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Chapter 1

Introduction

Ad-hoc networks of small, low-power, and densely populated sensor nodes are be-

ing envisioned and developed for a wide range of applications due to a confluence

of technological advances in areas such as micro-electromechanical system (MEMS)

sensor devices, micro-processors, wireless communications, and battery sources. In-

expensive remote sensing devices deployable in large numbers and networked via

wireless links and/or the internet provide unparalleled capabilities for instrumenting

and monitoring the surrounding environment [1, 2] over large-coverage areas. Such

ad-hoc sensor networks (AHSN) find use in military and civilian applications includ-

ing target tracking [3], classification [4, 5], and source localization [5, 6] applications,

weather forecasting and environmental monitoring applications [7–9], inventory ware-

house tagging and tracking applications [10], patient monitoring [11], and biological

monitoring and animal behaviorial tracking applications [12, 13]. Typically, these

AHSN’s are comprised of wireless sensor devices with integrated on-board sensing,

processing and communication capabilities. Each sensor node is equipped with a

single or a combination of sensing modalities such as acoustic, seismic, magnetic, in-

frared, chemical, biological and other low-power/low-cost modalities. However, with

very few exceptions, they have limited communication and computational capabilities

1



as they are typically battery-powered. As interest in distributed sensor networks has

proliferated in recent years, the emphasis is increasingly placed on the design and

development of efficient algorithms and architectures for network routing, wireless

communications and sensor (data) fusion in AHSN’s.

Source

Detecting

Sensor Node

Non-detecting

Sensor Node

Figure 1.1: Randomly distributed field of low-complexity acoustic sensor nodes with
a set of detecting sensor nodes forming an ad-hoc network.

In this dissertation, the problem of interest involves tracking of moving acous-

tic sources in large-scale sensor networks as shown in Fig. 1.1. We assume that all

sensor nodes in the network collect range-based measurements at a fixed rate. How-

ever, at any given time, only a subset of detecting nodes, i.e., nodes in proximity
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to the acoustic source, have range-based measurements of sufficiently high-quality

measurements for source localization and tracking.

Fig. 1.2 depicts the tracking problem of interest in further details and illus-

trates the key challenges that arise in this tracking problem. As shown in the figure,

to produce a tracking estimate at any given time t, one key challenge is how to ac-

quire and manage all the distributed sensed data up to and including time t. For

instance in Fig. 1.2, tracking at t = 2 requires using all available data from t = 0

and t = 1. Clearly, the size of the required data for performing tracking increases for

increasing t. Due to the increasing data set size, there is a need for efficient space-time

data fusion methods for fusion in space and fusion in time in a systematic manner.

In addition, the figure shows that both sensor fusion in space and in time have to

be implemented over the underlying network topology of the AHSN. The additional

challenges that arise from the problem of interest include: (i) where the processing

takes place, (ii) which nodes should be part of an active computation network (ACN)

to perform space-time sensor fusion, and (iii) which fusion algorithms are to be used

and implemented over the underlying network topology.

One approach is to employ a centralized algorithmic framework for tracking in

AHSN’s. A generalization of the centralized framework is a tree-structure framework

where a tree-like network topology is formed throughout the network. Data, routed

and fused as information, is propagated up the tree to the root node. Although the

tree-structure methods perform well in static networks, challenges remain for these

methods in dynamic networks where the network size and connections can change due

node failure and/or node mobility. For example, when nodes fail and/or connections

change in the network, the network tree-topology may need to be reconstructed and

data/information from the “affected” nodes are either lost or need to be rerouted

3



through the other “non-affected” nodes. Rerouting in tree-structure networks can be

quite cumbersome as it requires additional associated overhead information and addi-

tional processing. In addition, tree-structure methods suffer from scalability issues as

the sensor networks increase in size. As a result, decentralized algorithm frameworks

are becoming more attractive than their centralized counterparts for sensor fusion in

AHSN’s [14–17].

In this dissertation, we develop a decentralized algorithmic framework for sys-

tematic tracking of moving acoustic sources in large-scale ad-hoc sensor networks.

The tracking algorithms we developed perform computationally efficient and itera-

tive space-time processing. Fusion in space is performed by fusing current sensed

data that is sufficiently high-quality from the sensor nodes to produce the current

source location estimate. For example, at any given time each node in the sensor

network only needs to communicate with its neighbors if it has detected the source;

if it has detected the source, it participates with other “detecting” nodes in forming

an ad-hoc detecting subnetwork to perform location estimation as shown in Fig. 1.1.

Subsequently, the location estimates are indexed as they become available and fused

iteratively in time to produce tracking estimates as shown in Fig. 1.2. Both fusion in

space and fusion in time are performed distributively over the ad-hoc networks by ex-

ploiting distributed algorithms of computation of averages [3,17–20]. The distributed

algorithms we developed are locally-constructed at each participating sensor node in

the AHSN exploiting only the locally available observations and local network con-

nectivity information. These distributed algorithms are inherently progressive in that

the estimates they generate progressively improve with the number of iterations. In

particular, the algorithms we developed are also resource efficient, scalable and fault-

tolerant asymmetry. A key advantage of these algorithms is their ability to readily

4



P(t)

Data

Fusion

Source
Ad-hoc

Sensor

Network

Output

Detecting Nodes at time: t=1 t=2

t

True

Estimated

t=0

Data

Collector

Data

Collector

Data

Processing
Data

Processing

Data

Processing

t=0 t=1 t=2

Data

Collector

Figure 1.2: Source tracking in a large-scale sensor network involves (i) performing
data fusion in space (at a fixed time instant) via a subnetwork formed by a set of
detecting nodes in the vicinity of the source, and (ii) performing data fusion in time
via a sequence of subnetworks.
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adapt to local changes in network topologies. In addition to developing the distributed

algorithms for AHSN, we present methods for optimizing and characterizing the per-

formance of the proposed distributed spatial-temporal sensor fusion algorithms as a

function of the quality of the acoustic sensor measurements, the source dynamics, the

sensor density, and the network topology.

1.0.1 Outline of Thesis

In this thesis, we design and develop a decentralized algorithmic framework for sys-

tematically performing spatial-temporal sensor fusion for large-scale sensor networks

as shown in Fig. 1.2. To that end, we present the following chapters.

In the first part of Chap. 2, we present the system models for describing the

various components for the tracking problem of interest. We first model motion

dynamics of the source via a state-space model for the location and velocity of the

source in two dimensions. Next, we develop tractable acoustic sensor-source measure-

ment models with acoustic propagation effects that allows us to study and analyze

the range-based problem of interest. Next, we present the sensor distribution model

which describes the spatial distribution of sensor field. In the second part of Chap. 2,

we develop performance bounds for estimating the (centralized) location of source via

AHSN and present simulation-based analysis for the developed bounds.

In Chap. 3, in the first part, we present network models with network topolo-

gies whereby each node is assumed to establish bidirectional communication and

routing with its neighboring nodes. Then, in the second part, we present the basic

(scalar) distributed algorithm modules for computations of averages which can be

used to develop more complex, multi-dimensional algorithms for distributed space-

time sensor fusion in AHSN. We conclude this chapter with briefing simulation-based
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analysis via a DC signal in noisy observations example.

In Chap. 4, we design and develop sensor fusion algorithms for spatial process-

ing via a distributed network of sensors. In particular, we present resource efficient

source localization algorithms that trade-off performance and complexity and can

be implemented distributively in decentralized settings. We discuss the key steps in

mapping the centralized estimators in the forms of weighted averages so distributed

computations can be performed locally at all participating nodes in the network.

Then, we present simulation results and discuss performance analysis comparing the

distributed source localization algorithms with their centralized counterparts. We

conclude this chapter by characterizing the relationships among the network, sensor-

source and algorithm parameters to develop methods optimizing algorithm perfor-

mance.

In Chap. 5, we design and develop sensor fusion algorithms that incorporate

spatial fusion estimates for tracking. In particular, we present distributed algorithms

that can be implemented decentrally via a state estimation framework; the tracking

algorithms we develop exploit the improved distributed computations algorithms for

performing spatial-temporal fusion locally at each participating node over changing

network topologies. Then we conclude this chapter tracking simulation results and

performance analysis.

Finally, in Chap. 6, we summarize our contributions in developing a algo-

rithmic framework for decentralized tracking, improved distributed computation al-

gorithms, distributed spatial-temporal algorithms source localization and tracking.

Then, we suggest and discuss potentially interesting and challenging directions for

future research in sensor networks related areas.
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Chapter 2

System Modeling and Performance

Bounds

In order to investigate the tracking of a moving acoustic source in large-scale AHSN as

shown in Fig. 1.2, we first need to develop system models to provide a framework for

developing the distributed sensor fusion algorithms in space and in time. In particular,

we seek to develop models to describe the dynamics of a moving source, the sensor-

source measurements and the distribution of sensor nodes. Once the system models

are available, we seek to develop performance bounds to analyze and characterize the

lower bounds of localization uncertainty.

In this chapter, we first present the system models in Sec. 2.1 and then present

performance bounds in Sec. 2.2.

2.1 System Models

In our investigation, we are interested in networks of low-cost, low-power, omnidi-

rectional and passive sensors such as acoustic, seismic, magnetic, infrared and other

low-power/low-cost sensing modalities. We choose to focus on acoustic sensing due
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to (i) the wide availability of acoustic sensor systems and testbeds, (ii) the wide area

of sensor coverage for many applications, and (iii) the broad range of civilian and

military acoustic sensor network applications. For instance, distributed sensor net-

works comprised of acoustic (including infrasonic) sensors are being used to monitor

volcanic eruptions [9], to recognize and locate specific animal calls [13], to determine

the trajectory of a projectile and to localize the position of a sniper [21, 22], and to

perform direction-of-arrival (DOA) and track ground targets [3, 5, 23].

In this section, we first present a state-space model describing the motion dy-

namics of a moving source in Sec. 2.1.1. Next, we present signal in noise measurement

models describing the acoustic source of interest in Sec. 2.1.2, and discuss acoustic

propagation model and the associated energy-based acoustic model based on the re-

ceived signal strength (RSS) in Sec. 2.1.3 and Sec. 2.1.4 respectively. Then, we briefly

present a sensor distribution model in which we generate the location of the source

with respect to the lay-out of the sensor field in Sec. 2.1.5.

2.1.1 State-Space Model

The setting of interest involves a single moving source across the large-scale sensor

network as shown in Fig. 1.2. We assume that the motion dynamics of the source

can be accurately modeled via a state-space model for the location and velocity of

the source in two dimensions. For convenience, it is assumed that the source has

independent motion components in two dimensions, and the motion in each dimension

follows a constant velocity model with a random acceleration [24]. In particular,

letting Psn(t), and Vsn(t) denote the position and velocity, respectively, of the source

in the nth dimension (n = 1, 2) at time t, the dynamics of the state vector Xsn(t) =

9



[Psn(t) Vsn(t)]T are described by the following state-transition equation

Xsn(t + 1) = FXsn(t) + GAn(t), t = 0, 1, . . . (2.1)

where An(t) denotes the random acceleration, modeled as a zero-mean white Gaussian

sequence with power Q = σ2
A,

F =




1 Ts

0 %(Ts)


 , G =




0

1


 , (2.2)

and where Ts denotes the snapshot update interval. The parameter 0 < %(Ts) ≤ 1 is

given by %(Ts) = %Ts
o with %o =

√
(σ2

V − σ2
A)/σ2

V , where σ2
V denotes the variance of

Vsn(t). Further details and discussions on the parameter % and the two-dimensional

state-space model are in App.A.1.

2.1.2 Sensor Source Measurement Models

In this sub-section, we consider and develop tractable acoustic sensor-source measure-

ment models with acoustic propagation effects that allows us to study and analyze

the problem of spatial-temporal sensor fusion in AHSN. Then we discuss and charac-

terize the propagation medium via the spatial transfer function (STF) and its effects

on the sensor-source measurement models.

The setting of interest involves a single acoustic source in a free-field of ran-

domly distributed acoustic sensors. We assume that at a time instant t, M(t)

sensors have detected a single radiating acoustic source, e.g., via energy thresh-

old detection and M(t) nodes are assumed to form an AHSN as illustrated in Fig.

1.1. The location of the ith sensor is assumed to be fixed in time and denoted by
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Figure 2.1: AHSN of M(t) detecting sensors. Location of sensor i is pi =
[
xi yi

]T
, i =

1, 2, · · · ,M(t) and ri(t) denotes the distance between sensor i and the source location

ps(t) =
[
xs(t) ys(t)

]T
.

pin =
[
Pi1 Pi2

]T
while ri(t) denotes the distance between the ith sensor and the

source location psn(t) =
[
Ps1(t) Ps2(t)

]T
. For notational convenience, we also de-

note pin = pi =
[
xi yi

]T
and psn(t) = ps(t) =

[
xs(t) ys(t)

]T
as in “x-y” Cartesian

coordinates as in Fig. 2.1. The received signal at the ith sensor is modeled as

zi,k(t) = Sk(t) · hi(ps(t), Γ(t)) + ηi,k(t); i = 1, · · · ,M, k = 1, · · · , L, (2.3)

where Sk(t) is the signal at (data) snapshot k, ηi,k(t) is the noise at the ith sensor
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node at snapshot k, hi(ps(t), Γ(t)) is the STF from the source to sensor i, and L is the

number of statistically independent, identically, distributed (i.i.d.) data snapshots.

It is convenient to recast (2.3) in the following vector form

zk = Sk(t) · h(ps(t), Γ(t)) + ηk(t); k = 1, · · · , L, (2.4)

where zk(t) ,
[
z1,k(t) z2,k(t) · · · zM,k(t)

]T
, h(·) =

[
h1(·) h2(·) · · · hM(·)]T

, and

ηk(t) ,
[
η1,k(t) η2,k(t) · · · ηM,k(t)

]T
.

Stochastic Signal Model

We first consider a stochastic signal in noise measurement model, according to which

the sensor noise components are statistically independent and identically distributed

in time and space, while the signal components are statistically independent over

time and space, and identically distributed over time at each node. From (2.3),

Sk(t) ∼ N (µs, σ2
s) and ηi,k(t) ∼ N (0, σ2

η). Without loss of generality, we assume

µs = 0. The noise and signal are statistically independent and they are zero-mean,

Gaussian distributed, random, stationary processes. Given that ηk(t) ∼ N (0, σ2
ηI),

zk(t) ∼ N (0, C(h)), where C(h) is defined as

C(h) = E
{
zk(t) · zk(t)

H
}

= σ2
sh(ps, Γ)h(ps, Γ)H + σ2

ηI. (2.5)

Viewing σ2
s as unknown in the random signal model described by (2.4), the conditional

probability density function (pdf) of z(t) = [z1(t)
T z2(t)

T · · · zL(t)T ]T given the

vector of all unknown parameters, θ = [h(ps(t), Γ(t))T σ2
s ]

T , is given by

pz(z(t) | θ) =
∏L

k=1

exp { − 1
2
zH

k (t)C−1(θ) zk(t)}
[2π det(C(θ))]

1
2

. (2.6)
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Deterministic Signal Model

In the absent of priors, we also consider a simple deterministic signal-in-noise mea-

surement model arising via (possibly) L i.i.d. data snapshots. From (2.3), Sk(t) is

now deterministic with unknown signal source power E {S2
k(t)} = S2

k(t) = σ2
s and

ηi,k(t) ∼ N (0, σ2
η). Similarly, the vector formulation of (2.3) for deterministic signal

is zk(t) ∼ N (µ(h), σ2
ηI), where µ(h) = σsh(ps, Γ). The cdf of z(t) given θ is given

by

pz(z(t) | θ) =
∏L

k=1

exp { − 1
2σ2

s
|zk(t)− µ(θ)|2}

[2π(σ2
s)

M ]
1
2

. (2.7)

2.1.3 Propagation Model

In this section, we describe the general propagation models for acoustic signals in

free-field setting. We present a discussion of the acoustic propagation effects that

can be characterized by the STF and then discuss how we can model the acoustic

signal attenuation via the STF for the AHSN setting of interest. Then, we propose a

simplified attenuation model based on the transmission loss.

Propagation Effects

The STF at the ith defined in (2.3) is a very complex function of many environmen-

tal parameters. In general acoustic settings, the STF depends on a combination of

parameters such as temperature, humidity, wind speed and direction, ground condi-

tions, physical barriers and other environmental factors. Regardless of the settings,

Γ(t) contains the environmental parameters affecting the STF. The propagation ef-

fects in (2.3) also depend on acoustic source, S(t). Acoustic sources of interest for

unattended ground sensor (UGS) applications tend to be broadband source with

strong sinusoidal components due to rotating machinery (engines) and may include
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contributions from contact with the ground surface and exhaust noise for ground ve-

hicles [23,25]. In [26,27], the authors discuss the propagation phenomena that affect

a sinusoidal signal emitted by a non-moving source as observed by a sensor network.

They are: (i) the transmission loss (TL) caused by spreading of the wavefronts, refrac-

tion by wind and temperature gradients, ground interactions, and other absorption

effects, (ii) the additive noise at the sensors caused by directional interference, wind

noise and thermal noise, and (iii) random fluctuations in the amplitude and phase

of the signals caused by scattering from random inhomogeneities in the atmosphere

such as turbulence.

TL is defined as the attenuation of acoustic energy from a reference value

Sref(t), which is observed in free space at 1 m from the source, to the actual acoustic

energy observed at the ith sensor. To a first approximation, the acoustic energy

spreads spherically; that is, it diminishes as the inverse of the squared distance from

the source. However, TL for sound wave propagating near the ground involves many

complex, interacting phenomena, so that the spherical spreading condition is seldom

observed except at close range (e.g., less than 100 m from the source) [28]. Several well

refined and accurate numerical procedures for calculating TL are presented in [29].

In a realistic environment, the sensor noises in (2.3) may not be independent

from sensor to sensor. Interference from an undesired source may produce a common

additive noise term that can be correlated (spatially) from node to node and the infer-

ence effects can be very difficult to model. Wind noise, for example, near the ground

can exhibit spatial correlations over distances of several meters [30]. In contrast, the

thermal noise component is well-modeled independent from node to node even when

the nodes are closely spaced together within the sensor network.

The scattering of the acoustic signal caused by turbulence can be particularly
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significant in free-field acoustic setting. The turbulence consists of random atmo-

spheric motions occurring on time scales from seconds to several minutes. Scattering

from these motions causes random fluctuations in the acoustic signal at the individual

sensor nodes and diminishes the cross coherence of signals between nodes [31]. In [27],

a scattering model for a deterministic source is presented. The scattering modifies

the signal at the sensor by spreading a portion of the power from the deterministic

mean component into zero-mean random process, i.e., (2.3) becomes

zi,k(t) = (
√

1− ζ·Sd
k(t)+

√
ζSr

k(t))·hi(ps(t), Γ(t))+ηi,k(t); i = 1, · · · ,M, k = 1, · · · , L,

(2.8)

where Sd(t) and Sr(t) are the deterministic and random components of the received

signal at the sensor i and ζ ∈ [0, 1] is the saturation parameter [32]. The scattering

may be weak (ζ ≈ 0) or strong (ζ ≈ 1), which are analogous to Rician and Rayleigh

fading in the radio propagation literature.

Simplified Acoustic Propagation Model

In modeling the free-field acoustic source in (2.3), we consider the two extreme cases

in (2.8) and assume either S(t) = Sr(t) for stochastic model or S(t) = Sd(t) for

deterministic signal model.1 We seek to characterize the propagation medium with

the most salient parameters to capture the general effects of the medium over the

detection range of interest without making the STF overly complicated.

Toward that end, we assume that the acoustic source is point source radiating

omni-directionally and the dimension of the source is assumed to be small compared

1Initially, we used the stochastic signal model with L ≥ 500 snapshots, which closely represent
many of the acoustic signatures of military interest [23]. However, we later switched to the deter-
ministic model for ease of simulation with L = 1 snapshot. We find that both models are tractable
and applicable to our research.
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to the distance between the sensor and the source. We also assume only additive

white Gaussian noise (AWGN) at each sensor node and neglect the effects such as

interference and wind noise. To simplify the STF, we assume spherical spreading to

be the dominant factor in signal attenuation and approximate TL as

TL ≈ (
β

2
) · 10 log10 r(t) , (2.9)

where β is the TL coefficient for acoustic signal in air [33] and r(t) is the range from

the source. Then, the STF at sensor i can be approximated via

hi(ps, Γ(t)) = 10
−TL
10 ≈ ri(t)

−β
2 = hi(ps(t), β) , (2.10)

where ri(t) is the range from sensor i to the source.

2.1.4 Energy-based RSS Modeling

Most localization methods depend on physical variables measured by or derived

from sensor readings such as time-of-arrival (TOA) and/or time-difference-of-arrival

(TDOA) [34, 35], angle-of-arrival (AOA) or direction of arrival (DOA) [23, 36] and

energy-based RSS [6, 37, 38]. Next, we present energy-based RSS models based on

the simplified STF discussed in Sec. 2.1.3. Given that the propagation effects can be

characterized by the STF in (2.10) within the range of interest, the expected power

at the ith sensor via is given by

σ2
i (t) =

σ2
s

rβ
i (t)

+ σ2
η(t) , (2.11)
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where σ2
RSSi

(t) , σ2
s/r

β
i (t) is the RSS at the ith sensor. We assume that each sensor

within the AHSN can estimate the RSS from a radiating acoustic source within its

detection range. The signal-to-noise ratio (SNR) is defined as σ2
s/σ

2
η(t) at 1 m from

the source location.

Estimates of β can be obtained via experimental data. For instant, under

benign acoustic conditions (e.g., negligible wind and turbulence), detection range less

than 1 km, a loud source such as a military vehicle yields β estimates in the range

1.9 / β / 2.2. Fig. 2.2 shows that the TL in terms of sound pressure level (SPL)

for a large military vehicle compare to 1/rβ(t) attenuation for β = 2, and 2.2 as a

function of range. As the figure reveals at r ≤ 100 m, acoustic attenuation is in close

agreement with the 1/r2 curve, while at distances greater than 100 m, the acoustic

attenuation fluctuates between the 1/r2 and 1/r2.2 curves. To simplify further, we

assume β = 2 in (2.9) over the detection range of interest.2

In the following, we present RSS models for both stochastic and deterministic

signal models.

