
ABSTRACT

Title of dissertation: DEVELOPMENT OF AN OBJECT-
ORIENTED FRAMEWORK FOR
MODULAR CHEMICAL PROCESS
SIMULATION WITH SEMICONDUCTOR
MANUFACTURING APPLICATIONS

Jing Chen, Doctor of Philosophy, 2006

Dissertation directed by: Professor Raymond A. Adomaitis
Department of Chemical and
Biomolecular Engineering

Chemical Vapor Deposition (CVD) processes constitute an important unit op-

eration for micro electronic device fabrication in the semiconductor industry. Sim-

ulators of the deposition process are powerful tools for understanding the transport

and reaction conditions inside the deposition chamber and can be used to optimize

and control the deposition process.

This thesis discusses the development of a set of object-oriented modular sim-

ulation tools for solving lumped and spatially distributed models generated from

chemical process design and simulation problems. The application of object-oriented

design and modular approach greatly reduces the software development cycle time

associated with designing process systems and improves the overall efficiency of the

simulation process. The framework facilitates an evolutionary approach to simu-

lator development, starting with a simple process description and building model

complexity and testing modeling hypothesis in a step-by-step manner. Modular-



ized components can be easily assembled to form a modeling system for a desired

process. The framework also brings a fresh approach to many traditional scientific

computing procedures to make a greater range of computational tools available for

solving engineering problems.

Two examples of tungsten chemical vapor deposition simulation are presented

to illustrate the capability of the tools developed to facilitate an evolutionary simu-

lation approach. The first example demonstrates how the framework is applied for

solving systems assembled from separate modules by simulating a tungsten CVD

deposition process occurring in a single wafer LPCVD system both at steady-state

and dynamically over a true processing cycle. The second example considers the

development of a multi-segment simulator describing the gas concentration profiles

in the newly designed Programmable CVD reactor system. The simulation model

is validated by deposition experiments conducted in the three-segment prototype.

To facilitate the CVD system design, experimental data archiving, and dis-

tributed simulation, a three-tier Java and XML-based integrated information tech-

nology system has also been developed.



DEVELOPMENT OF AN OBJECT-ORIENTED FRAMEWORK

FOR MODULAR CHEMICAL PROCESS SIMULATION WITH

SEMICONDUCTOR MANUFACTURING APPLICATIONS

by

Jing Chen

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:

Professor Raymond A. Adomaitis, Chair/Advisor
Professor Mark A. Austin
Professor Kyu Yong Choi
Professor Panagiotis Dimitrakopoulos
Professor Evanghelos Zafiriou



c© Copyright by

Jing Chen

2006



DEDICATION

To my father, mother, and brother, who always love and support me

To my husband, who loves and encourages me all the time

To my daughter, who brings me joy

ii



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Prof. Raymond

A. Adomaitis, for his invaluable guidance, encouragement and support during my

graduate study. His knowledge, patience, and vision have provided me with lifetime

benefits.

I am very grateful to all my teachers. Courses taught by them have provided

me with the background and foundations for my thesis research. Special thanks

to Profs. Evanghelos Zafiriou, Mark Austin, Kyu Yong Choi, and Panagiotis Dimi-

trakopoulos of my thesis committee for their fascinating lectures, academic guidance,

time, valuable comments and encouragement.

I want to thank Dr. Jae-Ouk Choo for the beneficial discussions and help from

the very beginning of my research. In addition, I would like to thank Ramaswamy

Sreenivasan and Dr. Yuhong Cai for sharing experimental data.

I am so grateful to my husband, Jian Ma, for his love and encouragement.

Thanks Mom and Dad for everything. Without your love, nurturing and support, I

could never accomplish all this.

iii



TABLE OF CONTENTS

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Mathematical Modeling in Semiconductor Manufacturing . . . . . . . 2
1.2 Multiscale Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Software Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Modular Approach for Flowsheet Tools . . . . . . . . . . . . . . . . . 8
1.5 Object-Oriented Approach for PDE Solvers . . . . . . . . . . . . . . . 9
1.6 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Thesis Organization and Contributions . . . . . . . . . . . . . . . . . 11

2 Framework of Object-oriented Simulation Tools 13
2.1 Overview of Framework Architecture . . . . . . . . . . . . . . . . . . 13
2.2 Simulation Framework Implementation . . . . . . . . . . . . . . . . . 15

2.2.1 Modular Components . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 The mwrmodel Class . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Physical Property Data . . . . . . . . . . . . . . . . . . . . . . 20

2.3 The modsys and relation Classes . . . . . . . . . . . . . . . . . . . . 20
2.4 The Solver Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Modeling and Simulation of Tungsten CVD Reactor System 37
3.1 Thermal Model of the Wafer/Ring Assembly . . . . . . . . . . . . . . 39

3.1.1 Wafer Module Solution . . . . . . . . . . . . . . . . . . . . . . 41
3.1.2 Solving the wafer and lampflux Modules . . . . . . . . . . . . 44
3.1.3 Solving the wafer + lampflux + chamber Subsystem . . . . . . 46

3.2 Gas Species Material Balance . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Combined Thermal and Mass Balance Model Solution . . . . . . . . . 51

4 Simulation-based Design and Analysis of the Programmable CVD System 58
4.1 Introduction of the Programmable CVD System . . . . . . . . . . . . 58
4.2 Modeling and Simulation of the Multi-segment CVD System . . . . . 61

4.2.1 Challenges in Building a Multi-segment CVD Simulator . . . . 62
4.2.2 Construction of Simulator Modules . . . . . . . . . . . . . . . 64
4.2.3 Solving the Multi-Segment CVD System . . . . . . . . . . . . 71

4.3 Model Validation in the Three-segment Programmable CVD System . 74
4.3.1 Gas Concentration Profiles along Vertical Segments . . . . . . 75
4.3.2 Kinetic Rate Mechanism Validation through Uniform Deposi-

tion Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.3 Model Predictions for Nonuniform Deposition Experiments . . 84
4.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

iv



5 XML-based Information System for the Programmable CVD System 88
5.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3 Information System Framework . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Data Store and Archive . . . . . . . . . . . . . . . . . . . . . 97
5.3.2 Data Access and Retrieval . . . . . . . . . . . . . . . . . . . . 98
5.3.3 Data Presentation and Applications . . . . . . . . . . . . . . . 100

5.4 Demonstration of the Framework Functionalities . . . . . . . . . . . . 101
5.4.1 Data Management for Prototype I CVD System . . . . . . . . 102
5.4.2 Data Management for Prototype II CVD System . . . . . . . 110

6 Conclusions and Perspectives 112
6.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A Sample MATLAB codes 117
A.1 Definition of wafertherm class . . . . . . . . . . . . . . . . . . . . . . 117

A.1.1 wafertherm class: constructor method . . . . . . . . . . . . . . 117
A.1.2 wafertherm class: residual method . . . . . . . . . . . . . . . . 117

A.2 Definition of windowtherm class . . . . . . . . . . . . . . . . . . . . . 118
A.2.1 windowtherm class: constructor method . . . . . . . . . . . . 118
A.2.2 windowtherm class: residual method . . . . . . . . . . . . . . 118

A.3 Definition of wafer module class . . . . . . . . . . . . . . . . . . . . . 119
A.3.1 wafer class: constructor method . . . . . . . . . . . . . . . . . 119
A.3.2 wafer class: residual method . . . . . . . . . . . . . . . . . . . 120

Bibliography 121

v



LIST OF TABLES

2.1 Physical constants and RTP furnace design parameters. . . . . . . . . 25

4.1 List of part of parameters in the segment class . . . . . . . . . . . . . 67

4.2 List of part of parameters in the gap class . . . . . . . . . . . . . . . 69

4.3 Experimental recipe for gas concentration profile measurement: Gap
= 1mm, Pressure = 1 torr, Temperature = room temperature. . . . . 76

4.4 Experimental recipe for uniform tungsten deposition: Pressure = 1
torr, Heater temperature = 673 K, Gap = 1mm. . . . . . . . . . . . . 80

4.5 Rate constants for the empirical rate expression . . . . . . . . . . . . 81

4.6 Comparison of uniform deposition experimental data of W film thick-
ness measured by four-point probe (4pp) with simulation results: Gap
= 1mm, Pressure = 1 torr, Wafer temperature is to be determined,
chamber gas diffusion is counted (i.e., ch:on). . . . . . . . . . . . . . . 83

4.7 Experimental recipe for nonuniform tungsten deposition: Pressure =
1 torr, Heater temperature = 673 K, Gap = 1mm. . . . . . . . . . . . 84

4.8 Comparison of nonuniform deposition experimental results of W film
thickness [28] with simulation results: Gap = 1mm, Pressure = 1
torr, Wafer temperature is to be determined, chamber gas diffusion
is counted (i.e., ch:on), rate expression: Model 4.5-(1). . . . . . . . . 85

vi



LIST OF FIGURES

2.1 The main packages in the simulation framework . . . . . . . . . . . . 14

2.2 The class diagram of the simulator framework . . . . . . . . . . . . . 16

2.3 The class diagram of a standalone model module . . . . . . . . . . . 18

2.4 The mwrmodel interface for wrapping the ooMWR class subsystem . 19

2.5 The class diagram of modsys and relation classes and their relation-
ships with user-defined system and standalone modules . . . . . . . . 22

2.6 The diagram of a wafer heated by a lamp through a quartz window . 24

2.7 The sequence diagram for solving an assembled system with two mod-
ular objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 The class diagram of the solver package . . . . . . . . . . . . . . . . . 34

3.1 The schematic diagram of the CVD reactor chamber . . . . . . . . . 38

3.2 Solution of the wafer module with heating lamp flux fixed at 5000W/m2:
The dynamic wafer temperature distribution corresponds to heating
the wafer for 10 mins with full lamp power . . . . . . . . . . . . . . . 43

3.3 Heating lamp radiant flux distribution at the wafer assembly surface;
note how it is relatively uniform over the wafer surface . . . . . . . . 45

3.4 Comparison of steady state wafer temperature for different simula-
tion cases with heating lamp set at full power: (a) Solving the wafer
module only (W); (b) Solving the combined wafer and lampflux mod-
ules (WL); (c) Solving the combined wafer, lampflux, and chamber
modules (WLC); (d) Solving the combined mass and thermal models
(WLCG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



3.5 Comparison of gas composition profiles during deposition process:
(a) Solving the rxngas module at constant wafer temperature, Tw =
673K. For the first 10 mins, only H2 is induced to the chamber; then
WF6 is introduced to the chamber during 10 mins deposition process
after which the WF6 is shut off; (b) Solving the combined mass and
thermal models where the wafer is heated with full lamp power for 10
mins while only H2 filled the chamber, followed by introducing WF6

for a 10 mins deposition reaction with 0.7 heating lamp power, ending
with the shut off of WF6 and chamber purged with H2, cooling the
wafer 10 mins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 The class diagram of the CVD simulation system assembled from
modular objects of wafer, lampflux, chamber, recipe, and rxngas classes 54

3.7 Solving the combined mass and thermal models: Dynamic wafer tem-
perature distribution of the wafer heated with full lamp power for 10
mins while only H2 filled the chamber, followed by introducing WF6

for a 10 mins deposition reaction with 0.7 heating lamp power, ending
with the shut off of WF6 and chamber purged with H2, cooling the
wafer for 10 mins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Snapshot of wafer temperature at different times (t=2,6,8,10 min)
for the four simulation cases with heating lamp set at full power:
(a) Solving the wafer module only; (b) Solving the combined wafer
and lampflux modules; (c) Solving the combined wafer, lampflux, and
chamber modules; (d) Solving the combined mass and thermal models 57

4.1 The programmable chemical vapor deposition reactor system . . . . . 59

4.2 The schematic diagram of three-segment programmable CVD system 61

4.3 Representative patterns of segment arrangements . . . . . . . . . . . 63

4.4 The building blocks of programmable CVD modeling system . . . . . 66

4.5 The geometry diagram of one individual segment . . . . . . . . . . . 68

4.6 The class diagram of the programmable CVD system . . . . . . . . . 72

4.7 The alignment pattern of three-segment design . . . . . . . . . . . . . 74

4.8 Gas composition profiles as the function of position within each segment 75

4.9 The simulated gas composition profiles vs. experimental measure-
ments by mass spectrometry (one object created for the exhaust vol-
ume area). Sum of squre error (SSE) = 0.0156 for Ar simulation . . . 77

viii



4.10 The improved simulation gas composition profiles vs. experimental
measurements by mass spectrometry (three objects created for the
exhaust volume area). Sum of square error (SSE) = 0.0042 for Ar
simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 The challenges of different format data management and sharing
within the research groups . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Snapshot of mass spectrometry data file . . . . . . . . . . . . . . . . 90

5.3 The Information System Framework for the Programmable CVD Sys-
tem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 The XML data file viewed using Internet Explorer web browser . . . 103

5.5 Hierarchical data structure of the XML data file for prototype I . . . 104

5.6 The data flow from an XML file to a MATLAB application . . . . . . 106

5.7 Applications of data retrieval from an XML data file . . . . . . . . . 109

5.8 Hierarchical data structure of the XML data file for prototype II . . . 111

ix



Chapter 1

Introduction

Semiconductor device fabrication consists of multi-step chemical and physical

processes to create the silicon-based integrated circuit chips. These steps include

wafer preparation, device fabrication, device test, and packaging. Device fabrica-

tion is among the most complex manufacturing steps in producing semiconductor

integrated circuits, and typically includes cleans, photolithography, ion implanta-

tion, etching, thermal treatments, chemical vapor deposition (CVD), physical vapor

deposition, molecular beam epitaxy, electroplating, chemical-mechanical polishing,

wafer testing and backgrinding [90]. These processes, some of which take place

on the molecular or atom-scale level, are modeled as chemical reaction engineering

problems, and the operations themselves constitute the unit operations of micro-

electronic device fabrication. Along with these similarities to the more traditional

chemical process modeling issues are some differences, including an understanding

of the basic chemical and physical processes at work that is less well-developed

compared to the petro-chemical industries, and a more rapidly evolving process

equipment and product design time scale.

Simulation tools are widely used in the semiconductor industry to supplement

experiments and reduce the cost in developing new generations of products and in

solving manufacturing problems [86]. However, it can be argued that simulation-

1



based design tools have failed to keep pace with equipment design evolution, because

of the lack of truly flexible simulators that can model the exotic chemical mechanisms

at work, as well as the large range of time and length scales characteristic of these

manufacturing process systems.

1.1 Mathematical Modeling in Semiconductor Manufacturing

Physically based mathematical models for microelectronic processing provide a

better understanding of process transport phenomena and reaction kinetics and can

be used for advanced process control and optimization. The ultimate aim of process

control is to improve equipment performance and overcome uniformity problems

(temperature, film thickness, etc.). General automatic control approaches includes

statistical process control (SPC), model-based control [102, 38, 8, 82], run-to-run

control [16, 13], and real-time control [77, 26]. CVD processes, as one of the main

unit operations of device fabrication, can be classified on the basis of different reactor

categories: atmospheric pressure CVD (APCVD), low pressure CVD (LPCVD),

cold-wall and hot-wall types, multiwafer or single-wafer, and different geometries

such as vertical vs. horizontal, rotating disk, barrel, etc. The early efforts of reactor

modeling work can be traced back to 1970s [39, 104, 107]. Kleijn [62] gave an

overview of CVD reactor modeling studies from the modeling and simulation point

of view, Badgwell et al. [7] reviewed the status of CVD process modeling in detail

from the modeling and control point of view. Other excellent reviews of CVD process

modeling can be found in the papers [47, 67, 49].

2



The modeling equations corresponding to the specific reactor types have evolved

from the simple deposition reaction to more complicated models that consider sur-

face reaction and transport phenomena in 1, 2 and 3 dimensions. Finding analytical

solutions becomes infeasible with the increasing complexity of modeling equations.

Typical numerical solution strategies to solve PDE (Partial Differential Equation)

models include the finite volume method (FVM) [60, 61], finite element method

(FEM) [57, 58, 80, 41, 53], finite difference method (FDM) [79, 55, 18, 106], orthog-

onal collocation method (OC) [56, 95, 6], and the use of model reduction techniques

through proper orthogonal decomposition (POD) [105, 5, 10, 24, 59, 11, 3].

1.2 Multiscale Modeling

Technology computer-aided design (TCAD) models have been extensively used

to develop and optimize semiconductor manufacturing processes. TCAD covers

a wide region of semiconductor modeling areas which include front end process

modeling, lithography modeling, device modeling, interconnect and integrated pas-

sive modeling, circuit element modeling, package simulation, materials modeling,

and equipment/feature scale modeling [54]. With decreasing feature sizes in each

generation of semiconductor devices, the understanding of underlying physical and

chemical mechanisms in manufacturing processes grows in importance. Key phe-

nomena often exist at different scales which are governed by different physical laws.

Hence, the validity of conventional continuum-based or empirical models applied to

these processes becomes questionable. The computational cost makes it impracti-

3



cal to treat all phenomena in a single finer scale level. To take into account their

multiphysical nature, multiscale modeling methods now are regularly employed in

semiconductor processes simulation.

Multiscale modeling has long been studied and extensively used in the various

areas such as chemistry, materials, biology, and so on [36]. It provides a way for

fundamental understanding and prediction of a process or material structure ac-

curately. However, because multiscale modeling addresses a wide range of length

and time scales inherent in a system, together with the lack of reliable fundamental

data availability, it can be a challenge to find validated solutions to these types of

simulation problems.

From the viewpoint of numerical methods, traditional techniques include multi-

grid methods, domain decomposition, fast multipole methods, adaptive mesh refine-

ment, multiresolution methods, and the conjugate gradient method, which focus on

solving microscale problems. The modern multiscale methods aim to reduce the

computational complexity by using a scale separation approach. Representative

methods of this technique are quasi-continuum method, Car-Parrinello method, su-

perparametrization, heterogeneous multiscale method, coarse-grained Monte Carlo

models, adaptive model refinement, and so on [34, 35]. From the implementation of

the computation approach, the strategies can be classified as ”parallel” and ”serial”

in terms of space or time scale. The representative methods of parallel length-scale

approach include quasi-continuum method and the macro-scopic-atomistic-ab initio

dynamics (MAAD) method. This approach implements different-scale techniques

simultaneously in the same decomposed domain, whereas the serial approach imple-

4



ments different-scale techniques sequentially in different level discretization domains,

and the information obtained from finer scales is the input of coarser scales. Kinetic

Monte Carlo (KMC) and hyperdynamics methods can be categorized into serial and

parallel approaches, respectively, in terms of time-scale [72]. These various multi-

scale methods are not suited for all kinds of applications, and different methods are

limited for solving different problems. E and Enquist proposed a general framework

called heterogenous multiscale method (HMM) for designing and analyzing multi-

scale methods, which can be applied to a wide variety of applications [36]. The main

feature of HMM is linking models at different scales. The knowledge-based incom-

plete macroscale model is supplemented by the microscale model which provides

missing numerical data information.

An overview of current status of multiscale simulations of materials can be

found in Lu’s paper [71]. Maroudas [72] highlighted the elements of a multiscale

methodological approach and the ways to link the elements together. He also clearly

stated the opportunities and challenges for chemical engineers on multiscale mate-

rials modeling in the semiconductor industry. A broader range of chemical reactors,

relevant to issues in semiconductor processing is covered in Raimondeau and Vla-

chos’ paper [91], where they also present a multiscale hierarchical computational

framework for modeling homogeneous-heterogeneous reactors. Braatz et al. [17]

give an excellent review on multiscale simulations in semiconductor process, multi-

scale applications, solution methods and issues of design and control of these sys-

tems. They discuss the challenges and requirements associated with the design and

control of multiscale system tools. The information transfer between simulation

5



modules and parameter estimations is also addressed.

1.3 Software Approaches

Chemical process design, development and simulation, all of which encompass

reactor design, equipment sizing and rating, steady-state or dynamic process sim-

ulation, chemically reacting and multi-phase flow simulation, or plant optimization

and control, generate large sets of nonlinear algebraic and/or differential equation

systems to be solved. Generally, three approaches can be taken to solve the resulting

systems. One is for the user to develop the entire simulation program using a high-

level programming language: this approach not only requires the user to understand

the chemical and transport phenomena in the particular process very well, but also

demands knowledge of the appropriate numerical methods and programming skills.

