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The key to high performance in SMT processors lies in optimizing the shared re-

sources distribution among simultaneously executing threads. Existing resource distribu-

tion techniques optimize performance only indirectly. They infer potential performance

bottlenecks by observing indicators, like instruction occupancy or cache miss count, and

take actions to try to alleviate them. While the corrective actions are designed to improve

performance, their actual performance impact is not known since end performance is never

monitored. Consequently, opportunities for performance gains are lost whenever the cor-

rective actions do not effectively address the actual performance bottlenecks occurring in

the SMT processor pipeline.

In this dissertation, we propose a different approach to SMT processor resource

distribution that optimizes end performance directly. Our approach observes the impact

that resource distribution decisions have on performance at runtime, and feeds this in-

formation back to the resource distribution mechanisms to improve future decisions. By

successively applying and evaluating different resource distributions, our approach tries

to learn the best distribution over time. Because we perform learning on-line, learning

time is crucial. We develop a hill-climbing SMT processor resource distribution technique

that efficiently learns the best resource distribution by following the performance gradient



within the resource distribution space.

This dissertation makes three contributions within the context of learning-based

SMT processor resource distribution. First, we characterize and quantify the time-varying

performance behavior of SMT processors. This analysis provides understanding of the

behavior and guides the design of our hill-climbing algorithm. Second, we present a hill-

climbing SMT processor resource distribution technique that performs learning on-line.

The performance evaluation of our approach shows a 11.4% gain over ICOUNT, 11.5% gain

over FLUSH, and 2.8% gain over DCRA across a large set of 63 multiprogrammed work-

loads. Third, we compare existing resource distribution techniques to an ideal learning-

based technique that performs learning off-line to show the potential performance of the

existing techniques. This limit study identifies the performance bottleneck of the exist-

ing techniques, showing that the performance of ICOUNT, FLUSH, and DCRA is 13.2%,

13.5%, and 6.6%, respectively, lower than the ideal performance. Our hill-climbing based

resource distribution, however, handles most of the bottlenecks of the existing techniques

properly, achieving 4.1% lower performance than the ideal case.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Simultaneous Multithreading Processors

Shared memory multiprocessor design is a natural extension of the mass produced

microprocessors and yields linear or sub-linear scale performance enhancement for well-

designed parallel applications. In the past, small-scale to massively parallel multiproces-

sors were built to exploit thread level parallelism. Recently, single chip multi-threading

processors have been actively studied. Single chip multi-threading processors allow con-

current execution of multiple threads with a single chip by maintaining multiple hardware

contexts on a chip. This architecture effectively utilizes ever increasing available hardware

budget in a single chip module, which is predicted by Moore’s law. In addition, this ar-

chitecture is a cost-effective way of exploiting thread-level parallelism because instead of

having dedicated hardware resources per thread, it allows some of the on-chip hardware

resources to be shared between concurrently running multiple threads thus increasing the

resource utilization.

One implementation of a single chip multi-threading processor is the simultaneous

multi-threading (SMT) processor [1, 2, 3], which executes multiple threads in a single chip

by allowing fine grained sharing of most of the processor resources. Because a single thread

typically cannot fully utilize all of a processor’s available resources, fine-grained processor

resource sharing improves overall resource utilization. The increased utilization directly

1



translates into higher processor throughput. SMT is an important architectural technique,

as evidenced by the widespread attention it has received from academia [4, 5, 1, 6, 7], and

by industry’s willingness to incorporate it into commercial processors [8, 9]. Given single

chip multi-threading will continue to be an important architectural direction, research

that improves SMT performance without increasing its cost, like power consumption or

fabrication cost, will remain highly relevant in future systems.

1.1.2 Feedback-based SMT processor resource distribution

SMT processors improve performance by allowing multiple threads to share most

of the hardware resources. However, the actual performance gain of SMT processors de-

pends greatly on how resources are distributed to individual threads. High performance

occurs only when resources are distributed to those threads that will use them efficiently.

Otherwise, the shared resource may be monopolized by a thread that just holds the re-

source for a long time during the long latency operation, making other threads to wait

for the release of the resource. Hence, the mechanism for controlling resource distribution

among the simultaneously executing threads play a critical role in achieving good SMT

performance.

Several resource distribution techniques have been studied in the past [4, 5, 1, 6, 7];

all of them try to increase performance by reducing the amount of time instructions stall in

shared processor resources. While existing resource distribution techniques have demon-

strated good performance gains, one shortcoming is they optimize performance indirectly.

As illustrated in Figure 1.1(a), resource distribution decisions are made based on hardware

monitors that indicate per-thread resource usage (for example, instruction occupancy or

cache miss counts); the hardware monitors may not be correlated with the actual perfor-

2
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Figure 1.1: (a) Existing resource distribution techniques optimize performance indirectly
by making decisions based on hardware monitors only. (b) Learning-based resource distri-
bution examines actual performance (e.g., IPC) to learn the optimal resource distribution.

mance. From resource usage information, the resource distribution mechanisms can infer

potential performance bottlenecks and take actions to try to alleviate them. For example,

some of the techniques, such as ICOUNT [1], reduce fetch priority of a thread that con-

sumes too many entries in the instruction fetch queue and issue queue. FLUSH [6] flushes

instructions from the pipeline that belong to a thread with outstanding L2 cache miss.

