
Task Scheduling with Altered Grey Wolf 

Optimization (AGWO) in Mobile Cloud Computing 

using Cloudlet 

J. Arockia Mary, and A. Aloysius

Abstract- Mobile devices can improve their battery life by 

offloading their tasks to a nearby cloudlet instead of executing 

tasks on the mobile device. Because mobile devices have low-speed 

processors, small-size memory, and limited battery. As the mobile 

devices are moving, they are connected and disconnected from the 

cloudlets. So, their tasks are offloaded to the new cloudlets and also 

migrated from one cloudlet to another until the tasks finish their 

execution. Scheduling these tasks in the cloudlet will reduce the 

tasks' execution time and the mobile device's power consumption 

using this proposed new method (AGWO). The GWO algorithm is 

modified to accept the inputs from a two-dimensional array 

instead of sequence inputs and search for the prey within the two-

dimensional array instead of an unknown circle area. This method 

deals with the arrival time of the task, task size, and big task.   The 

migration of the partially executed task dynamically to other VMs 

is also examined. This proposed method also reduces the average 

scheduling delay and increases the percentage of requests executed 

by the cloudlet than other variations of GWO and other research 

algorithms.

 Index term- Task scheduling, Grey wolf Optimization 

algorithm, Two-dimensional array input, Mobile cloud 

computing, Execution time, Energy. 

I. INTRODUCTION

Older mobile devices are lacking in battery power, processor 

speed, and memory size, but with the improvement in these 

resources, intelligent devices are upgraded to execute almost all 

types of tasks, including big tasks with big data. Some of the 

big tasks are weather monitoring, e-quake applications [1], 

Online shopping applications, live road applications, 

monitoring health condition applications, and user demand 

prediction applications. These applications run on mobile 

devices and consume more time for processing causing a 

reduction of the mobile device's battery energy quickly. By 

offloading and scheduling these applications in the cloud [2] 

and cloudlet [3], the mobile device can save energy and give the 

best experience to the user.  
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These applications are offloaded from mobile devices either 

to a distant cloud that requires many network hops and a lot of 

network resources. Instead of a distant cloud, a cloudlet near the 

access point requires one network hop is also used and reduces 

the requirement for more network resources. Many real-time 

mobile applications are offloaded from many mobile devices to 

the cloudlet. The cloudlet is a mini data center consisting of 

several virtual machines varying in memory size and processor 

speed. These virtual machines execute the offloaded tasks in the 

cloudlet. The numbers of offloaded tasks are more than the 

number of virtual machines resulting in many tasks waiting in 

a queue for processing, increasing the execution time of tasks. 

Without scheduling tasks, the tasks’ waiting time increases. 

Major scheduling algorithms like FCFS (First Come First 

Serve), SJF (Shortest Job First), Round-Robin, and new 

scheduling schemes incorporate optimization algorithms like 

enhanced bee colony; genetic algorithms have been used to 

schedule the tasks. They reduce the cost, and power 

consumption of the cloudlet and increase the other quality 

service factors, namely throughput and execution time. 

In this article, the Grey wolf optimization (GWO) algorithm 

is proposed [4] with alterations to accept inputs in a two-

dimensional array instead of a one-dimensional array. GWO is 

a discrete optimization problem, NP-hard, and belongs to 

swarm intelligence techniques. GWO is a meta-heuristic 

algorithm [5] that generates random solutions from infinite 

solution space. GWO is a stochastic optimization algorithm [6] 

that uses three dominant search agents alpha, beta, and delta 

wolves in a pack of twelve wolves. Among the three dominant 

wolves, the alpha wolf is the leader of the group of wolves, a 

search agent to find the location of the prey, and gives a 

command to its subordinate wolves beta, delta, and the lowest 

level wolves called omega wolves. These omega wolves follow 

the orders obtained from three dominant wolves to encircle and 

attack the prey based on the location of the dominant wolves 

from the prey. Mathematically, GWO considers the locations of 

the dominant wolves as the best first three solutions. From these 

best three solutions, a new solution is found by changing the 

coefficient vectors A and C.  In every iteration, the value of A 

is reduced from zero to two to ensure the position of the search 

agents goes near to prey for attacking and getting the global 

solution instead of the local solution. Similarly, the value of 

A>1 indicates, the search agent is moving away from the prey

and search better prey, i.e., the best solution.
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Many researchers proposed variations in grey wolf 

algorithms such as Enhanced Grey Wolf optimization (EGWO), 

Improved Grey wolf optimization (IGWO), and Modified Grey 

Wolf optimization (MGWO). These variations of GWO 

consider only a circle-shaped area for searching and attacking 

the prey in an unknown space. For example, in EGWO [7], the 

decay function values are in the range (0, 1) to give an equal 

number of operations for exploration and exploitations. In 

EGWO the search agent's new location is obtained from the 

alpha wolf's location instead of adding the locations of the 

dominant alpha, beta, and delta wolves as in GWO. The best 

solution is only from the alpha wolf because it knows the 

location of prey very well than the other two dominant wolves 

and finds the best solution. In IGWO [8], weights are added to 

dominant wolves, so the weight of the first dominant alpha wolf 

is more than the other two dominant wolves because the alpha 

wolf knows the location of prey very well than the other two 

dominant wolves and finds the best solution, here weights are 

multiplied with a position of each dominant wolf. In MGWO 

[9], the decay function is modified by adding an exponential 

function to allocate 70% of operations for exploration and 30% 

for exploitation, resulting in an excellent global minimum 

value. 