The second approach is to use commercial or other specialized software designed

for specific applications. Examples of these simulation packages for semiconductor

processing simulations include the CHEMKIN 1 Collection for simulations of com-

bustion, catalysis, corrosion, plasma etching, and CVD process; PHOENICS-CVD

2 for different types of CVD reactors and processes, such as rapid thermal processes,

hot-wall batch reactors, and cold-wall single wafer reactors; and MPSalsa 3 for com-

plex chemically reacting flow simulations, atmospheric chemistry modeling, surface

catalytic reactors and 3D CVD simulation. Process simulators, such as Athena 4,

1CHEMKIN: a software developed by Sandia National Laboratories
2PHOENICS-CVD: a software product of CHAM Ltd.
3MPSalsa: product of Sandia National Laboratories
4Athena: product of SILVACO International

6



TSUPREM-4, Taurus-Process and FLOOPS-ISE 5, have been developed to simulate

and optimize semiconductor manufacturing processes.

The third approach is to meet the user’s needs in the middle between the first

two approaches, i.e., using a relatively general commercial or other engineering soft-

ware product to obtain simulation results where the full simulation is developed from

a combination of built-in modules and user specified elements. These more general

engineering simulation tools include flowsheet tools and PDE (Partial Differential

Equations) solvers. Flowsheet tools are used for simulation, design, optimization

and control of a complete plant or process with the simulator built-up from model

modules describing unit operations. The PDE solvers are used for simulating dis-

tributed parameter systems focusing on the detailed transport phenomena within a

contiguous spatial region, e.g. the dynamics of fluid flow through a specified enclo-

sure. Representative commercial flowsheet tools are CHEMCAD 6, PRO/II 7, and

Aspen Plus 8, while FLUENT, FIDAP 9, FLOW-3D 10, and COMSOL Multiphysics,

formerly FEMLAB 11 are typical PDE-type applications. These software tools of-

fer users a graphic interface to set up problems and run the simulations, and users

generally must specify the physical domain, the transport and chemical processes,

and boundary conditions without the need for detailed knowledge of fluid dynamics

5TSUPREM-4, Taurus-Process, FLOOPS-ISE: products of Synopsys, Inc.
6CHEMCAD, product of Chemstations, Inc.
7PRO/II: product of SimSci-Esscor
8Aspen Plus: product of Aspen Technology, Inc.
9FLUENT, FIDAP: products of Fluent Inc.

10FLOW-3D: product of Flow Science Inc.
11COMSOL Multiphysics, FEMLAB: products of COMSOL, Inc.

7



and computational techniques. While these are powerful tools, this approach can

offer less flexibility in choosing the specific computational tools (e.g. solvers), fewer

possibilities of customizing the problem physical domain, limitations on model re-

duction, control and other specialized applications, code reusability, and the cost of

purchasing and updating commercial software.

1.4 Modular Approach for Flowsheet Tools

Steady state or dynamic process flowsheet simulators can be broadly classi-

fied into three categories: simultaneous (equation-based), sequential modular, and

simultaneous modular. An overview of these approaches can be found in the pa-

per of Hillestad and Hertzberg [48]. Equation-based simulators collect all modeling

equations from each unit associated with a process and solve them simultaneously

[83, 97, 101, 50, 51]. While the resulting simulators can be computationally efficient,

problems can be encountered by users when model elements must be modified, both

in terms of analyzing convergence problems as well as the difficulty with which these

changes are made. Furthermore, computational efficiency can suffer in those cases

where a unique relationship between model elements is lost when all equations are

placed into a single module.

Modular-based strategies, widely used in many different applications [43, 85,

33, 66, 69], incorporate models of individual equipment elements or unit operations

as a set of modules connected by material, energy, and information streams all com-

municating with a physical properties database. This approach allows the use of

8



different types of models (such as lumped or distributed models) for each chemi-

cal process and determines the solution to each module using the most appropriate

algorithms [87]. The solution strategy used in sequential modular simulators is to

determine a solution to each module separately and in a sequence determined by

process material flow, incorporating an outer iteration loop if the process has recycle

streams. While computationally straightforward to implement, this approach suf-

fers from computing inefficiencies, and the need to frequently update local module

states. To address these computational drawbacks, the simultaneous modular simu-

lators use a hybrid approach, incorporating simultaneous and sequential simulation

concepts by partitioning a process into several modules or module-clusters consist-

ing of coupled units [40, 68]. The module-clusters that have strong interdependence

are solved simultaneously, while the process as a whole is solved sequentially from

cluster to cluster.

1.5 Object-Oriented Approach for PDE Solvers

The primary challenge to the development of numerical PDE solvers is how

sets of the partial differential equations generated from distributed systems can be

solved rapidly, robustly, and reliably. The application of object-oriented program-

ming (OOP) techniques to fluid dynamics software design in conjunction with the

development of parallelized computational techniques have greatly improved the

computing efficacy, the flexibility of these computing environments, and the degree

of code reusability and extensibility. Cai et al. [19, 20] demonstrated the advantage

9



of using multiple processor computing platforms with OOP techniques and devel-

oped a parallel PDE solver based on the existing serial libraries of Diffpack [64],

an object-oriented PDE solver for scientific computing applications. Ramirez et al.

[92, 93] proposed an object-oriented framework using a design patterns methodology

to solve CFD problems efficiently on high performance parallel computers. Peskin

et al. [84] designed a software package to solve transport phenomena problems on

moving boundary domains using the Galerkin finite element method. Langtangen

et al. [65] built a simulator based on Diffpack to solve nonlinear, coupled PDEs

using independent solvers for different equations in the system, i.e., different solvers

for implicit or explicit equations and compound systems.

1.6 Our Approach

Because the primary goal of our simulator development is to provide a flexible

and extensible structure for solving a wide range of chemical process simulation prob-

lems, the proposed framework makes extensive use of object-oriented programming

techniques. Our approach is to break simulation problems into modular compo-

nents, where a module typically consists of a subelement of a single manufacturing

process, such as a wafer heater, reaction chamber, or reaction network; the modules

can be solved and analyzed individually, which is an asset in tracking the source

of solution divergence or other numerical problems. Assemblies of modules can be

formed by combining the modular model elements and defining how information is

exchanged between modules; this makes it possible to define modular systems com-

10



bining lumped and distributed parameter models. The defined modules become a

reusable part of modeling library.

The properties of modularity are related to object-oriented features of pro-

gramming languages. Object-oriented programming supports encapsulation, inheri-

tance and polymorphism. Objects are categorized into classes and class hierarchies,

and each class contains attributes describing objects of that class and operations

defining their behavior. Encapsulation packs data and the operations that manip-

ulate the data into a single named object. Inheritance enables the attributes and

operations of a class to be inherited by all subclasses and the objects that are in-

stantiated from the subclasses. Polymorphism allows the use of a common name for

a method that acts differently among objects of different classes [88].

1.7 Thesis Organization and Contributions

In this thesis, we first discuss the design and implementation of the simulation

framework, then demonstrate the framework functionalities through the applica-

tions on semiconductor CVD process. The thesis concludes with final remarks and

recommendations for future work. Details are as follows:

Chapter 2: Introduce the framework architecture and discuss the detailed

structure of each individual package through a simplified model of heat transfer in

a single wafer CVD system. The software and the examples discussed in Chapter 2

and Chapter 3 can be found at the website:

http://www.isr.umd.edu/Labs/CACSE/A team/software/mcps.

11



Chapter 3: Model and simulate a tungsten deposition process in a cold-wall

single wafer CVD reactor system both at steady state and dynamically over a true

processing cycle to demonstrate the functionalities of the modular simulation frame-

work.

Chapter 4: Discuss the modeling and simulation of gas concentration profiles

in the newly designed programmable CVD reactor system. The model has been

validated by the experiments conducted on the three-segment prototype.

Chapter 5: Discuss the development of a Java and XML based three-tier infor-

mation system to facilitate CVD system data archiving, analysis and management.

Chapter 6: Conclude the thesis with final remarks and future work.

12



Chapter 2

Framework of Object-oriented Simulation Tools

2.1 Overview of Framework Architecture

Starting with a general problem solving environment (MATLAB 1), we de-

velop a simulation framework incorporating elements of flowsheet and PDE solvers,

that facilitate a flexible, modular, model building and analysis approach, allowing

an evolutionary approach to simulator development. We develop this modular ap-

proach in the context of semiconductor manufacturing process simulation, where

the granularity of modularization is less clearly defined than in the unit operations

of traditional chemical processes. A central feature of our framework is the incor-

poration of object-oriented techniques for implementing weighted residual methods,

which allows the solution of PDE based models.

As shown in Figure 2.1, the main packages in our simulation framework include

a physical property database, modular components, system and relation classes

and solver tools. The property database package works like a library for physical

properties of common semiconductor processing gases. The modular components

package includes standalone modules that encapsulate subsystem design information

and modeling equation definitions. The function of the system and relation packages

is to facilitate integration of independent modules to form user-defined systems.

1MATLAB: product of The MathWorks, Inc.

13



Systems of this type are solved using the methods offered in the solver packages.

Property
Data

Modular
components

System Relation

SolverManager

Solutions

Figure 2.1: The main packages in the simulation framework

We present our software design concepts in the context of a design patterns

methodology. A design pattern is a good solution to a general or commonly recurring

software design problem. The use of design patterns has multiple benefits; saving the

designer time and effort by making the communication between designer and user

or other programmers easier and clearer, making the design more flexible, extensible

and reusable, and by avoiding details in the early stage of design giving the designer

a higher-level view of the problem and on the process of design [42, 30, 99].

Although design patterns provide a general approach to object-oriented soft-

ware design, the particular implementation can differ based on the choice of pro-

gramming language; some patterns are not needed, while other patterns are more

easily expressed in one language than another. Our simulation framework is im-

plemented using a programming environment for scientific computing (MATLAB)

that has a number of object-oriented features. We use the mediator pattern for

14



communication among objects of module classes. The facade pattern is used to

provide a simple interface to a subsystem of weighted residual method tools. We

also have used the strategy and adaptor patterns in the solver package to provide

different algorithms and integrate other numerical packages. The patterns used in

our system design will be explained in the following sections.

2.2 Simulation Framework Implementation

We focus on solving models of the form:

∂x

∂t
= M(x, p)

0 = N(x, p)

where M , N denote nonlinear algebraic or differential operators, x is a data structure

containing model variables, and p is a data structure defining model parameters. Our

goal is to develop a framework where these equations can be easily incorporated

into a modeling module and subsequently solved, both for dynamic and steady

state solutions. It will be described later in this paper how these modules can be

interconnected to form larger modeling equation systems. The class diagram of

proposed framework is depicted in Figure 2.2.

2.2.1 Modular Components

Compared to the classic modeling of large and complex systems, modular

approaches break down a complete chemical processing system into smaller building

blocks, reducing the complexity of model building, simplifying maintenance, making

15



solver modsys relation

modulesuser-defined
systemnaemodel odemodel

mwrmodel

ooMWR

Figure 2.2: The class diagram of the simulator framework

it safer and easier to modify a model component, and in some instances facilitating

distributed or parallel simulation [31].

How to decompose a large system into smaller modules and later reassemble

them without loss of essential information about the original system is the primary

challenge in developing simulation modules. Meyer [78] proposed the ”open-closed

principle” for software design where the modules, classes, methods, etc. should be

open for extension, but closed for modification to avoid introducing errors. Cota

and Sargent [31] suggest that modularity should have the properties of locality and

encapsulation: locality means that all design decision information related to the

system being modeled should be stored in the same place, and encapsulation keeps

the state variables and behavior of one component isolated from other components.

Using these properties, the modeler can make internal changes in one component

without considering other parts of the model as long as the exposed interface remains

16



the same. Zeigler [109, 110] argues that a module should be like ”black box”, i.e.

its internal state and behavior must make no references to analogous information

of any other module, and the modules must communicate with others only through

their input and output.

Based on the properties of modularity, a standalone module class shown in

Figure 2.3 is formulated in terms of the following methods: a constructor method,

a residual or evalvar method, and plotting or display methods. All process design,

equipment geometry, and related information are stored in the constructor method,

where the data fields are categorized into two types: var representing variables and

param representing parameters. The data type of var and param is defined as an

object of the class assocaarray. The class assocarray acts as a hash table, storing

both variable names and values. Helper methods such as delete, sort, insert, and

more were written to facilitate manipulation of assocarray objects. In the module

class, if the variables to be found can be expressed by the modeling equations in

terms of parameters explicitly, i.e., in the form of x = g(p), then these equations are

placed in the evalvar method; if only implicit expressions define the model residual,

i.e., f(x, p) = 0, they should be used to define the residual method. The number of

variables must be same as or less than that of the modeling equations. Modules can

be solved individually to test the convergence behavior of each.

17



module

- var
- param

+ residual()
+ evalvar()

mwrmodel

weighted residual
method for PDEs

gasmixture

offering physical
property data

Figure 2.3: The class diagram of a standalone model module

2.2.2 The mwrmodel Class

If the modeling equations to be solved consist of partial differential equa-

tions (PDEs), a spectral projection or other discretization method implemented in

ooMWR tools can be used to solve these systems. ooMWR tools was developed

for solving boundary value problems (BVPs) in relatively simple geometries using

global trial function expansions and weighted residual methods (MWR) [1, 2, 70].

Objects of mwrmodel class are created to discretize the PDEs into algebraic equa-

tions (AEs), or semidiscretize equations into ordinary differential equations (ODEs),

or algebraic-differential equations (DAEs). The resulting systems then can be solved

using the tools developed in solver classes which will be introduced in the following

sections.

To integrate the ooMWR tools into the current framework, the facade pat-

tern is applied to develop the mwrmodel class, which provides an interface to the

ooMWR class subsystem, as depicted in Figure 2.4. The facade pattern wraps a

18



complex subsystem together and provides the user a simplified interface to access

the functionality of the wrapped subsystem.

basisfunperiodic

mwrmodel

quadgrid

linearoperator
basisfun

scalarfield

basisfunjacobi basisfunlegendre

basisfungeneral basisfunsl

relquad

ooMWR classes
subsystem

Figure 2.4: The mwrmodel interface for wrapping the ooMWR class subsystem

By creating an object of mwrmodel class, the user automatically obtains all

ooMWR objects needed to discretize PDE systems without the need for any knowl-

edge regarding its underlying classes, reducing the number of objects that the user

must create, simplifying the discretization process. Also, the mwrmodel class de-

couples the subsystem of ooMWR from the user or other subsystems, promoting

subsystem independence and portability. Any changes to the ooMWR classes will

not affect the user or other subsystems provided the mwrmodel interface does not

change, minimizing future module modification.

19



In most applications, the mwrmodel class interface provides all the functional-

ity needed to implement numerical MWR. However, this pattern does not prevent

users from accessing the underlying classes and methods directly, indeed, a sophis-

ticated user preferring more controllability and flexibility may choose to instantiate

objects from ooMWR classes directly.

2.2.3 Physical Property Data

The current database package provides methods for determining properties of

non-polar and polar gases and organic and inorganic gases with emphasis on sup-

porting common semiconductor process gases such as silane, tungsten hexafluoride

and trimethylgallium. The thermo-physical properties include viscosity, thermal

conductivity, binary diffusivity, heat capacity, molecular weight and density of pure

gases and mixtures at an ideal gas state. Properties of 62 pure gases and their

mixtures may be obtained through the interface. This package is implemented in

JAVA for both web applications and local simulations. An interface wrapper class,

gasmixture, was developed in MATLAB to facilitate data retrieval from the JAVA

physical property objects.

2.3 The modsys and relation Classes

With a computational methodology for creating standalone model modules in

hand, several issues must now be addressed. For example, how does one assemble

several modules together to construct more complex modules or a complete chemical

20



process simulator? Modules developed by different research groups or developed for

different applications may use different names for the same variables or same names

for different variables, and so how do we relate each to the others when solving the

integrated system? Finally, how is information exchanged among objects during

computations involving assemblies of modules?

Direct communication among objects would result in a tight coupling of mod-

ules and loss of modularity. To link the modules together and still preserve the

loose coupling and flexibility, we create a class called relation. The variables or

parameters with same or different names in different modules are related through

the information users provide when instantiating the objects of the relation class.

Although we have methods for updating data fields of related objects in the

relation class, they are not intended to be called explicitly. Communication among

objects is administrated through the methods of the modsys class, which is developed

using the mediator pattern. The mediator pattern defines the only object that knows

the state of all others and coordinates information exchange among the other objects

in the system. These classes communicate with or through the mediator without

referring each other explicitly. Building simulators in this modular fashion is easy

to understand, maintain and extend. The modsys approach replaces many-to-many

relationships with one-to-many relations between the module systems and module

objects. It also decouples the module objects with plug and play functionality.

As depicted in Figure 2.5, the user may create a modular modeling system

using one of two approaches. The first is to create an object of the modsys class

directly by inputting the objects of individual module classes and the objects of the

21



relation class describing the relationship between variables and parameters among

those module objects. Alternatively, a user can wrap all information relating to

module objects and their relationships into a user-defined system, which is defined

as a subclass of modsys class. In this way, users need only to instantiate the user-

defined system in the main program, which makes the simulation programs simple

to follow and hides unnecessary information from the clients.

modsys relation

moduleuser-defined
system

Figure 2.5: The class diagram of modsys and relation classes and their relationships

with user-defined system and standalone modules

As mentioned earlier, each module class has a method called residual to store

the modeling equations. Like the module class, the modsys class has a residual

method as well, but its functionality is different: instead of combining all modeling

equations from the individual module classes, the residual method in the modsys

class acts as a coordinator for distributing, exchanging and receiving information

among different objects.

During computation, solvers only access and update the system’s variables. In

the residual method, these updated variable values first are distributed to each cor-

22



responding module object, and then the residual method for each object is invoked

to update the data field resid and the values of pseudo-constant parameters that

are function of variables defined in that model. According to the relation objects,

information in related module objects is updated by calling the method updatefields

in the relation class. Finally, the computational results are collected and saved in

the data field, resid, in the modsys object for the next calculation.

To demonstrate how this process works, we use a highly simplified model of

heat transfer in a single wafer CVD system. The wafer is heated by a lamp bank

located outside the reactor chamber (Figure 2.6). Tw is wafer temperature and Tq

is quartz window temperature. Lamp radiation reaches wafer through the quartz

reactor window; the window itself absorbs a fraction of the lamp radiation. The

equations are coupled through the nonlinear radiative heat transfer terms between

the wafer and window. The parameters used for simulation is listed in the Table 2.1

and the steady state modeling equations are given below.

23



Lamp heating

Quartz reactor
window

Wafer

Tq

Tw

Chamber

Coolant gas

qwq

qwc

Figure 2.6: The diagram of a wafer heated by a lamp through a quartz window

f1(Tw, Tq) wafer energy balance

= σεwεqT
4
a (T 4

q − T 4
w) wafer/window radiation (qwq)

+σεqεsT
4
a (1 − T 4

w) wafer bottom/chamber heat transfer (qwc)

+(1 − a)Q lamp heating of wafer

f2(Tw, Tq) quartz window energy balance

= σεwεqT
4
a (T 4

w − T 4
q ) window/wafer radiation

+hTa(1 − Tq) window coolant gas

+aQ lamp heating of window

24



Table 2.1: Physical constants and RTP furnace design parameters.

Parameter Value Description

εw 0.7 Si emissivity

εq 0.5 quartz emissivity (high temperature)

εs 0.07 steel emissivity (room temperature)

a 0.01 quartz absorptivity

σ 5.670×10−8J/(K4 m2 s) Stefan-Boltzmann constant

Ta 300 K ambient temperature

h 300 W/m2 quartz window/cooling gas heat transfer coeff

Q 5000 W/m2 lamp radiation flux

The iterative approach to solving for the coupled set of nonlinear algebraic

equations can be written as:

(
Tw

Tq

)(n+1)

=

(
Tw

Tq

)(n)

+

(
δw

δq

)(n)

and the update vector δ can be obtained by:

δ = −J−1f

where J is the Jacobian matrix of the linearized system, and f is the vector of

functions f1(Tw, Tq) and f2(Tw, Tq). The Jacobian matrix is defined as follows:

J =




∂f1

∂Tw

∂f1

∂Tq

∂f2

∂Tw

∂f2

∂Tq




25



Now we solve this system using our modular approach. First, two individual

modules called wafertherm and windowtherm are defined as:

wafertherm class:

var : Tw

param : σ, εw, εq, εs, Ta, Tq, a, Q

residual function : f1(Tw, Tq)

windowtherm class:

var : Tq

param : σ, εw, εq, Ta, Tw, h, a, Q

residual function : f2(Tw, Tq)

where the data field var includes the information on all variable names and

initial solution estimates (or initial conditions for a time dependent-problem), and

the date field param wraps all parameter names and values into an assocarray object.