FPG [10] reduces fetch priority of a thread if the thread’s branch prediction confidence is

low. DCRA [4] reduces the resource partition of a thread if the thread has no L1 cache

misses.

These actions are designed to improve performance; however, their actual perfor-

mance impact on the application workload is unknown since the resource distribution

mechanisms never re-evaluate their decisions at run-time by monitoring the end perfor-

mance resulting from their resource distribution. Because resource distribution mecha-

nisms optimize performance only indirectly, opportunities for performance gains may be

missed for two reasons. First, resource distribution mechanisms are designed to target

a small set of important performance bottlenecks; however, SMT processors exhibit a

myriad of behaviors that are highly sensitive to the application workload mix. Existing

resource distribution mechanisms cannot possibly anticipate all bottlenecks for all work-

loads. Second, even for the anticipated performance bottlenecks, further performance
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gains might still be possible because they are designed to achieve the better–not the

optimal–performance.

We propose a different approach to SMT processor resource distribution that op-

timizes end performance directly. Our approach observes the impact that resource dis-

tribution decisions have on performance at run-time and feeds this information back to

the resource distribution mechanisms to improve future decisions, as illustrated in Fig-

ure 1.1(b). By successively applying and evaluating different resource distributions, our

approach tries to search for the best distribution over time. Because our approach searches

for the optimal resource distribution based on actual performance feedback, the resource

distribution decisions it makes are customized to the specific performance bottlenecks of

each workload, reducing missed performance opportunities.

While similar feedback-based optimizations have been applied to run-time hardware

optimization studies [11, 12, 13, 14], we are the first to apply performance feedback to

SMT processor resource distribution.

1.1.3 Hill-Shaped SMT Processor Performance Curve

There are two ways of balancing SMT processor resource: fetch policy and resource

partitioning. Fetch policy selects threads to fetch from every cycle. ICOUNT [1], FPG [10]

STALL [6], and FLUSH [6] are examples of fetch policy. Resource partitioning balances the

resource distribution across concurrently running threads by explicitly maintaining allowed

resource share per thread. DCRA [4] and static partitioning [15, 16, 7] are examples of

resource partitioning. Resource partitioning can rely on fetch policy to enforce its resource

partition. For example, if a thread consumes beyond the given partition, fetch of the thread

is stalled (STALL) or excessively used resources are preempted (FLUSH). We will detail
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fetch policy and resource partition in Section 3.2.

Our technique maintains resource partition to explicitly distribute the shared re-

sources among the concurrent threads, and stalls fetching of a thread if the thread con-

sumes resources up to its partition.

To collect the feedback information, we divide SMT execution into fixed intervals in

time, which we call epochs. At the beginning of each epoch, we set a resource partition.

Then, at the end of each epoch, we measure the performance of the SMT processor during

the epoch. Based on the collected history information on different resource partitions and

their corresponding performance feedback, our mechanism searches for the best resource

partition for the current workload. The success of our approach depends on the searching

speed because we can enjoy maximum performance benefit only after our mechanism

reaches (or approaches to) the optimal resource distribution.

A key observation that enables fast searching is that performance, as a function of

resource distribution, does not change randomly; instead, the performance sensitivity is

often “hill-shaped.” In addition, the shape of the hill does not change randomly over time.

Figure 1.2(a) illustrates this observation by showing the time-varying performance curve

of two applications–applu and vortex–running simultaneously on an SMT processor for

30 epochs. Figure 1.2(b) shows the performance curve of three applications–mesa, vortex,

and fma3d–running simultaneously on an SMT processor during an epoch. These graphs

plot weighted IPC [17], one possible performance metric, as the resource partitions of

individual threads are varied. In the figure, performance follows a well-defined hill shape,

with a clear performance peak, and the hill shape is stable over time.

We exploit this behavior by using a hill-climbing algorithm [18] to search for the

best resource distribution. Because searching is guided by the slope of the hill, our hill-

5



     (a) applu-vortex performance curve
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      (b) mesa-vortex-fma3d performance curve
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Figure 1.2: Performance, measured in weighted IPC metric, of (a) applu and vortex, and
(b) mesa, vortex, and fma3d running simultaneously on an SMT processor, as the fraction
of resources allowed to each application is varied. In (a), the Y-axis shows the amount of
resources allowed to applu (vortex receives the remaining resources), and the X-axis shows
the time. In (b), the X- and Y-axes show the amount of resources allowed to mesa and
vortex (fma3d receives the remaining resources). The labeled arrow indicates the resource
distribution that achieves peak performance.
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climbing algorithm reaches the optimal resource distribution (i.e., the peak of the hill)

after sampling only a small portion of the resource distribution space, thus leading to low

searching times.

One of the most important attributes that leads to the success of the hill-climbing

algorithm is the shape of the hill (i.e., the run-time behavior of the SMT processor perfor-

mance curve). Several pitfalls related to the shape of the hill may defeat the hill-climbing

algorithm. For example, if the hill has multiple humps, the hill-climbing algorithm may

be trapped at one of local maxima. In addition, if the shape of the hill changes very

frequently, the hill-climbing algorithm may not find an optimal resource distribution, or

it may find a temporally optimized resource distribution that performs poorly in the near

future. As the quality of resource distribution provided by the hill-climbing algorithm is

highly affected by the shape of the hill, we conduct in-depth research on the time-varying

shape of the hill in Chapter 4 before we design (in Chapter 5) and evaluate (in Chapter 6

and 7) our hill-climbing algorithm.