Simplified Stochastic Signal

We next consider a simplified stochastic signal-in-noise measurement model arising

from (possibly) L statistically i.i.d. data samples.3 We model the source-node range

measurements at ith node as an L-vector

zi(t) =
S(t)

ri

1L + ηi(t) (2.12)

2In our simulations and analysis, we typically perform source localization within the range of 50
to 200 m. So β = 2 in (2.9) accurately models the propagation effects within the range of interest.

3Here, we assume that the L data samples are obtained within a time interval Tds where Tds < Ts
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r2 , and 1

r2.2 attenuation curves vs. range for acoustic trans-
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ground vehicle.

for i = 1, · · · ,M(t), where the ηi(t) ∼ N (0, σ2
ηIL). From (2.11), given β = 2 and

E {S(t)2} = σ2
s the expected power at the ith sensor is given by

σ2
i (t) =

σ2
s

r2
i (t)

+ σ2
η = σ2

RSSi
(t) + σ2

η

where σ2
RSSi

(t) , σ2
s/r

2
i (t) is the RSS at the ith sensor with σ2

s and ri(t) denoting

the (unknown) source signal power (received power at nominal distance 1) and the

distance between the ith node and the source, and 1L is a vector of L ones. Assum-

ing that the relative source location does not appreciatively change over successive
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samples at fixed time instant t, σ2
i can be estimated and the RSS at the ith sensor

can be estimated as σ̂2
RSSi

= σ̂2
i − σ̂2

η.

Simplified Deterministic Model

Similarly, we consider a simple deterministic signal-in-noise measurement model aris-

ing via (possibly) L statistically i.i.d. data samples. We model source-node range

measurements at the ith node as an L-vector

zi(t) = si(t) + ηi(t) =
σs

ri(t)
1L + ηi(t), (2.13)

for i = 1, · · · ,M(t), where the ηi ∼ N (0, σ2
ηIL), σ2

RSSi
(t) = σ2

s/r
2
i (t), with σ2

s and ri(t)

denoting the (unknown) source signal power and the distance between the ith node

and the source, and 1L is a vector of L ones. When considering this signal model, the

source-location estimators in Sec. 4.1 exploit the locally available minimum-variance

unbiased estimates (MVUEs) of σ2
RSSi

(t), viz.,

σ̂2
RSSi

(t)1L = min
[
z2

i (t)− σ2
η1L, 0L

]
. (2.14)

Without loss of generality, we assume L = 1 from hereon in for deterministic

signal model.

We remark that the AHSN for a fixed time t is formed via threshold detection

by including in the AHSN only nodes with σ̂2
RSSi

> σ2
T , for some suitably preset

threshold σ2
T > 0. We remark that for a given detection threshold, σ2

T , the probability

of detection at the ith node is a function of the source radiating power and the range

between the source and the node; in particular, with a slight abuse of notation, the
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ith node detection probability is given by

P
(D)
i (t) = Pr

[
y2

i (t) > σ2
T

]
= 1− Pr

[
y2

i (t) < σ2
T

]

= 1−Pr

[
−σT − σs

ri(t)
<ηi(t)< σT − σs

ri(i)

]

=Q
(

σT

ση

− σs

σηri(t)

)
+Q

(
σT

ση

+
σs

σηri(t)

)
, (2.15)

where Q(x) = (
√

2π)−1
∫∞

x
e−t2/2 dt.

2.1.5 Sensor Distribution Model

In this section, we present the distribution of the sensor nodes in a sensor field. If

the global statistical information for a random field is available (i.e., geographical

terrain), this information can be used to distribute sensors in a resource efficient

way to achieve the desired performance [39]. However, in many applications, the

statistical background information may not be available prior to sensor deployment

but only available after sensor deployment.

We took the approach of having no prior distribution information and we model

the sensor field as spatially uniform distributed as shown in Fig. 2.3. In our setting, we

assume that a single (acoustic) source is randomly placed within the sensor field Ω of

radius R and N sensors with sensor density D defined as D = N/πR2. The inner circle

(defined as a subspace Ωo with radius Ro) around the source denotes the detection

region. Given that detection has been made, Ωo is also spatially uniform distributed

and the number of detecting nodes, M , in Ωo with density Do = M/πR2
o u D, is

Poisson distributed. This Poisson model is an attractive model when we take into

account the dynamics of the source as it moves within the sensor field.
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2.2 Performance Bounds

Sensor networks are attractive for performing spatial sensor fusion via localization due

to their spatial diversity over (possibly) large areas. Some examples include sensor

nodes self-locating (or self-calibration) within the sensor networks [34, 35], locating

earthquake events [9], finding patient’s whereabout in case of emergency, locating

the position of a shooter in counter-sniper applications [21], locating and tracing

odor and chemical plumes [40], and locating the animal calls in habitat-monitoring

applications [13]. Thus, localization plays a very important role for many wide-
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ranging sensor networks applications.

In order to analyze the performance accuracy of source localization for a given

model, performance bounds are needed to analyze and characterize the lower bound

of localization uncertainty. For example, in [41], the Cramér-Rao Bounds (CRB) for

ranging in AHSN are developed for anchored localization (i.e., at least three node

locations are known) and for anchor-free localization (i.e., no absolute positions are

known); and in [42], a Bayesian method, refer to as the Bayesian bound (BB) is de-

rived instead of the CRB when sensing models are complex but when the uncertainty

is Gaussian, the BB equals the CRB.

In this chapter, we develop performance bounds for estimating the (central-

ized) location of source via sensor networks. Toward this objective, we investigate

the CRB for source localization for AHSN as shown in Fig. 1.1, where we assume

that each sensor in the AHSN knows its own location. Although the CRB’s can be

loose bounds, they are most widely used MSE performance evaluation of unbiased

(and less often biased) estimators due to its relative ease of computation. The CRB

provides means for determining the best (perhaps overly optimistic) localization per-

formance we can hope to achieve. In our AHSN setting, the CRB depends on the

cdf’s described in (2.6)–(2.7) and the STF in (2.10) but it does not required addi-

tional prior information or preliminary estimates like other performance bounds such

as the Barankin bound [43]. For convenience, we omit the dependence on t in the

CRB computation and analysis.

We begin in Sec. 2.2.1 by developing the CRB for both stochastic and deter-

ministic signal models for the centralized setting. Then, we discuss the minimum

mean squared error (MMSE) results for the CRB as function of signal and sensor

network parameters in Sec. 2.2.2.
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2.2.1 Cramér-Rao Bound

In this section, we compute the CRB’s (in the centralized setting) for (2.4) for both

signal models to obtain assessments of the theoretical performance limits of source

location estimation and to later compare low-complexity estimators to the CRB’s.

Assuming that the data vector z ∼ N (µ(θ), C(θ)) so that both the mean and the

variance depends on θ, the general expression for the CRB with parameter θ is

CRB(θ) = I−1(θ), where the I(θ) is the Fisher information matrix with (p, q)th

element of I(θ) defined as

[I(θ)]pq =
1

2
tr

[
C−1(θ)

∂C(θ)

∂θp

C−1(θ)
∂C(θ)

∂θq

]
+

[
∂µ(θ)

∂θp

]
C−1(θ)

[
∂µ(θ)

∂θq

]
(2.16)

for p, q = 1, · · · , Q, where Q is the number of parameters in θ. In the case where L

statistically independent snapshots are available, the CRB generalizes to CRB(θ) =

1
L
I−1(θ) [44]. Assuming Gaussian random processes, TL coefficient β = 2 and L

snapshot estimates, the CRB on the MSE for estimating θ =
[
ps σ2

s

]T
=

[
xs ys σ2

s

]T

in (2.6)–(2.7) based on model (2.4) is CRB(θ) = 1
L
I−1(θ), with Q = 3.

CRB Stochastic Signal Model

For the stochastic signal model with zero-mean, [I(θ)]p,q is just the first term in (2.16).

Here for i, j = 1, · · · ,M, with (i, j)th element of C(θ) is given by

[C(θ)]i,j = [C(xs, ys, σ2
s)]i,j =





σ2
s

ri rj
i 6= j

σ2
s

r2
i

+ σ2
η i = j

, (2.17)
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where the distance from sensor i to the source is ri =
√

(xi − xs)2 + (yi − ys)2, and

[∂C(θ)]i,j
∂θ1

=
σ2

s [r2
j (xi − xs) + r2

i (xj − xs)]

(ri rj)3
, (2.18a)

[∂C(θ)]i,j
∂θ2

=
σ2

s [r2
j (yi − ys) + r2

i (yj − ys)]

(ri rj)3
, (2.18b)

[∂C(θ)]i,j
∂θ3

=
1

(ri rj)
. (2.18c)

To obtain the CRB on range estimation, it is convenient to convert θ =
[
xs ys σ2

s

]T

into polar coordinates θ̃ =
[
rs φs σ2

s

]T

, where rs =
√

x2
s + y2

s and φs = arctan( ys

xs
).

Using the functional CRB form where θ̃ = g(θ) , we obtain

CRB(θ̃) =
1

L

∂g(θ)

∂θ
I−1(θ)

∂g(θ)

∂θ

T

(2.19)

where ∂g(θ)
∂θ

is the 3× 3 Jacobian matrix given by

∂g(θ)

∂θ
=




xs

rs

ys

rs
0

−ys

rs

xs

rs
0

0 0 1




. (2.20)

Further details of the CRB calculation for stochastic signal model can be found in

Appendix A.2.

CRB for Deterministic Signal Model

The CRB for the deterministic signal model can be derived straight from the general

CRB expression in (2.16) where [I(θ)]p,q equals the second term in (2.16). Here for
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i = 1, · · · ,M ,

[∂µ(θ)]i
∂θ1

=
σs (xi − xs)

r3
i

, (2.21a)

[∂µ(θ)]i
∂θ2

=
σs (yi − ys)

r3
i

, (2.21b)

[∂µ(θ)]i
∂θ3

=
1

ri

. (2.21c)

As the result, the CRB for the deterministic signal is defined as

CRB(θ) =




∑M
i=1

σ2
s(xi−xs)2

σ2
ηr6

i

∑M
i=1

σ2
s(xi−xs)(yi−ys)

σ2
ηr6

i

∑M
i=1

σs(xi−xs)2

σ2
ηr4

i∑M
i=1

σ2
s(xi−xs)(yi−ys)

σ2
ηr6

i

∑M
i=1

σ2
s(yi−ys)2

σ2
ηr6

i

∑M
i=1

σs(yi−ys)2

σ2
ηr4

i∑M
i=1

σs(xi−xs)2

σ2
ηr4

i

∑M
i=1

σs(yi−ys)2

σ2
ηr4

i

∑M
i=1

1
σ2

ηr2
i




−1

.

(2.22)

2.2.2 CRB Simulations & Analysis

In this section, we analyze the theoretical localization performance via the CRB’s

for both signal models. Even for the simplified signal models assumed in Sec. 2.1.2,

explicit close-form solutions for the CRB are not readily available (especially for the

stochastic case), for example see [45]. Therefore, we perform simulations with L data

snapshots to analyze the CRB’s for the source localization. We simulate a single static

source located at the center of a circle with radius R with N sensor nodes uniformly

distributed in the circle. We obtain the MSE results (in terms of range squared in dB

m2) by averaging over MC = 400 independently drawn sensor lay-outs. We analyze

the CRB on the MSE as a function of: (i) the number of nodes N and also the average

number of detecting sensor nodes, Mave (which depends on N , σ2
s and the detection

threshold, σ2
T ), (ii) SNR, and (iii) σ2

T .

In the first simulation example, we set L = 1000 and we vary the sensor
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density D by fixing R = 100 m and varying N . Fig. 2.4 shows the CRB on the MSE

for SNR =
[
40, 60, 80

]
dB versus Mave with σ2

T = 0 dB. As expected, the MSE is

lower for higher SNR levels. For the range of SNR values, the knees of the curves

suggest using an ad-hoc network of 5–20 sensors can produce acceptable localization

performance (i.e., range error of 10 m or less). Not surprisingly, the performance gaps

(among the CRB curves for Mave ≥ 10 (i.e., the MSE differences in performance)

correspond to the differences in the SNR levels and the MSE curves monotonically

decrease with increasing sensor density (Mave). The plot suggests a signal processing

gain of approximately 6 dB for doubling the number of sensors.
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Figure 2.4: CRB analysis: MSE vs. Mave for SNR = [40, 60, 80] dB.
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In the next simulation example, we fix N and vary the SNR levels with same

parameter values for L, R and σ2
T as above. Fig. 2.5 shows the CRB on the MSE

for fixed sensor densities of N = [10, 20, 40] nodes versus SNR. Depending upon the

locations of the sensor nodes relative to the location of the source, at low SNR’s,

Mave / N and at high SNR’s, Mave u N . As expected, the MSE is lower for higher

sensor density. In this example, for SNR ≥ 40 dB, the MSE decreases linearly with

SNR with slope u 1 and the performance gaps among the density curves are approx-

imately 6 dB’s corresponding to the differences in sensor density in dB’s.
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Figure 2.5: CRB analysis: MSE vs. SNR for N = [10, 20, 40] sensor nodes.

We next analyze CRB for the case where σ2
s is assumed to be known, σ2

kn,

and compare its results to the case where for the σ2
s is unknown, σ2

un with the same
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parameter values for L, R and σ2
T as in the first example.4 Fig. 2.6 shows the CRB

comparisons for σ2
kn and σ2

un with respect to SNR and Mave. As the figure reveals,

there are slight performance improvements at lower Mave’s and SNR’s for σ2
kn over

σ2
un. At higher Mave’s and SNR’s, the MSE performances are nearly the same.
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Figure 2.6: CRB comparisons for σ2
kn and σ2

un: MSE vs. Mave for (a) SNR = 30 dB
and (b) SNR = 40 dB; and MSE vs. SNR for (c) N = 10 sensors and (d) N = 30
sensors.

In the next example, we assume a deterministic signal model with L = 1

snapshot, N = 400 nodes, R = 200 m. Fig. 2.7 shows the CRB on the MSE vs.

4Some source localization algorithms require σ2
s to be known [6] or to be eliminated from via

ratio of measurements from pair of nodes [46].
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SNR and σ2
T . Similar to the stochastic case, the MSE decreases linearly with SNR

(for SNR ≥ 40 dB) as shown in Fig. 2.7 (a) for σ2
T = 10 dB. In varying σ2

T with

SNR = 60 dB, we see a nonlinear relationship between the MSE and σ2
T , i.e., the

MSE stays nearly constant for 0 ≤ σ2
T ≤ 30 dB and suddenly jumps for σ2

T > 30 dB,

as shown in Fig. 2.7 (b). This is due to the fact that a high detection threshold limits

the number of participating (detecting) nodes in the AHSN.
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Figure 2.7: CRB analysis: (a) MSE vs. SNR with σ2
T = 10 dB and (b) MSE vs. σ2

T

with SNR = 60 dB for the deterministic acoustic signal model.
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Strategies for Reducing Network Complexity

We next explore strategies for keeping network complexity at manageable levels and

limiting communication and energy costs by selecting a subset of detecting nodes

to perform localization. For example in [47, 48], in the context of target tracking

using DOA estimates, the authors proposed simplex methods for selecting subsets of

detecting nodes to optimize tracking results while conserving energy.

In this section, we investigate the approach of using only K out of the M (with

K < M) detecting sensor nodes for source localization in AHSN. The viability of such

methods is suggested by Fig. 2.4, as the CRB-based performance gains by including

more sensors are limited beyond 10 to 20 sensors. It is also important to select the

subset of K participating nodes judiciously and efficiently. Fig. 2.8 shows the CRB

on the MSE for several M -choose-K cases for the stochastic signal model (L = 1000),

M = N = 15 sensor nodes, SNR = 60 dB, σ2
T = 0 dB , and R = 100 m over MC = 200

sensor layouts. The “best” and “worst” cases in the figure correspond to choosing

the K-sensor configurations out of all possible M -choose-K configurations that give

the lowest and highest CRB values, respectively. The “random” case corresponds to

randomly choosing a K-sensor configuration from all possible M -choose-K configu-

rations, while the “average” case corresponds to averaging the MSE’s of all possible

M -choose-K sensor configurations. The “loudest” case corresponds to choosing the

K sensors with the highest RSS (i.e., the K closest sensors to the source). As the

figure reveals, the curves for the “best” and “worst” cases provide lower and upper

bounds on M -choose-K performance. For all the schemes, at low sensor density (e.g.,

K < 4) the spatial distribution of the sensor locations with respect to the source

location is key in performance accuracy; however, the ad-hoc network tends to gain

spatial diversity with increasing sensor density. In this example for M = N = 15 and
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K ≥ 5 , the loudest scheme performs well with respect to the best scheme, suggesting

the viability of RSS-based techniques for limiting the number of sensors participating

in the computation. Alternatively, for M = 15 and K ≥ 10, the “random” case

performs within a few dB of the “best” case.
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Figure 2.8: CRB analysis: MSE vs. K sensors for various M -choose-K cases: “best”,
“worst”, “random”, “average” and “loudest”.

2.2.3 CRB Summary

In summary, we developed the CRB’s for the stochastic and deterministic acoustic

signal models with simplified STF. We demonstrated the theoretical source local-
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ization performance as functions of SNR, sensor density D (via Mave and N) and

detection threshold, σ2
T . For medium to high SNR levels (e.g., SNR ≥ 30 dB in the

simulation examples), the CRB on the MSE decreases linearly with increasing SNR

with slope u 1. Similarly, for sensor density greater than 10–20 nodes, the CRB

on the MSE decreases linearly with increasing SNR with signal processing gain of

approximately 6 dB for doubling of sensors. Finally, we investigated strategies for

limiting the number of sensors participating in source localization via the CRB. We

found that using a scheme involving a small number of sensors that are closest to

the source performs very well suggesting the viability of RSS-based source localiza-

tion schemes. Lastly, we found that both signal models yield similar CRB on MSE

trends.
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Chapter 3

Distributed Computations

As discussed in the introduction, decentralized algorithm frameworks are becoming

increasingly more attractive than their centralized counterparts for space-time pro-

cessing in large-scale ad-hoc networks. A decentralized data fusion system typically

consists of sensor nodes with their own processing capabilities, and fusion and data

processing occur locally at each node based on local observations and information

communicated from neighboring nodes. Thus, a decentralized system is character-

ized by three constraints: (i) there is no single central fusion center; (ii) there is no

common communication center, and only node-to-node, not broadcast, communica-

tions; (iii) sensor nodes have only local, not global, knowledge of network topology.

However, these imposed constraints provide a number of important characteristics

for decentralized data fusion systems: (i) the system is scalable, since nodes only

communicate with neighboring nodes; (ii) the system can be made survivable to loss

or addition of nodes and to dynamic changes in the network structure, e.g., mobile

sensor nodes; and (iii) sensor nodes can be designed, constructed, and programmed

in a modular fashion [15,49–51].

For decentralized ad-hoc networks, it is desirable to develop distributed rout-

ing and fusion algorithms that are scalable, fault tolerant, and robust to changing
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network topology. Indeed, distributed processing has received attention in the early

1980’s via Tsitsiklis’s work on methods for reaching agreement and consensus [52].

However, recently, interests in distributed processing and computations have grown

tremendously due to the omnipresence of sensor networks [17,53] and interests in de-

veloping computational models and distributed agents (which are small, autonomous,

self-describing programs) based on biological and social networks [54, 55]. Many of

these approaches have in common a set of basic distributed computational tasks or

modules in which more complex tasks or systems can be built upon.

In this chapter, we first present network models with topologies whereby each

node in the network is assumed to establish noise-free bidirectional communications

and routing with its neighboring nodes. We present models for describing the topolo-

gies of the overall network and the sequence of subnetworks of detecting nodes that

track the movement of the source in Sec. 3.1. Then, we present the basic distributed

computational algorithm modules which then can be used to develop distributed

sensor fusion algorithms for AHSN’s. More specifically, we present distributed algo-

rithms for computation of averages that can be used for performing source localiza-

tion [17–19], and then we present improved versions of distributed algorithms that can

be used in a broad-class of problems for performing localization and tracking [3, 20]

in Sec. 3.2. Next, we present a more general version of the distributed computa-

tion algorithm for computing weighted averages in Sec. 3.3. We conclude with a

brief simulation-based analysis via a fictitious example of a signal estimation in noisy

observations by a AHSN in Sec. 3.4 .
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3.1 Network Model

In this section, we present and discuss network models that have the following prop-

erties: (i) efficient use of transmit power, (ii) each sensor node receives messages sent

by connected neighboring nodes, and (iii) each sensor node broadcasts messages to

connected nodes. We consider large-scale networks of uniformly distributed sensors as

in Sec. 2.1.5. We focus on bidirectional network topologies according to which, each

node is assumed to establish noise-free bidirectional communication with a subset of

nodes in its proximity as illustrated in Fig. (3.1). Letting N denote the total number

of nodes in the network at a fixed time t, the network topology is described by an

N ×N matrix Φ, where φij = [Φ]ij denotes the connection status of the link between

nodes i 6= j, defined as

φij = φji =





1 if i ↔ j

0 otherwise

(3.1a)

and where i ↔ j denotes that nodes i and j are bidirectionally connected. We also

let for convenience

φii = −
N∑

j 6=i

φij . (3.1b)

The connection status φij of any two nodes i and j is modeled as a probabilistic

function of dij, the distance between nodes i and j, and is given by

Pr[φij = 1] = 2−(
dij
do

)
m

, (3.2)

where do denotes the nominal distance at which nodes i and j are connected with

probability 1
2
, and where the parameter m determines the rate of decay of probability

of connection with distance. The probabilistic connection model described in (3.2)
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Figure 3.1: An example of network connectivity for network N = 25 sensor nodes.

captures the connectivity trends in the context of sensor communication for nodes i

and j over a variety of Rayleigh fading channels over which the average power loss is

of the form

PR ∝ PT d−m
ij (3.3)

where PR and PT denote the receive and transmit power respectively and m takes on

values in the range 2 ≤ m ≤ 4 [56]. We remark that the connectivity model in (3.2)

has several desirable properties. First, Pr[φij = 1] is a decreasing function of dij, i.e.,

nodes that are close to each other are more likely to be connected. Also, as m →∞,

Pr[φij = 1] → 1 for dij < do while Pr[φij = 1] → 0 for dij > do.
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In the following, we present alternative formulations of network and connec-

tivity models for performing sensor fusion in time in Sec. 3.1.1. Then, we present

some key properties of the matrix Φ in Sec. 3.1.2 that help facilitate the design of

distributed computation algorithms.