The residual method stores all linear or nonlinear algebraic equations whose residuals

are to be driven to zero to define the variable values which constitute a steady-state

solution. The number of equations must be equal to or greater than the number of

variables. The complete class definitions in MATLAB is attached in the Appendix.

Each module can be solved independently: an object of each class is defined

and the Newton’s method is applied to each. For example, Tq is defined as a constant

600Kin the wafertherm module, the MATLAB script for solving the wafertherm

module is as follows:

A = wafertherm; % create instance of wafertherm class

26



A = newton(A); % solve function f1

unpack(A) % extract converged solution

Wafertemp = Tw*Ta

The convergence of the Newton procedure and resulting steady state wafer

temperature are shown below:

Update/residual norm = 0.58589 / 368.2513

Update/residual norm = 0.031479 / 9.7532

Update/residual norm = 0.00086492 / 0.44817

Update/residual norm = 3.9704e-005 / 0.020345

Update/residual norm = 1.8024e-006 / 0.00092408

Update/residual norm = 8.1869e-008 / 4.1972e-005

Update/residual norm = 3.7185e-009 / 1.9063e-006

Update/residual norm = 1.6889e-010 / 8.6587e-008

Update/residual norm = 7.6711e-012 / 3.9345e-009

Update/residual norm = 3.4857e-013 / 1.7917e-010

Wafertemp = 766.5719

Note that because finite differences are used to compute Jacobian array el-

ements, the convergence is less than quadratic; additional computational details

follow.

Solving for windowtherm module individually, Tw is defined as a constant

600K. The computational procedure is as follow:

27



B = windowtherm;

B = newton(B);

unpack(B)

Windowtemp = Tq*Ta

The updates during solution procedure and the resulting steady state quartz

window temperature are:

Update/residual norm = 0.98835 / 1405.161

Update/residual norm = 0.016202 / 64.0842

Update/residual norm = 0.00073866 / 2.9101

Update/residual norm = 3.3544e-005 / 0.13218

Update/residual norm = 1.5236e-006 / 0.0060036

Update/residual norm = 6.92e-008 / 0.00027268

Update/residual norm = 3.1431e-009 / 1.2385e-005

Update/residual norm = 1.4276e-010 / 5.6253e-007

Update/residual norm = 6.4841e-012 / 2.5558e-008

Update/residual norm = 2.946e-013 / 1.1655e-009

Windowtemp = 308.1433

To solve for the two unknowns (Tw and Tq) simultaneously, we must define an

integrated system. The relationship of the two independent modules are described as

objects of the relation class, i.e., the parameter Tq in wafertherm class is equivalent

28



to the variable Tq in windowtherm class, and the variable Tw in wafertherm class is

the parameter Tw in windowtherm class.

The procedure for assembling the integrated system begins by instantiating

an object of modsys class using its constructor method, with the list of modeling

objects and relationships as input parameters. A table of variables is created by

mapping system variables to their corresponding module objects. Instead of pulling

all equations from the individual modules’ residual method and putting them into

that of modsys class, the residual method of this class is used to manage each module

class data updates and retrieve computed residuals from these modules, returning

them as the residuals of system equations.

To illustrate how this works, consider computing of the first column of the

Jacobian matrix by perturbing the variable Tw with ε. Then we calculate f1(Tw, Tq)

and f1(Tw + ε, Tq) from the residual method of the wafertherm class, and f2(Tw, Tq)

and f2(Tw + ε, Tq) from the residual method of the windowtherm class. To evaluate

f1(Tw, Tq) and f2(Tw, Tq), the parameter Tq in the wafertherm class object must be

updated by the value of variable Tq in the windowtherm class object, similarly, the

parameter Tw in the windowtherm class must be updated by the value of variable Tw

in the wafertherm class. Hence, when the residual method of modsys class is called, it

updates each module object’s variables with the latest values of the system variables

through the mapping table; then it calls the updateall method of the relation class

to exchange data information between the two module objects according to their

relationship stated in the objects of the relation class; lastly it calls the residual

method of each individual module object to retrieve the value of function residuals

29



and return them as f1(Tw, Tq) and f2(Tw, Tq).

Computation of f1(Tw + ε, Tq) and f2(Tw + ε, Tq) is, in principle, the same

as that of f1(Tw, Tq) and f2(Tw, Tq). However, because only one system variable is

perturbed, it is not necessary to update all objects’ variables and to perform the

relationship check of which parameters must be updated. Therefore, each time the

residual method of the modsys class is called, it will check and compare the latest

system variables with the previous ones to determine which has changed, and then

only update the corresponding variables of the appropriate module object. The

relationship of other objects associated with this object is determined and stored

for further usage. Then only those parameters connected with this variable are

modified according to the saved new relationships. In this example, Tw is perturbed

and Tq remains unchanged, so only the variable in the object of wafertherm class

and the parameter Tw in the object of windowtherm class are updated with Tw + ε,

respectively. Finally the individual object’s residual method is called to collect the

function residuals, and they are returned in the residual method of modsys class as

the values of f1(Tw + ε, Tq) and f2(Tw + ε, Tq).

Finally, the system solutions obtained by calling the newton method defined

in the naemodel class are retrieved through the getobj method in modsys class. The

following is the actual code in MATLAB for the implementation of this example.

% define relationship between A and B

R = relation( A,B,{ ’Tw’ ’Tw’ ’Tq’ ’Tq’ } );

S = modsys(R,A,B); % create modular system

30



S = newton(S); % use Newton method to solve

D = getobj(S); % extract converged module objects

unpack(D); unpack(A,’var’); unpack(B,’var’);

Wafertemp = Tw*Ta

Windowtemp = Tq*Ta

The steady state solutions of wafer and quartz window temperatures are ob-

tained as follows:

Update/residual norm = 0.21692 / 138.182

Update/residual norm = 0.015952 / 5.2968

Update/residual norm = 0.00056957 / 0.24148

Update/residual norm = 2.6063e-005 / 0.010966

Update/residual norm = 1.1834e-006 / 0.00049808

Update/residual norm = 5.375e-008 / 2.2623e-005

Update/residual norm = 2.4413e-009 / 1.0275e-006

Update/residual norm = 1.1088e-010 / 4.6668e-008

Update/residual norm = 5.0366e-012 / 2.1164e-009

Update/residual norm = 2.286e-013 / 9.7218e-011

Wafertemp = 697.3332

Windowtemp = 315.1561

The sequence diagram in Figure 2.7 illustrates the interaction of these objects

and each function call procedure. The modsys class is mainly used for solving coupled

31



modules simultaneously, while independent modules can be solved sequentially. The

current computational framework supports both approaches.

2.4 The Solver Package

Generally, the modeling systems we wish to solve consists of algebraic equa-

tions (AEs), ordinary differential equations (ODEs) or partial differential equations

(PDEs), and differential-algebraic equations (DAEs). As discussed in the previous

section, PDE systems normally are (semi)discretized using a global spectral projec-

tion method. Alternatively, we can use the quadgrid, linearoperator and scalarfield

classes in combination to discretize a PDE system into a semi-discretized ODE sys-

tem by collocation; this approach normally results in the boundary conditions be-

coming algebraic equations. In our framework, ODE model systems assembled with

objects having residual and evalvar methods become DAE systems automatically

because the evalvar method stores algebraic equations defining variables explicitly.

Therefore, in the solver package, we must provide computational tools for

solving AE, ODE or DAE systems. The class diagram of this package is illustrated

in Figure 2.8. In this package, we have a base class, solver, which defines data fields

such as var, param, resid, solverset, currtime, and more for subclass usage, and offers

utility methods such as unpack, display, get, set, columnnae, residual and evalvar,

to facilitate derived class operations. The residual method and evalvar method are

both abstract methods and, as we have seen, must be overloaded in subclasses of the

solver class. If only the evalvar method is overloaded, the abstract residual method

32



:naemodelA:wafertherm B:windowthermmain R:relation S:modsys

instantiate()

instantiate()

instantiate()

instantiate()
instantiate()

newton()

jacobian()residual()

updatefields()

residual()

residual()

getobj()

unpack()

residual()

residual()
Loop

Loop

:solver

instantiate()

Figure 2.7: The sequence diagram for solving an assembled system with two modular

objects

33



is used to handle several tasks of the evalvar method, such as setting the dxdtcoeff

field to indicate equations in the evalvar method that are algebraic equations, and

updating the resid field for the evalvar method where only var field is updated during

each computation procedure.

solver

odemodelnaemodel

solving non-linear systems solving ODE/DAE systems

Figure 2.8: The class diagram of the solver package

Solving linear/nonlinear systems is a common operation in scientific comput-

ing. In addition to the Newton-Raphson procedure described, generic methods used

for finding solutions to nonlinear systems include the Quasi-Newton, bisection, and

successive substitution methods, and for linear systems, iterative methods such as

Krylov subspace method. To group a number of different algorithms together, the

class naemodel was developed using the strategy pattern. The strategy pattern sup-

ports a family of algorithms, which conceptually do the same thing but have different

implementations. Different numerical algorithms are implemented as member meth-

ods of the naemodel class, and the user can invoke different numerical algorithms

34



by calling these methods directly. Individual module classes or the modsys class are

defined as a subclass of this solver class.

MATLAB supports multi-inheritance. To be able to use the different methods

of the odemodel class for solving ODE/DAE systems, the module class or modsys

class also must be a subclass of the odemodel class. But the design of the odemodel

class is totally different from that of naemodel class. There are many numerical

computation packages developed in MATLAB for solving ODEs and DAEs with

different algorithms. To make use of these existing solvers, we designed an interface,

class odemodel, using the adapter pattern, to allow integration of MATLAB built-in

ODE/DAE solver packages into our simulation framework. The adapter pattern,

also known as a wrapper, converts the interface of a class into another interface to

be compatible with other classes. In MATLAB, a representative interface of the

ODE and DAE solvers is:

[t,y] = ode45(odefun, tspan,y0,options, p1,p2 );

and the returned time t and solution y has the form of column vector and array,

respectively. The function reference and variable data type are not compatible with

our design because in the module class, the data type of var and param is assocarray.

Variables wrapped in var may have other format data types, such as double, array

or scalarfield which is defined to wrap the quadrature grid and state variable values

for discretized states. Recall also modeling equations are defined in the module

class residual method with the form of A = residual(A) instead of the user supplied

functions with the form of dydt = odefun(t, y).

35



Therefore, a method called odesolver in the odemodel class was developed to

perform multiple functions: (1) to be responsible for data type conversion, i.e.,

change the user defined data type to one compatible with that recognized by the

MATLAB ode solvers and recover the results in the user-defined type; (2) redirect

the function reference: instead of directly referring the residual or evalvar method

of the module class, the function handler (odefun) in the standard ode solver is

referred to a function defined within the odesolver method, where the module or

modsys object is passed as a parameter and the residual method of the object is

called to compute and return the time-derivative values; and (3) to generate a mass

matrix for DAE systems automatically. By evaluating the data field dxdtcoeff, which

is set in the residual method of module class, it will be determined whether this is

an ODE system or a DAE system. For a DAE system, the size of the dependent

variables is evaluated and a sparse mass matrix is generated. The default DAE

solver is called to solve the system if users do not supply one. The odesolver method

has the interface:

Bv = odesolver(Aobj, tspan, options, solver);

where Aobj is the object of odemodel class, tspan and options are same as that

defined in standard MATLAB ODE solvers, solver is a string to allow the user to

choose different solvers in MATLAB, for example, ’ode45’, ’ode23’, and so on. It is

important to note that the output Bv is a vector of odemodel objects corresponding

to the state variable at each point in time.

36



Chapter 3

Modeling and Simulation of Tungsten CVD Reactor System

To demonstrate the use of the modular simulation framework, we now consider

the problem of simulating a tungsten CVD deposition process both at steady state

and dynamically over a true processing cycle. While single wafer CVD systems

are true dynamic processes, steady state simulations are useful for determining the

maximum temperature a wafer can reach during a processing cycle. A schematic

diagram of the tungsten CVD reactor system under consideration is shown in Figure

3.1. We will consider the H2 reduction of WF6 as the deposition process for this

example.

Hydrogen enters the chamber through the transparent showerhead mounted

in the top of the chamber, and tungsten hexafluoride is injected through a slit on

one side of the chamber wall. A tungsten-halogen lamp ring is located outside

the reactor chamber and is used to heat the wafer through the transparent quartz

showerhead window. The precursor gases mix in the chamber and react at the wafer

surface, forming thin film layer of tungsten on the wafer. The 4-inch diameter wafer

is supported by a slowly rotating quartz susceptor and its outer edge is covered by

a quartz guard ring. More details on the model derivation, heat transfer parameter

selection and reactor geometry can be found in the paper [3].

In the following sections we will discuss modeling gas composition change dur-

37



hs =  0.092 m

hl = 1.016m

Rl = 0.0984 m

Rs =  0.121 m

Rw = 0.0508 m

R = 0.22 m

Heating Lamp

Showerhead

dz = 0.004 m
wafer

Susceptor/Guard Ring

Water-cooled Al chamber wall

Figure 3.1: The schematic diagram of the CVD reactor chamber

ing the deposition process and temperature distribution on the surface of wafer/guard

ring assembly. The formulation of individual modular components, solution of the

individual modules to test each model components, and the solutions of the com-

bined modeling system are discussed in turn. Dynamic models of the type ultimately

developed are useful for deposition process recipe development.

38



3.1 Thermal Model of the Wafer/Ring Assembly

To describe the one-dimensional thermal dynamics of the wafer, susceptor and

guard ring assembly, several assumptions are made:

• The wafer is thin, and there is no temperature gradient across the wafer thick-

ness;

• We neglect any wafer assembly temperature gradients in azimuthal direction;

• Heat transfer through the wafer assembly vertical support rod is not included.

Under these assumptions, the energy balance of the wafer assembly can be written

as:

4zρ
∂(Cp(T, r)T )

∂t
=

4z

r

∂

∂r

[
k(T, r) r

∂T

∂r

]
− σε(r)T 4 + Qother (3.1)

with boundary conditions and initial condition,

r = 0,
∂T

∂r
= 0; r = R, k

∂T

∂r
= −σε(R)T 4 + qc; t = 0, T (r) = T0

The first term on the right hand side of (1) accounts for the conductive heat transfer

through the wafer assembly in the radial direction. The second is the radiation

from wafer surface to the wafer’s environment whose temperature will be initially

set to zero. The term Qother represents the net heat flux to the wafer including

that exchanged by radiative with other components. The thermal properties of the

assembly are functions of temperature and radial position, with a jump discontinuity

where the wafer and guard ring meet. The symbol R represents for the guard ring

radius, and Rw is the wafer radius. For r < Rw,

k = 0.1kw(T ) + 0.9kgr(T )

39



Cp = 0.1Cpw(T ) + 0.9Cpgr(T )

ε = εw

for r > Rw,

k = kgr; Cp = Cpgr ; ε = εq

The heat transfer parameters can be found in the paper [3]. For this particular case,

Qother is the total energy flux from the heating lamp Ql, heat exchange between wafer

and reactor chamber Qc, and heat transfer between wafer and gas phase Qg, i.e.,

Qother = α(r)u(t)Ql(r) + Qc(T, r) + Qg(T, x)

where α = αw for r < Rw; and α = αgr for r > Rw. The time-dependent lamp

power controller u(t) is defined as 0 ≤ u(t) ≤ 1.

Instead of putting all equations into a single large module to solve this complex

system, several smaller and simpler modules are created to describe different heat

transfer phenomena. The advantages of doing so include:

1. Module reusability: different CVD reactor systems have different materials

of construction and heating systems; for example, instead of using a heating

lamp, the wafer could be heated with substrate heater. Separating modules

defining the heat sources and other components from the wafer module as

much as possible improves the flexibility of model building because reactor

systems can be defined simply by combining the required modules from a

model library.

2. Convergence problems are more easily debugged by starting with the solution

40



to a single module, and then adding modules in an incremental fashion. In this

way, we can monitor how new heat transfer terms affect wafer temperature

profiles and track down the source of solution divergence when it occurs.

3. The approach avoids repeated computations: for example, the heating lamp

flux Ql is not the function of wafer temperature. Solving it once separately

from the remainder of the system improves computational efficiency.

Four independent module classes are defined to describe heat transfer in this

system: wafer, lampflux, chamber and recipe. To demonstrate how the framework

is applied for solving systems assembled from separate modules, we will solve the

individual wafer module first, then add one module at each step and solve the sub-

systems, finishing with the complete system solved simultaneously. We intentionally

use differing and equivalent variable and parameter names to represent temperature

or fluxes in different modules to demonstrate how the framework handles these po-

tential sources of problems using the relation class.

3.1.1 Wafer Module Solution

The wafer class is derived as subclass of naemodel and odemodel classes. Equa-

tion (1) is an implicit function of T, and the discretized version of this equation is

stored in the residual method. In the constructor method, the heat flux of heating

lamp Ql, radiation between chamber and wafer Qc, and conduction between gas

and wafer Qg, are defined as parameters. The data type of each is scalarfield. The

default state of objects of this model assume constant values for each Q. One data

41



field is defined as an object of recipe class, which is used to control the power of the

heating lamp; this allows the standalone solution of those objects when no other heat

transfer information is present. The sample script is as follows. The source code of

the wafer class constructor and residual methods can be found in the appendix.

% create wafer object discretized with N collocation points

A = wafer(N);

% process recipe; lamp power u changes within time interval ti

B = recipe(ti,u);

A = set(A,’param’,B,’ru’); % update process recipe in object A

A_s = newton(A); % solve for steady state solution

A_t = odesolver(A,t); % solve for dynamic solution

To solve partial differential equation (1), the roots of a Jacobi polynomial generated

from the quadgrid class are used as collocation points; together with the differen-

tial operator objects of linearoperator class, the PDE and boundary conditions are

discretized with this collocation method. The interior residuals (within the defined

physical domain) are calculated using the discretized equation (1), and the resid-

uals at the two end points are defined by the boundary conditions. The resulting

system becomes a differential-algebraic-equation system for the dynamic case or a

non-linear algebraic equation system for the steady state case. To obtain the dy-

namic solution of wafer temperature, we assume the initial temperature of the wafer

surface is 300K, and the power of heating lamp is set to 5000W/m2. Figure 3.2

depicts the dynamic wafer temperature distribution when wafer is heated for 10

42



mins, and the steady state solution of temperature distribution on the wafer surface

is shown on Figure 3.4; in both cases the full lamp power is used, i.e.,u(t) = 1.

0
0.05

0.1
0.15

0.2

0

2

4

6

8

10

250

300

350

400

450

Radial position r (m)

Dynamic wafer temperature

Time t (min)

T
em

pe
ra

tu
re

 (
K

)

Figure 3.2: Solution of the wafer module with heating lamp flux fixed at 5000W/m2:

The dynamic wafer temperature distribution corresponds to heating the wafer for

10 mins with full lamp power

The results show the temperature on the wafer surface increases with constant

heating flux. Because of the larger absorptivity of the wafer relative to the suscep-

tor/guard ring and the contribution of radiant energy exchange of the guard ring

edge with the environment, the temperature reaches the maximum at the center of

43



assembly and gradually decreases to the outer edge.

3.1.2 Solving the wafer and lampflux Modules

The heat flux from the heating lamp to wafer, Ql(r), which is named as Q in

the lampflux module, can be computed by (2), for a single lamp ring of radius Rl at

a distance hl from the wafer surface [3]:

Q(r) = 0.7
hl(6, 000W)

(4π)(2π)

π∫

−π

[
h2

l + r2 + R2
l − 2rRl cos θl

]−3/2
dθl (3.2)

Because the heat flux from heating lamp is the function of radius only and can be

obtained by calling evalvar method directly, when constructing the lampflux module,

the evalvar method is overloaded to wrap the equation and the class is derived as

subclass of the solver class only.

