
ABSTRACT

Title of Dissertation: DISCRETE INVERSE CONDUCTIVITY PROBLEMS

ON NETWORKS

Farshad Foroozan, Doctor of Philosophy, 2006

Dissertation directed by: Carlos A. Berenstein, Professor,
Department of Mathematics and
The Institute for Systems Research

The purpose of this dissertation is to present a mathematical model of network tomog-

raphy through spectral graph theory analysis. In this regard, we explore the properties of

harmonic functions and eigensystems of Laplacians for weighted graphs (networks) with

and without boundary. We prove the solvability of the Dirichlet and Neumann boundary

value problems. We also prove the global uniqueness of the inverse conductivity problem

on a network under a suitable monotonicity condition. As a physical interpretation to the

discrete inverse conductivity problem, we de�ne a variant of the chip-�ring game (a dis-

crete balancing process) in which chips are added to the game from the boundary nodes and

removed from the game if they are �red into the boundary of the graph. We �nd a bound on

the length of the game, and examine the relations between set of spanning weighted forest

rooted in the boundary of the graph and the set of critical con�gurations of the chips.



DISCRETE INVERSE CONDUCTIVITY PROBLEMS ON NETWORKS

by

Farshad Foroozan

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial ful�llment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee

Professor Carlos Berenstein, Chairman
Professor Kenneth Berg
Professor David Mount
Professor Clyde Kruskal
Professor James Purtilo



c Copyright by

Farshad Foroozan

2006



To my daughter, Sarvnaz, and my wife, Lili.

ii



ACKNOWLEDGEMENTS

I am indebted to my advisor, Professor Carlos Berenstein, for his vision, patience, guid-

ance, and support. His original idea of discretization of the inverse connectivity problems

and its contribution to the �eld of network tomography, inspired me to do this dissertation.

This work would de�nitely have been impossible without him. I would like to express

my gratitude to Professor Berg and Professor Mount whom I bene�tted a lot from their

very interesting comments and fruitful discussions over the last year. My warm thanks to

Professor Levermore for his support and advice on many occasions. I would also like to

thank my advisory committee members; Professor Kruskal, and Professor Purtilo for their

helpful and stimulating discussions.

I am grateful to all the professors of the mathematics and the electrical engineering

courses I took at University of Maryland over the years and who thereby shaped my un-

derstanding of applied mathematics; Professor Baras, Professor Benedetto, Professor Berg,

Professor Freidlin, Professor Krishnaprasad, Professor Levine, Professor Narayan, Profes-

sor Papamarcou, Professor Schwartz, and Professor Warner.

It would have been impossible for me to survive without the �nancial support of the

Mathematics department. I would like to thank the department for providing me with

teaching assistantships.

Finally, I wish to express my deepest thanks to my parents and my family for their

iii



patience, understanding, and encouragement.

iv



Contents

1 Introduction 1

1.1 Calculus on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Properties of Harmonic Functions . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Spectra of the Normalized and the Combinatorial Laplacians . . . . . . . 13

1.4 Dirichlet and Neumann Eigenvalues . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 Dirichlet Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.2 Neumann Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 The Diameter of a Weighted Graph . . . . . . . . . . . . . . . . . . . . . . 26

2 The Discrete Inverse Conductivity Problem 29

2.1 Discrete Green's Function . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Dirichlet and Neumann boundary Value Problems . . . . . . . . . . . . . . 40

2.3 Inverse Conductivity Problem on the Network . . . . . . . . . . . . . . . . 48

3 The Physical Interpretation of The Discrete Inverse Conductivity Problem 62

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Basic Theory of the Dirichlet Game . . . . . . . . . . . . . . . . . . . . . 67

3.3 Critical Con�guration of the Dirichlet Game . . . . . . . . . . . . . . . . . 70

3.4 Dirichlet Game as a Discrete Dynamical System . . . . . . . . . . . . . . . 75

3.5 Basic Theory of Electrical Networks . . . . . . . . . . . . . . . . . . . . . 79

3.6 Random Walk interpretation of Electrical Networks . . . . . . . . . . . . . 88

3.7 Upper Bound for Run-Time Estimates . . . . . . . . . . . . . . . . . . . . 95

v



4 Algebraic Aspects of the Dirichlet Game 101

4.1 The Determinant of the Dirichlet Laplacian . . . . . . . . . . . . . . . . . 102

4.2 Relation of Green's Function to Dirichlet Game . . . . . . . . . . . . . . . 106

4.3 Critical Con�guration and Rooted Spanning Weighted Forest . . . . . . . . 111

5 REFERENCES 116

vi



Chapter I

1 Introduction

A network consists of interconnecting any pair of users or nodes by means of some links.

Because of the complexity and the size of the network, it is desirable to study only a sub-

set of the nodes ( known as boundary nodes) to discover and detect certain problems in

the interior of the network. These problems might include checking connectivity, �nding

largest components, tracking data traf�c, assessing and dealing with a variety of security

and reliability issues. From the practical point of view, this is normally done by setting

up �monitors� at a relatively small subset of the nodes. From the monitors, data can be

collected and examined. The problem of discovering the detailed inner structure of the

network from a collection of �end-to-end� measurements can be seen as a type of inverse

problem, analogous to those arising in tomography, but with a discrete �avor.

Motivated by this application, Berenstein and Chung [6] initiated the work of discretiza-

tion of the inverse conductivity problem by means of the spectral graph theory. Their work

led to a key result in the domain of discrete inverse conductivity problem which proves

the uniqueness of weights (conductivity or connectivity) under certain monotonicity con-

ditions. Further investigations include exploring some variant of chip-�ring game as a

physical interpretation of the discrete inverse conductivity problem. This is motivated in

part by communication network models in which chips represent packets or jobs and the

boundary nodes represent processors.

This thesis is divided into four chapters. Chapter I is a substantive introduction to
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the Laplacians of graphs, including properties of the spectra of Laplacians, and the de-

velopment of calculus on graph. Chapter II introduces the discrete Green's function, and

improves the result of Berenstein and Chung [6] under a weaker condition. Chapter III de-

scribes the Dirichlet chip-�ring game on weighted graph as a physical interpretation of the

discrete inverse conductivity problem and provides an upper bound estimate on the time for

the con�guration to reach a stable con�guration in terms of the diameter of the weighted

graph. Chapter IV combines the results of Chapter III and the discrete Green's function to

allow fast computation of the upper bound run-time estimate.

Before presenting a more detailed summary of the contents of this chapter, we mention

some important contributions to the �eld of spectral graph theory. An early fundamental

problem in the study of the spectra of graphs was the question of whether a graph can be

determined by its set of eigenvalues. The answer was found to be negative. That led to

further research in the study of isospectral graphs [ 16, 29]. Motivated by the study of the

eigenvalues of Laplacians of compact Riemannian manifolds, bounds for the eigenvalues

of the discrete Laplacian have been studied [3, 21, 31, 50]. Further developments in this

area include, properties of the second smallest eigenvalue [49, 50], expansion properties

[2], isoperimetric number and Cheeger's constant [52], and the heat kernel of Laplacian

[18].

This chapter is divided into �ve sections. The �rst section studies calculus on graphs. In

the second section, we study the properties of harmonic function as a solution to the discrete

Laplace's equation and formulate a theorem that gives a necessary and suf�cient condition

for a function to be harmonic. In the third section, the symmetric versions of the discrete

Laplacian which are the combinatorial and the normalized Laplacians are introduced. This
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symmetrization will allow us to study the eigenvalues of the discrete Laplacian. The nor-

malization of the Laplacian is mainly due to keep the subject parallel to the eigenvalues of

the compact Riemannian manifold. Theorems involving properties of the eigenvalues of the

weighted Laplacian have been developed. In section four, we study the Neumann and the

Dirichlet boundary conditions along with the spectrum of the Neumann and the Dirichlet

Laplacians. One of the objectives of this section is to formulate matrices whose eigenvalues

are the Neumann and the Dirichlet eigenvalues. We also discuss the relationship between

the Neumann eigenvalue and the eigenvalue of the transition probability matrix of the Neu-

mann random walk. In the last section, we introduce the concept of the diameter of the

weighted graph and its relation to the �rst eigenvalue of Laplacian. Interesting bounds on

the diameter of the graph are also introduced.

1.1 Calculus on Graphs

We will begin with some de�nitions of graph theoretic terminologies which are largely

derived from Berenstein-Chung [6].

By a graph G D .V; E;2/;we mean a non-empty �nite set V of vertices, a non-empty

�nite set E of edges, and an injective map 2 from E into the two element subsets of V .

The elements of 2.e/ are called the endpoints of the edge e: For simplicity, we drop the

notation 2 and write the graph as G D .V; E/:

A path in G is an ordered set of vertices x0; x1; x2; :::; xn such that for each i; 1 � i � n

implies xi�1 � xi : Here, the notation xi�1 � xi means that two vertices xi�1 and xi are

connected (adjacent) by an edge in E . The graph G is connected if any two vertices are
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connected by a path.

A graph .S; T / is said to be a subgraph of G D .V; E/; if S and T are non-empty

subsets of V and E respectively. If .S; T / consists of all edges of G which have both

endpoints in S, then .S; T / is called an induced subgraph of G and is denoted by GS

D .S; ES/: We de�ne the boundary @S of S to be set of all vertices not in S but adjacent

to some vertex in S, i.e., @S D fy 2 .V n S/ j 9x 2 S; such that x � yg. And the inner

boundary is de�ned by @0S D fz 2 S j 9y 2 @S; such that y � zg :

A weighted graph G D .V; E/ has associated with it a non-negative function

w : V � V ! R;

such that w.x; y/ D w.y; x/; and w.x; y/ D 0 if either x D y or x and y are not connected

by an edge in E .

For x 2 V and a non-empty subset U of V , we de�ne a relative degree dGU .x/ of x

with respect to the induced subgraph GU of G as

dGU .x/ D
X
y2U

w.x; y/;

if U D V; we call dG.x/ D
P
y2V w.x; y/ the degree of the vertex x .

The weighted discrete Laplacian 1w of a function f : V ! R on a graph G D .V; E/

and a point x 2 V such that dG.x/ 6D 0 is de�ned as

1w f .x/ D
X
y2V

. f .x/� f .y//
w.x; y/
dG.x/

;
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if x is an isolated vertex ofG, i.e., dG.x/ D 0 then we set1w f .x/ D 0:

The symmetrized versions of the discrete Laplacian are the weighted combinatorial

Laplacian Lw and the weighted normalized Laplacian £w. The combinatorial Laplacian

is related to the algebraic aspect of the graph theory, whereas the weighted normalized

Laplacian is related to the geometric aspect of the spectral graph theory [18]. The weighted

combinatorial Laplacian Lw of a function f : V ! R is de�ned as

Lw f .x/ D
X
y2V

. f .x/� f .y//w.x; y/:

The weighted normalized Laplacian £w of a function f : V ! R on a graph G D .V; E/

and a point x 2 V such that dG.x/ 6D 0 is de�ned as:

£w f .x/ D
X
y2V

�
f .x/

p
dG.x/

�
f .y/

p
dG.y/

�
w.x; y/
p
dG.x/

;

if dG.x/ D 0 then we set £w f .x/ D 0: The matrix formulation of the above Laplacians

become:

1w.x; y/ D

8>>>>>><>>>>>>:

1 if x D y and dG.x/ 6D 0

�
w.x; y/
dG.x/

if x is adjacent to y

0 otherwise:
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Lw.x; y/ D

8>>>>>><>>>>>>:
dG.x/ if x D y

�w.x; y/ if x is adjacent to y

0 otherwise:

£w.x; y/ D

8>>>>>><>>>>>>:

1 if x D y and dG.x/ 6D 0

�
w.x; y/

.dG.x/ dG.y//1=2
if x is adjacent to y

0 otherwise.

Let T denote the diagonal matrix with the .x; x/-the entry having the value dG.x/: Then

the following relations hold between 1w; Lw; £w :

Lw D T 1=2£wT 1=2 D T1w;

£w D T�1=2LwT�1=2 D T 1=21wT�1=2;

1w D T�1Lw D T�1=2£wT 1=2;

provided that G does not have an isolated vertex x , i.e., dG.x/ 6D 0:

We now develop the concept of differential and integral calculus on graphs. Let S be

a non-empty subset of V and GU an induced subgraph of the graph G. For a function f

de�ned on S, the integration of f over S with respect to the relative degree dGU .x/ for each
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x 2 S is de�ned as Z
S
f .x/ dGU .x/ D

X
x2S

f .x/ dGU .x/:

If U D V then the integration of f over S simply becomes:

Z
S
f .x/ dG.x/ D

X
x2S

f .x/ dG.x/:

The directional derivative of the function f de�ned on V for the graph G with no isolated

vertices is de�ned as

Dw;y f .x/ D . f .x/� f .y//
�
w.x; y/
dG.x/

�1=2
;

for each x and y 2 V : The gradient rw of a function f is de�ned to be a vector in Rn ,

where n is the number of vertices,

rw f .x/ D . Dw;y f .x//y2V :

We now introduce the notion of outward normal derivative. For an induced subgraph GS D

.S; ES/ of a graph G with non-empty boundary @S, the outward normal derivative
@ f
@wn

.z/

at z 2 @S is de�ned as

@ f
@wn

.z/ D
X
y2S
. f .z/� f .y//

w.z; y/
dGS.z/

:

As a consequence of the above de�nitions, it is easy to see that the following lemma is
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true.

Lemma 1.1.1

Let f be de�ned on the set of vertices V of the graph G with no isolated vertices. Then

Z
V
j rw f .x/ j2 dG.x/ D 2

X
x�y

j f .x/� f .y/ j2 w.x; y/;

where
P
x�y denotes the sum over all unordered pairs fx; yg for which x and y are adjacent.

Proof: The proof follows easily from the de�nition of the integral.

Z
V

j rw f .x/ j2 dG.x/ D
X
x2V

X
y2V

j f .x/� f .y/ j2 w.x; y/

D 2
X
x�y

j f .x/� f .y/ j w.x; y/

QED

Theorem 1.1.2

For any pair of functions f; h de�ned on the set of vertices V of the graph G with no

isolated vertices; we have:

2
Z
V
h.x/1w f .x/dG.x/ D

Z
V
.rw f .x//:.rwh.x//dG.x/:

Proof:

2
Z
V
h.x/1w f .x/dG.x/ D 2

X
x2V

h.x/1w f .x/dG.x/

D 2
X
x2V

h.x/
X
y2V

. f .x/� f .y//
w.x; y/
dG.x/

dG.x/
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D 2
X
x2V

h.x/
X
y2V

. f .x/� f .y//w.x; y/

D
X
x2V

X
y2V

.h.x/� h.y//. f .x/� f .y//w.x; y/

D
X
x2V

.rw f .x// : .rwh.x// dG.x/

D

Z
V
.rw f .x// : .rwh.x// dG.x/:

QED

Theorem 1.1.3

Under the same hypothesis as in Theorem 1.1.2, we have the following identities

a/ 2
R
V f .x/1w f .x/dG.x/ D

R
V j rw f .x/ j

2 dG.x/;

b/
R
V h.x/1w f .x/dG.x/ D

R
V f .x/1wh.x/dG.x/;

Furthermore, for an induced subgraph GS of G with non-empty boundary @S , we have

c/
R
S. f .x/1wh.x/� h.x/1w f .x//dGS.x/ D

R
@S.h.z/

@ f
@wn

.z/� f .z/
@h
@wn

.z//dGS.z/;

where S D S [ @S: (c) is also known as Green's theorem.

Proof: (a) follows from Theorem 1.1.2, by substituting h for f: (b) also follows from

Theorem 1.1.2 by symmetry. We prove part (c) as follows. Let w0 be a real valued function

on S� S de�ned by

w0.x; y/ D

8>><>>:
w.x; y/ if either x or y are in S

0 otherwise.

Let ES be the subset of edges ES such that w
0.x; y/ > 0 if fx; yg is an edge in ES with

endpoints x and y: Then GS D .S; ES/ is a subgraph of G: Applying the Theorem 1.1.3
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(b) to the graph GS with w0 as its weight function, we see that

0 D

Z
S
.h.x/1w0 f .x/� f .x/1w0h.x//d 0GS.x/

D

�Z
S
.h.x/1w0 f .x/� f .x/1w0h.x//d 0GS.x/

�
C�Z

@S
.h.z/1w0 f .z/� f .z/1w0h.z//d 0GS.z/

�
(1)

where d 0GS.x/ is the degree of the vertex x of the graph GS with respect to the weight

function w0: From the de�nitions of the degree and the discrete Laplacian, it is easily seen

that if x 2 S then d 0GS.x/ D dGS.x/;1w
0 f .x/ D 1w f .x/; and 1w0h.x/ D 1wh.x/: Also,

if z 2 @S then d 0GS.z/ D dGS.z/; 1w
0 f .z/ D

@ f
@wn

.z/; and1w0h.z/ D
@h
@wn

.z/: Substituting

these equalities to (1) gives the required result:

Z
S
. f .x/1wh.x/� h.x/1w f .x//dGS.x/ D

Z
@S
.h.z/

@ f
@wn

.z/� f .z/
@h
@wn

.z//dGS.z/:

QED

1.2 Properties of Harmonic Functions

Let GS D .S; ES/ be a connected induced subgraph of G D .V; E/with non-empty bound-

ary set @S : A function f : S! R such that

1w f .x/ D
X
y2S

. f .x/� f .y//
w.x; y/
dG.x/

D 0; for all x 2 S;
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is said to be harmonic on GS . Solving the above equation for f .x/; we get

f .x/ D
1

dG.x/

X
y2S

f .y/w.x; y/; for all x 2 S:

Therefore, a harmonic function is the weighted average of the values of function at its

neighboring vertices. The following theorem shows that the maximum and minimum of a

harmonic function cannot occur in the interior of the graph.

Theorem 1.2.1

Let GS be a connected induced subgraph of G with non-empty boundary @S: For a

non-constant function f : S! R , we have:

a) If 1w f .x/ D 0 for all x 2 S; then f has no maximum or minimum value in S:

b) If 1w f .x/ � 0 for all x 2 S; then f has no minimum value in S:

c) If 1w f .x/ � 0 for all x 2 S; then f has no maximum value in S:

Proof: Part (a) follows from parts (b) and (c) together. Part (c) carries the same argu-

ment as (b). So we only prove part (b). Assume S has a vertex x such that f .x/ is minimum

and there is a vertex y0 2 S adjacent to x such that f .x/ 6D f .y0/. Such a choice is possible

by the connectedness of GS and the fact that f is a non-constant function on S. Because

1w f .x/ � 0 then

f .x/ �
1

dG.x/

X
y2S

f .y/w.x; y/

D
1

dG.x/

X
y 6Dy0
y2S

f .y/w.x; y/C f .y0/w.x; y0/
1

dG.x/

11



>
1

dG.x/

X
y 6Dy0
y2S

f .x/w.x; y/C f .x/w.x; y0/
1

dG.x/
D f .x/:

This is clearly a contradiction, therefore, f has no minimum value in S.