1.2 Contributions

This dissertation makes the following contributions.

Viewing SMT Processor Resource Distribution Problem as a Classical Optimization

Problem

The performance of SMT processor is mainly determined by the resource distribu-

tion among the concurrently running threads. So, we view the SMT processor resource

distribution problem as a search problem whose goal is finding a resource distribution that

produces optimal performance. We believe this is a unique view in the SMT processor re-
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source distribution study. This view makes us translate the resource distribution problem

into a classical optimization problem, allowing us to apply general optimization problem

solvers, hill-climbing algorithm, to SMT processor domain. In this dissertation, we first

define the performance curve as a function of SMT processor resource distribution. Then,

we design the hill-climbing algorithm that climbs up to the peak of the curve to search

for the optimal resource distribution.

Development of SMT Processor Run-Time Performance Behavior Visualization Tool

The nature of SMT processor performance as a function of the resource distribution

space is unknown prior to our research. In order to understand the time-varying behavior

of this SMT processor performance curve, we built a visualization tool. Using this tool,

we identified several workload characteristics. Some characteristics are problematic for

hill-climbing algorithm like multiple humps or extremely frequent time-varying behavior.

On the other hand, many workloads have favorable characteristics to the hill-climbing,

like single hump and stable temporal behavior.

Quantitative Analysis of SMT Processor Run-Time Performance Behavior

Based on the knowledge acquired through the visualization tool, we developed four

new metrics that quantitatively measure the shape of the performance curve. Two metrics

quantify the static shape of the performance curve and two metrics measure the temporal

variation of the performance curve. Using these metrics, we classify workloads. This

classification helps understanding and analyzing the performance of prior SMT processor

resource distribution techniques as well as our hill-climbing technique because of the strong

correlation between run-time workload characteristics and its performance.
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Hill-Climbing Resource Distribution Algorithm

We are the first to apply the hill-climbing algorithm to SMT processor resource

distribution problem. The understanding of the time-varying performance curve from

both the visualization tool and quantitative measurement enable us to customize the

hill-climbing algorithm for the SMT processor resource distribution. We design our hill-

climbing algorithm so that it can handle both problematic workload as well as the favorable

workload characteristics.

Evaluation of the Hill-Climbing Resource Distribution

We faithfully evaluate the performance of the hill-climbing resource distribution

technique across 63 workloads. Then, we compare the performance of hill-climbing al-

gorithm against three prior SMT processor resource distribution techniques: ICOUNT,

FLUSH, and DCRA. We suggest two improvements over the baseline hill-climbing resource

distribution: phase based learning and hill-climbing with momentum term. In addition, we

study hill-climbing resource distribution’s sensitivity to three design parameters; memory

latency, amount of processor resource, and thread priority.

SMT Processor Performance Limit Study

A performance comparison of existing resource distribution techniques against an

ideal SMT processor can uncover performance bottlenecks and suggest ways to improve

performance. However, figuring out the ideal performance limit of SMT processor is com-

putationally infeasible because it is an NP-hard problem. For the first time in SMT study,

we developed a heuristic that approximates the ideal performance limit of SMT processor.

To make our heuristic computationally feasible, we assumed three simplifying constraints;
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first, per-thread resource partition is maintained to distribute resources, second, updating

resource partition is allowed only at every epoch boundary, and third oracle provides infor-

mation only on the next epoch. Using the performance limit suggested by our heuristic, we

re-evaluate four SMT processor resource distribution techniques (including ours), detail

their performance potentials, and show our mechanism is the closest to the performance

limit.

Extending Hill-Climbing technique

We show that hill-climbing is an effective mechanism for SMT processor resource

distribution. Since hill-climbing algorithm is a general optimization problem solver, our

technique can also be applied to more general problems, like run-time hardware optimiza-

tion, which changes hardware parameters at run-time to achieve optimal performance or

power consumption.

1.3 Road Map

The rest of the dissertation is organized as follows. Chapter 2 explains the back-

ground of our study including single chip multi-threading processors, issues on SMT pro-

cessor resource distribution, and general hill-climbing algorithm. Chapter 3 lists the prior

researches related to our study covering run-time hardware optimization study and SMT

processor resource distribution techniques. In Chapter 4, we analyze the run-time behav-

ior of SMT processors to better understand the time-varying performance curve. Based on

this analysis, Chapter 5 presents the customized hill-climbing algorithm for SMT proces-

sor resource distribution problem domain. In Chapter 6, we show the performance of our

heuristic that approximates the ideal performance limit of SMT processor and suggests the
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performance potential of the existing techniques. Chapter 7 evaluates the performance of

hill-climbing resource distribution techniques and compares its performance against three

existing techniques. Chapter 8 suggests directions to improve hill-climbing resource dis-

tribution and shows the sensitivity study results. Chapter 9 discusses the preliminary

study on applying our hill-climbing technique to multi-treaded run-time system. Finally,

Chapter 10 concludes the dissertation and suggests the future research directions.
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Chapter 2

Background

2.1 Single Chip Multi-Threading Processors

Single chip multi-threading processors allow concurrent execution of multiple threads

in a single chip by maintaining multiple on-chip hardware contexts. This architecture ef-

fectively utilizes ever increasing available hardware budget in a single chip module, which

is predicted by Moore’s law. In addition, this architecture is a cost-effective way of ex-

ploiting thread-level parallelism because it allows some of the on-chip hardware resources

to be shared between concurrently running multiple threads, rather than dedicating them

to each individual thread.