To obtain the wafer temperature distribution using the heat flux from the

heating lamp instead of the assumed value, 5000W/m2, the wafer and lampflux

modules are solved together. However, creating the object of modsys class is not

necessary. Because the heat flux of lamp Q is not a function of wafer temperature,

we can solve the lampflux module first to obtain the flux distribution along wafer

radial direction, then solve the wafer temperature by substituting the parameter Ql

in the wafer class by Q. The simulation script is as follows:

C = lampflux(A); % create lampflux object based on the wafer model

[A,C] = exchange(A,C,{’Ql’,’Q’}); % substitute Ql in wafer object by Q

AC_s = newton(A); % steady state wafer temperature

AC_t = odesolver(A,t); % dynamic wafer temperature profiles

44



The radiant heat flux of the lamp and wafer steady state and dynamic temperature

distribution computed from the more accurate Q are shown in Figure 3.3, Figure

3.4 and Figure 3.8, respectively. The heating lamp flux distribution corresponds

to full lamp power. Compared to the solution obtained by setting Ql constant

(5000W/m2), we can see the wafer temperature is higher and less spatially uniform

because of larger heat flux Ql.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

Radial position r (m)

La
m

p 
flu

x 
Q

 (
W

/m
2 )

Wafer Guard Ring 

Figure 3.3: Heating lamp radiant flux distribution at the wafer assembly surface;

note how it is relatively uniform over the wafer surface

45



3.1.3 Solving the wafer + lampflux + chamber Subsystem

The radiative heat exchange from the wafer to chamber, Qc, which is assumed

zero in the previous cases, is expressed as Q in the chamber module:

Q = σε(r)εsFa(r)(T
4
sh − T 4) + σε(r)εc(T

4
c − T 4) + σε(r)T 4 (3.3)

where εs and εc are emissivity for the showerhead and aluminum chamber wall. The

geometry shape factor Fa(r) is computed using

Fa(r) =
1

2



1 − (r/hs)

2 + 1 − (Rs/hs)
2

√
(r/hs)4 + 2[1 − (Rs/hs)2](r/hs)2 + [1 + (Rs/hs)2]2





The radiative heat flux qc in the boundary conditions of equation (1) which is as-

sumed zero previously can be obtained by:

q = σε(R)T 4 + σε(R)εc(T
4
c − T 4)

Because Q and q are explicit functions of the state variable, temperature T , they can

be computed directly, therefore only evalvar method is overloaded and the chamber

module class is derived as the subclass of solver class. To substitute these models

into wafer module and solve them simultaneously, an instance of a relation class

is used to indicate the relationship of var and param in different modules, and an

object of modsys class is created to define the system to be solved. The script below

continues that of the previous sections:

D = chamber(A); % create chamber thermal model object

E = relation(A,D,{’T’,’Tw’,’qc’,’q’,’Qc’,’Q’});

F = modsys(E,A,D); % modular system: wafer + chamber

46



F_s = newton(F); % steady state solution

F_t = odesolver(F,t); % dynamic solution

The simulation results are depicted in Figure 3.4 and Figure 3.8 for the steady and

dynamic states, respectively. As shown in the figures, the steady state and dynamic

temperatures are higher than that of corresponding cases when solving only wafer

or wafer/lampflux modules. This is because the radiation term of the standalone

wafer module assumes no radiation is returned to the wafer. By putting the wafer

inside the reactor chamber, the radiative heat flux of the wafer/showerhead and

wafer/chamber wall are considered. Similarly, for the qc in the boundary conditions,

heat exchange between assembly outer edge and chamber wall is accounted for when

solving combined modules.

3.2 Gas Species Material Balance

When we solve the thermal model of wafer, we assume no gases fill the chamber

and the heat transfer between wafer and gas, Qg, is zero. To consider a dynamic

deposition process, we add a material balance model of the reactant and product

gases into the previous subsystem. To simplify the complexity of the transport

modeling in the gas phase, a CSTR model is used and several assumptions are made

for this tungsten chemical vapor deposition process:

• Gases are well mixed in the reactor chamber;

• Gases can be treated as ideal gases for these operating conditions;

47



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
300

400

500

600

700

800

900

1000

Radial position r (m)

T
em

pe
ra

tu
re

 (
K

)

Steady state wafer temperature

T
wafer

T
wafer+lamp

T
wafer+lamp+chamber

T
wafer+lamp+chamber+gas

Wafer Guard Ring 

Figure 3.4: Comparison of steady state wafer temperature for different simulation

cases with heating lamp set at full power: (a) Solving the wafer module only (W); (b)

Solving the combined wafer and lampflux modules (WL); (c) Solving the combined

wafer, lampflux, and chamber modules (WLC); (d) Solving the combined mass and

thermal models (WLCG)

48



• No significant temperature or pressure gradients exist within the chamber;

• Gas phase variables are functions of time only, not spatial position;

Based on the gas flow rate, pressure and temperature conditions used in the

CVD process, it is reasonable to say the above assumptions are accurate. The

reaction occurring on the wafer surface is described as:

WF6 + 3H2 → 6HF + W (s)

The empirical expression for reaction rate is chosen as:

Rrxn = k0P
m
H2

P n
WF6

exp (− Ea

RTw
) (3.4)

where the reaction rate order m is usually taken to be 1/2 and n depends on the

ratio of H2 : WF6, where for high ratio values, n is 0, and for low ratio value, n

is 1/6 [63]. The lumped model for the molar balance of the reaction gases can be

written as:

d(NxH2)

dt
= FinxH2,in − FoutxH2 − 3AwRrxn (3.5)

d(NxWF6)

dt
= FinxWF6,in − FoutxWF6 − AwRrxn

d(NxHF )

dt
= −FoutxHF + 6AwRrxn

where N is the total number of moles inside the reactor, Aw is wafer area, and Fin

and Fout are molar flow rates calculated by:

N =
PV

RTg
(3.6)

Tg =
Tw + Ta

2

49



Fin = Fout + 2AwRrxn

where, Ta is the ambient environment temperature. The conductive heat transfer

between gas phase and wafer, Qg, can be approximated by:

Qg(Tw, r, x) =
kwg(x, Tg, P )

Lww

(Tg − Tw) (3.7)

The gas thermal conductivity kwg is a function of gas composition, temperature, and

pressure; Lww represents the length scale of the gas thermal boundary layer. For

a given wafer temperature, the steady state and dynamic solutions of gas compo-

sition can be obtained by solving above nonlinear algebraic or differential-algebraic

equations.

A module class called rxngas is constructed to wrap the mass balance model.

The modeling equations from (3.4) to (3.7) are stored in the class method residual.

Other utility methods such as rxnrate, growthrate, and residtime are created to

facilitate the computation and simulation results retrieval. A sample script for

solving rxngas module with constant wafer temperature is shown below:

G = gascomp(A,D); % create gas composition model object

G_s = newton(G); % steady state solution

G_d = odesolver(G,t); % dynamic solution

Figure 3.5 depicts the gas composition profiles for solving a rxngas module under

the operation conditions: P = 0.5torr, Ta = 300K, Tw = 673K, qtot = 50sccm

(H2:WF6 = 4:1). During the first 10 mins, only H2 is introduced to the chamber,

after which the gas flow of WF6 is turned on. The deposition process lasts 10 mins,

50



after which the WF6 gas is turned off and only the H2 gas is used to flush the

chamber. At the steady state, for m = 1/2, n = 1/6, xH2 = 0.7570, xWF6 = 0.1869,

xHF = 0.0560, the tungsten growth rate is 25.0 nm/min. This simulation result is

close to the average deposition rate of 21.6nm/min, experimental results produced

under the same operation conditions except the wafer temperature setting was 773K

during experiments [108]. It is reasonable to set the wafer temperature to 673K in

the simulator because the true wafer temperature normally is at least 100K lower

than the controller setting in the particular reactor studied [25].

3.3 Combined Thermal and Mass Balance Model Solution

During the deposition process, the gas phase concentration changes due to

reaction and the process recipe, gas phase thermal conductivity changes with com-

position, and the reaction rate is a function of wafer temperature. Therefore, the

one-dimensional thermal model and lumped mass balance model become coupled

through gas composition x and wafer temperature T . To solve this combined mod-

eling system, the total reaction rate is obtained through the integration of wafer

temperature along the radial direction, i.e.,

Rtot =

Rw∫

0

Rrxn2πrdr

where Rtot represents the product of AwRrxn. The script for the main program is as

follows:

H = recipe(ti,xfeed); % process recipe object

G = set(G,’param’,H,’Rf’); % set process recipe in chamber model object

51



0 5 10 15 20 25 30
0.7

0.8

0.9

1
xH

2

Gas composition profiles during deposition process

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

xW
F

6

0 5 10 15 20 25 30
0

0.02

0.04

0.06

xH
F

Time t (min)

(a) Material balance 

(b) Material and    
thermal balance 

(b) Material and    
thermal balance 

(b) Material and    
thermal balance 

(a) Material balance 

(a) Material balance 

Figure 3.5: Comparison of gas composition profiles during deposition process: (a)

Solving the rxngas module at constant wafer temperature, Tw = 673K. For the first

10 mins, only H2 is induced to the chamber; then WF6 is introduced to the chamber

during 10 mins deposition process after which the WF6 is shut off; (b) Solving the

combined mass and thermal models where the wafer is heated with full lamp power

for 10 mins while only H2 filled the chamber, followed by introducing WF6 for a 10

mins deposition reaction with 0.7 heating lamp power, ending with the shut off of

WF6 and chamber purged with H2, cooling the wafer 10 mins

52



E(2) = relation(A,G,{’T’,’Tw’,’Qg’,’Qg’)});

I = modsys(E,A,D,G); % complete CVD system model

I_s = newton(I); % steady state solution

I_d = odesolver(I,t); % dynamic simulation

Figure 3.6 illustrates the class diagram of this assembled modular system. To test

the integrated modeling system, a complete deposition process is simulated. The

process cycle consists of:

1. Load the wafer and introduce precursor gas H2 to purge the reactor, preheating

the wafer for 10 minutes with full lamp power;

2. Introduce the gas WF6 to the chamber with the heating lamp controller main-

tained at 0.7. The reaction starts and deposition process lasts 10 minutes;

3. Terminate the WF6 flow, turn off the lamp, and introduce a large flow of H2

to cool down the wafer for 10 minutes prior to removing it.

The transient phases of gas composition and dynamic and steady state wafer

temperature distribution are shown in Figure 3.5, Figure 3.7 and Figure 3.4, respec-

tively. The steady state gas compositions are: xH2 = 0.4356, xWF6 = 0.0891 and

xHF = 0.4753, where m = 1/2 and n = 1/6.

Comparing the transient gas profiles when the rxngas module is solved alone

with the combined mass and thermal system, we observe that the conversion rate

of WF6 is higher and the gas phase steady state is reached quickly for the first

situation because the wafer temperature is constant at 673K. For the second case,

53



naemodelsolver relation modsys

rxngas

+ constructor()
+ residual()
+ growthrate()
+ residtime()
+ rxnrate() 

wafer

+ constructor()
+ residual()
+ plot()

lampflux

+ constructor()
+ evalvar()
+ plot()

chamber

+ constructor()
+ evalvar()
+ plot()

odemodel

recipe

+ constructor()
+ gasflow()
+ powerfrac()

Figure 3.6: The class diagram of the CVD simulation system assembled from mod-

ular objects of wafer, lampflux, chamber, recipe, and rxngas classes

at the time the precursor gas WF6 is introduced into the chamber to start the

deposition process, the wafer surface temperature is only about 580K after 10 mins

of preheating. Although the generation rate of HF climbs with increasing wafer

temperature, the deposition rate is still much lower relative to the first case because

at the end of deposition the wafer temperature can not reach 673K and only is

660K.

The steady state wafer temperature and snapshots of transient wafer temper-

ature corresponding to the four different simulation cases are plotted in Figure 3.4

and Figure 3.8, respectively. They show the wafer temperature changes with the

heating power and environment. In the first simulation case, the wafer temperature

54



0

0.05

0.1

0.15

0.2

0

5

10

15

20

25

30
300

350

400

450

500

550

600

Radial position r (m)

Dynamic wafer temperature

Time t (min)

T
em

pe
ra

tu
re

 (
K

)

Figure 3.7: Solving the combined mass and thermal models: Dynamic wafer tem-

perature distribution of the wafer heated with full lamp power for 10 mins while

only H2 filled the chamber, followed by introducing WF6 for a 10 mins deposition

reaction with 0.7 heating lamp power, ending with the shut off of WF6 and chamber

purged with H2, cooling the wafer for 10 mins

55



is lower than that found by combining the lampflux and wafer modules because

we assume the heating lamp power is constant 5000W/m2, which is much lower

than the true value distributed over the wafer surface, ranging from 11000W/m2

to 3000W/m2. After adding the chamber module, the wafer temperature increases

because the heat lost in the wafer module is partly compensated by the chamber

wall radiation. Finally, the wafer temperature slightly decreases when the rxngas

module is added because of wafer cooling by conduction through the gas phase.

56



0 0.05 0.1 0.15 0.2
300

320

340

360

380

400

Radial position r (m)

T
em

pe
ra

tu
re

 (
K

)

Wafer temperature at t = 2 min

W
WL
WLC
WLCG

0 0.05 0.1 0.15 0.2
300

350

400

450

500

550

Radial position r (m)

T
em

pe
ra

tu
re

 (
K

)

Wafer temperature at t = 6 min

W
WL
WLC
WLCG

0 0.05 0.1 0.15 0.2
300

350

400

450

500

550

600

Radial position r (m)

T
em

pe
ra

tu
re

 (
K

)

Wafer temperature at t = 8 min

W
WL
WLC
WLCG

0 0.05 0.1 0.15 0.2
300

350

400

450

500

550

600

Radial position r (m)

T
em

pe
ra

tu
re

 (
K

)

Wafer temperature at t = 10 min

W
WL
WLC
WLCG

Wafer Guard Ring Wafer Guard Ring 

Wafer Guard Ring Wafer Guard Ring 

Figure 3.8: Snapshot of wafer temperature at different times (t=2,6,8,10 min) for

the four simulation cases with heating lamp set at full power: (a) Solving the wafer

module only; (b) Solving the combined wafer and lampflux modules; (c) Solving the

combined wafer, lampflux, and chamber modules; (d) Solving the combined mass

and thermal models

57



Chapter 4

Simulation-based Design and Analysis of the Programmable CVD

System

This chapter discusses the development of a simulator describing the reac-

tion gas transport in the multi-segmented showerhead for better understanding and

control of gas composition across a wafer surface in a spatially controllable or pro-

grammable CVD reactor system using the modular simulation approach. The exper-

imental data obtained from the three-segment prototype system are used to validate

the simulation models and assumptions.

4.1 Introduction of the Programmable CVD System

The Programmable CVD reactor (PCVD) shown in Figure 4.1, a spatially con-

trollable CVD system [27], was developed at the University of Maryland. Compared

to conventional CVD reactors, this new reactor system features spatially-tunable

process recipes. Equipped with a distributed sensing system, the design of pro-

grammable CVD system aims to achieve several goals, including: (1) across-wafer

uniformity and desired product performance of deposited thin film; (2) controlled

nonuniformity across the wafer for combinatorial study of complex materials and

processes; (3) advanced process control through in-situ sensors.

The main components of the programmable CVD system include: (1) a feed

58



G
as

D
is

tr
ib

ut
io

n
B

ox

M
as

s
Sp

ec
tr

om
et

er

R
ea

ct
or

Sy
st

em

C
on

tr
ol

Sy
st

em

Figure 4.1: The programmable chemical vapor deposition reactor system

59



gas distribution box; (2) a process control system; (3) a mass spectrometer sys-

tem for sensing gas composition; (4) and a deposition system including one load

lock chamber and one reactor chamber. The key design feature of this system is

its segmented showerhead which makes possible true 2-dimensional control of gas

phase composition across the wafer surface. As shown in Figure 4.2, each segment

of the showerhead includes individually controllable gas feeds, and exhaust gases

are recirculated through the showerhead itself to the common exhaust zone. This

construction enables control of spatial distribution of gas flow rate and minimizes

the interaction among the segments.

To proceed with a deposition process, a process recipe including pressure,

temperature, precursor gas flow rates, deposition time, etc. is entered as input to the

control system. The precursor gases are introduced into the segmented showerhead

through feed tubes, and the residual gases are redirected and pumped out through

each segment. The deposition is performed on the wafer surface which is heated

by the substrate heater. The gas composition in each segment is monitored with

respective mass spectrometry sampling tube during operation.

To gain the insight into the operation of this CVD system and quantify the

relative importance of different precursor transport and reaction mechanisms inside

this reactor system, a set of simulation tools is necessary to supplement experimental

methods.

60



Feed gas

Exhaust
 gas

Wafer

Substrate
heater

Segmented
showerhead

CVD reactor chamber

Gas feeding
 tubes

Exhaust port

Figure 4.2: The schematic diagram of three-segment programmable CVD system

4.2 Modeling and Simulation of the Multi-segment CVD System

Although the simulation will not completely replace the need for experiments,

simulators can result in very substantial cost savings in developing new generation

CVD reactor systems and in solving manufacturing problems [86]. Because of the

complexity of this system, conventional CVD simulation tools may not be appropri-

ate to design and analyze the programmable CVD system.

61



To model gas species transport within each individual segment, the Maxwell-

Stefan equation is employed to describe multicomponent gas species transport:

∇xk
i =

n∑

j=1

[
1

CDij
(xk

i N
k
j − xk

j N
k
i ) +

xk
i x

k
j

Dij

(
DT

j

ρj
− DT

i

ρi

)
∇lnT

]
, 0 < z < L (4.1)

subject to boundary conditions

xk
i (L) = xexit

i (4.2)

where, xk
i is the mole fraction of each gas species in each segment. The subscript i

refers gas H2, WF6, and Ar, and superscript k is the segment number. To find the

one-dimensional gas compositions distribution along segment length, ng ∗n coupled

nonlinear ODEs must be solved simultaneously, where n is the number of segments,

and ng represents the number of precursor gases. While current three-segment design

is intended to demonstrate the programmable CVD concept and prove its feasibility,

multi-segment construction is required for manufacturing level implementation.

4.2.1 Challenges in Building a Multi-segment CVD Simulator

To develop a flexible simulator for understanding gas transport within the

multi-segment showerhead, the challenges we face include:

• A wide range in the number of segments: the number of variables and corre-

sponding equations depends on the number of segments. The work necessary

to modify the simulator due to adding or removing segments should be mini-

mized.

62



• Diverse patterns of segment arrangements (see Figure 4.3): spatially control-

lable process recipes across wafer surface leads to the intersegment diffusion

because of gas concentration gradients. To optimize the deposition perfor-

mance, it may be necessary to control the impact of neighboring segments.

Assuming different patterns of arrangement of segments through the simula-

tor will provide an easy and low-cost solution. One issue arising from dynamic

arrangement of segments is how to determine the outside segments; when we

consider the interaction of gas diffusion between gap region and chamber, only

the gases in the gap region corresponding to the very outside segments will be

influenced from chamber, and those segments surrounded by other segments

need only consider the gas impacts from neighboring segments.

Figure 4.3: Representative patterns of segment arrangements

• Model validation: a number of assumptions such as ideal gas state, well-mixed

63



gases in the exhaust region and chamber, linear temperature distribution along

segment length, reaction mechanism on the wafer surface, etc., made to sim-

plify the current model and simulation, will be validated through the exper-

imental results. Thus, this requires that the simulator should have such ca-

pabilities to simplify testing of assumptions by making it easy to incorporate

new models or assumptions.

• Simulator reusability: the newly designed programmable CVD system is un-

dergoing concept test, feasibility assessment, equipment upgrade, etc. to im-

prove and optimize the system performance. Keeping simulation components

reusable to the greatest extent possible will shorten the design process and

lower future development costs.

4.2.2 Construction of Simulator Modules

The design of the programmable CVD reactor lends itself very naturally to a

modular approach because of the segmented showerhead design - while each segment

is a fairly complex component, with individually controllable reactant gas supply

and residual gas exhaust, the design of each segment is identical.

Using the modular simulation framework we developed earlier, a new simu-

lation can be constructed relatively easy through the integration of user selected

modular components. Several small and simple modules have been constructed in

replace of developing a complicated simulation program to wrap all modeling equa-

tions. Key advantages of this approach are: (1) the redundant work of rewriting

64



similar equations with different variables can be avoided; (2) it allows the rapid

replacement of individual simulator elements, making it possible to easily assess

modeling assumptions and the relative importance of the elements that make up a

complete simulation.