QED

Under the same hypothesis as in Theorem 1.2.1, the following statements are true.

Corollary 1.2.2

If 1w f .x/ D 0 and 1wg.x/ � 0 for all x 2 S then g j@S� f j@S implies g � f on

S:

Corollary 1.2.3

If a function f : S ! R satis�es 1w f .x/ D 0 for all x 2 S and j f j has a maximum

on S, then f is a constant function.

The next theorem gives a necessary and suf�cient condition for a function to be har-

monic on GS:

Theorem 1.2.4

Let GS be a connected induced subgraph of G with non-empty boundary @S. Then the

function f : S ! R is harmonic on GS if and only if for every subset S0 of S; we haveR
@S0

@ f
@wn

.z/dGS0 .z/ D 0:

Proof: Suppose that
R
@S0

@ f
@wn

.z/dGS0 .z/ D 0 for every subset S
0 of S: For x 2 S; let

S0 D fxg. Since

Z
@S0

@ f
@wn

.z/dGS0 .z/ D
X
z2@S0

. f .z/� f .x//w.z; x/;
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therefore, X
z2@S0

. f .z/� f .x//w.z; x/ D 0:

This implies that f is harmonic on GS . Conversely, suppose that 1w f .x/ D 0 for all

x 2 S: Clearly f is harmonic on any subset S0 of S: Applying the Green's theorem , with

h identically 1 and noting that 1w f .x/ D 0 on S0, gives
R
@S0

@ f
@wn

.z/dGS0 .z/ D 0:

1.3 Spectra of the Normalized and the Combinatorial Laplacians

In this section, we discuss the spectra of the normalized and the combinatorial Laplacians

for weighted graphs. We begin by characterizing the eigenvalues of the normalized and the

combinatorial Laplacians in terms of the Rayleigh quotient, which for a given matrix A and

vector x is de�ned as

R.x/ D
hx; Axi
hx; xi

;

where the notation h ; i is the standard inner product. In particular, the Rayleigh quotient

for a matrix A and eigenvector x evaluates to the corresponding eigenvalue. Let f denote

an arbitrary function de�ned on the vertices V of the graph G . We can view f as a column

vector. Then the Rayleigh quotient for Lw is

h f; Lw f i
h f; f i

D

P
x�y. f .x/� f .y//2w.x; y/P

x f 2.x/
:
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And the Rayleigh quotient for £w and the function g de�ned on V is

hg; £wgi
hg; gi

D

D
g; T

�1
2 LwT

�1
2 g
E

hg; gi

D
h f; Lw f iD
T
1
2 f; T

1
2 f
E

D

P
x�y. f .x/� f .y//2w.x; y/P

x f 2.x/dG.x/
;

where g D T
1
2 f: Let �0 � �1 � �2 � ::: � �n�1 be the eigenvalues of the real symmetric

matrix £w: Then, as a consequence of the Courant-Fisher theorem [39, Theorem 4.2.11],

we have

�0 D min
f 6D0

P
x�y. f .x/� f .y//2w.x; y/P

x f 2.x/dG.x/
;

and

�n�1 D max
f 6D0

P
x�y. f .x/� f .y//2w.x; y/P

x f 2.x/dG.x/
:

We can easily see from the above equations that all eigenvalues of £w are non-negative and

0 is the minimum eigenvalue of £w. Let 1 denote the constant function which has a value 1

on each vertex. Then T
1
21 is an eigenfunction of £w that corresponds to the eigenvalue 0.

Applying the Courant-Fisher theorem again, we obtain the minimum nonzero eigenvalue

to be:

�1 D min
f 6D0; T

1
2 f ? T

1
2 1

P
x�y. f .x/� f .y//2w.x; y/P

x f 2.x/dG.x/
:

In general, for k D 0; :::; n � 1,

�k D min
f 6D0; T

1
2 f ? '0;:::;'k�1:

P
x�y. f .x/� f .y//2w.x; y/P

x f 2.x/dG.x/
:
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where '0; :::; 'n�1 are the corresponding eigenfunctions. Applying similar argument to the

eigenvalues � 0 � � 1 � ::: � � n�1 of Lw; we obtain � 0 D 0 and for k D 0; :::; n � 1; we

have:

� k D min
f 6D0; f ?  0;:::; k�1

P
x�y. f .x/� f .y//2w.x; y/P

x f 2.x/
;

where  0; :::;  n�1 are the corresponding eigenfunctions. The following important and

relatively simple lemma of which the non-weighted version appears in Fan Chung [18,

page 7].

Lemma 1.3.1

Let � 0 � � 1 � ::: � � n�1 be the eigenvalues of the combinatorial Laplacian Lw; and

�0 � �1 � �2 � ::: � �n�1 the eigenvalues of £w . Then

(a)
P
i � i D

P
x dG.x/ and

P
i �i � n; where n is the number of vertices in G:

(b) For n � 2;

�1 �
n

n � 1
.

Also for a graph G without isolated vertices, we have

�n�1 �
n

n � 1
.

(c) The multiplicity of zero eigenvalue is the same as the number of connected compo-

nents of G:

(d) For all i � n � 1; we have � i � 2dmax and �i � 2:

Proof: (a) follows by considering the traces of Lw and £w:

For (b) suppose �1 >
n

n � 1
; then it can be easily seen that

P
i �i > n which contradicts
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(a): And if there is no isolated vertex, we easily see that �n�1 �
n

n � 1
:

For (c) suppose that G is connected. Let  be an eigenfunction of Lw for the zero

eigenvalue . Then

Lw. / D 0;

or

h ; Lw i D
X
x�y
. .x/�  .y//2w.x; y/ D 0:

This implies that  must be a constant function on G and the eigenspace of Lw corre-

sponding to zero eigenvalue must be one dimensional. When G is not connected, the

result follows from block diagonalizing Lw in terms of the combinatorial Laplacian of the

connected components of G: For the normalized Laplacian £w; the same argument ap-

plies.

To show (d), we use the Rayleigh quotient characterization of � n�1 and �n�1:As argued

above,

� n�1 D max
f 6D0

h f ; L f i
h f ; f i

D max
f 6D0

P
x�y. f .x/ � f .y//2w.x; y/P

x2V f 2.x/
:

Since X
x�y
. f .x/� f .y//2w.x; y/ �

X
x�y

2. f 2.x/C f 2.y//w.x; y/;

therefore,

� n�1 � max
f 6D0

2
P
x2V f 2.x/dG.x/P
x2V f 2.x/

� 2dmax

16



The argument for �n�1 is similar. The Rayleigh quotient for �n�1 is

�n�1 D max
f 6D0

P
x�y. f .x/ � f .y//2w.x; y/P

x2V f 2.x/dG.x/

� max
f 6D0

P
x�y 2. f 2.x/C f 2.y//w.x; y/P

x2V f 2.x/dG.x/

� max
f 6D0

2
P
x2V f .x/2dG.x/P
x2V f 2.x/dG.x/

� 2:

QED

1.4 Dirichlet and Neumann Eigenvalues

1.4.1 Dirichlet Eigenvalues

Let GS be an induced subgraph of the graph G D .V; E/ with the non-empty boundary @S

such that S D V : A function f : S ! R is called a Dirichlet function if f .x/ D 0 for all

x 2 @S. We wish to study those Dirichlet functions f and g that satisfy

Lw f .x/ D � f .x/ for all x 2 S;

£wg.x/ D �g.x/ for all x 2 S:

In this case, f is a Dirichlet eigenfunction of Lw corresponding to a Dirichlet eigenvalue � ;

and similarly g is a Dirichlet eigenfunction of £w corresponding to a Dirichlet eigenvalue �:

Viewing Lw as a matrix, we now de�ne the Dirichlet Laplacian Lw;S to be Lw restricted to

the rows and columns of S. We de�ne the Dirichlet normalized Laplacian and the Dirichlet

discrete Laplacian similarly. The following lemma generalizes the Lemma 8.2 of [18] to

17



graphs with arbitrary weights.

Lemma 1.4.1

A Dirichlet function f : S ! R is a Dirichlet eigenfunction if and only if f jS is an

eigenfunction of Lw;S: Similarly, a Dirichlet function g : S ! R is a Dirichlet eigenfunc-

tion if and only if g jS is an eigenfunction of £w;S: The eigenvalue � of Lw;S corresponding

to f is given by

� D

P
x�y. f .x/ � f .y//2w.x; y/P

x2V . f .x//2
;

and the eigenvalue � of £w;S corresponding to g is given by

� D

P
x�y. f .x/ � f .y//2w.x; y/P

x2V . f .x//2dG.x/
;

where g D T 1=2 f:

Proof: Let f be a Dirichlet function on S. Then for all x 2 S;

Lw;S f jS .x/ D f jS .x/dG.x/�
X

y2S;x�y
f jS .y/w.x; y/

D f .x/dG.x/�
X

y2V;x�y
f .y/w.x; y/ D Lw f .x/:

Therefore, for all x 2 S and f a Dirichlet function on S ; Lw f .x/ D � f .x/ if and only if

Lw;S f jS .x/ D � f jS .x/: The Rayleigh quotient of Lw;S for an eigenfunction f of Lw;s

18



shows that

� D
h f jS ; Lw;s f jS i
h f jS; f jSi

D

P
x2S f jS .x/

�
f jS .x/dG.x/�

P
y2S;x�y f jS .y/w.x; y/

�
P
x2S f j2S .x/

D

P
x�y; x2S; y2S . f .x/ � f .y//2w.x; y/P

x2V f 2.x/

D

P
x�y. f .x/ � f .y//2w.x; y/P

x2V . f .x//2
:

The proof for the normalized Laplacian proceeds analogously. Let g be a Dirichlet function

on S: Then for all x in S;

£w;Sg jS .x/ D
X

y2S; x~y

�
g jS .x/
p
dG.x/

�
g jS .y/
p
dG.y/

�
w.x; y/
p
dG.x/

D g.x/�
X

y2S; x~y

g.y/
p
dG.y/dG.x/

w.x; y/ D £wg.x/:

Thus for all x 2 S; £w;Sg jS .x/ D �g jS .x/ if and only if £wg.x/ D �g.x/: The Rayleigh

quotient for £w;S shows that � satis�es

� D
h g jS ; £w;Sg jS i
h g jS ; g jS i

D

P
x2S g jS .x/

�
g jS .x/�

P
y2S;x�y

g jS .y/
p
dG.y/dG.x/

w.x; y/
�

P
x2S g jS

2 .x/

D

P
x�y. f .x/ � f .y//2w.x; y/P

x2V . f .x//2dG.x/
;

where g D T 1=2 f:
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QED

The following example shows the difference between the Dirichlet eigenfunctions (eigen-

vectors) and the eigenvectors of the Laplacians.

Example 1

Consider the complete graph K3 on the vertices f1; 2; 3g. Let S D f1; 2g and @S D f3g :

Then the Laplacians and the Dirichlet Laplacians are

Lw.x; y/ D

8>><>>:
2 if x D y

�1 if x 6D y
and £w D

Lw
2

Lw;s.x; y/ D

8>><>>:
2 if x D y

�1 if x 6D y
and £w;s D

Lw;s
2

Lw has eigenvectors .1; 1; 1/; .1;�1; 0/; .0; 1;�1/ with eigenvalues 0; 3; 3 respectively.

However, only .1;�1; 0/ is a Dirichlet eigenvector for Lw with respect to S. The other

Dirichlet eigenvector is .1; 1; 0/ with Dirichlet eigenvalue 1; since Lw;s.1; 1/ D .1; 1/.

But .1; 1; 0/ is not an eigenvector of Lw: Moreover, since £w D Lw
2 and £w;s D

Lw;s
2 , £w

has the same eigenvectors and Dirichlet eigenvectors with the corresponding eigenvalues

and Dirichlet eigenvalues multiplied by 12 .

Letting n D jSj, we label the Dirichlet eigenvalues of Lw ( or the eigenvalues of the

Dirichlet combinatorial Laplacian Lw;s/ by � S1 � � S2 � ::: � � Sn . Similarly, we label

the Dirichlet eigenvalues of £w (or the eigenvalues of the Dirichlet normalized Laplacian

£w;s ) by �S1 � �
S
2 � :::�Sn . The following lemma describes the structure of the Dirichlet

eigensystem of combinatorial and normalized Laplacian.
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Lemma 1.4.2

The following holds for the Dirichlet eigensystem of the combinatorial and the corre-

sponding eigensystem for the normalized Laplacian.

(a)
P
i �

S
i D

P
x dG.x/; and

P
i �
S
i � n; where n D jSj :

(b) Lw;S and £w;S are positive semi-de�nite, therefore � Si and �
S
i are real and nonneg-

ative. Furthermore, � S1 and �
S
1 > 0 if and only if every connected component of G has a

vertex adjacent to a vertex in @S:

(c) For all 1 � i � n; we have � Si � 2dmax and �
S
i � 2:

Proof: (a) follows from considering the traces of Lw;s and £w;s : For (b), according to

the Lemma 1.4.1, � Si and �
S
i are expressed in terms of Rayleigh quotient of Lw;S and £w;S

respectively, which are all nonnegative. Furthermore, we easily see that � S1 > 0; since

there does not exist a nonzero Dirichlet function with f .x/ D f .y/ for all fx; yg � E; if

and only if every connected component of G has at least one of its vertices adjacent to a

vertex in the boundary @S: The proof of �S1 > 0 is similar. The proof of part (c) is similar

to the proof of Lemma 1.3.1.

QED

1.4.2 Neumann Eigenvalues

Now, we consider the Laplacian £w act on functions f : S ! R such that the value of

the function at a boundary vertex is the weighted average of the values of the function

at adjacent vertices in S. In other words, f satis�es the following Neumann boundary
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condition: X
y2S
. f .x/� f .y//w.x; y/ D 0; for all x 2 @S:

We are interested in studying those functions that satisfy Neumann conditions and

£w. f .x// D � f .x/:

To do this, we will use the same idea as used for the description of the Dirichlet eigenvalues.

We de�ne the following matrix Dw with rows indexed by vertices in S and columns indexed

by vertices in S;

Dw.x; y/ D

8>>>>>><>>>>>>:

1 if x D y

w.x; y/
dGS.x/

if x 2 @S; y 2 S and x � y

0 otherwise:

Using the matrix Dw, we de�ne the combinatorial Neumann Laplacian as

Nw;S D DTwLwDw :

Similarly, we de�ne the normalized Neumann Laplacian as

LNw;S D T
�1
2 DTwLwDwT

�1
2 :

The action of the normalized Neumann Laplacian LNw;S on the space of functions f on S

is the same as the action of £w on the space of functions f on S that satis�es the Neumann
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condition, that is,

LNw;S. f .x// D £w. f .x// for x 2 S :

Therefore the eigenvalues of LNw;S and the corresponding eigenfunctions, f satisfy the

following relation

£w. f .x// D �S;i f .x/;

where we de�ne the values of f on @S in such a way that f would satisfy the Neumann

condition on S. Now, applying the Courant-Fisher theorem to the real symmetric matrix

LNw;S , we see that

�S;1 D min
g ?T

1
2 1

hg; LNw;Sgi
h g ; gi

D min
g ?T

1
2 1

P
x2S g.x/ LNw;S.g.x//P

x2S g2.x/

D min
g ?T

1
2 1

P
x2S g.x/£w.g.x//P

x2S g2.x/

D min
f :

P
f .x/dG.x/D0

P
x2S f .x/Lw. f .x//P
x2S f 2.x/dG.x/

;

where g D T
1
2 f: From the following relation

X
x2S

f .x/Lw. f .x// D
X

fx;yg2S0
. f .x/� f .y//2w.x; y/;

where S0 denotes the union of edges in S and the boundary edges (the edge with one end-

point in S and the other endpoint not in S/, we de�ne the �rst Neumann eigenvalue of an
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induced subgraph as follows

�NS;1 D min
fP

f .x/dG.x/D0

P
fx;yg2S0. f .x/� f .y//2w.x; y/P

x2S f 2.x/dG.x/
; .1/

where minimum is taken over all f that satis�es the Neumann condition. In general, we

de�ne the i-th Neumann eigenvalue �NS;i to be

�NS;i D min
f 6D0; f ?  0;:::; i�1

P
fx;yg2S0. f .x/� f .y//2w.x; y/P

x2S f 2.x/dG.x/
;

where  k is an eigenfunction corresponding to �S;k : Clearly �NS;0 D 0: From the follow-

ing lemma whose proof is simple and appears in [18], we easily see that the Neumann

eigenvalue is the eigenvalue of the normalized Neumann matrix.

Lemma 1.4.3

Let f : S! R be a function that satis�es (1). Then f satis�es,

a) For x 2 S;

Lw f .x/ D
X
y

fx; yg2S0

. f .x/� f .y//w.x; y/ D �NS;1 f .x/dG.x/:

(b) For x 2 @S,

Lw f .x/ D 0:

(c) For any function h : S! R; we have

X
x2S
h.x/Lw f .x/ D

X
fx; yg2S0

.h.x/� h.y//. f .x/� f .y//w.x; y/:
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We close this section by presenting a special type of random walk that is related to Neu-

mann matrix and call it the Neumann random walk. For an induced subgraph GS with

non-empty boundary @S; let the probability of moving from a vertex x in S to a neighbor

y of x be
w.x; y/
dG.x/

if y is in S: If y is in @S; we then move from x to each neighbor z of

y in S with the (additional) probability
w.x; y/w.y; z/
dG.x/dGS.y/

: From
P
z~y
z2S

w.z; y/ D dGS.y/,

it implies that
P
z~y
z2S

w.y; z/
dGS.y/

D 1. Hence
P
z~y
z2S

w.x; y/w.y; z/
dG.x/dGS.y/

D
w.x; y/
dG.x/

for y in @S.

Using the relation
P
y w.x; y/ D dG.x/; it follows that the probabilities of moving from a

vertex x in S to the neighboring vertices or neighboring to the boundary vertices adjacent

to x will add up to 1. The Neumann random walk is a little different from the random

walk often used in which the probability of staying in x which has neighboring vertices

in @S is
P
y2@S w.x; y/
dG.x/

. In other words the walker in the Neumann random walk, takes

advantage of re�ecting from the boundary imposed by the Neumann boundary condition.

The transition matrix Pw for this walk is as follows:

Pw D T
�1
2 .I � LNw;S/T

1
2 ;

The eigenvalues �i of the transitional matrix Pw associated with the Neumann walk are

closely related to the Neumann eigenvalues �Si as follows [18] :

�i � 1� �Si :
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1.5 The Diameter of a Weighted Graph

In a connected graph G, the distance between two adjacent vertices x and y, is de�ned to

be
1

w.x; y/
, where w.x; y/ is the weight of an edge connecting x to y. And the length

of the path, P that connects a vertex x0 to a vertex xn through a sequence of vertices

fxi gniD0 is de�ned to be
Pn�1
iD0

1
w.xi ; xiC1/

. The distance between two vertices x and y;

denoted by dist .x; y/; is de�ned to be the minimum over the length all possible paths

connecting x and y: The diameter of G, denoted by D, is the maximum over the distance

of all pairs of vertices in G:When graphs are used as models for communication networks,

the diameter corresponds to delays in passing messages through the network, hence it plays

an important role in performance analysis and cost optimization. In this section, we present

a relationship between the diameter of the graph and the smallest positive eigenvalues of

its Laplacians Lw and £w. The following lemma generalizes the result of Chung [18] to

graphs with arbitrary weights.

