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We present a novel methodology for power reduction in embedded multiproces-

sor systems. Maintaining local caches coherent in bus-based multiprocessor systems

results in significantly elevated power consumption, as the bus snooping protocols

result in local cache lookups for each memory reference placed on the common bus.

Such a conservative approach is warranted in general-purpose systems, where no

prior knowledge regarding the communication structure between threads or pro-

cesses is available. In such a general-purpose context the assumption is that each

memory request is potentially a reference to a shared memory region, which may re-

sult in cache inconsistency, if no correcting activities are undertaken. The approach

we propose exploits the fact that in embedded systems, important knowledge is

available to the system designers regarding communication activities between tasks

allocated to the different processor nodes. We demonstrate how the snoop-related

cache probing activity can be drastically reduced by identifying in a deterministic

way all the shared memory regions and the communication patterns between the



processor nodes. Cache snoop activity is enabled only for the fraction of the bus

transactions, which refer to locations belonging to known shared memory region for

each processor node; for the remaining larger part of memory references known to

be of no relation to the given processor node, snoop probings in the local cache are

completely disabled, thus saving a large amount of power. The required hardware

support is not only cost-efficient, but is also software programmable, which allows

the system software to dynamically customize the cache coherence controller to the

needs of different tasks or even different parts of the same program. The experi-

ments which we have performed on a number of important applications demonstrate

the effectiveness of the proposed approach.
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Chapter 1

Introduction

1.1 Embedded Systems

The use and application of embedded systems in our day to day lives has

proliferated in recent years. In fact, embedded processors constitute over 95% of

the global processor market share. The decreasing cost of processor based systems

coupled with Moore’s law has led to the ubiquity of embedded systems and devices.

As the name suggests, embedded systems, unlike their desktop counterparts, man-

ifest themselves in the environment. They appear in systems that we use in our

everyday lives like microwaves, cell phones, ATMs, PDAs, cash registers, elevators,

automated gas stations to name a few. Embedded systems, however, have con-

straints compared to their desktop counterparts. These constraints are mainly due

to the fact that embedded systems are designed to serve a specific purpose in mind.

Some of the most important factors for such systems have long been recognized to

be the design cost, time-to-market, flexible implementation, performance, energy,

real-time guarantees, size (form factor) and portability. The design constraints of

embedded systems has led to a large body of research dedicated to design issues in

embedded systems.

One such design constraint, power and energy consumption of embedded sys-

tems continues to be a topic of research in system design. This has been widely due
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to two reasons. First, a large class of embedded systems are battery driven, hence

longer battery life is an obvious design metric. Secondly, with shrinking transis-

tor densities, power dissipated is directly proportional to increasing processor core

temperatures. Thus, designs with a fixed power budget are of prime importance.

Embedded applications impose high performance demands, while at the same

time exhibit stringent power constraints; such applications, to name a few, include

multimedia support such as audio/image/video capture and processing, and data-

intensive wireless devices, such as sensor nodes for environmental, industrial, or

security data acquisition and analysis. Memory in embedded systems is known to

be extremely power consuming. Moreover multimedia applications are memory in-

tensive applications. Since design cost and time-to-market are major requirements

for product success, implementation platforms based on processor cores are typi-

cally utilized instead of custom hardware. In order to meet the high performance

requirements, implementations containing multiple processor cores have started to

emerge.

1.2 Multiprocessors in Embedded Systems

To be competitive in the market, new computer designs must exhibit rapid

increases in functionality, reliability, and bandwidth and rapid declines in cost and

power consumption. Although general-purpose processors can handle many tasks,

they usually lack the bandwidth needed to perform complex data-processing tasks

such as network packet processing, video processing,and encryption. Therefore pro-
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cessors cores such as Multi Processor System on Chips (MP-SoCs) have emerged.

These are system on chip platforms with multiple processor cores on a single die

[28]. One of the major advantages of MP-SoCs is that it helps reduces the area

and communication overhead. These platforms typically contain multiple heteroge-

neous, flexible processing elements, a memory hierarchy and I/O components. All of

these components are linked to each other by a flexible on-chip interconnect struc-

ture. These architectures meet the performance needs of contemporary and future

multimedia applications, while limiting the power consumption.

MP-SoCs are targeted towards particular application(s) rather than being a

general-purpose chip. One of the main advantages exhibited by applications running

on such SoCs is task level parallelism. Task-level parallelism is very important in

embedded computing. This type of parallelism is relatively easy to leverage since the

system specification naturally decomposes the problem into tasks having multiple

phases. However, such general-purpose computing architectures come with the price

of excessive power consumption, a characteristic of extreme importance for many

wearable and battery-powered devices.

In order to map an application to an MP-SoC platform, the application design-

ers need a shared memory model view of the MP-SoC architecture. Memory system

programming model in MP-SoC’s could use either shared or partitioned memory. In

a shared-memory multiprocessor a pool of processors and a pool of memory are con-

nected by an interconnection network. Each component is regularly structured, and

the programmer is presented with a conventional programming model. Most multi-

processors today use shared-memory architectures because a shared-memory model
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makes life simpler for the programmer and is also cheaper in terms of hardware

implementation. They also exhibit low communication latency and decentralized

topology easily supporting all the processing units.

However, the shared memory architectures have certain disadvantages and

therefore networks-on-chips (NoC) have emerged over the past few years as an ar-

chitectural approach to the design of single-chip multiprocessors[29]. A network-on-

chip uses packet networks to interconnect the processors in the SoC. Such direct or

point-to-point network is an architecture that overcomes the scalability problems of

shared medium networks.In this architecture, each node is directly connected with

a subset of other nodes in the network, called neighboring nodes. Nodes are on-

chip computational units, but they contain a network interface block, often called

a router, which handles communication-related tasks. Each router is directly con-

nected with the routers of the neighboring nodes.

Different from shared-medium architectures, as the number of nodes in the sys-

tem increases, the total communication bandwidth on direct networks also increases.

Direct interconnect networks are therefore very popular for building large-scale sys-

tems where as shared memory architecture are used for most small-scale systems.