Depending on the design of the single chip multi-threading processors, the choice of

the dedicated and shared hardware resources varies. Two extremes of single chip multi-

threading processor design are chip multiprocessor (CMP) and simultaneous multithreading

processor (SMT). CMP [19, 20, 21, 22] has multiple processor cores in a single chip. Each

core has its own dedicated processor resources (including branch predictor, fetch queue,

issue queue, functional unit, memory port, register file, and reorder buffer) to execute a

thread. However, multiple cores share the on-chip L1 and(or) L2 caches. SMT [1, 2, 3]

allows execution of multiple threads in a single core by allowing fine grained sharing of

most of the processor resources, as well as the L1 cache and L2 cache between concurrently

running threads. The only dedicated resources to each thread are the program counter

and additional storage to maintain context information (e.g., architected register file).

Since the multiple cores in CMP are duplicates of a single core, CMP can use single
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core design to implement multi-core CMP, thus simplifying the chip design. In addition,

since each core in CMP is independent of each other, increasing the number of cores

in a chip does not severely increase the complexity of the interconnections within a chip,

making it scalable [20]. CMP may have either heterogeneous cores [21], with both powerful

out-of-order processor core(s) mixed with simple small in-order processor core(s) in a chip,

or homogeneous cores [19, 20]. Considering that the concurrently running threads may

have diverse processor resource requirements, heterogeneous core CMP is an attractive

design choice.

On the other hand, SMT can utilize the processor resource more efficiently because

SMT allows one thread to use almost all of the shared resources when the other thread(s)

cannot fully utilize them. In addition, SMT achieves higher per-core throughput by ex-

ploiting ILP between independent threads as well as within a single thread. The increased

processor throughput provided by SMT, however, comes at the expense of single-thread

performance. Because multiple threads share hardware resources at the same time, indi-

vidual threads get fewer resources than they would have otherwise received had they been

running alone. For threads with diverse characteristics, compared to heterogeneous CMP,

SMT can give proper amount of resources to each thread dynamically by simply shifting

the resource share between threads at run-time.

Due to these advantages of single chip multi-threading processor design, many CMP

and SMT processors are commercially available these days. Intel Pentium4 with Hyper-

threading [9] is an SMT product. IBM Power4, AMD Athlon64 dual core, Intel Pentium

dual core, Intel Pentium quad core (Clovertown) are CMP products. IBM Power5 archi-

tecture [8] has two SMT cores in a single chip, making it an SMT and CMP hybrid. IBM

Cell processor [23] has an SMT core, named PPE, and multiple CMP cores, named SPE,
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in a single chip, making it an SMT and heterogeneous CMP hybrid. On these commercial

products, the detailed resource sharing structures are not well documented.

2.2 SMT Processor Resource Distribution

In SMT processors, resource sharing between concurrently running threads allows

better resource utilization because a single thread cannot fully utilize the available re-

sources all the times. This increased resource utilization directly translates into the im-

proved throughput. However, the resource distribution may be unbalanced losing the

performance opportunities. For example, if the first thread holds large amount of shared

resource and waits for the data from memory, the second thread cannot get any more

resource until the first thread gets the data from the memory and releases the resource,

thus reducing the resource utilization.

There are three types of shared processor resources. The first type is called a “slot”,

which includes fetch unit, issue unit, and functional units. A thread holds slot type

resources for only one cycle. The second type is called a “queue”, which includes fetch

queue, issue queue, rename register, and reorder buffer. A thread can hold queue type

resources for many cycles until the thread voluntarily releases the resource. The third

type is called a “memory”, which includes branch predictor tables and L1 cache. A thread

can hold memory type resources for many cycles until the other threads claim them.

Figure 2.1 shows our classification of the shared resources. Among the three types

of shared resources, only the second one, queue type, causes resource under-utilization

problem because it may potentially participate in hold-and-wait condition and resource

monopolization. Unbalanced resource distribution of slot type resource can be promptly

fixed, if it happens and is detected. Unbalanced resource distribution of memory type
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Figure 2.1: Block diagram of the SMT processor resources. The shared resources are
classified into three types: slot type, queue type, and memory type. White boxes indicate
private resources.

resource can be fixed after warming-up time.

Depending on the application characteristics and run-time phase, the amount of

queue type resource requirement varies. Queue type resource is used to keep the in-flight

instructions in the processor pipeline. In general, applications with high instruction level

parallelism need many in-flight instructions to help find the parallelism, thus requiring

many queue type resources. On the contrary, applications with long dependency chains

can make progress with small amounts of queue type resources. Therefore, the balancing of

the shared queue type resource distribution should take the application’s current requests

for the shared queue type resource into account. For example, L1 miss count (used by

DCRA [4]), and the fetch / issue queue occupancy (used by ICOUNT [1]) can be used to

indirectly figure out the application’s requests for the shared queue type resource.