The proposed Altered Grey wolf optimization method 

(AGWO) accepts the population from a two-dimensional array 

instead of from a linear array. The existing formula in GWO 

finds the best solution from a circle area is altered i n  A G W O  

to find the best solution in a closed space. In this proposed 

method, the exploration operations to find the location of the 

best solution cannot go beyond this enclosed area when 

searching for a global solution. The first three solutions namely 

alpha, beta, and delta are quickly found as the population of 

inputs is stored in a two-dimensional array format. Furthermore, 

the proposed method schedules both offloaded tasks from the 

mobile device and migrated tasks from the previous cloudlet 

in different VMS of the cloudlet. This method considers four 

parameters such as task execution time, the energy consumption 

of the mobile device, the Percentage of requests executed by the 

cloudlet, and the average scheduling delay of the cloudlet. The 

arrival time of the task and the task size is emphasized to 

schedule the big tasks and at the same time, the small tasks are 

also given equal importance. The small tasks that arrive at the 

earliest should not be starved for VM which is ensured by the 

fitness function of this proposed method. In this way, this 

method executes all size tasks, and big tasks are specially 

considered by scheduling them in Large VMs. 

This paper is constructed as follows. Section II explains the 

related work of the various authors, section III illustrates the 

proposed new scheduling algorithm with a multi-objective 

function, its performance evaluation is depicted with charts by 

comparing with various algorithms in section IV and the 

conclusion with future work is described in section V.  

II. RELATED WORKS

Several scheduling techniques have been proposed for 

scheduling the tasks in the cloudlet of MCC. For example, a 

new scheduling method is proposed [10] to save the cloudlet's 

power consumption using switches. These switches are acting 

as weights to send the task from the mobile device to the 

cloudlet. Furthermore, switches select the task using an 

optimized Convolution Neural Network (CNN) with an 

Improved BAT Algorithm. However, this method does not 

discuss the task allocation to individual virtual machines in the 

cloudlet. Enhanced Bee Colony Optimization [EBCO] 

algorithm for task scheduling is used [11] to reduce the energy 

of the mobile device. The task is represented by three 

parameters: task id, the execution time of the task, and the 

amount of data transmitted along with the task with precedence 

information. The assigned task size must be smaller than the 

cloudlet size, which represents the task's fitness value, and if the 

maximum size of the task is greater than the cloudlet size, then 

the task is migrated to the cloud. This algorithm addressed load 

balancing with constraints ready time and precedence 

relationship and does not consider dynamic scheduling of 

mobile tasks and VM scheduling within the cloudlet. 

A Cooperative multi-task Ant Colony Optimization 

scheduling algorithm [12] is used to increase the profit. This 

scheduling problem is an optimization problem to reduce the 

total energy consumed by all the scheduled tasks, average load 

ratio, and Guarantee ratio. This algorithm selects the most 

suitable task based on the profit ratio; the service provider 

determines the cloudlets based on their available resources. 

However, this algorithm only considers profits, so some 

providers are idle without sufficient resources. In addition, 

some mobile devices do not offload tasks to the cloudlet due to 

unavailable resources.     

A new framework is proposed [13] (EEMC) to find the 

energy required to execute a task in the cloud. This new 

framework is known as the Rule Generation-based Energy 

Estimation Model (RG-EEM). This framework first finds the 

execution time taken by one byte of the task to find the total 

execution time of the task. Then, a fixed threshold level is used 

to determine the energy consumption of the mobile device. The 

tasks whose energy consumption is below the threshold level 

are clustered and executed in the cloud using the Shortest Job 

First (SJF) algorithm. Nevertheless, this method often requires 

the latest task information to achieve the optimum value. 

A task assignment method [14] is used to reduce task delay 

while allocating tasks to the small cell Base Stations (sBS), 

which work only indoors. When the user is visiting a mall, the 

map of the mall is sent to the user's mobile device before 

executing the task in sBSs. The centralized server analyzes the 

task; if it is small, it is allocated to the nearest sBS; otherwise, 

the task is split into multiple sub-tasks and executed in 

numerous sBSs. This method reduces task delay. Even though 

the tasks are allocated to the nearest sBS, the allocation decision 

is centralized; therefore, this method consumes time. This 

application is appropriate only for indoors, which always needs 

an internet connection and a map of the place. A task 

assignment algorithm [15] in the cloudlet with an Improved 

Differential Evolution optimization algorithm is used to 

schedule the tasks in the cloudlet. This algorithm modifies all 

the operators of the differential evolution algorithm such as 

subtraction, addition, and multiplication. The population vector 

used here is the k-bit vector in which the first-bit stores the 

information of the cloudlet assigned, the second-bit stores task-

id, and other information is stored in each bit of the population 

vector. This algorithm schedules the tasks using the first-fit 
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strategy derived from the calculated cost function values of the 

tasks. This method reduces the total response time of all users 

and total network resource consumption. However, this 

algorithm does not consider mobile tasks and schedules for each 

VM. 

