
Task Scheduling with Altered Grey Wolf

Optimization (AGWO) in Mobile Cloud Computing

using Cloudlet

J. Arockia Mary, and A. Aloysius

Abstract- Mobile devices can improve their battery life by

offloading their tasks to a nearby cloudlet instead of executing

tasks on the mobile device. Because mobile devices have low-speed

processors, small-size memory, and limited battery. As the mobile

devices are moving, they are connected and disconnected from the

cloudlets. So, their tasks are offloaded to the new cloudlets and also

migrated from one cloudlet to another until the tasks finish their

execution. Scheduling these tasks in the cloudlet will reduce the

tasks' execution time and the mobile device's power consumption

using this proposed new method (AGWO). The GWO algorithm is

modified to accept the inputs from a two-dimensional array

instead of sequence inputs and search for the prey within the two-

dimensional array instead of an unknown circle area. This method

deals with the arrival time of the task, task size, and big task. The

migration of the partially executed task dynamically to other VMs

is also examined. This proposed method also reduces the average

scheduling delay and increases the percentage of requests executed

by the cloudlet than other variations of GWO and other research

algorithms.

 Index term- Task scheduling, Grey wolf Optimization

algorithm, Two-dimensional array input, Mobile cloud

computing, Execution time, Energy.

I. INTRODUCTION

Older mobile devices are lacking in battery power, processor

speed, and memory size, but with the improvement in these

resources, intelligent devices are upgraded to execute almost all

types of tasks, including big tasks with big data. Some of the

big tasks are weather monitoring, e-quake applications [1],

Online shopping applications, live road applications,

monitoring health condition applications, and user demand

prediction applications. These applications run on mobile

devices and consume more time for processing causing a

reduction of the mobile device's battery energy quickly. By

offloading and scheduling these applications in the cloud [2]

and cloudlet [3], the mobile device can save energy and give the

best experience to the user.

Manuscript received November 24, 2022; revised December 21, 2022. Date
of publication March 22, 2023. Date of current version March 22, 2023. The

associate editor prof. Claudia Canali has been coordinating the review of this

manuscript and approved it for publication.
J. Arockia Mary is with the Department of Computer Applications, Holy

Cross College (Affiliated to Bharthidasan University), Tiruchirappalli, Tamil

Nadu, India (jarockia79@gmail.com).
A. Aloysiusis is with the Department of Computer Science, St. Joseph’s

College (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu,

India (aloysius1972@gmail.com).
Digital Object Identifier (DOI): 10.24138/jcomss-2022-0151

These applications are offloaded from mobile devices either

to a distant cloud that requires many network hops and a lot of

network resources. Instead of a distant cloud, a cloudlet near the

access point requires one network hop is also used and reduces

the requirement for more network resources. Many real-time

mobile applications are offloaded from many mobile devices to

the cloudlet. The cloudlet is a mini data center consisting of

several virtual machines varying in memory size and processor

speed. These virtual machines execute the offloaded tasks in the

cloudlet. The numbers of offloaded tasks are more than the

number of virtual machines resulting in many tasks waiting in

a queue for processing, increasing the execution time of tasks.

Without scheduling tasks, the tasks’ waiting time increases.

Major scheduling algorithms like FCFS (First Come First

Serve), SJF (Shortest Job First), Round-Robin, and new

scheduling schemes incorporate optimization algorithms like

enhanced bee colony; genetic algorithms have been used to

schedule the tasks. They reduce the cost, and power

consumption of the cloudlet and increase the other quality

service factors, namely throughput and execution time.

In this article, the Grey wolf optimization (GWO) algorithm

is proposed [4] with alterations to accept inputs in a two-

dimensional array instead of a one-dimensional array. GWO is

a discrete optimization problem, NP-hard, and belongs to

swarm intelligence techniques. GWO is a meta-heuristic

algorithm [5] that generates random solutions from infinite

solution space. GWO is a stochastic optimization algorithm [6]

that uses three dominant search agents alpha, beta, and delta

wolves in a pack of twelve wolves. Among the three dominant

wolves, the alpha wolf is the leader of the group of wolves, a

search agent to find the location of the prey, and gives a

command to its subordinate wolves beta, delta, and the lowest

level wolves called omega wolves. These omega wolves follow

the orders obtained from three dominant wolves to encircle and

attack the prey based on the location of the dominant wolves

from the prey. Mathematically, GWO considers the locations of

the dominant wolves as the best first three solutions. From these

best three solutions, a new solution is found by changing the

coefficient vectors A and C. In every iteration, the value of A

is reduced from zero to two to ensure the position of the search

agents goes near to prey for attacking and getting the global

solution instead of the local solution. Similarly, the value of

A>1 indicates, the search agent is moving away from the prey

and search better prey, i.e., the best solution.

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 1, MARCH 2023 81

1845-6421/03/2022-0151 © 2023 CCIS

Original scientific article

Many researchers proposed variations in grey wolf

algorithms such as Enhanced Grey Wolf optimization (EGWO),

Improved Grey wolf optimization (IGWO), and Modified Grey

Wolf optimization (MGWO). These variations of GWO

consider only a circle-shaped area for searching and attacking

the prey in an unknown space. For example, in EGWO [7], the

decay function values are in the range (0, 1) to give an equal

number of operations for exploration and exploitations. In

EGWO the search agent's new location is obtained from the

alpha wolf's location instead of adding the locations of the

dominant alpha, beta, and delta wolves as in GWO. The best

solution is only from the alpha wolf because it knows the

location of prey very well than the other two dominant wolves

and finds the best solution. In IGWO [8], weights are added to

dominant wolves, so the weight of the first dominant alpha wolf

is more than the other two dominant wolves because the alpha

wolf knows the location of prey very well than the other two

dominant wolves and finds the best solution, here weights are

multiplied with a position of each dominant wolf. In MGWO

[9], the decay function is modified by adding an exponential

function to allocate 70% of operations for exploration and 30%

for exploitation, resulting in an excellent global minimum

value.