To correct unbalanced resource distribution, three fetch policies are used by the

existing SMT resource distribution techniques. First, “fetch prioritizing” gives fetch pri-

ority to a thread, which deserves more resources. With this mechanism, after fetching
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from a high fetch priority thread, the low fetch priority thread can use the remaining

fetch bandwidth. In addition, if the high fetch priority thread cannot use any of the fetch

bandwidth due to branch misprediction or an instruction cache miss, the low fetch prior-

ity thread can fully utilize the fetch bandwidth. ICOUNT uses this mechanism. Second,

“fetch stalling” stops fetching of a thread, which deserves fewer resources. Fetch-stalled

threads cannot fetch any instructions, even if there are available fetch bandwidth. DCRA

uses this mechanism. Third, “flushing” evicts instructions from the processor pipeline,

whose thread deserves fewer resources. Flushing is the most timely way of balancing the

resource distribution among the three existing mechanisms, but it is also the most costly

as it needs to fetch the flushed instructions again. FLUSH [6] uses this mechanism. In

Section 3.2, we will discuss the existing SMT processor resource distribution techniques,

ICOUNT, FLUSH, and DCRA, in greater detail.

Our hill-climbing technique controls the allocation of the queue type resources as

they affect the number of in-flight instructions in the pipeline and determines the achiev-

able instruction level parallelism of each thread. In addition, our approach uses fetch

stalling mechanism to maintain proper amount of queue type resource occupancy per

thread. We will detail the ideal and implementation of our hill-climbing technique in

Chapter 5.

2.3 Hill-Climbing Algorithm

Hill-climbing algorithm [18] is an optimization problem solver. Hill climbing at-

tempts to maximize an evaluation function f(x) by finding the optimal x. In discrete

domains, the domain of f is typically represented by vertices in a graph, where edges in

the graph encode nearness or similarity of a graph. Hill climbing traverses the graph from
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1. #define    f evaluation function

2. current_vertex = initial_vertex;

3. do until (there is no change in current_vertex) {
4. for all (successor_vertex[i] = Get a successor of the current_vertex)
5. successor_vertex[i].score = f (successor_vertex[i]);

6. if (one of the successor_vertex[*].score is better than the current_state)
7. current_vertex = the successor with the best score; 
8. }

9. #define    ∇f          gradient of f
10. #define    Delta movement step

11. current_state = initial_state;

12. do until (there is no change in current_stae) {
13. successor_state = current_state + ∇f (current_state) * Delta;
14. successor_state.score = f (successor_state);

15. if (successor_state.score is better than current_state’s score) 

16. current_state = successor_state; 
17. }

(a) Hill-climbing algorithm on discrete space

(b) Hill-climbing algorithm on continuous space

Figure 2.2: Hill-climbing algorithm on discrete domain space (a) and continuous domain
space (b). In discrete domain space, the next vertex is picked among the neighboring
vertices whose f value is the best (line 4-7). In continuous domain space, the next state
is directed by the gradient vector (line 13-16).

vertex to vertex, always heading towards the locally increasing value of f , until a local

maximum is reached. Hill climbing can also operate on a continuous domain space: in

that case, the algorithm is called gradient ascent. Hill climbing is guided by the gradient

vector in choosing the next state. Hill climbing terminates when there are no successors

of the current state which are better than the current state itself. Figure 2.2(a) and (b)

show the hill-climbing algorithm on discrete and continuous domain spaces, respectively.

Note, the algorithm does not attempt to exhaustively try every vertex and edge (or the

entire search space in the continuous domain case), so no previously visited vertex list is

maintained–the algorithm only tracks the current vertex being visited.

One problem with hill-climbing algorithm is local maxima in the search space, where
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the current state gets trapped causing the algorithm to terminate before finding the opti-

mal state. There are several ways we can get around this problem with varying degree of

success by extending the algorithm. We can use a limited amount of backtracking so that

we record alternative reasonable looking paths which weren’t taken and go back to them.

Alternatively, we can use the momentum term by giving weight to the preceding move-

ment direction to allow jumping over the small local maxima on the way to the optimal

state. However, none of these solutions are perfect. Another extension is multiple restart

stochastic hill-climbing (MRSH) [24], which simply runs an outer loop over hill-climbing.

Each step of the outer loop chooses a random initial state to restart hill-climbing. The

best state is kept: if a new run of hill-climbing produces a better state than the stored

state, it replaces the stored state. Since at least one of the hill-climbing runs is likely to

reach the optimal state successfully, MRSH is surprisingly effective in many cases.
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Chapter 3

Related Work

3.1 Run-time Hardware Optimization

Processors are designed to achieve good average performance across various appli-

cations. At run-time, however, the usage of the processor resources is unbalanced; some

resources are fully utilized and others are under-utilized. The unbalanced resource uti-

lization happens because application’s demand for the resource is diverse and the demand

also changes over time even within an application.

To deal with the unbalanced resource utilization problem, run-time hardware opti-

mization techniques have attempted to match the hardware configuration to the running

application’s resource demand by allowing some degree of flexibility in the hardware de-

sign. SMT processor resource distribution techniques [1, 10, 6, 5, 4] also tune multiple

hardware parameters (i.e., resource partition or fetch priority of each thread) at run-time

to adapt to the time-varying application characteristics. Therefore, SMT processor re-

source distribution is a specific field of run-time hardware optimization study. In this

section, we will compare several run-time hardware optimization studies in terms of three

aspects: optimization goal, optimal configuration finding method, and configuration up-

date frequency.