Lemma 1.5.1

Let G be a connected weighted graph with the weight functionw: Let S be a connected

induced subgraph of G D .V; E/. Then the eigenvalues � 1 ; �1 are related to the diameter

D as follows

(a) �1 �
1

D
P
x2V dG.x/

(b) � 1 �
1

D j V j

Proof: For (a) let f be an eigenfunction achieving �1: Let x0 denote a vertex with

j f .x0/ jD maxx2V j f .x/ j : Since f is orthogonal to the function T 1 (the eigenfunction

of zero eigenvalue), we have
P
x2V f .x/dG.x/ D 0: Therefore, there exists a vertex xk
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such that f .x0/ f .xk/ < 0: Let P denote a shortest path in G joining x0 to xk with vertices

x0; x1; :::; xk : Then, from the Rayleigh quotient expression for �1, we have:

�1 D

P
x�y. f .x/ � f .y//2w.x; y/P

x2V f .x/2dG.x/

�

Pk
iD1. f .xi�1/ � f .xi //2w.xi�1 ; xi //

f .x0/2
P
x2V dG.x/

D

Pk
iD1. f .xi�1/ � f .xi //2w.xi�1 ; xi /

Pk
iD1

�
1p

w.xi�1 ; xi /

�2
Pk
iD1

�
1p

w.xi�1 ; xi /

�2
f .x0/2

P
x2V dG.x/

�
1

dist .x0 ; xk/.
Pk
iD1. f .xi�1/ � f .xi //2

f .x0/2
P
x2V dG.x/

; by Cauchy-Schwarz

�
1
D . f .x0/ � f .xk//2

f .x0/2
P
x2V dG.x/

�
1

D
P
x2V dG.x/

(b) follows an almost similar argument as that above. By Rayleigh quotient expression for

� 1, we have:

� 1 D

P
x�y. f .x/ � f .y//2w.x; y/P

x2V f .x/2

�

Pk
iD1. f .xi�1/ � f .xi //2w.xi�1 ; xi //

f .x0/2 j V j

�
1

dist .x0 ; xk/.
Pk
iD1. f .xi�1/ � f .xi //2

f .x0/2 j V j
by Cauchy-Schwarz

�
1
D . f .x0/ � f .xk//2

f .x0/2 j V j

�
1

D j V j

QED.
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There are other interesting bounds are in the literature. Let M denote an n � n matrix

with rows and columns indexed by the vertices of G such that M.x; y/ D 0 if x and y

are not adjacent. Furthermore, suppose there exists a polynomial pt.x/ of degree t such

that pt.M/.x; y/ 6D 0 for all x; y in V then we conclude that the diameter D satis�es D � t

[18]. In particular, if we take M to be sum of identity matrix and adjacency matrix of G, .

i.e, A.x; y/ D 1 if x is adjacent to y, and 0 otherwise/ and the polynomial pt.x/ D .1Cx/t ,

then the following inequality for the diameter of regular graphs which are not complete

graphs can be derived,

D �

2666 log.j G j �1/log.�n�1C�1�n�1��1
/

3777 :

The above bound can be further improved by choosing pt to be the Chebyshev polynomial

of degree t . In this case, the logarithmic function is replaced by cosh�1: According to [20],

we have

D �

2666cosh
�1.j G j �1/

cosh�1.�n�1C�1�n�1��1
/

3777 :
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Chapter II

2 The Discrete Inverse Conductivity Problem

Introduction

A network (weighted graph) represents a way of interconnecting any pair of users (nodes)

by means of some links (edges). Thus, it is quite natural that its structure can be represented

in a simpli�ed form. When we have some problem on a part of network or try detecting

such a problem, it is desirable to recognize this problem from measurements made on the

boundary of the network since the network may be very large and its inner structure too

complicated.

Problems involving graph identi�cation have been previously studied by a number of

researchers in the domain of realization of graphs with given distances [24], and on the

reconstruction of graphs from vertex deleted problems [22, 31].

The most recent method introduced by Berenstein and Chung [6] is based on an analogy

to the continuous version of the inverse conductivity problem. The inverse conductivity

problem's original aim was to identify the conductivity coef�cient in continuous media

from boundary measurements, such as Dirichlet data, Neumann data. The discrete version

of the inverse problem is to identify the connectivity of the nodes and the conductivity

of the edges between each adjacent pairs of nodes from boundary measurements. In this

chapter, we will provide an improved version of the following global uniqueness result due

to Berenstein and Chung [6] for the inverse conductivity problem in a network satisfying

the monotonicity condition:
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Theorem:

Let w1 and w2 be weights with w1 � w2 on S [ @S � S [ @S and fi be functions

satisfying for each i D 1; 2:

8>>>>>><>>>>>>:

1wi fi .x/ D 0; for x 2 S

@ fi
@win

.z/ D  .z/; for z 2 @S

R
S fi .x/dGwi .x/ D K

for a given function  : @S ! R such that
R
 D 0 and for suitably chosen K > 0:

Furthermore, if we assume that w1.z; y/ D w2.z; y/ on @S � @0S and f1 j@SD f2 j@S :

Then we have:

f1 D f2 on S;

and

w1 D w2 on S � S :

We organize this chapter as follows: We �rst discuss the Discrete Green's function in

Section 1. In Section 2, we provide the solution of the Dirichlet and the Neumann value

problems by means of the discrete Green's function. And �nally in the last section, we

arrive at the global uniqueness result discussed above and will give an improved version of

this result under a weaker condition.
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2.1 Discrete Green's Function

Discrete Green's functions are the inverse or pseudo-inverse of combinatorial Laplacians.

The Green's function in the continuous case has been extensively used in solving differen-

tial equations [ 1, 3]. A treatment of Green's functions for partial differential equation can

be found in [58]. The �rst major work on the discrete Green's functions as an inverse of

the combinatorial Laplacians is [23]. Just as the Green's function in the continuous case

depends on the domain and the boundary conditions, the discrete Green's functions are

associated with underlying graph and boundary conditions.

We consider a weighted connected graph G D .V; E/. The Green's function for the

case where the graph G has no boundary can be determined by brute force pseudo-inversion

of the corresponding Laplacian. The following theorem explains this in greater detail.

Theorem 2.1.1

Let f : V ! R be a function. Then the equation

1w f .x/ D g.x/; for x 2 V;

has a solution if and only if
P
x2V g.x/dG.x/ D 0. In this case, the solution is given by

f .x/ D a0 C
X
y2V

Zw.x; y/g.y/;

where a0 is an arbitrary constant and the matrix Zw is given by

Zw.x; y/ D
n�1X
iD1

1
�i
�i .x/�i .y/

s
dG.y/
dG.x/

:
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Here the �i are the eigenvalues of £w with the corresponding eigenfunctions �i for i D

1; 2; :::; n � 1:

Proof: Suppose
P
x2V g.x/dG.x/ D 0: Then by considering �0.x/ D

s
dG.x/P
x dG.x/

as

an eigenfunction of £w corresponding to the zero eigenvalue, we have

hT
1
2 g; �0i D

X
x

p
dG.x/g.x/

s
dG.x/P
x dG.x/

D

s
1P

x dG.x/

X
x2V

g.x/dG.x/ D 0:

Now, consider the orthogonal expansion of T
1
2 f;

.T
1
2 f /.x/ D

n�1X
iD0
ai�i .x/ ;

where ai D hT
1
2 f ; �i i: Then since 1w D T�1=2£wT 1=2; and

�iai D �i hT
1
2 f; �i i

D hT
1
2 f; �i�i i

D hT
1
2 f; £w�i i

D h£wT
1
2 f; �i i

D hT
1
2 g; �i i :

We, therefore, have:

ai D
1
�i

X
x

p
dG.x/g.x/�i .x/; for i D 1; 2; :::n � 1:
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For i D 0, since

�0a0 D �0hT
1
2 f; �0i

D hT
1
2 f; �0�0i

D hT
1
2 f; £w�0i

D h£wT
1
2 f; �0i

D hT
1
2 g; �0i

D 0:

and �0 D 0; we have a0 that could be an arbitrary constant. From the orthogonal expansion

of T
1
2 f; we get:

p
dG.x/ f .x/ D a0

s
dG.x/P
x dG.x/

C
n�1X
iD1

1
�i

"X
y2V

p
dG.y/g.y/�i .y/

#
�i .x/;

or

f .x/ D a0 C
X
y2V

n�1X
iD1

1
�i
�i .x/�i .y/

s
dG.y/
dG.x/

g.y/

D a0 C
X
y2V

Zw.x; y/g.y/:

Conversely, suppose that 1w f .x/ D g.x/ has a solution. Then
P
x2V g.x/dG.x/ D 0

because of Green's theorem ( Theorem 1.1.3).

QED

The following corollary is a simple consequence of the above theorem.
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Corollary 2.1.2

Under the same conditions as in Theorem 2.1.1, let GS be an induced subgraph of G.

Then every solution to

1w f .x/ D 0 for all x 2 V nS;

has the following form:

f .x/ D a0 C
X
y2S

Zw.x; y/�.y/; for x 2 V;

where a0 is an arbitrary constant and �.y/ D 1w f .y/; for y 2 S.

The proof of Theorem 2.1.1 suggests the following de�nition of Green's function for

graphs with no boundary in a closed form. We de�ne Gw;Gw; Zw as Green's functions for

Lw;£w; and 1w respectively, as follows:

Gw D
X
� i> 0

1
� i
 i 

T
i ;

Gw D
X
�i> 0

1
�i
�i�

T
i ;

Zw D T
�1
2 GwT

1
2 :

The above de�nitions of Gw and Gw are equivalent to the following relations:

GwLw D LwGw D I �  0 T0 and Gw 0 
T
0 D 0;

Gw£w D £wGw D I � �0�T0 and Gw�0�
T
0 D 0;
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where

�0�
T
0 .x; y/ D

p
dG.x/dG.y/P
x2G dG.x/

;

and

 0 
T
0 .x; y/ D

1
j G j

:

Also

Zw1w D .T
�1
2 GwT

1
2 /.T

�1
2 £wT

1
2 /

D T
�1
2 .I � �0�T0 /T

1
2

D I �
DP

x2G dG.x/

and ZwD D 0;

where D.x; y/ D dG.y/:

In the case where the graph has a boundary, it is easier to de�ne its Green's function.

Let GS be a subgraph of a connected graph G with non-empty boundary @S. Then Lw;S ,

£w;S; and1w;S are invertible and the combinatorial Green's function Gw;S; the normalized

Green's function Gw;S , and the discrete Green's function Zw;S are de�ned as follows:

Lw;S Gw;S D Gw;S Lw;S D IS;

£w;SGw;S D Gw;S£w;S D IS;

1w;SZw;S D Zw;S1w;S D IS :
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Using the diagonal matrix T , as before, we have the following relations:

Gw;S D T
�1
2 Gw;ST

�1
2 D Zw;ST�1;

Gw;S D T
1
2Gw;S D T

1
2 Zw;ST

�1
2 ;

Zw;S D Gw;ST D T
�1
2 Gw;ST

1
2 :

There is a random walk interpretation of the discrete Green's function Zw;S corresponding

to the Dirichlet Laplace operator1w;S which is as follows. Let P D
�
pxy
�
be the transition

probability matrix for the weighted transient random walk on S with absorbing states @S;

where the probability pxy of moving to state y from x is
w.x; y/
dG.x/

. Then 1w;S D I � P

and from the fact that .I � P/�1 D I C P C P2 C :::, it follows

Zw;S D I C P C P2 C ::::

where Pn is the n-step transition probability matrix .

We have studied several explicit formulas for the Green's function. We now consider a

direct method for evaluating the Green's function for a path and a cycle [23]. For simplicity,

we take the graph to be a standard graph, i.e., w.x; y/ D 1 if and only if x � y .

Example 1: Green's function for a path

Theorem 2.1.4

Let the vertex set Pn be denoted by S D f1; 2; :::; ng with boundary @S D f0; n C 1g.
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Then its Green's function satis�es:

Gw;S.x; y/ D
2

n C 1
x.n C 1� y/;

for 1 � x � y � n:

Proof: Since 1w;S D£w;S D Lw;S=2; we have £w;S Gw;S D I , and Gw;S£w;S D I .

Here we assume that 1 � x < y � n: From £w;S Gw;S D I , it follows that

1
2
.2Gw;S.x; y/�Gw;S.x � 1; y/�Gw;S.x C 1; y// D 0:

From Gw;S£w;S D I , we have

1
2
.2Gw;S.x; y/�Gw;S.x; y � 1/�Gw;S.x; y C 1// D 0:

with the condition that Gw;S.x; y/ D 0 if either x or y are the boundary point. Therefore,

we have

Gw;S.x; y/�Gw;S.x � 1; y/ D Gw;S.x � 1; y/�Gw;S.x � 2; y/

D Gw;S.x � 2; y/�Gw;S.x � 3; y/

D :::::

D Gw;S.1; y/:

This implies that

Gw;S.x; y/ D xGw;S.1; y/: .1/
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Using similar argument, we have

Gw;S.1; y/ D c.n C 1� y/; .2/

for some constant c: Now, we use the fact that

1
2
.2Gw;S.x; x/�Gw;S.x � 1; x/�Gw;S.x C 1; x// D 1

to get c D
2

n C 1
and Gw;S.x; x/ D cx.n C 1� x/: From (1) and (2), the result follows.

QED

Example 2 : Green's function for a cycle

Let the vertex set of the cycle Cn be denoted by f1; 2; :::; ng : Then the Laplacians are

related by 1w D£w D Lw=2. Knowing the fact that a cycle is a boundary-less graph, the

Green's functionGw is determined by the following relationship which was studied before,

Gw£w D £wGw D I �
J
n
;

and Gw J D 0;

where J is the n � n matrix with all entries 1: Before stating the theorem regarding the

Green's function for a cycle, we note the following facts regarding cycles. Since a cycle

is invariant under translations, then the values £w.x; y/ and Gw.x; y/ depend only on the

distance j x � y j between x and y: Secondly, the distance between x and y on the cycle

38



can be measured by travelling in either direction. So, we de�ne

Gw.j x � y j/ D Gw.n� j x � y j/:

The following theorem describes the Green's function for the cycle.

Theorem 2.1.5

Let n � 3: Then the cycle Cn's normalized Green's function has the following form

Gw.x; y/ D
.y � x/2

n
� j x � y j C

.n C 1/.n � 1/
6n

:

Proof: From Gw£w D£wGw D I �
J
n
and Gw J D 0; we have the recurrence:

2Gw.x; y/�Gw.x; y � 1/�Gw.x; y C 1/ D

8>><>>:
2�

2
n

if x D y

�2
n

if x 6D y

or

2Gw.z/�Gw.z � 1/�Gw.z C 1/ D

8>><>>:
2�

2
n

if z D 0

�2
n

if z > 0

where z Dj x � y j : The condition Gw J D 0 implies that the sum of Gw across any row

must be zero, i.e.,
n�1X
zD0
Gw.z/ D 0:

By considering the difference equation:

.Gw.z C 1/�Gw.z//� .Gw.z/�Gw.z � 1/ D
2
n
for z > 0;
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we conclude that Gw.z/ is quadratic in z which we write as,

Gw.z/ D
z2

n
C Bz C C:

Knowing the fact that Gw.z/ D Gw.n � z/; we obtain B D �1. Now applying the

condition:
n�1X
zD0
Gw.z/ D 0;

or
n�1X
zD0
.z �

z2

n
/ D nC:

Therefore,

C D
.n C 1/.n � 1/

6n
:

Hence, we obtain the desired result.

QED

2.2 Dirichlet and Neumann boundary Value Problems

In this section, we are interested in solving the equation 1w f .x/ D g.x/ for x 2 S;

such that f satis�es Dirichlet or Neumann boundary conditions on the boundary @S. The

Dirichlet boundary value problem was solved by Chung [23] for standard graphs. (Al-

though, there is an error in her proof, her idea of the proof as a whole is correct). We will

extend her result to the graphs with arbitrary weights by using the same idea .

Theorem 2.2.1
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Let GS be a connected and induced subgraph of G with a non-empty boundary @S and

� : @S ! R be a given function. Then the unique solution f to the Dirichlet boundary

value problem (DBVP): 8>><>>:
1w f .x/ D 0; for x 2 S;

f j@SD �

can be represented as:

f .x/ D
X
y2S

X
z2@S

jSjX
iD1

1
�i
�Si .x/�

S
i .y/� .z/

w.y; z/
p
dG.x/dG.y/

, for x 2 S:

Proof: By considering the function T
1
2 f .x/; we see that this function is the solution of the

following equation:

£w.T
1
2 f .x// D 0;

for x 2 S:We also de�ne the function f0 : S [ @S! R by

f0.x/ D

8>><>>:
0 if x 2 S

�.x/ if x 2 @S

then T
1
2 f �T

1
2 f0 is a Dirichlet function on S[@S; since .T

1
2 f �T

1
2 f0/ j@SD 0: Therefore,

we can write T
1
2 f � T

1
2 f0 as a linear combination of the eigenfunctions �Si of £w;S :

T
1
2 f � T

1
2 f0 D

X
i
ai�Si ;

which implies that

ai D h�Si ; .T
1
2 f � T

1
2 f0/i:
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Therefore, we have the following chain of equalities:

�iai D h�i�
S
i ; .T

1
2 f � T

1
2 f0/i

D h£w;S�Si ; .T
1
2 f � T

1
2 f0/i

D h�Si ; T
�1
2 Lw. f � f0/ jSi

D hT
1
2�Si ;1w. f � f0/ jSi

D hT
1
2�Si ; .�1w f0/ jSi

D �
X
y2S

p
dG.y/�i .y/

1
dG.x/

X
z2S
. f0.y/� f0.z//w.x; z/

D
X
y2S

X
z2@S

1
p
dG.y/

�Si .y/� .z/w.y; z/:

Therefore,

ai D
1
�i

X
y2S

X
z2@S

1
p
dG.y/

�Si .y/� .z/w.y; z/:

Since we have,

.T
1
2 f � T

1
2 f0/.x/ D

X
i

1
�i

X
y2S

X
z2@S

1
p
dG.y/

�Si .y/� .z/w.y; z/�
S
i .x/;

we arrive at the following conclusion. Namely,

f .x/ D
X
y2S

X
z2@S

jSjX
iD1

1
�i
�Si .x/�

S
i .y/� .z/

w.y; z/
p
dG.x/dG.y/

; for x 2 S:

QED.
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By de�ning the function B� : S! R as

B� .y/ D
X
z2@S

�.z/
w.y; z/
dG.y/

;

we can rewrite f as

f .x/ D hGw;S.x; :/; B� iS ; for x 2 S;

where the notation h ;iS is the standard inner product in Rn; i.e., h f; giS D
P
x2S f .x/g.x/:

Note that the value of B� .y/ depends only on the value of � on @S: In other words, B� .y/ D

0 for all y 2 Sn@0S: Also, two different boundary conditions � 1 and � 2 may give rise to

the same solution f as long as B� 1 D B� 2 . By rewriting f .x/ D hGw;S.x; :/; B� iy2S

as a matrix multiplication, i.e., f D Gw;SB� ; the Dirichlet boundary value problem is

equivalent to the following equation:

1w;S f D B� on S:

This relationship will allow us to identify uniquely the boundary values from a harmonic

function f which satis�es 1w f .x/ D 0; for x 2 S: The next theorem characterizes the

harmonic functions with a set of singularities in a subgraph with non-empty boundary.