The proposed Altered Grey wolf optimization method

(AGWO) accepts the population from a two-dimensional array

instead of from a linear array. The existing formula in GWO

finds the best solution from a circle area is altered i n A G W O

to find the best solution in a closed space. In this proposed

method, the exploration operations to find the location of the

best solution cannot go beyond this enclosed area when

searching for a global solution. The first three solutions namely

alpha, beta, and delta are quickly found as the population of

inputs is stored in a two-dimensional array format. Furthermore,

the proposed method schedules both offloaded tasks from the

mobile device and migrated tasks from the previous cloudlet

in different VMS of the cloudlet. This method considers four

parameters such as task execution time, the energy consumption

of the mobile device, the Percentage of requests executed by the

cloudlet, and the average scheduling delay of the cloudlet. The

arrival time of the task and the task size is emphasized to

schedule the big tasks and at the same time, the small tasks are

also given equal importance. The small tasks that arrive at the

earliest should not be starved for VM which is ensured by the

fitness function of this proposed method. In this way, this

method executes all size tasks, and big tasks are specially

considered by scheduling them in Large VMs.

This paper is constructed as follows. Section II explains the

related work of the various authors, section III illustrates the

proposed new scheduling algorithm with a multi-objective

function, its performance evaluation is depicted with charts by

comparing with various algorithms in section IV and the

conclusion with future work is described in section V.

II. RELATED WORKS

Several scheduling techniques have been proposed for

scheduling the tasks in the cloudlet of MCC. For example, a

new scheduling method is proposed [10] to save the cloudlet's

power consumption using switches. These switches are acting

as weights to send the task from the mobile device to the

cloudlet. Furthermore, switches select the task using an

optimized Convolution Neural Network (CNN) with an

Improved BAT Algorithm. However, this method does not

discuss the task allocation to individual virtual machines in the

cloudlet. Enhanced Bee Colony Optimization [EBCO]

algorithm for task scheduling is used [11] to reduce the energy

of the mobile device. The task is represented by three

parameters: task id, the execution time of the task, and the

amount of data transmitted along with the task with precedence

information. The assigned task size must be smaller than the

cloudlet size, which represents the task's fitness value, and if the

maximum size of the task is greater than the cloudlet size, then

the task is migrated to the cloud. This algorithm addressed load

balancing with constraints ready time and precedence

relationship and does not consider dynamic scheduling of

mobile tasks and VM scheduling within the cloudlet.

A Cooperative multi-task Ant Colony Optimization

scheduling algorithm [12] is used to increase the profit. This

scheduling problem is an optimization problem to reduce the

total energy consumed by all the scheduled tasks, average load

ratio, and Guarantee ratio. This algorithm selects the most

suitable task based on the profit ratio; the service provider

determines the cloudlets based on their available resources.

However, this algorithm only considers profits, so some

providers are idle without sufficient resources. In addition,

some mobile devices do not offload tasks to the cloudlet due to

unavailable resources.

A new framework is proposed [13] (EEMC) to find the

energy required to execute a task in the cloud. This new

framework is known as the Rule Generation-based Energy

Estimation Model (RG-EEM). This framework first finds the

execution time taken by one byte of the task to find the total

execution time of the task. Then, a fixed threshold level is used

to determine the energy consumption of the mobile device. The

tasks whose energy consumption is below the threshold level

are clustered and executed in the cloud using the Shortest Job

First (SJF) algorithm. Nevertheless, this method often requires

the latest task information to achieve the optimum value.

A task assignment method [14] is used to reduce task delay

while allocating tasks to the small cell Base Stations (sBS),

which work only indoors. When the user is visiting a mall, the

map of the mall is sent to the user's mobile device before

executing the task in sBSs. The centralized server analyzes the

task; if it is small, it is allocated to the nearest sBS; otherwise,

the task is split into multiple sub-tasks and executed in

numerous sBSs. This method reduces task delay. Even though

the tasks are allocated to the nearest sBS, the allocation decision

is centralized; therefore, this method consumes time. This

application is appropriate only for indoors, which always needs

an internet connection and a map of the place. A task

assignment algorithm [15] in the cloudlet with an Improved

Differential Evolution optimization algorithm is used to

schedule the tasks in the cloudlet. This algorithm modifies all

the operators of the differential evolution algorithm such as

subtraction, addition, and multiplication. The population vector

used here is the k-bit vector in which the first-bit stores the

information of the cloudlet assigned, the second-bit stores task-

id, and other information is stored in each bit of the population

vector. This algorithm schedules the tasks using the first-fit

82 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 1, MARCH 2023

strategy derived from the calculated cost function values of the

tasks. This method reduces the total response time of all users

and total network resource consumption. However, this

algorithm does not consider mobile tasks and schedules for each

VM.

A Genetic algorithm-based task scheduling method in MCC

[16] reduces the cost and energy consumption of the mobile

device with a response time as a deadline. If the latency and

budget are greater than the deadline, the task is not offloaded;

otherwise, the task is offloaded while considering its

dependency and data transmission rate. However, this

scheduling method does not prefer large tasks with big data. A

dynamic task scheduling algorithm in mobile cloudlet [17] with

the deep learning method introduced a new architecture. This

method uses a controller in its architecture to offload the task

either to the cloudlet, smartwatch, or mobile device. This

architecture reduces the computation time of tasks and the

energy of the mobile device. But, it does not consider tasks from

the mobile device, the security of the tasks, and the server. A

multi-objective task scheduling algorithm [18] is used for

scheduling by combining Conditional Autoregressive Value at

Risk (CAViaR) with Dragonfly Algorithm (DA). This

algorithm allocates the tasks to the cloud that satisfy the fitness

function. This algorithm increases resource utilization, and

execution time and decreases the makespan, and energy of the

mobile devices and the cloud server.

A practical algorithm [19] with improved particle swarm

optimization (PSO) and simulated annealing (SA) algorithms is

used to schedule the workflow tasks. It eliminated the local

optimum in the PSO algorithm by introducing an insertion-

based perturbation operator and swap-based perturbation

operator in the SA algorithm. As a result, the optimum global

value is obtained in both PSO and SA by a new method called

Iterated Local Search (ILS) that reduces the makespan of

workflow tasks. However, this algorithm does not consider the

mobility of tasks and the task migration from one cloudlet to

another. The tasks are assigned using an optimal task

assignment method [20] with the Ant-Colony Artificial Bee

Colony optimization algorithm. It minimizes the mobile

device's average completion time, and power consumption and

balances the load. This algorithm uses a queue decision

generator to balance the load in the cloudlets, and the

communicative time between the users and cloudlets is the

fitness function. However, this method lacks a dynamic

scheduling algorithm for mobile tasks. A framework [21] is

proposed to allocate the task based on the user’s budget

constraints to increase revenue; the service provider employed

a one-round approximation algorithm to schedule tasks in the

cloudlet. However, this framework does not consider the quality

of services.