Optimization Goal

There are two goals of any run-time hardware optimization. The first goal is “achiev-

ing better performance.” For better performance, under-utilized hardware budget must
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be shifted to support heavily used resources, thus removing the performance bottleneck.

For example, part of the functional unit in a host processor [25, 26] or independent co-

processor [27, 28, 29, 30] are reconfigured using FPGA to achieve optimal performance for

the target application. Balasubramonian, et al. [13] use configurable cache organization

to find the best on-chip memory partition between L1 and L2 cache for the current phase

of the application. All SMT processor resource distribution techniques fix the unbalanced

resource distribution by shifting the resource between concurrently running threads.

The second goal is “saving power consumption.” To save power, under-utilized

devices are dynamically turned off or slowed down. For example, Buyuktosunoglu, et

al. [14] dynamically disable some of the issue queue entries based on the issue queue

utilization. Manne, et al. [31] reduce the number of flushed instructions due to branch

misprediction by preventing instruction fetching if the number of low-confidence branch

predictions exceeds a threshold. Banasadi, et al. [32] gate the decode pipeline if the

number of instructions to be decoded is less than the decode bandwidth. Karkhanis, et

al. [12] dynamically control the maximum number of in-flight instructions in the pipeline

to save power.

Even with two distinct goals in run-time hardware optimization, the techniques

used for one goal can be easily applied to the other goal. For example, both studies in [31]

and [10] use the confidence of the branch prediction to either save power or improve the

performance.

Optimal Configuration Finding Method

To maximize the goal of run-time hardware optimization, three techniques have

been studied to find the best configuration at run-time. The first technique “exhaustively
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tries” all possible configurations, and then picks the best performing one. This approach

is useful if the search space volume is very small [12]. The second technique “searches” for

the optimal configurations by trying a carefully chosen sequence of configurations and then

picking the best performing one. The techniques used in [13, 14] carefully increment or

decrement the L1 cache or issue queue size depending on the recent performance feedback.

Our hill-climbing SMT processor resource distribution uses this technique to find the

optimal resource distribution. This approach increases the search speed compared to

the exhaustive trials, making it applicable to large search space. The third technique

“loads” one of the pre-defined configurations based on indicators. All FPGA based systems

load pre-defined configurations at start-up of an application or periodically during run-

time [25, 26, 27, 28, 29, 30]. Prior SMT processor resource distribution techniques rely

on indicators (e.g. L1 / L2 cache miss count, resource occupancy, or branch misprediction

count) to change the resource partition or fetch priority at run-time.

The third approach is useful if the search space volume is huge or the configuration

should be chosen promptly. On the contrary, the first two approaches use the feedback

information from the trial configurations to pick the best performing one, thus delaying

the decision making time. In addition, trying all the configuration or searching for the

optimal configuration out of a huge search space may require too many trials before we

find the optimal one. However, the third approach determines the configuration based on

the indicators without actually trying and measuring the performance of the alternative

configurations. Furthermore, the indicators may not be expressive enough to show the

myriad resource requirement scenarios of the application. Therefore, there is a danger

that the configuration picked by indicators may be a non-optimal one.
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Configuration Update Frequency

There is a spectrum of configuration update frequencies. First, if the configuration

update overhead is very high, the configuration is updated at the “application start-up

time.” Most of the FPGA based techniques load the pre-defined configuration at the

application start-up time because loading the FPGA configuration (i.e., netlist) takes at

least a few minutes. Second, the configuration can be changed only when the “phase of

the application shifts.” Most of the cache reconfiguration techniques update the configu-

ration when the phase of the application changes because the changing cache configuration

requires invalidation of all the cache lines [13]. Third, the configuration can be updated

“every fixed interval in time.” Both adaptive clock frequency [33] and adaptive issue queue

size [14] techniques update the configuration every fixed interval. Our hill-climbing SMT

processor resource distribution also updates the resource partition every fixed interval.

Fourth, the configuration is updated “every cycle.” All the prior SMT processor resource

distribution techniques update resource partition or fetch priority dynamically every cycle

to adapt to the cycle-by-cycle changing application behavior.

There is a trade-off in determining the hardware configuration update frequency.

As we increase the update frequency, the hardware adapts to the time-varying applica-

tion characteristics quickly. However, with high frequency update, the run-time overhead

increases due to the frequent configuration flushing operations, finding new configura-

tions, and new configuration loading time. In addition, techniques to reduce the run-time

overhead (specifically reducing “finding new configuration time”) may lead to low-quality

configurations.

The goal of our hill-climbing SMT processor resource distribution is to improve per-
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formance. Our approach’s method of finding the optimal configuration is searching after

attempting a few trial configurations. The configuration is updated at every fixed inter-

vals. Compared to the other run-time hardware optimization techniques, the uniqueness

of our approach is that the sequence of the trial configurations is systematically defined

based on the hill-climbing algorithm. Therefore, our approach reduces the number of tri-

als, minimizes the search overhead, is expandable to huge and multi-dimensional search

spaces, and provides high quality configurations. Compared to prior SMT processor re-

source distribution techniques, the uniqueness of our approach is searching for the optimal

configuration out of a large number of possible configurations using feedback information,

and fixed interval granularity configuration update.