In the following, we introduce the model development along with the construc-

tion of individual modules. The building blocks of the modeling system are depicted

in Figure 4.4, they are: a segment module describing steady-state one-dimensional

transport of gases in an individual segment; a topmix module assuming well-mixed

gases in common exhaust zone; a gap module describing the inter-segment gas dif-

fusion in the gap region between the wafer and segmented showerhead, and gas

diffusion between gap and reaction chamber; a chamber module depicting gas state

and compositions in the reaction chamber.

The segment module class: This module includes information on describing

intra-segment transport, in which the multicomponent gas species transport can

be expressed by the Maxwell-Stefan equation 4.1. Rearranging the equations and

defining the flux as the combination of ordinary diffusion and thermal diffusion, the

equation 4.1 can be presented in a simplified form:

∇xk
i =

n∑

j=1

1

CDij
(xk

i N̄
k
j − xk

j N̄
k
i ) (4.3)

where

N̄k
i = Nk

i +
DT

i

Mi
∇lnT

In the constructor method of this class, gas compositions xk
i are defined as

variables, all others are classified as parameters, who are either constant (e.g. seg-

65



n
• • •S

eg
m

en
t

S
eg

m
en

t

S
eg

m
en

t

Gap Gap GapNch

N

Nin

Nfd

Nrxn

n
• • •

Wafer Surface

CVD Reactor Chamber

Gas in

Gas out

Gas in Gas in

n
• • •

Nch

Common Exhaust Zone

Figure 4.4: The building blocks of programmable CVD modeling system

ment and feeding tube geometry information) or have hidden relationships with

state variables, or must be updated by exchanging information with parameters or

variables in other modules; see Table 4.1.

In the residual method of segment class, the equation 4.3 is defined, in which

the parameters who are functions of state variables are updated during each com-

putational step. The geometry diagram of one segment is depicted in Figure 4.5.

The gap module class: The gap region is defined as the area between the

segment bottom to the wafer surface, whose distance could be zero millimeter to

several millimeter depending on the experimental settings. Because of various oper-

66



Table 4.1: List of part of parameters in the segment class

Parameter Description Value

Lseg segment length constant

Lftw distance from feeding tube bottom to wafer constant

As segment area constant

Af feeding tube bundle area constant

DT
i multicomponent thermal diffusivity for species i DT

i = f(xi, T, P )

Dij binary diffusivity Dij = f(xi, T, P )

C total concentration of gas C = f(xi, T, P )

Nk
i ordinary diffusion flux from gap class

xexit
i mole fraction of species i in exhaust zone from topmix class

ating conditions for each segment and the feature of reversed residual gas flow, we

divided the gap region into several small virtual hexagon blocks corresponding to

each segments (Figure 4.4).

Models developed in this module are used to compute the total flux contribu-

tion from gap area to the segmented showerhead. Using a CSTR-type model for gas

transport, the lumped mass balance in each block can be written in the form of:

Nk
i =

hW

As
(

n∑

m=1

Nk−m
i,in + Nk−c

i,ch ) + Nk
i,fd + Nk

i,rxn (4.4)

where, k is the segment number, i refers to the gas species, n is the total number of

segments, h is gap distance between wafer surface and segment bottom, and W is

segment side length.

67



Qi
k

W
Z = L, segment top

Z = 0, segment bottom

Z = Zf, feeding tube outlet

Z = -h, wafer surface

Af , feeding tube bundle area

As, segment area

Ni
k

Figure 4.5: The geometry diagram of one individual segment

Nk−m
i,in represents the inter-segment diffusion flux at the bottom of segments,

and it can be written as:

Nk−m
i,in = CDi,jfd

xm
i (0) − xk

i (0)

2Wcos(π/6)

where, fd is the gap factor to correct intersegment flux, and it can be estimated

from experimental data. For the current simulation study, we set it to unity.

Likewise, the diffusion flux from the chamber to the gap region, Nk−c
i,ch , can be

defined as:

Nk−c
i,ch = CDi,j

xc
i(ch) − xk

i (0)

2Wcos(π/6)

Nk−c
i,ch is zero for the segments where all six sides are surrounded by other

segments. Nk
i,fd is the flux input from the segment feeding tubes. It is zero for

68



z < zf , and for z ≥ zf , it is defined by:

Nk
i,fd =

Qk
i ρi

MWi(As − Af)

where, Qk
i is species i flow rate at segment k, and ρi and MWi are species i density

and molecular weight, respectively.

Nk
i,rxn is the flux from the deposition reaction on the wafer surface. It can be

obtained from the deposition reaction rate:

Nk
i,rxn = Rrxn

In the constructor method of the gap class, the total flux Nk
i is defined as a

variable. The values of constant parameters such as wafer temperature, operating

pressure, segment geometry and pattern, etc., are acquired when creating instances

of the class. The dynamic parameter values can be obtained through the information

exchange between modules; see Table 4.2

Table 4.2: List of part of parameters in the gap class

Parameter Description Value

xch mole fraction of species in chamber from chamber class

x mole fraction of species at the bottom of segments from segment class

Because the variable Nk
i can be expressed by an explicit function, the equation

4.4 is put into the method of evalvar instead of residual. To analyze the effects of

chamber gas diffusing into the gap region and deposition reaction, the resulting flux

Nk−c
i,ch and Nk

i,rxn can be turned on/off in the evalvar method. The method growthrate

69



defined in this class is used to calculate deposition rate and test different reaction

mechanism, which can be easily switched on/off.

The topmix module class: It is used for studying the gas composition xexit
i at

the top common exhaust area, and it provides boundary conditions for the ODEs in

the segment class. For current simulations, the common exhaust volume is treated as

perfectly mixed. The exhaust volume composition xexit
i is computed as the average

of the feed compositions to each segment because of relatively low depletion rate

of reactions. Therefore, in the constructor method, it is identified as an parameter

whose value can be obtained when creating objects of this class, and no variables

are defined here. Consequently, no residual or evalvar methods are required in this

class. One can either place an empty residual method in the class definition or it

will inherit one from its base class, solver.

The chamber module class: this class is for investigating gas composition in

the reaction chamber. It provides information to gap class for computing diffusion

flux from the chamber to the gap region. The flow rate of gas transport to the

chamber is determined by the gap size. The assumption of perfect gas mixing is

made in the chamber. Likewise, because of the relatively low deposition rate under

the tested operating conditions, the gas composition xcham
i is taken as the average

of the feed compositions. This assumption will be validated later. Similarly, in the

constructor method, only parameters xcham
i whose values can be acquired through

the input of creating the class objects are defined, and no variables are needed.

Therefore, definition of the residual method is not required.

It may appear unnecessary to construct topmix and chamber modules for the

70



current simplified modeling, and we could simply hard-code those information in the

classes requiring them. The benefit for defing the modules is that it simplifies suse-

quent modifications of respective models and facilitates the testing of assumptions

for the common mixing region and reaction chamber without disturbing anything

in other modules.

The prgcvd module class: This class is optional. It has been developed mainly

for hiding the relationship among the objects of the module classes described above,

which can be described in the main program. By doing so, only the object of prgcvd

class must be instantiated, which simplifies the main program implementation. Sev-

eral utility methods are developed in this class, such as plot for plotting solutions

of gas composition profiles along segment length and the segment arrangement pat-

terns, segdeprate outputs information on each segment deposition rate, setpattern is

for setting segment patterns, and so on.

The class diagram in Figure 4.6 shows the relationship of constructed module

classes. The simulation framework developed can be used for n-segmented show-

erhead CVD reactor simulation with any desired alignment pattern, which greatly

facilitates the test of different reactor design ideas and saves substantial cost, labor

and time of experiments.

4.2.3 Solving the Multi-Segment CVD System

To obtain the gas profiles within each segment of the programmable CVD

reactor, the following steps in the main program will be taken:

71



prgcvd

+ constructor()
+ display()
+ filmthick()
+ segdeprate()
+ setpattern()
+ plot()

topmix

+ constructor()
+ residual()

segment

+ constructor()
+ residual()

chamber

+ constructor()
+ residual()

gap

+ constructor()
+ evalvar()
+ growthrate()

Figure 4.6: The class diagram of the programmable CVD system

• Set operating conditions, such as pressure, wafer temperature, gap distance,

gas flow rates, etc., from user input or to be retrieved from data file in XML

format;

• Create objects of segment class. The number of objects is equal to the number

of showerhead segments;

• Define the showerhead pattern by identifying the relative positions of each

segment;

• Create an object of prgcvd class by providing the segment objects and their

pattern, gap distance between showerhead and wafer surface, etc., as inputs;

• Solve the modeling system defined by the prgcvd object using the Newton’s

method of naemodel class;

72



• Plot the gas composition profiles.

As mentioned earlier, the ng ∗ n nonlinear coupled ODEs (Equation 4.1) must

be solved simultaneously subject to boundary conditions (Equation 4.2). The col-

location method is used to discretize the ODE system, which results in ng ∗ n ∗ ncol

nonlinear algebraic equations, where ncol is the number of collocation points located

within the domain of interest. Combined with two interval endpoints at which the

residuals are defined by the boundary conditions, the nonlinear AE system is solved

using Newton’s method by driving all residuals to zero. The information exchange

among the modules during the computation is similar to that described in Chapter

2.

For demonstration purposes, a three-segment alignment pattern is created, as

depicted in Figure 4.7 and Figure 4.8. The operating conditions for this system are:

total pressure P = 0.5torr, wafer temperature Tw = 673K, gap distance h = 5mm,

flow rate in segment 1: H2 = 0; WF6 = 0; Ar = 50sccm, flow rate in segment 2:

H2 = 0; WF6 = 50sccm; Ar = 0, flow rate in segment 3: H2 = 50sccm; WF6 = 0;

Ar = 0. The number of collocation points is 20.

As shown in Figure 4.8, all three gas concentrations converged to the same

values at the gas exits of each segment because the complete mixing assumption is

made, that in the exhaust zone, the gas composition is the average of all feed gas

compositions. Although in each segment, the dominant gas is the feed species, the

other two gases entered the segments through the inter-segment diffusion in the gap

and back diffusion from the top of the segments. The back diffusion effect is reduced

73



−0.05

0

0.05

0.1

0.15

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04
−1

−0.5

0

0.5

1

1 2 3

Figure 4.7: The alignment pattern of three-segment design

at higher feed flow rates [27]. Because of the larger value of diffusivity of H2, as

shown in the figure, H2 diffuses more extensively relative to the other two gases

which results in H2 having a higher concentration than that of WF6 in segment 1

and Ar in segment 2. The gap distance from the segment bottom to wafer surface

is 5mm, which results in considerable inter-segment diffusion and diffusion between

the reactor chamber and the gap region. The contributions from reaction depletion

is small compared to other transport effects.

4.3 Model Validation in the Three-segment Programmable CVD Sys-

tem

The three-segment prototype of the programmable CVD system had been built

and deposition experiments have been performed to demonstrate the programmable

74



Figure 4.8: Gas composition profiles as the function of position within each segment

concept feasibility [29]. The experimental results, including the metrology data

of deposited tungsten (W) film thickness measured by a four point probe sensor,

the true W thickness measured by scanning electron microscope (SEM), and gas

distribution in each segment obtained from mass spectrometry signals, are used to

validate model’s assumptions and accuracy.

4.3.1 Gas Concentration Profiles along Vertical Segments

As seen in Figure 4.8, the simulator predicts the gas concentration profiles

along segment height based on the specified operating conditions. In the experi-

75



ments, a mass spectrometer was used to monitor the electrical signal as it is related

to the partial pressure of the measured gas in a segment. One experiment was

conducted to measure gas distribution at the different vertical positions within one

segment, and the mass spectrometry data was used to evaluate the model’s predic-

tions.

Because of the safety concerns during movement of the sampling tube related

to potential leaks at the O-ring seals, only inert gases Ar and H2 were used for this

study [21]. The experiment recipes are shown in Table 4.3.

Table 4.3: Experimental recipe for gas concentration profile measurement: Gap =

1mm, Pressure = 1 torr, Temperature = room temperature.

Feed gas / Flow rate (sccm) Seg1 Seg2 Seg3

Ar 60 30 60

H2 0 30 0

The feed tube outlet is 2.25” away from the segment bottom and the sampling

tube was moved up from 0.5” to 4.5”, as measured from the segment bottom. The

mass spectrometry signal of current was recorded in segment 2 and converted into

the mole fraction. The comparison of the simulation profiles and experimental data

is depicted in Figure 4.9.

Due to the small gap size (1mm), the magnitude of the inter-segment diffusion

is small, but not insignificant. As we can see from the Figure 4.9, at the bottom of

segment 2, the Ar concentration is a bit higher than at the feed tube outlet because

76



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Segment length (m)

G
as

 c
om

po
si

tio
n 

in
 s

eg
m

en
t 2

gap=1mm and top exhaust region well−mixed

H2 (simulation)
Ar (simulation)
feed tube outlet
Ar (mass spec)
H2 (mass spec)

Figure 4.9: The simulated gas composition profiles vs. experimental measurements

by mass spectrometry (one object created for the exhaust volume area). Sum of

squre error (SSE) = 0.0156 for Ar simulation

of the diffusion from segment 1 and segment 3 where Ar is the dominant gas, while

H2 composition at the bottom of segment 2 is a slightly lower than at the feed

tube position as a result of the diffusion of H2 to segment 1 and segment 3 where

initially no H2 was introduced. Based on the perfectly mixed assumption for the top

exhaust region, one object of topmix module was created for the simulation, and the

average value of the feed compositions was taken as the exhaust gas composition.

Although the comparison of experimental data and simulation results shows the

77



same trend in the gas concentration profiles along the vertical position in segment

2, the obvious difference of Ar composition at the top of the segment calls into

questions the validity of the well-mixed assumption.

As a result of this discrepancy, the simulator was modified by assuming that

in the exhaust region, gases become well-mixed after a certain height from the exit

of the segment, but in the area immediately adjacent to the exit of the segments,

gases are not completely mixed and the gas compositions are influenced by the inter-

segment diffusion on the top area. Three objects of topmix module were created,

and the exhaust volume compositions of Ar and H2 were approximated as 0.75 and

0.25 for segment 2, 0.95 and 0.05 for segment 1 and segment 3, respectively. The

comparison of new simulation results vs. mass spectrometry data is shown in Figure

4.10. It shows great improvements in matching simulation results with experimental

data. The sum squared error (SSE) of Ar simulation vs. mass spectrometry mea-

surement data is 0.0156 and 0.0042 for the well- and not well-mixed assumptions,

respectively. In conclusion, the exhaust gases appear to be not well-mixed in the

region immediately next to the segment exits.

Although both Ar and H2 mass spectrometry measurements give same trend

as simulation profiles, we tested our model assumptions based on the match between

the Ar experimental data and simulation results. This is because the sum of the

mole fractions of H2 and Ar experimental data are not unity, we believe Ar’s signal is

more dependable because of its concentration higher resulting in a stronger current

signal relative to H2, resulting in less relative measurement errors.

78



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Segment length (m)

G
as

 c
om

po
si

tio
n 

in
 s

eg
m

en
t 2

gap=1mm and top exhaust region not well−mixed

H2 (simulation)
Ar (simulation)
feed tube outlet
Ar (mass spec)
H2 (mass spec)

Figure 4.10: The improved simulation gas composition profiles vs. experimental

measurements by mass spectrometry (three objects created for the exhaust volume

area). Sum of square error (SSE) = 0.0042 for Ar simulation

4.3.2 Kinetic Rate Mechanism Validation through Uniform Deposi-

tion Experiments

The programmable CVD system is designed to be able to spatially control

uniformity and nonuniformity of thin films across the wafer surface. A uniform de-

position experiment was conducted to measure the segment-to-segment uniformity.

The process recipe can be found in Table 4.4 [28].

79



Table 4.4: Experimental recipe for uniform tungsten deposition: Pressure = 1 torr,

Heater temperature = 673 K, Gap = 1mm.

Feed gas / Flow rate (sccm) Seg1 Seg2 Seg3

Ar 30 30 30

H2 24 24 24

WF6 6 6 6

W film was generated by H2 reduction of WF6, and the reaction is:

WF6 + 3H2 → 6HF + W (s)

Numerous studies have been performed to investigate the reaction rate mech-

anisms of hydrogen reduction of tungsten hexafluoride. It has been argued that

under the operating conditions of LPCVD (Low Pressure CVD), the reaction rate

is primarily a function of temperature and H2 concentration [15, 74], however the

overall rate can not be independent of the WF6 pressure at very low WF6 concentra-

tion because the supply and mass transfer become reaction limiting steps [81, 61],

so both H2 and WF6 effects on the reaction rate should be considered [22, 75].

Representative models are summarized as follows. The reaction rate is in nm/s,

pressure in torr (except for the first group of rate constants in the equation 4.5, in

Pa), temperature in K, and activation energy of the reaction in J/mol.

• An empirical rate expression form, with the coefficients listed in the Table 4.5:

Rrxn = k0P
m
H2

P n
WF6

exp (− Ea

RT
) (4.5)

80



Table 4.5: Rate constants for the empirical rate expression

Ref. m n k0 Ea

1 [74] 1/2 0 6.8×104 73,000

2 [15] 1/2 0 1.16×107 68,500

3 [81] 1/2 1/6 3500±400 64,000

• A modified rate from which decreases to zero as the partial pressure of WF6

approaches zero [22]:

Rrxn = 1.2 exp (−8800/T )
PWF6PH2

1 + 150PWF6

(4.6)

• A rate expression indicating WF6 adsorption is the rate limiting step in the

mass transfer controlled regime and HF desorption is the one when the surface

is saturated with WF6 [75].

Rrxn = [
1

k1PWF6

+
1

AP
1/6
WF6

P
1/2
H2

exp (−Ea/RT )
]
−1

(4.7)

where, A = (7.17 ± 0.20) × 106, and k1 = (2.61 ± 0.23) × 105.

These reaction rate models are included in the growthrate method of gap mod-

ule. And each model was tested by turning off other models during computation.

The film thickness in each segment are calculated by the filmthick method in the

prgcvd module. Based on the previous experiments, the wafer temperature in the

simulator is set to 355oC corresponding to 400oC setpoint of heater temperature

[28]. The gases in the reactor chamber are assumed well-mixed and the gas com-

positions are taken as the average of the total flow rate to the three segments.

81



This assumption is valid because of the equipment preconditioning. The purpose of

preconditioning is to reduce contaminants inside reactor chamber and gas delivery

system and allow the mass spectrometry signal to reach stable status. The param-

eter settings (P, T, gas flow rate ratio, etc.) for the conditioning process are the

same as that for deposition process and one or two dummy wafers are deposited.

The conditioning procedure usually takes about two to three hours during which

the inside walls of the reactor chamber are saturated with reactant and byproduct

gases [21].

The deposition time for all processe is 10min. The average film thickness

measured by four point probe (4pp), the true film thickness range estimated from

the scanning electron microscope (SEM) measurement of films produced in nonuni-

formity experiments, and the simulated thickness using different reaction models at

different wafer temperatures are listed in Table 4.6.

As shown in the table, we used model 4.5-(2) to analyze the effect of chamber

gas diffusion on the gap region within segmented showerhead and wafer surface by

turning on and off the chamber module in the simulator. The little difference on the

deposited film thickness shows the gas interaction between gap and reactor chamber

is small. The small gap size, 1mm, is the main reason.

The average thickness is computed from 4pp measurements. The output of

4pp is the sheet resistance, and it can be converted to film thickness by dividing film

resistivity with sheet resistance. Since the film resistivity is not available, we use bulk

resistivity of W (5.6µΩ · cm) as an estimation to determine the film thickness. The

true thickness can be obtained by adjusting the 4pp results by multiplying a factor

82



Table 4.6: Comparison of uniform deposition experimental data of W film thickness

measured by four-point probe (4pp) with simulation results: Gap = 1mm, Pressure

= 1 torr, Wafer temperature is to be determined, chamber gas diffusion is counted

(i.e., ch:on).