A. Motivation and Challenges

The extensive literature review of different authors discussed

above has shown some challenges in MCC that are as follows:

1. The scheduling algorithms did not allocate the task to

each virtual machine within the cloudlet. The discussed

articles in the literature review consider the task

allocation in the cloudlet only.

2. In the scheduling algorithms, the decision to allocate

the task to multiple cloudlets is taken by one server and

not by each cloudlet.

3. The scheduling algorithms did not give importance to

the big tasks and the mobility of tasks.

This article focuses on the challenges mentioned above with

a dynamic scheduling technique that gives importance to big

tasks from mobile devices. It allocates these tasks to VMS

based on the processing speed of the VMS within a cloudlet.

The decision to allocate the task to the VM is taken within the

cloudlet and not by other cloudlets. So, the execution time of

the task is reduced. This article reduces the execution time of

the offloaded task from the mobile device and the power

consumption on that mobile device.

III. PROPOSED METHOD

 MCC offloads the tasks to the cloudlet to reduce the

execution time of the offloaded task and the energy used by the

mobile device. Initially, the mobile device connects to a nearby

cloudlet and as the mobile device moves, it is disconnected from

the existing cloudlet and connected to the next nearby cloudlet.

As a result, a partially executed offloaded task is migrated to

the new cloudlet. In the new cloudlet, this migrated task is

scheduled using this proposed method to enhance the user's

QoE (Quality of Experience).

A. Grey Wolf Optimizer

The proposed method uses the Altered Grey Wolf

optimization algorithm [AGWO] to schedule the tasks in the

VMS of the cloudlet that accept inputs from the two-

dimensional array. In GWO, the dominant alpha, beta, and delta

wolves find the location of the prey d, which is the best solution

based on the distance between each of the three wolves and the

prey using equation 1. Xp is the position of prey. X is the

position of the grey wolves and t is the iteration. A and C are

coefficient vectors as in GWO. The new prey is discovered by

calculating the distance between the grey wolves, and the

location of the prey is determined using equation 2. In the next

iteration 1t + , the position of the alpha, beta, and grey wolves

are updated using equation 2. The coefficient vector A decides

whether grey wolves attack or diverge the prey. The coefficient

vector C adds random weights to the prey or the solution. It

takes weights between 0 and 2 to determine the position of the

prey reached easily or with difficulty. If 1C , the prey is easily

reached there is no obstacle in reaching the prey, which is used

in equation 1. If 1C , there are obstacles in reaching the prey.

𝑑 = 𝐶. 𝑋𝑝 (𝑡) − 𝑋(𝑡) (1)

𝑋(𝑡 + 1) = 𝑋𝑝 (𝑡) − 𝐴. 𝑑 (2)

B. Altered Grey Wolf Optimization Algorithm

This article proposed a new scheduling algorithm with an

altered Grey wolf optimization algorithm that accepts the tasks

from the mobile device to be scheduled. The tasks are stored in

a two-dimensional array format. The GWO is altered to accept

the tasks in a two-dimensional array and schedule these tasks

J. AROCKIA MARY et al.: TASK SCHEDULING WITH ALTERED GREY WOLF OPTIMIZATION (AGWO) 83

using the Altered Grey wolf Optimization algorithm (AGWO).

The scheduling algorithm (AGWO), a meta-heuristic algorithm,

uses a multi-objective function in equation 3 to minimize the

task execution time of n tasks and the mobile device’s power

consumption.

Minimize

𝑍 = ∑ 𝑥𝑡 + 𝑝𝑤𝑛
𝑡=1 (3)

Equation 1 is used to find the location between dominant

wolves, and the prey is altered in this method from the original

equation because the searching region is a two-dimensional

array and not an open circle like GWO. A task's arrival time is

represented by a thousand rows numbered from one millisecond

to one thousand milliseconds. The two-dimensional array

format is given in table 1 and named as task_2d (1000, 6). The

column of the two-dimensional array indicates the velocity of

the mobile device; the first column contains the migrated job

from the previous cloudlet, the second column indicates the

tasks with a velocity of 1-2 milliseconds, the third column

indicates 3-4 milliseconds, the fourth column indicates 5-6

milliseconds, the fifth column indicates 7-8 milliseconds and

the sixth column indicates 9-10 milliseconds, respectively. The

last column stores the task of stationary devices and a velocity

greater than 10ms. So, the two-dimensional array consists of

1000 rows and seven columns. The pseudo-code of the

algorithm is given in Algorithm 1.

TABLE I
TWO-DIMENSIONAL ARRAY TASK_2D (1000,6)

The speed

of the

mobile

device

(m/s)

Arrival time of the task in millisec (ms)

migrated

task

1-2

ms

2-4

ms

5-6

ms

7-8

ms

9-10

ms

>10

ms

Task size in kilobytes (KB)

1 8 12 13 4 100 120 200

2 10 14 15 4 400 220 400

3 800 450 50 400 100 120 200

999 100 4 5 4 6 7 85

1000 300 45 7 8 12 17 53

This algorithm saves the tasks in the two-dimensional array's

corresponding column’s velocity and row’s arrival time. First,

the virtual machines in the cloudlet are divided into seven

groups based on their CPU size: the first group has a size of 500

MIPS, the second group has a size of 1000 MIPS, the third

group has a size of 1500 MIPS, the fourth group has a size of

2000 MIPS, the fifth group has a size of 2500 MIPS, the sixth

group has a size of 3000 MIPS, and the seventh group has a size

greater than 3500 MIPS. Next, find the largest VMS group with

more virtual machines from the first six VMS groups, excluding

the last VMS group, and divide this largest group of VMS into

two groups. Therefore, we have eight VMS groups, including

the last VMS group, and arrange the groups of VMs in

ascending order, and in each group, get the number of VMs.