3.2 SMT Processor Resource Distribution

Prior research has tried to boost SMT processor performance by improving the

distribution of hardware resources to threads. One important approach is to optimize

the selection of threads to fetch every cycle. ICOUNT [1] and FPG [10] are examples

of such SMT fetch policies. These techniques monitor indicators of resource usage, such

as resource occupancy (ICOUNT) or branch prediction accuracy (FPG). Every cycle, the

threads using their resources most efficiently (e.g., with low occupancy or few branch

miss-predicts) are given fetch priority. By favoring efficient threads, ICOUNT and FPG

increase overall throughput.

Unfortunately, fetch policies do not effectively handle long-latency operations, es-

pecially cache-missing loads. Once a thread suffers a long-latency cache-missing load,

continuing to fetch the thread clogs the pipeline with stalled instructions, preventing

other threads that would otherwise gainfully use the resources from receiving them. Fetch
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policies like ICOUNT reduce, but do not stop, the fetch of stalled threads, so they cannot

prevent resource clog. Several techniques address resource clog by explicitly limiting re-

source distribution to threads with long-latency memory operations. The first approach is

to fetch-stall the threads when they suffer long-latency memory operations. Techniques in

this category differ in how they detect the stall condition. STALL [6] triggers fetch-stall

when a load remains outstanding beyond some threshold number of cycles; DG [5] triggers

fetch-stall when the number of cache-missing loads exceeds some threshold; and PDG [5]

uses a cache-miss predictor to trigger fetch-stall.

One problem with fetch-stalling is resource clog can still occur because the stall

condition is detected either too late or unreliably. Instead of anticipating resource clog

and fetch-stalling, a second approach allows resource clog to occur but immediately re-

covers it by flushing the stalled instructions. This is the approach taken by FLUSH [6].

FLUSH is effective in preventing resource clog; however, flushing is wasteful in terms of

fetch bandwidth and power consumption. Hybrid approaches (e.g., STALL-FLUSH [6])

minimize the number of flushed instructions by first employing fetch-stall, and resorting

to flushing only when resources are exhausted.

Finally, a third approach is to partition the processor resources. The simplest is

static partitioning [15, 16, 7], but these techniques cannot adapt to changing workload

behavior. In contrast, DCRA [4] partitions dynamically based on memory performance.

Threads with frequent L1 cache misses are given large partitions, allowing them to exploit

parallelism beyond stalled memory operations. Threads that cache-miss infrequently are

guaranteed some resource share since stalled threads are not allowed beyond their par-

titions. Hence, DCRA prevents resource clog by containing stalled threads. Moreover,

DCRA computes partitions based on the threads’ anticipated resource needs, increasing
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partition of the threads that can use resources most efficiently.

Compared to previous techniques, hill-climbing resource distribution is most similar

to DCRA. Like DCRA, our approach also uses dynamic partitioning to address resource

clog and improve resource usage efficiency. However, a key distinction is our technique

makes partitioning decisions based on performance feedback, thus optimizing end perfor-

mance as illustrated in Figure 1.1. In contrast, DCRA and other previous techniques

perform resource distribution based on hardware monitors like resource occupancy or

cache miss counts. Hence, they optimize performance only indirectly, potentially missing

opportunities for performance gains, as discussed in Chapter 1. An added benefit of ex-

ploiting feedback is we can optimize to a user-definable performance goal–like throughput,

per-thread speedup, or fairness–by simply changing the performance metric used for the

performance feedback. Previous techniques cannot tailor their optimizations to a specific

performance goal. Lastly, because it takes time for our hill-climbing algorithm to process

performance feedback, we update partitioning decisions at every fixed interval. Thus, our

technique lies somewhere in between DCRA (update every cycle) and static partitioning

(fixed) in terms of its responsiveness to dynamic runtime behavior.
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Chapter 4

SMT Processor Run-Time Performance Behavior Analysis

The performance of SMT processor is mainly determined by the resource distribution

among the concurrently running threads. Therefore, both of the existing techniques, fetch

polices and resource partitioning techniques, attempt to implicitly and explicitly balance

the resource distribution. To find out the best resource distribution, we propose a unique

approach. We view the SMT processor resource distribution problem as the searching

for the maximum performance in resource distribution space. This view allows us to

translate the resource distribution problem into the classical optimization problem. Since

the shape of the performance curve looks like hill, as illustrated in Figure 1.2, we apply

a general optimization problem solver, hill-climbing algorithm, to the SMT processor

resource distribution problem.

In this chapter, we define the performance curve on which we make our hill-climbing

algorithm to climb up to search for the optimal resource distribution. Since, the nature of

SMT processor performance curve is unknown as is defined and used in our research for

the first time, in this chapter, we perform in-depth analysis of the performance curve and

provide its look-and-feel. The analysis on the performance curve guides the design of our

hill-climbing algorithm (in Chapter 5) and helps understanding the experimental results

(in Chapter 6, 7, and 8).
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4.1 Performance Curve

To distribute resources among the concurrently running threads, we maintain re-

source partition for each thread. During the execution, threads are allowed to consume up

to (but no more than) the allotted resources within their partition. Hence, partitioning

guarantees every thread to receive some fraction of each shared resource. All possible

combinations of the resource partition among the threads constitute the resource distri-

bution space. As the performance of a resource partition can change over time to adapt

to the changing the application behavior, we define the performance curve fi at a point

in time i as Equation 4.1.

fi : resource distribution space �−→ performance (4.1)

This hypothetical performance curve maps a resource distribution at a point in time to its

performance outcome. This performance curve is the target hill where our hill-climbing

algorithm searches for the peak.