Average thickness (nm) Seg1 (355oC/380oC) Seg2 (355oC/380oC) Seg3 (355oC/380oC)

4pp measurement 154.5 162.6 158.8

True thickness range 420 - 580 420 - 580 420 - 580

Model 4.5, (1) 279.9/480.0 279.9/480.0 279.9/480.0

Model 4.5, (1) 460.4 (378oC) 460.4 (378oC) 460.4 (378oC)

Model 4.5, (2) 163.3/271.1 163.3/271.1 163.3/271.1

Model 4.5, (2) (ch: off) 165.1/274.3 165.1/274.3 165.1/274.3

Model 4.5, (3) 125.3/199.9 125.3/199.9 125.3/199.9

Model 4.6 234.8/400.5 234.8/400.5 234.8/400.5

Model 4.7 146.9/234.1 146.9/234.1 146.9/234.1

of 2 to 5, which is the range of the ratio of true film resistivity/bulk resistivity. The

true thickness range listed in the table is assessed based on the SEM measurement

for nonuniform deposition experiment results [28].

According to the Choo’s paper [28], he suggested that the actual wafer tem-

perature is approximately 355oC for the 400oC set point of heater temperature.

We evaluated different reaction rate models using this temperature, and all results

showed low film thickness. The wafer temperature approximation of Choo may

83



be inaccurate because it was measured using H2, N2, or Ar under non-deposition

conditions. Because gas heat conductivity, gap size, gas composition, and thermal

conductivity of mixture gases will all cause significant temperature differences, one

important application of the simulator is to find the true wafer temperature by

comparing simulation results with experimental data. Therefore, we also estimated

deposition rates at 378oC and 380oC wafer temperatures. As a result, we found

model 4.5 with rate constants (1) gives the closest approximation to the true thick-

ness at the 378oC and 380oC wafer temperatures. We use this model to predict film

thickness for subsequent non-uniform experiments.

4.3.3 Model Predictions for Nonuniform Deposition Experiments

To demonstrate the deposition programmability of the programmable CVD

system, an intentional nonuniform deposition experiment was performed. The pro-

cess recipe is listed on Table 4.7 [28].

Table 4.7: Experimental recipe for nonuniform tungsten deposition: Pressure = 1

torr, Heater temperature = 673 K, Gap = 1mm.

Feed gas / Flow rate (sccm) Seg1 Seg2 Seg3

Ar 60 30 0

H2 0 24 48

WF6 0 6 12

As indicated in the previous section, the simulator gives a better prediction

84



of deposition rate using model 4.5 with rate constants (1). Hence, we choose this

model for current simulation. Under the nonuniform experimental conditions, we

computed film thickness at different wafer temperatures, ranging from 355oC to

380oC, and also evaluated the well-mixed or not well-mixed assumption for the top

exhaust area. The comparison of simulation and experimental measurements are

listed in the Table 4.8.

Table 4.8: Comparison of nonuniform deposition experimental results of W film

thickness [28] with simulation results: Gap = 1mm, Pressure = 1 torr, Wafer tem-

perature is to be determined, chamber gas diffusion is counted (i.e., ch:on), rate

expression: Model 4.5-(1).

Average thickness (nm) Seg1 Seg2 Seg3

4pp measurement 56.2 146.1 180.7

SEM 270 420 580

T=355oC, 3 topmix objects 139.8 278.7 350.0

T=375oC, 3 topmix objects 217.3 430.4 539.4

T=378oC, 3 topmix objects 231.5 458.3 574.3

T=379oC, 3 topmix objects 236.5 468.0 586.3

T=380oC, 3 topmix objects 241.5 477.8 598.5

T=380oC, 1 topmix object 375.1 480.2 570.2

It can be found from the comparison of true thickness values with simulated

values that the 378oC wafer temperature setting and not well-mixed top area as-

85



sumption gave the closest estimation of thickness to the true value. For not well-

mixed assumption, we created three objects of topmix class, and set the gas com-

positions in each object is equal to the feed composition on each segment. This is

not an accurate approximation, the results will be greatly improved if we can adjust

the gas compositions at the top area by considering inter-segment diffusion. Over-

all, this experiment confirmed the rate model we chose, the true wafer temperature

corresponding to 400oC heater setting, and the assumptions we made for chamber

and common exhaust volume. Again, this simulator demonstrates its capability

to predict the deposition results and to describe the transport phenomena during

deposition process.

4.3.4 Conclusions

By comparing three different deposition experiments conducted in three seg-

ment prototype system, the simulation model has been validated. Several comments

on the model are to be made:

• An appropriate deposition reaction mechanism has been determined for the

programmable CVD system under current operating conditions.

• The well-mixed assumption in the reactor chamber is valid based on the pre-

conditioning process.

• The assumption of perfectly mixed gases in the top area of segments can

be held only from some certain level height in the common exhaust volume.

The higher the total gas flow rate fed into each segment, the thicker the not

86



well-mixed layer. This parameter estimation can be acquired by fitting the

experimental data to the model. A simple binary flux model can be used

to describe the inter-segment diffusion in this top area and will improve the

model’s precision.

• Wafer temperature is determined through the model validation by experimen-

tal results. The true wafer temperature is approximately 378oC for heater

setting 400oC.

In general, this object-oriented modular simulator developed for the programmable

CVD system demonstrates its capability of accurately predicting deposition rate,

film thickness and concentration profiles along the segment height. The simulation

results can be used to guide the selection of experimental operating conditions for

run-to-run control. It also improves the optimization efficiency and reduces the ex-

perimental cost and development cycle of new system design. The simulator is easy

to maintain and adjust to adapt to the equipment modifications.

87



Chapter 5

XML-based Information System for the Programmable CVD System

This chapter discusses how the Java and XML-based information techniques

are applied for data management for the programmable CVD system. First, we

will consider the motivation for this research, followed by an overview of JAVA and

XML applications. Then the three-tier information framework is presented. The

framework functionalities are demonstrated with applications to a three-segment

prototype of the programmable CVD system.

5.1 Research Motivation

When working on the design and analysis of the programmable CVD system,

one major concern came up repeatedly, i.e., the management and sharing of different

format data from different sources (Figure 5.1). Specifically, several challenges come

to light:

• Different data sources: How to store data from different sources while recording

all related information to the data for post-processing becomes challenging.

For example, for the prototype I of the programmable CVD system, (1) the film

thickness had been measured in selected seven points for each segment, which

requires that the coordinate of each point should be recorded and mapped with

that point thickness; (2) the experimental conditions should be associated with

88



Figure 5.1: The challenges of different format data management and sharing within

the research groups

the deposited wafer photo. For the prototype II design, (3) the film thickness

had been measured in 30 by 30 matrix format; (4) the raw mass spectrometry

data requires preprocessing before further use. Figure 5.2 is a snapshot of a

typical mass spectrometry data file.

It is seen from the file that hundreds of items of data are saved for each run-

ning process recipe, and the process recipe was recorded in a separate place

manually. The measurement data information were marked at the end of the

file, such as when data were taken, under preconditioning or deposition pro-

cess, where they were taken, i.e., in exhaust area or inside a specific segment,

if the data is invalid because of other operations during process, and so on.

89



Figure 5.2: Snapshot of mass spectrometry data file

90



According to these annotations, one must choose the related data information

manually from hundreds of data points and regroup them for further process-

ing. For a batch production of daily deposition experiments, thousands of data

items were generated during the process, which is labor and time consuming

work.

• Different data formats: A desired solution to data storage is to group as-

sociated information together. For example, to study a deposition process,

the related information includes: equipment settings, operation conditions,

measurements during experiments, measurements after experiments, deposited

wafer photo, etc. Data, text of remarks and images are mixed together and

must be saved together.

• Data sharing and different applications: The research has been conducted with

collaboration among different groups. Data coming from various sources is in

dissimilar format and must be archived in an efficient way for sharing locally

and remotely, i.e., one would like to easily retrieve data in the desired format

and use preferred software such as Excel and MATLAB to process them.

Motivated the needs discussed above and the limitations of current data man-

agement, we developed a Java and XML-based integrated three-tier information sys-

tem framework to facilitate data archiving, management, analysis and distribution

for the CVD system design. The information system renders several user-friendly in-

terfaces and can be easily integrated into other large data management systems. The

advantages of the system include: (1) Reusable design in system architecture and

91



data storage; (2) Integration of data archiving and distributed simulation; (3) Stor-

age and browsing of large volumes of heterogeneous data produced in semiconductor

manufacturing processes (4) Data sharing among different group for dissimilar ap-

plications.

5.2 Literature Review

With the soaring of the Internet in recent years, people have begun to couple

the promising information technology with the current manufacturing technologies

to reduce the overall manufacturing costs. E-Manufacturing, e-Diagnostics and e-

Business have become ”buzzwords” in the semiconductor industry.

The ”e” indicates information to be gathered, shared and manipulated through

secured web-based networks for manufacturing, diagnosis and business. e-Manufacturing

synchronizes the planning, procurement, and operations of a factory with its support

functions at significantly faster speeds with greatly reduced costs, which is achieved

through the efficient information flows among the factory, its suppliers, its customers

and its internal support groups [12]. e-Diagnostics provides the field-service engi-

neers the ability to access the IC maker’s facility remotely via secured network and

monitor, diagnose and configure the equipment rapidly or even remotely [100]. e-

Business enables companies such as IC makers, equipment and material suppliers,

business partners and customers to collaborate more closely [9].

Although some companies recently announced they have been developing huge

semiconductor-specific commercial management software [4, 89, 96, 103], these de-

92



velopments primarily focus on data management for equipment productivity, supply

plan, yield management and business-to-business data exchange, etc. Little atten-

tion has been paid to the information system development for the process data

analysis and manipulation.

In the semiconductor industry, the manufacturers have a large amount data

with various formats to maintain for manufacturing and business transactions. How-

ever, different data formats limit the data exchange among applications. To enable

exchange of these data, an industry consortium group, the Pinnacles Group, de-

signed an industry-specific Standard Generalized Markup Language (SGML). Their

idea was that the data wrapped by industry-specific SGML would enable intelligent

applications not only to display semiconductor data sheets as readable documents

but also to drive ULSI design processes [14]. The problem of this approach is that

SGML is so complicated that almost no software has ever implemented it com-

pletely. Programs that implemented or relied on different subsets of SGML were

often incompatible with each other [45].

XML is a descendant of SGML, but with much less complexity of SGML [73].

With a simple, well-documented data format and rich data structures, it aims the

interchange of metadata. XML documents are plain text and can be read and

edited with any text-editor. The most common applications of XML today involve

the storage and transmission of information among different software applications

and systems. ”XML is often referred to as the technology of the future” [76]. Many

large database management systems offer XML interface to generate and take XML

format data for further delivery.

93



Java is a high-level programming language, which is object-oriented, platform-

neutral, distributed, robust, secure, multithreaded, easy to maintain, etc and has

many library packages supporting Internet applications (Servlets, JSP, JavaBeans,

etc.) [73, 23]. It is not only a fully functioning programming language just like C,

C++, but also it can be regarded as an appropriate programming language for the

World Wide Web [37].

XML is a perfect match to Java for web applications, because Java code is

portable and XML makes the data portable. More details on these two technologies

can be found from the many reference books widely available, which also demon-

strate their popularity.

The three-tier system architecture has been applied widely to develop enter-

prise solutions in various industries including the semiconductor industry for years,

because of its scalable, reusable and manageable properties [12, 100, 52, 98, 32].

While the solutions for different businesses may appear different, the essential frame-

work structure is actually identical, i.e., the front-end layer and the backend layer

are communicated through the middle layer which takes orders from the front layer,

extracts inquired information from back layer server, wraps them in the desired for-

mat, and then presents them to the front layer. There are several different methods

to implement a three-tier system architecture solution.

94



5.3 Information System Framework

As shown in Figure 5.3, the integrated information system developed is based

on the three-tier infrastructure design and provides us with a scalable and flexible

solution with a great security structure to share data locally and remotely.

Figure 5.3: The Information System Framework for the Programmable CVD System

The backend tier is the data server in which processed experimental data that

includes equipment information, experimental conditions and experimental results

are imported and different types of data are wrapped in XML format for further

delivery or applications. The middle tier takes orders from the front-end users, ex-

tracts the inquired information from data servers, wraps data in the desired formats

for presentation, and then sends them back to the users. The front-end clients may

query and display experimental information in HTML format by retrieving data

from XML documents. For the analysis and simulation work on the client side, the

data (such as experimental information, physical and thermal properties, chemical

kinetics data) wrapped in XML format will be parsed by a parser written by users

95



and integrated into applications for computing and plotting in MATLAB. Simula-

tion results can be compared to experimental data to validate process models, or

experimental data can be used for parameter identification in the model, and the op-

timized simulation models and control parameters could be used as feedback at the

experiment sites to improve experiment results. The information system exhibits

these features:

• User friendliness: The potential users of the information system could be en-

gineers, researchers, students or people from any areas. User-friendly intuitive

interfaces make it much easier to navigate through a complex system. Web-

browser interfaces would always be good choices if possible, which eliminate

any complicated training.

• Flexibility: It can be easily deployed and run on different platforms or servers.

For the web-based applications, compatibility with different web-browsers is

also be assured.

• Scalability: What has to be done to the system if more or fewer clients are

involved? A good system design always takes care of the scalability concern.

Three-tier system architecture can manage and distribute workload among

servers intelligently and scale up or down with little effort depending on tar-

geted workload.

Data managed in this information system may include process data, experi-

mental results data and other relevant data, such as species physical property data,

96



related reaction kinetics data or data from other archives. These data are likely

to have heterogeneous formats. Process data may include real-time data collecting

from deposition process; and experimental results may contain those data describing

the image or properties of deposited films; the relevant data may come from various

sources, such as literature, suppliers, or other fabrication process. The application

of JAVA and XML technique to the information system makes data management,

archiving and distribution successful and efficient.

5.3.1 Data Store and Archive

Because data type, locations or sources, amount, future growth patterns and

operations applied to data may be different, different storage strategies have been

developed. For example, Ignatius and Simas [52] proposed a distributed data store

and management model to leave the data where they were and refer to them from

the central location, because the size of data stored is large, the users do not want

to give up their data, and there is no need to duplicate the data in the central

server. This is one of the reasonable solutions for large scale manufacturing data

management, especially when data sharing is across corporations or organizations.

To a fabrication process, such as a CVD process, the centralized data store and

management model may be more appropriate, which stores all data on the central

data warehouse for quick access and easy management.

XML is a universal data storage format and it can be tailored to store and

organize any kind of information of user interests [45, 94]. With its simple syntax

97



and hierarchical tree-like data structure described by a document model, document

type definitions (DTDs), XML is easy to read and parse. It also separates data

representation and presentation to allow different views of the same set of data.

Combined with style-sheets, XML can create formatted documents in any style.

For small data application, XML may be used as a self-contained data store at zero

cost compared with commercial database management systems.

The strategy taken for developing the information system is to use XML to

wrap and mark data from different sources and centralize them together in a specific

location for distributed applications.

5.3.2 Data Access and Retrieval

The middle tier also called business-handling layer consists of two layers: the

business logic layer and the server side presentation logic layer. The business logic

layer interprets user’s request to determine what data service is requested, how to

invoke the requested data services and how that information should be extracted or

generated from the data service module. As indicated by its name, the server side

presentation logic layer handles the formatting and presentation of user-interested

data.

The business-handling module, hosted on the web server, is implemented with

Java Servlet and JSP (Java Server Pages) technology. Java Servlet is supported

directly or by a plug-in virtually on every major web server. Java Servlet is easier

to use, more efficient, powerful and portable, safer and cheaper than traditional

98



CGI and many alternative CGI-like technologies. Servlet also has an extensive

infrastructure for automatically parsing and decoding HTML form data, reading

and setting HTTP headers, handling cookies, tracking sessions, and many other

high-level utilities [44].

All clients communicate with the web server through HTTP protocols to invoke

the business logic layer’s Servlets using a URL (Uniform Resource Locator), which

in turn calls the data service module to request the corresponding services. Some

of these Servlets are merely utility modules, which are exclusively used by other

Servlets and not offer any service directly to users.

Well-defined XML documents are highly structured and easy to parse. There

are two types of parser model: Document Object Model (DOM) and Simple API

for XML (SAX). A DOM-based parser has following significant features: the entire

document is parsed and stored in memory to create the hierarchical data structure,

and it is a simple approach applicable to the repeated, random access to different

sections of the document. The SAX-based parser is an event-driven model, where

no tree structure is built and data is passed to the application when it is found, so

less memory space is needed than DOM.

Since it is easier to traverse and edit an XML document with a DOM tree

structure, a DOM-based parser has been developed in Java to extract the data

wrapped in XML format for analysis and simulation purpose in the MATLAB envi-

ronment on the client side. To retrieve data needed from the XML data files, user

may download the parser and related Java classes, and then create an object of the

parser class to obtain the data.

99



5.3.3 Data Presentation and Applications

XML separates data representation from its presentation and facilitates dif-

ferent views of the same set of data. An XSL (eXtensible Stylesheet Language)

stylesheet that marks up the data with formatting objects can be used to transform

an XML document into a variety of formats, such as PDF, Excel, etc. To present

an XML document on the web in HTML format, generally a CSS (Cascading Style

Sheets) stylesheet or an XSLT (XSL Transformations) stylesheet can be used. The

alternative option of rendering XML data on the web is to instantiate a DOM object.

Combing it with HTML and JavaScript, we can obtain the capabilities of generating

Dynamic HTML (DHTML) on the client side [46].

The client-server architecture supports two application models: thin client

model and thick client model. The thin client model characterizes all application

software needed to generate a presentation report reside on the server side and is the

recommended model for client-server network architecture [37, 52], while in the thick

client model the server merely provides data to the clients and the clients run their

own software for specific applications. The thin client model has many advantages

for clients: no need to take care of software updates, no special training or computer

knowledge is necessary, no expensive or large hard drives required, intention to

“network computing instead of personal computing” [37]. Web-browsers are good

examples of the thin client model. The thin client model would be a preferable

structure from cost saving view point and for general applications. However, if

clients have already acquired some complex analysis systems (such as MATLAB,

100



FLUENT, or FORTRAN) and also prefer running large computing or simulation

applications in a more controllable way, the thick client model will be the desirable

solution.

We utilize the full power of client-server architecture and apply both the thin

client model and the thick client model to develop our proposed information system,

i.e., the system will support user queries against data collected and generate reports

on demand from the server as in the thin client model, and may also render the

data for client-side applications as in the thick client model. The computation work

may include simulator validation, parameter identification with experimental data,

experiment optimization with simulation results, etc. This system also gives users

more flexibility to manipulate experimental data. Different users could use data

for different purposes, such as plotting and analyzing experimental results for case

study or educational purposes.

5.4 Demonstration of the Framework Functionalities

The framework functionalities have been illustrated using the three-segment

prototype design of programmable CVD system. A great number of experiments

had been performed on prototype I and II systems. The implementation of the data

management strategies are different for each.

For prototype I, all experimental results are put into one single XML data file

because of the small amount of measurement data. A parser written in JAVA is used

to parse and extract data from the data file to MATLAB simulation environment.

101



This parser can also be used for publishing data with web applications.

For prototype II, because of vastly greater amount of measurement data such as

4pp and mass spectrometry data associated with one single wafer, each experiment

run is wrapped in one single XML file. With the new version MATLAB (7.0 and

higher version) supporting to process XML file, a parser was written in MATLAB

to handle data retrieval from XML data files.

The following sections illustrate the information system developed through

the data management for the prototype I reactor system. The differences in data

structure in XML between reactor type I and type II also is discussed.

5.4.1 Data Management for Prototype I CVD System

The prototype system I was constructed as a modification to an Ulvac ERA1000CVD

cluster tool. A large amount of heterogeneous data generated from the experiments

must be archived, including equipment information, experimental operating condi-

tions measurement results and wafer images.

• Experimental Data Description and Archiving

The experimental data file (PRdata.xml) is illustrated in Figure 5.4, viewed

using Internet Explorer web browser. It shows how we create our own XML-

based language and use these fabricated element names to encode experimental

data. The experiment data file only stores raw data. The root element of this

file is ExperimentalData, all other elements are the child nodes of this root, and

each child element can have attributes which provide additional information

102



on this element.

Figure 5.4: The XML data file viewed using Internet Explorer web browser

Figure 5.5 shows the hierarchical tree-like data structure of the experimental

data XML file, which is defined in the experimental data Document Type

Definition (DTD) document. The root element ExperimentalData contains

child elements RunDate. The RunDate elements do not contain content, but

have associated attributes Year, Month and Day to record the experiment’s

date. For any day, no limits are set for the number of wafers that can be

processed. Wafers are sorted by their key ID - ”Wafer number”. The detailed

information on each wafer is divided into three categories: the Equipment data

(process diagnosis), the Operating conditions data (simulator input), and the

103



Measurements data (analysis, simulator validation).