3.1.1 Network Model Formulations for Fusion in Time
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Figure 3.2: Source tracking in a large-scale sensor network via computations over a
sequence of subnetworks formed by the detecting nodes in the vicinity of the source.

Although, the network and connectivity models we describe above are in the

context of spatial sensor fusion, e.g., source localization, they canbe extended to space-
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time sensor fusion, e.g., tracking. In particular, we can view tracking as a successive

sequence of source localization over suitably chosen sequences of subnetworks as shown

in Fig. 1.2. To this end, we let I(t) denote the set of nodes that comprise the ACN

employed at time t, i.e., the subnetwork over which the tth tracking estimate is to

be computed. Here we focus on the simplest case where the set of nodes in the

computation network at time t coincides with the subset of the nodes that detect

the source at time t. In general, however, the computation network may also include

additional peripheral (non-detecting) nodes to assist in the routing and computation.

The network topology of the ACN at time t can also be expressed in terms of

an N ×N matrix Φ̃(t) where the (i, j)th element of Φ̃(t), for i 6= j, is given by

φ̃ij(t) = φ̃ji(t) =





φij if i, j ∈ I(t)

0 otherwise

(3.4a)

while again, for convenience, we set

φ̃ii(t) = −
∑

j 6=i

φ̃ij(t) . (3.4b)

Alternatively, letting M(t) = |I(t)| denotes the number of nodes that have detected

the source at time t and {I(t)}i denote the ith element in I(t), the ACN network

topology at time t can be alternatively described via I(t), and an M(t)×M(t) matrix

Ψ(t) where the (i, j)th element of Ψ(t), for i 6= j, is defined as

ψij(t) = ψji(t) = φ{I(t)}i {I(t)}j
(3.5a)
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while again, for convenience, we set

ψii(t) = −
∑

j 6=i

ψij(t) . (3.5b)

We can think of the network described by Φ̃(t) in (3.4a) as a large-scale network

where the only available connections for performing computations are among the set

of nodes in I(t). Alternatively, we can focus on the ACN formed by the nodes in

I(t), with network topology given by Ψ(t) in (3.5a).

3.1.2 Properties of Network Topology Matrix Φ

In this section, we present some interesting and important properties of the topology

matrix Φ(t) that provide the basis for development of the distributed computation

algorithms over connected networks. For convenience, we drop the dependence on t.

Recall φij = [Φ]ij and φij = φji; therefore, the matrix Φ is a symmetric matrix. In

addition, Φ is negative semi-definite. In particular, let

Φ = VΦ ΛΦ V T
Φ (3.6)

denotes the eigen-decomposition of Φ, where

VΦ =
[
v1(Φ)v2(Φ) · · · vN(Φ)

]

is a unitary matrix comprised of unitary vectors {vi(Φ)}N
i=1 and

ΛΦ = diag
(
λ1(Φ), λ2(Φ), · · · , λN(Φ)

)
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is a diagonal matrix of eigenvalues {λi(Φ)}N
i=1. By using Gersgorin’s theorem ( [57],

pp. 344–348), we have λi(Φ) ≤ 0, ∀i, where to get equality λi(Φ) = 0 for some

i requires that each element of the associated unitary vector vi(Φ) be either 0, or

c̃ 6= 0, for some constant c̃, independent of the element index (e.g., c̃ = 1/N).1

Without loss of generality, let λ1(Φ) ≥ λ2(Φ) ≥ · · · ≥ λN(Φ). Furthermore, due

to (3.1), we have Φ · 1 = 0 where 1 and 0 denote N × 1 vectors of ones and zeros

respectively; consequently, we have λ1(Φ) = 0 [17].

In our investigation, we mainly focus on connected topologies, i.e., topologies

for which there exists a multi-hop communication path between every pair of nodes in

the sensor network. It is clear from (3.1) that for connected topologies, |φii| > 0, ∀i.
We can also show that Φ describes a connected topology if and only if λi(Φ) <

0, ∀i ≥ 2. In particular, if an eigenvalue λi(Φ) other than λ1(Φ) is zero, it would

have to be associated with the unitary vector vi(Φ) that has one or more (but not

all) elements equal to zero. Letting Ei denote the subset of indices of the non-zero

and equal elements of vi(Φ), for every k ∈ Ei, we must have
∑

j∈Ei
φkj = 0, implying

that the subset Ei of the nodes form a subnetwork that is disconnected from the

rest of the (overall) network. As a result, Φ is a connected topology if and only if

λi(Φ) < 0, ∀i ≥ 2 [17].

Further details on the topology matrix Φ and its properties with respect to

distributed implementations can be found in [17,18].

1We use Gersgorin’s theorem to prove a convergence theorem for first-order linear LTI rules in
Sec. 3.2.2.
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3.2 Distributed Computation of Averages

To motivate the construction of distributed algorithms for performing sensor data fu-

sion in space and in time, we present the (scalar) distributed algorithms for computing

any such elementary averaging target computation [17,18]. Then, we show how these

elementary distributed algorithms can be used to perform more complex (vector) dis-

tributed tasks such as source localization and tracking [3, 19]. For convenience, we

omit the dependence on t.

To this end, let the target scalar computation for an AHSN of N sensor nodes

be given by

G(f(x)) =
1

N

N∑
i=1

fi(xi) (3.7)

where x =
[
x1 x2 · · · xN

]T
, with xi denoting the scalar data observation at the ith

node and f =
[
f1(·) f2(·) · · · fN(·)]T

, with fi(·) denoting an arbitrary local scalar-

valued function at the ith node. We are interested in fusion rules that are iterative,

locally-constructed rules that generate at each node i a sequence of state approx-

imations fi(xi[k]) to the desired (global) computation G(f(x)) by exploiting states

broadcasted by nodes in direct bidirectional communication with the ith node. For

convenience, we simplify the notation by letting G(f) = G(f(x)) and (3.7) becomes

G(f) =
1

N

N∑
i=1

fi (3.8)

where fi = fi(xi) and fi[k] = fi(xi[k]) are observation and sequence of state approx-

imations respectively at the ith node.

We next present several classes of linear time-invariant (LTI) rules imple-

mented over a given connected topology Φ.
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3.2.1 Class of Admissible, LTI and Asymptotically

Converging Rules

In this section, we present a class of fusion rules that are implemented over a given

topology described by N × N topology matrix Φ that generate at the ith node a

sequence of state approximation the desired scalar computation G(f). We are inter-

ested in distributed fusions that can be described by the following definition [17,18]:

Definition 1: Let Ui denote the set of nodes that have a direct bidirectional commu-

nications link with the ith node, i.e.

Ui ,
{
j ∈ {1, 2, · · · , N}; φij 6= 0

}
. (3.9)

Then, a set of rules
{
F

(k)
i

}N

i=1
, k > 0, will be referred to as an admissible distributed

rule with respect to a given topology Φ if

fi[k + 1] = F
(k)
i

(
fi, {fj[l]; l ≤ k, j ∈ Ui(Φ) ∪ {i}}) . (3.10)

In particular, we focus on admissible LTI rules of the form

f [k] =
∑

l≥1

W [l] f [k − l], k > 0, (3.11)

where f [k] =
[
f1[k] f2[k] · · · fN [k]

]T
, and W [l] is an N×N admissible matrix kernel.2

Lets define the (i, j)th element of matrix sequence W [l] be Wij[l] , {W [l]}ij. Then,

2This admissible LTI rule is a subclass of admissible linear rules of the form f [k] =∑
l≥1 W [k; l] f [k − l], k > 0, where W [k; l] is an N × N admissible matrix kernel. For LTI,

W [k; l] = W [1; l] , W [l].
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admissibility of the rule defined in (3.11) in the sense of definition in (3.10) requires

that Wij[l] = 0, for l ≤ 0, or if φij = 0.

In addition to admissibility and LTI, we are interested in a class of admissible

LTI rules that asymptotically compute desired functions such as G(f).

Definition 2: An admissible rule over a given topology Φ is asymptotically con-

verging (AC) to the desired scalar function G(f) if the sequence f [k] satisfies

lim
k→∞

‖f [k]− 1 ·G(f)‖ = 0, (3.12)

where ‖ · ‖ is the Euclidean norm, and 1 is an N × 1 vector of 1’s.

Furthermore, we are interested in a simpler but very useful subclass of LTI

rules that are admissible and AC, namely first-order LTI rules which will be described

next.

3.2.2 First-Order LTI Rules

In this section, we consider first-order admissible LTI rules, the admissible matrix

kernel W [l] = W δ[l − 1], where W is an N × N admissible matrix, i.e., satisfying

Wij = 0 for φij = 0, and (3.11) reduces to

f [k] = W f [k − 1] for k > 0 . (3.13a)

We consider the initialization of the recursion rule (3.13) via

f [k] = f for k ≤ 0 , (3.13b)
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where f =
[
f1 f2 · · · fN

]T
. This initialization is admissible according to (3.10) since

it is just setting fi[k] = fi, ∀k < 0, for i = 1, 2, · · · , N .

In the following theorem and associated proof, we demonstrate the convergence

for the class of first-order LTI rules of interest with some basic network conditions.

Theorem 1. Given an N ×N network topology Φ, consider the following rule

fi[k] =
N∑

j=1

ρij fj[k − 1] , k > 0 (3.14)

initialized with fi[0] = fi, for i = 1, 2 · · · , N . Assume the rule is admissible on Φ,

that is, for any i 6= j such that φij = 0, we have ρij = 0. Assume also the following:

Φ is a bidirectional topology (3.15a)

Φ is a connected topology (3.15b)

ρij = ρji, ∀(i, j) (reciprocity) (3.15c)

N∑
j=1

ρij = 1, ∀i (balancing) (3.15d)

ρij > 0, ∀(i, j) such that, i = j, or φij = 1 (3.15e)

N∑

j=1,j 6=i

ρij < 1. (3.15f)

Then

lim
k→∞

fi[k] =
1

N

N∑
j=1

fj, ∀i. (3.16)

We remark that although condition (3.15f) is implied by conditions (3.15d)–

(3.15e), it is included for convenience. We also remark the use of the following no-

tations for proving Thm. 1. Given any N × N real symmetric matrix D = DT we
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denote its eigen-decomposition as follows:

D = VD ΛDV T
D (3.17)

where VD =
[
v1(D) v2(D) · · · vN(D)

]
is the (unitary) eigenvector matrix, and ΛD

is a diagonal eigenvalue matrix with real diagonal entries {λi(D)}. Unless stated

otherwise, we will assume that the eigenvalues of D are in decreasing order, i.e.,

λ1(D) ≥ λ2(D) ≥ · · · ≥ λN(D) . (3.18)

Proof of Theorem 1 : We recall a few of the properties of Φ derived in Sec. 3.1.2 that

are relevant to the following proof of the theorem. First, due to condition (3.15a),

Φ has a decomposition of the form (3.6) with λi(Φ) ≤ 0 for all i. In addition,

assuming that the eigenvalues of W are ordered as in (3.18), we have: λ1(Φ) = 0 with

v1(Φ) = 1/
√

N . Furthermore, due to condition (3.15b), λi(Φ) < 0 for all i ≥ 2.

Given f [k] =
[
f1[k] f2[k] · · · fN [k]

]T
, we can write

f [k] = W f [k − 1]

where [W ]ij = ρij. Due to condition (3.15c), W = W T , implying that W has a

eigen-decomposition of the form (3.17) with real eigenvalues. We also note that, due

to condition (3.15d), W · 1 = 1 (where 1 denotes an N × 1 vector of one’s) implying

that

v1(W ) =
1√
N

, and λ1(W ) = 1 . (3.19)
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Proving the theorem amounts to showing that

|λi(W )| < 1, ∀i ≥ 2 (3.20)

since, together with (3.19), it implies that fi[k] → ∑
j fj/N as k →∞, for all i.

Let U = W − I. This matrix has an eigen-decomposition of the form (3.17),

where

VU = VW and λi(U) = λi(W )− 1. (3.21)

As a result, proving (3.20) is equivalent to proving

−2 < λi(U) < 0, for all i ≥ 2 . (3.22)

Let RU
i =

∑
j, j 6=i uij. Then RU

i =
∑

j, j 6=i ρij < 1 by condition (3.15f) and

where we also used the fact that uij = wij = ρij for all j 6= i. Furthermore, using

condition (3.15d)

uii = ρii − 1 = −RU
i .

Applying Gersgorin’s Theorem (Thm 6.1.1, pp. 344–345, in [57]) on U , reveals that all

the eigenvalues of U must be in the union of the following N disks |λ(U)−uii| ≤ RU
i ,

or, equivalently, 0 ≥ λ(U) ≥ −2RU
i , which due to condition (3.15f) implies that

−2 < λi(U) ≤ 0, for all i . (3.23)

From (3.21), we have λ1(U) = λ1(W )− 1 = 0. To complete the proof of the validity

(3.22) using (3.23) we simply need to show that λi(U) < 0 for all i ≥ 2. To this end,
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let A = {(i, j); i 6= j, φij = 1}, and define

ρmin = min
(i,j)∈A

ρij .

From condition (3.15e) we have ρmin > 0. Define A = ρminΦ, and B = U − A. Then,

A = AT and B = BT , and thus both A and B have decompositions of the form (3.17).

Furthermore, since λi(A) = ρminλi(Φ), we have λ1(A) = 0, v1(A) = v1(Φ) = 1/
√

N ,

and λi(A) < 0 for all i ≥ 2. Considering the matrix B, let RB
i =

∑
j 6=i bij. We next

show that for all j 6= i, 0 ≤ bij ≤ uij, which implies

0 ≤ RB
i ≤ RU

i < 1 . (3.24)

In particular, for any j 6= i, φij ≥ 0, which together with ρmin > 0, shows that

bij = uij − aij = uij − ρminφij ≤ uij .

Similarly, we can show that for j 6= i, bij ≥ 0, by separately considering (i, j) ∈ A
and (i, j) /∈ A. In particular, for (i, j) /∈ A, φij = 0, and since W is an admissible

rule, ρij = 0. Thus bij = uij − aij = ρij − ρminφij = 0. For (i, j) ∈ A, φij = 1, so

aij = ρmin and since uij = ρij ≥ ρmin, we have bij = uij − aij ≥ 0. Finally, regarding

the diagonal elements of B

bii = uii − aii = −
∑

j, j 6=i

ρij − ρminφii = −
∑

j, (i,j)∈A
ρij − ρmin

=
∑

j, (i,j)∈A
[ρij − ρmin] = −

∑

j, j 6=i

bij

= −RB
i . (3.25)
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Thus, an application of Gersgorin’s theorem on B, along the same lines for the one

used for U , gives

−2 < −2RB
i ≤ λi(B) ≤ 0, for all i (3.26)

Furthermore, since B · 1 = 0 we have λ1(B) = 0 with v1(B) = 1/
√

N . In addition,

assuming that the eigenvalues of A and B are listed in decreasing order according to

(3.18), using the fact that λ1(B) = λ1(A) and v1(B) = v1(A), and applying Weyl’s

Theorem on U = A + B (Thm. 4.3.1, pp. 181–182, in [57]) on the subspace of RN

that is orthogonal to the span of v1(A) = v1(B) = 1/
√

N , we get

λi(U) ≤ λi(B) + λ2(A), ∀i ≥ 2 (3.27)

Finally, using (3.27) and the fact that λ2(A) = ρminλ2(Φ) < 0 and λi(B) ≤ 0, we get

λi(U) < 0 for all i ≥ 2 which completes the proof of (3.22) and the theorem [20].

To summarize, the key conditions that we used in the proof are reciprocity

and balancing. Reciprocity corresponds to each pair of connected nodes using the

same fraction of each other’s state in their computation, while balancing corresponds

to ensuring that the algebraic sum of all fractions used in adjusting the state of any

particular node is zero. For the matrix W , the conditions corresponds to:

Reciprocity : Wij = Wji, (3.28a)

with the condition Wij = Wji = 0 if φij = 0 and

Balancing : Wii = 1−
∑

j 6=i

Wij, ∀i. (3.28b)

We next present a class of non-uniform diffusion rules (NUD) that is amenable to
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distributed implementations over Φ that leads to developing space-time fusion algo-

rithms that exploit locally available information at the nodes in Sec. 3.2.3. Then,

we present a more specific class of uniform diffusion (UD) rules that can either ex-

ploit locally available information at the nodes or the macroscopic information about

network topology in Sec. 3.2.4.

3.2.3 First-Order Non-Uniform Diffusion LTI Rules

The first-order NUD LTI rules are described by (3.14) and (3.15) with NUD param-

eters ρij’s.

We next present a locally negotiated algorithm that can adaptively choose

the NUD parameters ρij’s. The algorithm exploits the conditions in (3.15) and the

condition |ρii| < 1 that guarantee convergence.

Local Negotiation Algorithm

Choices for the ρij’s that satisfy (3.15) can be made via local negotiations. In par-

ticular, the following iterative local negotiation (LN) algorithm yields sets of ρij’s

reported in [3, 20]. The algorithm yields sequences of improving sets of ρij’s each of

which satisfies (3.15). The algorithm achieves |ρii| < 1 by guaranteeing that ρii is at

most (1 − ε) for some small ε > 0. At the outset, the algorithm is initialized with

ρij[0] = 0, φi[0] = |φii|, and ∆i[0] = 1− ε. Given an arbitrarily small ε > 0, the kth

step of the algorithm at the ith node, for any k ≥ 1, takes the following form:

(i) set and broadcast:

δi[k] =





∆i[k − 1]/φi[k − 1] if φi[k − 1] > 0

0 otherwise;
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(ii) for all j, set

ρij[k] =





ρij[k − 1] + min{δi[k], δj[k]} if i ↔ j

0 otherwise;

(3.29)

(preserving reciprocity)

(iii) set

ρii[k] = 1−
∑

j 6=i

ρij[k], (balancing)

∆i[k] = 1− ε−
∑

j 6=i

ρij[k]

φi[k] = |{j; φij = 1, δj[k] 6= 0}| .

It is straightforward to verify that this algorithm satisfies the conditions in (3.15)

at every step k, and terminates after a finite number of iterations for any finite-size

network, i.e., δi[k] = 0,∀i and k > ko for some finite ko.

3.2.4 First-Order Uniform Diffusion LTI Rules

In this section, we present a class of UD rules that are used to develop locally-

constructed algorithms.3 For UD rules, the reciprocity and balancing conditions at

3These rules have strong connections to networks of coupled non-linear oscillators used to describe
global synchronization phenomenology found in biological species [58].
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the ith node become

ρij = ρji = ρ =





1 if φij = 1

0 if φij = 0

for i 6= j (3.30a)

ρii = 1−
∑

i6=j

ρij = 1− ρ
∑

i6=j

φij = 1 + ρ φii , (3.30b)

where ρ is the UD parameter that needs to be carefully chosen to yield admissible

AC rules. From (3.13) and (3.30), the distributed algorithm that generates at the ith

node a sequence of approximations, fi[k], for k ≥ 0, has the implementation form

fi[k] = ρii fi[k − 1] +
∑

j 6=i

ρij fj[k − 1]

= (1−
∑

j 6=i

ρij) fi[k − 1] +
∑

j 6=i

ρij fj[k − 1]

= fi[k − 1] +
∑

j 6=i

ρij (fj[k − 1]− fi[k − 1])

= fi[k − 1] + ρ
∑

j 6=i

φij (fj[k − 1]− fi[k − 1]) , (3.31)

with locally initialized condition fi[0] = fi at the ith node. In vector representation,

the admissible matrix W for the UD rules can be expressed as

W = W (Φ, ρ) = I + ρ Φ , (3.32a)

and (3.13a) becomes

f [k] = f [k − 1] + ρ Φ f [k − 1] . (3.32b)

We next analyze the eigenvalues of W for the UD rules to find the associated

sufficient conditions for convergence as in (3.34). First, substituting (3.6) in (3.32a),
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we obtain the eigendecomposition of W ,

W = VΦ ΛW V T
Φ , (3.33)

with ΛW = I +ρ ΛΦ = diag(λ1(W ), λ2(W ), · · · , λN(W )), where λi(W ) = 1+ρ λi(Φ)

and λ1(W ) ≥ λ2(W ) ≥ · · ·λN(W ). The sufficient conditions for convergence, via

Thm. 1, are the following: If

0 < ρ < (φmax)
−1 , (3.34a)

where φmax = maxi |φii|, then

λ1(W ) = 1, and |λi(W )| < 1 for i ≥ 2 (3.34b)

implying that in the limit, fi[k] → G(f), ∀i.
The rate of convergence to G(f) depends on the the selection of the UD pa-

rameter ρ in (3.32). We next present several choices ρ for first-order UD rules in

Sec. 3.2.4.

Choices for ρ

In this section, we reference several choices of ρ from [17], including an optimal and

two sub-optimal (but “good”) choices that guarantee asymptotic convergence, and

discuss their advantages and disadvantages.

(1) Optimal choice of ρ involves minimizing λ(W )max = max2≤i≤N |λ(W )i| and is

given by

ρ∞ =
1

λ(Φ)2 + λ(Φ)N

. (3.35)
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However, to obtain the optimal convergence rate for UD rules via (3.35), macro-

scopic information is needed, i.e., global knowledge of Φ, or eigenvalues of Φ.