1.3 Shared Memory Multiprocessors

Power optimization by memory optimization can be done in several ways: the

reduction in memory size and improved data-movement strategies over the memory

hierarchy [24],[26],[25]. In shared-memory multiprocessors architectures, all proces-
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Figure 1.1: Shared-memory multiprocessor system

sors share the bus for their memory accesses as shown in Figure 1.1. The available

bandwidth can be easily exhausted and thus can quickly lead to significant perfor-

mance degradations. To alleviate this problem, caches are used to replicate the data

and bring it closer to the requesting processors, thus saving bus bandwidth and min-

imizing memory contention. However, caches must be maintained coherent, since

when a processor modifies a cached data, other caches might be left with an older

version of the same data. To resolve this issue, snoop-cache coherence protocols are

used to coordinate the many caches distributed throughout the system as part of

providing a consistent view of memory.

1.4 Cache-Coherence Protocols

A snoop-cache coherence protocol provides a consistent view of memory by seg-

menting the shared address space into blocks and controlling the permissions for lo-

cally cached copies of these blocks. Since invalidation-based coherence has been used
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in favor of update-based coherence protocols in most recent systems (e.g.[5],[6],[7]),

this thesis only focuses on invalidation-based cache coherence protocols.

Invalidation-based cache coherence protocols manage these permissions to en-

force the coherence invariant. Informally, the coherence invariant states that

1. No processor may read a block while another processor is writing to the block

2. All readable copies must contain the same data.

In order to enforce this invariant, current protocols encode the specific permissions

and other attributes of blocks in caches using a subset of the MODIFIED, OWNED,

EXCLUSIVE, SHARED, and INVALID (MOESI) coherence states.Since these pro-

tocols constitute the main essence of the thesis, they are discussed in more detail in

the following chapter.

These protocols use broadcast bus transactions and snoopy cache controllers

in order to keep caches coherent. The general-purpose nature of this scheme results

in significant power consumption, which prevents the utilization of these powerful

platforms for energy constrained embedded applications. It has been reported [21]

that the power due to snoop related cache lookup can amount to 40% of the total

power consumed at the cache subsystem.

1.5 Motivation

Embedded processor and system customization has been shown to be a power-

ful approach for achieving tremendous performance and power improvements. The

processor architecture and micro-architecture are fine-tuned to the needs of the
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particular application or application fragment. Since the entire application is stati-

cally known, and this knowledge lets us more intelligently place data structures in

memory to improve the memory performance. The snoop-cache coherence schemes

are general-purpose in their nature as no prior knowledge regarding the application

structure and communication patterns, in particular, is available; it is assumed that

all memory references can potentially access a shared data. This is a very con-

servative approach, where each bus transaction triggers a cache lookup for all the

processors in order to find out whether a locally cached data needs to be invali-

dated, updated, or written back to the memory; thus leading to significant power

consumption. Clearly, only a small fraction of all memory accesses refer to shared

memory that need remote cache invalidation or update. This power overhead can be

drastically reduced if information regarding the application communication patterns

and ranges of shared memory is captured and utilized dynamically by the hardware.

This thesis makes the following contribution. We introduce and evaluate a

customizable snoop-cache controller architecture, which can filter out most of the

bus transactions and allow cache probing only for the memory accesses relevant

to the shared data accessed by each processor node. This is achieved by precisely

identifying the shared memory ranges for each task or critical region in the task, and

providing this information to the operating system kernel and cache snoop controller

for run-time utilization. As the proposed approach identifies application information

regarding shared memory regions, the close cooperation of the thread package and

operating system memory manager is required. This leads to an energy efficient

system design.
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1.6 Outline of thesis

This thesis is organized as follows. Chapter 2 describes the background infor-

mation for the protocols and related work. Chapter 3 motivates the problem and

outlines our approach. Chapter 4 describes the functional overview of the approach.

Chapter 5 shows the hardware support we have suggested. Chapter 6 presents some

preliminary results . Chapter 7 concludes with a summary and future work.
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Chapter 2

Background and Related work

This chapter describes the background and basics for understanding the cache-

coherence protocols which have been modified to implement our approach. It also

mentions about related research work that focus on reducing energy in a shared

memory system. The readers can also refer to established textbooks on this topic

for further background and introductory material such as [3], [4]. Since invalidation-

based coherence has been used in favor of update-based coherence protocols in most

recent systems (e.g.[5],[6],[7],[8],[2]), this thesis only focuses on invalidation-based

cache coherence protocols.

There are multiprocessor systems with multiple memory modules in which

each processor has one or more levels of private cache memory. When processors in

such a system share the same physical memory address space, they are called shared-

memory multiprocessors. These systems manage the shared memory address space

by dividing the memory into blocks. Processors cache copies of recently accessed

data, to both reduce the average memory access latency and increase the effective

bandwidth of the memory system. When a processor needs to cache a copy of a

block that it can read, it issues a read request. When a processor needs a copy of the

block it can both read and write, it issues a write request. A coherence transaction

is the entire process of issuing a request and receiving any responses. Processors
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issue these requests to satisfy load or store instructions that miss in the cache, as

well as for software or hardware non-binding prefetches. Requests and responses

travel between processors over an interconnection network.

Allowing multiple processors to cache local copies of the same block results

in the cache coherence problem, a problem solved by the introduction of a cache

coherence protocol. The goal of a cache coherence protocol is to interact with

the system’s processors, caches, and memories to provide a consistent view of the

contents of a shared address space. The exact definition of consistent view of memory

is defined by a memory consistency model [9] specified as part of the instruction set

architecture of the system. The simplest and most intuitive memory consistency

model is sequential consistency [10]. In this thesis, we assume sequential consistency

for both describing and evaluating coherence protocols.

As part of enforcing a consistency model, invalidation-based cache coherence

protocols maintain a coherence invariant. The coherence invariant states the follow-

ing for a block of shared memory:

1. Zero or more processors are allowed to read it.

2. Exactly one processor is allowed to write and read it.

2.1 States of Cache-Coherence Protocol

To enforce the coherence invariant, coherence protocols use protocol states to

track read and write permissions of blocks present in processor caches. This section

describes the well-established MOESI states [11] that provide a set of common states
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for reasoning about cache coherence protocols. A processor with a block in the

INVALID or I state signifies that it may neither read nor write the block. When

a block is not found in a S state signifies that a processor may read the block, but

may not write it. A processor in the MODIFIED or M state may both read and

write the block. These three states (INVALID, SHARED, and MODIFIED) are

used to directly enforce the coherence invariant by

1. Only allowing a single processor to be in the MODIFIED state at a given time

2. Disallowing other processors to be in the SHARED state while any processor

is in the MODIFIED state.

