rendezvous Node Tree, which performs the matching effi-
ciently. Our experimental results obtained via simulation
show that we can effectively match jobs with varying lev-
els of resource constraints to available nodes and maintain
good load balance in a fully decentralized heterogeneous
computational environment.

1 Introduction

This paper describes new techniques that employ Peer-
to-Peer (P2P) services for robust desktop grid computing.
Existing platforms for desktop grid computing typically
employ a client-server architecture, where a trusted server
supplies jobs to a set of client machines distributed across
the Internet. Commercial examples of these systems in-
clude Entropia [6] and United Devices [22], while non-
profit examples are SETI@Home [2], Folding@Home [8]
and the BOINC [1] system. In all of these systems, the
owner of the server controls which jobs are to be run, the
clients request and run jobs when they are able, and the
server collects the results. Robustness and reliability come
from the server maintaining state about all outstanding jobs
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being run at potentially unreliable clients, so that jobs as-
signed to clients can be re-run if a client does not return a re-
sult in a time period determined by the computational com-
plexity of the job. The server must therefore reliably main-
tain state, or the status of outstanding jobs can be lost. The
server typically stores the state in a (relational) database,
which provides some level of reliability. However, no new
jobs can be assigned to a client whenever the server be-
comes unavailable either due to server failure or network
partition.

Our goal is to design and build a massively scalable in-
frastructure for executing grid applications on a widely dis-
tributed set of resources. Such infrastructure must be decen-
tralized, robust, highly available and scalable, while effec-
tively mapping application instances to available resources
throughout the system. By employing P2P services, our
techniques allow users to submit jobs to be run in the sys-
tem, and to run jobs submitted by other users on any re-
sources available in the system that meet the minimum job
requirements (e.g., memory amount, disk space, etc.). The
overall system, from the point of view of a user, can be re-
garded as a combination of a centralized, Condor-like Grid
system for submitting and running arbitrary jobs [15], and a
system such as SETI@Home [2] or BOINC [1] for farming
out jobs from a server to be run on a potentially very large
collection of machines in a completely distributed environ-
ment. Such a confluence of P2P and distributed comput-
ing is a natural step in the progression of Grid computing,
and has indeed been described as inevitable [9, 10, 14].
However, while there has been some research on resource
discovery and scheduling for cycle sharing using P2P ser-
vices [3, 4, 5, 12, 20, 25], no comprehensive set of algo-
rithms and protocols has yet been designed and built, nor
a system deployed for matching jobs with different types
of resource constraints to a set of widely distributed and
heterogeneous resources. Also, as such a system scales to
large configurations, matching jobs with different levels of
resource requirements to the set of available heterogeneous
computational resources becomes a challenging problem.



In this paper, we describe a set of distributed and decen-
tralized algorithms focusing on submitting jobs and match-
ing them to available resources, and also discuss P2P tech-
niques for both balancing load and for resilience. Our ap-
proach uses a novel structure called the Rendezvous Node
Tree, which allows resource utilization to be efficiently ag-
gregated and disseminated. The Rendezvous Node Tree is
built by leveraging routing information from the underlying
P2P system.

We quantify the overall behavior of the job scheduling
and management algorithms through simulation on a heav-
ily modified version of the Chord [21] simulator. Our modi-
fications deal primarily with scheduling and managing jobs,
as systems based on Distributed Hash Tables (DHTS) gen-
erally only provide primitives for object insertion and loca-
tion. The mechanisms implementing the basic Chord func-
tionality, such as routing requests, inserting objects, and
generating events, are largely unchanged.

The rest of the paper is structured as follows. Section 2
is a short introduction to basic peer-to-peer services. Sec-
tion 3 discusses basic framework services related to man-
aging job placement and monitoring in the decentralized
system, while Section 4 provides a comprehensive descrip-
tion of the algorithms and optimization criteria for matching
jobs to resources. Section 5 describes our evaluation metrics
for the system, and provides simulation results on different
types of workloads (sets of jobs). We conclude and discuss
future work in Section 6.

2 Related Work: Peer-to-Peer Services

Peer-to-peer research has shown that a robust, reli-
able system for storing and retrieving files can be built
upon unreliable machines and networks. Systems such as
Kazaa [13] have been scaled to very large numbers of ma-
chines, and support large numbers of simultaneous user re-
quests for files. The algorithms for object location and rout-
ing in P2P networks such as CAN [17], Chord [21], Pas-
try [19], Tapestry [24] and Coral [11] are also capable of
scaling to very large number of peers and simultaneous re-
quests for service. These kinds of algorithms are also called
Distributed Hash Tables (DHTSs). Building upon these ba-
sic services to provide a system for making computational
resources available on demand can allow users to both pro-
vide resources when they are not being otherwise used, and
to obtain resources when they are needed.

A key distinguishing feature of P2P protocols is self-
organization. When new peers join, or existing peers leave
or fail, the underlying protocols restructure the current state
of peers such that overall services are restored without man-
ual interruption. For example, if the service is data storage
and lookup, then as peers join or leave the system the un-
derlying protocols replicate and migrate data so that a user

is largely unaffected by changes in peer membership. A re-
lated property is scalability: per peer overhead (in terms of
stored state and bandwidth overhead) is often constant or
bounded by a logarithmic factor of the number of peers in
the system. Such bounds allow these systems to grow to
very large number of peers.