(2) One good choice of ρ that can be obtained via local processing and leads to con-

vergence is given as the inverse of the number of connections of the maximally

connected node, i.e.,

ρmax =
1

φmax + ε
, (3.36)

where φmax = maxi |φii| can be obtained by local computations and converges

for any ε > 0 arbitrarily small.

(3) Another good choice ρ that typically provide better convergence than ρmax and

leads to convergence is given by

ρ1 =
−∑

i λ(Φ)i

−∑
i λ(Φ)i +

∑
i λ(Φ)2

i

=
1
N

∑
i |φii|

1
N

∑
i |φii|+ 1

N

∑
i |φii|2

, (3.37)

where 〈φii〉 and 〈φii〉2 can be obtained via averaging computations, or estimated

macroscopically.

3.2.5 Higher-Order LTI Rules

The use of slightly more complex local fusion rules can lead to improved local-

estimation convergence rates. As shown in [17, 19], the convergence modes of the

distributed computation algorithms are determined by the network topology and the

choice the diffusion parameters. The large magnitude modes dominate the resulting

system convergence rate. Extensions of distributed algorithms presented in Sec. 3.2.3–

Sec. 3.2.4 can be formed that exploit a strictly causal filter, H(z), at every node in

order to reshape the convergence-mode magnitudes. As shown in Fig. 3.3, a block
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diagram for this extended class of local fusion rules at node i reduces to no filtering

when H(z) = 1. A simple yet effective class of second order mode-shaping (higher

Received

States

Transmitted

State
1
[ ]if k

H(z) z –1

Mode-shaping

Filter

[ ]
ii

if k

.

.

.

.

.

.

1ii

ii
ii

[ ]if k

Figure 3.3: Block diagram for a mode-shaping fusion rule at the ith node.

than first-order) filters is given by

H(z) =
1 + c

1 + cz−2
(3.38)

for some 0 ≤ c < 1. Any such filter with c > 0 increases the magnitudes of all

(unfiltered) modes with magnitude less than
√

c at the benefit of decreasing the

magnitudes of all modes with magnitude greater than
√

c . The specific convergence

rate is determined by the set of resulting modes, and for large k is dominated by

the maximum magnitude mode (see App. B.1.1). Thus (3.38) provides improved

convergence rates when the choice of c is well matched to the set of unfiltered modes.

We remark that although all c ∈ [0, 1) yield convergence, as shown in App. B.1.1

and [17, 18], proper choice of c can greatly expedite the convergence rate of the

distributed computations as we demonstrate via simulations in Sec. 3.4.
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3.2.6 Improved Distributed Computation Algorithms

In this section we present improved versions of the distributed computation algo-

rithms developed in [17,19] based on ρij’s and mode-shaping filter H(z) [3,20]. Given

the topology Φ and we first consider a class of iterative algorithms that generate a

sequence of approximations fi[k]’s to G(f) at the ith node via

fi[k] =





fi[0] if k = 0

fi[0] +
∑

j∈Ui
ρij fj[0] if k = 1

(1 + c)
{

fi[1] +
∑

j∈Ui
ρij fj[1]

}

−c
{

fi[0] +
∑

j∈Ui
ρij fj[0]

}
if k = 2

(1 + c)
{

fi[k − 1] +
∑

j∈Ui
ρij fj[k − 1]

}

−cfi[k − 2] if k > 2

(3.39)

where recall Ui ,
{
j ∈ {1, 2, · · · , N}; φij 6= 0

}
, c ∈ [0, 1) is to be macroscopically

selected, and where the ρij’s are to be selected via local negotiations over Φ.

3.3 Distributed Computations of

Weighted Averages

In this section, we present a more general distributed version of the algorithm in

(3.39), referred to as the one-pass algorithm, that can compute weighted averages of

the form

G̃(f) =
1

N

N∑
i=1

αi fi (3.40)
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where

αi = wi/(
N∑

j=1

wj) (3.41)

wi’s are the locally available scalar weights (e.g., functions of RSS estimates for source

localization). At each node, the algorithm computes a sequence of estimates αi[k]’s

of αi and fi[k]’s of G̃(x), and for each “pass” (i.e., each kth iteration), it computes

both αi[k] and fi[k], hence the name “one-pass”.

Given the locally available data, fi’s and wi’s, and the one-pass algorithm (with

mode-shaping filter H(z)) distributively computes a sequence of weighted estimates

at the ith node via the following implementation steps:

1. Step k = 0 (Initialization) : Let si = wi fi,

αi[0] = wi, (3.42a)

fi[0] =
si

αi[0]
. (3.42b)

2. Step k = 1:

αi[1] = αi[0] +
∑
j∈Ui

ρijαj[0], (3.43a)

fi[1] = fi[0] +
∑
j∈Ui

ρijfj[0] + (
si

αi[1]
− si

αi[0]
). (3.43b)
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3. Step k = 2:

αi[2] = (1 + c)
{

αi[1] +
∑
j∈Ui

ρij αj[1]
}
− c

{
αi[0] +

∑
j∈Ui

ρij αj[0]
}

, (3.44a)

fi[2] = (1 + c)
{

fi[1] +
∑
j∈Ui

ρij fj[1]
}
− c

{
fi[0] +

∑
j∈Ui

ρij fj[0]
}

+ (
si

αi[2]
− si

αi[1]
)− c(

si

αi[1]
− si

αi[0]
). (3.44b)

4. Step k > 2:

αi[k] =(1 + c)
{

αi[k − 1] +
∑
j∈Ui

ρij αj[k − 1]
}
− cαi[k − 2], (3.45a)

fi[k] =(1 + c)
{

fi[k − 1] +
∑
j∈Ui

ρij fj[k − 1]
}
− cfi[k − 2]

+(
si

αi[k]
− si

αi[k − 1]
)− c(

si

αi[k − 1]
− si

αi[k − 2]
). (3.45b)

As k →∞, αi[k] → αi and the estimate at each node i, fi[k], converges to the global

G̃(f) estimate.

3.4 Distributed Computations

Simulations & Analysis

In this section, we characterize the performance of the admissible, AC, LTI rules of

Sec. 3.2 via a fictitious example of a signal estimation in noisy observations by a

AHSN of N nodes. Given the observations

xi = S + ηi , i = 1, 2, . . . , N (3.46)
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where S ∈ R is the parameter to be estimated and ηi ∼ N (0, σ2). Then, xi ∼ N (S, σ2)

and the minimum variance unbiased estimator (MVUE) of scalar-valued S based on

the observations x =
[
x1 x2 · · · xN

]T
, is given by

Ŝ =
1

N

N∑
j=1

xj =
1

N
1T x , (3.47)

with mean-square-error (MSE) given by σ2(Ŝ) = var (Ŝ) = σ2/N . We remark that

(3.47) is of the form (3.8) with f(x) = x. This is analogous to an unbiased estima-

tor for a DC-level in white Gaussian noise (WGN), where xi’s are the independent

snapshot observations and S is the unknown DC-level to be estimated [44].

The distributed implementation steps of the estimator Ŝ via distributed algo-

rithms in Sec. 3.2 at the ith node are as follows:

(1) Initialize via locally available information, namely, the data xi:

Ŝi[0] = xi , (3.48)

(2) Apply (3.39) for k iterations to obtain the distributed estimate,

Ŝi[k] = xi[k] . (3.49)

As k → ∞, the distributed estimate at each node i converges to the global

estimate, i.e.,

Ŝi = lim
k→∞

Ŝi[k] = lim
k→∞

xi[k] =
1

N

N∑
j=1

xj = Ŝ. (3.50)

In the following examples, we use N = 200 nodes uniformly distributed in a
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circle of radius R with nominal distance do where do/R = 1/4. In the first example,

we compare the performance of the first-order distributed algorithms for the vari-

ous choices of the diffusion parameters using the relative MSE (rMSE) performance

metric:

rMSE =
Additional MSE incurred by distributed computations

MVUE MSE
.

As the Fig. 3.4 shows, the first-order rule with NUD parameters, ρij’s via local
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Figure 3.4: Performance comparison of distributed algorithms with UD parameters
ρ∞, ρmax, ρ1 and NUD set of parameters ρij’s via LN algorithm.

negotiation algorithm, outperforms the first-order rules with UD parameters, ρ =
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ρmax, ρ = ρ∞ and ρ = ρ1 respectively. As noted in [17], the rules with parameters

ρ∞ and ρ1 have similar rMSE performance and they outperform rules with ρmax .

This suggests that for UD rules, we should use rules with ρ1 over rules with ρ∞ since

the former can be implemented without the need for macroscopic information (which

may or may not be available).

In the second example, we examine higher-order LTI rules via the mode-

shaping filter (3.38). In particular, we compare rules that employ ρij’s via the LN

algorithm and ρmax for the filter parameters c =
[
0, 0.3, 0.6

]
, with c = 0 referring

to the no-filtering case as in the first example. As Fig. 3.5 shows, the higher-order
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[
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for ρmax and ρij’s (via LN algorithm).
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LTI rules via H(z) with both c = 0.3 and c = 0.6 outperform first-order LTI rules

with c = 0. The performance improvement between rules with c = 0.6 versus c = 0

is quite dramatic, as much as 50 dB rMSE between the ρmax cases and 85 dB rMSE

between the ρij’s cases at k = 100 respectively.

3.5 Distributed Computations Summary

In summary, we presented a broad class of admissible, LTI and AC rules for dis-

tributed computations and discuss the key conditions needed to guarantee conver-

gence. In addition, we discussed several classes of first-order LTI rules and the ad-

vantages/disavantages of these algorithms with regards to distributed implementation

in AHSN’s. We developed new and improved versions of the distributed algorithms

reported in [17, 18] that (i) use NUD parameters ρij’s via the LN algorithm with

improved convergence rates and (ii) can implement distributively a broader class of

problems based on weighted averages. The brief simulations substantiate the im-

proved performance of these new algorithms.
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Chapter 4

Fusion in Space

In this chapter, we design and develop sensor fusion algorithms for spatial processing

via a distributed network of sensors. As discussed in Sec. 2.2, the use and deployment

of sensor networks for performing source localization has gained wide interest in many

civilian and military applications due to the large spatial-coverage capabilities. Nu-

merous localization methods, such as TOA, TDOA, DOA and RSS based methods,

involving sensor networks have been proposed recently in literature and the methods

vary widely depending on the applications. In addition, as discussed previously, lo-

calization methods for AHSN’s also vary in terms of processing architecture such as

centralized [13,35], hierarchical of sub-networks or clusters [37,48,59] including mobile

rovers [40] and decentralized localization [15, 54, 60] depending upon the availability

of sensor network’s resources such as battery power and communication bandwidth.

In our investigation, we focus on resource efficient source localization algo-

rithms for AHSN’s that trade-off performance and complexity. In addition to low-

complexity, we are interested in algorithms that can be implemented distributively

in decentralized settings. In the process, we develop signal processing strategies that

keep power consumption and communication bandwidth within the sensor network

to acceptable levels without significantly sacrificing localization accuracy.
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In Sec. 4.1, we examine several classes of low-complexity estimators and de-

velop the corresponding localization algorithms for a single (static) source within a

sensor network. Then, we perform simulations to compare and contrast the MSE

performance of the derived algorithms. In Sec. 4.2, we demonstrate how these algo-

rithms can be implemented distributively in AHSN’s. We present the key steps to

mapping the (global) centralized estimators to the forms of averages of Sec. 3.2 so

distributed computations can be performed locally at all participating nodes in the

network. Then, we present simulation-based analysis and discuss performance re-

sults comparing the distributed source localization algorithms with their centralized

counterparts in Sec. 4.3. We remark that for convenience, we drop the dependence

on t in the presentation of this chapter.

4.1 Resource-Efficient Source Localization

Algorithms

We examine low-complexity estimators that can be implemented distributively based

on centroid and least-squares (LS) estimations to determine the unknown source

location ps. In our algorithm development, we assume that given M detecting sensor

nodes in the AHSN, each node knows its own position location (e.g., via a GPS

sensor available on-board or via one of the proposed autonomous methods for sensor

network self-localization or self-calibration such as using beacons or moving targets

of opportunity in the AHSN [34,61–64]). We further assume that each participating

node has the capability to estimate the RSS as discussed in Sec. 2.1.4.

We first discuss centroid-based methods in Sec. 4.1.1 and range-difference LS-

based methods Sec. 4.1.2. Then, we perform Monte Carlo simulations to compare
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and contrast the MSE performance of the derived algorithms against the associated

CRB’s and among the algorithms while assessing the overall complexity in Sec. 4.1.3.

4.1.1 Centroid-based Estimators

The simplest class of estimators that we considered is centroid-based estimators.

Centroid-based estimators are inherently low-complexity and simple to implement,

and they can provide increasingly more reliable estimates with increasing sensor den-

sity. Given M detecting sensor nodes in AHSN, the (centralized) centroid (CEN)

estimator, p̂c, is given by

p̂c =
[
x̂c ŷc

]T

=

[
1

M

M∑
i=1

xi
1

M

M∑
i=1

yi

]T

, (4.1)

where pi =
[
xi yi

]T

for i = 1, . . . , M , is the ith sensor location assumed to be known.

As the estimator in (4.1) does not use RSS information, its performance is high SNR-

limited. The RSS estimates, σ̂2
RSSi

’s, can be exploited to obtain improved estimators

at slightly higher complexity. The (centralized) weighted-centroid (WCEN) estimator,

p̂wc, has the form

p̂wc =
[
x̂wc ŷwc

]T

=

[∑M
i=1 σ̂2

RSSi
xi∑M

j=1 σ̂2
RSSj

∑M
i=1 σ̂2

RSSi
yi∑M

j=1 σ̂2
RSSj

]T

. (4.2)

The WCEN estimator produces better estimates than the CEN estimator because it

gives more weight to the sensor nodes with higher RSS’s (i.e., nodes that are closer

to the source) and less weights to sensor nodes with lower RSS’s (i.e., nodes that

are farther from the source). Both estimators can be computed distributively; by

exploiting locally available information, distributed algorithms can be constructed
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that asymptotically obtain (4.1)– (4.2) over any arbitrary, connected, ad-hoc network

[3,19]. However, the distributed implementation of the WCEN estimator can be much

more computationally complex than the CEN estimator unless the one-pass algorithm

is used.

4.1.2 LS-based Estimators

By “processing” the M -dimensional estimation problem corresponding to (2.4), we

may obtain a reduced (M − 1)-dimensional range difference problem to which linear

LS estimates can be readily constructed [3,6, 19,65,66]. For convenience, we refer to

the resulting estimators as LS estimators.

We next consider a (centralized) linear LS (LLS) estimator that is a general-

ized version of [19]. It is assumed that the ith node in the network knows its location,

the ith node possesses source-node range measurements of the form

gi = σRSSi
+ ωi (4.3)

where the ωi’s are zero-mean σ2
ω-power i.i.d. Gaussian sequences, and σ2

RSSi
= σ2

s/r
2
i ,

with ri = ‖pi−ps‖. The source-location estimators we considered exploit the locally

available minimum-variance unbiased estimates (MVUEs) of σ2
RSSi

, viz.,

σ̂2
RSSi

= min
[
g2

i − σ2
ω, 0

]
. (4.4)

We remark that the AHSN for a fixed time t is formed via threshold detection by in-

cluding in the AHSN only nodes with σ̂2
RSSi

> σ2
T , for some suitably preset threshold

σ2
T > 0.

Assuming M detecting nodes in AHSN, the LLS estimator of interest is based
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on (M − 1) range-squared difference equations, formed by viewing the Mth sensor

(arbitrarily chosen) as a reference. Given that

r2
i = ‖pi − ps‖2 = ‖pi‖2 + ‖ps‖2 − 2pT

i ps , (4.5)

the LLS estimator exploits the following:

r2
i − r2

M = σ2
s (σ̂−2

RSSi
− σ̂−2

RSSM
)

= ‖pi‖2 − ‖pM‖2 − 2 (pi − pM)T ps . (4.6)

Expanding (4.6) into vector form and rearranging the terms, we obtain




‖pi‖2 − ‖pM‖2

...

‖pM−1‖2 − ‖pM‖2




=




2(pi − pM)T

...

2(pM−1 − pM)T




ps +




σ̂−2
RSSi

− σ̂−2
RSSM

...

σ̂−2
RSSM−1

− σ̂−2
RSSM




σ2
s

=




2(pi − pM)T (σ̂−2
RSSi

− σ̂−2
RSSM

)

...
...

2(pM−1 − pM)T (σ̂−2
RSSM−1

− σ̂−2
RSSM

)







ps

σ2
s




(4.7)

Let r̃ be the (M − 1) × 1 vector on the LHS of (4.7), and ∆V be the (M − 1) × 3

matrix on the RHS and x
4
=

[
pT

s σ2
s

]T

=
[
xs ys σ2

s

]T

be the 3 × 1 the vector of

unknowns on the RHS of (4.7). Then the LLS estimator x̂lls of the unknown x is

x̂lls =
[
x̂lls ŷlls σ̂2

lls

]T

= (∆VT∆V)−1∆VT r̃ . (4.8)
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Similarly, a weighted-LS (WLS) estimator can be formed as follows:

x̂wls =
[
x̂wls ŷwls σ̂2

wls

]T

= (∆VTW∆V)−1∆VTWr̃ , (4.9)

where the W is an (M − 1) × (M − 1) matrix function of the RSS estimates. For

weighted LS estimation with uncorrelated noise assumptions, setting W = C−1(x)

will produce estimates with the smallest variances [44]. However, in general, the

covariance matrix C(x) is not amenable to distributed implementation.

The Weight Matrix

In [6, 19], a simple and straight forward use of the locally available RSS estimates as

weights is to define W as

Ŵ =




σ̂2
RSS1 0 · · · 0

0 σ̂2
RSS2 · · · 0

...
...

. . .
...

0 0 · · · σ̂2
RSS(M−1)




. (4.10)

However, upon performing further simulation analysis, we find that the weights are

not functions of σ̂2
RSS but instead functions of σ̂6

RSS.

In particular, the estimators exploit the relative node-source range-squared

estimates via the estimated RSS’s of the form

σ̂−2
RSSi

=
[
σ̂2

RSSi

]−1

=
r2
i

σ2
s

+ εi (4.11)

and where the estimation-errors εi are independent in i. In simulation-based evalua-

tion of the associated ith MSE, σ2
εi

4
= E {ε2

i }, reveals it is proportional to r6
i as shown
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Figure 4.1: MSE trend of σ2
εi

shows that σ2
εi
∝ σ−6

RSSi
= r6

i /σ
2
s , for the AHSN example

of a R = 100 m, M = 20 sensors and SNR = 60 dB.

in Fig. 4.1, i.e.,

σ2
εi
∝ σ−6

RSSi
, (4.12)

for σ̂2
RSSi

> σ2
T and for any detection threshold σ2

T > 0. Further details can be

found in App. C.1.1. Analytically, it is shown in App. C.1 that W is the following

(M − 1)× (M − 1) MSE-weight matrix

W =
[
diag(σ2

ε1
, σ2

ε2
, · · · , σ2

εM−1
) + σ2

εM
11T

]−1

, (4.13)

where 1 denotes an (M − 1) × 1 vector of one’s. Due to (4.12) and (4.13), x̂wls
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from (4.9) is not a valid estimate as it depends on the unknown source location and

power. A valid WLS-type estimate of the form (4.9) that is amenable to distributed

implementation can be obtained by employing in (4.9) the following expression for

W in place of (4.13)

Ŵ = diag(σ̂6
RSS1 , σ̂6

RSS2 , · · · , σ̂6
RSSM−1

) (4.14)

where σ̂6
RSSi

is the MVUE of σ6
RSSi

and is given by

σ̂6
RSSi

= g6
i − 15 σ2

ω g4
i + 45 σ4

ω g2
i − 15 σ6

ω .́ (4.15)

Further details can be found in App. C.1.2.

4.1.3 Localization Simulations & Analysis

We next present the average MSE (range squared in m2) performance evaluation of the

the centroid-based estimators in (4.1)– (4.2) and LS estimators in (4.8)–(4.9) based

on Monte-Carlo simulations. We compare and analyze the localization performance

for the different estimators with each other and also with the associated CRB, and

obtain the MSE results in dB m2.

The setting of interest involves a single (static) acoustic source located at the

center of a circle of radius R with sensor nodes uniformly distributed in this circle.

We assume a stochastic signal model with L = 1000 independent snapshots1 over

a circle with R = 100 m and detection threshold, σ2
T = 0 dB. We further assume

1The number of snapshots depends on the data sampling rate, fs. In general, acoustic sensing for
military applications [23, 38], fs is typically from 512 Hz to 4096 Hz. For example, in [23], acoustic
signals are sampled at fs = 1024 Hz and L = 512 snapshots, and in [38], acoustic signals are sampled
at fs = 4096 Hz and L = 3730 snapshots are used.
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that the reference sensor, the Mth sensor, in (4.8)–(4.9) is chosen to be the “loudest”

or the closest sensor to the source. For this analysis, the weight matrix used for the

WLS estimator is a diagonal matrix of RSS estimates as in (4.10). The resulting MSE

curves are based on averaging over MC = 250 independently drawn sensor lay-outs.
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Figure 4.2: Performance comparison of CEN, WCEN, LLS, and WLS estimators and
the associated CRB: MSE vs. Mave sensors for (a) SNR = 30 dB, (b) SNR = 40 dB,
(c) SNR = 60 dB and (d) SNR = 80 dB.

Fig. 4.2 shows the simulated estimator MSE and the associated CRB vs. Mave

for SNR =
[
30, 40, 60, 80

]
dB. The plots show the MSE performance trade-offs as a

function of Mave. First, we note that for Mave ≥ 10 sensors, the MSE performance of

the four estimators (CEN, WCEN, LLS and WLS) improves with increasing Mave. In
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particular, the performance improves approximately by 3 dB when Mave is doubled.