Theorem 2.2.2

Let GS be a connected induced subgraph of a graph G D .V; E/ such that V D S[@S.

If ? 6D T � S then every f : V ! R satisfying

1w f .x/ D 0; x 2 SnT
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can be written uniquely as

f .x/ D h.x/C
X
y2T

Gw;S.x; y/1w f .y/; x 2 V ;

where h is a harmonic function on S with the same boundary values as f , i.e., h j@SD

f j@S :

Proof: For x 2 S [ @S, de�ne f1 and h as

f1.x/ D
X
y2T

Gw;S.x; y/1w f .y/;

h.x/ D f .x/� f1.x/:

Then h j@SD f j@S : And for each x 2 S;

1wh.x/ D 1w f .x/�1w f1.x/

D 1w f .x/�1w

 X
y2T

Gw;S.x; y/1w f .y/

!

D 1w f .x/�1w

 X
y2T

jSjX
iD1

1
�i
�i .x/�i .y/1w f .y/

s
dG.y/
dG.x/

!

D 1w

 
f .x/�

X
y2T

jSjX
iD1

1
�i

�i .x/p
dG.x/

�i .y/1w f .y/
p
dG.y/

!

D 1w

 
f .x/�

X
y2T

�.x; y/1w f .y/

!
D 0:

Hence h is a harmonic function. The uniqueness is evident.

QED

The following theorem formulates the solution to a nonhomogeneous Dirichlet bound-
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ary value problem which is a consequence of the Theorem 2.2.1. We will state this without

proof.

Theorem 2.2.3

The solution to the following Dirichlet boundary value problem:

8>><>>:
1w f .x/ D g.x/; x 2 S

f j@SD �

is given by

f .x/ D hGw;S.x; :/; B� iS C hGw;S.x; :/; giS:

We will now study the necessary and suf�cient condition for the existence of the solu-

tion to the Neumann boundary value problem (NBVP). The next theorem discusses these

conditions.

Theorem 2.2.4

Let GS be an induced subgraph of a graph G D .V; E/ such that V D S . For the real

valued functions f : S ! R ; g : S ! R; and  : @S ! R; the necessary and suf�cient

condition for the solution to the NBVP

8>><>>:
1w f .x/ D g.x/; x 2 SP

y2S. f .z/� f .y//
w.z; y/
dGS.z/

D  .z/; z 2 @S
.1/

to exist, is Z
S
g.x/dG.x/ D �

Z
@S
 .z/dGS.z/:
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In this case, the solution is given by

f .x/ D a0 C hZw0.x; :/; giS C hZw0.x; :/;  i@S ;

where a0 is an arbitrary constant and Zw0 is the Green's function with respect to the fol-

lowing weight function, w0 :

w0.x; y/ D
�
w.x; y/ if either x or y are in S

0 otherwise.

Proof: We associate G with the following weight function, w0 :

w0.x; y/ D
�
w.x; y/ if either x or y are in S

0 otherwise.

Then it is easily seen that d 0G 0.z/ D dGS.z/ for z 2 @S and d
0
G 0.x/ D dGS.x/ for x 2 S

where d 0G 0.x/ is the degree of the vertex x with respect tow
0 . Assume that

R
S g.x/dG.x/ D

�
R
@S  .z/dGS.z/: Hence, the equation (1) can be written as:

8>>><>>>:
P
y2S[@S. f .x/� f .y//

w.x; y/
d 0G 0.x/

D g.x/; x 2 S

P
y2S[@S. f .z/� f .y//

w.z; y/
d 0G 0.z/

D  .z/; z 2 @S

We can combine the above two equations into one equation to obtain

X
y2S[@S

. f .x/� f .y//
w.x; y/
d 0G 0.x/

D 9.x/; x 2 S [ @S ;
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where,

9.x/ D

8>><>>:
g.x/; x 2 S

 .x/; x 2 @S

Therefore, NBVP is equivalent to

1w f .x/ D 9.x/; for x 2 S:

By the Theorem 2.1.1, we have:

f .x/ D a0 C hZw0.x; :/; 9iS

D a0 C
X
y2S

Zw0.x; y/9.y/

D a0 C
X
y2S

Zw0.x; y/g.y/C
X
y2@S

Zw0.x; y/ .y/

D a0 C hZw0.x; :/; giS C hZw0.x; :/;  i@S :

where a0 is an arbitrary constant. The converse is trivial.

QED

The above theorem shows that the solution to NBVP is uniquely determined by the

Neumann data on the boundary of the graph up to an additive constant. Therefore, we get

a unique solution once the value of f at some special vertex in S is de�ned.
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2.3 Inverse Conductivity Problem on the Network

In this section, we study the inverse conductivity problem on the network (graph) S with

non-empty boundary. The idea is to recover the conductivity w of the graph by using an

input-output map, for example the Dirichlet data induced by the Neumann data ( Neumann

to Dirichlet map), with one boundary measurement. This Neumann to Dirichlet map is

suggested by the previous section's result. As we have seen for a function  : @S ! G

with
R
@S  .z/dGS.z/ D 0; the Neumann boundary value problem:

8>><>>:
1w f .x/ D 0; x 2 SP

y2S. f .z/� f .y//
w.z; y/
dGS.z/

D  .z/; z 2 @S

has a unique solution up to an additive constant. Therefore the Dirichlet data (the boundary

value of f ) is well-de�ned up to an additive constant. But even though we are given all

these data on the boundary, we are not guaranteed, in general, to be able to identify the

conductivity w uniquely. To illustrate this, we consider the following example:

Example 1

Consider a graph G D .S; E/ where S D f1; 2; 3g forms a cycle and @S D f0; 4g has

the following weight conditions:

w.0; 1/ D 1 and w.0; k/ D 0; for k D 2; 3; 4

and

w.3; 4/ D 1 and w.k; 4/ D 0; for k D 0; 1; 2 :
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Let f : S [ @S! R be a function satisfying 1w f .x/ D 0; k D 1; 2; 3: Assume that

f .0/ D 0; f .1/ D 1; f .2/ D unknown; f .3/ D 3; f .4/ D 4

therefore, the boundary data f j@S; @ f
@wn j@S; and w j@S�@0S are known. In fact

@ f
@wn

.0/ D f .0/� f .1/ D �1

@ f
@wn

.4/ D f .4/� f .3/ D 1

The problem is to determine

w.1; 2/ D x; w.2; 3/ D y; w.1; 3/ D z; and f .2/ :

From 1w f .x/ D 0; for x D 1; 2; 3; we have:

f .1/ D
f .0/C x f .2/C 3z

1C x C z
D 1

f .2/ D
x f .1/C y f .3/

x C y

f .3/ D
x f .1/C y f .2/C f .4/

z C y C 1
D 3

The above system is equivalent to
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x.y � 1/C y.x � 1/C 2z.x C y/ D 0

x C 3y
x C y

D f .2/: .1/

It is obvious that the above system has in�nitely many solutions. Assuming z D 0; i.e.,

disconnect the edge between 1 and 3, we see that the above system reduces to

1
x
C
1
y
D 2

x C 3y
x C y

D f .2/;

where there are in�nitely many pairs .x; y/ of nonnegative numbers satisfying the equation.

However, if we impose the following constraints

x � 1; y � 1; and z � 0;

then the equation (1) yields a unique triple solution x D 1; y D 1; z D 0 and f .2/ D 2:

Motivated by this example, we see that there must be certain monotonicity conditions im-

posed on the weights to yield the global uniqueness results. The following theorem is

due to Berenstein and Chung [6]. For the sake of completeness, we present its proof.

Theorem 2.3.1

Let w1and w2 be weights with w1 � w2 on S � S and fi : S [ @S ! R be functions
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for i D 1; 2 satisfying:

8>>><>>>:
1wi fi .x/ D 0; x 2 S

@ f
@win

.z/ D
P
y2S. f .z/� f .y//

wi .z; y/
dGS;wi .z/

D  .z/; z 2 @S

for a given function  : @S ! R with
R
@S  .z/dGS;wi .z/ D 0; where dGS;wi .z/ is the

relative degree with respect to the weight wi and S : Furthermore, we assume that

1/ w1.z; y/ D w2.z; y/ on @S � @0S

2/ f1 j@S D f2 j@S Then

we have:

f1 D f2 on S [ @S

w1.x; y/ D w2.x; y/ whenever f1.x/ 6D f1.y/ or f2.x/ 6D f2.y/; for x; y 2 S:

To prove this theorem, we use the method of energy functional which is mostly used for

nonlinear partial differential equations. For a function � : @S! R; we de�ne a functional

by

Iw [h] D
Z
S[@S

�
1
4
j rwh j2 �hg

�
.x/ dGw.x/

for every function h in the set

A D fh : S [ @S! R j h j@SD � g ;

which is called the admissible set. In the continuous case, there is a well known Dirichlet
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principle which states that the energy minimizer in the admissible set is a solution of the

Dirichlet boundary value problem. In the discrete version, there is a similar result which

we will formulate in the next lemma.

Lemma 2.3.2 (Dirichlet's Principle) Assume that f : S [ @S! R is a solution to the

equations 8>><>>:
1w f .x/ D g for x 2 S

f j@SD �

then

Iw
�
f
�
D min
h2A

Iw [h] :

Conversely, if f 2 A such that Iw
�
f
�
D minh2A Iw [h] then f is the unique solution to

the above DBVP.

Proof: Let h be function in A: By the Theorem 1.1.2, Chapter 1, we have

0 D

Z
S[@S

. 1w f � g/. f � h/.x/dGw.x/

D

Z
S[@S

.1w f . f � h/� g. f � h//.x/dGw.x/

D

Z
S[@S

�
1
2
..rw f / :rw. f � h//� g. f � h/

�
.x/dGw.x/

D
1
2

Z
S[@S

j rw f j2 .x/dGw.x/�
1
2

Z
S[@S

..rw f / : .rw. f � h/// .x/dGw.x/

�

Z
S[@S

g. f � h/.x/dGw.x/:
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Therefore, we have

Z
S[@S

�
1
2
j rw f j2 �g f

�
.x/dGw.x/

D

Z
S[@S

�
1
2
..rw f / : .rwh//� gh

�
.x/dGw.x/

D
1
2

X
x2S[@S

X
y2S[@S

. f .x/� f .y// .h.x/� h.y// w.x; y/

�

Z
S[@S

.gh/.x/dGw.x/

�
1
2

X
x2S[@S

X
x2S[@S

. f .x/� f .y//2 C .h.x/� h.y//2

2
w.x; y/

�

Z
S[@S

.gh/.x/dGw.x/

D
1
4

Z
S[@S

j rw f j2 .x/dGw.x/C
1
4

Z
S[@S

j rwh j2 .x/dGw.x/

�

Z
S[@S

.gh/.x/dGw.x/:

Therefore, it follows that

Z
S[@S

�
1
2
j rw f j2 �g f

�
.x/dGw.x/ �

Z
S[@S

�
1
4
j rwh j2 �gh

�
.x/dGw.x/;

or

Iw
�
f
�
� Iw [h] ; h 2 A:

Since f 2 A; we have:

Iw
�
f
�
D min
h2A

Iw [h] :

To prove the converse, Let �T be the characteristic function on T , the subset of vertices in

53



S; Then f C ��T 2 A for each real number � ; since �T D 0 on @S: Then

Iw
�
f C ��T

�
D

Z
S[@S

�
1
4
j rw f C �rw�T j2 �. f C ��T /g

�
.x/dGw.x/

D
1
4

Z
S[@S

�
j rw f j2 C2�rw frw�T C � 2 j rw�T j2

�
.x/dGw.x/

�

Z
S[@S

.. f C ��T /g / .x/dGw.x/:

Since the quantity Iw
�
f C ��T

�
is minimum when � D 0; therefore,

d.Iw
�
f C ��T

�
/

d�
j�D0D 0;

Hence

0 D
1
2

Z
S[@S

.rw f:rw�T /.x/dGw.x/�
Z
S[@S

.�T g/.x/dGw.x/

D

Z
S[@S

.�T .1w f � g//.x/dGw.x/

D
X
x2T

.1w f � g/.x/dGw.x/:

By taking T as a singleton set fxg ; for x 2 S , we obtain the desired result, namely

1w f .x/ D g.x/:

We will use now the above lemma to prove the Theorem 2.3.1. We may assume that the

boundary nodes are not connected by an edge since by letting wi .x; y/ D 0 for x; y 2 @S;
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the Theorem 2.3.1 will be unchanged. Now, by letting � : @S! R be a function such that

� D f1 j @S D f2 j@S;

we de�ne Iw1 by:

Iw1 [h] D
1
4

Z
S[@S

�
j rwh j2

�
.x/dGw1 .x/;

for every h in the admissible set

A D fh : S [ @S! R j h j @S D � g :

Therefore, by the Theorem 1.1.2 of Chapter 1, we have:

Iw1 [h] D
1
2

Z
S[@S

h.x/1w1h.x/dGw1 .x/

D
1
2

Z
S
h.x/1w1h.x/dGw1 .x/C

1
2

Z
@S
h.x/1w1h.x/dGw1 .x/:

Furthermore, for z 2 @S; we have

1w1 f1.z/ D 1w2 f2.z/:

It follows from the monotonicity condition of the weights, i.e., w1 � w2 that

Iw1
�
f1
�
D

1
2

Z
S
. f11w1 f1/.x/dGw1 .x/C

1
2

Z
@S
. f11w1 f1/.x/dGS;w1 .x/
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D
1
2

Z
@S
. f11w1 f1/.x/dGS;w1 .x/

D
1
2

Z
S
. f21w2 f2/.x/dGS;w2 .x/ C

1
2

Z
@S
. f21w2 f2/.x/dGS;w2 .x/

D
1
2

Z
S[@S

. f21w2 f2/.x/dGS;w2 .x/

D
1
4

Z
S[@S

j rw2 f2 j
2 .x/dGS;w2 .x/

�
1
4

X
x2S[@S

X
y2S[@S

�
f2.x/� f2.y/

�2
w1.x; y/; since w1 � w2

D
1
4

Z
S[@S

j rw1 f2 j
2 dGw1 .x/ D Iw1

�
f2
�
:

Since f1 is the solution to the DBVP, by the Dirichlet principle f1 must minimize the energy

functional. On the other hand, we just proved that Iw1
�
f1
�
� Iw1

�
f2
�
, therefore f1 D f2

on S[@S:Now, by taking f D f1 D f2 on S[@S and the fact that Iw1
�
f1
�
D Iw2

�
f2
�
;we

get

X
x2S[@S

X
y2S[@S

�
f .x/� f .y/

�2
w1.x; y/ D

X
x2S[@S

X
y2S[@S

�
f .x/� f .y/

�2
w2.x; y/:

or equivalently

X
x2S[@S

X
y2S[@S

�
f .x/� f .y/

�2 �
w1.x; y/� w2.x; y/

�
D 0:

Hence,

w1.x; y/ D w2.x; y/; if f1.x/ 6D f1.y/ or f2.x/ 6D f2.y/:

QED

From the proof of the above theorem, we see that if f1 and f2 are injective functions
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then we are able to show the uniqueness of weights, i.e, w1.x; y/ D w2.x; y/ on S � S:

For a special class of graphs, for instance, paths, it is easy to see that harmonic functions f1

and f2 are injective and hence all the weights are identi�ed. But, in general, most graphs

do not admit an injective solution to either the DBVP or the NBVP. The objective of the

next theorem is to impose an extra condition to yield uniqueness of weights. To better

understand the idea of the next theorem, we examine the following example.

Example 2

Consider S D f1; 2; 3; 4; 5; 6g with @S D f0; 7g and the following weight conditions:

w1.0; y/ D

8>><>>:
1 if y D 1

0 otherwise

w1.1; y/ D

8>><>>:
1 if y D 0 and 2

0 otherwise

w1.2; y/ D

8>><>>:
1 if y D 1; 3, and 4

0 otherwise

w1.3; y/ D

8>><>>:
1 if y D 2; 4, and 5

0 otherwise

w1.4; y/ D

8>><>>:
1 if y D 2; 3, and 5

0 otherwise
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w1.5; y/ D

8>><>>:
1 if y D 3; 4, and 6

0 otherwise

w1.6; y/ D

8>><>>:
1 if y D 5; 6, and 7

0 otherwise

w1.7; y/ D

8>><>>:
1 if y D 6

0 otherwise

And w2 D w1 everywhere except w2.3; 4/ D k; k � 1: Thus w1 � w2 throughout S [ @S:

De�ne f : S [ @S! R by

f .0/ D a; f .1/ D a � b; f .2/ D a � 2b; f .3/ D f .4/ D
.a C c/� .b C d/

2
;

f .5/ D c � 2d; f .6/ D c � d; f .7/ D c;

where a; b; c; d are any real numbers. It can be seen that f is a harmonic function with

respect to both weights, w2; w1; Namely,

1w1 f .x/ D 1w2 f .x/ D 0; for x 2 S :

From the Dirichlet and the Neumann boundary data, we have:

f .0/ D a; f .7/ D c;
@ f
@w1

.0/ D
@ f
@w2

.0/ D f .0/� f .1/ D b; and

@ f
@w1

.7/ D
@ f
@w2

.7/ D f .7/� f .6/ D d :
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We observe that f is uniquely determined by these data regardless of the weights. So

w2.3; 4/ D k cannot be identi�ed. But if we assume that the boundary values, f .0/ D

a > 0; and f .7/ D c > 0 then by the maximum principle, f being a harmonic function,

we will have f .x/ > 0 for all x 2 S [ @S : Furthermore, if we suppose that

Z
S
f .x/dGw1 .x/ D

Z
S
f .x/dGw2 .x/;

then

Z
S
f .x/dGw1 .x/ D 2 f .1/C 3 f .2/C 3 f .3/C 3 f .4/C 3 f .5/C 2 f .6/;

and

Z
S
f .x/dGw2 .x/ D 2 f .1/C 3 f .2/C .2C k/ f .3/C .2C k/ f .4/C 3 f .5/C 2 f .6/:

Therefore,

f .3/C f .4/ D k. f .3/C f .4//:

This forces k D 1, since f .3/ C f .4/ 6D 0. Thus arriving at the conclusion that we have

the uniqueness of weights. Using these conditions, we will improve Theorem 2.3.1 under

weaker conditions.