A Genetic algorithm-based task scheduling method in MCC 

[16] reduces the cost and energy consumption of the mobile 

device with a response time as a deadline. If the latency and 

budget are greater than the deadline, the task is not offloaded; 

otherwise, the task is offloaded while considering its 

dependency and data transmission rate. However, this 

scheduling method does not prefer large tasks with big data. A 

dynamic task scheduling algorithm in mobile cloudlet [17] with 

the deep learning method introduced a new architecture. This 

method uses a controller in its architecture to offload the task 

either to the cloudlet, smartwatch, or mobile device. This 

architecture reduces the computation time of tasks and the 

energy of the mobile device. But, it does not consider tasks from 

the mobile device, the security of the tasks, and the server. A 

multi-objective task scheduling algorithm [18] is used for 

scheduling by combining Conditional Autoregressive Value at 

Risk (CAViaR) with Dragonfly Algorithm (DA). This 

algorithm allocates the tasks to the cloud that satisfy the fitness 

function. This algorithm increases resource utilization, and 

execution time and decreases the makespan, and energy of the 

mobile devices and the cloud server. 

A practical algorithm [19] with improved particle swarm 

optimization (PSO) and simulated annealing (SA) algorithms is 

used to schedule the workflow tasks. It eliminated the local 

optimum in the PSO algorithm by introducing an insertion-

based perturbation operator and swap-based perturbation 

operator in the SA algorithm. As a result, the optimum global 

value is obtained in both PSO and SA by a new method called 

Iterated Local Search (ILS) that reduces the makespan of 

workflow tasks. However, this algorithm does not consider the 

mobility of tasks and the task migration from one cloudlet to 

another. The tasks are assigned using an optimal task 

assignment method [20] with the Ant-Colony Artificial Bee 

Colony optimization algorithm. It minimizes the mobile 

device's average completion time, and power consumption and 

balances the load. This algorithm uses a queue decision 

generator to balance the load in the cloudlets, and the 

communicative time between the users and cloudlets is the 

fitness function. However, this method lacks a dynamic 

scheduling algorithm for mobile tasks. A framework [21] is 

proposed to allocate the task based on the user’s budget 

constraints to increase revenue; the service provider employed 

a one-round approximation algorithm to schedule tasks in the 

cloudlet. However, this framework does not consider the quality 

of services. 
 

A. Motivation and Challenges 

The extensive literature review of different authors discussed 

above has shown some challenges in MCC that are as follows:  

 

1. The scheduling algorithms did not allocate the task to 

each virtual machine within the cloudlet. The discussed 

articles in the literature review consider the task 

allocation in the cloudlet only. 

2. In the scheduling algorithms, the decision to allocate 

the task to multiple cloudlets is taken by one server and 

not by each cloudlet.  

3. The scheduling algorithms did not give importance to 

the big tasks and the mobility of tasks. 

 

This article focuses on the challenges mentioned above with 

a dynamic scheduling technique that gives importance to big 

tasks from mobile devices. It allocates these tasks to VMS 

based on the processing speed of the VMS within a cloudlet. 

The decision to allocate the task to the VM is taken within the 

cloudlet and not by other cloudlets. So, the execution time of 

the task is reduced. This article reduces the execution time of 

the offloaded task from the mobile device and the power 

consumption on that mobile device. 
 

III.  PROPOSED METHOD 

 MCC offloads the tasks to the cloudlet to reduce the 

execution time of the offloaded task and the energy used by the 

mobile device. Initially, the mobile device connects to a nearby 

cloudlet and as the mobile device moves, it is disconnected from 

the existing cloudlet and connected to the next nearby cloudlet. 

As a result, a partially executed offloaded task is migrated to 

the new cloudlet. In the new cloudlet, this migrated task is 

scheduled using this proposed method to enhance the user's 

QoE (Quality of Experience). 

A.  Grey Wolf Optimizer 

The proposed method uses the Altered Grey Wolf 

optimization algorithm [AGWO] to schedule the tasks in the 

VMS of the cloudlet that accept inputs from the two-

dimensional array. In GWO, the dominant alpha, beta, and delta 

wolves find the location of the prey d, which is the best solution 

based on the distance between each of the three wolves and the 

prey using equation 1. Xp is the position of prey. X is the 

position of the grey wolves and t is the iteration. A and C  are 

coefficient vectors as in GWO. The new prey is discovered by 

calculating the distance between the grey wolves, and the 

location of the prey is determined using equation 2. In the next 

iteration 1t + , the position of the alpha, beta, and grey wolves 

are updated using equation 2. The coefficient vector A  decides 

whether grey wolves attack or diverge the prey. The coefficient 

vector C  adds random weights to the prey or the solution. It 

takes weights between 0 and 2 to determine the position of the 

prey reached easily or with difficulty. If 1C  , the prey is easily 

reached there is no obstacle in reaching the prey, which is used 

in equation 1. If 1C  , there are obstacles in reaching the prey.  