Also, we note that the range estimation errors for the four estimators are within

10’s of meters; MSE ≤ 1 m2 and MSE ≤ 100 m2 for LS-based and centroid-based

estimators, respectively. Finally, the LS-based estimators perform well with respect

to the CRB, especially at lower SNR’s.
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Figure 4.3: Performance comparison of CEN, WCEN, LLS, and WLS estimators and
the associated CRB: MSE vs. SNR for (a) N = 10, (b) N = 20, (c) N = 30 and (d)
N = 50 sensors.

Fig. 4.3 shows the MSE vs. SNR comparison of the four estimators and the

associated CRB for N =
[
10, 20, 30, 50

]
sensors. As the figure reveals, weighted esti-

mators, whether centroid-based or LS-based, outperform their non-weighted counter-

71



parts by several dB. The performance gain of weighted estimators over non-weighted

estimators, however, does not improve with increasing SNR (i.e., SNR-limited). In

addition, LS-based estimators considerably outperform their centroid-based counter-

parts; for SNR ≥ 40 dB, LS-based estimators produce less than 1 m range error.

Furthermore, as all four estimators are biased, their MSE curves level off at higher

SNR’s, as opposed to the associated CRB. Although, in principle, sub-meter range

errors could be possible as indicated by the CRB, range estimation errors of several

meters are well within acceptable performance for many such ad-hoc networks of

acoustic sensors [67].

4.1.4 Reference Sensor Sensitivity Analysis

In this section, we study the effect on MSE performance of the range difference

LLS and WLS estimators with respect to choosing a reference sensor. Again, we

assume the stochastic signal model in (2.12) with L = 1000 and we assume R =

100 m. From the previous discussion, we choose the “loudest” or the closest sensor

to the source as the centralized (global) reference sensor. However, in decentralized

settings, choosing the loudest might not be possible due to communication and/or

computational complexity constraints. Therefore, we perform simulation analysis

for LS-based estimators comparing a randomly chosen (global) reference versus the

loudest (global) reference. Fig. 4.4 shows the MSE vs. Mave comparison for SNR =
[
40, 60

]
dB and the MSE vs. SNR comparison for N =

[
10, 30

]
sensors. As the figure

reveals, for Mave ≥ 10 (Fig. 4.4 (a) and (b)) and SNR ≥ 40 dB (Fig. 4.4 (c) and (d)),

both LLS and WLS with random reference estimators are sensor density limited and

SNR limited respectively at ≈ 0 dB MSE, while both the LLS and WLS with loudest

reference estimators are only SNR limited as discussed previously for SNR ≥ 50
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Figure 4.4: Performance comparison of LLS and WLS with the “loudest” sensor as
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dB. Also note that there is no performance gain using WLS with random reference

sensor over the non-weighted version. In summary, the degradation in performance is

attributed to the fact that a randomly (globally) selected sensor reference has a lower

RSS compared to that of the “loudest” sensor, and this leads to higher sensitivity to

measurement errors in (4.7).

4.2 Distributed Implementation

We next present the essential steps of mapping centralized localization algorithms de-

scribed in Sec. 4.1 to computations of the form (3.8). We first dicuss the steps for the

distributed implementation of centroid-based estimators and then discuss the steps

for distributed implementation the LS-based estimators in Sec. 4.2.1 and Sec. 4.2.2 re-

spectively. Next, we discuss the performance metrics used in performance evaluation

and comparison in Sec. 4.2.3. Then, we present simulation results and performance

analysis comparing the distributed source localization algorithms with their central-

ized counterparts in Sec. 4.2.4.

4.2.1 Distributed Centroid-based Estimation

Distributed CEN

We first consider the centroid algorithm for source localization as it can be readily

mapped to a locally-constructed distributed computation. Given M sensors, with

each sensor knowing its own location, the (centralized) centroid location estimator,

p̂c =
[
x̂c ŷc

]T
, is given by (4.1). Each entry of p̂c is already in the form (3.8).

The distributed implementation of p̂c involves two parallel-distributed computations

corresponding to the x and y components of p̂c. Let np denote the number of parallel
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operations and fi =
[
f

(1)
i f

(2)
i · · · f

(np)
i ] (in this case np = 2), then the implementation

steps at the ith node are as follows:

(1) Initialize via locally available information, namely, the coordinates of node i:

fi[0] =
[
f

(1)
i [0] f

(2)
i [0]

]T

= [xi yi]
T ; (4.16)

(2) Apply distributed computation algorithms of Sec. 3.2 for k iterations to obtain

the distributed centroid (dCEN) estimate,

p̂idc
[k] =

[
f

(1)
i [k] f

(2)
i [k]

]T

=
[
x̂idc

[k] ŷidc
[k]

]T

. (4.17)

As k →∞, the dCEN estimate at each node i converges to the global CEN estimate,

i.e.,

p̂idc
= lim

k→∞

{[
x̂idc

[k] ŷidc
[k]

]T
}

= lim
k→∞

{[
f

(1)
i [k] f

(2)
i [k]

]T
}

=

[
1

M

M∑
i=1

xi
1

M

M∑
i=1

yi

]T

=
[
x̂c ŷc

]T

= p̂c. (4.18)

Distributed WCEN

The weighted centroid algorithm can also be mapped to a locally-constructed dis-

tributed computation of averages but it requires a few more steps than the non-

weighted CEN estimator. Here, we assumes the weights are the RSS estimates. First,

we notice that we can rewrite (4.2) as

p̂wc =
[
x̂wc ŷwc

]T

=

[
1

M

M∑
i=1

{
σ̂2

RSSi

1
M

∑M
j=1 σ̂2

RSSj

}
xi

1

M

M∑
i=1

{
σ̂2

RSSi

1
M

∑M
j=1 σ̂2

RSSj

}
yi

]T

.

(4.19)
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Each term in (4.19) is a weighted sum of weighted sums, which requires a two-stage

cascade implementation. In the first stage, we need to distributively compute α̂, an

estimate for the average weights 1
M

∑M
j=1 σ̂2

RSSj
, which is already of the form in (3.8).

In the second stage, we substitute the α̂ into (4.19) to map each term of (4.19) into

the form in (3.8). Then, we can apply the distributed algorithm to compute p̂wc. The

distributed implementation of p̂wc using (3.31) or (3.39) involves two parallel cascade-

distributed computation of averages corresponding to the x and y components of p̂wc.

At node i, the implementation steps are as follows:

(1) Initialize the average weight via locally available information, namely the RSS

estimate at node i: f stage1
i [0] = f stage1

i [0] = σ̂2
RSSi

.

(2) Apply distributed computation algorithms of Sec. 3.2 for k1 iterations to obtain

the distributed average weight estimate, α̂i[k1] = f stage1
i [k1].

(3) For each term in (4.19), initialize with α̂i[k1] and locally available information,

namely the RSS estimates and the coordinates of node i:

f stage2
i [k1, 0] =

[
f

stage2(1)
i [k1, 0] f

stage2(2)
i [k1, 0]

]T

=

[
σ̂2

RSSi

α̂i[k1]
xi

σ̂2
RSSi

α̂i[k1]
yi

]T

. (4.20)

(4) Apply distributed computation algorithms of Sec. 3.2 for k2 iterations to obtain

the distributed weighted centroid (dWCEN) estimate,

p̂idwc
[k1, k2] =

[
f

stage2(1)
i [k1, k2] f

stage2(2)
i [k1, k2]

]T

=
[
x̂idwc

[k1, k2] ŷidwc
[k1, k2]

]T

. (4.21)
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The convergence of dWCEN to WCEN, is dependent on the convergence of α̂i[k1]. As

k2 → ∞ and k1 → ∞, the dWCEN estimate at each node i converges to the global

WCEN estimate, i.e.,

p̂idwc
= lim

k2→∞

{
lim

k1→∞

{[
x̂iwdc

[k1, k2] ŷidc
[k1, k2]

]T
}}

=

[
1

M

M∑
i=1

{
σ̂2

RSSi

1
M

∑M
j=1 σ̂2

RSSj

}
xi

1

M

M∑
i=1

{
σ̂2

RSSi

1
M

∑M
j=1 σ̂2

RSSj

}
yi

]T

= [x̂wc ŷwc]
T = p̂wc . (4.22)

Also, we remark that unlike dCEN, the MSE performance of dWCEN based on dis-

tributed implementation of (4.19) is dependent on the coordinate reference system

(e.g., absolute (global) reference versus local reference) due to the cascade implemen-

tation. To eliminate this dependency, we choose one of the sensors in the AHSN

(e.g., the Mth) as reference sensor and reformulate the weighted average problem as

follows:
(M−1)∑

i=1

κipi =

(M−1)∑
i=1

κi(pi − pM) + pM , (4.23)

where 0 ≤ κi < 1 and
∑(M−1)

i=1 κi = 1. Further details can be found in Appendix C.2.

We remark that using the one-pass algorithm of Sec. 3.3, the distributed imple-

mentation of WCEN reduces to three parallel distributed computations rather than

the two parallel-cascade computations, i.e., three parallel distributed computations

at the ith node corresponding to the x, y components of p̂wc and the ith weight

component α̃i =
σ̂2

RSSi
1
M

∑M
j=1 σ̂2

RSSj

.
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4.2.2 Distributed LS-based Estimation

Distributed LS

The same principles apply to constructing distributed LS-type (dLLS) estimators

based on weighted sums. By exploiting

∆VT∆V

(M − 1)
=

1

(M − 1)

M−1∑
j=1

(vj − vM)(vj − vM)T (4.24a)

∆VT r̃

(M − 1)
=

1

(M − 1)

M−1∑
j=1

(vj − vM) r̃j , (4.24b)

where vi =
[
2(pi − pM)T (σ̂−2

RSSi
− σ̂−2

RSSM
)
]T

and r̃i = [ r̃ ]i we may rewrite (4.8)

into a form involving computations of averages (3.8). Distributed implementation

of x̂lls via (4.24) involves six parallel approximations for (4.24a) and three parallel

approximations for (4.24b). At node i, the implementation steps are as follows:

(1) Initialize via locally available information, i.e., sensor positions and RSS esti-

mates: fi[0] =
[
f

(1)
i [0] · · · f

(9)
i [0]

]T

, where




f
(1)
i [0] f

(2)
i [0] f

(3)
i [0]

f
(2)
i [0] f

(4)
i [0] f

(5)
i [0]

f
(3)
i [0] f

(5)
i [0] f

(6)
i [0]




= (vi − vM)(vi − vM)T (4.25a)




f
(7)
i [0]

f
(8)
i [0]

f
(9)
i [0]




= (vi − vM) r̃i . (4.25b)

(2) Apply distributed computation algorithms of Sec. 3.2 for k iterations to obtain
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the distributed LS estimate,

x̂idlls
[k] = fi[k] =

[
x̂idlls

[k] ŷidlls
[k] σ̂2

s idlls

]T

. (4.26)

As k → ∞, the dLLS estimate at each node i converges to the global LS estimate,

i.e.,

x̂idlls
= lim

n→∞
fi[k] =

[
(∆VT∆P)−1∆VT r̃M

]
=

[
x̂lls ŷlls σ̂2

s lls

]T

= x̂lls . (4.27)

We remark that the distributed algorithm in (3.31), (3.39) or the one-pass algorithm

(3.3) can be used to compute the nine terms in parallel.

Distributed WLS

Constructing distributed WLS-type (dWLS) estimators based on weighted sums is

a straightforward extension of dLLS if the weight matrix is diagonal as described in

(4.10) or approximated by Ŵ in (4.13). Assuming Ŵ = diag
{

ŵ1, · · · , ŵM−1

}
By

exploiting

∆VTŴ∆V

(M − 1)
=

1

(M − 1)

M−1∑
j=1

(vj − vM)T (vj − vM) ŵj (4.28a)

∆VTŴ r̃M

(M − 1)
=

1

(M − 1)

M−1∑
j=1

(vj − vM)T r̃j ŵj , (4.28b)

we may rewrite (4.9) into a form involving computations of averages in (3.8). Dis-

tributed implementation of x̂wls via (4.28) involves six parallel approximations for

(4.28a) as in (4.25a) and three parallel approximations for (4.28b) as in (4.25b) with

the additional constant multiplier ŵj on the RHS of both (4.25a) and (4.25b).
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Extensions of Distributed LS

The distributed implementation of LS-based estimators in Sec. 4.2.2 so far deal with

the use of fixed (global) reference sensors (arbitrarily chosen as the Mth sensor)

for range difference location estimation. In the AHSN setting, the use of a global

reference sensor requires additional information that might not be readily available

and/or additional computations might be costly as discussed in Sec. 4.1.4.

Distributed implementations of appropriate extensions of (4.9) can be readily

developed, whereby each sensor employs one or more of its connected neighboring

sensors as reference sensor(s). Assuming for example that each sensor uses only one

randomly chosen reference sensor from its connected neighbors and letting `(i) denote

the index of the reference used by node i, an LS-type localization estimator amenable

to distributed implementation similar to (4.24) is readily given by (4.8), by replacing

∆V defined in (4.7) with

∆V =




2(pi − p`(1))
T (σ̂−2

RSSi
− σ̂−2

RSS`(1)
)

...
...

2(pM − p`(M))
T (σ̂−2

RSSM
− σ̂−2

RSS`(M)
)




(4.29)

and r̃ in defined in (4.7) with r̃i = ‖pi‖2 − ‖p`(i)‖2. We remark that for these

distributed extensions of LS algorithms can be M -dimensional (or higher) instead of

(M − 1)-dimensional for the fixed (global) reference algorithm.

4.2.3 Performance Metrics

In the following simulations, we employ as our figure of merit the sample-mean MSE

(in dB m2) performance of the associated localization (and later tracking) algorithms

based on MC independent realizations. In addition to the MSE, we use the MSE

80



difference (dMSE) and the relative additional MSE (rMSE) to compare distributed

against centralized localization estimators and they are defined as follows:2

dMSE[k]
4
= 10 log10

(
msedist[k]

msecent

)
(4.30a)

rMSE[k]
4
= 10 log10

(
msedist[k]−msecent

msecent

)
, (4.30b)

where msedist[k] and msecent denote the sample-mean MSE of the local sensor esti-

mates after k iterations, and the MSE of the associated centralized algorithm respec-

tively.

4.2.4 Distributed Source Localization

Simulations & Analysis

We next (i) investigate the performance of the distributed localization estimators of

Sec. 4.2 as a function of the sensor density D (via N or Mave), the communication

and fusion steps or number of iterations, k, and the network connectivity parameter

do, and (ii) compare the performance of distributed implementations to that of their

centralized counterparts. We model the acoustic source with spherical spreading

(i.e., β = 2), and assume that the source is located at the origin with N uniformly

distributed detecting sensor nodes within a disk of radius R. We analyze the average

source localization performance obtained via Monte Carlo simulations averaged over

MC independently drawn sensor layouts.
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Figure 4.5: MSE difference between the distributed and the corresponding centralized
centroid and LLS estimators vs. k with and without mode-shaping filter H(z) with
c = 0.3.

Centralized vs. Distributed

In the first three examples, we assume the stochastic signal model in (2.12) and

distributed computation of average algorithm via first-order UD LTI rule in (3.31)

with ρ = ρmax, R = 100, and MC = 200. The following parameter values are

used for the first simulation example: N = M = 50, do/R = 0.6. Fig. 4.5 shows

the rate of MSE convergence of the centroid and LS distributed estimators to the

MSE of the associated centralized estimators in terms of their dMSE as a function k.

2The rMSE performance metric is initially defined in Sec. 3.4 but redefined here for convenience.
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Figure 4.6: Number of communication and fusion steps (ko) required vs. (do

R
) for

M =
[
25, 50, 100, 200

]
sensors with −20 dB rMSE.

The convergence rates are shown for cases with and without a mode-shaping filter.

As the figure reveals, both distributed algorithms converge relatively quick to their

centralized counterparts, with the distributed LS algorithm converging much quicker

(e.g., k ≈ 12 for 1 dB dMSE) than the distributed centroid algorithm (e.g., k ≈ 38

for 1 dB dMSE). The use of a mode-shaping filter H(z) with c = 0.3, yields faster

convergence for both types of estimators as indicated by the corresponding dashed-

line curves in Fig. 4.5 (as predicted previously in Sec. 3.4). As the figure reveals,

the number of steps required, ko, for convergence to 1 dB dMSE is approximately

reduced by a factor of two when H(z) with c = 0.3 is applied.
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In the second example, we compare the performance of centralized and dis-

tributed LLS estimators (with H(z) = 1) as a function of network and algorithm

parameters, namely ko, do (normalized by R) and M . Fig. 4.6 shows simulation

results for ko vs. (do

R
) with M = [25, 50, 100, 200

]
sensors for −20 dB rMSE (i.e., 1%

increase due to distributed implementation). As shown in the previous example, the

number of steps needed for convergence to −20 dB can be significantly reduced by

using a mode-shaping filter H(z). Fig. 4.6 reveals several interesting trends about

the properties of these distributed implementations:

1. As (do

R
) → 1, ko is nearly the same (ko ≈ 10) for all four sensor densities. This

is due to the fact that for (do

R
) ≈ 1 , the network is nearly fully connected. In

other words, all the data is essentially communicated to each node in a small

number of iteration steps.

2. As (do

R
) → 0, ko →∞ for all four sensor densities. This is due to the fact as (do

R
)

decreases, the network becomes increasingly sparsely connected, and eventually

disconnected.

3. For intermediate range of (do

R
) values (e.g., 0.3 ≤ (do

R
) ≤ 0.8), the figure suggests

various design trade-offs among the parameters M , ko and do. For example, we

may achieve higher localization performance with a fixed communication and

power cost per node (i.e., keeping ko and do fixed) by increasing the sensor

density. Alternatively, we can achieve the same MSE performance by increasing

the transmit power per node (i.e., increasing do) and employing a fewer number

of iterations.

In the third example, we examine the dWCEN estimator as a function of the

k1 and k2 parameters. Fig. 4.7 shows the MSE performance of the dWCEN estimator
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Figure 4.7: MSE vs. k2 for WCEN estimator for k1 = 1, 3, 5,∞.

with respect to k2 iterations (in the second cascade stage) for different k1 iterations

(in the first cascade stage). In this example, dWCEN with k1 = 5 performs just as

well as dWCEN with k1 = ∞ with respect to the WCEN estimator. For smaller k1

values (e.g., k1 = 1 and k1 = 3), the dWCEN performs poorly with respect to WCEN;

even as k2 →∞, dWCEN does not asymptotically approach WCEN.

Extensions to Distributed LS

In the next three examples, we compare the performance of distributed LS algorithms

with reference sensors other than the (global) “loudest” sensor node. The first two
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examples are based the stochastic signal models with L = 1000 snapshots and the

third example is based on the deterministic signal model with L = 1 snapshot.
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Figure 4.8: MSE comparison of distributed LLS estimators with fixed (global) refer-
ence (dLLSgr) versus random reference as a (dLLSrr) function of k for (do

R
) = 0.5 and

0.8.

In the first example, we consider a stochastic signal model R = 100 m and

N = M = 50 sensor nodes. We analyze and compare the MSE performance of dLLS

that utilizes the loudest sensor as a global reference (denoted as dLLSgr), and a dLLS

estimator that employs locally and randomly selected reference sensors (denoted as

dLLSrr). Fig. 4.8 contrasts the MSE performance of dLLSgr estimators to that of

dLLSrr estimators where the ith sensor randomly chooses one out of its |φii| locally
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connected sensors as its reference. As the figure reveals, there is a performance gap

between dLLSgr and dLLSrr, which becomes wider at smaller do’s (e.g., 8.9 dB and

4.6 dB for (do

R
) = 0.5 and 0.8, respectively). For a network of M sensors, the use of

randomly selected local reference sensors can lead to a reduced number (< M − 1)

of independent measurements. In addition, the inherent proximity of the sensor-

reference pairs and the use of references with SNR inferior to that of the global

reference sensor leads to higher sensitivity to measurement errors in σ̂2
RSSi

’s. This

performance gap is present in both centralized and distributed LS implementations, as

revealed by the effectively constant MSE gap between distributed dLLSrr and dLLSgr

estimators as a function of k.

In the second example, R = 100 m and N = M = 50 sensor nodes. We consider

the MSE performance of dLLSrr estimators as a function of the average number of

local references used by each sensor node in the network. In particular, we consider

the case where each sensor node uses on-average γ randomly selected reference sensors

where 1 ≤ γ ≤ 2 (i.e., the ith sensor randomly selects from the set of its connected

neighboring sensors one reference sensor with probability (1− p2) and two references

sensors with probability p2, and where, p2 = γ − 1). Fig. 4.9 shows the simulated

dMSE (MSE with random references versus MSE with a fixed reference) vs. (do

R
), for

γ =
[
1, 1.5, 2

]
. As the figure reveals, for a fixed (do

R
), the performance improves with

increasing γ, i.e., the number of independent range difference measurements increases

with increasing γ. Also, as the sensor communication range (i.e., do) increases, the

number of reference loops decreases and the sensor-reference pairs are on average

farther apart, and, as a result, the dLLSrr MSE performance improves.

In the third example, we consider another extension to (4.8) that uses locally

determined “loudest” sensors as references. In this approach, each sensor node de-
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Figure 4.9: MSE difference vs.(do

R
) for centralized LLS with random references (LLSrr)

with respect to the centralized LLS with the loudest sensor as a global reference
(LLSgr).

termines which of its connected neighbors is the “loudest” and use that node as its

reference. Specifically, ∀j ←→ i and j 6= i, the local reference node for the ith node,

`(i) = arg maxj {σ2
RSSj

}. We denote the WLS estimator that uses locally determined

“loudest” sensors as local references as WLSlr. Fig. 4.10 shows the MSE performance

for WLSlr and WLSgr as a function of the nominal connectivity distance, do, nor-

malized by R, for the case of SNR = 60 dB, σ2
T = 29 dB, N = 200 nodes and

R = 100 m (D = 0.0064 node/m2) over MC = 200 independent realizations. As

the figure reviews, for (do

R
) / 0.55, WLSgr performs slightly better than WLSlr. For
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R
).

(do

R
) ' 0.55, the two estimators have the similar MSE performance. This is due to

the fact that at high (do

R
), the nodes in the ACN are nearly fully or fully connected

and therefore, the locally determined “loudest” references are essentially the same as

the global “loudest” reference.