Theorem 2.3.3

Let w1 and w2 be weights with w1 � w2 on S [ @S � S [ @S and fi be functions
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satisfying for i D 1; 2 8>><>>:
1wi fi .x/ D 0; for x 2 S

@ fi
@win

.z/ D  .z/; for z 2 @S

for a given function  : @S ! R such that
R
@S  .z/dGS;wi .z/ D 0: Furthermore, if we

assume that

1/ w1.z; y/ D w2.z; y/ on @S � @0S;

2/ f1 j@SD f2 j@S> 0;

3/
R
S f1.x/dGw1 .x/ D

R
S f2.x/dGw2 .x/:

Then we have

f1 D f2 on S;

and

w1 D w2 on S � S:

Proof: By Theorem 2.3.1, f1 D f2 on S . So we de�ne f D f1 D f2 on S [ @S . Since

f1 j@SD f2 j@S> 0, by Theorem 1.2.1 we must have f D f1 D f2 > 0 on S: It follows

from the condition Z
S
f1.x/dGw1 .x/ D

Z
S
f2.x/dGw2 .x/;

that we have X
x2S

f .x/dGw1 .x/ D
X
x2S

f .x/dGw2 .x/;

or X
x2S

f .x/.dGw2 .x/� dGw1 .x// D 0: (1)
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From the monotonicity condition of weights, i.e., w1.x; y/ � w2.x; y/ on S � S and the

fact that weights are non-negative functions on S � S, we have

dGw1 .x/ � dGw2 .x/:

Using the fact that f > 0 on S; equation (1) implies that

dGw2 .x/� dGw1 .x/ D 0; for x 2 S;

or X
y2S

.w2.x; y/� w1.x; y// D 0; for x 2 S:

Since w1 � w2; we obtain the desired result.

QED
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Chapter III

3 The Physical Interpretation of The Discrete Inverse Con-

ductivity Problem

In the previous chapter, we studied the inverse conductivity problem as a means for identi-

fying the inner structure of network by measurements made on the boundary. This method

was initially proposed by Curtis and Morrow [26, 27] later developed by Carlos Berenstein

into an important result in the domain of the discrete inverse conductivity problem [6]. The

physical interpretation of the weighted Laplacian which is used here for the discrete inverse

conductivity problem will be in terms of the chip-�ring game. This is motivated in part by

communication network models in which chips represent packets or jobs and the bound-

ary nodes represent processors. Alternatively, the discretization of the inverse conductivity

problem demands a discretization of an electrical network as a physical interpretation.

The chip-�ring game (CFG) is a discrete dynamical model used in Physics, Computer

Science, and Economics. It was introduced by Bjorner, Lovasz, and Shor in [11, 12].

The CFG is de�ned over an undirected graph G, called the support graph of the game.

A con�guration of the game is a mapping s : V ! N that associates a weight to each

vertex, which can be considered as the number of chips stored in the vertex. The CFG

is a discrete dynamical model, with the following �ring rule: If, when the game is in a

con�guration s , a vertex v contains at least as many chips as its degree, one can transfer

a chip from v along each of its edges to the corresponding neighboring vertex. CFGs are

strongly convergent games [37], which means that, given an initial con�guration, either the
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game can be played forever, or it reaches a unique stable con�guration (where no �ring is

possible) independent on the order in which the vertices were �red. If for a given �nite

sequence of vertices of G, such that starting from s, this sequence of vertices is ready to

�re to obtain a new con�guration s0; then the con�guration s0 is given by

s0.v/ D s.v/� f .v/dG.v/C
X

f .u/w.u; v/;

where f .v/ is the number of times v occurs in the sequence, dG.v/ is the degree of v; and

w.u; v/ is the weight or the number of edges connecting u to v. This is true because each

time v is �red it loses dG.v/ chips, and each time u 6D v is �red it gains w.u; v/ chips.

The relationship between s0and s can be written more concisely in terms of the weighted

Laplacian as follows:

s0 D s � Lw. f /:

CFG has been studied previously in terms of the classi�cation of legal game sequences

[11, 12], critical con�gurations [7,8,9], and by use of the chromatic polynomial [8], the

Tutte polynomial [7,47], and matroids [48]. A parallel version of CFG, in which all ready

vertices �re simultaneously, is studied in [35]. The chip-�ring game is closely related to

self-organized criticality [4, 5], and the sandpile model [36].

The discrete conductivity problem studied in Chapter 2 requires that 1w. f / D 0 on S:

This raises an interesting question of what the analogous condition in the context of CFG

would be. In other words, since this condition requires the absence of sinks and sources

in the interior of the graph, we would like to study a set of con�gurations that are stable.

63



Moreover, the necessary condition of
R
@S  .z/dGS.z/ D 0 on the boundary of the graph

forces us to allow the number of chips to be negative.

We consider a new variant of the chip-�ring game, in which chips are �red in the game

from the boundary, removed from the game when they are �red across a boundary, and

the number of chips can be negative. Chung and Ellis [17] called their own variation of

the chip-�ring game, which is a special case of our version, the Dirichlet game. Their

version considers only positive number of chips in the interior of a simple graph and the

boundary nodes do not �re chips into the interior vertices after the game reaches a stable

con�guration. Because this difference is small we call our variant the Dirichlet game as

well. We would like to point out that we are liberal about the usage of names either calling

it Dirichlet game or simply CFG.

In this chapter, our objective is to obtain a bound on the length of the Dirichlet game,

that is, how long it will take for a con�guration to reach a stable and recurrent con�gura-

tions, in terms of the initial number of chips in the game and the diameter of the graph. We

start with the preliminaries in the �rst section of this chapter. The second section covers the

fundamentals of CFG. The set of critical groups are discussed in the third section. In the

fourth section, we explain how CFG is viewed as a discrete dynamical system. In Section

5, we discuss electrical networks in a naive way to attempt to understand the dynamics of

CFG intuitively. The sixth and seventh sections give a probabilistic approach to the prob-

lem of CFG and electrical networks to obtain a bound on the time for the network to reach

a stable con�guration.
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3.1 Introduction

The Dirichlet chip-�ring game takes place in the setting of a connected graph G D .V; E/

with multiple edges such that V D S [ @S where we call S the interior of G and @S the

boundary of G. Furthermore, we assume that the boundary nodes are not connected by any

edges, i.e., w.u; v/ D 0 if u; v 2 @S. An instance of the Dirichlet game on the graph G

starts with a number of chips on each of the vertices on the interior of G, where we allow

the number of chips to be negative. The following steps are the rules of the Dirichlet game:

1) Choose a vertex v in the interior of G which has more than dG.v/ chips, remove

dG.v/ chips from v and add w.u; v/ chips to each vertex u in the neighborhood of v;

NG.v/: Such a step is called �ring the vertex v;

2) If there is no vertex v in the interior of G which has more than dG.v/ , then add

w.u; q/ chips to each vertex u in NG.q/ for every q in the boundary of G: In other words,

all the nodes in the boundary of G �re simultaneously only when no �ring is possible in

the interior of G,

3) Chips �red from a vertex in the interior of G to a vertex in the boundary of G are

instantly processed and removed from the game.

A con�guration s of the Dirichlet game is a function de�ned on the vertices such that

s.v/ is the number of chips in the vertex v: If s.v/ � d.v/ for some v in the interior of

G, then we say that v is ready in s. If s.v/ < dG.v/ for all v in the interior of G; then

the boundary nodes are ready. Given a con�guration s, a �nite sequence v1; v2; v3;...; vk of

vertices is legal for s if v1 is ready in s, v2 is ready in the con�guration obtained from s

after �ring v1; etc.
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A con�guration s is said to be stable if s.v/ < dG.v/ for all v in the interior of G. It is

called recurrent if there is a non-empty legal sequence which leads to the same con�gura-

tion. And a con�guration is called a critical con�guration if it is both stable and recurrent.

The following theorems due to Biggs [9] state that every con�guration will eventually reach

a critical con�guration. For completeness, we state the proof with minor variations.

Theorem 3.1.1

For every con�guration s, there is an upper bound on the length of a legal sequence of

�rings that does not contain the vertices in the boundary nodes.

Proof: Recall that vertices in the boundary of G �re only when no �ring is possible

in the interior of G and processes any chips that �re across the boundary nodes. Suppose

that we start with �nite number of chips and there is a vertex v1 2 S that is �red in�nitely

often. Let P D v1;:::;vn be a path with multiple edges according to the weight of G from v1

to some vertex vn 2 @S; where all the vertices of the path except vn belong to S: If some

vertex in P , say vi , for some i � n � 1; �res in�nitely often, then viC1 receives in�nitely

many chips and therefore, �res in�nitely often also. Repeating this argument, we therefore

see that the vertex vn must process in�nitely many chips. This is a clear contradiction to

the fact that we started with a �nite number of chips.

QED

Theorem 3.1.2

Let s be a con�guration of the Dirichlet game: Then there is a critical con�guration c

which can be reached by a legal sequence of �rings starting from s.

Proof: By Theorem 3.1.1, if we start from s and �re the vertices other than the bound-

ary nodes then we must eventually reach a con�guration where no vertex in G is ready to
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�re except the boundary nodes, that is, a stable con�guration. If we then �re the boundary

nodes and repeat the process, we reach another stable con�guration. This procedure can be

repeated as often as we would like to. Since the number of stable con�gurations is �nite,

at least one of them must recur, and this is the critical con�guration.

QED

3.2 Basic Theory of the Dirichlet Game

In the following sections, we present the fundamentals of CFG from [9, 17, 63]. These

results are still valid in our version of CFG with slight changes in the proofs. Suppose � D

v1; v2; v3;...; vk is a �nite sequence which is legal for the con�guration s. Then we denote

the number of times v occurs in � by f� .v/: As argued above, the relationship between s

and the con�guration s0 which is obtained by applying � to s can be written in terms of

weighted Laplacian, i.e.,

s.v/� s0.v/ D Lw. f� .v//:

The CFG is based on the con�uence property. If we start with a given con�guration

s then there may be many different legal sequences starting from s; but they all lead to

the same outcome in some sense. The following lemma and theorem explain this more

precisely.

Lemma 3.2.1

Let � D v1; :::,vk and �
0
D v

0

1; :::; v
0

l be legal sequences for a con�guration s. Then
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there is a legal sequence � D u1; :::; u j for s with the property that

f� .u/ D max . f� .u/; f� 0 .u//;

for all u inG.

Proof: Suppose the result is true for any positive integer less than kC l ( the sum of the

lengths of the two legal sequences for the con�guration s): If k D 0 or l D 0 we are done

by setting � D �
0or � D � , respectively.

If v1 D v01, then we can apply the induction hypothesis to the con�guration obtained

by applying v1 on s with the sequences v2; v3; :::; vk and v02; :::; v
0
l :

If v1 6D v01 and v1 does not occur in �
0, then v1; v01; v

0
2; :::; v

0
l is also legal for s. This

is because by starting with v1; we will be adding more chips to v01 and the sequence �
0

was already legal for s. Now we can apply the induction hypothesis to the con�guration

obtained by applying v1 to s with the sequences v2; v3; :::; vk and v01; :::; v
0
l :

If v1 6D v01 and v1 does occur in �
0, then by shifting the �rst v1 to the start of the � 0, we

will have a new sequence v1; v01; :::v
0
i�1; v

0
iC1; :::; v

0
l which is still legal for s. We can now

apply the induction hypothesis to the con�guration obtained by applying v1 to s with the

sequences v2; v3; :::; vk and v01; :::; v
0
i�1; v

0
iC1; :::; v

0
l :

QED

Theorem 3.2.2. Con�uence property

Let � and � 0 be legal sequences for the con�guration s which lead to new con�gurations

s1 and s2: Then there is a con�guration s3 which is obtained from s1 and s2 by applying

legal sequences, respectively.
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Proof: According to the above lemma, there is a legal sequence � for the con�guration

s where f� .u/ D max . f� , f� 0/. We can choose the initial part of � to be the same as

� ; and � would still be legal for s. Then the remaining subsequence of � will be legal

for s1: Similarly, there is a legal sequence � 0 for the con�guration s such that f� 0.u/ D

max . f� .u/ , f� 0.u// and the initial part of � 0would be the same as that in � 0; and the

remaining subsequence of � 0will be legal for s2: By Laplace's equation, both � and � 0 will

lead s to the same con�guration s3 .

QED

Corollary 3.2.3

Using the same assumption as above, we have:

(a) If every vertex in � and � 0 appears at most once then the con�guration s3 can be

obtained by �ring the vertices at most once.

(b) If the boundary nodes do not appear in both � and � 0 and all the vertices appear

at most once, then s3 can be obtained by �ring the vertices at most once and the boundary

nodes do not appear in this sequence of �ring.

Proof: Part (a) follows from the simple observation that if f� � 1 and f� 0 � 1 then

f� 0 � 1: And part (b) follows from the fact if f� .q/ D f� 0 .q/ D 0; then f� .q/ D 0; for

every boundary node q.

QED
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3.3 Critical Con�guration of the Dirichlet Game

Based on Berenstein and Chung's mathematical formulation of the discrete inverse conduc-

tivity problem, we require that1w. f / D 0 in the interior of the graph. This is a reasonable

assumption if one wants to detect the problem of inner structure of the network through

measurements made on the boundary of the graph. In the language of chip-�ring game, we

require that the net �ow or net �ring in the interior of the graph to be zero. In other words,

we desire that the interior of the network be at a stable con�guration. This is why the study

of set of stable and recurrent con�gurations of the Dirichlet game becomes important in

connection to the Berenstein and Chung's mathematical model of network tomography .

Lemma 3.3.1

Suppose � D v1; :::; vk is a legal sequence for a stable con�guration s in which the

boundary nodes appear only once. Then every vertex in G appears at most once in � :

Proof: Since s is stable, the boundary nodes must appear at the beginning of the �ring

sequence � . Let's suppose that some vertex appears more than once. Let v be the �rst

vertex that appears more than once and vi be the second appearance of v. Then vi is ready

after v1; :::; vi�1 has been applied to s: According to Laplace's equation, the number of

chips on vi after v1; :::; vi�1 is applied to s is

s.vi /� f� .vi /dG.vi /C
X
u
f� .u/w.u; vi / D s.vi /� dG.vi /C

X
u
f� .u/w.u; vi /:

Since vi appears exactly once in v1; :::; vi�1: The upper bound for the number of chips on
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the vertex vi after the sequence v1; :::; vi�1 has been applied to s is

s.vi /� dG.vi /C
X

u2NG.vi /
f� .u/w.u; vi / � s.vi /� dG.vi /C dG.vi / D s.vi /:

But since s is stable, the number of chips at the vertex vi , after the second appearance, will

be less than the degree of vi . This contradicts the fact that vi is ready for the second �ring

time.

QED

Corollary 3.3.2

Let s be a stable con�guration and � D v1; :::; vk be a legal sequence for s. Then every

vertex in G appears in � at most as often as the boundary nodes.

Proof: Partition � D v1; :::; vk into parts where the boundary nodes appear at the

beginning of each part. Since s is stable, the boundary nodes must appear �rst. After

applying the �rst part of � to s we will obtain a new stable con�guration. This is because

the boundary nodes appear the second time in the second part. By applying Lemma 3.3.1

to each part, we obtain the result.

QED

The following result gives a necessary condition for a stable con�guration to reappear.

Theorem 3.3.3

Let � D v1; :::; vk be a legal sequence for a stable con�guration s such that after ap-

plying � to s we return to the con�guration s. Then every vertex in G appears the same

number of times in � :

Proof: It is easy to see that every vertex in G must appear in � : Since s reappears
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after applying � , if a vertex does not �re then it should not receive chips from neighboring

vertices. Therefore, if a vertex v in G does not appear in � , then all neighboring vertices

do not appear in � either. By the connectedness of G, none of the vertices of G appear in

� , which is a contradiction. So all the vertices of G must appear in � . Let v be a vertex

that appears a minimal number of times in � and that is adjacent to a vertex v0 that appears

more often in � than v itself (otherwise, since G is connected all the vertices must appear

equally often). By Corollary 3.3.2, v cannot be a boundary node. After applying � to s,

v loses pdG.v/ chips and gains at least pw.u; v/ chips from each u in the neighborhood

of v and, in fact, at least .p C 1/w.v; v0/ chips from v0; where p is the number of times v

appears in � . The lower bound on number of chips in v after applying � is

s.v/� pdG.v/C
X
u
pw.u; v/C w.v; v0/ D s.v/C w.v; v0/;

contradicting the fact that s should reappear after applying � :

QED

Theorem 3.3.4

Let � D v1; :::; vk be a legal sequence for a critical con�guration s such that after apply-

ing � to s, we get a stable con�guration. If the boundary nodes appear exactly once in the

�ring sequence, then every vertex in G appears exactly once and the resulting con�guration

is s.

Proof: Since s is a critical con�guration, there is a legal sequence of �ring � 0 D

v01; :::; v
0
l for s such that after applying �

0 the con�guration s is returned. By Theorem

3.3.3, every vertex in G must appear in � 0 the same number of times. And by Lemma 3.3.1
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every vertex in G appears at most once in � . This means that for all v in G

max. f� .v/; f� 0.v// D f� 0.v/:

According to the Theorem 3.2.2, we can form a legal sequence � whose vertices appear the

same number of times as in � 0: Therefore every vertex appears the same number times in �

and applying � to s will yield s again. Also, we can choose � in such a way that the initial

part of � will be the same as � . Let � 0 be the part of � after the initial part � . Then � 0 is a

legal sequence for a stable con�guration resulted from applying � to s. Therefore, we have

a sequence � in which each vertex appears equally often, and the initial part of � is equal to

� in which each vertex appears at most once. In the remaining part, � 0, each vertex appears

at most as often as the boundary nodes. This is only possible if each vertex appears exactly

once in � , and the resulting con�guration after � is being applied to s is s again.

QED

Theorem 3.3.5

Let s be a con�guration of the Dirichlet game. Then there is a unique critical con�gu-

ration which can be reached by a legal sequence of �rings.

Proof: By Theorem 3.1.2, one such critical con�guration exists. Suppose c is the

�rst critical con�guration that is reached by the sequence of �rings. Then by Theorem

3.3.4, once we activate the boundary nodes the �rst stable con�guration will be a critical

con�guration which coincides with c. This proves the uniqueness.

QED

Corollary 3.3.6
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Let c be a critical con�guration. Then 0 � c.v/ � dG.v/� 1 for all v in the interior of

G:

Proof: The upper bound for c.v/ arises directly from the de�nition of critical con�g-

uration. For the lower bound, by above theorem, there is a legal sequence such that every

vertex appears exactly once. v receives only dG.v/ chips when applying the legal sequence.

On the other hand, since v is �red as well, there must be a moment when v holds at least

dG.v/. This is only possible if c.v/ � 0:

QED

The above theorem shows that a critical con�guration is in some sense a saturated state,

a state in which the network is neither in an active nor passive position. In other words,

the total net �ow in the interior of network is zero. Theorem 3.3.4 also provides a way to

recognize the critical con�guration. Once a stable con�guration s is obtained, start with

the boundary nodes to form a legal sequence of �ring, until another stable con�guration s0

is obtained. By Lemma 3.3.1, this happens after at most n �rings, where n is the number

of vertices in G. If s D s0, then s0 is a critical con�guration, otherwise repeat the pro-

cedure starting with s0. The following theorem shows one can also recognize the critical

con�guration by knowing whether every vertex has been �red or not.