𝑑 = 𝐶. 𝑋𝑝 (𝑡) − 𝑋(𝑡)                          (1) 

𝑋(𝑡 + 1) = 𝑋𝑝 (𝑡) − 𝐴. 𝑑                 (2) 

B. Altered Grey Wolf Optimization Algorithm 

This article proposed a new scheduling algorithm with an 

altered Grey wolf optimization algorithm that accepts the tasks 

from the mobile device to be scheduled. The tasks are stored in 

a two-dimensional array format. The GWO is altered to accept 

the tasks in a two-dimensional array and schedule these tasks 
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using the Altered Grey wolf Optimization algorithm (AGWO). 

The scheduling algorithm (AGWO), a meta-heuristic algorithm, 

uses a multi-objective function in equation 3 to minimize the 

task execution time of n tasks and the mobile device’s power 

consumption. 

Minimize 

𝑍 = ∑ 𝑥𝑡 + 𝑝𝑤𝑛
𝑡=1                           (3) 

Equation 1 is used to find the location between dominant 

wolves, and the prey is altered in this method from the original 

equation because the searching region is a two-dimensional 

array and not an open circle like GWO. A task's arrival time is 

represented by a thousand rows numbered from one millisecond 

to one thousand milliseconds. The two-dimensional array 

format is given in table 1 and named as task_2d (1000, 6). The 

column of the two-dimensional array indicates the velocity of 

the mobile device; the first column contains the migrated job 

from the previous cloudlet, the second column indicates the 

tasks with a velocity of 1-2 milliseconds, the third column 

indicates 3-4 milliseconds, the fourth column indicates 5-6 

milliseconds, the fifth column indicates 7-8 milliseconds and 

the sixth column indicates 9-10 milliseconds, respectively. The 

last column stores the task of stationary devices and a velocity 

greater than 10ms. So, the two-dimensional array consists of 

1000 rows and seven columns. The pseudo-code of the 

algorithm is given in Algorithm 1. 
 

TABLE I 
TWO-DIMENSIONAL ARRAY TASK_2D (1000,6) 

 

The speed 

of the 

mobile 

device 

(m/s) 

Arrival time of the task in millisec (ms) 

migrated 

task  

1-2 

ms 

2-4 

ms 

5-6 

ms 

7-8  

ms 

9-10  

ms 

>10 

ms 

Task size in kilobytes (KB) 

1 8 12 13 4 100 120 200 

2 10 14 15 4 400 220 400 

3 800 450  50 400 100 120 200 

  

999 100 4 5  4 6 7 85  

1000 300 45 7  8 12  17  53  

 

This algorithm saves the tasks in the two-dimensional array's 

corresponding column’s velocity and row’s arrival time. First, 

the virtual machines in the cloudlet are divided into seven 

groups based on their CPU size: the first group has a size of 500 

MIPS, the second group has a size of 1000 MIPS, the third 

group has a size of 1500 MIPS, the fourth group has a size of 

2000 MIPS, the fifth group has a size of 2500 MIPS, the sixth 

group has a size of 3000 MIPS, and the seventh group has a size 

greater than 3500 MIPS. Next, find the largest VMS group with 

more virtual machines from the first six VMS groups, excluding 

the last VMS group, and divide this largest group of VMS into 

two groups. Therefore, we have eight VMS groups, including 

the last VMS group, and arrange the groups of VMs in 

ascending order, and in each group, get the number of VMs. 

Then, starting with the first row, find the smallest tasks (less 

than 8192 bytes), choose them in FCFS (First Come, First 

Serve) order, and distribute them according to the following 

technique. The first column of tasks corresponds to the first 

group of VMS, the second column to the second group of VMS, 

the third column to the third group of VMS, the fourth column 

to the fourth group of VMS, and the fifth column to the fifth 

group of VMS, the sixth column to the sixth group of VMS, and 

the seventh column to the seventh group of VMS, except for the 

last group of VMS. The largest tasks satisfying the fitness 

equation 4 are discovered using the arrival time and task size 

from their corresponding row and column. The alpha, beta, and 

delta wolves are the first three minimum fitness values of the 

largest jobs discovered, from which the new best task is chosen 

using the AGWO algorithm. 
 

𝑓 = 𝑚𝑖𝑛 𝑓(𝑥) = ∑ 𝑎𝑡/𝑡𝑠𝑛
𝑗=1                                                 (4)      

C. Encircling the Prey 

The parameters A and C are used to determine whether to 

attack or leave the prey, and A  is used to encircle the prey, 

which is the current iteration's selected task, and the task is 

assigned if 1A   and abandoned by grey wolves if 1A  . 

 
𝑎𝑙𝑝ℎ𝑎_𝑑𝑖𝑠𝑡𝑥 = (𝐶1 + (𝑋𝑎𝑙𝑝ℎ𝑎𝑥 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑋𝑥  ))%𝑟𝑠, 

𝑎𝑙𝑝ℎ𝑎_𝑑𝑖𝑠𝑡𝑦 = (𝐶1 + (𝑋𝑎𝑙𝑝ℎ𝑎𝑦 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑋𝑦 ))%𝑐𝑠, 

𝑏𝑒𝑡𝑎_𝑑𝑖𝑠𝑡𝑥 = (𝐶2 + (𝑋𝑏𝑒𝑡𝑎𝑥 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑋𝑥))%𝑟𝑠, 

𝑏𝑒𝑡𝑎_𝑑𝑖𝑠𝑡𝑦 = (𝐶2 + (𝑋𝑏𝑒𝑡𝑎𝑦 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑋𝑦))%𝑐𝑠,               (5) 