When a processor requests a new block, it often must evict a block currently

in the cache. The optional OWNED or O state in a processor’s cache allows read-

only access to the block (much like SHARED), but also signifies that the value in

main memory is incoherent or stale. Thus the processor in OWNED must update

the memory before evicting a block. As with the MODIFIED state, only a single

processor is allowed to be in the OWNED state at one time. Unlike MODIFIED,

however, other processors are allowed to be in the SHARED state when one pro-

cessor is in the OWNED state.The OWNED state can reduce system traffic by not

requiring a processor to update memory when it transitions from MODIFIED to

SHARED during a read request. In a protocol without the OWNED state, the

responder would transition from MODIFIED to SHARED, both providing data to

the requester and updating memory. If another processor issues a write request for

the block before it is evicted from the OWNED processor’s cache, memory traffic is

11



State Load Store Eviction Read Req Write Req
writeback send data send data

MODIFIED hit hit ↓ ↓ ↓
INVALID OWNED INVALID

Evict send data send data
EXCLUSIVE hit hit ↓ ↓ ↓

INVALID SHARED INVALID
write request writeback send data send data

OWNED hit ↓ ↓ ↓
MODIFIED INVALID INVALID
write request writeback (none) (none)

SHARED hit ↓ ↓ ↓
MODIFIED INVALID INVALID

read request write request (none) (none) (none)
(response:shared) ↓
→ SHARED INVALID

INVALID -or-
read request

(response:clean)
→ EXCLUSIVE

Table 2.1: MOESI State Transitions

reduced. The final MOESI state is the EXCLUSIVE or E state. The EXCLUSIVE

state is much like the MODIFIED state, except the EXCLUSIVE state implies the

contents of memory match the contents of the EXCLUSIVE block. By distinguish-

ing this clean EXCLUSIVE state from its corresponding dirty MODIFIED state,

a block in EXCLUSIVE can be evicted without updating the block at the home

memory. When no other processor is caching the block, the memory responds to

a read request with a clean-data response. The requesting processor transitions

to EXCLUSIVE, granting it read/write permission to the block without the added

burden of updating memory. The block can be later be quickly written without an

external coherence request by silently transitioning from EXCLUSIVE to MODI-

FIED (requiring a writeback upon subsequent eviction). The basic operation of a

processor in an abstract MOESI coherence protocol is shown in Table 2.1.
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2.2 Types of Protocols

Today, the two most common approaches to cache coherence are snooping

protocols and directory protocols which use these basic states or subset of these

states. Snooping protocols broadcast requests to all processors using a bus or bus-

like interconnect. This ordered broadcast both

1. Unambiguously resolves potentially conflicting requests

2. Directly locates the block even when it is in another processor cache.

In contrast, directory protocols send requests only to the home memory which

responds with data or forwards the request to one or more processors. This approach

reduces bandwidth consumption, but increases the latency of some misses.

2.3 Snooping Protocols

The snooping protocols (mostly used in our approach), which is the most com-

monly used approach to building shared-memory multiprocessors. The key charac-

teristic that distinguishes snooping protocols from other coherence protocols is their

reliance on a “bus” or “virtual bus” interconnect. Early multiprocessors used a

shared-wire, multi-drop bus to connect all processors and memory modules in the

system. Snooping protocols exploit such a bus-based interconnect by relying on two

properties of a bus:

1. All requests that appear on the bus are visible to all components connected

to the bus (processors and memory modules).
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2. All requests are visible to all components in the same total order (the order

in which they gained access to the bus) [12].

In essence, a bus provides low-cost atomic broadcast of requests.

Once granted access to the bus, the processor puts its request on the bus, and

the other processors listen or snoops the bus. The snooping processors transitions

their state and may respond with data. The memory determines if it should respond

by either storing state for each block in the memory or by observing the snoop

responses generated by the processors. Only after the requesting processor receives

its data response (completing its coherence transaction), another processor is allowed

to initiate a request.

The advantage of snoop-based multiprocessors is the low average miss latency.

Since a request is sent directly to all the other processors and memory modules

in the system, the responder immediately knows that it should send a response.

Second, bus-based snooping protocols are relatively simple.

The main disadvantage of snooping is that such protocols are still by nature

broadcast-based protocols; i.e., protocols whose bandwidth requirements increase

with the number of processors. Even after removing the bottleneck of a shared-wire

bus or virtual bus, this broadcast requirement limits system scalability. To overcome

this limitation, recent proposals [13],[14] attempt to reduce the bandwidth require-

ments of snooping by using destination-set prediction (also known as predictive

multicast) instead of broadcasting all requests.
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2.4 Related work

Reducing power consumption in system design has been widely studied by re-

searchers at various levels: architecture, compiler, operating systems, applications,

middleware. Low power processor and memory design has been an area of interest

at architecture level design. With the increased popularity of shared memory multi-

processors, energy and power efficient design of these systems has caught attention

of researchers. In particular, improving cache coherence efficiency has been studied

at various levels.

Previous work on snoop energy reduction relies on techniques that exploits

sharing patterns in snoop-based shared memory multiprocessors with potential ap-

plications in reducing bandwidth, latency and energy. In [17], the authors have

proposed optimization targeted at snoop protocols. In Jetty scheme proposed by

[16], each snoop avoids many snoop-induced lookups that would otherwise result

in a miss. The authors have introduced a cache like structure, which dynamically

identifies which remote memory references have been known to be not present in

the local cache. Nodes maintain two structures that respectively represent a subset

of blocks that are not cached (exclusive Jetty) and a superset of blocks that are

cached (inclusive Jetty). The introduced table is updated each time the cache is

probed by the snoop controller or new data is brought to the cache. One observation

is that since the private caches are typically smaller in a chip multiprocessors, the

reduction of the energy through the Jetty is to a large extent outweighed by the

energy consumed in the Jetty.
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There is a similar research proposal called RegionScout[16]. RegionScout is a

technique that exploits coarse grain sharing patterns in snoop-based shared memory

multiprocessors. RegionScout comprises of a family of filters that dynamically ob-

serve coarse grain sharing and allow nodes to detect in advance that a request will

miss in all remote nodes. This technique is used to avoid snoop-induced tag lookups

thereby reducing energy in the memory hierarchy. When a node sends a request and

block-level sharing information, it receives region-level sharing information. If a re-

gion is identified as not shared subsequent requests for any block within the region

from the same node are identified as non-shared without having to probe any other

node. Such information is not available in conventional snoop or directory-based

coherence. RegionScout filters utilize imprecise information about the regions that

are cached in each node in the form of a hashed bit vector [15]. Every node keeps

precise information about the pages it is caching. This information is used to form

a page-level sharing vector in response to coherence requests. Subsequent requests

are snooped only by those nodes that do have blocks within the same page and

thus energy is reduced. The difference between these two related work is that with

RegionScout a requesting node can determine in advance that a request would miss

in all other nodes. With Jetty every node still snoops all requests.