Even though our techniques are not specific to any par-
ticular DHT algorithms, for the performance characteris-
tics desired we require that peers be assigned IDs chosen
uniformly at random from the Globally Unique ID (GUID)
space (which is universally the case for the DHTS). For the
purposes of this paper, however, we assume that the under-
lying DHT in use is Chord because of its relative simplicity.

We provide a very brief overview of the Chord system
here. The service provided by Chord, and indeed any DHT,
is that of distributed lookup. DHTSs allow objects to be
stored and later retrieved whenever they are needed, using
their GUIDs. The location at which an object actually re-
sides within the system is determined by the object’s GUID,
and the GUIDs of the physical nodes (peers) participating
in the system. Specifically, Chord’s structure may be vi-
sualized as a ring with points labeled from 0 to 260 -1,
Peers and objects are all assigned GUIDs through an SHA-
1 hash [7] of a user-defined name (for objects) or IP address
(for nodes). An object is stored at the node on the Chord
ring that follows the object’s GUID in a clockwise traver-
sal of the ring. The randomization provided by the SHA-1
hash provides a measure of load balance, both in storage
and in routing. The structure of the routing tables main-
tained by each node enables any other node in the system
to be reached in O(log n) hops. Decentralized maintenance
algorithms allow the Chord structure to remain connected
and stable despite node failures, peers entering and leaving
the system, and large fluctuations in lookup load.

3 Basic Framework for Managing Jobs

In this section, we briefly describe our mechanisms for
submitting jobs, and managing and monitoring jobs while
they are running, including methods for failure detection
and recovery.

A job in our system is basically the data and associated
profile that describes a computation to be performed. A job
profile contains several characteristics about the job, such as
the client that submitted it, its minimum resource require-
ments, the location of input data, etc. All jobs in our system
are independent as described in [16], which means that no
communications are needed between jobs. This is a typical
scenario in a desktop grid environment, enabling many in-
dependent users to submit their jobs to a collection of nodes
in the system.

We assume that if a client wants to submit jobs to the
system, it can access one of the existing nodes in the sys-



tem, called its Job Injection Node, using an externally de-
fined mechanism [21]. The Job Injection Node generates
a GUID for the submitted job, using the underlying DHT
mechanism, and initiates the insertion of the job into the
P2P network. Responsibility for the job will be assigned
to the node whose GUID is closest in a clockwise direc-
tion around the Chord ring to the job’s GUID, via the rout-
ing mechanism. The node that hosts a job is termed the
job’s Owner Node and is responsible for monitoring the ex-
ecution of the job, whether the job is executed locally or
at some other node. The Owner Node is also responsible
for ensuring that the job results are returned to the client.
Since the Owner Node of a job is determined based on the
randomly generated GUIDs, some initial amount of of load
balancing is automatically achieved by spreading ownership
of the jobs somewhat evenly across the nodes in the system.
After successful insertion of a job to an Owner Node, the
Owner Node informs the client that the job is ready to run.

When a new job is assigned to an Owner Node, the
Owner Node attempts to find an appropriate node for run-
ning the job (called Run Node) through the matchmaking
mechanism. Matchmaking is the process of matching jobs
with physical resources, and consists of finding an appro-
priate node for running a job based on the constraints in the
job profile and the current (distributed) state of the nodes in
the system. The job profile can include several constraints
for running the job, such as required CPU speed, amount of
memory, supported operating system type, etc. Therefore,
in the matchmaking process the first criterion in finding a
match is whether the job constraints can be met. After find-
ing one or more nodes that satisfy the job constraints, the
matchmaking algorithm can consider balancing load across
the nodes. More details about the matchmaking process will
be described in Section 4.

Once an appropriate Run Node is found, the new job is
inserted into the job queue of the Run Node. Each Run
Node processes jobs in its job queue in FIFO order and only
processes one job at a time. Until a job is completed and
its results are returned, the Run Node periodically sends a
heartbeat message to the Owner Node, which can relay the
message to the client that initiated the job. This heartbeat
message informs the Owner Node about the status of the
running job and also indicates that the Run Node is still
alive. The Run Node must generate heartbeat messages for
every job in its job queue, including jobs that are not yet
running. This soft-state heartbeat message plays an impor-
tant role in failure recovery during the processing of jobs in
our system. By employing the Owner Node and Run Node
pair, our system can provide a robust environment for pro-
cessing jobs. Also, the job profile is replicated both on the
Owner Node and the Run Node to enable reconstruction of
a job in case of failures. If one of the Owner or Run Nodes
fails, the other node will detect the failure and recover to

make progress in the job execution (we omit the details of
the recovery mechanisms). To communicate via the heart-
beat message, for efficiency we employ a direct connection
between the Run Node and the Owner Node, for example
by a socket connection, rather than using the P2P routing
mechanism. After completing the job, the Run Node sends
the results to the Owner Node of the job. The Owner Node
stores the job results and either sends the client the result or
sends a pointer to the result (another GUID). The lower part
of Figure 1 depicts the overall job lifecycle.
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Figure 1. The life cycle of a job in the P2P sys-
tem (lower), and the corresponding structure
of the Rendezvous Node Tree (upper).

4 Matchmaking through the Rendezvous
Node Tree

In this section, we present the details of our matchmak-
ing algorithm, given a set of job profiles and a set of node
specifications in the P2P system. We employ an overlay net-
work placed on top of the underlying DHT structure, called
a Rendezvous Node Tree (RN-Tree).