𝑑𝑒𝑙𝑡𝑎_𝑑𝑖𝑠𝑡𝑥 = (𝐶3 + (𝑋𝑑𝑒𝑙𝑡𝑎𝑥 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑋𝑥))%𝑟𝑠, 

𝑑𝑒𝑙𝑡𝑎_𝑑𝑖𝑠𝑡𝑦 = (𝐶3 + (𝑋𝑑𝑒𝑙𝑡𝑎𝑦 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑋𝑦)%𝑐𝑠 

 

The distance between the search agents alpha, beta, delta 

wolves, and the prey is calculated using equation 5. To ensure 

the x and y coordinates of the computed distance should not 

cross the boundary of two-dimensional array locations are 

confirmed in equation 5 by dividing the x-coordinate by row 

size and y-coordinate by column size for all three wolves. 

𝑥1𝑥 = 𝑋𝑎𝑙𝑝ℎ𝑎𝑥 − (𝐴1 ×  𝑎𝑙𝑝ℎ𝑎_𝑑𝑖𝑠𝑡𝑥), 

𝑥1𝑦 = 𝑋𝑎𝑙𝑝ℎ𝑎𝑦 − (𝐴1 ×  𝑎𝑙𝑝ℎ𝑎_𝑑𝑖𝑠𝑡𝑦), 

𝑥2𝑥 = 𝑋𝑏𝑒𝑡𝑎𝑥 − (𝐴2 ×  𝑏𝑒𝑡𝑎_𝑑𝑖𝑠𝑡𝑥), 

𝑥2𝑦 = 𝑋𝑏𝑒𝑡𝑎𝑦 − (𝐴2 ×  𝑏𝑒𝑡𝑎_𝑑𝑖𝑠𝑡𝑦),               (6) 

𝑥3𝑥 = 𝑋𝑑𝑒𝑙𝑡𝑎𝑥 − (𝐴3 ×  𝑑𝑒𝑙𝑡𝑎_𝑑𝑖𝑠𝑡𝑥), 

     𝑥3𝑦 = 𝑋𝑑𝑒𝑙𝑡𝑎𝑦 − (𝐴3 ×  𝑑𝑒𝑙𝑡𝑎𝑑𝑖𝑠𝑡𝑦
).   

 

Equation 6 gives the first three solutions. The first solution 

𝑥1𝑥  and 𝑥1𝑦 represent the 𝑥 and 𝑦 coordinates of the first 

solution. It is obtained by finding the distance between the alpha 

wolf’s position and the distance between the prey and the alpha 

wolf multiplied by vector 𝐴. In the same way, the second 

solution 𝑥2 is obtained by finding the distance between the beta 

wolf position and the distance between prey and the beta wolf 

multiplied by vector 𝐴. The third solution 𝑥3 is also obtained 

by finding the distance between the delta wolf position and the 

distance between prey and the delta wolf multiplied by vector 

𝐴.  It contains the value of vector 𝐴 < 1, decides to attack the 

prey and is used to decide the solution or prey is the best prey 

or solution.  

𝐴 = 2𝑎 × 𝑟1 − 𝑎    (7) 

𝐶 = 2 × 𝑟2     (8)       
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Equation 7 yields a value of 𝐴, with component a decreasing 

from two to zero in each iteration; if the value of 𝐴 > 1, the 

grey wolves move away or diverge from the prey and ensures 

that this prey or solution is not the best one. Random vectors 𝑟1 

and 𝑟2 take values between 0 and 1. Finally, using equation 8, 

vector 𝐶 lends weight to the prey to assure the global optimum 

in every iteration, and the new solution is obtained by taking the 

average of 𝑥1, 𝑥2 and 𝑥3 distances in equation 9. The next 

solution is obtained by finding the average of the first three 

solutions.  Because the first three solutions represent the 

knowledge of dominant wolves such as alpha, beta, and delta 

wolves. This knowledge is the solution obtained from these 

wolves. These three solutions will have the clue for the next 

solution. So, the next solution is obtained from the average 

value of the first 3 solutions. 𝑋𝑛𝑒𝑤𝑥  is the 𝑥 coordinate of the 

new solution is obtained by taking the average value of 𝑥 

coordinates of alpha, beta, and delta solutions. 𝑋𝑛𝑒𝑤𝑦 is the 𝑦 

coordinate of the new solution is obtained by taking the average 

value of the 𝑦 coordinates of alpha, beta, and delta solutions 
 

𝑋𝑛𝑒𝑤𝑥 = (𝑋1𝑥 + 𝑋2𝑥 + 𝑋3𝑥)/3, 

𝑋𝑛𝑒𝑤𝑦 = (𝑋1𝑦 + 𝑋2𝑦 + 𝑋3𝑦)/3                                    (9) 

𝑇𝑜𝑓𝑣𝑛_2 = ∑ 𝑇𝑜𝑓𝑣𝑚_𝑘
𝑛−1
𝑘=1  + ∑ 𝑇𝑜𝑡𝑛−1

𝑘=1 𝑒𝑥𝑘
                 (10) 