The use of locally selected “loudest” nodes as references require slightly more

computation but it alleviates the need for a fixed global reference and is amenable

to distributed implementation. In this example, the neighboring nodes are one-

communication step away, however, the algorithm can be generalized to neighboring
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nodes that are k-communication steps away. We remark that the extensions of the

distributed LLS are based on M -dimensional instead of (M − 1)-dimensional range

difference equations

4.3 Performance Analysis & Algorithm Design

Results from previous sections show the interdependence of sensor network parameters

(e.g., density), signal parameters (e.g., SNR) and localization algorithm parameters

(e.g., detection threshold) on estimation performance. In this section, we investigate

the relationship among the various network, signal and algorithm parameters with

the goal of developing design rules for predicting the MSE performance.

5 10 15 20 25 30 35 40 45 50 55
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1500

σ
T
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M
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Figure 4.11: Mave versus σ2
T for SNR = 60 dB.

To this end, we investigate the performance of the (centralized) WLS source

localization algorithm with respect to SNR, σ2
T , and D based on the signal model

described by (2.13). For convenience, we set σ2
η = 1 so SNR = σ2

s and we drop the

dependence of the estimators on t. We simulate a baseline case for D = 0.0032, first

with N = 1600 nodes uniformly distributed with in a circle of radius R = 400 m,
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Figure 4.12: (a) P (D) vs. R at σ2
T =

[
18, 21, 24, 27

]
dB for fixed SNR = 60 dB, and

(b) P (D) vs. R at SNR =
[
54, 57, 60, 63

]
dB for a fixed σ2

T = 21 dB.

while varying SNR and σ2
T over MC = 500 independent realizations. For a given SNR

level, the average number of detecting nodes, Mave, in the sensor network depends on

σ2
T . As σ2

T increases (decreases), Mave decreases (increases) exponentially as shown

in Fig. 4.11. This is due to the fact the probability of detection, P (D), for each

node defined in (2.15) depends on σ2
T and its relative distance from the source. For

example, at a lower detection threshold, the probability of detection is higher for all

the nodes resulting in higher Mave values.

Fig. 4.12 illustrate the relationship between P (D) versus the range or radius
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Figure 4.13: (a) P (D) vs. normalized R at σ2
T =

[
18, 21, 24, 27

]
dB for fixed SNR = 60

dB, and (b) P (D) vs. normalized R at SNR =
[
54, 57, 60, 63

]
dB for a fixed σ2

T = 21
dB.

R: (a) for varied detection thresholds, σ2
T =

[
18, 21, 24, 27

]
dB at a fixed SNR = 60

dB and (b) for varied SNR =
[
54, 57, 60, 63

]
dB at a fixed σ2

T = 21 dB. For ease

of comparison, we normalized range so that the all the plots intersect at P (D) = 0.5

and the normalized range Rnorm = 1 as shown in Fig. 4.13. The figures reveal two

important trends as σ2
T is decreased: (i) the radius of detection, denoted by Rdet, is

increased as shown in Fig. 4.12(a); and (ii) the transition region between detection

and non-detection regions (i.e., from P (D) ≈ 1 to P (D) ≈ 0) is decreased as shown

in Fig. 4.13(a). Similarly, figures reveal similar trends as SNR is increased (i) the
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Figure 4.14: MSE performance for WLS versus Mave for SNR =
[
54, 60, 66

]
dB.

radius of detection is increased as shown in Fig. 4.12(b); and (ii) the transition region

between detection and non-detection regions (i.e., from P (D) ≈ 1 to P (D) ≈ 0) however

stays the same as shown in Fig. 4.13(b).

We next analyze the MSE performance of the WLS estimators as a function of

Mave for a range of SNR levels. As Fig. 4.14 reveals, higher SNR yields better MSE

performance. In addition, there is an “optimal” Mave (and the associated optimal σ2
T ),

denoted as M∗
ave (and σ2∗

T ), that corresponds to the lowest MSE at each SNR level (e.g.,

11 ≤ M∗
ave ≤ 14). We remark that at very low threshold levels, the set of detecting

nodes is larger than at high threshold levels as shown in Fig. 4.11. However, these

93



50 52 54 56 58 60 62 64 66
−10

−5

0

5

10

SNR (dB)

M
S

E
 (

dB
 m

2 )

Figure 4.15: MSE performance at Mave = M∗
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detecting nodes are spread out over a larger area with the distant nodes providing

poorer measurements, resulting in location estimates with higher MSE’s. Fig. 4.15

shows the linear relationship between MSE performance at Mave = M∗
ave and SNR.

As a result, there is an inherent network scaling relationship for this source location

estimator.

The linear dependence of the MSE performance on SNR (and σ2
s) for the

WLS estimator can be exploited to predict the source localization performance as

the sensor network scales in terms of network density D (i.e., N/πR2). Recall that

the signal power is σ2
s = SNR/σ2

η and the RSS at the ith sensor is σ2
RSSi

= σ2
s/r

2
i .

So for example, if the sensor density is doubled to D̃ = 2D via either doubling the

number of sensor node to Ñ = 2N or reducing the radius to R̃ = R/
√

2 (resulting in

r̃i = ri/
√

2, ∀i), then the MSE performance is expected to improve by 6 dB. Fig. 4.16

illustrates the scaling relationship via simulations for three different SNR and network

settings resulting in similar MSE performances at Mave = M∗
ave.

Figs. 4.14 – 4.16 collectively suggest a method for predicting the source-

localization performance based on the MSE performance over a reference network.
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In particular, letting MSEref , Sref , and Dref denote the reference MSE, SNR and

density quantities respectively. Then, the predicted MSE performance for a sensor

network with density D is given by

MSE ≈ MSEref + (SNRref − SNR) + 20 log10(
Dref

D
), (4.31)

where MSEref , SNRref , and Dref are the reference MSE, SNR and density quantities

respectively.
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Figure 4.16: MSE vs. Mave simulation example for the WLS source location estimator
illustrating the scaling relationship among sensor network parameters.

Next, we investigate the performance of the distributed source location esti-
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mators as a function k and the network connectivity density, defined as ν = N ·d2
o/R

2,

and compare the performance of distributed implementations to that of their central-

ized counterparts over MC = 200 independent realizations. In each realization, a

network is first generated with N = 200 nodes uniformly distributed within a circle

of R = 200 m (D = 0.0016 node/m2). A network topology is generated according

to (3.2) with m = 2. Initially (i.e., prior to performing source localization), a set

of base ρij’s are computed for the entire network by applying the LN algorithm of

Sec. 3.2 for kin = 20 iterations. For convenience, the source is placed at the origin of

the network.

In the following simulation example, we use the deterministic signal model and

set ν =
[
10, 20

]
and SNR = 57 dB with the associated σ2∗

T (M∗
ave) for best localization

performance.

Fig. 4.17 shows the rate of MSE convergence of the LS distributed estimators

to the MSE of the associated centralized estimators as a function of k. As the figure

reveals, the distributed WLS algorithm converge quickly to its centralized counter-

part. For example, the number of steps required, ko, for convergence to 1 dB dMSE

are ko = 8 and 5 for p̂dlls → p̂lls respectively for ν = 10 and 20.3

4.4 Sensor Fusion in Space Summary

In summary, we developed low-complexity centroid and LS algorithms for source

localization. We compared and contrasted localization performance of the estimators

against each other and against the associated CRB. We found that the our estimators

3Rate of convergence result reported in [19] for the stochastic signal model shows that distributed
LLS converging faster to its centralized counterpart than CEN. However, the LLS used in [19]
assumes that σ2

s is known.
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Figure 4.17: MSE difference between the distributed and the corresponding central-
ized WLS estimator vs. k.

perform well over a wide range of SNR’s and sensor densities. The MSE performance

improves with increasing sensor density, approximately by 3 dB when Mave is doubled;

however, they are SNR-limited due the fact that the estimators are biased. We found

that LS-based algorithms outperform centroid-based algorithms with > 20 dB m2

MSE improvement. For LS-based algorithms, we also analyzed performance of the

algorithms with the reference sensor being the closest sensor (“loudest”) to the source

or a randomly chosen reference sensor. We found that there is no difference for the

LLS estimators while there is a difference of a few dB for WLS estimators.
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Chapter 5

Fusion in Time

In this chapter, we design and develop sensor fusion algorithms for space-time process-

ing via a distributed network of sensors. In particular, we are interested distributed

signal processing algorithms for decentralized tracking of a moving source within a

large scale sensor network. As with localization, deployment of distributed sensors

use for tracking has received wide interests due to the large spatial-coverage capabil-

ities. Some examples of civilian applications include vehicular traffic monitoring on

roads and highways, and detection and tracking of people movement in secure areas;

and examples of military applications include remote border surveillance and battle-

field reconnaissance. Recent distributed tracking methods of interest include particle

filtering [60,68] and graphical-based methods [62,69]. However, the predominant dis-

tributed approaches proposed in literature are based on Kalman filtering [3, 70–72].

This is due to the fact that the Kalman filter (KF) based approaches are relatively eas-

ier to implement in comparison to the other methods and due to the pioneering work

of Durrant-Whyte and others in the development of (fully) decentralized KF (DKF)

architectures for multi-sensor data fusion [14,15,49,50]. The principal approach that

Durrant-Whyte and others took is to reformulate the KF state estimation problem

into an information form [50].
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Figure 5.1: One-dimensional distributed tracking concept in (large-scale) decentral-
ized networks via a sequence of subnetworks (e.g., ACN’s): (i) fusion in space via
distributed source localization, and then (ii) fusion in time via distributed tracking.
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In a centralized framework, a central fusion center has all the information it

needs to perform (centralized) tracking, e.g., the observation data, tracking param-

eters and previous state estimates. In a decentralized framework where the set of

detecting nodes and the associated ACN vary in time with respect to the moving

source, it is not clear how the data can be communicated, routed and fused. Con-

ceptually, we first need to perform distributed data fusion in space to obtain source

location estimates, and then uses the location estimates and prior prediction estimates

to perform distributed data fusion in time to obtain tracking estimates as illustrated

in Fig. 5.1. In our investigation, we present a systematic framework for performing

distributed tracking in a large-scale sensor network. In particular, our approaches use

a general KF framework for state estimation that exploits the improved distributed

computations algorithms developed in Chap. 3 for performing both data fusion in

space and fusion in time locally at each participating node.

We first discuss two approaches to modeling and implementing distributed

tracking in large-scale sensor network in Sec. 5.1. We next present and discuss the

distributed tracking algorithm based on KF in Sec. 5.2. Then, we present tracking

simulation results and performance analysis in Sec. 5.3.

5.1 Sensor Fusion in Time Modeling

5.1.1 Tracking via Entire Sensor Network

As the acoustic source moves within the sensor network, at any time instant t there

is a set of active nodes or active contributors (e.g., nodes in the network that have

detected the source) and a set of non-active nodes or non-contributors (e.g., nodes

in the network that have not detected the source). All active contributors and non-
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contributors are connected together and their connection topology is described by

N ×N matrix Φ in(3.1), however, only the active contributors at time t are the ones

that distributively compute the location and prediction estimates at time t. The roles

of the non-contributors in distributed tracking can varied depends on their interac-

tions with the neighboring active contributors. For instance, they can participate in

routing, fusing of data from neighboring active contributors and/or both.

In this setup, distributed source localization and tracking can be performed via

the one-pass algorithm (described in Sec. 3.3). First, let Uac denotes the set of active

contributors, Unc denotes the set of non-contributors and Uen = Uac ∪ Unc denotes

the set of all nodes in the entire network with |Uen| = N . Next, let ai denotes the

“weight” of sensor i at a fixed time instant t defined by the following:

ai =





1 if i ∈ Uac at time t

0 if i ∈ Unc at time t .

(5.1)

Then, we can model the problem as

G(f(zac)) =
1

|Uac|
|Uac|∑
i=1

fi(zi) =

|Uen|∑
i=1

{
ai∑|Uen|

j=1 aj

}
fi(zi) (5.2)

(note that
∑|Uen|

j=1 aj = |Uac|), and view the entire network as if it is an “active” network

where each node in the network has “detected” the source and not just the subnet-

work of active contributors as considered previously. From (5.2), we can directly

apply the one-pass algorithm for distributed computations of weighted averages. We

remark that if RSS-weighted estimators such as as WCEN are employed for source

localization, the weights used in the one-pass algorithm are the compounded weights

i.e., α̃i = ai αi, ∀i.
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The key advantage to modeling in (5.2) is the ease of tracking implementation.

In this setup, each node is essentially “on”, active and communicates bi-directionally

with its neighbors without distinguishing whether the neighboring nodes as active

contributors and non-contributors. Since the network is essentially “fixed”, we can

consider network parameters (e.g., UD ρ) based on macroscopic information for the

entire network in addition to local network parameters (e.g., NUD ρij’s) based on

the varying active subnetworks. Furthermore, by considering one large network with

connected topology, we don’t have to be concerned if the subnetwork of active con-

tributors at each time instant has connected topology or not. The main disadvantage

to modeling in (5.2) is the additional (potentially inefficient) use of power and com-

munication resources that are incurred for utilizing the entire network. The total

resource consumed is proportional to N , and N can be much larger than M(t).

5.1.2 Tracking via Sequence of ACN’s

As discussed Sec. 3.1, we can view the large-scale sensor network of uniformly dis-

tributed sensors with network topology described by Φ̃(t) in (3.4a) in which available

connections for performing computations are among the set of nodes in I(t). The

size and number of active nodes in the ACN vary with time and are dependent on

the source’s trajectory and signal power via the RSS’s. The RSS at each node in the

AHSN is inversely proportional to a (nonlinear) function of range. As a result, nodes

that are outside of the ACN, referred to as nonactive nodes, have low RSS’s (low

quality data) and provide negligible contribution to the source location estimation.

However, the nonactive nodes in the vicinity of the ACN can receive broadcasted (es-

timated) source location information from the neighboring active nodes in the ACN.

As shown in Fig. 5.2, as the source moves (at reasonable speeds) from point-A to
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point-B at time t, some of active nodes in the ACN at time t−1 remain active in the

new ACN at time t. This is indicated by the intersecting region of the two successive

ACN’s. The nodes in the intersecting region can broadcast source location informa-

tion at time t− 1 to the other remaining active nodes in the ACN at time t. As the

result, all of the nodes in the ACN have sufficient prior and current information to

perform tracking individually at each node.

x

x

x

x

x

Non-detecting node

Detecting node at time t-1

Detecting node at time t

Detecting node at times t -1& t

x

x

ACN

at time t-1

B

ACN

at time t

A

Figure 5.2: A source moves from location A, where it was detected by nodes in ACN
at time t − 1, to location B, where it is detected by nodes in ACN at time t. The
intersecting region contains nodes that have detected the source at both locations
and times.

Alternatively, we can focus on the subnetwork, ACN, formed by the nodes in

I(t) described by network topology Ψ(t) in (3.5a) with the following assumptions: (i)
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at the outset, the N nodes in the entire network self-organize with the set of NUD

parameters ρij’s pre-computed for the entire network,1 and then (ii) at each time t,

the ρij’s are further refined for the ACN. The distributed tracking is performed over

a sequence of ACN’s, where KF is employed at all of the nodes in I(t). In subsequent

discussion, we use the ACN model characterized by {I(t), Ψ(t)}.

5.2 Distributed Tracking via KF

Our approach relies on obtaining Zn(t), a sequence of snapshot estimates of Psn(t), the

sequence of source locations, based on measurements collected by nodes in the sensor

network, and viewing the estimate Zn(t) at time t as a single (location) measurement

equation, i.e., for n = 1, 2

Zn(t) = Psn(t) + Rn(t) (5.3)

where the observation noise Rn(t) denotes the snapshot estimation error, assumed to

be a zero-mean white sequence, independent of An(t), and with power equal to the

field-averaged mean-square error of the estimator and denoted by R = σ2
R. We next

discuss the distributed KF filter-based algorithms that fuse temporal information over

a sequence of ACN’s to provide tracking estimates. The model that we employ for

developing tracking algorithms exploits the fact that, at any given time t, sensors in

the sensor field obtain measurements, based on which they can form distributed source

localization estimates of the source as demonstrated in Sec. 4.2. In particular, the

tracking algorithms we develop view the resulting source position estimates, Zn(t), nth

dimension (n = 1, 2) at time t, as observations in a single measurement equation. For

each n ∈ {1, 2}, we remark that the scalar source-location estimate error sequences

1The entire network can also self-organize with UD rules with parameter ρ.
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defined as

en(t) = Zn(t)− Psn(t) , (5.4)

is in general, correlated in time (t). To account for this temporal correlation, we

present a more expanded state-measurement model than the one described in (2.1)–

(5.3). We model en(t) (for n = 1, 2) as a pth order autoregressive (AR(p)) process.

It is assumed that the AR parameters of the process en(t), i.e., its order p, the

p× 1 vector ap =

[
ap(1) ap(2) · · · ap(p)

]T

, and the associated innovation process

power, σ2
U , are first estimated during a training mode.

Letting En(t) =

[
en(t) en(t− 1) · · · en(t− (p− 1))

]T

, the dynamics of the

state is now Xn(t) =

[
XT

sn(t) ET
n (t)

]T

for n = 1, 2, are described by the following

equation

Xn(t + 1) = FXn(t) + GBn(t), t = 0, 1, . . . (5.5a)

where F and G are now

F =




1 Ts 0T
p

0 %(Ts) 0T
p

0p 0p Ap




, G =




0 0

Ts 0

0p up




, (5.5b)

0k is k × 1-vector of 0’s, up = [1 0T
p−1]

T ,

Ap =




aT
p

I(p−1) 0p−1


 , (5.5c)

Ik is the k × k identity matrix, Bn(t) =

[
An(t) Un(t)

]T

, and where An(t) and the

snapshot-estimate error innovation process Un(t) are uncorrelated zero-mean white
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sequences, i.e., E
{
Bn(t) BT

n (τ)
}

= Qδ[t− τ ], and where Q = diag(σ2
A, σ2

U).

For each n ∈ {1, 2}, the associated (scalar) measurement equations are now

given by

Zn(t) = HXn(t) = Psn(t) + en(t) (5.6)

where H =

[
1 0 1 0T

p−1

]
. We remark that the case where the snapshot error

sequences en(t) can be accurately modeled as white (i.e., p = 0) is also captured by

the model (5.5)–(5.6) by setting p = 1, a1(1) = 0, and σ2
U = E {e2

n(t)} which is also

equivalent to the model described in (2.1)–(5.3) with σ2
U = σ2

R.

5.2.1 KF Tracking Model

We first consider the problem of tracking the location of the source with motion

dynamics described by (5.5) at a fictitious node that has available at time t all the

snapshot estimates of the source location up to time t, i.e., {Zn(τ)}τ≤t given by

(5.6). We assume that the parameters of the AR(p) process en(t) used in the model

(5.5) have been estimated via training. In particular, a sequence of autocorrelation

sequence estimates r̂e(i) for 0 ≤ i ≤ p is first obtained (based on a sufficiently large

set of training sample paths) and, subsequently, estimates of ap and σ2
U are obtained

by exploiting the normal equations and the energy matching property, respectively,

for AR modeling (see [40]). Given that we also assume independent motion in each

dimension, the 2-D source localization problem decouples into two independent 1-D

source localization problems [73]. For any t and s, we let

X̂n(t|s) = E {Xn(t)|{Zn(τ)}τ≤s} (5.7)
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denote the linear mean-square-error (LMSE) estimate of the state Xn(t) at time t

based on all observations up to time step s (i.e., {Zn(τ)}τ≤s) and

Σ̂n(t|s) = E
{
‖Xn(t)− X̂n(t|s)‖2|Zn(τ)}τ≤s

}
(5.8)

denote the covariance matrix of the associated estimate. Evidently, the (1, 1) entry

of Σ̂n(t|s) provides the mean-square-error (MSE) of the associated position estimate.

The Kalman filter provides a recursive algorithm for obtaining the LMSE

estimate X̂n(t|t) of the state Xn(t) based on all snapshot estimates up to time t, in

terms of X̂n(t− 1|t− 1) and the new observation Zn(t). The KF algorithm takes the

following form [73]:

X̂n(t|t− 1) = F X̂n(t− 1| t− 1) (5.9a)

Σ̂n(t|t− 1) = F Σ̂n(t− 1| t− 1)FT + GQGT (5.9b)

X̂n(t|t) = X̂n(t|t− 1) + Kn(t)[Zn(t)−HX̂n(t|t− 1)] (5.9c)

Σ̂n(t|t) = Σ̂n(t|t− 1)−Kn(t)HΣ̂n(t|t− 1) (5.9d)

Kn(t) = Σ̂n(t|t− 1)HT [HΣ̂n(t|t− 1)HT ]−1 . (5.9e)

The algorithm is initialized with

X̂n(0|0) =




Zn(0)

0

0p




, (5.10a)

Σ̂n(0|0) =




r̂(0) 0 −r̂T
p

0 σ2
v 0T

p

−r̂p 0p R̂p




, (5.10b)
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where r̂p = [r̂e(0) r̂e(1) . . . r̂e(p− 1)]T , and R̂p is the p× p Toeplitz matrix of r̂p. We

remark that our model formulation is an extended KF that involve the AR estimation

error e(t). However, for convenience we refer to the resulting tracking model as KF.

The KF algorithm (5.9) serves as a basis for developing distributed tracking

algorithms, according to which the tth step of (5.9) is performed at each node within

the ACN, {I(t), Ψ(t)}. Observation of (5.9) reveals that for any node in I(t) to be

able to perform the tth step of the algorithm and obtain X̂n(t|t), the node must have

available: (i) the gain Kn(t), (ii) the snapshot estimate Zn(t), and (iii) the previous

tracking estimate X̂n(t− 1|t− 1).

Distributed Computation of Kn(t)

We assume at the outset that the KF initialization parameters in (5.10), i.e., Σ̂n(0|0),

are available at all of the sensor nodes in the network. Then, as the gain sequence

Kn(t) can be pre-computed locally at each node, propagation of the index t as the

source moves through the network suffices for allowing any node in I(t) to compute

Kn(t).