4.1 Building the Rendezvous Node Tree

The RN-Tree is an implicit tree built on top of the P2P
network, and consists of all currently participating nodes.
Each node can determine its RN-Tree parent node based
on only local information, which enables building the tree
in a completely decentralized manner. The parent-child re-
lationship in the RN-Tree is defined in Equation 1, where
PredID(N) is the GUID of the predecessor of node N on the
Chord ring, and Successor(K) is the node on the ring that is
routed to for GUID K.
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Equation 1 says that we define the parent node of a node
N in the tree by mapping to node Parent(N) through routing
in the P2P network. The Chord system provides both the
GUID of the predecessor node in the Chord ring, and the
means to find the successor node for any GUID (the default
behavior when routing to any GUID in the ring is to route to
the node with either that GUID or to the node closest to the
GUID in the clockwise direction around the ring). Figure 1
shows a simple example of building an RN-Tree with the
set of node GUIDs shown (GUIDs are shown in hexadec-
imal). This mechanism attempts to build an RN-Tree that
is reasonably well balanced and also ensures that Parent(N)
has a smaller GUID than does N. Since the GUIDs of nodes
in the system are generated uniformly at random, the over-
all height of the RN-Tree built based on Equation 1 is likely
to be O(log N) where N is the total number of nodes in the
entire system. However, even though the GUIDs are gen-
erated with uniform distribution through the GUID space,
unless the GUIDs for the set of nodes in the system are a
perfect arithmetical progression, there can be nodes in the
RN-Tree that have more than two children nodes. Thus, the
overall RN-Tree may be a bushy tree. We simulated creat-
ing an RN-Tree up to 100,000 nodes, using the standard C
library functions sr and48 and | r and48 to generate 48-
bit GUIDs, and the maximum node degree in the RN-Tree
was around 25. Also, the height of the RN-Tree is always
close to log, N (see the Figure 2). However, we plan to
more formally characterize the structure of the RN-Tree in
future work.

Parent(N) = Successor(

Since there can be new nodes joining the system and
node departures (leave or fail), the correct parent pointer
of a node can change over time. Therefore each node must
refresh/update its RN-Tree parent node pointer periodically
to maintain the RN-Tree appropriately. This mechanism is
similar to the stabilization mechanism of Chord (and other
DHTs) that is used to maintain routing information in the
P2P network, and is performed at the same time. The root
node of the RN-Tree is easy to determine in a Chord ring.
If the interval [Predecessor ID + 1, Node 1D] includes 0,
then the node is the root of the RN-Tree. It is also possible
that at some points in time a child node cannot determine its
correct parent, because of stale information in the DHT (i.e.
the node predecessor and successor information has not yet
been updated). However, since the underlying Chord sys-
tem periodically stabilizes the network, the RN-Tree will
be updated too.

4.2 Disseminating Aggregated Resource
Information

Once a node finds its RN-Tree parent node, it periodi-
cally sends local subtree resource information (for the sub-
tree rooted by that node) to its parent node, and this infor-
mation is aggregated at each level of the RN-Tree. There-
fore, at each level of RN-Tree the aggregated resource infor-
mation provides an overall picture of the state of the entire
subtree. The root of the RN-Tree obtains aggregated re-
source information about all nodes in the system. To main-
tain scalability, local subtree information is aggregated at
each node in the tree, so the amount of resource information
maintained at each node (and communicated from child to
parent node) remains constant. This notion of hierarchical



aggregation is a fundamental abstraction for scalability in
a large system and is also used in distributed information
management systems [18, 23].

When a parent node receives information from its chil-
dren nodes, it updates its local child node information and
merges all its children information into its aggregated sub-
tree resource information. As in the case of the heartbeat
messaging mechanism for monitoring jobs, we employ di-
rect communication between the RN-Tree child and par-
ent nodes for performance reasons, falling back on the P2P
routing mechanisms if the direct communication fails.

The most important aggregated resource information that
is used in our matchmaking process is the Aggregated
Maximum Available Resources, representing the maxi-
mum amount of each resource available in some node in the
subtree. The resources modeled include continuous vari-
ables, such as the speed of the CPU, the amount of mem-
ory available, and the amount of disk space available, and
discrete variables such as operating system type and ver-
sion. The resources modeled match the constraints (require-
ments) that can be specified in job profiles.

Additional information can easily be added to the ag-
gregated resource information stored and propagated in the
RN-Tree. By using the aggregated resource information,
each node can determine whether a node with a desired set
of resources may exist in its subtree, which is exactly what
is needed for the matchmaking algorithms.

4.3 RN-Tree Matchmaking

Based on the disseminated aggregated resource informa-
tion in the entire RN-Tree, matchmaking for a given job
starts from its Owner Node. Each job profile specifies re-
source constraints that must all be satisfied for a node to run
the job. A job profile can specify a wild card for a don’t care
condition for a resource. For example, suppose job profiles
can specify three different resource requirements for a job:
the speed of the CPU, the required amount of memory and
the required disk space. Then, each job can specify its con-
straints for the resources with a tuple [MinCPU, MinMem-
ory, MinDisk]. If a job specifies 0 for any resource, it means
that the job does not have a specific minimum requirement
for that resource in its execution environment.