Then, starting with the first row, find the smallest tasks (less

than 8192 bytes), choose them in FCFS (First Come, First

Serve) order, and distribute them according to the following

technique. The first column of tasks corresponds to the first

group of VMS, the second column to the second group of VMS,

the third column to the third group of VMS, the fourth column

to the fourth group of VMS, and the fifth column to the fifth

group of VMS, the sixth column to the sixth group of VMS, and

the seventh column to the seventh group of VMS, except for the

last group of VMS. The largest tasks satisfying the fitness

equation 4 are discovered using the arrival time and task size

from their corresponding row and column. The alpha, beta, and

delta wolves are the first three minimum fitness values of the

largest jobs discovered, from which the new best task is chosen

using the AGWO algorithm.

𝑓 = 𝑚𝑖𝑛 𝑓(𝑥) = ∑ 𝑎𝑡/𝑡𝑠𝑛
𝑗=1 (4)

C. Encircling the Prey

The parameters A and C are used to determine whether to

attack or leave the prey, and A is used to encircle the prey,

which is the current iteration's selected task, and the task is

assigned if 1A and abandoned by grey wolves if 1A .

𝑎𝑙𝑝ℎ𝑎_𝑑𝑖𝑠𝑡𝑥 = (𝐶1 + (𝑋𝑎𝑙𝑝ℎ𝑎𝑥 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑋𝑥))%𝑟𝑠,

𝑎𝑙𝑝ℎ𝑎_𝑑𝑖𝑠𝑡𝑦 = (𝐶1 + (𝑋𝑎𝑙𝑝ℎ𝑎𝑦 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑋𝑦))%𝑐𝑠,

𝑏𝑒𝑡𝑎_𝑑𝑖𝑠𝑡𝑥 = (𝐶2 + (𝑋𝑏𝑒𝑡𝑎𝑥 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑋𝑥))%𝑟𝑠,

𝑏𝑒𝑡𝑎_𝑑𝑖𝑠𝑡𝑦 = (𝐶2 + (𝑋𝑏𝑒𝑡𝑎𝑦 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑋𝑦))%𝑐𝑠, (5)

𝑑𝑒𝑙𝑡𝑎_𝑑𝑖𝑠𝑡𝑥 = (𝐶3 + (𝑋𝑑𝑒𝑙𝑡𝑎𝑥 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑋𝑥))%𝑟𝑠,

𝑑𝑒𝑙𝑡𝑎_𝑑𝑖𝑠𝑡𝑦 = (𝐶3 + (𝑋𝑑𝑒𝑙𝑡𝑎𝑦 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑋𝑦)%𝑐𝑠

The distance between the search agents alpha, beta, delta

wolves, and the prey is calculated using equation 5. To ensure

the x and y coordinates of the computed distance should not

cross the boundary of two-dimensional array locations are

confirmed in equation 5 by dividing the x-coordinate by row

size and y-coordinate by column size for all three wolves.

𝑥1𝑥 = 𝑋𝑎𝑙𝑝ℎ𝑎𝑥 − (𝐴1 × 𝑎𝑙𝑝ℎ𝑎_𝑑𝑖𝑠𝑡𝑥),

𝑥1𝑦 = 𝑋𝑎𝑙𝑝ℎ𝑎𝑦 − (𝐴1 × 𝑎𝑙𝑝ℎ𝑎_𝑑𝑖𝑠𝑡𝑦),

𝑥2𝑥 = 𝑋𝑏𝑒𝑡𝑎𝑥 − (𝐴2 × 𝑏𝑒𝑡𝑎_𝑑𝑖𝑠𝑡𝑥),

𝑥2𝑦 = 𝑋𝑏𝑒𝑡𝑎𝑦 − (𝐴2 × 𝑏𝑒𝑡𝑎_𝑑𝑖𝑠𝑡𝑦), (6)

𝑥3𝑥 = 𝑋𝑑𝑒𝑙𝑡𝑎𝑥 − (𝐴3 × 𝑑𝑒𝑙𝑡𝑎_𝑑𝑖𝑠𝑡𝑥),

 𝑥3𝑦 = 𝑋𝑑𝑒𝑙𝑡𝑎𝑦 − (𝐴3 × 𝑑𝑒𝑙𝑡𝑎𝑑𝑖𝑠𝑡𝑦
).

Equation 6 gives the first three solutions. The first solution

𝑥1𝑥 and 𝑥1𝑦 represent the 𝑥 and 𝑦 coordinates of the first

solution. It is obtained by finding the distance between the alpha

wolf’s position and the distance between the prey and the alpha

wolf multiplied by vector 𝐴. In the same way, the second

solution 𝑥2 is obtained by finding the distance between the beta

wolf position and the distance between prey and the beta wolf

multiplied by vector 𝐴. The third solution 𝑥3 is also obtained

by finding the distance between the delta wolf position and the

distance between prey and the delta wolf multiplied by vector

𝐴. It contains the value of vector 𝐴 < 1, decides to attack the

prey and is used to decide the solution or prey is the best prey

or solution.

𝐴 = 2𝑎 × 𝑟1 − 𝑎 (7)

𝐶 = 2 × 𝑟2 (8)

84 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 1, MARCH 2023

Equation 7 yields a value of 𝐴, with component a decreasing

from two to zero in each iteration; if the value of 𝐴 > 1, the

grey wolves move away or diverge from the prey and ensures

that this prey or solution is not the best one. Random vectors 𝑟1

and 𝑟2 take values between 0 and 1. Finally, using equation 8,

vector 𝐶 lends weight to the prey to assure the global optimum

in every iteration, and the new solution is obtained by taking the

average of 𝑥1, 𝑥2 and 𝑥3 distances in equation 9. The next

solution is obtained by finding the average of the first three

solutions. Because the first three solutions represent the

knowledge of dominant wolves such as alpha, beta, and delta

wolves. This knowledge is the solution obtained from these

wolves. These three solutions will have the clue for the next

solution. So, the next solution is obtained from the average

value of the first 3 solutions. 𝑋𝑛𝑒𝑤𝑥 is the 𝑥 coordinate of the

new solution is obtained by taking the average value of 𝑥

coordinates of alpha, beta, and delta solutions. 𝑋𝑛𝑒𝑤𝑦 is the 𝑦

coordinate of the new solution is obtained by taking the average

value of the 𝑦 coordinates of alpha, beta, and delta solutions

𝑋𝑛𝑒𝑤𝑥 = (𝑋1𝑥 + 𝑋2𝑥 + 𝑋3𝑥)/3,

𝑋𝑛𝑒𝑤𝑦 = (𝑋1𝑦 + 𝑋2𝑦 + 𝑋3𝑦)/3 (9)