Theorem 3.3.7

Suppose s is an arbitrary con�guration and � D v1; :::; vk is a legal sequence such that

when it is applied to s results in a stable con�guration s0. If all the vertices appear at least

once in � , then s0 is a critical con�guration.

Proof: If all the vertices appear exactly once in � ; then the con�guration s0 will be the

same as s by Laplace's equation. Since s0 is a stable con�guration, so is s. This means that
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s is a critical con�guration. For the remaining cases, we use induction on k. If v1 appears

more than once then we apply the induction hypothesis to the con�guration obtained by

applying v1 to s with the following legal sequence v2; :::; vk for this new con�guration.

Therefore, assume that some vertex other than v1 appears more than once. Let vi be the

vertex in � that appears more than once and if v j is the second appearance of vi in �

then � D v1; :::; vi�1;vi ; viC1; :::; v j�1 appears at most once in � :We consider two cases.

Assume �rst that vi is not a boundary node. Since vi is ready after applying � to s, and

vi loses dG.vi / chips and gains at most
P
u w.u; vi / D dG.vi / chips, vi must have been

ready before the application of � on s. Now apply the induction hypothesis to the con-

�guration obtained by applying vi to s with the legal sequence of v1; :::; vi�1;viC1; :::; vk

in which each vertex appears at least once. For the second case, we assume vi is one of

the boundary nodes. Let s00 be the con�guration obtained from s by adding w.v; q/ chips

to all v in the neighborhood of q for every q in the boundary of G: Then the sequence

� 0 D v1; :::; vi�1;vl; :::; vk; in which the vertices from vi�1 to vl in � are all the boundary

nodes and were removed from � ; is a legal sequence for s00:We can now apply the induction

hypothesis to s00 and � 0: Note that applying � 0 to s00 will result in the same con�guration as

applying � to s:

QED

3.4 Dirichlet Game as a Discrete Dynamical System

In order to de�ne time in a discrete sense, we have to �nd a way to get from one con-

�guration to another irrespective of choices of the legal sequence within one unit of time.
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Suppose we start with an unstable con�guration s. If � D v1; :::; vk and � 0 D v01; :::; v
0
l

are two legal sequences such that all the vertices in the interior of G appear at most once

in each of the sequences and, moreover, k and l are as large as possible with this prop-

erty. Then, by the con�uence property, there is a legal sequence whose vertices appear at

most once and the its initial part is � D v1; :::; vk . As k is the largest integer with the

property that no vertices appear more than once, this new sequence must be � : By a sim-

ilar argument, there is a legal sequence whose vertices appear at most once and its initial

part is � 0: Since l is the largest possible value with the property that no vertices appear

more than once, this new sequence must be � 0: By the con�uence property, � D v1; :::; vk

and � 0 D v01; :::; v
0
l will lead s to the same con�guration. The above argument leads us to

introduce the following de�nition:

Let s be a con�guration, then a cycle for s is a legal sequence � D v1; :::; vk such that

(a) If the boundary nodes do not appear in � ; all the vertices appear at most once, and

k is as large as possible.

(b) If s is a stable con�guration, then the boundary nodes appear in the �rst part of

� D v1; :::; vk and all the vertices appear at most once, and k is as large as possible.

Obviously, the cycles are not uniquely determined by s, but they all lead s to the same

con�guration. Let s be the initial con�guration. We call s the con�guration at time 0,

denoting it by s0: If st is the con�guration at time t , then the con�guration at time t C

1 is de�ned as con�guration obtained by applying a cycle to st : The following theorem

describes the dynamics of the CFG.

Theorem 3.4.1

Let s0 be the starting con�guration of a Dirichlet game on the connected graph G. Then
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for every v in the interior of G and positive integer t we have:

(a) if st.v/ < 0, then st.v/ � st 0.v/ � dG.v/� 1 for all t 0 � tI

(b) if 0 � st.v/ � dG.v/� 1, then 0 � st 0.v/ � dG.v/� 1 for all t 0 � tI

(c) if st.v/ � dG.v/, then 0 � st 0.v/ � st.v/ for all t 0 � t:

Proof: Let v be in the interior of G, t a positive integer, and let � be a cycle for

st : Since every vertex in the interior of G appears at most once in � ; v receives at mostP
u w.u; v/ D dG.v/ chips when applying the cycle � to st : On the other hand, if v is �red,

it loses dG.v/ chips.

If st.v/ < 0; then v is not �red in the cycle � ; therefore, st.v/ � stC1.v/ � st.v/ C

dG.v/ � dG.v/: This proves part (a).

If 0 � st.v/ � dG.v/� 1; then v gains at most dG.v/ chips. If v is �red in the cycle �

then it loses dG.v/ chips. Hence, we have 0 � stC1.v/ � dG.v/ � 1: And if v is not �red

then we immediately have 0 � stC1.v/ � dG.v/� 1. This proves part (b).

If st.v/ � dG.v/; then v is certainly �red in the cycle � , hence it loses dG.v/ chips but

gains at most dG.v/ chips. So we have 0 � stC1.v/ � st.v/ which proves part (c). The

result follows by applying induction on k where t 0 D t C k:

QED

One of the dif�culties in analyzing the discrete dynamics of the Dirichlet game arises

when a vertex v is at a con�guration s, such that 0 � st.v/ � dG.v/� 1: In this case, it is

not completely determined that the vertex v will �re after applying a cycle to s. Depending

on the structure of the network and the number of chips at every vertex, the �ring might or

might not occur. The main tool in analyzing the dynamics of the Dirichlet game will be its

continuous version, which is the electrical network. Recall the following equation for the
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Dirichlet game:

stC1.v/� st.v/ D � ft.v/dG.v/C
X
u
ft.u/w.u; v/;

where ft.v/ is either 1 or 0 depending on whether v �res or not at time t: In the continuous

version, stC1.v/�st.v/ is substituted by the differential of s, s.v/ is regarded as the amount

of charge at the vertex v;which could be positive or negative, and ft.v/ D 1 or 0 depending

on the charges being positive or negative at the vertex v. And when there is a zero charge

at vertex v, we would like to have Kirchhoff's law applied to the vertex v. In other words,

since the continuous dynamics obey the following differential equation:

ds
dt
D � ft.v/dG.v/C

X
u
ft.u/w.u; v/;

we require that if a vertex v has zero charges, i.e, st.v/ D 0 then st 0.v/ D 0 for all t 0 � t:

This results in
ds
dt
D 0 or

� ft.v/dG.v/C
X
u
ft.u/w.u; v/ D 0;

which is exactly the Kirchhoff's law .
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3.5 Basic Theory of Electrical Networks

As in the Dirichlet game we assume we are given a �nite, undirected, connected graph

with boundary nodes. At time t we assume at each vertex v in the interior contains a

certain amount of charge rt.v/, which can be negative. In the continuous version, �ring is

denoted by 't.v/ and the value of 't.v/ is determined by the following rule:

1) If rt.v/ < 0 for v in the interior of G then 't.v/ D 0;

2) If rt.v/ > 0 for v in the interior of G then 't.v/ D 1;

3) If rt.v/ D 0 for v in the interior of G then 't.v/ is obtained according to Kirchhoff's

law, i.e.,

't.v/ D
X
u
't.u/

w.u; v/
dG.v/

:

4) If rt.u/ > 0 for some u in the interior of G then 't.q/ D 0 for all q in the boundary

of G,

5) If rt.u/ � 0 for all u in the interior of G then 't.q/ D 1 for all q in the boundary of

G.

Based on the theory of electrical networks [13, 26, 27, 34], 't is uniquely determined

by the above rules.

We de�ne a vertex v as being passive if rt.v/ < 0; saturated if rt.v/ D 0; and active if

r.v/ > 0: From the above rules, it is obvious that the boundary of G is active if no other

vertices are active, and passive otherwise. For a certain con�guration r , we call V ar the set

of active vertices, and V pr the set of passive vertices.

Theorem 3.5.1
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For a con�guration r as above; we have 0 � 't.v/ � 1; for all vertices v.

Proof : Suppose there exists a vertex v such that 't.v/ > 1: Choose v such that 't.v/

is maximum. Because of the rule (2), v cannot be in the boundary of G. From the equation

't.v/ D
P
u 't.u/

w.u; v/
dG.v/

; since 't.u/ � 't.v/ for all u in the neighborhood of G, we

therefore have

dG.v/'t.v/ D
X
u
't.u/w.u; v/

�
X
u
w.u; v/'t.v/ D dG.v/'t.v/:

The above inequality is forced to be an equality everywhere. Hence

't.v/ D
X
u
't.u/

w.u; v/
dG.v/

;

for all u in the neighborhood of v. Since 't.v/ is maximum, 't.v/ D 't.u/ for all u in the

neighborhood of v: By repeating the same argument for the vertices neighboring u, and the

fact that G is connected, we have 't.u/ D 't.v/ for all u in G. But this contradicts the

�ow 't.q/ D 1 for q in the boundary of G. By similar argument, we have 't.v/ � 0 for

all v in G:

QED

The following theorem shows that the dynamics of the continuous version of the Dirich-

let game is almost the same as the discrete one.

Theorem 3.5.2

For any v in the interior of G and t � 0 we have
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(a) If rt.v/ D 0; then rt 0.v/ D 0 for all t 0 � tI

(b) If rt.v/ < 0; then rt.v/ � rt 0.v/ � 0 for all t 0 � tI

(c) If rt.v/ > 0; then 0 � rt 0.v/ � rt.v/ for all t 0 � t:

Proof:

If rt.v/ D 0; then 't.v/ D
P
u 't.u/

w.u; v/
dG.v/

: Therefore, by the differential equation

drt
dt
D �'t.v/dG.v/C

P
u 't.u/w.u; v/;

drt
dt
D 0: Hence we must have rt 0.v/ D 0 for all

t 0 � t: This proves part (a).

If rt.v/ < 0; then 't.v/ D 0. By Theorem 3.5.1, 't.u/ � 0 for all u in G. Using the

equation
dr
dt
D �'t.v/dG.v/C

P
u 't.u/w.u; v/; we have

dr
dt
D �0.dG.v//C

X
u
't.u/w.u; v/ � 0:

Hence rt.v/ � rt 0.v/ for all t 0 � t as long as rt 0.v/ < 0: Once we reach rt 0.v/ D 0; we

obtain rt 00.v/ D rt 0.v/ D 0 for all t 00 � t 0 by part (a). This proves part (b).

If rt.v/ > 0; then 't.v/ D 1. By Theorem 3.5.1, 't.u/ � 1 for all u in G. Using the

equation,

dr
dt

D �1.dG.v//C
X
u
't.u/w.u; v/

� �dG.v/C
X
u
w.u; v/ � 0;

we have rt 0.v/ � rt.v/ for all t 0 � t as long as rt 0.v/ > 0: Once we reach rt 0.v/ D 0; we

get rt 00 .v/ D rt 0.v/ D 0 for all t
00
� t 0 by part (a). This proves part (c).

QED
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We say a con�guration rt is an active con�guration, if there is a vertex v in the interior

of G such that rt.v/ > 0: Otherwise, it is called inactive or passive. Note that the boundary

nodes are active in an inactive con�guration. A con�guration is called recurrent if
drt.v/
dt

D

0; for all v in the interior of G. We consider a recurrent con�guration, as analogous to a

critical con�guration for the Dirichlet game.

Although we have different critical con�gurations in the Dirichlet game, in electrical

networks there is only one recurrent con�guration which has zero charge at every vertex in

the interior of the graph.

Theorem 3.5.3

For a connected graph G, if rt is a recurrent con�guration, then rt.v/ D 0 and 't.v/ D 1

for all v in the interior of G:

Proof:

Suppose there is a vertex v in the interior of G such that rt.v/ > 0. Then 't.v/ D 1 and

't.q/ D 0 for all q, the boundary nodes: By the connectedness of G, we can choose v so

that there would be a vertex u in the neighborhood of v with 't.u/ < 1: From the equation

drt.v/
dt

D �'t.v/dG.v/C
X
u
't.u/w.u; v/;

we obtain
drt.v/
dt

< 0: Hence rt cannot be a recurrent con�guration. Furthermore, rt.v/ �

0 for all v in the interior of G. Now, if there is a vertex v in the interior of G such that

rt.v/ < 0 then 't.q/ D 1 for all boundary nodes, q: By the connectedness of G, we can

choose v so that there would be a vertex u in the neighborhood of v with 't.u/ < 1: From

the equation,
drt.v/
dt

D �'t.v/dG.v/ C
P
u 't.u/w.u; v/; we obtain

drt.v/
dt

> 0: Hence
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rt cannot be a recurrent con�guration. We conclude that the only recurrent con�guration is

the con�guration with rt.v/ D 0 for all v in the interior of G: It is obvious that 't.v/ D 1

for all v in the interior of G.

QED

We now study the connection between the Dirichlet game and electrical networks. For

a starting con�guration r0 of the electric network and a positive real number t , de�ne

8t.v/ D

Z t

0
'x.v/dx;

because 0 � 'x.v/ � 1 , we have 0 � 8t.v/ � t; for all v: Similarly, for a starting

con�guration s0 and a positive integer t; de�ne

zt.v/ D
tX
xD1

fx.v/;

since fx.v/ D 0 or 1; therefore, we again have 0 � zt.v/ � t: From the dynamics of the

Dirichlet game and the electric network, we have

st.v/� s0.v/ D �dG.v/zt.v/C
X
u
w.u; v/zt.u/ D �Lw.zt.v// .1/

rt.v/� r0.v/ D �dG.v/8t.v/C
X
u
w.u; v/8t.v/ D �Lw.8t.v// .2/

The following two theorems describe the connections between the Dirichlet game and the

electrical networks.

Theorem 3.5.4
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Let s0 be a stable con�guration of the Dirichlet game. De�ne r0 to be the starting

con�guration of the electric network by r0.v/ D s0.v/ � .dG.v/ � 1/ for all v in the

interior of G. If rT is a recurrent con�guration then for an integer t > T , st is a critical

con�guration of the Dirichlet game.

Proof:

By Theorem 3.3.7, it suf�ces to show that all the interior vertices will �re within the

time interval between 0 and t; i.e., zt.v/ > 0 for all vertices v in G: This is done by

showing that8t.v/ � zt.v/ for all vertices v in G: Since rt is a recurrent con�guration for

t � T , we have �t.v/ > 0 for t > T and for all vertices v in G. Now, suppose that there

exists a vertex v such that 8t.v/� zt.v/ > 0. Furthermore, we assume that the choice

of v makes the quantity 8t.v/� zt.v/ maximum. From zt.q/ D t and 8t.q/ D t , we

conclude that v cannot be one of the boundary nodes. From Equations (1) and (2) above

(see p. 83) and the fact that 8t.u/�zt.u/ � 8t.v/� zt.v/ for all u in G, we have:

rt.v/� st.v/ D r0.v/� s0.v/� .Lw.8t.v//� Lw.zt.v///

� r0.v/� s0.v/�

 
dG.v/�

X
u
w.u; v/

!
.8t.v/�zt.v//

D r0.v/� s0.v/:

Therefore, rt.v/�st.v/ ��.dG.v/�1/:Now, since rt.v/ D 0 we obtain st.v/ � dG.v/�1:

We also have st.v/ � dG.v/� 1;i.e., st.v/ is a stable con�guration. Hence, we must have

equality everywhere in the above inequality. In other words, 8t.u/ � zt.u/ D 8t.v/ �

zt.v/ for all u in the neighborhood of v. Repeat this argument for the neighborhood of

u. By the connectedness of G; we �nally get 8t.q/ � zt.q/ > 0 for all q, the boundary
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nodes. But this is clearly a contradiction.

QED

Theorem 3.5.5

Suppose s0, the initial con�guration of the Dirichlet game, is not a stable con�guration

and de�ne r0 to be the initial con�guration of the electrical network as r0.v/ D s0.v/ for

all v in the interior of G. If rt is a passive con�guration for an integer t then st is a stable

con�guration of the Dirichlet game.

Proof: Suppose st is not a stable con�guration. In this case, we claim that 8t.u/ �

zt.u/ for all vertices u in G. Now, choose a vertex x such that st.x/ � dG.x/; then

zt.x/ D t and 8t.x/ � t: By the above claim, we have 8t.x/�zt.x/ D 0. Therefore,

rt.x/� st.x/ D r0.x/� s0.x/� Lw.8t.x/�zt.x//

� r0.x/� s0.x/ D 0:

Hence, rt.x/ � st.x/: But this clearly contradicts the fact that rt.x/ � 0 and st.x/� dG.x/:

Now, we will prove the claim. Suppose there exists a vertex v such that 8t.v/ < zt.v/.

Furthermore, we assume that the choice of v makes the quantity zt.v/� 8t.v/ maximum.

Since st is not a stable con�guration we have zt.q/ D 0 and 8t.q/ � 0 for all q; the

boundary nodes. Hence v cannot be one of the boundary nodes. From Equations (1) and

(2) (see p. 83), we have:

st.v/� rt.v/ D s0.v/� r0.v/� .Lw.zt.v//� Lw.8t.v///
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� s0.v/� r0.v/�

 
dG.v/�

X
u
w.u; v/

!
.zt.v/�8t.v//

D s0.v/� r0.v/ D 0

Hence st.v/ � rt.v/ � 0. But rt is a passive con�guration so st.v/ � 0: On the other

hand, from zt.v/ > 8t.v/ � 0; we conclude that st.v/ � 0: But this forces equalities

everywhere in the above inequality. Hence 8t.u/ � zt.u/ D 8t.v/ � zt.v/ for all u in

the neighborhood of v: Repeating the same argument for u and using the connectedness of

G; we �nally get zt.q/� 8t.q/ > 0 for all q, the boundary nodes. But this is clearly a

contradiction.

QED

Our objective is to �nd an upper bound for the time it takes for a con�guration to reach a

recurrent con�guration. Intuitively, this time is bounded by a minimal path from the unique

active vertex to the unique passive vertex. Since the active and passive vertices will change

over time, the correct bound will be the diameter of the graph (the maximum of minimal

paths between two vertices). To simplify the analysis, we will use the short circuits or

contraction technique used in the theory of electrical networks [13].

Given a nonrecurrent con�guration r on a connected graph G, the graph G 0 is obtained

from G by contracting all active vertices, V ar , into one vertex a0 and similarly all passive

vertices, V pr ; into one vertex p0; and remove all the loops. If r is inactive then the boundary

nodes become active, and we would contract all boundary nodes into one vertex, q0. In an

inactive position, we set q0 D a0; and r 0.p0/ D
P
v2V pr r.v/I similarly in an active position,

we set q0 D p0 and r 0. a0/ D
P
v2V ar r.v/: For neither passive nor active vertices we set
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r 0.v/ D r.v/:Now, if there exists an edge between two passive vertices then there is no �ow

between these two vertices. Similarly, if there is an edge between two active vertices then

there is no �ow between these vertices because the vertices have the same voltages. Hence,

we can remove these edges. If we identify two active vertices into one vertex, we then see

that this does not change the �ow pattern of the network A similar argument applies on the

set of passive vertices. Continuing this process, we see that if we contract all the active

vertices into one vertex and all the passive vertices into one vertex then the �ow pattern in

the contracted graph will be the same as the original graph. The following theorem gives a

mathematical translation of the above argument.