RunDate RunDate

ExperimentalData

Wafer
( Number )

SegmentDown
( Unit )

WF6LinePres
( Unit )

EquipmentData

RunDate

(Year / Month / Day)

Wafer Wafer

Current
( Unit )

Voltage
( Unit )

Measurements

Segment3
( Ar / WF6 / H2)

FlowRate
( Unit )

Segment2 Segment3

Resistance
( Unit )

Segment1

Point3
( x / y )

Point2
( x / y )

Point1
( x / y )

Point4
( x / y )

Point5
( x / y )

Point6
( x / y )

Point7
( x / y )

value value

value

value value

value value valuevalue

value

value

Segment2
(Ar / WF6 / H2)

value valuevaluevaluevaluevalue

RunDateRunDate RunDate

WaferWaferWafer Wafer

OperatingConditions

Gap
( Unit )

PreHeatingTime
( Unit / Gas )

Pressure
( Unit )

StartTime
(hr/min/sec)

StopTime
(hr/min/sec)

Segment1
( Ar / WF6 / H2)

valuevaluevalue

Before After

Weight
( Unit )

valuevalue
WaferSurface Substrate

Temperature
( Unit )

value

Figure 5.5: Hierarchical data structure of the XML data file for prototype I

The Equipment data include the showerhead position, wafer position, gas line

gauge pressure, etc; the Operating conditions data include all information

about experimental conditions, such as operating temperature, pressure, seg-

ment gas flow rates, wafer/segment spacing, deposition time, and so on; the

Measurements data include experimental results, such as wafer mass before

and after deposition, wafer image files, voltages and coordinates of selected

points on the wafer surface for calculating film thickness. Generally, we use a

descriptive word for the XML tag name to describe their data content. Most

of these elements have Unit as their associated attribute to mark the data.

104



Some elements have more than one attribute, such as hour, min, second, gas,

etc, while some does not have any attributes. All elements may have content

and child elements. Their content usually is called the leaf of a tree. They

may include the real data or null value.

• Parse and Retrieve Experimental Data

The data flow from an XML file to a MATLAB simulation client is shown

in the Figure 5.6. The parser consists of four Java classes: EquipmentData,

OperatingCond, Measurements and DOMPRdata.

The three utility classes, EquipmentData, OperatingCond, Measurements, de-

fine data structures to store extracted raw data and methods for post-processing.

The class EquipmentData encapsulates equipment information on experiments.

Its data members are defined to store equipment information and no member

service is needed to process the raw data beyond queries. The class Operat-

ingCond encapsulates information on experimental operating conditions, such

as temperature, pressure, flow rate and so on. Its data members are used

to store experimental operating conditions and member methods provide ser-

vices for further processing the raw data, such as computing deposition time

from start and stop time. The class Measurements encapsulates information

on experimental and measurement results, such as wafer image file’s name,

coordinates of measurement points, wafer weight before and after deposition,

etc. Its data member variables are declared to store experimental and mea-

surement results and member functions are used to computer wafer mass gain

105



and convert voltage to thickness at measured points.

MATLAB
Simulation

DOMPRData

String sDate
String sWaferNo
EquipmentData  ed
OperatingConditions  oc
Measurements mr

findWafer()
processChileNodes( ) 

OperatingConditions

String[ ] unit
String PrtreatingGas
double[ ][ ] Time
double[ ] Temperature
double Pressure
double Gap
double[ ][ ] FlowRate

DepositionTime( )

Measurements

String[  ] unit
String photo
double Current
double[ ] Weight
double[ ][ ] Coordinate
double[ ] Voltage

Weightdiff ( )
Thickness( )

EquipmentData

String[ ]  unit
double SegDown
double LinePres

Prdata.xml

PRdata.dtd

Figure 5.6: The data flow from an XML file to a MATLAB application

The class DOMPRdata is the parser drive class, which instantiates the three

utility classes. This class has two constructors allowing users to specify a local

or remote XML file for parsing. Both of the constructors take two parameters:

1) the name of the local or remote XML file (i.e., PRdata.xml) and 2) the

wafer number, the key to accessing all experimental data associated with a

particular wafer. Below is an example of the calling conventions in MATLAB

to load PRdata.xml file from a local or remote location.

% load PRdata.xml locally

WJO = DOMPRdata(’PRdata.xml’, ’w091202-04’);

% load PRdata.xml from a remote location

106



url=java.net.URL(’http://www.isr.umd.edu/Labs/CACSE/...

A_team/IT/xml/PRdata.xml’);

WJO = DOMPRdata(url, ’w100802-02’);

The DOM-based XML parser first validates the user specified XML document

(PRdata.xml). If it is a valid XML document, the parser will parse the entire

document and create the hierarchical data structure. Then the parser traverses

it to locate all experimental information of the wafer identified by the querying

wafer number through the member function findWafer.

The findWafer method parses the XML document and compares the querying

wafer number against all retrieved wafer numbers. If there is a match, the

member function processNode is called to process all information related to

the wafer. Then the member function assignValue is called to organize and

store these information into the corresponding objects of these three utility

classes. Otherwise, the message ”wafer not found” is returned.

The processNode method takes one argument, wafer node, and outputs infor-

mation (node’s name and value) about the node and its child elements to a

2-dimensional array. This method uses a switch structure to determine the

node type. If an ELEMENT node is matched, the element’s attributes are

output and then its child nodes are processed in processChildNodes member

method which uses recursive method to retrieve a node’s child nodes by calling

processNode method. In the cases of CDATA or TEXT node are matched, the

node’s text content is output.

107



The parser we developed is very generic and well designed. If a user modifies

the experimental XML file, such as deleting or adding data under any wafer

nodes, there is no need to rewrite the parser drive class. Only a few minor

changes in the corresponding utility classes are necessary, making it convenient

for maintenance and customized usage. Users can download and put these

JAVA classes under their working directory. By instantiating an object of the

parser in their application programs developed with MATLAB or JAVA, all

XML wrapped data would be ready to use.

• Experimental Results Query

A web application of downloading or browsing data from the XML file is shown

in Figure 5.7. An HTML file is generated with the data extracted from XML

file of experimental data and formatted by XSLT. By using Java Servlet and

JSP technology, and instantiating the parser we have written, an interactive

Internet webpage could be created easily. Because authorization is required to

deploy servlets in the university’s server, as an alternative to creating parser

object, we used JavaScript and XSLT to create a dynamic webpage.

• Demonstration of data applications

Figure 5.7 exhibits different applications that use XML wrapped experimen-

tal data. A user can query wafer information according to its ID from the

database (now it is an XML data file, PRdata.xml) and use that part of the

data needed for simulation or analysis, for example, the operating conditions

can be taken as simulator inputs. The simulation outputs will be compared

108



Process diagnosis

PRdata.xml
(w091202-06)

PRdata.xml
(w091202-06)

EquipmentData

Measurements

OperatingConditions

Data analysis
Model validation

Simulator input

Result query online

Figure 5.7: Applications of data retrieval from an XML data file

with experimental results saved as measurement data. The thickness mea-

surements can be extracted and visualized in the MATLAB figure. For web

applications, the wafer film image and corresponding experimental conditions

can be presented in the web browser based on the user query.

109



5.4.2 Data Management for Prototype II CVD System

The prototype II CVD system includes modifications such as the addition

of a gas distribution box, an advanced control system, and a mass spectrometry

instrument for real-time gas composition measurements. Also, a four point probe

method is employed to measure the deposited film thickness, generating a 30 by 30

matrix data format.

As mentioned earlier, for each deposition experiment, one data file of mass

spectrometry includes hundreds of data points. Therefore, to include all experi-

mental information in a single large XML file becomes infeasible and impractical,

because each time when we query the database, we only need one item of wafer

information. Moreover, parsing a large data file and storing all data temporarily

in memory might cause the system to run out of memory or will slow down the

program running speed. Therefore, a small single XML file is created to store all

information connected to one single wafer deposition. The data structure for XML

file is depicted in Figure 5.8.

110



-0.05
0

0.05
0.1

0.15

-0.1

-0.05

0

0.05

0.1
0

0.2

0.4

0.6

0.8

1

H2

7WF6

Ar

H2
H2

6

WF63
WF6

Ar

H2

5

Feeding gas compositions

WF6

Ar

H2

4

Ar

2

H2

1

WF6Ar

Wafer
( number )

OperatingConditions Measurements

DepositTime
(unit )

Temperature
(unit )

Pressure
(unit )

Gap
(unit )

FlowRate
(unit )

Segment
(Ar /WF 6 /H2 )

• • •

WaferPhotoMassSpec
( Timeunit /
Currentnit /

gapunit )

4 pp
( resistivity )

map

ThicknessX

Current
(unit )

Voltage
(unit )

Y

Scan
( num /Time /

position /gap /
note )

• • •

Gas
( type )

• • •

Figure 5.8: Hierarchical data structure of the XML data file for prototype II

111



Chapter 6

Conclusions and Perspectives

6.1 Concluding Remarks

Object-oriented design concepts and a modular approach were used to develop

a flexible framework for chemical process simulation. Created in the context of

semiconductor process simulation applications, the modular modeling approach was

found to be effective in describing equipment hardware elements, and well as reaction

mechanisms and simulator elements that did not necessarily correspond to physical

equipment components. The ability to solve and test individual modules together

with the ease with which modules can be combined, solved, analyzed, and swapped

in and out was found to simplify simulator construction and debugging, as well

as facilitate evaluation of model elements when the modeling equations or physical

assumptions upon which models are based are under development in a simulation

procedure. We find this modular framework facilitates an “evolutionary” approach

to simulator development, starting with a simple process description and building

model complexity and testing modeling hypotheses in a step-by-step manner.

In developing this simulation framework, the use of design patterns, which

offers a high-level abstract structure to avoid dealing with the programming details

in the early development phase, makes the design procedure more efficient, and

helps us have a better understanding of object-oriented analysis and design. While

112



the framework currently is implemented using MATLAB, with the proposed design

patterns, users can create their object-oriented modular system through object-

oriented programming languages of their choice.

The simulation framework is capable of determining numerical solutions to

model modules described by nonlinear algebraic equations, ordinary and partial

differential equations, as well as any combination. Boundary-value problems are

(semi)discretized with a built-in quadrature-based MWR procedure, and the frame-

work interfaces to the full suite of MATLAB ODE/AE solvers. Current research

focuses on improving the computational performance of the numerical algorithms,

including the potential ability for parallel and distributed simulation, investigating

the applicability of the framework for multiscale simulations, and making use of the

flexibility of the simulation framework for the design and optimization of a range of

advanced semiconductor device fabrication processes.

We have shown how simulation gave insight into the operation of the pro-

grammable CVD reactor and quantified the relative importance of different pre-

cursor transport and reaction mechanisms inside this reactor system. The modular-

based approach offers great flexibility in rearranging the segment relative positions in

the simulation, which facilitates the study of different reactor designs and validation

of different models and reaction mechanisms. The effects of operating parameters

and their susequent tuning can also be rapidly determined through the simulation.

Initial success has been achieved in developing an XML-based framework for

on-line archiving and distributed simulation for the three-segment prototype I and

II of programmable CVD system.

113



6.2 Future Work

To make the current computational framework more powerful and improve the

ability to simulate programmable and other advanced CVD systems, the following

are suggested as future reserach directions:

• The computational framework

More sophisticated and complex modules could be added to expand system

capabilities; for example, integrating more MATLAB built-in PDE, AE and

ODE solvers into the class Solver. To solve for PDEs in the complex or irreg-

ular domains, the development of a spectral element method would be useful.

Currently the Jacobian matrix is formed by using a finite difference method

to compute every element in the matrix. Modifying the current approach with

small matrix blocks generated for the entire sparse matrix, the computational

efficiency is expected to get improved.

Explore the application of the framework in these fields: multiscale modeling

and simulation, distributed simulation and parallel simulation.

• The library of modular components

Presently, the framework is mainly used for semiconductor applications. The

development of reusable modular components such as showerhead, wafer, etc.

will make the modeling work easier, shorten the development time and reduce

cost of future solutions. For future usage, more general transport classes, such

as energy module class, mass module class, etc. should be developed. For

114



specific applications, the user can write a simple subclass by inheriting some

features from these base classes.

• The graphical user interface

To introduce the simulation framework to more general audiences and have

more groups to use it, a user-friendly graphical interface will make it easier for

tutorial and learning. Like the popular commercial software, the interface can

provide image icons for users to drag and drop components into the working

space to assemble a modeling system, and click the selected solver to solve it.

• The programmable CVD system modeling and simulation

Develop a two-dimensional model to describe gas composition changes within

each segment. A thermal model for analyzing the temperature distribution

on the wafer is needed. Detailed models to explain the gas mixture stated in

the top exhaust zone and the gap region between the segment bottom and the

wafer surface are preferred.

To describe the complex deposition reactions precisely, and to predict different

segment tungsten deposition rates and film thicknesses of the programmable

CVD reactor, gaseous phase reactions will be considered and the surface re-

action mechanism of tungsten deposition reaction will also be included into

the modeling and simulation. The next generation design of a multi-segment

programmable CVD system will benefit from the simulation results. It may

also provide guidance for the programmable ALD (Atomic Layer Deposition)

system design.

115



• The information system

Currently the gas data used in the thermo-physical property estimator de-

veloped in Java is hard-coded. Each time when the data are updated or a

new species is added, we must edit and recompile the source codes. To avoid

touching the source code, we will store these data in an XML format file and

offer a graphic user interface to facilitate property data editing and retrieval.

With the evolving programmable CVD reactor design, more experimental data

will be generated. Future work should consider a database design to appro-

priate to manage these individual XML data files. Also with the development

of the modular simulator, reaction kinetics data need to be wrapped into

the XML format file as well. Hand coding these data into XML file is a te-

dious, error-prone and time-consuming work. Automation tools with interac-

tive graphic interfaces should be developed to facilitate various data encoding

in the XML format.

Experiment results and physical property data encoded in XML format make

it easy to share and demonstrate the research results through Internet. De-

veloping an online virtual CVD lab can help students learn the CVD process

in a lively manner, e.g., run the simulation by retrieving data of experiments

operating conditions, compare the predicted results with experiments, analyze

and optimize the experimental parameters to see how these conditions affect

the deposition performance.

116



Appendix A

Sample MATLAB codes

A.1 Definition of wafertherm class

A.1.1 wafertherm class: constructor method

function B = wafertherm(u)

emisw = 0.7;

emisq = 0.5;

emiss = 0.07;

a = 0.01;

sig = 5.670e-8;

Ta = 300;

Q = 5000;

Tw = 2;

Tq = 2;

var = assocarray({’Tw’ Tw});

param = assocarray({ ’emisw’ emisw ’emisq’ emisq ’emiss’ emiss ...

’a’ a ’sig’ sig ’Ta’ Ta ’Q’ Q ’Tq’ Tq ... });

A = naemodel(’wafertherm’,var,param);

B = struct([]);

B = class(B,’wafertherm’,A);

A.1.2 wafertherm class: residual method

function A = residual(A)

unpack(A)

f1 = sig*emisw*emisq*Ta^4*(Tq^4-Tw^4) + ...

sig*emisq*emiss*Ta^4*(1-Tw^4) + (1-a)*Q;

A = set(A,’resid’,f1);

117



A.2 Definition of windowtherm class

A.2.1 windowtherm class: constructor method

function B = windowtherm(u)

emisw = 0.7;

emisq = 0.5;

a = 0.01;

sig = 5.670e-8;

Ta = 300;

h = 300;

Q = 5000;

Tw = 2;

Tq = 2;

var = assocarray({’Tq’ Tq});

param = assocarray({ ’emisw’ emisw ’emisq’ emisq ’a’ a ’sig’ sig ...

’Ta’ Ta ’h’ h ’Q’ Q ’Tw’ Tw });

A = naemodel(’windowtherm’,var,param);

B = struct([]);

B = class(B,’windowtherm’,A);

A.2.2 windowtherm class: residual method

function A = residual(A)

unpack(A)

f2 = sig*emisw*emisq*Ta^4*(Tw^4-Tq^4) + h*Ta*(1-Tq) + a*Q;

A = set(A,’resid’,f2);

118



A.3 Definition of wafer module class

A.3.1 wafer class: constructor method

function A = wafer(N)

Rw = 0.0508; % wafer radius, m

Rr = 0.22; % guard ring radius, m

delz = 0.004; % assembly thickness, m

rho = 2600; % assembly density, kg/m^3

sig = 5.677e-8; % Boltzmann constant, W/(m^2 K^4)

Ew = 0.7; % wafer emissivity

Eq = 0.37; % guard ring (quartz) emissivity

a_w = 0.9; % wafer absorptivity

a_q = 0.1; % guard ring absorptivity

Ta = 300; % ambient temperature, K

Ru = recipe([0 600 1200],[1 0.7 0]); % u(t)

M = mwrmodel(’cyln’, N, ’r’, [0 Rr]); % quadrature grid info

S = get(M,’R’); % quadgrid object

Dr = get(M,’dr’); % 1st-derivative operator

DDr = get(M,’ddr’); % 2nd-derivative operator

wmask = mask(S,’lineseg’,[0 Rw]); % scalarfield object to handle discontinuity

emiss = wmask*Ew + (1-wmask)*Eq;

alpha_w = wmask*a_w + (1-wmask)*a_q;

Ql = scalarfield(S,5000); % heat flux of heating lamp, W/m^2

Qg = scalarfield(S,0); % heat flux of gas, W/m^2

Qc = scalarfield(S,0); % heat flux of chamber, W/m^2

qc = scalarfield(S,0); % heat flux at r=Rr, W/m^2

T = scalarfield(S,Ta); % initial solution guess, K

var = assocarray({’T’ T});

param = assocarray({ ’Dr’ Dr ’DDr’ DDr ’S’ S ’wmask’ wmask ’delz’ delz ...

’sig’ sig ’alpha_w’ alpha_w ’emiss’ emiss ’Ta’ Ta ’Rw’ Rw ...

’rho’ rho ’Ql’ Ql ’Qg’ Qg ’Qc’ Qc ’qc’ qc ’Ru’ Ru });

B = naemodel(’wafer’,var,param);

C = odemodel(’wafer’,var,param);

A = class(struct([]),’wafer’,B,C);

A = set(A,’dxdtcoeff’,{[0 0]});

119



A.3.2 wafer class: residual method

function A = residual(A)

unpack(A)

kw = 269 - 0.585*T + 3.75e-4*T^2; % wafer thermal conductivity, W/m/K

kg = 1.53 - 1.87e-3*T + 5.8e-6*T^2; % guard ring thermal conductivity, W/m/K

k = wmask*(0.1*kw + 0.9*kg) + (1-wmask)*kg; % assembly thermal conductivity

k = bpsf(k,1); % filter for discontinuity

Cw = 307 + 1.54*T - 1.06e-3*T^2; % wafer heat capacity, J/kg/K

Cg = 330 + 1.77*T - 9.45e-4*T^2; % guard ring heat capacity, J/kg/K

Cp = wmask*(0.1*Cw + 0.9*Cg) + (1-wmask)*Cg; % assembly heat capacity

dCpT = wmask*(0.1*(Cw - 307)+0.9*(Cg - 330)) + (1-wmask)*(Cg-330);

Cpt = Cp + dCpT; % d(CpT)/dt

t = get(A,’currtime’); % current time, sec

u = powerfrac(Ru,t); % heating lamp power

Rp = ( delz*( (Dr*k)*(Dr*T) + k*(DDr*T) ) - sig*emiss*T^4 + ...

alpha_w*u*Ql + Qg + Qc ) / (delz*rho*Cpt); % interior residual

Rp = setbval(Rp,Dr*T,’r’,’min’); % residual at r=0

Rp = setbval(Rp,k*(Dr*T)+sig*emiss*T^4-qc,’r’,’max’); % residual at r=Rr

A = set(A,’resid’,Rp);

120



BIBLIOGRAPHY

[1] Adomaitis, R.A., Lin, Y.H., & Chang, H.Y. (2000). A computational framework

for boundary-value problem based simulations. Simulation, 74(1), 28-38.

[2] Adomaitis, R.A. (2002). Objects for MWR. Computers and Chemical Engineer-

ing, 26(7-8), 981-998.