𝑇𝑜𝑓𝑣𝑛_2 = ∑ 𝑇𝑜𝑓𝑣𝑚_𝑘
𝑛−1
𝑘=1 + ∑ 𝑇𝑜𝑡𝑛−1

𝑘=1 𝑒𝑥𝑘
 (10)

𝑇𝑝𝑤𝑣𝑛_2 = ∑ 𝑇𝑛−1
𝑘=1 𝑝𝑣𝑚_𝑘

 + ∑ 𝑇𝑜𝑡𝑛−1
𝑘=1 𝑝𝑣𝑚𝑒𝑥𝑘

 (11)

ALGORITHM I

NOTATION TASK SCHEDULING WITH ALTERED GREY WOLF OPTIMIZATION

FOR TWO-DIMENSIONAL ARRAY INPUTS

TSAGWO (Input: Task_2d (A, B);
Input: Tasks stored in two-dimensional array Task_2d (A, B) with

 Their arrival time in A and their velocity in B.
Output: The best task from Task_2d (A, B)

1. AGWO population Task_2d (A, B) where A = 1, 2,…,1000 & B=1,2,.,7

2. Divide the vms of cloudlet into vms-groups G [7].
 {

 G1 vms_size (500 MIPS)

 G2 vms_size (1000 MIPS)
 G3 vms_size (1500 MIPS)

 G4 vms_size (2000 MIPS)

 G5 vms_size (2500 MIPS)
 G6 vms_size (3000 MIPS)

 G7 vms_size > (3500 MIPS)

 }
3. while (vms-groups<=6) /* Equal number of vms */

 {

If (any vms-groups have more vms) then
 Divide vms-groups into two groups

 }

4. Sort(G[7],G[7]) /* Sort the vms-groups in ascending order */
5. While (true) {

6. Initialize 𝑎, 𝐴, and 𝐶, Task_2d (A, B)

7. Declare 𝑋𝛼, 𝑋𝛽, 𝑋𝛿 are the best search agents

8. Find the task of size <8192 bytes from each row

9. G[1..6] Allocate the tasks of size<8192 bytes from Task_2d [A,B] in

FCFS
10. CALCUL_OBJFUN(G[1..6]), Z) /* Call Procedure */

11. Let 𝑋𝛼, X𝛽, 𝑋𝛿 be the first, second, and third minimum fitness value

12. Let t1,t2,t3 be the first 3 big tasks of size > 65536 bytes

13. 𝑋𝛼 Task_2d [A](t1) / Task_2d [B] (t1)

14. X𝛽 Task_2d [A](t2) / Task_2d [B] (t2)

15. 𝑋𝛿 Task_2d [A](t3) / Task_2d [B] (t3)

16. G[7] 𝑋𝛼, 𝑋𝛽, 𝑋𝛿

17. while (m < maximum iterations)

18. {

19. for each search agent
20. {

21. UPDATE_DIST(𝑋𝛼, 𝑋𝛽, 𝑋𝛿, (X1x, X1y),(X2x, X2y), (X3x, X3y)) /*

Call Procedure */

22. Xnewx = (X1x + X2x + X3x) / 3, Xnewy = (X1y + X2y + X3y) / 3
23. }

24. A1,A2,A3 2a.r1.a
25. C1,C2,C3 2.r2
26. if ((Xnewx Xnewy)< 𝑋𝛼)

27. 𝑋𝛼 (Xnewx Xnewy) /*Allocate new solution*/

28. m=m+1

29. }

28. return 𝑋𝛼 /*new task for allocation */

30. }

PROCEDURE CALCUL_OBJFUN (Input: G [1...6]), Output: Z)

 /* calculate the execution time of the allotted task using equation 10 and the
power Consumption of the mobile device using equation 11 */

a. n the number of cloudlets traversed
b. ofvn Total execution time of task

c. pwvn Total power consumption of the mobile device

d. pvm Power consumption of the mobile device during connection
e. Pvmex Power consumption of the mobile device during execution

f. For (k=1,K<n, K++)

g. {
h. ofvn= offloading time of task in k+ the execution time of task in k

i. Pow= Pvm in k + Pvmex in k

j. }.

PROCEDURE UPDATE_DIST (𝑋𝛼, 𝑋𝛽, 𝑋𝛿, (X1x, X1y),(X2x, X2y), (X3x,

X3y))

/* update alpha-dist, beta-dist, delta-dist and X1, X2, X3 by equ 5and 6 */
a. A row size of the array Task_2d (A, B))

b. B column size of the array Task_2d (A, B))

c. αx = alpha-dist of x, αy = alpha-dist of y
d. βx = beta-dist of x, βy = beta-dist of y

e. δx = delta-dist of x, δy = delta-dist of y

f. αx (x coordinate of 𝑋𝛼 – x coordinate of prey) /A

g. αy (y coordinate of 𝑋𝛼 – y coordinate of prey) / B

h. βx (x coordinate of 𝑋𝛽 – x coordinate of prey) /A

i. βy (y coordinate of 𝑋𝛽 – y coordinate of prey) / B

j. δx (x coordinate of 𝑋𝛿 – x coordinate of prey) /A

k. δy (y coordinate of 𝑋𝛿 – y coordinate of prey) / B

l. X1x = 𝑋𝛼-A* alpha-dist of x, X1y= 𝑋𝛼-A* alpha-dist of y

m. X2x = 𝑋𝛽 -A* beta -dist of x, X2y= 𝑋𝛽 -A* beta -dist of y

n. X3x = 𝑋𝛿 -A* delta -dist of x, X3y= 𝑋𝛿 -A* delta -dist of y

In each iteration, the new task's fitness value is compared

against the current task, and the task with the lowest fitness

value wins. The best task is assigned to the cloudlet's last group

of VMs after the maximum iteration. The execution time and

power consumption of the allotted tasks are found using

equations 10 and 11 from our previous research article Mobility

and Execution Time Aware Task Offloading method

(METATO) [22]. This way, the tasks within one second are

assigned to the cloudlet and continue with the next second of

tasks. The notations and explanations are given in Table II.