Theorem 3.5.6

Given a graph G with a nonrecurrent �ow rt , let '0t be the �ow in the graph G 0 with

con�guration r 0t ; then we have the following properties:

(a) If rt is active then

dr 0t .a0/
dt

D �dG 0.a0/C
X
u
w.u; a0/'0t.u/

D
X
v2V art

"
�dG.v/C

X
u
w.u; v/'.u/

#

D
X
v2V art

drt.v/
dt

:

(b) If rt is inactive then
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dr 0t .p0/
dt

D
X
u
w.u; p0/'0t.u/

D
X
v2V prt

"X
u
w.u; v/'.u/

#

D
X
v2V prt

drt.v/
dt

:

The quantity dG 0.a0/�
P
u w.u; a0/'0t.u/ is known as the effective conductance CEFF

of the graph G 0 in electrical networks theory. We will use the random walk interpretation

of electrical networks [30, 31, 43] to better understand CEFF of the electrical network.

3.6 RandomWalk interpretation of Electrical Networks

As usual, we assume that G is connected with multiple edges. We assign to each edge a

resistance 1. We can replace an edge with multiplicity w by one resistor with resistance

1
w
: This way, we can convert our graph to a simple graph such that a resistance Rxy is

assigned to each edge connecting x to y: The conductance of an edge xy isw.x; y/ D
1
Rxy

:

We de�ne a random walk on G to be a Markov chain with transition matrix P given by

Pxy D
w.x; y/
dG.x/

.

We choose two points a ( an active vertex) and b ( a passive vertex) and put a one-volt

battery across these points establishing a voltage '.a/ D 1 and '.b/ D 0: Our objective

now is to give a probabilistic interpretation of voltage and currents. By Ohm's law, the

currents through an edge connecting x to y of the graph are given by

ixy D
.'.x/� '.y//

Rxy
D .'.x/� '.y//w.x; y/:
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By Kirchhoff's law, we have: X
y
ixy D 0;

therefore,

'.x/ D
X
y

w.x; y/
dG.x/

'.y/ D
X
y
Pxy'.y/; for x 6D a; b:

Let h.x/ be the probability that starting from x , the state a is reached before the state

b. Then h.x/ is harmonic in the interior and has the same boundary values as ' , i.e.,

'.a/ D h.a/ D 1, and '.b/ D h.b/ D 0: Therefore both ' and h are solutions to the

Dirichlet problem for the Markov chain with the same boundary values. Hence ' D h:

Therefore, we have the following theorem.

Theorem 3.6.1 (Probabilistic interpretation of voltage)

When unit voltage is applied between a and b, i.e., '.a/ D 1 and '.b/ D 0; the

voltage '.x/ equals the probability that a walker starting from the point x will return to a

before reaching b:

QED

For the probabilistic interpretation of current, we assume the walker begins at a and

ends at b. Let ux be the expected number of times that the walker visits x before reaching

b. Then for x 6D a; b; we have ux D
P
y u yPyx : Since dG.x/Pxy D dG.y/Pyx we have

ux D
X
y
u yPxy

dG.x/
dG.y/

;

or

ux
dG.x/

D
X
y
u y

Pxy
dG.y/

:
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This means that '.x/ D
ux
dG.x/

is harmonic for x 6D a; b; and '.x/ is actually the voltage at

x when we put a battery from a to b to establish a voltage '.a/ D
ua
dG.a/

at a and '.b/ D 0

at b: Thus the current from x to y is

ixy D .'.x/� '.y//w.x; y/

D

�
ux
dG.x/

�
u y
dG.y/

�
w.x; y/

D ux Pxy � u yPyx :

Now ux Pxy is the expected number of times our walker will go from x to y and u yPyx is

the expected number of times she will go from y to x : Thus the current ixy is the expected

value (not necessarily an integer) for the net number of times the walker crosses along the

edge from x to y. Hence, we have the following .

Theorem 3.6.2 (Probabilistic interpretation of currents)

When a unit current �ows out of a into b, the current ixy �owing through the edge

connecting x to y is equal to the expected net number of times that a walker, starting at a

and walking until he reaches b, will move along the branch from x to y. These currents are

proportional to the currents that arise when a unit voltage is applied between a and b, the

constant of proportionality being the effective resistance of the network.

QED

When we impose a voltage ' between points a and b; the voltage '.a/ D ' is estab-

lished at a and '.b/ D 0: And a current ia D
P
x iax will �ow out of a. The amount

of current that �ows depends upon the overall resistance of the network which is called
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the effective resistance REFF ; de�ned by REFF D
'.a/
ia

; where the reciprocal quantity

CEFF D
1

REFF
D

ia
'.a/

the effective conductance. We can interpret the effective conduc-

tance as an escape probability. When '.a/ D 1; The effective conductance equals the total

current ia �owing out of a. This current is

ia D
X
y
.1� '.y//w.a; y/

D
X
y
.1� '.y//

w.a; y/
dG.a/

dG.a/

D dG.a/.1�
X
y
Pay'.y//

D dG.a/Pescape ;

where Pescape is the probability that starting at a, the walker reaches b before returning to

a. Thus

CEFF D dG.a/Pescape;

and

Pescape D
CEFF
dG.a/

:

The key element in �nding the bound on the time it takes for the network to reach

a recurrent con�guration is �nding an upper bound on the effective resistance REFF :

Here, we use Rayleigh's Monotonicity Law [31] in �nding the upper bound on REFF .

For completeness, we will prove the Rayleigh's Monotonicity Law using the probabilistic

interpretation of effective conductance.
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Rayleigh's Monotonicity Law: If the resistances of a circuit are increased, the effec-

tive resistance REFF between any two points will increase. If they are decreased, it will

decrease.

As usual we have a network of conductances (streets) and a walker moves from point

x to point y with probability Pxy D
w.x; y/
dG.x/

; where w.x; y/ is the conductance and dG.x/

D
P
y w.x; y/: As we have done earlier, we choose two points a and b: The walker that

starts at a and walks until he reaches b:We say '.x/ is the probability that the walker that

starts at x , reaches a before b. Then '.a/ D 1; and '.b/ D 0: And the function '.x/ is

harmonic at every point x 6D a; b: As before, we denote by Pescape the probability that the

walker , starting at a, reaches b before returning to a. Then Pescape D 1�
P
y Pay'.y/: As

we have seen already, the effective conductance between a and b is the product daPescape:

We wish to show that if one of the conductances w.r; s/ is increased then the effective

conductance increases. The case where r and s is either a or b is easy. Therefore, we

assume that r; s 6D a and r; s 6D b: Instead of increasing w.r; s/, we can think of it as

adding a new edge (bridge) of conductance � between r and s. Intuitively, we can think of

it by adding a bridge, this opens up new possibilities of escaping. One might say, it also

opens up new possibilities of returning to the starting point. It turns out the walker will

cross the bridge more often in a good direction than a bad direction. Let rs be an edge

with endpoints neither a nor b. We assume that '.r/ � '.s/: There is therefore a better

chance of escaping from s than r: A good direction means to cross the edge from r to s.

We will show that the walker will cross the edge from r to s more often on the average than

from s to r .

Let ux be the expected number of times that the walker is at x , and uxy the expected
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number of times he crosses the edge xy from x to y before he reaches b or returns to a.

As we have seen in the random walk interpretation of currents (see p. 90) that
ux

dG.x/
is

harmonic for x 6D a; b with boundary conditions
ua
dG.a/

, 0 at a and b respectively : But

the function
'.x/ua
dG.a/

is also harmonic with the same boundary conditions as
ux

dG.x/
. By the

uniqueness principle:
ux

dG.x/
D
'.x/ua
dG.a/

. Now,

urs D ur Prs

D ur
w.r; s/
dG.r/

D '.r/
w.r; s/ua
dG.a/

;

and

usr D usPsr

D us
w.s; r/
dG.s/

D '.s/
w.s; r/ua
dG.a/

:

Since w.r; s/ D w.s; r/ and by assumption '.r/ � '.s/; this means that urs � usr :

Recall that we are denoting the conductance of the bridge by �: Let us put � superscripts

on the quantities that refer to the walk on the graph with the bridge. Let E� denotes the

expected net number of times the walker crosses the bridge from r to s: Therefore; we

have E� D
�

u�r
dG.r/C �

�
u�s

dG.s/C �

�
�:

Claim:

P�escape D Pescape C .'.r/� '.s//E
�:
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The above claim is best explained through a game in which your fortune is '.x/. Recall that

'.x/ is the probability of returning to a before reaching b. Then your expected �nal earning

is 1.1 � P�escape/ C 0.P�escape/ D 1 � P�escape: So the amount you would expect to lose is

P�escape: The �rst step you take away from a, you would expect to lose 1�
P
x P�ax'.x/ D

Pescape: Every time you step away from r; you would expect to lose an amount

'.r/�

 X
x
'.x/

w.r; x/
dG.r/C �

C '.s/
�

dG.r/C �

!
D .'.r/� '.s//

�

dG.r/C �
:

Similarly, every time you step away from s you expect to lose an amount

.'.s/� '.r//
�

dG.s/C �
:

Hence, the total amount you expect to lose equals (expected loss at �rst step)+(expected

loss at r )(expect number of times at r )+(expected loss at s)(expected number of times at s).

Therefore,

P�escape D Pescape C ..'.r/� '.s//
�

dG.r/C �
u�r C ..'.s/� '.r//

�

dG.s/C �
u�s

D Pescape C .'.r/� '.s//E�:

This is exactly what we needed for the proof of Rayleigh's Monotonicity Law. From the

Rayleigh's Monotonicity Law, we conclude that REFF is increased if one removes an edge

from the graph. This is due to the fact that removal of an edge corresponds to replacing a
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unit resistor by an in�nite resistor. Hence, REFF is bounded by the length of the minimal

path connecting a to b:Moreover, it is bounded by the diameter of the graph.

3.7 Upper Bound for Run-Time Estimates

We now give an upper bound estimate for the time it would take for a con�guration to reach

a stable or recurrent con�guration in the Dirichlet game and in the electrical network.

Theorem 3.7.1

(a) If r0, the starting con�guration for an electrical network, is active then for all values

t � D k r0 kC; rt is a passive con�guration, where k r0 kCD
P
v2S; r0.v/>0 r.v/:

(b) If r0, the starting con�guration for electrical network, is passive then for all values

t � D k r0 k�; rt a recurrent con�guration, where k r0 k�D �
P
v2S; r.v/<0 r.v/:

(c) For any t � D k r0 k; rt is the recurrent con�guration, where

k r0 kDk r0 kC C k r0 k� :

Proof: By Theorem 3.5.2, If rt.v/ < 0 then rt.v/ � rt 0.v/ � 0 for all t 0 � t and

if rt.v/ > 0 then 0 � rt 0.v/ � rt.v/ for all t 0 � t: This means that for t 0 � t; we

have fv : rt 0.v/ > 0g � fv : rt.v/ > 0g and if rt.u/ > 0 and u =2 fv : rt 0.v/ > 0g then

rt 0.u/ D 0: According to the Theorem 3.5.6, for a given t , we can obtain a graph G 0t

by contracting all active vertices into a vertex a0 and all passive vertices into a vertex p0

such that
P
v2V art

drt.v/
dt

D
dr 0t .a0/
dt

: Since the total electrical currents away from a0 to

the neighboring vertices is the effective conductance of the graph G 0t ,
P
v2V art

drt.v/
dt

D

�CEFF . By Rayleigh's Monotonicity Law, REFF � D0t , hence CEFF �
1
D0t
, where

95



D0t is the diameter of the graph G 0t . Since the diameter of the graph decreases after the

contraction we have CEFF �
1
D
; where D is the diameter of the original graph G: HenceP

v2V art
drt.v/=dt � �

1
D
for all t � 0. Integrating both sides with respect to t; we �nd

that

X
v2S; rt .v/>0

rt.v/ �
X

v2S; r0.v/>0
r0.v/�

t
D

D k r0 kC �
t
D
:

Since for an active con�guration, we must have
P
v2S; rt .v/>0 rt.v/ > 0, it is impossible

for the con�guration to be active for t � D k r0 kC : This proves part .a/.

Part .b/ follows the same argument. From the dynamics of the electrical network,

we have fv : rt 0.v/ < 0g � fv : rt.v/ < 0g for all t 0 � t: And if rt.u/ < 0 and u =2

fv : rt 0.v/ > 0g then rt 0.u/ D 0: Since r0 is passive, the only active vertices must be the

boundary nodes of G for all t � 0: Applying Theorem 3.5.6 again to the graph G 0t for a

given t � 0; we have
P
v2V prt

drt.v/
dt

D
dr 0t .p0/
dt

: As a consequence of Kirchhoff's law,

the total of this currents away from a0 into the neighboring vertices of a0 is equal to the

total of this currents into p0 from the neighboring vertices of p0: Hence
dr 0t .p0/
dt

D CEFF

or
P
v2V prt

drt.v/
dt

D CEFF ; where CEFF is the effective conductance of G 0t . Using the fact

CEFF �
1
D
; we �nd that

P
v2V prt

drt.v/
dt

�
1
D
: Integrating both sides with respect to t , we

obtain

X
v2S; rt .v/<0

rt.v/ �
X

v2S; r0.v/<0
r0.v/C

t
D
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D � k r0 k� C
t
D
:

Since for a passive con�guration we must have
P
v2S; rt .v/<0 rt.v/ < 0; it is impossible for

the con�guration rt to be passive for t � D k r0 k� : Since r0 is a passive con�guration rt

must be the recurrent con�guration for t � D k r0 k� :

For part (c), suppose r0 is not the recurrent con�guration. Let t0 be the time at which the

con�guration turns passive, then by part (b) for any t � t0 C D k rt0 k�, rt is the recurrent

con�guration. Hence, if t � D k r0 kC CD k rt0 k� then rt is the recurrent con�guration.

By the dynamics of the electrical network, we have k rt0 k� � k r0 k� : So if t � D k r0 k

then rt is the recurrent con�guration. And if r0 is the recurrent con�guration then rt is

recurrent for all t � 0 . Hence rt is the recurrent con�guration for t � D k r0 k :

Theorem 3.7.2

Given s0 an initial con�guration of the Dirichlet game which is not a stable con�gura-

tion we have:

(a) for any integer t � D k s0 kC; st is a stable con�guration,

(b) for any integer t > D.k s0 k C
P
v2S dG.v/� j S j/C1; st is a critical con�guration,

where j S j is the number of vertices in S:

Proof:

De�ne r0 as in Theorem 3.5.5, k s0 kCDk r0 kC : According to the Theorem 3.7.1, rt is

a passive con�guration for t � D k s0 kC : By Theorem 3.5.5, st is a stable con�guration

for all integers t � D k s0 kC . This proves part (a).

For part (b), let t0 be the �rst integer such that st0 is a stable con�guration. Set

r0.v/ D st0.v/� .dG.v/� 1/: According to the Theorem 3.7.1, for all t � D k r0 k�, rt is
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a recurrent con�guration. Therefore by Theorem 3.5.4, st is a critical con�guration for all

integers t � t0 C D k r0 k� :

We now �nd an estimate for k r0 k� : If s0.v/ < 0 then s0.v/ � st0.v/ � .dG.v/� 1/;

therefore,

0 � �r0.v/ � �s0.v/C dG.v/� 1: .1/

If s0.v/ � 0; then st0.v/ � 0. Therefore,

�r0.v/ D �st0.v/C .dG.v/� 1/ � .dG.v/� 1/: .2/

Putting the two inequalities (1) and (2) together, we obtain:

k r0 k��k s0 k� C
X
v2S
dG.v/� j S j;

where j S j is the number of vertices in S: By part (a), t0 < D k s0 kC C1: Therefore we

have that for all integers t such that

t > D k s0 kC C1C D k s0 k� CD
X
v2S
dG.v/� D j S j

D D.k s0 k C
X
v2S
dG.v/� j S j/C 1;

st is a critical con�guration.

QED

We now apply our result to the special case where our graph G D S [ @S is simple and

connected with Chung and Ellis's version of the Dirichlet game. Their version is a special
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case of our version where there are no negative number of chips in the interior of G and

the boundary nodes act only as processors. In other words, chips �red from a vertex in S

to a vertex in @S are instantly processed and removed from the game. Thus a con�guration

s of this version of the Dirichlet game is a vector s : V .G/ ! ZC [ f0g which satis�es

Dirichlet boundary condition s.q/ D 0 for all q 2 @S . A con�guration s is stable, if

s.v/ < dG.v/ for all v in S: Starting from an initial con�guration s0, we say that the game

terminates when it reaches a stable con�guration. In our version, this is equivalent to saying

that the game has reached the �rst stable con�guration. Let f .v/ be the number of times

the vertex v in S is �red during the Dirichlet game and
P
v2S f .v/ is the total number of

�rings, which is �nite by Theorem 3.1.1. Here, we call f the score vector of the game and

is uniquely de�ned by

Lw;S f D s0 � se;

where se is the end con�guration of the game or the �rst stable con�guration in our version.

We state without proof the following result of Chung and Ellis [17] which computes a

bound on the total number of �rings
P
v2S f .v/ during the Dirichlet game by using the

Dirichlet eigenvalues.

Chung and Ellis's result

Let f be the score vector of a chip-�ring game with Dirichlet boundary conditions.

Then the total number of �rings in the game is bounded as follows:

X
v2S

f .v/ � D k s0 kj S j
3
2
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where k s0 k is the total number of chips initially, j S j is the number of interior vertices,

and D is the diameter of the graph.

We will improve the above bound on the total number �rings using Theorem 3.7.2 (a).

For a real number a; let dae be the smallest integer greater than or equal to a. Now, for

each integer t less than the time of the �rst stable con�guration, there are at most j S j

vertex �rings since the boundary nodes do not �re during this time. And by Theorem 3.7.2

(a), for any integer t � D k s0 kC; st is a stable con�guration. Let t0 be the time of the

�rst stable con�guration. Then there are at most j S j t0 vertex �rings before the �rst stable

con�guration. Since t0 � t; we �nd that there are at most j S j
�
D k s0 kC

�
vertex �rings

before the �rst stable con�guration. Using the fact that there are no vertices with negative

number of chips in the interior of G, we �nd that k s0 kCD k s0 k : In the case of a simple

graph, we have j S j dD k s0 ke D D k s0 kj S j; since D is an integer: Hence the total

number of vertex �rings in Chung and Ellis's version of the Dirichlet game is bounded by

D k s0 kj S j :
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Chapter IV

4 Algebraic Aspects of the Dirichlet Game

The purpose of this chapter is to relate the Laplacian and the Green's function studied

in Chapters 1, 2 to our version of the chip �ring game studied in Chapter 3. As one of

the applications of this relation is to obtain a bound on the total number of vertex �rings

to achieve a critical con�guration from an arbitrary con�guration s independent of the

norm q s q of s: The idea is to consider a class of con�gurations that leads to a unique

critical con�guration and choose a stable con�guration in this class. In other words, given

a con�guration s with an arbitrary large number of chips, we seek a stable con�guration

s0 such that s and s0 belong to the same coset, i.e., s and s0 will lead to the same critical

con�guration. This is done by �rst applying the Green function on s; to produce a sequence

of legal �rings that �nds the stable con�guration s0.