RegionScout filters are Saldanha and Lipasti proposed serial snooping to re-

duce energy in shared multiprocessors [18].A number of other approaches that reduce

energy dissipation use either cache resizing, circuit techniques for reducing on chip

power or energy efficient architectures [19],[30],[31],[32] to filter memory references.

There is some related work that helps reduce power consumption in snoop-
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based cache coherence. In snoop-based design which employs various forms of spec-

ulation to reduce cache miss latency and improve performance, energy reduction can

be done by using serial snooping for load misses[19]. In this schemes the authors try

to eliminating unnecessary activity in a bus interconnect of a multiprocessor at the

architectural level. The serial snooping scheme is based on the assumption that if

a miss occurs in one cache, it is possible to find the block in another cache without

having to check all the other caches. The authors model an interconnect in the form

of a tree with point-to-point connections and a memory controller at the root level.

Instead of broadcasting the snoop-transaction to all of the processors in parallel, the

caches are checked serially in a system based on serial snooping. The basic idea is

to prevent wasting power unnecessarily by transmitting snoop packets to nodes that

either do not have a copy of the data or nodes that have a copy but are not respon-

sible for sourcing the data as the result of a snoop. It works by initially transmitting

a snoop packet only to the nearest node. This node then does a tag comparison

and if it finds the requested block in M(Modified), S(Shared) or E(Exclusive) state

it sources the data to the requester and snoop transaction ends without either the

memory or any of the other remote nodes seeing the transaction. On the other

hand, if the nearest neighbor is unable to satisfy the request, it forwards the request

to the next level in the tree hierarchy. The serial snooping is ineffective because in

most of the cases all caches have to be checked before it can be concluded that they

cannot respond to the request on the common bus.

A comparative evaluation of the above two proposed techniques to reduce

snoop-induced power in multiprocessors: serial snooping[19] and Jetty [17] has been

17



studied by authors in [20]. These two techniques were aimed at SMP-servers with

two levels of private caches and they have been analyzed in the new context of

chip-multiprocessors in [20].

One more related work reports energy savings using Page Sharing Table (PST)

scheme [21] which is based on the intuition that there exist a fair number of pages

that are not shared. A page is said to be loaded in a processor if at least one block

that belongs to the page is loaded in the private cache. For non-shared pages, blocks

are not subject to coherence actions and snooping overhead could be eliminated. A

unit called Page Sharing Table (PST) is attached to each processor which keeps

track of which pages are currently used by the processor. For each such page, the

unit keeps a sharing vector that indicates if the other processors also share the page.

This sharing vector is broadcast on a separate bus, called sharing vector bus, with

as many lines as the number of processors, on a snoop-broadcast action. By reading

this sharing vector, the other caches know whether they need to do a tag-lookup to

check for the block or not. But PST itself wastes some energy.

2.5 Our work

This thesis work is based on MOSI coherence protocol which includes all the re-

quired basic states. It can also be extended to other protocols like MSI, MOESI and

MSI. This thesis work focuses on filtering snoop requests based on a deterministic

knowledge regarding the shared memory regions of each task resulting in significant

energy savings. It uses application knowledge instead of introducing sophisticated
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hardware structures like Jetty or non-shared region tables. It works in close alliance

with compiler and OS support to extract information regarding presence of shared

data access patterns for parallel tasks in application software.

In a bus-based interconnect where all system components are connected to the

same set of physical wires. A component sends a message by

• Arbitrating for the bus (to avoid having multiple processors driving the bus

at the same time),

• Driving themes sage on the bus (allowing all components on the bus to observe

the message).

Since all components can observe or “snoop” transactions on the bus, such

interconnects support broadcast with little additional cost. Such an interconnect

provides point-to-point ordering when all messages sent between a pair of processor

arrive in the order in which they were sent. This protocol is modified to include

information from the operating system kernel and cache snoop controller to filter

out most of the irrelevant bus transactions. This results in cache probing only for

the memory accesses relevant to the shared data accessed by each processor node

to save power consumed due to unnecessary snoop activity on the bus.

19



Chapter 3

Motivation

With the increased performance demand from many embedded applications,

such as in the multimedia and the communication domains, multiple processing cores

are utilized in implementing such embedded systems. Multiprocessing hardware

implementation is quite natural as the majority of embedded applications, especially

in the multimedia and communication domains, exhibit a significant amount of task-

level parallelism.

Various forms of multiprocessing configuration and interconnect topologies ex-

ist. However, the simplest and the most cost-efficient one is the bus-based, shared

memory multiprocessor platform. The advantages of such a system are its simple

and well-understood programming model with low communication latency. Ad-

ditional benefit of this multiprocessor organization is that multi-threading and any

uniprocessor system software, in general, can be easily extended for bus-based shared

memory multiprocessor. This is due to the fact that the physical memory is shared

amongst all the processors, and thus all system code and data structures are placed

in that memory. The processor cores simply provide multiple hardware contexts to

the shared system software layer. The only modification needed to the uniprocessor

system code, is that it be made re-entrant and protected against multiple system

threads executing and trying to access the data structures simultaneously.
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Figure 3.1: Snooping in cache-coherent multiprocessor

The common bus in these systems, however, can quickly become a bottleneck

as each access to the shared memory has to be performed through the bus. A

common practice to resolve this problem is to employ local caches at each processor

node. In this way, the data is replicated and brought closer to the processors. Not

only is the amount of traffic on the bus reduced, but also bank conflicts on the shared

memory are eliminated. Caching, however, introduces the fundamental problem of

incoherent data stored in the local caches. This problem can be easily appreciated

if one considers a situation where a shared word is brought for read access in the

local caches of two processors, and subsequently, one of the processor writes to this

data and modifies its value in the local cache and/or main memory. At this moment

the other processor remains with the old copy of that data stored in its cache. The

cache coherence problem exists with both write-through and write-back caches. In

bus-based shared memory systems, write-back caches are typically used, since the

goal is to minimize the bus utilization as much as possible. The trade-offs between
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write-through and write-back caches for shared memory multiprocessor systems on

chip are explored in detail in [34]. Employing write-back caches further exacerbates

the cache coherence problems, as write-back cache introduce an additional case of

incoherence, where the most recent copy of a data can be present only in one of the

caches. In such a case, both the main memory and potentially other caches have an

old version of that data.