IV. PERFORMANCE EVALUATION

A computer Powered by Intel Core i7 3770K 3.5GHz Quad-

Core processor with 16GB RAM and 1TB storage is used to

develop and test the proposed method. In addition, the visual

C++ programming language is used to code the functional

modules of the proposed method and sent to the cluster manager

of the Apache Spark framework with default configurations in

cluster mode from a Common Gateway Interface (CGI). A

dedicated User Interface (UI) is designed as a CGI using Visual

Studio Integrated Development Environment. The UI is

designed similarly to a Desktop Client for a Cloud Service. The

J. AROCKIA MARY et al.: TASK SCHEDULING WITH ALTERED GREY WOLF OPTIMIZATION (AGWO) 85

UI is responsible for loading the programs such as AGWO,

GWO, IGWO, MGWO, EGWO, EEMC, OTAQAA, etc.

through CGI to the Apache Spark Framework and returning the

result to the user. To execute big tasks from mobile devices this

Apache Spark Framework is a suitable tool and is used as a

cloudlet. The CGI executes and evaluates the performance of

all the programs and sends the comparison results of all the

programs as output in charts. The Apache Spark Framework

receives the mobile device data such as mobility, task, and size

from the open data mobile dataset. In the Apache Spark

framework, the cluster manager is the scheduler and allocates

the task to the worker nodes according to the program. The

experimental setup is given in Figure 1.

The analysis is carried out in two sets of comparisons. In the

first set, the performance of the proposed AGWO and variants

techniques GWO, MGWO, IGWO, and EGWO are analyzed.

In addition, the parameters such as the Average Request

Execution time of mobile nodes, Average power consumption

of the mobile node, and Percentage of requests executed are

analyzed in this article. Another set of comparisons includes

contributions from other researchers.

TABLE II

LIST OF NOTATIONS

Fig.1. Experiment Setup using Apache Spark Framework as Cloudlet

Figure 2a shows that the average request execution time of

the mobile nodes is found by varying numbers of nodes. When

the number of nodes exceeds 600, the average request execution

time is reduced gradually using this proposed method, AGWO.

This proposed method is suitable for scheduling more tasks

efficiently and avoids the idle time of VMs in the cloudlet.

The mobile device’s average power consumption is depicted

in Figure 2b. When the number of nodes is small, the power

consumption of the mobile nodes is nearly identical for all

optimization algorithms, but when the number of nodes grows,

the suggested method AGWO reduces the mobile node's power

consumption more than other optimization methods (GWO,

MGWO, IGWO, and EGWO). When the number of nodes

exceeds 800, additional tasks are scheduled, and this approach

allocates tasks larger than 65535 bytes in a VMS with a large

capacity of 3000 MIPS and RAM greater than 2GB. When

allocating large-size jobs, the mobile nodes consume little

power using this proposed method.

Figure 2c illustrates that a high percentage of requests from

the mobile device are executed in the proposed method than in

other optimization algorithms (GWO, MGWO, IGWO, and

EGWO). Because AGWO searches in known locations, when

the number of nodes exceeds 900, the proposed methods

perform better than IGWO. Figure 2d illustrates that for a

(a) Average request execution time of mobile nodes

Notation Description

Xt Task execution time

Pw Mobile device energy consumption.

T The variable represents the applications

N Number of applications

alpha-distx,,alpha-disty Distance between the alpha wolf and prey

A1, A2, A3, C1, c2, c3 Coefficient vectors

beta-distx, beta-disty Distance between the beta wolf and prey

delta-distx, delta-disty Distance between delta wolf and prey

x-alphax, x-alphay Position of alpha wolf

current-xx, current-xy Position of the current wolf in each

iteration

X1 + X2 + X3 Position of best three search agents

Task_2d (A,B) A two-dimensional array with row size A

and Column size B

G [7] Vms of a cloudlet are divided into 7 groups

𝑇𝑜𝑡𝑒𝑥 The total execution time of the VM

migrated task

𝑇𝑜𝑓𝑣𝑛−2 The offloading time of the VM migrated

task

𝑇𝑝𝑣𝑚−𝑘 Power consumption required by the mobile

device to connect with a cloudlet-k

𝑇𝑜𝑡𝑝𝑣𝑚𝑒𝑥𝑘 Power consumption required by the mobile

device to execute the task in a cloudlet-k

𝑇𝑝𝑤𝑣𝑛−2 Power required by the mobile device to

offload and execute the task in all the

cloudlets

Rs Row size

Cs Column size

86 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 1, MARCH 2023

(b) Average power consumption of mobile nodes

(c) Percentage of requests executed by the cloudlet

(d) Average scheduling delay by the cloudlet

Fig. 2. Effect of different numbers of mobile nodes (100 to 1000)

smaller number of nodes, the average scheduling delay time is

nearly comparable for all optimization strategies. When the

number of nodes grows, however, the suggested method

requires less average scheduling delay time than existing

optimization algorithms and a larger number of jobs are

efficiently distributed to the appropriate VMS within the

cloudlet based on their size.

Figure 3a shows that the average execution time of the

mobile nodes has decreased, even though the velocity of mobile

devices has increased by up to 20ms. The migration of tasks

rises as the speed of the mobile device increases. Because task

sizes smaller than 8192 bytes are arranged in a first-come, first-

served order to their corresponding appropriate VMS, the

average request execution time is lowered.

Figure 3b shows that when the devices' velocity increases,

the mobile device's average power consumption reduces, and

the proposed method performs better for high-velocity mobile

devices. According to the algorithm, the tasks of mobile device

velocity greater than 10ms are allocated to the last group of

VMS, which is a group of large-size VMS. So, the tasks finish

(a) Average request execution time of the mobile nodes

(b) Average power consumption of the mobile node

J. AROCKIA MARY et al.: TASK SCHEDULING WITH ALTERED GREY WOLF OPTIMIZATION (AGWO) 87

(c) Percentage of requests executed by the cloudlet

(d) Average scheduling delay of the cloudlet

Fig. 3. Effect of different mobility speeds (random speed)

their execution within the allotted cloudlet without VM

migration resulting in reduced execution time. As a result,

AGWO processes more requests whether velocity increases or

decreases. The cloudlet's average scheduling delay is also

lowered compared to existing optimization algorithms, as in

figures 3c and 3d. Furthermore, this proposed method allocates

various-size tasks to appropriate VMS based on their velocity

as high-velocity tasks are allocated to large-size VMS.