We will organize this chapter as follows. In section 1, we generalize the classical re-

sult of the matrix-tree theorem [13] to weighted graphs. Namely, we will prove that the

product of the eigenvalues of the Dirichlet Laplacian is the same as the number of spanning

weighted forest rooted in the boundary of the graph. In the second section, we will obtain

a bound on the total number of vertex �rings to achieve a critical con�guration from an

arbitrary con�guration s independent of the norm of s; q s q; by using Green's function.

The last section discusses the fact that the of set of critical con�gurations has the same

cardinality as the set of spanning weighted forest rooted in the boundary of the graph by

introducing an algorithm to achieve this bijection.
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4.1 The Determinant of the Dirichlet Laplacian

Recall from Chapter 1.1, the weighted combinatorial Laplacian is de�ned by

Lw.x; y/ D

8>>>>>><>>>>>>:
dG.x/ i f x D y

�w.x; y/ if x is adjacent to y

0 otherwise:

For any function f : V ! R; we have

Lw f .x/ D
X
y
. f .x/� f .y//w.x; y/:

We consider the subgraph G D .S; S0/ of G D .S; E/ where S D S [ @S and S0 denotes

the set of all edges in E excluding those edges whose endpoints are in @S: And let Lw;S

be the submatrix of Lw restricted to columns and rows indexed by vertices in S. Next, we

consider the incidence matrix B with rows indexed by vertices in S and columns indexed

by edges S0 as follows:

Bw.x; e/ D

8>>>>>><>>>>>>:

p
w.x; y/ i f e D fx; yg ; x < y

�
p
w.x; y/ i f e D fx; yg ; x > y

0 otherwise

We note that Lw;S D BwBTw ; where BTw denotes the transpose of Bw. We next de�ne a

weighted rooted spanning forest of S to be any subgraph F satisfying:

(1) F is an acyclic subgraph of G

102



(2) F has a vertex set S;

(3) Each connected component of F contains exactly one vertex in @S:

Let us now de�ne the weight of a rooted spanning forest of S. Each connected compo-

nent of this rooted forest is a tree with its only root is at a vertex v in the boundary @S; and

let Tv denote this tree in S : Recall that a tree is a connected subgraph with no cycles. Now,

we de�ne the weight of Tv as follows: For each edge e D fx; yg in the edge set E.Tv/; the

weight of this edge is de�ned as w.e/ D w.x; y/; and

w.Tv/ D 5e2E.Tv/w.e/:

We also de�ne

w.F/ D 5v2@Sw.Tv/;

and

�.S/ D
X
F
w.F/;

where the summation takes place over all possible rooted spanning forest F . We will now

give a brief sketch of the proof of the following theorem which is quite similar to the

original proof of the matrix-tree theorem [13].

Theorem 4.1.1

For an induced subgraph S in G with @S 6D ?, the determinant of the Dirichlet weighted

Laplacian Lw;S is

det Lw;S D 5siD1� i D �.S/;

where s Dj S j; the number of vertices in S:
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Proof: The product of the eigenvalues

5siD1� i D det Lw;S

D det.BwBTw/

D
X
X
det Bw;X det BTw;X :

where X ranges over all possible choices of s edges and Bw;X denotes the square submatrix

of B whose s columns correspond to the edges in X: This expansion over X , known as the

Cauchy-Binet expansion, is described in [45].

Claim 1: If the subgraph with vertex set S and edge set X contains a cycle, then

det Bw;X D 0:

The proof is similar to that in the matrix-tree theorem [13, 22] and we just brie�y

mention that the columns restricted to those indexed by the cycle are dependent.

Claim 2 : If the subgraph formed by the edge set X contains a connected component

having two vertices in @S; then det Bw;X D 0:

Proof: Let Y denote a connected component of the subgraph formed by X . If Y

contains more than one vertex in @S; then Y has no more than jE.Y /j � 1 vertices in

S. The submatrix formed by the columns corresponding to edges in Y has rank at most

jE.Y /j � 1. Therefore, det Bw;X D 0:

From Claim 1 and Claim 2, we know that the edges of X form a forest and each con-

nected component contains exactly one vertex in @S: Therefore, There is a column indexed
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by an edge with only one nonzero entry, say .x1; e1/ with x1 2 S. Therefore,

j det Bw;X jD
p
w.e1/ j det B.1/x1 j

where B.1/w;x1 denotes the submatrix with rows indexed by S�fx1g and columns indexed by

X � fe1g : By removing w.e/ edges and one vertex at a time, we eventually obtain :

j det Bw;X jD 5e2X
p
w.e/:

Combining the claims (1) and (2) , with the above result, we have:

5siD1� i D det Lw;S

D
X
X
det Bw;X det BTw;X

D
X
X
5e2Xw.e/

D �.S/:

QED

By the above discussion, the problem of evaluating the determinant or 5siD1� i of the

Dirichlet eigenvalues is the same as enumerating rooted spanning weighted forests of an

induced subgraph which is known to be a dif�cult problem. But since the eigenvalues can

be computed in polynomial time, we can therefore say that there is a polynomial algorithm

to evaluate �.S/:
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4.2 Relation of Green's Function to Dirichlet Game

The objective of this section is to show how the Dirichlet Laplacian and its Green's func-

tion can be used to develop an algorithm which produces the critical con�guration corre-

sponding to an arbitrary con�guration. Let C0.SI Z/ and C1.S0I Z/ denote the Abelian

groups of integer valued functions de�ned on the vertices S and the edges S0 of the graph

G D .S; S0/ respectively. Considering the elements of these spaces as column vectors, the

incidence matrix Bw and its transpose BTw can be regarded as homomorphisms

Bw : C1.S0I Z/! C0.SI Z/;

and

BTw : C
0.SI Z/! C1.S0I Z/ :

We can also consider Lw D BwBTw as a homomorphism C0.SI Z/ ! C0.SI Z/: Let the

function � : C0.SI Z/! Z be de�ned by �. f / D
P
x f .x/: Then we have the following

lemma and theorem due to Biggs [9]. For completeness, we state the proof with minor

variations.

Lemma 4.2.1

The image of Lw is a normal subgroup of the kernel of �

Proof: Since each column of B has only two non-zero entries,
p
w.x; y/ and�

p
w.x; y/

that add up to 0, it follows that � B D 0: Furthermore, if x 2 Im Lw, say x D Lwy D

BwBTw y; then �.x/ D �.BwBTw y/ D � Bw.BTw y/ D 0: So x 2 Ker � : Hence the image of

Lw is a subgroup of Ker � : Since the groups are abelian, it is a normal subgroup.
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Denote the set of critical con�gurations on a graph G by K .G/: For each con�guration

s there is a unique critical con�guration  .s/ 2 K .G/ determined by Theorem 3.3.5. The

following theorem gives an abelian group structure to K .G/:

QED

Theorem 4.2.2

The set K .G/ of critical con�gurations on a connected graph G is in a one-to-one

correspondence with the Abelian group Ker�
�
Im Lw :

Proof: First, we show that there is a con�guration representing an element of Ker�
�
Im Lw :

Given a x 2 Ker � , let s be the con�guration de�ned on vertices in the S by

s.v/ D

8>><>>:
dG.v/� 1 i f x.v/ � 0

dG.v/� 1� x.v/ i f x.v/ < 0

and the value of s on the boundary is de�ned in such a way that
P
q2@S s.q/ D �

P
v2S s.v/:

Let � D v1; :::; vn be a sequence that leads s to a stable con�guration s0 then s0 D s� Lw� .

Let z D x C s � s0: Then z D x C Lw�; so [z] D [x] and

z.v/ D x.v/C s.v/� s0.v/ � dG.v/� 1� s0.v/ � 0:

Hence there is a con�guration z representing the given coset [x] : We now show that the

mapping

h : Ker�
�
Im Lw ! K .G/;

given by h.x/ D  .s/, where s is any con�guration in the coset [x]; is well-de�ned.
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Suppose that s1 and s2 are con�gurations such that [s1] D [s2] D [x]: In this case s1 � s2

D Lw f for some f 2 C0.SI Z/ . We can write f D f1 � f2 where f1 and f2 are

nonnegative functions. Let s0 D s1 � Lw f1 D s2 � f2 . Then by Theorem 3.3.5, there is

a unique critical con�guration c is reached by a legal sequence of �rings applied to s0: So

c D  .s0/. From the equation s0 D s1 � Lw f1, we conclude that there is a legal sequence

of �rings that leads from s1 to s0: Hence, there is a legal sequence of �rings that leads from

s1 to c; which is a critical con�guration. By Theorem 3.3.5, we must have  .s1/ D c:

Using the same argument, we have  .s2/ D c: Hence h is well-de�ned. To show h is

injective, suppose that h [s1] D h [s2]. Then  .s1/ D  .s2/ D c; where c can be reached

from s1 and from s2 by legal sequences of �rings. So there are vectors x1 and x2 such that

c D s1� Lwx1 D s2� Lwx2 . Hence s1� s2 D Lw.x1� x2/ or [s1] D [s2] : It is easy

to see that h is surjective. Given a critical con�guration c in K .G/ then  .c/ D c and

h.[c]/ D c:

QED

Since there is an Abelian group structure on Ker�
�
Im Lw ; de�ned by [s1] C [s2] D

[s1 C s2] ; we can translate this structure to K .S/ by Theorem 4.2.2 under the operation�,

where h [s1] � h [s2] D h [s1 C s2] ; that is  .s1/ �  .s2/ D  .s1 C s2/: Equivalently, for

any two critical con�gurations c1 and c2 , we have

c1 � c2 D  .c1 C c2/:

For a real number a, let bac be the �oor of a, i.e., the largest integer smaller than or

equal to a. And for a vector a , let bac be the largest vector obtained by taking the �oor of
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every coef�cient of a: For the con�guration s on the induced subgraph GS de�ne

s0 D s � Lw;S
�
Gw;S.s/

�
;

where Gw;S is the Green's function of the Dirichlet combinatorial Laplacian, i.e., Gw;S D

L�1w;S:By the above argument, since
�
Gw;S.s/

�
2 Z jSj and s j@SD 0 we have  .s0/ D  .s/:

The following lemma, extended from the case of a standard graph [17] to a weighted one

describes how to obtain a con�guration with a small number of chips from a con�guration

with arbitrary large number of chips with the same corresponding critical con�guration.

Lemma 4.2.3

Given a con�guration s and the discrete Green's function Gw;S , the con�guration s0

de�ned by

s0 D s � Lw;S
�
Gw;S.s/

�
satis�es

j s0.x/ j< dG.x/:

Proof: Set t D Gw;S.s/�
�
Gw;S.s/

�
then 0 � t .y/ < 1 for all y 2 S; and

Lw;S.t/ D Lw;SGw;S.s/� Lw;S
�
Gw;S.s/

�
D s � Lw;S

�
Gw;S.s/

�
D s0:
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Since

Lw;S.t/ D t .x/dG.x/�
X
y
t .y/w.x; y/;

and 0 � t .y/ < 1 for all y 2 S; we have j s0.x/ j< dG.x/:

QED

Applying Lemma 4.2.3 to any con�guration s with an arbitrary large number of chips,

we can obtain a con�guration s0 such that j s0.x/ j< dG.x/ and  .s0/ D  .s/; i:e:; both

s and s0 will reach the same critical con�guration. This is done at the cost of O.n!/

arithmetic operations for matrix inversion, where 2 � ! � 2:376:

For real number a, let [a] be the smallest integer greater than a. Since for each in-

teger t there are at most n �rings, where n is the number of vertices in G. By the-

orem 3.7.2, there is at most n
�
D.k s0 k C

P
x2S dG.x/� j S j/C 1

�
number of �rings

to reach a critical con�guration. Since k s0 k <
P
x2S dG.x/, there will be at most

n
�
D.2

P
x2S dG.x/� j S j/C 1

�
�rings to reach a critical con�guration. This argument

yields the complexity of determining a critical con�guration corresponding to an arbitrary

con�guration, which we summarize in the following theorem.

Theorem 4.2.4

Given a con�guration s in the Dirichlet game, computing the corresponding critical

con�guration requires at most

n

"
D.2

X
x2S
dG.x/� j S j/C 1

#

vertex �rings and O.n!/ arithmetic operations, where D is the diameter of G:
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4.3 Critical Con�guration and Rooted Spanning Weighted Forest

The set of critical con�gurations can be characterized as a set having the same cardinality

as the number of spanning weighted forests rooted in @S: A bijection between the two sets

is obtained algorithmically by playing a chip-�ring game using a critical con�guration as

an initial point. The idea is motivated by a theorem due to Biggs [9] which states that the

critical group K .G/ has order k , the number of spanning weighted tree in G rooted in a

distinguished vertex q . We will form a new graph G 0 by connecting q to all the vertices

in the boundary @S such that the number of edges connecting q to each vertex u 2 @S

is exactly 1, then the set of a spanning weighted forest of G rooted in the boundary @S

has the same cardinality as the set of spanning weighted trees of G 0 rooted in q such that

the number of edges connecting q to each vertex u 2 @S is one: This is due to our basic

assumption that w.x; y/ D 0 for all x; y 2 @S. Before, we state the next theorem which

draws a bijection between the set of critical con�gurations in G and the set of critical

con�gurations cq in G 0 such that cq j@S .x/ D dG 0 � 1, we will present the following

corollary which is a consequence of the Theorem 3.3.7:

Corollary 4.3.1

The con�guration c is critical if and only if cC �c yields c under some �ring sequence

which is a permutation of S; where �c is the con�guration de�ned as follows:

�c.v/ D
X
u2@S

w.u; v/; for every v 2 S :

Theorem 4.3.2

Given a critical con�guration c in G, de�ne cq , a con�guration in G 0 with a single
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boundary node fqg ; by

cq.x/ D c.x/� S C .dG 0.x/� 1/�@S:

Then cq is a critical con�guration of G 0 with a single boundary node fqg. Conversely, any

critical con�guration cq in G 0 with a single boundary node fqg such that

cq j@S .x/ D dG 0.x/� 1;

can be written in the above form for some critical con�guration c in G .

Proof: It is easy to see that cq is a stable con�guration in G 0: Since c is a critical

con�guration in G and the number of chips in the boundary nodes are at most dG 0.x/� 1:

Now, the con�guration

.cq C �cq /.x/ D c.x/� S C �cq .x/;

will yield the con�guration c.x/� S C .dG 0.x//�@S after q is being �red. Also once the

vertices in @S are �red exactly once, we get the con�guration .c.x/ C �c.x//� S: Since

c is a critical con�guration, By Corollary 4.3.1 there is a sequence of �rings which is a

permutation of S such that after applying it to the con�guration cC�c, we obtain c: Putting

it all together, we have a legal sequence of �rings which is a permutation of S such that

it will lead the con�guration cq C �cq to cq . Hence, by Corollary 4.3.1, cq is a critical

con�guration of G 0:

Conversely, given a critical con�guration cq in G 0 such that cq j@S .x/ D dG 0.x/ � 1;
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then by Corollary 4.3.1, there is a sequence of �rings which is a permutation of S such that

it will lead cq C �cq to cq . Since the vertices in G are �red only once after the vertex q

is activated by this sequence of �rings, by applying Theorem 3.3.7, the con�guration c D

cq jS which reappears would be a critical con�guration. Furthermore, cq.x/ D cq jS .x/� S:

QED

Theorem 4.3.2 combined with the argument at the beginning of the previous paragraph

would imply that the set of critical con�gurations in G is in a one-to-one correspondence

with the set of spanning weighted forest rooted in the boundary @S: Now, we are ready to

present an algorithm to �nd the spanning forest once a critical con�guration in G is given.

The idea behind this algorithm lies in Corollary 4.3.1. Given a critical con�guration, once

we activate the boundary nodes, the vertices are only �red once. So we construct an edge

only when �ring one vertex would make the adjacent vertex �re. In this way, since the

vertices are only �red once, we would avoid making a cycle in the construction. Hence, the

resulting construction is a tree. Since all the vertices are �red, it is a spanning tree. Now,

give a critical con�guration cq in G 0 . Assign a total ordering of edges in G 0: Add a chip

to every vertex in @S as if q were �red. Then add the edges fq; ug to the tree which was

initially empty for each u adjacent to q: Fire the vertex u that is ready. If there are more

than one vertex that are ready, �re the one that has a shortest path to q with respect to the

total ordering given to the edges initially. Add fu; vg to the tree if �ring u causes v to be

ready to �re. According to the number of chips; w.u; v/; that v receives add dG.v/�cq.v/

edges between u and v: Note that because cq is a critical con�guration then we must have
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dG.v/� cq.v/ � 0: Now, since u causes v to �re we have

dG.v/� cq.v/ � w.u; v/ :

Hence the weight of the edge of the constructed tree is less than or equal to the original

weight. Repeat this process until all vertices are �red. By Corollary 4.3.1, the construction

leads to a spanning weighted tree. If there are two critical con�gurations , cq and c0q such

that cq.v/ 6D c0q.v/ for some vertex v 2 S and �ring a vertex u adjacent to v causes v to

�re in both critical con�gurations cq and c0q , then the number of edges connecting u to v in

construction of the corresponding spanning trees to cq and c0q will be different. This shows

that the two different critical con�gurations yield two different spanning weighted trees.

Since the set of critical con�gurations has order k , the number of spanning tree in G 0, this

algorithm is actually a bijection from the set of critical con�guration of G 0 to the set of

spanning tree in G 0: Now, given a critical con�guration c in G; we �nd the corresponding

critical con�guration cq in G 0 such that cq j@S .x/ D dG 0.x/ � 1: Once the corresponding

spanning weighted tree with respect to cq is constructed by the above algorithm , cut all

the edges that connect q to the vertices of @S. Then the resulting subgraph is a spanning

weighted forest rooted in @S that corresponds to the critical con�guration c in G: From the

condition cq j@S .x/ D dG 0.x/ � 1; it is readily seen that this algorithm draws a bijection

from the set of critical con�gurations in G to the set of spanning weighted forest rooted in

@S.

The chip-�ring game can be used to model several aspects of Internet computing in

connection with routing and fault tolerance. For instance, one such model assumes that
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chips are labeled by messages which they carry, and studies the propagation of messages in

terms of informed and uninformed nodes of the network. In this regard, the above algorithm

shows a way to geometrically reconstruct the network by means of playing the chip-�ring

game on the graph. Since, for a given critical con�guration, the above algorithm constructs

the corresponding spanning weighted forest rooted in @S. In this way, we can �nd out

which pairs of nodes are connected and what their conductivities are.
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