[3] Adomaitis, R.A. (2003). A reduced-basis discretization method for chemical

vapor deposition reactor simulation. Mathematical and Computer Modeling,

38, 159-175.

[4] Agilent technologies debuts new graphics-based software solution to sim-

plify parametric data management, extraction and analysis, July (2002).

http://www.agilent.com/about/newsroom/presrel/2002/17jul2002f.html.

[5] Aling, H., Banerjee, S., Bangia, A.K., Cole, V., Ebert, J., Emami-Naeini, A.,

Jensen, K.F., Kevrekidis, I.G., & Shvartsman, S. (1997). Nonlinear model re-

duction for simulation and control of rapid thermal processing. Proceedings of

the American Control Conference, v 4, 2233-2238.

[6] Badgwell, T.A., Edgar, T.F., & Trachtenberg, I. (1992). Modeling and scale-up

of multiwafer LPCVD reactors. AIChE Journal, 38(6), 926-938.

[7] Badgwell, T.A., Breedijk, T., Bushman, S.G., Butler, S.W., ChatterJee, S.,

Edgar, T.F., Toprac, A.J., & Trachtenberg, I. (1995). Modeling and control of

microelectronics materials processing. Computers and Chemical Engineering,

19(1), 1-41.

[8] Balakrishnan, K.S., & Edgar, T.F. (2000). Model-based control in rapid thermal

processing. Thin Solid Films, 365, 322-333.

[9] Baliga, J. (2001). E-Business enters the semiconductor industry. Semiconductor

International, March.

[10] Banerjee, S., Cole, J.V., & Jensen, K.F. (1998). Nonlinear model reduction

strategies for rapid thermal processing systems. IEEE Transactions on Semi-

conductor Manufacturing, 11, 266-275.

[11] Banks, H.T., Beeler, S.C., Kepler, G.M., & Tran, H.T. (2002). Reduced order

modeling and control of thin film growth in an HPCVD reactor. SIAM Journal

on Applied Mathematics, 62(4), 1251-1280.

121



[12] Bloss, D., & Pillai, D. (2001). E-Manufacturing opportunities in semiconductor

processing. Semiconductor International, July.

[13] Bode, C.A., Ko, B.S., & Edgar, T.F. (2004). Run-to-run control and perfor-

mance monitoring of overlay in semiconductor manufacturing. Control Engi-

neering Practice, 12, 893-900.

[14] Bosak, J. (1997). XML, Java, and the future of the Web.

http://www.ibiblio.org/pub/sun-info/standards/xml/why/xmlapps.htm, March.

[15] Broadbent, E.K., & Ramiller, C.L. (1984). Selective low pressure chemical vapor

deposition of tungsten. Journal of the Electrochemical Society, 131(6), 1427-

1433.

[16] Butler, S.W., & Edgar, T.F. (1997). Case studies in equipment modeling and

control in the microelectronics industry. AIChE symposium series, 316, 133-

144.

[17] Braatz, R.D., Alkire, R.C., Seebauer, E., Rusli, E., Gunawan, R., Drews, T.O.,

Li, X., & He, Y. (2006). Perspectives on the design and control of multiscale

systems. Journal of Process Control, 16(3), 193-204.

[18] Breiland, W.G., & Coltrin, M.E. (1990). Si deposition rates in a two-

dimensional CVD reactor and comparisons with model calculations. Journal

of the Electrochemical Society, 137(7), 2313-2319.

[19] Cai, X. (1998). An object-oriented model for developing parallel PDE software.

4, Preprint at the Department of Informatics, University of Oslo.

[20] Cai, X., & Langtangen, H.P. (2002). Developing parallel object-oriented sim-

ulation codes in Diffpack. WCCM V, Fifth World Congress on Computational

Mechanics. Mang, H.A., Rammerstorder, F.G., & Eberhardsteiner, J. eds., July

7-12, Vienna, Austria.

[21] Cai, Y. (2005). Multiplexed Chemical Sensing and Thin Film Metrology in Pro-

grammable CVD Process. Ph.D thesis, University of Maryland, College Park.

[22] Cale, T.S., Park, J.H., Gandy, T.H., Raupp, G.B., &Jain, M.K. (1993). Step

coverage predictions using combined reactor scale and feature scale models for

blanket tungsten LPCVD. Chemical Engineering Communication, 119, 197-

220.

122



[23] , Campione, M., Walrath, K., & Huml, A. (2001). The Java Tutorial. 3rd

Edition, Addison-Wesley.

[24] Chang, H.-Y., & Adomaitis, R.A. (1998). Model reduction for tungsten chemi-

cal vapor deposition. ISR Technical Report: TR 1998-28, University of Mary-

land, College Park, MD, USA.

[25] Chang, H.-Y., Adomaitis, R.A., Kidder Jr., J.N., & Rubloff, G.W. (2001). In-

fluence of gas composition on wafer temperature in a tungsten chemical vapor

deposition reactor: experimental measurements, model development, and pa-

rameter estimation. Journal of Vacuum Science and Technology B, 19, 230-238.

[26] Cho, S., Henn-Lecordier, L., Liu, Y., & Rubloff, G.W. (2004). In situ mass spec-

trometry in a 10 Torr W chemical vapor deposition process for film thickness

metrology and real-time advanced process control. Journal of Vacuum Science

and Technology B: Microelectronics and Nanometer Structures, 22(3), 880-887.

[27] Choo, J.O., Adomaitis, R.A., Rubloff, G.W., Henn-Lecordier, L, & Liu, Y.

(2005). Simulation-Based design and experimental evaluation of a spatially con-

trollable CVD reactor. AIChE Journal, 51(2), 572-584.

[28] Choo, J.O., Adomaitis, R.A., Henn-Lecordier, L., Cai, Y., & Rubloff, G.W.

(2005). Development of a spatially controllable chemical vapor deposition reac-

tor with combinatorial processing capabilities. Review of Scientific Instruments,

76 (062217).

[29] Choo, J.O. (2004). Development of Spatially Controllable Chemical Vapor De-

position System. Ph.D thesis, University of Maryland, College Park.

[30] Cooper, J.W. (2000). JAVA Design Patterns. Addison-Wesley.

[31] Cota, B.A., & Sargent, R.G. (1992). A modification of the process interaction

world view. ACM Transactions on Modeling and Computer Simulation, 2(2),

109-129.

[32] Danner, P. (2002). The importance of IT infrastructure. Semiconductor Inter-

national, July.

[33] Dieterich, E.E., & Eigenberger, G. (1997). The ModuSim concept for modu-

lar modeling and simulation in chemical engineering. Computers and Chemical

Engineering, 21, Suppl., s805-s809.

123



[34] E, W. and Engquist, B., Notices of the AMS, 50(9), 1062-1070 (2003).

[35] E, W., Engquist, B., Li, X., Ren, W., and Vanden-

Eijnden, E., The Heterogenous Multiscale Method: A Review,

http://www.math.princeton.edu/multiscale/review.pdf.

[36] E, W. and Engquist, B., Comm. Math. Sci., 1, 87-133 (2003).

[37] Eberhart, A., & Fischer, S. (2002). Java Tools, Using XML, EJB, CORBA,

Servlets and SOAP. John Wiley & Sons, Ltd.

[38] Edgar, T.F., Campbell, W.J., & Bode, C. (1999). Model-Based Control in Mi-

croelectronics Manufacturing. Proceedings of the IEEE Conference on Decision

and Control, 4, 4185-4191.

[39] Eversteijn, F.C., Severin, P.J.W., van den Brekel, C.H.J., & Peek, H.L. (1970).

A stagnant layer model for the epitaxial growth of silicon from silane in a

horizontal reactor. Journal of the Electrochemical Society, 117(7), 925-931.

[40] Fagley, J.C., & Carnahan, B. (1990). The sequential-clustered method for dy-

namic chemical plant simulation. Computers and Chemical Engineering, 14,

161-177.

[41] Fotiadis, D.I., & Jensen, K.F. (1990). Symmetry breaking phenomena in ver-

tical and horizontal CVD reactors. Proceedings - The Electrochemical Society,

90(12), 92-98.

[42] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns:

Elements of Reusable Object-oriented Software. Addison-Wesley.

[43] Ginkel, M., & Stelling, J. (2001). Modular modeling of cellular systems. The

Third Workshop on Software Platforms for Systems Biology, California Insti-

tute of Technology, Pasadena, USA.

[44] Hall, M. (2002). More Servlets and JavaServer Pages. Prentice Hall PTR.

[45] Harold, E.R. & Means, W.S. (2002). XML in a Nutshell. O’REILLY.

[46] Heinle, N. & Pena, B. (2002). Designing with JavaScript. 2nd Edition,

O’REILLY.

124



[47] Hess, D.W., Jensen, K.F., & Anderson, T.J. (1985). Chemical vapor deposition:

a chemical engineering perspective. Reviews in Chemical Engineering, 3(2), 97-

186.

[48] Hillestad, M., & Hertzberg, T. (1986). Dynamic simulation of chemical engi-

neering systems by the sequential modular approach. Computers and Chemical

Engineering, 10(4), 377-388.

[49] Hitchman, M.L., & Jensen, K.F. (1993). Chemical vapor deposition - An

overview. Chemical Vapor Deposition – Principles and Application. Hitchman,

M.L., & Jensen, K.F. eds., Academic Press, New York.

[50] Hutchison, H.P., Jackson, D.J., & Morton, W. (1986). The development of

an equation-oriented flowsheet simulation and optimization package - I. The

quasilin program. Computers and Chemical Engineering, 10(1), 19-29.

[51] Hutchison, H.P., Jackson, D.J., & Morton, W. (1986). The development of an

equation-oriented flowsheet simulation and optimization package - II. Examples

and results. Computers and Chemical Engineering, 10(1), 31-47.

[52] Ignatius, H.J., & Simas, T. (2001). The E-Manufacturing domino effect. Semi-

conductor International, July.

[53] Ingle, N.K., Theodoropoulos, C., Mountziaris, T.J., Wexler, R.M., & Smith,

F.T.J. (1996). Reaction kinetics and transport phenomena underlying the low-

pressure metalorganic chemical vapor deposition of GaAs. Journal of Crystal

Growth, 167(3-4), 543-556.

[54] International Technology Roadmap for Semiconductors, Modeling and Simula-

tion, 2003 Edition.

[55] Jenkinson, J.P., & Pollard, R. (1984). Thermal diffusion effects in chemical va-

por deposition reactors. Journal of the Electrochemical Society, 131(12), 2911-

2917.

[56] Jensen, K.F., & Graves, D.B. (1983). Modeling and analysis of low pressure

CVD reactors. Journal of the Electrochemical Society, 130(9), 1950-1957.

[57] Jensen,K.F., Fotiadis, D.I., Moffat, H.K., Einset, E.O., Kremer, A.M., &

Mckenna, D.R. (1987). Fluid mechanics of chemical vapor deposition. ASME,

2, 565-585.

125



[58] Jensen, K.F., Fotiadis, D.I., Mountziaris, T.J., Einset, E.O., & Kuech, T.F.

(1991). Models of chemical kinetics and transport phenomena in chemical vapor

deposition systems.Proceedings - The Electrochemical Society, 91(4), 142-160.

[59] Kepler, G.M., Tran, H.T., & Banks, H.T. (2000). Reduced order model com-

pensator control of species transport in a CVD reactor. Optimal Control Ap-

plications and Methods, 21(4), 143-160.

[60] Kleijn, C.R. (1991). A mathematical model of the hydrodynamics and gas-phase

reactions in silicon LPCVD in a single-wafer reactor. Journal of the Electro-

chemical Society, 138(7), 2190-2200.

[61] Kleijn, C.R., & Werner, C. (1993). Modeling of Chemical Vapor Deposition of

Tungsten films. Progress in Numerical Simulation for Microelectronics, Vol 2,

Birkhauser Verlag.

[62] Kleijn, C.R. (1995). Chapter 4: Chemical vapor deposition processes. Compu-

tational Modeling in Semiconductor Processing. M. Meyyappan, editor. Boston:

Artech House.

[63] Kuijlaars, K.J., Kleijn, C.R., & van den Akker, H.E.A. (1995). A detailed model

for low-pressure CVD of tungsten. Thin Solid Films, 270(1-2), 456-461.

[64] Langtangen, H.P. (1999). Computational Partial Differential Equations - Nu-

merical Methods and Diffpack Programming. Springer-Verlag.

[65] Langtangen, H.P., & Munthe, O. (2001). Solving systems of partial differential

equations using object-oriented programming techniques with coupled heat and

fluid flow as example. ACM Transactions on Mathematical Software, 27(1), 1-

26.

[66] Leboreiro, J., & Acevedo, J. (2004). Processes synthesis and design of dis-

tillation sequences using modular simulators: a genetic algorithm framework.

Computers and Chemical Engineering, 28(8), 1223-1236.

[67] Lee, H.H. (1990). Fundamentals of Microelectronics Processing. McGraw-Hill,

New York.

[68] Lee, K.J., & Yoon, E.S. (1994). The flexible modular approach in dynamic

process simulation. Computers and Chemical Engineering, 18, suppl., s761-

s765.

126



[69] Li, X., Shao, Z.J., & Qian, J.X. (2004). Module-oriented automatic differenti-

ation in chemical process systems optimization, Computers and Chemical En-

gineering, 28(9), 1551-1561.

[70] Lin, Y.H., Chang, H.Y., & Adomaitis, R.A. (1999). MWRtools: a library for

weighted residual method calculations. Computers and Chemical Engineering,

23(8), 1041-1061.

[71] Lu, G., & Kaxiras, E. (2004). An overview of multiscale simulations of mate-

rials. http://arxiv.org/PS cache/cond-mat/pdf/0401/0401073.pdf. arXiv:cond-

mat/0401073, v1, 7 Jan.

[72] Maroudas, D. (2000). Multiscale modeling of hard materials: Challenges and

opportunities for chemical engineering. AIChE Journal, 46(5), 878-882.

[73] Maruyama, H., Tamura, K., & Uramoto, N. (1999). XML and Java, Developing

web applications. Addison-Wesley.

[74] McConica, C.M., & Krishnamani, K. (1986). Journal of the Electrochemical

Society, 133(12), 2542-2548.

[75] McInerney, E.J., Srinivasan, E., Smith, D.C., & Ramanath, G. (2000). Kinetic

rate expression for tungsten chemical vapor deposition in different WF6 flow

regimes from step coverage measurements. Z. Metallkd., 91 (7), 573-580.

[76] McLaughlin, B. (2000). Java and XML. O’Reilly.

[77] McLaughlin, K.J., Edgar, T.F., & Trachtenberg, I. (1991). Real-time moni-

toring and control in plasma etching. IEEE Control Systems Magazine, 11(3),

3-10.

[78] Meyer, B. (1988). Object Oriented Software Construction. Prentice Hall.

[79] Michaelidis, M., & Pollard, R. (1984). Analysis of chemical vapor deposition of

boron. Journal of the Electrochemical Society, 131(4), 860-868.

[80] Moffat, H.K., & Jensen, K.F. (1988). Three-dimensional flow effects in silicon

CVD in Horizontal. Journal of the Electrochemical Society, 135(2), 459-471.

[81] Oosterlaken, T.G.M., Leusink, G.J., Janssen, G.C.A.M., & Radelaar, S. (1996).

The hydrogen reduction of WF6: A kinetic study based on in situ partial

127



pressure measurements. Journal of the Electrochemcial Society, 143(5), 1668-

1675.

[82] Patel, N., & Niemyski, P. (2004). Model-based process control for 300 mm

manufacturing: Part I - Lot-level control. Future Fab Intl., 16.

[83] Perkins, J.D. (1983). Equation-oriented flowsheeting. Proceedings of the Second

International Conference on Foundations of Computer-Aided Process Design.

Westerberg, A.W., & Chien, H. H. eds., CACHE, Austin, 309-367.

[84] Peskin, A.P., & Hardin, G.R. (1996). An object-oriented approach to general

purpose fluid dynamics software. Computers and Chemical Engineering, 20(8),

1043-1058.

[85] Pidd, M., & Castro, R.B. (1998). Hierarchical modular modeling in discrete

simulation. Winter Simulation Conference Proceedings, 1, 383-389.

[86] Plummer, J.D., Deal, M.D., & Griffin, P.B. (2000). Silicon VLSI Technology:

Fundamentals, Practice and Modeling. Prentice Hall, Inc.

[87] Ponton, J.W. (1983). Dynamic process simulation using flowsheet structure.

Computers and Chemical Engineering, 7(1), 13-17.

[88] PressMan, R.S. (1997). Software Engineering: A Practitioner’s Approach. 4th

edition. The McGraw-Hill Companies, Inc.

[89] Princeton Softech and Brooks-PRI enhance application performance and

availability of leading factory automation application. October (2002).

http://www.princetonsoftech.com/news/press/brooks.htm.

[90] Quirk, M., & Serda, J. (2001). Semiconductor Manufacturing Technology.

Prentice-Hall, Inc.

[91] Raimondeau, S., & Vlachos, D.G. (2002). Recent developments on multiscale,

hierarchical modeling of chemical reactors. Chemical Engineering Journal, 90(1-

2), 3-23.

[92] Ramirez, F.P., Acosta, R.P., & Rivera, W. (2001). An object-

oriented framework for parallel incompressible flow simulations.

http://mayaweb.upr.clu.edu/crc/crc2001/papers/freddy-perez/pdf

128



[93] Ramirez, F.P., & Rivera, W. (2003). An object-oriented

framework for computational fluid dynamics simulations.

http://mayaweb.upr.clu.edu/crc/crc2003/papers/FreddyPerez.pdf

[94] Ray, E.T. (2001). Learning XML. O’REILLY.

[95] Roenigk, K.F., & Jensen, K.F. (1987). Low pressure CVD of silicon nitride.

Journal of the Electrochemical Society, 134(7), 1777-1784.

[96] SAS, Brooks to deliver semiconductor industry’s first yield execution solution.

April (2002). http://investor.brooks.com/ReleaseDetail.cfm?ReleaseID=77250.

[97] Shacham, M., Macchieto, S., Stutzman, L.F., & Babcock, P. (1982). Equation

oriented approach to process flowsheeting. Computers and Chemical Engineer-

ing, 6(2), 79-95.

[98] Shade, B. (2001). Increase productivity through E-Manufacturing. Semicon-

ductor International, July.

[99] Shalloway, A., & Trott, J.R. (2002). Design Patterns Explained. Addison-

Wesley.

[100] Singer, P. (2001). E-Diagnostics: Monitoring tool performance. Semiconductor

International, March.

[101] Stadtherr, M.A., & Vegeais, J.A. (1985). Recent progress in equation-based

process flowsheeting. Proceedings of the Summer Computer Simulation Confer-

ence, 325-330.

[102] Stuber, J.D., Trachtenberg, I., & Edgar, T.F. (1994). Model-based control of

rapid thermal processes. Proceedings of the IEEE Conference on Decision and

Control, 1, 79-85.

[103] SYNTRICITY Introduces dataConductorEP first web-native

extensible platform for semiconductor yield improvement.

http://www.syntricity.com/news/PressReleases/071702.htm

[104] Takahashi, R., Koga, Y., & Sugawara, K. (1972). Gas flow pattern and mass

transfer analysis in a horizontal flow reactor for chemical vapor deposition.

Journal of the Electrochemical Society, 119(10), 1406-1412.

129



[105] Theodoropoulou, A., Adomaitis, R.A., & Zafiriou, E. (1998). Model reduction

for optimization of rapid thermal chemical vapor deposition systems. IEEE

Transactions on Semiconductor Manufacturing, 11(1), 85-98.

[106] Toprac, A.J., Edgar, T.F., & Trachtenberg, I. (1993). Modeling of gas-phase

chemistry in the chemical vapor deposition of polysilicon in a cold wall system.

Journal of the Electrochemical Society, 140(6), 1809-1813.

[107] Wahl, G. (1977). Hydrodynamic description of CVD processes. Thin Solid

Films, 40, 13-26.

[108] Xu, Y.H. (2001). Real-time in-situ chemical sensing, sensor-based film thick-

ness metrology, and process control in W CVD process. Ph.D. thesis, University

of Maryland. College Park, MD, USA.

[109] Zeigler, B.P. (1984). Multifaceted Modeling and Discrete Event Simulation.

Academic Press.

[110] Zeigler, B.P. (1990). Object-oriented Simulation with Hierarchical Modular

Models: Intelligent Agents and Endomorphic Systems. Academic Press.

130