The performance of the proposed AGWO and existing

techniques EEMC, METATO, MAORA [23], MAOSA [24],

and OTAQAA are analyzed in this section. The same

parameters are also used to show that AGWO performs better

in the second set of comparisons. Figure. 4a. Shows that

scheduling more tasks efficiently is possible using this proposed

method, which eliminates the idle time of VMs in the cloudlet.

The average power consumption of a mobile device is

illustrated in figure 4b.

A high percentage of requests from the mobile device are

executed in the proposed method than in other existing

methods, as shown in figure 4c and the average scheduling

delay time is also reduced as in figure 4d. During higher

velocities, also AGWO performs best, as depicted in figures 5a,

5b, and 5c. As in Figure 5a, when the speed increases, the task

execution time is reduced because big tasks and small tasks are

treated equally along with their arrival times and less migration

rate.

(a) Average request execution time of mobile nodes

(b) Average power consumption of mobile nodes

Whenever the number of nodes is small, the power

consumption of the mobile nodes is nearly identical to those of

all existing methods. Allocating large jobs with this method

requires relatively little power consumption from the mobile

nodes. For a smaller number of nodes. Figure 5d shows that the

average scheduling delay time is less when the speed of the

device is less. In any case, the suggested method requires less

average delay time than existing techniques with a growing

number of nodes. By determining the task size, more tasks can

be distributed efficiently to the appropriate VMS within the

cloudlet based on their size.

88 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 1, MARCH 2023

(c) Percentage of requests executed by the cloudlet

(d) Average scheduling delay by the cloudlet

Fig. 4. Effect of different numbers of mobile nodes (10 to 100)

(a) Average request execution time of mobile nodes

(b) Average power consumption of mobile nodes

(e) Percentage of requests executed by the cloudlet

(f) Average scheduling delay by the cloudlet

Fig. 5. Effect of different mobility speeds (random speed)

J. AROCKIA MARY et al.: TASK SCHEDULING WITH ALTERED GREY WOLF OPTIMIZATION (AGWO) 89

V. CONCLUSION

Task scheduling with altered Grey wolf optimization for two-

dimensional array inputs (TSAGWOMCC) is proposed to

allocate tasks in different sizes, including big tasks, and is an

NP-hard problem. The experiment results show that the

proposed method reduces the average power consumption of

the mobile device, the average scheduling delay of tasks in the

cloudlet, and the average execution time of the task. The

percentage of requests executed by the cloudlet is also increased

through this method. The experiment is conducted by varying

numbers of nodes and with the different velocities of mobile

nodes. Large tasks greater than 65536 bytes are specially treated

by allocating them to VMS of enormous size. So the migration

rate is reduced, which in turn reduces the power consumption

of the mobile device and increases the Percentage of requests

executed by the cloudlet. Parallel execution of the sub-tasks of

the same task in the heterogeneous cloudlet will be the future

work. Balancing the loads in different cloudlets and reducing

the dropout rate of tasks will also be considered in the next

work.

REFERENCES

[1] M. Curiel and L. Flórez-Valencia, “Challenges in Processing Medical

Images in Mobile Devices, Trends and Advancements of Image

Processing and Its Applications”, EAI / Springer Innovations in
Communication and Computing, pp-31-51.2022., https://doi.org/10.1007/

978-3-030-75945-2_2

[2] S. Singh and I. Chana, “Q-aware: quality of service-based cloud resource
provisioning, Computers & Electrical Engineering”, vol.47, pp. 138-160,

2015. https://doi.org/10.1016/j.compeleceng.2015.02.003

[3] C. Tang, M. Hao, X. Wei and W. Chen, “Energy-aware task scheduling in

mobile cloud computing”, Distributed and Parallel Databases, vol.36,

pp.529-533, 2018. https://doi.org/10.1007/s10619-018-7231-7

 [4] S. Mirjalili, S. M. Mirjalili and A. Lewis, “Grey Wolf Optimizer”,
Advances in Engineering Software, vol.69, pp.46-61, 2014.

https://doi.org/10.1016/j.advengsoft.2013.12.007

 [5] S. Li, H. Chen, M. Wang, A. Asghar Heidari and S. Mirjalili, “Slime
mould algorithm: A new method for stochastic optimization”, Future

Generation Computer Systems, vol.111, Oct., pp. 300-323, 2020.

https://doi.org/10.1016/j.future.2020.03.055.
[6] D. Fouskakis and D. Draper, “Stochastic Optimization: A Review”,

International Statistical Review, vol.70, no.3. Dec., pp. 315-349, 2002.

https://doi.org/10.2307/1403861
[7] H. Joshi and S. Arora, “Enhanced Grey Wolf Optimization Algorithm for

Global Optimization”, Fundamenta Informaticae, vol.153, no.3, Jun.,
pp.235-264, 2017. https://doi.org/10.3233/FI-2017-1539

 [8] Z.- M. Gao and J. Zhao, “An Improved Grey Wolf Optimization Algorithm

with Variable Weights”, Computational Intelligence and Neuro science,
vol.2019, Jun., 2019. https : //doi.org /10.1155 /2019 /2981282

[9] N. Mittal, U. Singh, and B. Singh Sohi, “Modified Grey Wolf Optimizer

for Global Engineering Optimization”, Applied Computational
Intelligence and Soft Computing, vol. 2016, 2016., https://doi.org/

10.1155/2016/7950348

[10] P. Akki and V. Vijayarajan, “Energy Efficient Resource Scheduling Using
Optimization Based Neural Network in Mobile Cloud Computing”,

Wireless Personal Communications, vol.114, no.2,pp. 1785-1804,2020.

https://link.springer.com/article/10.1007/s11277-020-07448-2
[11] C. Arun and K. Prabu, “A multi-objective EBCO-TS algorithm for efficient

task scheduling in mobile cloud computing”, International Journal of

Networking and Virtual Organizations, Vol.22, no.4, pp.366 – 386,2020.
https://dx.doi.org/10.1504/IJNVO.2020.107570