Distributed Computation of Zn(t)

As discussed in Sec. 4.2, Zn(t) is obtained via distributed source localization algo-

rithms over the ACN at time t such as the ones based on centroid and LS. The choice

of centroid-based versus LS-based location estimates for Zn(t) can depend on several

factors including accuracy, computational complexity and the update rate, fs = 1/Ts.
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Distributed Computation of X̂n(t− 1|t− 1).

We next focus on how X̂n(t− 1|t− 1) can be approximated via distributed computa-

tions over the computation network {I(t− 1), Ψ(t− 1)}. X̂n(t− 1|t− 1) is directly

available only to the nodes in I(t) that were also part of the active network at time

t − 1, i.e., only to the nodes in I(t) ∩ I(t − 1) as illustrated in Fig. 5.2. Given that

the “measurements” employed at time t− 1 are approximations to Zn(t− 1), each of

the resulting X̂n(t − 1|t − 1) via (5.9) at the nodes in I(t) ∩ I(t − 1) are in general

distinct approximations. For this reason, a distributed computation of average algo-

rithm (such as the ones described in Sec. 3.2) is employed on the network topology

induced by the restriction of Φ(t) on I(t) ∩ I(t − 1), to provide to all the nodes in

I(t) ∩ I(t− 1) an approximation to the average of the available X̂n(t− 1|t− 1) esti-

mates. In parallel, a broadcasting algorithm is employed to provide X̂n(t − 1|t − 1)

estimates to the remaining nodes in I(t), according to which at each cycle, each

node in the subset broadcasts its X̂n(t − 1|t − 1) estimate (if one is available) to its

neighbors, and iteratively computes a new estimate as the average of the available

estimates.

Due to the averaging of the available X̂n(t− 1|t− 1) estimates, the algorithm

(5.9) with Q replaced by Q′ provides a conservative KF algorithm, in the sense that

the true covariance matrix of the resulting X̂n(t − 1|t − 1) at each node in I(t) is

upper-bounded by Σ̂n(t − 1|t − 1) in (5.9), i.e., the difference of the two covariance

matrices is negative semi-definite.
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5.3 Distributed Tracking Simulations & Analysis

In the following simulations, we employ as our figure of merit the sample-mean MSE

(in dB) performance of the associated localization and tracking algorithms based

on MC = 1000 independent realizations. In each realization, a network is first

generated with N = 400 nodes uniformly distributed in a circle of radius R = 200 m

(D = 0.0032 node/m2). A network topology is then generated according to (3.2)

with m = 2 and do = 55 m. At the outset (i.e., prior to tracking) a set of base

ρij’s are computed for the entire network by applying the LN algorithm of Sec. 3.2

for kin = 10 iterations. Next, a source-motion sample path is generated by placing

the source at the origin of the network and using model (5.5) to generate a source

trajectory. In the simulation examples below, we employ a deterministic signal model

with SNR = σ2
s/σ

2
η = 55.6 dB, and σ2

T = 20 dB. This threshold yields ACN’s with

(detecting) nodes within approximately a 60 m radius from the source location. We

refer to the “detection” radius as Rdet. Prior to running the distributed algorithm

(3.31) on any given set of snapshot data, the base ρij’s (computed at the outset on

the whole network) are refined for kre = 5 iterations by applying the LN algorithm on

the current ACN. The distributed algorithm (3.31) is then applied with c = 0.6 for

ko = 20 iterations to approximate Zn(t) in (5.6) at each node in the ACN. Finally,

e(t) in (5.5) is modeled throughout as an AR(3) process.

Fig. 5.3 depicts the simulated MSE performance of centralized and decentral-

ized tracking algorithms in the case that σV = 2 m/s, σA = 0.1 m/s2, and Ts = 1

s. As the figure suggests, the distributed snapshot source localization and tracking

algorithms provide effectively the same MSE performance as their centralized counter-

parts, using only a small number of iterations for initialization (i.e., kin + kre = 15)

and distributed computation (i.e., ko = 20). Furthermore, distributed tracking yields
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Figure 5.3: MSE comparison of centralized and decentralized localization and tracking
algorithms for σv = 2 m/s, σa = 0.1 m/s2, and Ts = 1 s.

a gain of approximately 4 dB with respect to the associated distributed snapshot

source localization algorithm. Finally, we note that the tracking algorithm MSE per-

formance is in close agreement with the MSE performance predicted by the (1, 1)

entry (solid line) of the LHS of (5.9d).

Fig. 5.4 shows the MSE performance of the proposed algorithms as a function

of the snapshot rate, when σv = 2 m/s and σa = 0.1 m/s2. In particular, the succes-

sively lower curves show the simulated MSE of the distributed tracking algorithms for

Ts = 0.5, 1, and 2 s, respectively. As the figure suggests, in this example, increasing

the snapshot rate by a factor of 2 reduces the MSE by approx. 1.5 dB.
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Figure 5.4: MSE performance of distributed tracking algorithms for various values of
Ts, for σv = 2 m/s and σa = 0.1 m/s2.

Fig. 5.5 shows the MSE performance of the distributed tracking algorithms

as the source speed and acceleration parameters are varied, with snapshots taken at

rate of 1 measurement/s per sensor. As the figure reveals, increasing σa by a factor of

2 while keeping σv unchanged results in increasing the steady-state MSE by 0.5 dB,

while increasing σv by a factor of 2 while keeping σa unchanged does not appreciably

affect the steady-state MSE performance. We remark that by increasing σa, more

randomness is introduced in the state-space model (5.5) and therefore, more error is

incurred.

5.4 Sensor Fusion in Time Summary

In summary, we developed a systematic and viable decentralized framework based

on Kalman filtering for performing distributed space-time processing. We presented
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Figure 5.5: MSE performance of distributed tracking algorithms as σv and σa are
varied, while keeping Ts = 1 s.

distributed tracking methods whereby each participating node in the detecting sub-

network locally obtains the gain, snapshot estimate, and previous tracking estimate

information and performs local KF tracking. We found via simulations that dis-

tributed tracking (i) yields consistent processing gains with respect to the associated

distributed (snapshot) source localization algorithm, and (ii) is in close agreement

with the centralized counterpart and the associated KF predicted MSE performance.

We also found that, the distributed tracking performance varies and potential scales

with snapshot update rate and the source dynamics such as velocity.
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Chapter 6

Contributions and Future Directions

The final chapter summarizes the contributions of this dissertation and highlights

some of the areas for further research in distributed signal processing for sensor net-

works.

6.1 Contributions

Research and development interests in sensor networks for many civilian and military

applications have proliferated in recent years due to a confluence of a multitude of

technologies/disciplines such as MEMS sensor designs, software and hardware, signal

and information processing, communications and networks. As a result, the problems

associated with the design and implementation of sensor networks are vast. The

promising idea of “instrumenting the world” [2] with very large-scale wireless sensor

networks with thousands nodes to provide pervasive monitoring and surveillance is a

difficult challenge due to (battery) power and communication bandwidth constraints.

In our investigation, we have chosen to focus on developing potentially more realizable

approaches involving detection, source localization and tracking via ad-hoc networks

of (low-power) sensors. By focusing on more simplified settings, we were able to
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identify interesting and tractable problems and develop innovative solutions that are

adaptable to changing network conditions and can be easily scaled to larger sensor

networks.

In this dissertation, we developed a decentralized algorithmic framework for

systematic tracking of moving acoustic sources in large-scale ad-hoc networks. In

the process, we identified the key challenges and offered a systematic approach to

distributively solving a class of source localization and tracking problems. The algo-

rithms we developed performed iterative, space-time processing with sensor fusion in

space first follow by sensor fusion in time. Distributed fusion in space is performed

by fusing current high-quality sensed data from the subnetwork of detecting sensor

nodes to produce the current source location estimate. The location estimates are

computed over a sequences of subnetworks and subsequently fused in time to produce

tracking estimates. We developed fusion in space and fusion in time algorithms that

are amenable to distributed implementation over the underlying network topology.

The algorithms we developed are based on the distributed computation of averages

algorithms and are locally-constructed at each participating sensor node exploiting

only locally available observations and local available network connectivity informa-

tion. In addition, these algorithms are also resource efficient, scalable, fault-tolerant

and can readily adapt to local changes in network topologies.

In the context of distributed algorithms implemented over the underlying

AHSN topologies, we developed improved versions of the distributed algorithms of

computation of averages reported in [17, 18] and demonstrated how two classes of

source localization algorithms can be mapped into the forms of (weighted) averages

for parallel distributed implementations. Specifically, the improvements in the dis-

tributed computation algorithms are: (i) no macroscopic information of the overall
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global network (e.g., ρij’s not ρ), (ii) more robust to changes in network topologies,

(iii) faster convergence rates, and (iv) more amenable to distributed space-time fusion

implementations. We also demonstrated the feasibility of distributed implementations

as these distributed algorithms, e.g., only requiring approximately 5–20 iterations to

converge to within 1 dB MSE with respect to their centralized counterparts.

In the context of sensor fusion in space, we focused our investigation in the

design and development of distributed source localization algorithms that trade-off

performance and complexity. Specifically, we developed centroid-based and range-

difference LS-based estimators that can be implemented distributively in AHSN and

yield good location estimates (especially LS-based) under a variety of sensor measure-

ment, sensor network density and topological conditions. We also developed algorith-

mic and design strategies that keep power consumption and communication within

the AHSN to acceptable levels without significantly sacrificing localization accuracy.

In the context of space-time fusion and tracking, we developed a decentralized

framework whereby tracking is performed via Kalman filtering at all of the partici-

pating nodes in each of the successive computational subnetworks (e.g., ACN’s). We

developed distributed KF algorithms that employed at any give node exploit the avail-

ability of snapshot data (via source distributed source localization algorithms) and

previous state estimates both of which are computed/fused via locally-constructed

algorithms over ad-hoc networks.

Finally, our investigation into the interdependence of sensor network, signal

and localization algorithm parameters on estimation performance (via simulations)

yielded design rules for predicting the MSE performance of LS-based estimators as

the networks scale in node density and coverage area.
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6.2 Future Directions

There are a number of interesting and perhaps valuable directions for further research

that arise as extensions of this dissertation. In the following, we summarize a repre-

sentative collections of important directions for future work, including some the issues

that have been alluded to in the earlier chapters.

While our research focused on the distributed source localization and tracking

of a single source in a decentralized sensor network setting, important extensions can

be pursued in order to generalize the research to an even broader range of sensor

network conditions and scenarios. One important and challenging extension is local-

ization and tracking of multiple moving sources in AHSN. In this extension, we can

consider several possible scenarios: (i) multiple sources are well-separated spatially

with non-overlapping detection regions in time and space, (ii) multiple sources are rel-

atively close together and moving in a convoy, and (iii) multiple sources moving in dif-

ferent directions and are not well-separated with overlapping detection regions. In the

first scenario, our current formulation can be easily extended with minimal additional

overhead information and calculations since only regionalized (i.e., locally available)

information is exploited. In the second scenario, we can consider the problem that

arises in networked sensors surveillance applications of determining the number of

sources in the convoy and the overall (convoy) direction. Again, our current formu-

lation can be extended to address this problem with additional detection/estimation

information obtained by the sensor nodes that are in close proximity to the convoy.

For example, the close proximity nodes can share closet point of approach (CPA)

data use to determine the number of sources with more distant nodes [5]. The third

scenario can very challenging as it may require more sophisticated signal modeling

(i.e., in addition to just RSS), complex sensor management, and/or signal processing
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strategies for fully-decentralized tracking.

Another interesting research and very challenging direction is distributed sen-

sor and data fusion of disparate information (i.e., RSS, DOA, TOA, range, detection-

only, and others) from possibly disparate sensor nodes (e.g., acoustic, seismic, passive

infrared (IR), electro-optic (EO) and others) for source localization and tracking. In

this context, we can consider a multitude of combinations of possible scenarios and

useful applications.1 One specific and more realizable extension is to consider a

network “low-end” sensor nodes with coarse information estimates (e.g., RSS’s) in-

termixed with “high-end” sensor nodes with higher resolution information estimates

(e.g., TOA’s and DOA’s) [75]. Even in this setting, designing distributed processing

algorithms for a fully-decentralized tracking architecture can be challenging.

As we have discussed earlier, the problems associated with the design and

implementation of sensor networks are vast due to the confluence of technological

factors. Much of the current research focus on designing efficient communication

protocols and/or signal processing algorithms for wireless sensor networks with band-

width and power constraints. However, the research contributions we have made in

the area of distributed signal processing for sensor networks are valuable in that oth-

ers can build on further research for other related and non-related sensor network

areas.

1Distributed sensor and information fusion of a network of heterogenous and disparate sensors is
an important area of research and is being consider by the US Army Research Laboratory and the
UK Ministry of Defense under the joint International Technology Alliance (ITA) program [74].
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Appendix A

A.1 State-Measurement Models

We consider the following time-invariant state-space model for tracking

X(t + 1) = FX(t) + GU(t), t = 0, 1, . . . (A.1a)

Z(t + 1) = HX(t) + N(t), t = 0, 1, . . . (A.1b)

where X(t) is the LX-dimensional state vector, U(t) is the LU -dimensional input pro-

cess vector “acting” on X(t), Y (t) and N(t) are LZ-dimensional (LZ can be different

from LX and LU) measurement process and noise process vectors respectively. Hence

the matrices F, G and H have dimensions of LX×LX , LX×LU and LZ×LX respec-

tively. Moreover, the processes U(t) and N(t) are zero-mean and white with known

covariances Q = σ2
U IU×U = (T 2

s σ2
A) IU×U and R = σ2

N IZ×Z respectively. The initial

condition X0 has zero-mean and covariance Σ.

A.1.1 1-D Motion Model

We assume that the two-dimensional (2-D) motion parameters and the measurements

for the acoustic source traveling within the sensor networks in x-y coordinates are
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independent from one dimension to another and we derive motion model for the

acoustic source based on a one-dimensional (1-D) motion model. We assume the 1-D

source motion is subject to a random acceleration A(t) for t ≥ 0, where the position,

P (t) and the velocity, V (t) of the source at each time t satisfy V (t) = ∂P (t)/∂t and

A(t) = ∂V (t)/∂t. This is a second order model sometimes refer to as a white noise

acceleration or constant velocity model [24]. Assuming we observe the motion of the

source every Ts seconds where Ts is small, we can describe the 1-D motion from one

observation time to the next via Taylor series approximation as

P(t+1)Ts
∼= PtTs + Ts VtTs (A.2a)

V(t+1)Ts
∼= %(Ts) VtTs + Ts AtTs (A.2b)

where 0 < %(Ts) ≤ 1. From (A.2), only two states, namely position and velocity,

are needed to describe the 1-D source motion. If we set X(t) =
[
X1(t) X2(t)

]T

=
[
P (t) V (t)

]T

and U(t) = A(t)Ts, the motion can be described approximately by the

state and measurement equations respectively as

X(t + 1) = FX(t) + GU(t), t = 0, 1, . . . (A.3a)

Z(t + 1) = HX(t) + N(t), t = 0, 1, . . . (A.3b)

where F is the 2 × 2 matrix, G is the 2 × 1 matrix and H is the 1 × 2 matrix are

defined as

F =




1 Ts

0 %(Ts)


 , G =




0

1


 , H =

[
1 0

]
(A.4)

respectively [24,73,76].
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A.1.2 2-D Motion Model

Given that the acceleration components and measurement components are assumed

to be independent from one another, we can easily extend the 1-D motion model

described in (A.3) and (A.4) into a 2-D motion model. Tracking in 2-D would require

a four-state, X(t) =
[
Px(t) Vx(t) Py(t) Vy(t)

]T

with U(t) =
[
Ax(t)Ts Ay(t)Ts

]T

,

two-measurement model with the corresponding 4× 4 matrix F, 4× 2 matrix G and

2× 4 matrix H described in (A.3) by




Px(t + 1)

Vx(t + 1)

Py(t + 1)

Vy(t + 1)




=




1 Ts 0 0

0 %(Ts) 0 0

0 0 1 Ts

0 0 0 %(Ts)







Px(t)

Vx(t)

Py(t)

Vy(t)




+




0 0

Ts 0

0 0

0 Ts







Ax(t)

Ay(t)




(A.5a)




Zx(t)

Zy(t)


 =




1 0 0 0

0 0 1 0







Px(t)

Vx(t)

Py(t)

Vy(t)




+




Nx(t)

Ny(t)


 . (A.5b)

Similarly, we can extend it further to 3-D motion [24,73].

A.1.3 The Parameter %(Ts)

The parameter %(Ts) plays a key role in the tracking performance. We first show that

for realistic situation %(Ts) is strictly less than 1 and then examine %(Ts) in detailed

as to how it affects convergence and performance.

Suppose %(Ts) in (A.4) is unity, so that (A.3a) implies

V (t + 1) = V (t) + U(t) . (A.6)
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Then all the change in V (t) from t to t + 1 is associated with the noise (acceleration)

component U(t) where E{U(t)} = 0 and E{U2(t)} = σ2
U . If we set V (0) = 0, then

after tn updates, we get E{V 2(tn)} = tnσ
2
U , which implies that the mean square

speed is unbounded. Clearly, this is unrealistic in any physical situation. It would

be reasonable to have E{V 2(tn)} = σ2
Vmax

where σ2
Vmax

is a constant independent of t

but dependent on the speed capabilities of the source. In this case, we can solve for

%(Ts) with 0 < %(Ts) < 1 based on σ2
Vmax

and σ2
U = T 2

s σ2
A via

E{V 2(t)} = %(Ts)
2E{V 2(t)}+ E{U2(t)} (A.7a)

σ2
Vmax

= %(Ts)
2σ2

Vmax
+ T 2

s σ2
A , (A.7b)

which gives

%(Ts) =

√
σ2

Vmax
− T 2

s σ2
A

σ2
Vmax

. (A.8)

From (A.8), we can see clearly that %(Ts) is a function of the update time or rate,

Ts [73]. Suppose for a nominal update rate To we have the corresponding %(Ts)-value

%(Ts)o. Then for any value T , we have

%(T ) = %T/To
o . (A.9)

A.2 CRB for Source Localization

The mean and the covariance for the stochastic signal zk, k = 1, · · · , L defined in

(2.4) with β = 2 in (2.10), are

µ(θ) = E{zk} = E{Sk}h(ps, β) + E{ηk} (A.10a)
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C(θ) = E{zk zH
k } = E{Sk S∗k} [h(ps, β)hH(ps, β)] + E{ηk ηH

k }

= σ2
s




1
r2
1

1
r1r2

· · · 1
r1rM

1
r1r2

1
r2
2

· · · 1
r2rM

...
...

. . .
...

1
rMr1

1
rMr2

· · · 1
r2
M




+ σ2
nI. (A.10b)

For stochastic signal model, the calculation of the CRB (in Cartesian coordinates)

via FIM in (2.16) involves only C(θ) and grammian ∂C(θ)
∂θ

, since µ(θ) = 0. From

(A.10), it’s straightforward to obtain (2.17). By taking partial derivatives of (2.17),

the grammian terms in (2.18) are as follows:

[∂C(θ)]p,q

∂θ1

= σ2
s

∂

∂xs

[
[((xp − xs)

2 + (yp − ys)
2)((xq − xs)

2 + (yq − ys)
2)]

]− 1
2

= −σ2
s

2
(r2

p r2
q)
− 3

2 [−2(xp − xs)r
2
q − 2(xq − xs)r

2
p]

=
σ2

s [(xp − xs)r
2
q + (xq − xs)r

2
p]

(rp rq)3
, (A.11a)

[∂C(θ)]p,q

∂θ2

= σ2
s

∂

∂ys

[
[((yp − ys)

2 + (yp − ys)
2)((yq − ys)

2 + (yq − ys)
2)]

]− 1
2

= −σ2
s

2
(r2

p r2
q)
− 3

2 [−2(yp − ys)r
2
q − 2(yq − ys)r

2
p]

=
σ2

s [(yp − ys)r
2
q + (yq − ys)r

2
p]

(rp rq)3
, (A.11b)

[∂C(θ)]p,q

∂θ3

=
∂

∂σ2
s

[
σ2

s

(rp rq)
] =

1

(rp rq)
, (A.11c)

where the distance from sensor i to the source is ri =
√

(xi − xs)2 + (yi − ys)2.

The calculation of the CRB (in polar coordinates) in (2.19) for range esti-

mation involves the FIM in (2.16) and the Jacobian matrix. By taking the partial
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derivative of θ̃ = g(θ) = [(rs, φs), σ
2
s ], where rs =

√
x2

s + y2
s and φs = arctan( ys

xs
),

with respect to [xs, ys, σ
2
s ], the Jacobian terms in (2.20) are as follows:

∂g(θ)

∂θ
=




∂[(x2
s+y2

s)−
1
2 ]

∂xs

∂[(x2
s+y2

s)−
1
2 ]

∂ys

[∂(x2
s+y2

s)−
1
2 ]

∂(σ2
s)

∂[arctan ( ys
xs

)]

∂xs

∂[arctan ( ys
xs

)]

∂ys

∂[arctan ( ys
xs

)]

∂(σ2
s)

∂(σ2
s)

∂xs

∂(σ2
s)

∂ys

∂(σ2
s)

∂(σ2
s)




=




xs

(x2
s+y2

s)−
1
2

ys

(x2
s+y2

s)−
1
2

0

− ys

(x2
s+y2

s)−
1
2

xs

(x2
s+y2

s)−
1
2

0

0 0 1




=




xs

rs

ys

rs
0

−ys

rs

xs

rs
0

0 0 1




. (A.12)
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Appendix B

B.1 Distributed Computations

.