To resolve the cache coherence problems, coherence protocols have been intro-

duced for general-purpose multiprocessor systems. As the common bus is inherently

a broadcast medium, a snoop-based cache coherence protocols are being used in gen-

eral. The fundamental principle of these protocols is that each memory reference

placed on the bus by a processor is detected by all the snoop controllers in the

system, and each one of them probes its local cache to check whether the data re-

quested through the shared bus from the memory happens to be present in the local

cache. If yes, then depending on the type of request and the state of that data in

the local cache, different actions must be undertaken.

The general architecture of the bus-based shared memory multiprocessor with

support for snoop cache coherence is shown in Figure 3.1. Each cache is associated

with a snoop controller and each cache line has its own state. The snoop controllers

monitor the system bus for read and write misses that are generated by the proces-

sors in the system. Such memory requests are generated by the processors when the

needed data is not present in the local cache.

Fundamentally, the purpose of the snoop controllers is to react to any such

memory requests on the bus. For instance, for a read-miss on the bus, the snoop
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Figure 3.2: State machine for bus requests

controllers for all nodes must probe their local caches to check whether the requested

data is present and modified but not yet written-back to main memory. In such a

case, the corresponding cache would be the only place in the system where the data

can be found. Alternatively, when a processor modifies a data in its local cache, it

needs to place a write-miss on the common bus (even when the data is already in

the local cache) in order to notify all the other processors to invalidate this data

if it happens to be present in some of the other caches as well. When the snoop

controllers on all the processors detect a write-miss transaction on the bus, the local

caches are probed in order to invalidate this data if it is cached locally.

Several versions of snoop-based cache coherence protocol exists; nonetheless,

all of them are based on the same principle. The snoop controller monitors all bus

transactions; on write-miss it probes the local cache to invalidate a copy of the data

if it is present, and on read-miss, the cache is probed to check if the requested data

is cached and modified locally so that it can be written back to the memory and
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provided to the requesting processor node as well. Additionally, all snoop protocols

extend the status of each cache line to indicate the current state of the cache line.

Most of the snoop cache coherence protocols, maintain the state of Invalid, Shared

Read-Only, and Modified [33]. The snoop controller, considering the type of memory

request on the bus and the current state of the locally cached copy of that data,

if present, decides on how to change the state. The state transition diagram for

one such cache coherence protocol is shown in Figure 3.2. The Read-Only state is

assigned to all cache lines, which store a read-only copy of the cached data, while

the Modified state indicates that the cache line has been recently written to and

that the data in this cache line must not be present in other caches. The diagram

also shows by what type of memory requests on the bus each state transitions is

triggered. For instance, on a read miss generated by a processor in the system, the

address of data along with the processor ID that generated the miss is put on the

shared bus. This results in a state transition from Modified to Shared state in the

cache where this data has been most recently modified. Similarly on a write miss on

the bus, the snoop controller probes the cache and if the data is present it changes

its state to Invalid.

Probing the local cache to identify whether an address requested through the

common bus is present in the local cache entails an almost full cache lookup. In this

probing, the tag arrays of the cache structure need to be accessed. The tags stored

in all the associativity ways need to be read and compared with the actual tag of

the address present on the bus. Such snoop induced cache lookups for each memory

request are the major contributing factor to the excessive power consumption of the
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Figure 3.3: Multiprocessor system with a known shared region

cache coherence protocols.

It can be immediately observed from this brief description of snoop-based

cache coherence protocols, that these protocols are general-purpose in their nature.

It is conservatively assumed that each memory request on the common bus is a

request to a possibly shared data; hence, the request needs to be handled appropri-

ately. These protocols are designed to work for arbitrary workload where no prior

knowledge regarding the shared memory regions or communication patterns in the

applications is assumed. However, if application knowledge regarding the shared

memory regions of the tasks running on each processor node is made available to

their snoop controllers, a large amount of snoop-related cache probing can be elimi-

nated. Consider for example, that in a shared memory multiprocessor system, a set

of tasks is running, which happen to communicate through a single shared memory

region from address 100 to address 200. If such a knowledge is made available to the

snoop controllers and they are made capable of efficiently identifying whether the

address of the current memory request is within that region, the snoop controller

can decide to filter completely all memory requests outside of this region. This can
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be done, since all the snoop related cache line probing, invalidation, and write-back

are only needed for the case where the corresponding data is actively shared be-

tween processor nodes. Such a situation is illustrated in Figure 3.3. For instance,

if the processors generate a sequence of memory requests, such as Rd 100, Wr 500,

Rd 300, Wr 150, Wr 400, Rd 600, Rd 700, the general-purpose snoop controllers

would probe the local caches for each one of them. It is clear, though, that the cache

lookups for all but address 100 and 150 would miss. Only the references to addresses

100 and 150 present a potential risk for cache coherence, since they reside withing

the shared memory region used for communication in this particular example. If

the snoop controllers are made aware of this, then cache probing for addresses 100

and 150 would only be performed, while for the rest of the addresses, no activity is

necessary. Such filtering that is based on a deterministic knowledge regarding the

shared memory regions of each task would result in significant power savings.
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Chapter 4

Functional Overview

In shared memory multiprocessors, application tasks and processor nodes com-

municate through shared memory. At application level, parallel processes or threads

are created by the software developer in order to utilize the underlying multipro-

cessor platform. Shared memory regions are allocated if required, and tasks are

a fixed protocol of accessing it. In the case of multi-threading, this happens im-

plicitly. The threads in case of multi-threading run in the same address space (as

they are spawned by the same parent process). In the case of processes executing

in different address space, OS facilities are used to map the shared address space

into the address space of the processes involved in sharing. For example, shared

memory/message queues/FIFOs are interfaces provided by the OS. Thus, in case of

different address space sharing memory, the OS takes care of memory mapping.

Information regarding shared data access for each parallel task is readily avail-

able when an application software is developed and compiled for the underlying

system. For instance, it may be the case that only one of the global arrays is used

by a particular task as an input buffer, and one for an output buffer, while all other

memory references of that task are to private data. However, this information is lost

when the application is transformed into a binary form and loaded into the system.