𝑇𝑝𝑤𝑣𝑛_2 = ∑ 𝑇𝑛−1
𝑘=1 𝑝𝑣𝑚_𝑘

 + ∑ 𝑇𝑜𝑡𝑛−1
𝑘=1 𝑝𝑣𝑚𝑒𝑥𝑘

               (11)                                                                                               

   
ALGORITHM I 

NOTATION TASK SCHEDULING WITH ALTERED GREY WOLF OPTIMIZATION 

FOR TWO-DIMENSIONAL ARRAY INPUTS 

 

TSAGWO (Input: Task_2d (A, B); 
Input:  Tasks stored in two-dimensional array Task_2d (A, B) with  

             Their arrival time in A and their velocity in B. 
Output:  The best task from Task_2d (A, B) 

1. AGWO population  Task_2d (A, B) where A = 1, 2,…,1000 & B=1,2,.,7 

2. Divide the vms of cloudlet into vms-groups G [7].  
          { 

             G1 vms_size (500 MIPS)  

 G2 vms_size (1000 MIPS) 
  G3 vms_size (1500 MIPS)  

 G4 vms_size (2000 MIPS) 

             G5 vms_size (2500 MIPS) 
 G6 vms_size (3000 MIPS)  

        G7 vms_size   > (3500 MIPS)  

               } 
3.  while (vms-groups<=6)          /* Equal  number of vms */ 

 { 

If (any vms-groups have more vms) then 
             Divide vms-groups into two groups 

   } 

4. Sort(G[7],G[7])                    /* Sort the vms-groups in ascending order */ 
5. While (true)  { 

6. Initialize 𝑎, 𝐴, and 𝐶, Task_2d (A, B) 

7. Declare 𝑋𝛼, 𝑋𝛽, 𝑋𝛿 are the best search agents 

8. Find the task of size <8192 bytes from each row  

9. G[1..6] Allocate the tasks of size<8192 bytes from Task_2d [A,B] in  

FCFS                      
10. CALCUL_OBJFUN(G[1..6]), Z)    /* Call Procedure */ 

11. Let 𝑋𝛼, X𝛽, 𝑋𝛿 be the first, second, and third minimum fitness value  

12.   Let  t1,t2,t3 be the first 3 big tasks of size > 65536 bytes  

13.   𝑋𝛼   Task_2d [A](t1) / Task_2d [B] (t1)   

14. X𝛽  Task_2d [A](t2) / Task_2d [B] (t2)   

15. 𝑋𝛿  Task_2d [A](t3) / Task_2d [B] (t3) 

16. G[7]  𝑋𝛼, 𝑋𝛽, 𝑋𝛿 

17. while (m < maximum iterations) 

18. { 

19.  for each search agent 
20.  { 

21.  UPDATE_DIST(𝑋𝛼, 𝑋𝛽, 𝑋𝛿, (X1x, X1y),( X2x, X2y), (X3x, X3y))     /* 

Call Procedure */     

22. Xnewx = (X1x + X2x + X3x) / 3, Xnewy = (X1y + X2y + X3y) / 3 
23. } 

24. A1,A2,A3  2a.r1.a  
25. C1,C2,C3   2.r2   
26.  if ((Xnewx  Xnewy )< 𝑋𝛼) 

27.  𝑋𝛼  (Xnewx  Xnewy )               /*Allocate new solution*/ 

28.  m=m+1  

29. }   

28.    return 𝑋𝛼     /*new task for allocation */ 

30.  } 

 

PROCEDURE CALCUL_OBJFUN (Input: G [1...6]), Output: Z) 
 

 /* calculate the execution time of the allotted task using equation 10 and the 
power Consumption of the mobile device using equation 11 */ 

 

a.  n  the number of cloudlets traversed 
b. ofvn  Total execution time of task 

c. pwvn  Total power consumption of the mobile device 

d. pvm  Power consumption of the mobile device during connection 
e. Pvmex  Power consumption of the mobile device during execution 

f. For (k=1,K<n, K++)  

g. { 
h. ofvn= offloading time of task in k+  the execution time of task in k 

i. Pow= Pvm in k + Pvmex in k 

j. }. 
 

PROCEDURE UPDATE_DIST (𝑋𝛼, 𝑋𝛽, 𝑋𝛿, (X1x, X1y),( X2x, X2y), (X3x, 

X3y))    

/* update alpha-dist, beta-dist, delta-dist and X1, X2, X3 by equ 5and 6 */ 
a. A  row size of the array Task_2d  (A, B)) 

b. B  column size of the array Task_2d  (A, B)) 

c. αx = alpha-dist of x, αy = alpha-dist of y 
d. βx = beta-dist of x, βy = beta-dist of y 