B.1.1 Mode Shaping Filters

A simple yet effective class of second order mode-shaping filters that yield asymptotic

converging LTI rules is given by

H(z) =
1 + c

1 + cz−2
; 0 < 1. (B.1)

For c = 1, H(z) = 1 is the no-filtering case. For c > 0, the filter H(z) induced the

reshaping the eigenvalues of W , i.e., {λi}N
i=1, and their magnitudes. This is illustrated

via a simulation plot in Fig. B.1 of the spectral radius resulting from filter H(z) given

by

β(λ; c) =





√
c if |λ| ≤ |λo|

|λ|(1+c)+
√

λ2(1+c)2−4c

2
if |λo| ≤ |λo| ≤ 1

, (B.2)

where λo = 2
√

c/(c + 1). Fig. B.1 shows that these mode shaping filters increase the

spectral radius of λi’s for which |λ| ≤ √
c, at the benefit decreasing the of the large
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Figure B.1: Eigenvalue shaping by filter H(z) for c =
[
0, 0.1, 0.3, 0.6

]
.

magnitudes λi’s for which |λ| > √
c [17].

Fig. B.2 shows the eigenvalue magnitude distribution of for the cases of c =
[
0, 0.3, 0.6

]
applied to a network of N = 200 nodes for the case of UD parameter ρ∞.

The histograms on the right show the enlarged portion of the associated histograms

for the magnitudes around 1. The figure shows that applying H(z) at each node

reduces the large-magnitude modes at the expense of the low-magnitude modes in

the network system [17].
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Figure B.2: Eigenvalue-magnitude histogram for a network of N = 200 nodes for
filter parameters c =

[
0, 0.3, 0.6

]
respectively. The histograms on the right show

enlarged portions of the associated histograms on the left.
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Appendix C

C.1 Fusion on Space

In this analysis of LS estimation, we assume a deterministic signal model and L = 1.

Now lets consider zi = σ̂−2
RSSi

=
r2
i

σ2
s

+ εi in (4.11) with εi ∼ N (0, c r6
i ) for some

constant c. Using the Mth sensor as the reference and ε̃i = εi − εM , then

z̃i = zi − zM =
1

σ2
s

(r2
i − r2

M) + ε̃i

=
1

σ2
s

[[
(x2

i + y2
i ) + (x2

M + y2
M)

]
+ 2

[
(xM − xi) (yM − yi)

]



xs

ys




]
+ ε̃i

=
1

σ2
s

[
bi −wT

i




xs

ys




]
+ ε̃i , (C.1)

where bi =
[
(x2

i + y2
i ) + (x2

M + y2
M)

]
and w = −2

[
(xM − xi) (yM − yi)

]T

. Let

z̃ = [z̃1 · · · z̃M−1]
T ,w = [w1 · · · wM−1]

T ,b = [b1 · · · bM−1]
T and ε̃ = [ε̃1 · · · ε̃M−1]

T =
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ε− εM 1 with ε̃ ∼ N (0, Λε̃), we have the following vector equation:

1

σ2
s

z̃ + w




xs

ys


− b = ε̃

[
w z̃

]



xs

ys

1
σ2

s



− b = ε̃ (C.2)

We then have Ax − b = ε̃ where A = [w z̃] and x = [xs ys
1
σ2

s
]T . Assuming that

Λε̃ is positive definite and Λ−1
ε̃ = V Λ−1V T = (V Λ−

1
2 ) (Λ−

1
2 V T ), we use a whitening

approach to find an explicit form for Λε̃, i.e.,

Λ−
1
2 V T

[
Ax− b

]
= Λ−

1
2 V T ε̃ ∼ N (0, I) (C.3)

Let B = Λ−
1
2 V T A, solving for x using least-squares, we have

BT Bx = Λ−
1
2 V T b

x = (BT B)−1 BT Λ−
1
2 V T b

x = (AT Λ−1
ε̃ A)−1 AT Λ−1

ε̃ b . (C.4)

Since ε̃ = ε− εM 1, Λε̃ = Λε + ΛεM 11T . So the MSE-weighted matrix W is defined

as

W = Λ−1
ε̃ = c

[
diag(r6

1, r6
2, · · · , r6

M−1) + r6
M 11T

]−1

. (C.5)

Using the matrix inversion lemma, we can solve for W explicitly.
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C.1.1 MSE trends in range-squared estimates

In this appendix we examine the dependence of σ2
εi

on ri as ri → 0 and ri → ∞, in

the case that σ2
T > σ2

η. For notational simplicity we drop the dependence of σ̂−2
RSSi

and ri on i, and consider without loss of generality the case σs = 1, ση = 1, and

L = 1. Assuming the generic node of interest is a detecting node, (2.13) and (2.14)

specialize to

y = r−1 + v, (C.6)

σ̂2
RSS = y2 − 1 (C.7)

respectively. We also let v denote a random variable whose pdf equals the conditional

pdf of η conditioned on the event that the node is a detecting node. Using (C.6),

(C.7) and (4.11) and the fact that the node is a detecting node if σ̂2
RSS > σ2

T , we

obtain the following expression for the pdf of v

pv(v; r) =





1√
2π B(r,σ2

T )
e−v2/2 if v ∈ A(r, σ2

T )

0 otherwise

, (C.8)

and where

A(r, σ2
T ) = (−∞,−

√
1 + σ2

T−r−1)
⋃

(
√

1 + σ2
T−r−1,∞)

and

B(r, σ2
T ) = Q

(√
1 + σ2

T − r−1

)
+Q

(√
1 + σ2

T + r−1

)
.

First we consider the case r →∞. Via the triangle inequality we have

r4−E
{

σ̂−2
2

RSS

}
≤ σ2

ε ≤ r4+E
{̂
σ−2

2

RSS

}
. (C.9)
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Using (C.6)–(C.8) and (4.11), and taking the limit r →∞ yields

lim
r→∞

E
{̂
σ−2

2

RSS

}
=

√
2√

πB(∞, σ2
T )

∫ ∞
√

1+σ2
T

e−v2/2

(v2 − 1)2dv

which, for any fixed σ2
T > 1, is a positive finite constant independent of r. The above

limit together with (C.9) implies that σ2
ε ∝ r4 for large r.

The case of practical interest, however, corresponds to σ2
s À σ2

η, and σ2
T À σ2

η.

In this case the values of r with non-negligible probability of detection are relatively

small. We have

σ2
ε = E

{(̂
σ−2

RSS−r2
)2

}

= r6E

{(
2v + r(v2 − 1)

1 + 2vr + r2(v2 − 1)

)2
}

Thus,

lim
r→0

σ2
ε

r6
= 4E

{
v2; r = 0

}
= 4E

{
η2

}
= 4

which verifies the validity of (4.12) for small enough r and is in agreement with the

simulations presented in Fig. 4.1.

C.1.2 Estimate of the Weight Matrix

For ease of notation, we drop the dependence on i in (4.3) so g = σRSS + ω with ω ∼
N (0, σ2

ω). Recall that the nth moment of g, defined as ln , E {gn}, for n = [2, 4, 6],

are

l2 = σ2
RSS + σ2

ω , (C.10a)

l4 = 4 + 6σ2
RSSs

2 + 3σ4
RSS , (C.10b)
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l6 = σ6
RSS + 15σ2

ωσ4
RSS + 45σ4

ωσ2
RSS + 15σ6

ω (C.10c)

The goal is to find the unbiased estimator of σ6
RSS designated as σ̂6

RSS i.e., E{σ̂6
RSS} =

σ6
RSS. So

σ6
RSS = α6 l6 + α4 l4 + α2 l2 + α0

= α6 σ6
RSS + (15 α6 σ2

ω + α4)σ
4
RSS + (45 α6 σ4

ω + 6 α4 σ2
ω + α2)σ

2
RSS

+ (15 α6 σ6
ω + 3 α4 σ4

ω + α2 σ2
ω + α0) (C.11)

Collecting the terms, we have α6 = 1, α4 = −15 σ2
ω, α2 = 45 σ4

ω, α0 = −15 σ6
ω, which

yields

σ̂6
RSS = g6 − 15 σ2

ω g4 + 45 σ4
ω g2 − 15 σ6

ω. (C.12)

C.2 Modified Distributed WCEN

The MSE performance of dWCEN as formulated in (4.19) can degrade significantly

if an absolute (global) reference coordinate system is used instead of a local reference

coordinate system. To alleviate this problem, we can use one of the detecting sensors

in the AHSN (e.g., the Mth one) as the (global) reference sensor (i.e., using a relative

coordinate system). Now using the Mth sensor as the reference and the fact that the

normalized weights sum to 1, i.e.,

1

(M − 1)

(M−1)∑
i=1

σ̂2
iRSS

1
(M−1)

∑(M−1)
j=1 σ̂2

jRSS

= 1 (C.13)
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we can reformulate (4.19) as

p̂rwc =

[
1

(M − 1)

(M−1)∑
i=1

{
σ̂2

iRSS
(xi − xM)

1
(M−1)

∑(M−1)
j=1 σ̂2

jRSS

+ xM

}
,

1

(M − 1)

(M−1)∑
i=1

{
σ̂2

iRSS
(yi − yM)

1
(M−1)

∑(M−1)
j=1 σ̂2

jRSS

+ yM

}]
. (C.14)

Then, the distributed implementation of p̂rwc in (C.14) follows the same two parallel

cascade-distributed computations for (C.14) described in Sec. 4.2.1. In our AHSN
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Figure C.1: MSE vs. k2 for dWCEN and dWCENr for k1 = 5 and 50 for a source

located at ps =
[
500 500

]T
.

simulations, we use a coordinate system in which we assume the source is located at
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the origin, i.e., ps = [0, 0]. To illustrate the performance difference for distributed

implementation of dWCEN in (4.19) versus implementation of dWCEN in (C.14),

referred to as dWCENr, we perform Monte Carlo simulations where the source is

located away from the origin, say for example, ps =
[
500 500

]T
. Fig. C.1 shows the

MSE versus k2 for dWCEN and dWCENr for k1 = 5 and 50 iterations and Fig. C.1

reveals several interesting differences between dWCEN and dWCENr:

1. The additional MSE incurred can be significant, especially at low k1 values. For

example, for k1 = 5 and k2 = 75 the performance gap is as much as 28.4 dB.

2. The dWCENr estimator converges quickly to the weighted centroid estimator

even at small k1 values.

3. The dWCENr estimator with k1 = 5 actually performs slightly better than both

the dWCENr estimator with k1 = 50 and the WCEN estimator for k2 > 40.

This is due to the fact we are comparing bias estimators.
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Appendix D

D.1 Kalman Filtering Algorithm

We start with the time-invariant state-space model in (A.3). In its simplest form, the

KF algorithm provides a sequential implementation for obtaining X̂(t|t), the estimate

of X(t) given all observations up to and including time t, for arbitrary t ≤ 0. In the

KF algorithm that follows, we denote the error covariance of X(t|s) (the linear least-

squares (LLS) estimation error of the LLS estimate of X(t) given all observations up

to and including time s) by Σ(t|s). The steps to the algorithms are:

(1) Initialization: Initialize the prediction and its associated error variance accord-

ing to

X̂(0| − 1) = 0 (D.1a)

Σ(0| − 1) = Σ (D.1b)

(2) Filtering : Compute the Kalman gain matrix, K,

K(t) = Σ(t|t− 1)HT (HΣ(t|t− 1)HT + R)−1, t = 0, 1, . . . (D.2)

and generate the filtered (updated) estimate and its associated error covariance
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X̂(t|t) = X̂(t|t− 1) + K(t) (Y (t)− F X̂(t|t− 1)), t = 0, 1, . . . (D.3a)

Σ(t|t) = Σ(t|t− 1)−K(t)HΣ(t|t− 1), t = 0, 1, . . . (D.3b)

(3) Prediction: Generate the prediction estimate and its associated error covariance

X̂(t + 1|t) = F X̂(t|t), t = 0, 1, . . . (D.4a)

Σ(t + 1|t) = FΣ(t|t)FT + GQGT , t = 0, 1, . . . (D.4b)

(4) Incrementing : Increment t and go to step 2 and repeat.

Note that by substituting the gain matrix in (D.2) into (D.3b) and then substitut-

ing the updated covariance matrix into (D.4b), we obtain a recursion for predicted

covariance matrix

Σ(t + 1|t) =F
{
Σ(t|t− 1)−Σ(t|t− 1)HT

[
HΣ(t|t− 1)H + R

]−1

HΣ(t|t− 1)
}

FT + GQGT , t = 0, 1, . . . (D.5)

This is called the (discrete-time) Riccati equation.

D.2 KF Tracking Model at the ith Sensor

With the state-measurement model in Sec. 2.1.1 and KF algorithm in Sec. D.1, we

are ready to define a KF tracking model at each sensor in the AHSN. We assume a

constant velocity model where the accelerations are iid from update to update and

are Gaussian. We also assume that the acceleration in the x -direction and y-direction

are independent from each other. Although the source’s motion is 2-D, it is simpler
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to discuss the tracking problem in 1-D and tracking in 2-D can be easily extended

from 1-D tracking as shown in Sec. A.1.2. The assumptions above and time-invariant

state-measurement model lead to the tracker equations at sensor i




P̂i(t + 1|t)
V̂i(t + 1|t)


 =




P̂i(t|t) + TsV̂i(t|t)
%V̂i(t|t)


 (D.6)

and




P̂i(t|t)
V̂i(t|t)


 =




P̂i(t|t− 1)

%V̂i(t|t− 1)


 +




Ki,1(t)

Ki,2(t)




[
Yi(t)− P̂i(t|t− 1)

]
, (D.7)

where the data input Yi(t) is the distributed location estimate (i.e., either the x-

component or y-component location estimate based on a distributed algorithm in

Sec. 4.2). The the gain matrix Ki(t) is a 2× 1 vector and from (5.9e) it is given by




Ki,1(t)

Ki,2(t)


 =




Σi,(1,1)(t|t− 1)/(Σi,(1,1)(t|t− 1) + σ2
N)

Σi,(1,2)(t|t− 1)/(Σi,(1,1)(t|t− 1) + σ2
N)


 (D.8)

where Σi,(j,k))(t|t−1) is the (j − k)th component of the matrix Σi(t|t−1). The matrix

Σi(t|t− 1) is computed recursively via (5.9d) and (5.9b) [76].
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D.3 Steady-state Filters

To reduce the computational burden of the tracker in practical systems, the time-

varying filter in (5.9) is sometimes replaced with time-invariant steady-state filter




P̂i(t|t)
V̂i(t|t)


 =




P̂i(t|t− 1)

%(Ts)V̂i(t|t− 1)


 +




α

β/Ts




[
Yi(t)− P̂i(t|t− 1)

]
, (D.9)

where α and β are constants. The steady-state tracker for the model above is some-

times referred to as an alpha-beta tracker. Even for a second-order model , obtaining

an explicit expression of the steady-state covariance and filter gain is difficult except

in special cases such as for %(Ts) = 1 [24]. In our analysis, we derive the steady-state

solutions based on the roots of a polynomial in which the steady-state covariance and

filter gain can be solved from numerically. 1

For ease of notation, we suppress the dependence on i, the ith sensor, denote

Ts as T and %(Ts) = % . We next follow the derivation steps outlined in [24] for % = 1

with ours for 0 < % < 1. The steady-state values of the components of the state

estimation covariance matrix are denoted as

lim
t→∞

Σ(t|t) =




p11 p21

p21 p22


 = P , (D.10)

1The solution of the Riccati equation for the time-invariant system converges to a steady-state
covariance if: (1) The pair {F,H} is completely observable and (2) the pair {F,C}, where Q , CCT

is completely controllable then the steady-state covariance matrix is a unique positive definite matrix,
independent of the initial conditions. For the model described in (A.3) and (A.4), it satisfies the
observability and controllability conditions [24,73].
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the components of the one-step prediction covariance matrix are denoted as

lim
t→∞

Σ(t + 1|t) =




m11 m21

m21 m22


 = M , (D.11)

while the components of the alpha-beta filter gain are denoted as

lim
t→∞

Kt =




k1

k2


 =




α

β/T


 = K . (D.12)

Note that, as defined, α and β are dimensionless quantities. The steady-state updated

covariance matrix can be expressed as

P = M−KHM =




(1− k1)m11 (1− k1)m12

(1− k1)m12 m22 − k2m12


 , (D.13)

where the steady-state Kalman gain is

K = MHT
[
HM,HT + R

]−1
=




m11

m11+σ2
N

m12

m11+σ2
N


 . (D.14)

Since F is invertible with

F−1 =




1 −T
%

0 1
%


 , (D.15)
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the steady-state predicted covariance matrix can be rewritten as

P =F−1 (M−GQGT )(F−1)T

=




m11 − 2T
%
m12 + T 2

%2 (m22 − σ2
AT 2) T

%
m12 − T

%2 (m22 − σ2
AT 2)

T
%
m12 − T

%2 (m22 − σ2
AT 2) 1

%2 (m22 − σ2
AT 2)


 . (D.16)

Matching term-by-term from (D.13) to (D.16) and from (D.14), we obtain the fol-

lowing five equations that we can solve for the five unknowns, m11,m12,m22, k1 and

k2:

m11 = m11 − 2T

%
m12 +

T 2

%2
m22 − T 4

%2
σ2

A

⇒ k1m11 =
2T

%
m12 − T 2

%2
m22 +

T 4

%2
σ2

A , (D.17)

(1− k1) m12 =
1

%
m12 − T 2

%2
m22 +

T 3

%2
σ2

A

⇒ (k1 +
1

%
− 1) m12 =

T

%2
m22 − T 3

%2
σ2

A , (D.18)

m22 − k2m12 =
1

%2
(m22 − σ2

AT 2)

⇒ k2m12 = (1− 1

%2
) m22 +

T 2

%2
σ2

A , (D.19)

k1 =
m11

m11 + σ2
N

⇔ m11 =
k1

1− k1

σ2
N , (D.20)

k2 =
m13

m11 + σ2
N

⇔ m12 =
k2

1− k1

σ2
N . (D.21)

The steady-state solutions can be obtained in the following calculations. From (D.18),
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we have

m22 =
%2

T
(k1 +

1

%
− 1) m12 + T 2σ2

A (D.22)

and from (D.19), we have

T 2σ2
A = %2k2m12 + (1− %2) m22 (D.23)

then (D.22) and (D.23) imply

m22 = [
1

T
(k1 +

1

%
− 1) + k2] m12 . (D.24)

Now, substituting (D.20), (D.21) and (D.24) into (D.17), we obtain

k2
1

(1− k1)
σ2

N =
2T

%

k2

(1− k1)
σ2

N −
T 2

%2
[
1

T
(k1 +

1

%
− 1) + k2]

k2

(1− k1)
σ2

N +
T 4

%2
σ2

A , (D.25)

and substituting(D.21) and (D.24) into (D.19), we obtain

T 2

%2
σ2

A =
k2

2

(1− k1)
σ2

N + (
1

%2
− 1)[

1

T
(k1 +

1

%
− 1) + k2]

k2

(1− k1)
σ2

N . (D.26)

Then substituting (D.26) into (D.25) and canceling like terms, we obtain

k2
1 = (

1

%
+ 1) Tk2 − k1k2T (D.27)

⇔ k2
1 + k1k2T − (

1

%
+ 1) k2T = 0 .

Substituting the dimensionless quantities α = k1 and β = k2T and defining ρ̂ ,

(1
%

+ 1), we obtain a quadratic equation in terms of the two Kalman gain parameters
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of interest,

α2 + αβ − ρ̂β = 0 . (D.28)

Solving for α, we get

α = [
1

4
β2 + ρ̂β]

1
2 − 1

2
β . (D.29)

Since the gain values are positive, α is the positive root of the second-order polynomial

in (D.28). To solve for α and β (therefore, K, M and P), we need to obtain another

equation relating α and β. We continue the calculations by substituting (D.21) and

(D.24) into (D.19) to obtain

T 2k2
2 = (1− 1

%2
) %2k1k2T + (1− 1

%2
)%2(

1

%
− 1) k2T +

T 4

%2

σ2
A

σ2
N

(1− k1) . (D.30)

If we define ρ̃1 , (1− 1
%2 ) %2 = (%2− 1) and ρ̃2 , (1− 1

%2 ) %2(1
%
− 1) = ρ̃1(

1
%
− 1) which

are functions of %, and γ = T 4

%2

σ2
A

σ2
N

, and substitute k1 and k2T with α and β, (D.30)

becomes

β2 = ρ̃1αβ + ρ̃2β + γ(1− α) . (D.31)

Solving for α, we get

α = [ρ̃1β − γ]−1 [β2 − ρ̃2β − γ]. (D.32)

Equating α from (D.29) and (D.32), i.e.,

[
1

4
β2 + ρ̂β]

1
2 − 1

2
β = [ρ̃1β − γ]−1 [β2 − ρ̃2β − γ] , (D.33)

we obtain an equation in terms of β only. Simplifying further, we get

c4 β4 + c3 β3 + c2, β
2 + c1 β + c0 = 0 (D.34a)
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where

c4 = 1 + ρ̃1 = %2

c3 =− 2ρ̃2 − ρ̃1ρ̃2 − ρ̃2
1ρ̂− γ

=− 2(%2 − 1)(
1

%
− 1)− 2

%
(%2 − 1)2 − T 4

%2

σ2
A

σ2
N

c2 = ρ̃2
2 − (ρ̃2 − ρ̃1) γ + 2ρ̃1ρ̂γ − 2γ

= (%2 − 1)2(%− 1)2 +
3

%
(%2 − 1)(

T 4

%2

σ2
A

σ2
N

)− 2(
T 4

%2

σ2
A

σ2
N

) (D.34b)

c1 = 2ρ̃2γ + (1− ρ̂)γ2

= 2(%2 − 1)2(
1

%
− 1)2(

T 4

%2

σ2
A

σ2
N

)− 1

%
(
T 4

%2

σ2
A

σ2
N

)2

c0 = γ2 = (
T 4

%2

σ2
A

σ2
N

)2.

Given T , σ2
A and σ2

N , we can numerically solve for β based on the roots of the of fourth-

order equation in (D.34a). Of the four roots, there will be only one positive root, one

negative root and two complex conjugate roots. As we have discussed previously in

Sec. D.3, k2 is positive and therefore β equals the positive root of (D.34a).
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