The only events observable from the thread library and the operating system are
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the creation of threads and utilization of synchronization primitives. What is left at

hardware level is simply memory references, which the memory system (hardware)

needs to handle assuming that they can refer to any possible memory location.

In the proposed methodology, we make the information regarding shared mem-

ory utilization available down to the hardware level, where the snoop controller can

judiciously utilize it and filter out all the memory references, which do not refer to

a shared memory region of interest to the local processor node. The information is

transferred from the application to the system software, which in turn utilizes it to

identify the physical page frames, which belong to the shared regions.

4.1 Compiler and Application Support

As part of the task creation the compiler or the software developer makes

sure to inform the thread library or the operating system the list of global arrays

which should be treated as a shared memory region for a particular task. This can

be easily achieved in multiple ways, one of them being to include a pointer to the

beginning of the global array and its size when calling the primitive for creating

and starting a new thread. In this way, any application will explicitly inform the

underlying systems software that only memory references to specified global arrays

must be treated as references to shared memory; all other memory references are

private for that task; hence, no other processor in the system can generate a valid

reference to them.
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4.2 System Software Support

The memory manager module, which is usually a part of the system software

is the component responsible for allocating the data into the physical memory. The

application executes in a virtual address space, which is mapped to the available

physical memory. The memory manager maintains a page table, which provides the

mapping from virtual memory pages to physical memory frames. The most frequent

translations are always cached in the hardware Translation Look aside Buffer (TLB),

so that the hardware can translate the address generated by the processor quickly

with no intervention of the operating system. When a parallel application task is

created, the information regarding its shared global array is made available to the

operating system. At this stage, the memory manager identifies the set of physical

memory frames, which correspond to each shared array of the task. Additionally, a

unique identifier is provided for each such shared array/region in the system, which is

utilized by the hardware in order to efficiently determine if a given memory reference

bus transaction refers to a shared memory region. Note that the bit-width of this

unique identifier depends on the maximal number of shared regions. For example,

if there are 6 shared regions then a maximum of dlog26e bits = 3 bits are necessary

to identify to which shared region does this given memory reference belong to. In

practice, one of the identifiers (for instance, 0) is used for the memory references,

which do not belong to any shared region.

Figure 4.1 illustrates an example, where four regions are defined. A region

corresponds to a consecutive set of pages. At application level most often a shared
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Figure 4.1: Processors and Region ID

region corresponds to a global array; our granularity of forming shared memory

regions is at page level.

In order to find all the shared regions we could do one of the following: In the

first case we make a list of addresses that are shared by all the processors. In order

to accomplish this, we need to find the exact match for the starting address and the

end address of the shared array that may span across several pages. Each of these

addresses could then be represented as shared regions. However, this process will

result in excessive hardware overheads in order to maintain start, end addresses and

do an equality check on every access.

We therefore chose an alternate approach in which we capture the intervals of

addresses that are shared. The granularity at which these intervals are chosen is at

the “page level”. The choice of using page level granularity is native to computer

systems and makes the design simpler as hardware and operating systems are de-

signed around this level of granularity. This leads to a major savings in hardware

by not having to redesign hardware circuitry that keeps track of address ranges.

Only a small hardware addition is required as will be explained shortly. A direct
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consequence of using page level granularity (as opposed to keeping track of ranges)

is that it requires fewer number of bits.

Consequently, each region is assigned a unique ID and each physical page is

associated with one such ID. The region ID is associated with each translation entry

at the page table and is also stored in the hardware translation table.

The shared pages can be identified from the virtual address by doing simple

bit shifting and masking operations. The virtual addresses are translated into phys-

ical addresses and subsequently passed to the OS for allocation. The OS allocates

physical pages. In our approach, the OS can be modified to include additional in-

formation regarding the region id. It is to be noted that in our experimental results,

we refer to each logical shared array as a region. (In our experiments, we have found

out that there can be a maximum of 8 such shared regions).

On each cache miss the address of the required data is put on the shared bus.

When the processor generates an address, which is virtual, this address is translated

to a physical address by the TLB. Both the physical page number and the associated

unique region identifier are extracted from the TLB. At this stage, we can annotate

each memory reference with the region identifier of the shared region to which it

belongs. If all the snoop controllers in the system can observe this region identifier

for each memory request on the system, a very small and efficient hardware would

suffice to check whether that region ID matches with the shared regions for the

particular processor node. Providing the shared region identifier to all the processor

nodes can be performed very easily by placing it on the common bus together with

the memory request. It can be easily observed that all memory requests, which are
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related to cache coherence are mostly cache misses. These memory requests use

only the address lines from the common bus, since they need to either fetch a new

data or inform every other processor node that they are modifying a data in their

local cache. Consequently, the region identifier can be included as a part of the bus

transaction by simply using the available data lines in the shared bus; no additional

bus lines are needed to transfer the region ID and hence no hardware modifications

on the bus structure are needed. Now, the snoop controllers can directly observe the

identifier of each snoop related memory request, and easily determine which ones

refer to a shared region of their local processor.
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Chapter 5

Hardware Support

The purpose of the hardware support is to capture the set of shared regions of

each task currently executing on a given processor in the system. This information

becomes a part of the state of the task and is loaded by the operating system or

the thread library when the parallel task is scheduled for execution. During pro-

gram execution the system takes responsibility for translating the programś virtual

addresses for instructions and data into the real addresses that are needed to get

the instructions and data from the main memory. The system keeps the real ad-

dresses of recently accessed virtual-memory pages in a cache called the translation

look-aside buffer (TLB). Each memory reference during program execution is put

on the shared bus which also has information of this region identifier of the shared

region associated with it from the TLB.

If all the snoop controllers in the system can observe this region identifier

for each memory request on the system, a very small and efficient hardware would

suffice to check whether that region ID matches with the shared regions for the

particular processor node.

Such a hardware support could be implemented by using a set comparators

in each processor node. When a shared region id is sent on the bus then each of

these n bits are compared with the bits of all the shared regions for that task in the
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Figure 5.1: TLB and hardware logic

local processor cache. This is done by using a n bit comparator inside the snoop

controller. Such comparisons are time consuming and may in fact consume more

energy as opposed to saving energy on cache probes.