Algorithm 1 shows the basic matchmaking steps in a
node. Each node actively participates in the matchmak-
ing process for jobs, and either processes matchmaking re-
quests locally or forwards them to other nodes. During the
search, if a node determines that it can satisfy the job pro-
file constraints, then the matchmaking is done, and the node
becomes the Run Node for the job (Step 1). Otherwise,
for a given job profile a node can effectively prune the re-
quest (i.e. terminate its search) if the resource constraints
cannot be satisfied in its entire subtree, based on the aggre-

Algorithm 1
Matchmaking in a Noden for a given Jab |

1. Check Self: IF n.spec meets j.constraints RETURN n
as the Run Node.

2: Search Children and Forward: IF Step 1 fails,
FIND a child node ¢ of n where c.aggr-spec meets
j.constraints and ¢ has not been visited yet. FORWARD
jtoc.

3. Forward tothe Parent: IF Step 2 fails for all children
of n, FORWARD j to Parent Node p of n. INFORM p
that n (and n’s subtree) has already been visited.

gated resource information it has available locally. In this
case, the node forwards the matchmaking request to its par-
ent node (Step 3). If the node is the root of the RN-tree,
so has no parent, then the search fails and the client that
submitted the job is notified that no node is available that
meets all the constraints. If the request may be satisfied in
the subtree based on the node’s aggregated resource infor-
mation, then the node searches its children nodes to deter-
mine which subtree may contain a node that is able to meet
the constraints of the job (and has not been visited yet) and
forwards the request to a child node, searching all children
nodes if necessary (Step 2). If no child node can satisfy the
job profile, the request is forwarded to the parent node (Step
3).

Searching for a node that meets all the constraints of a
job can fail, even though the aggregated resource informa-
tion says that there may be a node in a subtree that meets
the constraints. In this case, the matchmaking process back-
tracks, and continues to try to find another possible candi-
date Run Node in other children nodes in the RN-tree.

We note that there are other factors that can affect the
matchmaking process. If the network is very unstable (with
many new node joins or node departures), the RN-Tree also
becomes unstable and this results in having outdated aggre-
gated resource information or invalid parent node pointers.
In such situations, some nodes may not even be able to find
their correct RN-Tree parent nodes, so that matchmaking
requests cannot be forwarded to higher level nodes in the
RN-Tree. However, as soon as the underlying DHT mecha-
nisms stabilize the overall P2P network, the RN-Tree’s peri-
odic mechanism for updating aggregated resource informa-
tion will enable the matchmaking process to make progress.

4.4 Extending the RN-Tree Search

One useful property of the RN-Tree matchmaking al-
gorithm is that if there is at least one node that meets the
constraints of a new job, then the matchmaking algorithm
always finds the node. If the search reaches the root of
the RN-Tree and does not find a node that meets the job



constraints, that means that at that time there is no node in
the entire system that can run the job. The basic RN-Tree
matchmaking mechanism ends the matchmaking process as
soon as it finds a Run Node that meets the constraints of
a job. However, this may lead to poor load balance across
nodes for running jobs, since there can be hot spots in the
RN-Tree where many jobs are mapped into a comparatively
small number of Owner Nodes. Therefore, we extend the
basic matchmaking process to find more than one candidate
Run Node and select the final Run Node from among the
candidates. One criterion for deciding the best Run Node
among the candidates is the size of the job queue (the cur-
rent set of unfinished jobs assigned to a node) at the time of
the matchmaking. Queue size can either be modeled as the
number of jobs in the queue (which was used in our exper-
iments), or an estimate of the run time for all current jobs
in the queue. This criterion is similar to the Minimum Com-
pletion Time (MCT) heuristic in the literature [16] which
assigns each job to the machine that results in the earliest
completion time of the job.

The extended search algorithm should result in bet-
ter load balancing across nodes, and this will be shown
experimentally in Section 5. The extended search algo-
rithm is different from other matchmaking algorithms de-
scribed in the literature, which often employ a Time-To-
Live (TTL) constraint that limits the number of trials (of-
ten network hops) to find a resource that meets the con-
straints of a job [3, 4, 12]. TTL-based matchmaking mech-
anisms may often fail to find appropriate nodes for run-
ning jobs (that meet the job constraints), even though candi-
dates exist somewhere in the network. The extended search
mechanism does create additional overhead so increases the
matchmaking cost, and this effect is also measured experi-
mentally in Section 5.

5 Evaluation

In this section we describe several metrics for evalu-
ating the overall performance of our matchmaking frame-
work for various synthetically generated traffic workloads,
and present simulation results. Since we are simulating
the behavior of the P2P system, we estimate the perfor-
mance in terms of the time units employed by the sim-
ulator (Chord) and the number of message hops required
to perform a matchmaking operation. We tested three dif-
ferent matchmaking algorithms, Basic RN-Tree Matchmak-
ing (RNT-BS), Extended RN-Tree Matchmaking (RNT-ES)
and Centralized Matchmaking (Central) for our compara-
tive analysis. More details about the configuration of the
matchmaking algorithms will be given in Section 5.2.