[12] T. Wang, X. Wei, C. Tang and J. Fan, “Efficient multi-tasks scheduling

algorithm in mobile cloud computing with time constraints”, Peer-to-Peer
Networking and Applications, vol.11, no.4, pp. 793-807,2018.

https://link.springer.com/article/10.1007/s12083-017-0561-9

[13] S. E. Veerappa Dinesh, and K. Valarmathi, ”A novel energy estimation
model for constraint based task offloading in mobile cloud computing”,

Journal of Ambient Intelligence and Humanized Computing, Vol.11,

pp.5477–5486, 2020. https://doi.org/10.1007/s12652-020-01903-5

[14] Z. Wang, Z. Zhao, G. Min, X. Huang, Q. Ni and R. Wang, “User mobility
aware task assignment for Mobile Edge Computing”, Future Generation

Computer Systems, Vol.85, no.c, Aug., pp.1-8, 2018., https://doi.org/

10.1016/j.future.2018.02.014
[15] A. Zhou, Y. Li and J. Li, “Efficient request assignment algorithm in mobile

cloud computing environment”, International Journal of Web and Grid

Services, Vol.14, no.4, pp. 335-351, 2018. https: //dx.doi.org/10.1504/
IJWGS.2018.095656

[16] C. Tang, S. Xiao, X. Wei, M. Hao and W. Chen, “Energy-efficient and

Deadline-satisfied Task Scheduling in Mobile Cloud Computing”, In
proc. IEEE International Conference on Big Data and Smart Computing

’01, 2018. https: //doi.org /10.1109/ BigComp .2018.00037

[17] D. S. Rani, M. Pounambal, “Deep learning based dynamic task offoading
in mobile cloudlet environments”, Evolutionary Intelligence, Vol.14,

pp.499-507, 2019. https://dx.doi.org/10.1007/s12065-019-00284-9

[18] M. Garg and R. Nath, “Auto regressive Dragonfly Optimization for
Multiobjective Task Scheduling (ADO-MTS) in Mobile Cloud

Computing”, Journal of Engineering Research, Vol. 8, no. 3, pp. 71-90,

2020. https://doi.org/10.36909/jer.v8i3.7643
[19] H. Li, Y. Zhu, M. Zhou and Y. Dong, “Effective Algorithms for

Scheduling Workflow Tasks on Mobile Clouds”, Journal of Circuits,

Systems, and Computers, vol.29, no.16, 2020. https: //doi.org/10.1142/
S0218126620502552

[20] V. Sundararaj,”Optimal Task Assignment in Mobile Cloud Computing

by Queue Based Ant-Bee Algorithm”, Wireless Personal
Communications: An International Journal , vol.104, no.1, Jan., pp. 173–

197, 2019. https://doi.org/10.1007/s11277-018-6014-9

[21] Y. He, L. Ma, R. Zhou, C. Huang, and Z. Li, “Online Task Allocation in
Mobile Cloud Computing with Budget Constraints”, Computer Networks,

vol.151, no.14, Mar., pp.42-51, 2019., https://doi.org/10.1016/

j.comnet.2019.01.003
[22] J. A. Mary, and A. Aloysius, “Mobility and Execution time aware task

offloading in Mobile Cloud Computing”, International Journal of

Interactive Mobile Technologies, Vol.16, no.15, pp.30-45, 2022.
https://doi.org/10.3991/ijim.v16i15.31589

[23] A. Enayet, Md. A. Razzaque, M. M. Hassan, A. Alamri, and G. Fortino,

“A Mobility-Aware Optimal Resource Allocation Architecture for Big

Data Task Execution on Mobile Cloud in Smart Cities”, IEEE

Communications Magazine ,Vol. 56, no.2, Feb., pp.110-117, 2018.
https://doi.org/10.1109/MCOM.2018.1700293

 [24] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos, ”MuSIC:

Mobility-Aware Optimal Service Allocation in Mobile Cloud Computing”,
In Proc. IEEE Sixth International Conference on Cloud Computing ’07,
2013. https://doi.org/10.1109/CLOUD.2013.100.

J. Arockia Mary is doing her Doctoral Degree in
Computer Science at St. Joseph’s College (Affiliated to

Bharathidasan University), Tiruchirappalli, Tamil

Nadu, India. She has more than 12 years of teaching and
research experience. She is currently working as an

Assistant Professor, at the Department of Computer

Applications, Holy Cross College, Tiruchirappalli,
Tamil Nadu, India. She has published papers in

international journals. She has presented papers at

international conferences. Presently she is doing her research on Mobile Cloud
computing. (email:jarockia79@gmail.com)

A. Aloysius is working as an Assistant Professor in the
Department of Computer Science, St. Joseph’s College

(Affiliated to Bharathidasan University),

Tiruchirappalli, Tamil Nadu, India. He has 22 years of
experience in teaching and research. He has published

many research articles in national and international

conferences and journals. He also presented research
articles at International Conferences on Computational

Intelligence and Cognitive Informatics in Indonesia. He

has acted as a chairperson for many national and international conferences. His
current research area includes cognitive aspects in software design, big data,
sentiment analysis and cloud computing. (email:aloysius1972@gmail.com)

90 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 1, MARCH 2023

https://link.springer.com/journal/10619
https://link.springer.com/journal/12083
https://link.springer.com/journal/12083
https://www.inderscience.com/jhome.php?jcode=ijwgs
https://www.inderscience.com/jhome.php?jcode=ijwgs
https://www.inderscience.com/info/inarticletoc.php?jcode=ijwgs&year=2018&vol=14&issue=4
https://dx.doi.org/10.1007/s12065-019-00284-9
https://kuwaitjournals.org/jer/index.php/JER/issue/view/39
https://dl.acm.org/toc/wpco/2019/104/1
https://dl.acm.org/toc/wpco/2019/104/1
https://doi.org/10.1007/s11277-018-6014-9
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=35
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=35
https://doi.org/10.1109/MCOM.2018.1700293
https://ieeexplore.ieee.org/xpl/conhome/6596015/proceeding
https://doi.org/10.1109/CLOUD.2013.100