Therefore we recommend an alternative approach. Since the only informa-

tion that the snoop controllers require is a status bit, indicating whether a region

identifier is part of the shared regions of the local processor, this can be easily imple-

mented by a bit-mask register. The hardware register is basically an n bit register

where n is the number of shared regions and log2n bits are used to denote the region

ID. Our experimental results indicate that 8 shared regions are enough for all the

benchmarks we have used. Each bit of the n bit register indicates whether the region

with ID equal to the bit index is a shared region for that task or not. For example

if region ID is 3 then the fourth LSB is flagged as 1. Note that region identifiers are

assigned the values from 0 to n. The proposed hardware architecture is depicted in

Figure 5.1.

When a bus request is seen by the snoop controller, the region ID is used as an
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index to check the values of the corresponding bit in the bit-mask register. In order

to accomplish this, a simple decoder circuit is required, which in the case of 8 or 16

regions is trivial in size, power, and delay. If the bit in the register is set, the snoop

controller probes the cache. Otherwise, no cache probing is needed as the address

on bus is either a private address of a remote node or a shared address that is not

operated by the particular local processor node. It is noteworthy, that the introduced

hardware is extremely cost efficient, as it constitutes one bit-mask registers, whose

bits are indexed with the region ID of the snoop related bus transactions.

One other question that can be raised due to this hardware support scheme is

the need of additional wires for the shared bus. Since the region ID information is

also a part of the memory request and is placed on the system bus, there can arise

concerns about if the bus bandwidth limits the performance or increases overhead

when additional information(such as region ID) is transmitted on the bus. If this is

the case then we would require additional wires to widen the bus.

Every bus is composed of two distinct parts: the data bus and the address

bus. The data bus are the lines that actually carry the data being transferred. The

address bus is the set of lines that carry information about where in memory the

data is to be transferred to or from. In addition, there are a number of control lines

that control how the bus functions, and allow users of the bus to signal when data

is available. In an event of a read miss, the address lines of the bus are used to fetch

the instruction from the memory keeping the data lines free. In an event of a write

miss, the address that needs to be written is placed on the address lines of the bus

and is transferred to all other local caches keeping the data lines of the bus free. If
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the local caches do not have this memory address then the processor writes into the

address. Only in case of a write-invalidation; when a write miss is generated by a

processor and other caches have copies of the address location, the address lines of

the bus are used to notify other caches to invalidate this address. And, after writing

into the address location the processor uses the data bus lines to transfer the data

and update this data in the main memory. As we can see these memory requests

use only the address lines from the common bus, since they need to either fetch a

new data or inform every other processor node that they are modifying a data in

their local cache. Taking advantage of the fact that the data lines in the shared

bus are free, we can use those lines to transmit the region ID information without

having to add additional wires to the existing shared bus.
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Chapter 6

Experimental Results

We have evaluated the proposed approach on benchmarks chosen from the

SPLASH-2 benchmark suite [22]. The benchmarks were chosen from the suite be-

cause of the realistic workload provided by the kernels and the benchmark’s inherent

property to expose application parallelism for shared-memory multiprocessor sys-

tems. Specifically, we chose FFT , LU and RADIX kernels out of the SPLASH-2

benchmark suite.

The LU kernel factors a dense matrix into the product of lower triangular and

upper triangular matrices. In our case, we have used LU to decompose a data set

consisting of 128 × 128 matrix. The FFT data set consists of 2048 complex data

points to be transformed, and another set of 2048 complex data points containing

the roots of unity. The RADIX kernel implements the traditional radix sort. In

our experiments, we have used RADIX to sort 3072 keys. It is to be noted that

increasing the size of data sets in each of these kernels results in an increased number

of shared pages per region.

We simulated our target platform using Simics− 2.0.25 [35] functional simu-

lator. Simics is a full system simulation platform capable of running an unmodified

commercial operating systems on top of a simulated multiprocessor machine. For

our experimental results, we simulated a 4-processor system running sparc proces-
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Node 0 Node 1 Node 2 Node 3

fft sa
RM 28143 4280 4225 5838
WM 9084 3202 2442 4556
Total 37227 7482 6667 10394

fft dm
RM 14913 12070 5061 4755
WM 9711 3583 3266 4380
Total 24624 15653 8327 9135

lu sa
RM 12073 5855 6842 8880
WM 8103 4199 4571 7670
Total 20176 10054 11413 16550

lu dm
RM 48483 25789 12902 10201
WM 22648 7169 9356 7456
Total 71131 32958 22258 17657

radix sa
RM 11540 5407 5173 5105
WM 9383 5487 4774 6180
Total 20923 10894 9947 11285

radix dm
RM 17030 16665 4394 5846
WM 12369 6291 3929 6428
Total 29399 22956 8323 12274

Figure 6.1: Read/Write misses per processor
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Figure 6.2: Shared regions in benchmarks

sors and solaris operating system. As our approach focuses on the memory system,

the choice of particular RISC instruction set architecture makes no difference for

the methodology, which we propose. We have used Ruby [36] as a memory simu-

lator which plays the role of a detailed memory system simulator, including shared

memory, communication bus, local caches, and snoop controllers. Since we target

the memory system, the ruby simulator is our main driver.

In order to obtain the experimental results, we added instrumentation code
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Total Misses Sh RM Sh WM
fft sa 14243 5146 2775
fft dm 15461 5332 2757
lu sa 18073 9421 4743
lu dm 28080 15211 7142

radix sa 10341 1273 1546
radix dm 11358 1441 1874

Figure 6.3: Shared Read/Write misses

to the cache coherence protocol module to generate our desired statistics. We have

also inserted additional code in the benchmark suite to obtain the virtual addresses

of the shared memory regions. These virtual addresses were translated into physical

addresses inside the simulator. The region based statistics is thus based on actual

physical addresses. The physical addresses (pages) that belong to shared regions

were assigned a unique region ID. Further, the region ID is used to match the

physical address requests being generated by the bus requests in our modification

to the snoop controller simulation module.

For our baseline architecture, we have performed experiments on a 32K direct

mapped (DM) and a 2-way set associative (SA) L1 cache. The results in terms of

total misses, read misses(RM) and write misses(WM) per processor node are given

in Figure 6.1.