5.1 Evaluation Metrics and Traffic Work-
loads

To measure matchmaking performance, we use two dif-
ferent metrics: Job Wait Time (JWT) and Matchmaking Cost
(MC). JWT measures the time period from the submission
of the job until the job gets run on the Run Node, and
is a useful metric for evaluating client response time (but
doesn’t include the time to run the job). MC is the number
of messages sent between nodes that is required to find a
Run Node for a job, and measures the overhead of perform-
ing the matchmaking process using the RN-Tree.

To generate the traffic workloads, we used the Traffic-
Generator from the Chord simulator, with substantial mod-
ifications to produce heterogeneous job profiles and node
profiles. A traffic workload consists of three parts: the
job profiles, the node profiles and an event arrival pattern.
The job profiles specify different levels of resource require-
ments and amount of computation the job requires (in time
units), and the node profiles specify the resource capabili-
ties of each node. The event arrival pattern, produced by
the Chord TrafficGenerator, determines when nodes join the
system, leave the system, or fail, and also determines when
each job is submitted by a client. By varying the event ar-
rival pattern, we can generate widely varying system dy-
namics and workloads, ranging from highly dynamic, heav-
ily loaded systems to relatively stable systems with lighter
overall workloads.

In our experiments, we employed constraints for three
different resource types (CPU speed, memory space, and
disk space), both for submitted jobs and for node profiles.
To generate the node profiles, we used a clustering model
to emulate resources available in a heterogeneous environ-
ment, where a high percentage of nodes have relatively
small values for their available resources and a small frac-
tion of nodes have larger amounts of available resources.
A job profile can specify up to three different resource
constraints, denoted by the tuple [MinCPU, MinMemory,
MinDisk], specifying the minimum required CPU speed,
amount of memory and disk space required by the job.
These resource constraints should all be satisfied for a node
to run the job. However, some jobs may not want to specify
constraints on all resources, so there is some heterogeneity
in the number of constraints in the job profiles. To model
these kinds of job profiles, we introduce a Constraint Het-
erogeneity Factor (CHF), which enables us to generate var-
ious types of job profiles that have different numbers of re-
source constraints. With a smaller CHF, the proportion of
jobs that have fewer constraints (or none at all) increases,
while a higher CHF implies that the fraction of jobs with
many constraints is greater. Except for the don’t care con-
straints (which are set to a 0 value for that resource as de-
scribed in Section 4.3), each constraint is set from the cor-



responding resource capability of a randomly selected node
from the Present Nodes (see the Table 1) in the system.
Therefore, during the simulation, there should always be
at least one node in the system that meets the constraints of
a job. After generating constraints for the job profiles, the
TrafficGenerator also generates the amount of computation
required to complete each job, which is also related to the
job constraints. The amount of work W for a job j is gen-
erated uniformly at random from a predefined set of work
ranges, and means that to run the job j a node must execute
for W time units if it has exactly the same node specification
as does the job j’s constraints. To model the actual running
time of a job, we divide W by the node CPU speed (relative
to some baseline node CPU speed), to get a run time on the
node a job is assigned to.

A traffic workload consists of the node profiles and job
profiles, and models a P2P desktop grid environment with
a heterogeneous set of nodes and jobs with different classes
of resource requirements and running times. After generat-
ing a traffic workload, we characterize the workload using
two metrics, Composition of Job Profiles (CJP) and Diffi-
culty of Job Profiles (DJP). CJP shows the percentage of
jobs that have different numbers of constraints, from 0 to
3. For example, the percentage of jobs with only one con-
straint (CPU, memory, or disk) is shown in the “% of Jobs
with 1 Constraint” line in Table 1. The DJP metric shows
how many nodes in the system are able to meet the con-
straints of the jobs at the time matchmaking is performed for
those jobs (averaged over all jobs with that number of con-
straints). We collected these statistics through our Central-
ized Matchmaker algorithm, which has a global view of the
entire network at the time matchmaking is performed (more
details about the Centralized Matchmaker are described in
Section 5.2). For example, the average percentage of nodes
that could possibly match the jobs with two constraints at
the time they were submitted for matchmaking is shown in
the “Difficulty of Jobs with 2 Constraints” line in Table 1.

5.2 Matchmaking Algorithms

One difficulty in evaluating the experimental results for
matchmaking is what to use as a good base algorithm for
doing the matchmaking, to compare against the RN-Tree
matchmaking algorithms. For our comparison, we have de-
signed an online scheduling mechanism, called the Cen-
tralized Matchmaker (Central) that has global information
about the current capabilities and load information for all
the nodes in the system, so can assign a job to the node that
both satisfies the job constraints and has the minimum job
queue size across all nodes in the entire system (breaking
ties arbitrarily). We model the job queue size as the num-
ber of jobs in the queue, as described in Section 4.4. The
Centralized Matchmaker is an online algorithm because it

makes a decision to assign a job based on the state of the en-
tire system at the time the job is submitted, rather than com-
puting an offline optimized assignment from complete a pri-
ori information about the arrival patterns of jobs and node
joins and departures. Even though the matchmaking per-
formed by the Centralized Matchmaker is not always opti-
mal (since it is an online algorithm), it should provide good
load balancing. In our simulation environment, the Cen-
tralized Matchmaker does not incur any cost for performing
the matchmaking, since we only model the messaging be-
havior in the P2P network for traversing the RN-tree. We
have also tested a naive matchmaking algorithm that does
not use any resource information to assign jobs to nodes,
called the Random Matchmaker. The Random Matchmaker
generates a random GUID and uses that as the Run Node for
a job, as is done for finding the Owner Node of a job. Note
that this does not take into account satisfying the job con-
straints. However, in experiments not shown, we verified
that even with jobs that have no constraints, the Random
Matchmaker shows much worse load balance and Job Wait
Time compared to the basic RN-Tree algorithm.