e. δx = delta-dist of x, δy = delta-dist of y 

f. αx  (x coordinate of 𝑋𝛼 – x coordinate of prey) /A 

g. αy  (y coordinate of 𝑋𝛼 – y coordinate of prey) / B 

h. βx  (x coordinate of 𝑋𝛽 – x coordinate of prey) /A 

i. βy   (y coordinate of 𝑋𝛽 – y coordinate of prey) / B 

j. δx (x coordinate of  𝑋𝛿 – x coordinate of prey) /A  

k. δy  (y coordinate of 𝑋𝛿 – y coordinate of prey) / B 

l. X1x = 𝑋𝛼-A* alpha-dist of x,  X1y= 𝑋𝛼-A* alpha-dist of y 

m. X2x = 𝑋𝛽 -A* beta -dist of x,  X2y= 𝑋𝛽 -A* beta -dist of y 

n. X3x = 𝑋𝛿 -A* delta -dist of x,  X3y= 𝑋𝛿 -A* delta -dist of y  
    

In each iteration, the new task's fitness value is compared 

against the current task, and the task with the lowest fitness 

value wins. The best task is assigned to the cloudlet's last group 

of VMs after the maximum iteration. The execution time and 

power consumption of the allotted tasks are found using 

equations 10 and 11 from our previous research article Mobility 

and Execution Time Aware Task Offloading method 

(METATO) [22]. This way, the tasks within one second are 

assigned to the cloudlet and continue with the next second of 

tasks. The notations and explanations are given in Table II. 

 

IV.  PERFORMANCE EVALUATION 

A computer Powered by Intel Core i7 3770K 3.5GHz Quad-

Core processor with 16GB RAM and 1TB storage is used to 

develop and test the proposed method. In addition, the visual 

C++ programming language is used to code the functional 

modules of the proposed method and sent to the cluster manager 

of the Apache Spark framework with default configurations in 

cluster mode from a Common Gateway Interface (CGI). A 

dedicated User Interface (UI) is designed as a CGI using Visual 

Studio Integrated Development Environment. The UI is 

designed similarly to a Desktop Client for a Cloud Service. The 
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UI is responsible for loading the programs such as AGWO, 

GWO, IGWO, MGWO, EGWO, EEMC, OTAQAA, etc. 

through CGI to the Apache Spark Framework and returning the 

result to the user.  To execute big tasks from mobile devices this 

Apache Spark Framework is a suitable tool and is used as a 

cloudlet. The CGI executes and evaluates the performance of 

all the programs and sends the comparison results of all the 

programs as output in charts. The Apache Spark Framework 

receives the mobile device data such as mobility, task, and size 

from the open data mobile dataset. In the Apache Spark 

framework, the cluster manager is the scheduler and allocates 

the task to the worker nodes according to the program. The 

experimental setup is given in Figure 1.  

The analysis is carried out in two sets of comparisons. In the 

first set, the performance of the proposed AGWO and variants 

techniques GWO, MGWO, IGWO, and EGWO are analyzed. 

In addition, the parameters such as the Average Request 

Execution time of mobile nodes, Average power consumption 

of the mobile node, and Percentage of requests executed are 

analyzed in this article. Another set of comparisons includes 

contributions from other researchers. 
 

 
TABLE II 

LIST OF NOTATIONS 
 

 

 

Fig.1. Experiment Setup using Apache Spark Framework as Cloudlet 

Figure 2a shows that the average request execution time of 

the mobile nodes is found by varying numbers of nodes. When 

the number of nodes exceeds 600, the average request execution 

time is reduced gradually using this proposed method, AGWO. 

This proposed method is suitable for scheduling more tasks 

efficiently and avoids the idle time of VMs in the cloudlet.  

The mobile device’s average power consumption is depicted 

in Figure 2b. When the number of nodes is small, the power 

consumption of the mobile nodes is nearly identical for all 

optimization algorithms, but when the number of nodes grows, 

the suggested method AGWO reduces the mobile node's power 

consumption more than other optimization methods (GWO, 

MGWO, IGWO, and EGWO). When the number of nodes 

exceeds 800, additional tasks are scheduled, and this approach 

allocates tasks larger than 65535 bytes in a VMS with a large 

capacity of 3000 MIPS and RAM greater than 2GB. When 

allocating large-size jobs, the mobile nodes consume little 

power using this proposed method.  

Figure 2c illustrates that a high percentage of requests from 

the mobile device are executed in the proposed method than in 

other optimization algorithms (GWO, MGWO, IGWO, and 

EGWO). Because AGWO searches in known locations, when 

the number of nodes exceeds 900, the proposed methods 

perform better than IGWO. Figure 2d illustrates that for a  

 
 

 

(a) Average request execution time of mobile nodes 
 

Notation Description 

Xt Task execution time 

Pw Mobile device energy consumption. 

T The variable represents the applications 

N Number of applications 

alpha-distx,,alpha-disty Distance between the alpha wolf and prey 

A1, A2, A3, C1, c2, c3 Coefficient vectors 

beta-distx, beta-disty Distance between the beta wolf and prey 

delta-distx, delta-disty Distance between delta wolf and prey 

x-alphax, x-alphay Position of alpha wolf 

current-xx, current-xy Position of the current  wolf in each 

iteration 

X1 + X2 + X3 Position of best three search agents 

Task_2d (A,B) A two-dimensional array with row size A 

and Column size B 

G [7] Vms of a cloudlet are divided into 7 groups 

𝑇𝑜𝑡𝑒𝑥 The total execution time of the VM 

migrated task 

𝑇𝑜𝑓𝑣𝑛−2 The offloading time of the VM migrated 

task 

𝑇𝑝𝑣𝑚−𝑘 Power consumption required by the mobile 

device to connect with a cloudlet-k 

𝑇𝑜𝑡𝑝𝑣𝑚𝑒𝑥𝑘 Power consumption required by the mobile 

device to execute the task in a cloudlet-k 

𝑇𝑝𝑤𝑣𝑛−2 Power required by the mobile device to 

offload and execute the task in all the  

cloudlets 

Rs Row size 

Cs Column size 
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(b) Average power consumption of mobile nodes 
 

 

(c) Percentage of requests executed by the cloudlet 
 

 

 
 

(d) Average scheduling delay by the cloudlet 

 
Fig. 2. Effect of different numbers of mobile nodes (100 to 1000) 

smaller number of nodes, the average scheduling delay time is 

nearly comparable for all optimization strategies. When the 

number of nodes grows, however, the suggested method 

requires less average scheduling delay time than existing 

optimization algorithms and a larger number of jobs are 

efficiently distributed to the appropriate VMS within the 

cloudlet based on their size. 