For each of the benchmarks we identified the shared arrays by inspecting the

benchmark code. We calculated the size of these arrays and divided them into phys-

ical pages where page size is 4096 bytes. Now these shared arrays were annotated

by a region ID. Since the size of the logically shared arrays varies on the input data

set, the number of pages will also vary according to the input data size. For our

benchmarks we got between 1 to 5 shared regions per benchmark, each of which is a
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Cache Total Decode Wordline Bitline Sense amp
Tag Tag

32KB 2way 0.112 0.016 0.00054 0.020 0.0754
32KB DM 0.107 0.016 0.00052 0.0192 0.0708

Figure 6.4: Energy statistics per access (nJ)

Total Energy Shared Region Percentage
(nJ) Energy (nJ) Energy Savings

fft sa 1597.49 888.42 44.39
fft dm 1651.02 863.79 47.68
lu sa 2024.18 1588.63 21.63
lu dm 2998.55 2386.99 20.40

radix sa 1159.85 316.18 72.74
radix dm 1212.87 353.99 70.8

Figure 6.5: Energy savings per benchmark

set of shared physical pages. The region ID’s and the number of physical pages per

region are listed in Figure 6.2. In our approach we are filtering the snoop requests

based on the addresses of the read or write misses available on the shared bus. For

this we will need to figure out how many of these addresses lie in a shared region.

We compare the physical page number of the addresses on the bus with the physical

page number of the shared arrays and then keep a count of the number of addresses

that have the same page number as the shared arrays. We divide this count into

shared read misses and shared write misses by taking into account the type of miss

that was placed on the bus. These statistics are shown in Figure 6.3. With our

approach we will probe the cache only if the addresses lie in a shared region.

The energy consumption per access for the tag arrays of data caches is mea-

sured using the CACTI tool [37]. We do it for our baseline architecture of 32KB

cache. Figure 6.4 lists the numbers in nJ for the energy consumption of dedicated

tag arrays used in the snoop activity. The total energy consumption reported is the

energy dissipated by the tag arrays.
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Figure 6.6: Energy savings

The percentage of energy savings per benchmark is calculated in Figure 6.5.

These numbers are plotted in Figure 6.6. The higher bar represents the energy

consumed in nJ for the baseline architecture and the second bar represents the

energy consumed in nJ after filtering the unnecessary snoop activities. Here we

show and compare the energy dissipated by the snoop activity. As we discussed

earlier in the paper, the energy contribution of the snoop operations to the total

energy of the memory system can be very high and depends on the cache/memory

sizes and bus organization. This pattern is repeated for all the benchmarks. From

the results we can see that we get the maximum reduction in FFT and RADIX

benchmarks. However, the energy reduction in LU is not that significant because

of two reasons. Firstly, LU loops and threads operate on a large part of shared

regions as compared to FFT or RADIX. Since the number of private regions in

LU is small, the energy savings is not as high as the ones achieved for the other

benchmarks. Secondly, our filtering process is conservative as it operates at page

level granularity at the moment. We filter shared addresses based on the physical

page number of the address, hence some private data, which belong to that page

would also trigger a snoop cache probing.
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Chapter 7

Conclusion

In this thesis, we have presented a low-power methodology for maintaining

caches coherent in an embedded multi-processor system. The proposed approach

exploits application information regarding shared memory regions of the communi-

cating tasks in order to eliminate a large number of power consuming snoop-induced

cache probing. The proposed methodology is very cost-efficient as the required addi-

tions to the system software and the hardware architectures are minimal and impose

no performance or area overheads. Such an approach would be of great utility to a

large number of modern embedded applications, for which both high-performance

and low-power are of great importance.
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Appendix A

Data Structures

The data structures declared in CacheMemory.h are explained in this chapter.

These data structures are declared as either public or private variables members of

class CacheMemory.

int *m rd miss;

int *m wr miss;

int *m rd hits;

int *m wr hits;

int *m snoop miss;

int *m snoop hits;

int *m shared write;

int *m shared readonly;

int *m rd hits inMstate[2]; 10

int *m rd miss inMstate[2];

int *m wr hits inMstate[2] ;

int *m wr miss inMstate[2] ;

int m total miss;

int m region size;

struct physical stat {
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char varname[20];

int offset;

unsigned long pa; 20

int region;

};

list<struct physical stat> pa list;

typedef std::list<struct physical stat> physical stat t;

struct rd wr stat {

unsigned long priv miss;

unsigned long shared rd miss;

unsigned long shared wr miss; 30

unsigned long page;

};

struct rd wr stat rw page stats[NUM PROCS];

struct snoop stat {

unsigned long hits[NUM PROCS];

unsigned long misses[NUM PROCS];

};

struct snoop stat snoop stats gets[NUM PROCS], snoop stats getx[NUM PROCS];

40

struct region stat {

unsigned long gets hits;

unsigned long gets miss;

unsigned long getx hits;
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unsigned long getx miss;

};

struct region stat *per reg stat[NUM PROCS];
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Appendix B

Useful Functions

The following functions inside CacheMemory.h operate on the data structures

mentioned in the previous chapter.

bool isReadHit(const Address& address, CoherenceRequestType type, MachineID m);

void printOurStats(ostream &out);

void printPhysicalAddrStats(ostream &out, physical address t pa, int rw);

void intoMstate(MachineID m);

void outMstate(MachineID m);

bool getphysicaladdr(const Address& address, CacheRequestType type);

bool rangeCheck(const Address& address, CoherenceRequestType type, MachineID m);
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Appendix C

Recompiling Simics

Simics is installed on dogbert.eng.umd.edu. This chapter shows how to run

simics on dogbert as user-id res. The following commands need to be run from

/home/res/TESTDIR.

C.1 Compiling Simics

Simics needs to be recompiled if there are any modifications done on the

sources. The following commands can be used to recompile simics assuming there

are some changes made to ruby, the memory module simulator:

1. cd /home/res/ruby/TESTDIR/ruby

2. make PROTOCOL=

MOSI SMP bcast 1level DESTINATION=MOSI SMP bcast 1level

Note that the above commands are also encapuslated inside a script called runmake

under /home/res/ruby/TESTDIR.

C.2 Running Simics

1. cd /home/res/TESTDIR/simics/home/MOSI SMP bcast 1level

2. setenv SIMICS EXTRA LIB ./modules
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3. cd /home/res/TESTDIR/simics/home/MOSI SMP bcast 1level

4. ./simics

At this point simics should startup with the simics prompt. The following simics

commands need to be issued at simics prompt in order to configure simics before

running any simulations.

1. read-configuration

../../../../GEMS/simics/home/sarek/four cpu checkpoint

2. instruction-fetch-mode instruction-fetch-trace

3. istc-disable

4. dstc-disable

5. load-module ruby

6. ruby0.setparam g NUM PROCESSORS 4

7. ruby0.init

8. c

At this point a console window should pop-up simulating the boot sequence of a

solaris 5.8 OS running on four processor SPARC system.
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