We employed two versions of the RN-Tree matchmak-
ing algorithms. The first version, RNT-BS, implements the
basic algorithm and the second version, RNT-ES, employs
the extended search algorithm with the number of candi-
date Run Nodes set to 2 (as described in Section 4.4). This
means that RNT-ES attempts to find two candidate Run
Nodes, and selects the one that currently has a shorter job
queue.

5.3 Comparative Analysis

Table 1 shows the characteristics of our test traffic work-
loads. We tested six different traffic workloads, three of
them for relatively stable network environments (S-TR-
H40, S-TR-H60, S-TR-H80), and three for more dynamic
environments (D-TR-I, D-TR-1I, D-TR-1I1). Our test traf-
fic workloads are generated via the following steps. First,
1000 nodes join the system with an average inter-arrival
time of 100 time units. After a stabilization period to al-
low the Chord network to settle, the next 10000 events
(for static workloads) or 15000 events (for dynamic work-
loads) arrive with an average inter-arrival time of 100 time
units. Events can be new node joins, existing node depar-
tures (leave or fail) or job submissions into the system. For
the static workloads, all 10000 events are job submissions,
since those workloads model relatively stable network en-
vironments. However, for the three dynamic workloads the
15000 events are composed of all three types of events, gen-
erated with different probability distributions for the event
types for each workload. All of these generated events are
based on the Poisson Distribution with an arrival rate of (1
[ average inter-arrival time). Since the traffic workloads are



STR-H40 | STR-H60 | STR-H80 | D-TR-| | D-TR-Il | D-TR-1lI
Present Nodes 1000 1000 1000 1825 1335 2500
Failed Nodes 0 0 0 454 591 264
Left Nodes 0 0 0 291 594 470
Jobs 10000 10000 10000 12685 12295 12032
CHF 40 60 80 50 50 50
Average Event Inter-Arrival Time 100 100 100 100 100 100
% Of Jobs with 0 Constraints 20.5% 5.7% 0.6% 11.5% 12.0% 12.3%
% Of Jobs with 1 Constraint 42.8% 27.8% 8.7% 36.7% 36.9% 37.2%
% Of Jobs with 2 Constraints 29.6% 43.7% 37.9% 38.5% 37.6% 37.5%
% Of Jobs with 3 Constraints 7.1% 22.8% 52.7% 13.3% 13.5% 13.1%
Difficulty Of Jobs with 0 Constraint 100.0% 100.0% 100.0% 100.0% | 100.0% | 100.0%
Difficulty Of Jobs with 1 Constraint 49.4% 48.9% 48.7% 50.0% 50.3% 50.1%
Difficulty Of Jobs with 2 Constraints 25.0% 25.2% 25.2% 25.8% 25.4% 25.5%
Difficulty Of Jobs with 3 Constraints 12.7% 12.7% 12.7% 13.2% 12.9% 12.9%
Node Departure % 0.0% 0.0% 0.0% 29.0% | 47.0% 22.7%

Table 1. Test Traffic Workloads: Present Nodes indicate nodes that are active (still alive) at the end
of the simulation. Left Nodes are those that leave the system during the simulation, from a planned
departure. Failed Nodes are those that become unreachable without any notice due to node failure

or network partition.

generated based on random variables and random functions
to build the combination of events, each of the dynamic traf-
fic workload has different numbers of nodes and jobs over
time. The Average Event Inter-Arrival Time (=100) was
chosen such that during the simulation incoming jobs keep
every node in the system busy, to model a relatively heavily
loaded environment. In experiments not shown, in lightly
loaded environments the RN-Tree basic algorithm (RNT-
BS) performs essentially as well as the Centralized Match-
maker with respect to load balance, since free nodes (with
job queue size 0) are almost always available.

To measure the effects of job constraint heterogeneity,
we increased the CHF from 40 to 80 for the static work-
loads. As CHF increases, the proportion of jobs that have
a small number of constraints decreases, and the proportion
of jobs with multiple constraints increases (as seen in the
Composition of Job Profiles from Table 1). Also, for jobs
with many constraints, matchmaking becomes more diffi-
cult because the fraction of nodes that are able to satisfy
the constraints is smaller. For example, for static workload
S-TR-H40, the average percentage of nodes that can match
jobs with three constraints is only 12.7% of all available
nodes. For the dynamic workloads, each one has differ-
ent characteristics with respect to the available nodes over
time in the simulated system. In Table 1, Node Departure
% shows how many nodes depart (leave or fail) the system
during the simulation. For example, for the D-TR-I1 work-
load, 47% of nodes depart the system during the simulation,
which results in the most dynamic environment among all
workloads.