Figure 3a shows that the average execution time of the 

mobile nodes has decreased, even though the velocity of mobile 

devices has increased by up to 20ms. The migration of tasks 

rises as the speed of the mobile device increases. Because task 

sizes smaller than 8192 bytes are arranged in a first-come, first-

served order to their corresponding appropriate VMS, the 

average request execution time is lowered. 

Figure 3b shows that when the devices' velocity increases, 

the mobile device's average power consumption reduces, and 

the proposed method performs better for high-velocity mobile 

devices. According to the algorithm, the tasks of mobile device 

velocity greater than 10ms are allocated to the last group of 

VMS, which is a group of large-size VMS. So, the tasks finish 

 

 
 

(a) Average request execution time of the mobile nodes 
 
 

 
 

(b) Average power consumption of the mobile node 
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(c) Percentage of requests executed by the cloudlet 

 

 
(d) Average scheduling delay of the cloudlet 

 

Fig. 3.  Effect of different mobility speeds (random speed) 
 

their execution within the allotted cloudlet without VM   

migration resulting in reduced execution time. As a result, 

AGWO processes more requests whether velocity increases or 

decreases. The cloudlet's average scheduling delay is also 

lowered compared to existing optimization algorithms, as in 

figures 3c and 3d. Furthermore, this proposed method allocates 

various-size tasks to appropriate VMS based on their velocity 

as high-velocity tasks are allocated to large-size VMS. 

The performance of the proposed AGWO and existing 

techniques EEMC, METATO, MAORA [23], MAOSA [24], 

and OTAQAA are analyzed in this section. The same 

parameters are also used to show that AGWO performs better 

in the second set of comparisons. Figure. 4a. Shows that 

scheduling more tasks efficiently is possible using this proposed 

method, which eliminates the idle time of VMs in the cloudlet. 

The average power consumption of a mobile device is 

illustrated in figure 4b. 

A high percentage of requests from the mobile device are 

executed in the proposed method than in other existing 

methods, as shown in figure 4c and the average scheduling 

delay time is also reduced as in figure 4d. During higher 

velocities, also AGWO performs best, as depicted in figures 5a, 

5b, and 5c. As in Figure 5a, when the speed increases, the task 

execution time is reduced because big tasks and small tasks are 

treated equally along with their arrival times and less migration 

rate. 

 

 
 

(a) Average request execution time of mobile nodes 

 

 
 

(b) Average power consumption of mobile nodes 
 

Whenever the number of nodes is small, the power 

consumption of the mobile nodes is nearly identical to those of 

all existing methods. Allocating large jobs with this method 

requires relatively little power consumption from the mobile 

nodes. For a smaller number of nodes. Figure 5d shows that the 

average scheduling delay time is less when the speed of the 

device is less. In any case, the suggested method requires less 

average delay time than existing techniques with a growing 

number of nodes. By determining the task size, more tasks can  

be distributed efficiently to the appropriate VMS within the 

cloudlet based on their size. 
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(c) Percentage of requests executed by the cloudlet 
 

 
 

(d) Average scheduling delay by the cloudlet 
 

Fig. 4. Effect of different numbers of mobile nodes (10 to 100) 
 

 

 
 

(a) Average request execution time of mobile nodes 

 
 

(b) Average power consumption of mobile nodes 

 

 
 

(e) Percentage of requests executed by the cloudlet 
 

  
 

(f) Average scheduling delay by the cloudlet 

 
Fig. 5.  Effect of different mobility speeds (random speed) 
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V.  CONCLUSION 

Task scheduling with altered Grey wolf optimization for two-

dimensional array inputs (TSAGWOMCC) is proposed to 

allocate tasks in different sizes, including big tasks, and is an 

NP-hard problem. The experiment results show that the 

proposed method reduces the average power consumption of 

the mobile device, the average scheduling delay of tasks in the 

cloudlet, and the average execution time of the task. The 

percentage of requests executed by the cloudlet is also increased 

through this method. The experiment is conducted by varying 

numbers of nodes and with the different velocities of mobile 

nodes. Large tasks greater than 65536 bytes are specially treated 

by allocating them to VMS of enormous size. So the migration 

rate is reduced, which in turn reduces the power consumption 

of the mobile device and increases the Percentage of requests 

executed by the cloudlet. Parallel execution of the sub-tasks of 

the same task in the heterogeneous cloudlet will be the future 

work. Balancing the loads in different cloudlets and reducing 

the dropout rate of tasks will also be considered in the next 

work. 
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