The results in Figure 3 show that employing the ex-
tended search algorithm for RN-Tree matchmaking (RNT-
ES) has significant performance benefits compared to the
basic search algorithm, which helps minimize client re-
sponse time. For the static workloads, RNT-ES has on aver-
age 28% of the Job Wait Time of RNT-BS. For the dynamic
workloads, RNT-ES does even better, showing on average
only 17% of the Job Wait Time of RNT-BS. It is somewhat
surprising that we see larger performance improvements for
the more dynamic workloads. Since the RNT-BS algorithm
selects the Run Node as the first one found to meet the
job constraints, it does not immediately utilize nodes that
have recently joined the system as Run Nodes. Also, since
for our scenarios the dynamic workloads usually have more
nodes available in the system than do the static workloads,
RNT-ES more effectively utilizes available resources than
RNT-BS. RNT-ES significantly decreases both the Average
Job Wait Time and the variance in those times compared
to RNT-BS, and even makes a good start toward approach-
ing the load balance characteristics of the Centralized algo-
rithm.

As we increase CHF for the static workloads, we see an
increase in Job Wait Time for all three matchmaking algo-
rithms (as seen in Figure 3(a)), since in the higher CHF
traffic workloads the majority of jobs have multiple con-
straints so that only a small fraction of the nodes in the en-
tire system can run these jobs. Because of the difficulty
of matching some jobs, the standard deviations for the Job
Wait Time are consistently high across all the matchmak-
ing algorithms (as seen in Figures 3(c) and 3(d)). Also,



as the overall P2P network becomes very dynamic and un-
stable, the RN-Tree also becomes unstable resulting in a
substantial overhead for performing RN-tree matchmaking.
Indeed, as seen from Figures 3(b) and 3(d), the RN-Tree
matchmaking algorithms show the worst performance for
the D-TR-11 workload (among dynamic workloads), which
has the highest node departure percentage.

Matchmaking Cost (MC) measures the overhead of the
RN-Tree matchmaking algorithms. Figures 4(a) and 4(b)
show that the RNT-ES algorithm does not cause substan-
tial additional overhead compared to RNT-BS, in counting
the number of messages required to find an appropriate Run
Node from two candidates. We used 75th Percentile of
MC across all matches in the graphs, instead of the median
value, since for the median the matchmaking cost is some-
times very small because large numbers of jobs have few
constraints in some workloads. Across all the workloads,
RNT-ES can find an appropriate Run Node that matches the
job constraints for the 75% of all jobs that had the lowest
matchmaking cost, by searching on average only 0.4% of all
the available nodes in the system as seen from Figure 4(a)
and 4(b) (in the worst case, RNT-ES searches on average
31.7% of all the available nodes in the system). In addition,
RNT-ES finds only one additional candidate Run Node,
which does not cause much additional cost over RNT-ES.
However, if we want to find more than two candidate nodes
for a Run Node to further improve load balance, the match-
making cost will increase accordingly. We will look at the
tradeoff between matchmaking cost and load balance more
closely in future work. As seen from Figures 4(a) and 4(c),
higher CHF can also affect the overall matchmaking cost
since the RNT algorithms must find a Run Node that meets
all job constraints among a relatively small fraction of the
available nodes. The dynamics of the system can also affect
matchmaking performance, since frequent node joins and
departures can make the RN-Tree unstable and delay the
matchmaking until the RN-Tree (and entire P2P network)
is stabilized periodically. Indeed, the high standard devia-
tions for matchmaking cost in Figure 4(c) and Figure 4(d)
indicate that some jobs suffer in finding an appropriate Run
Node due to their difficult-to-meet constraints or from an
unstable network at the time of the matchmaking.

We also compared the overall number of messages to
perform matchmaking and maintain the RN-Tree (called
RNT Messages) against the number of messages required to
maintain the underlying P2P network for Chord and man-
age the submission and execution of jobs (called Basic
Messages). The RNT Messages include the required mes-
sages for performing matchmaking using the RN-Tree (i.e.,
traversing the RN-Tree), periodically refreshing parent in-
formation in the RN-Tree, and periodically disseminating
aggregated resource information. Basic Messages are those
for maintaining the underlying P2P network (e.g., the Chord

periodic stabilization mechanism), submitting jobs and gen-
erating heartbeat messages during job executions. Since the
Centralized matchmaker does not have any matchmaking
cost and does not require RNT Messages, it requires only
the Basic Messages for its algorithm to maintain the P2P
network. As seen from Figures 5(a) and 5(b), the num-
ber of additional messages required by the RN-Tree algo-
rithms is small compared to the number of messages re-
quired by the underlying P2P system and basic job manage-
ment. This is because of the characteristics of the RN-Tree,
with height bounded by O(log N), and the effectiveness of
the search pruning mechanism using aggregated resource
information. One point to note is that the average number
of Basic Messages required for the RNT-BS scheme is usu-
ally larger than for either RNT-ES or Central. Since the
RNT-BS algorithm has relatively poor load balancing for
the static and dynamic workloads compared to the RNT-ES
and Central algorithms, jobs are likely to remain longer in
the job queues on the nodes. This causes more heartbeat
messages to be generated, since those are generated for all
jobs in the job queue, which accounts for the increase in
the number of Basic Messages for the RNT-BS algorithm.
For the dynamic traffic workloads, since there are many new
node joins and departures the RN-Tree matchmaking mech-
anisms sometimes require retrying the search for appropri-
ate Run Node(s), mainly from instability in the structure of
the RN-Tree, resulting in an increase in the number of RNT
Messages (Figure 5(b)) compared to the static workloads
(Figure 5(a)). However the number of RNT Messages still
remains quite small compared to the number of Basic Mes-
sages even in dynamic, relatively unstable environments.

We can view the Centralized Matchmaker algorithm as
the extreme case of the RN-Tree extended search algorithm,
since it first finds all candidate Run Nodes that meet the job
constraints and picks the one with the shortest job queue.
Even though the Centralized Matchmaker does not have any
matchmaking cost in our simulations, since the simulator
can maintain global information about all the nodes in the
system, such a scheme would not be feasible in a complete
system implementation, since it would incur a large over-
head to find all nodes in the P2P system that meet the job
constraints.

6 Conclusions and Future Work

Desktop grid systems have been shown to be a low cost
way to supply computing power to large scale problems, by
enabling opportunistic sharing of distributed computational
resources, often across the Internet. To robustly and effi-
ciently execute applications on a widely distributed set of
resources, it is desirable for a desktop grid system to be de-
centralized, robust and highly available. In this paper, we
proposed new methods to support these requirements, by



employing P2P services, to enable users to both submit jobs
to be run in the P2P system and to run jobs submitted by
other users. However, as such a system scales to large con-
figurations, matching jobs with different levels of resource
requirements to the set of available heterogeneous compu-
tational resources becomes a challenging problem. We de-
scribed how to build an implicit Rendezvous Node Tree on
top of an underlying P2P network to effectively match jobs
to the nodes with varying capabilities. We also described
basic matchmaking algorithms that use the RN-tree, and
extended those algorithms to improve load balance across
the nodes in the system. Our experimental results, using
a modified version of the Chord simulator, show that we
can always find a node that meets the constraints of a job
if there is at least one node that meets the constraints in the
system, and with low overhead for the matchmaking. Also,
by employing the extended search matchmaking algorithm,
we can achieve better load balance in the fully decentral-
ized system than with the basic algorithm. We also com-
pared our results against a centralized online algorithm, and
the results show that the behavior of the extended search
algorithm can approach the behavior of the centralized al-
gorithm, with relatively low additional cost for the match-
making.

In the near future, we will further investigate the behav-
ior of the extended search matchmaking algorithm, to look
at the tradeoff between improved load balance and higher
matchmaking cost. Other issues that we will address in fu-
ture work include security aspects such as authentication to
restrict access to a set of users, and result verification in
an untrusted computational environment. Finally, since all
of our experimental results have come from simulation, we
plan to build and deploy to our application area collabora-
tors a prototype system based on these and additional sim-
ulation results, to look at issues that will arise in deploying
a peer-to-peer desktop grid system in a heterogeneous envi-
ronment running real applications.
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A Generating Traffic Workloads

To generate the node profiles, we used the notions of
Spec Basis and Base Resource. The Spec Basis ranges from
1 to N (total number of Spec Basis), so that all nodes in the
system are clustered into N groups. The larger Spec Basis
group consists of nodes that have rare and larger resource
capabilities and the smaller Spec Basis group is composed
of nodes that have smaller available resource capabilities.
To simplify the generation of node profiles, each node that
belongs to a group with Spec Basis B has a resource with
size is around B * BASE_ RESOURCE (modeling some jit-
ter in the size of the resource). The BASE_ RESOURCE is
the minimum size of that resource in the system, such as
CPU speed, amount of memory or disk space. Note that
the Spec Basis is defined in terms of each resource indepen-
dently. For example, a node can have a CPU that belongs to
Spec Basis group 1 for its CPU, a memory that belongs to
Spec Basis 4 for memory, and a disk that belongs to Spec
Basis 2 for disk. In this case, the node has BASE CPU
speed of CPU, 4*BASE_MEMORY of main memory and
2*BASE_DISK of disk space. The probability function for
the Spec Basis grouping is defined by the following formu-
las:

T:%*C—}—%*C—F...—i— *C (2)
*C
T

o= 2|~

Prob (Spec Basis B group) (3)

In the above formulas, C is a constant. Therefore, by
using this probability function, the distribution of each re-
source specification is according to function f(x) = 1/ x.

The Constraint Heterogeneity Factor in job constraints
(CHF) enables us to generate various kinds of job profiles
that have different degrees of resource constraints. The
CHF can range from 0 to MAX_CHF. CHF of 0 implies ho-
mogeneous job profiles, where all of the jobs do not have
any resource constraints. In contrast, MAX CHF means

fully heterogeneous job profiles where all of the jobs spec-
ify three resource constraints, i.e., every job has minimum
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speed of CPU, amount of memory and disk space require-
ments. The CHF can be processed as an input parameter in
our TrafficGenerator to generate different kinds of job pro-
files. Given a CHF, a job profile is generated through the
following steps.

1. Pick up a random node N.

2. For each resource R constraint, generate a determinant
D uniformly at random in the range [0, MAX_CHF].

3. If D < CHF, then Constraint(R) = R of node N. Other-
wise, 0.

If Constraint(R) is set as 0, the job does not have any
constraint on resource R, i.e. a don’t care condition. For ex-
ample, suppose the generated constraints of a job profile are
[100, 500, 0] which corresponds to a [MinCPU, MinMem-
ory, MinDisk] tuple. Then, this job requires 100 speed of
CPU and 500 memory unit, but does not have a minimum
disk space requirement. With higher CHF, each constraint
of a job can be a non-zero value (which comes from the ac-
tual node’s resource specification) with higher probability,
resulting in having more resource constraints to run the job.
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