The nature of the hills, (i.e., performance curve) in our study are different from

the hills that traditional hill-climbing algorithms assume. As described in Section 2.3,

traditional hill-climbing algorithms assume fixed hills. But, in our case, the shape of the

hill changes over time as the characteristics of the applications running on SMT processor

change. Therefore, the peak of the hill is a moving target for which our mechanism should

search.

As a first step of our research, we perform in-depth analysis on the performance

curve, named OFF-LINE-Analysis, because the performance curve is defined and used for

the first time in our research. As we will show in Chapter 7, the advantage of hill-climbing

resource distribution highly relies on the shape of the performance curve. OFF-LINE-
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Analysis schedules resources off-line to get the perfect knowledge of the performance curve.

So, this analysis provides an oracle view which any real implementation is unable to figure

out at run-time and allows in-depth insight into the performance curve.

4.2 OFF-LINE-Analysis

The goal of OFF-LINE-Analysis is to provide the global view of the performance

curve. To achieve this goal, OFF-LINE-Analysis tries to discover the whole mapping of

the performance evaluation function fi for all i’s in Equation 4.1 by trying all data point

in resource distribution space.

4.2.1 Implementation Issues

There are two issues in providing the global view of the time-varying hill-shaped

performance curve.

Huge Volume of the Resource Distribution Space

One problem with providing the view of the performance curve is the intractably

large resource distribution space. Each data point in the performance curve represents

the performance of a resource distribution, which needs to be evaluated individually. So,

given S shared resource types, Ei entries for resource type i, and T threads, the number of

unique ways to distribute the resources is O(ΠS
i=1E

(T−1)
i ). Even for modest values of S, Ei,

and T , the size of the resource distribution space becomes intractably large to be evaluated

using simulation. To reduce the number of unique resource distributions, we observe that

a thread’s usage of different hardware resources is not independent; instead, the number of

entries of each resource type a thread occupies is often related (e.g., a thread can never use
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more rename registers than the number of ROB entries it holds). So, many cases do not

need to be explored by the OFF-LINE-Analysis. We exploit this observation in two ways.

First, we assume the number of integer IQ entries, integer rename registers, and ROB

entries occupied by a thread are in proportion to one another. Rather than distributing

the three resources independently, we distribute integer rename registers only, and then

apply the same distribution proportionally to all other resources. Second, we abstain from

explicitly distributing the fetch queue, floating point IQ, floating point rename register,

L1 cache, and branch predictor. For those resources, any thread that needs them grabs

them, as long as there are available entries (the request for L1 cache and branch predictor

evicts the existing entry), thus increasing the utilization of those resources. By explicitly

partitioning the integer rename registers, integer IQ, and ROB for each thread, the number

of in-flight instructions in the pipeline per thread is controlled. Please note that the three

resources that we explicitly control–integer rename registers, integer IQ, and ROB–for each

thread are the queue type resource (defined in Section 2.2) and controlling over queue type

resource is the most important in balancing the resource distribution. This implicitly

partitions the uncontrolled shared resources. These simplifying techniques reduce the

number of unique resource distributions to O(Einteger rename register
(T−1)), making the

OFF-LINE-Analysis feasible.

However, the resource distribution space is still very large, especially when T is

2 or larger. Therefore, we uniformly down sample the resource distribution. Table 4.1

shows our OFF-LINE-Analysis settings. Our sample size is 128, 496, and 680 resource

distribution configurations out of 256, 32,896, and 2,962,206 for 2-, 3-, and 4-threaded

workloads, respectively. The sampling rate for 2 threads is essentially exhaustive providing

a complete view of the performance curve throughout the entire resource distribution
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# threads 1 2 3 4

space complexity O(N) O(N) O(N2) O(N3)

space volume 256 256 32,896 2,862,206

purpose Analyzing the time varying performance behavior

# samples / epoch 128 128 496 680

sampling rate 50.000% 50.000% 1.508% 0.024%

sampling method uniform, step:2 uniform, step:2 uniform, step:8 uniform,step:16

sampling frequency every epoch every epoch every epoch every epoch

Table 4.1: OFF-LINE-Analysis simulation settings.

space. Even with the relatively small sampling rate for 3- and 4-threaded workloads, OFF-

LINE-Analysis still allows us to make significant and consistent observations just like 2-

threaded workloads. Table 4.1 also shows the step size of the sampling that allows uniform

down sampling across the entire resource distribution space. As shown in Table 4.1, we

conducted the 1-threaded workload experiment because the characteristics of the multi-

programmed workloads depends on that of the individual applications belonging to each

workload. For 1-threaded workloads, we varied the amount of resources allowed to the

thread.

Performance Evaluation Frequency

For the OFF-LINE-Analysis, we choose to evaluate the performance of SMT pro-

cessor periodically. We divide SMT execution into a linear sequence of epochs or fixed-size

time intervals.

If epoch size is extremely small, inter-epoch behavior becomes too dynamic because

the performance within an epoch is vulnerable to any small events like individual L2

misses or branch mispredictions. As a result, the performance of sequence of epochs will

have large fluctuation. In order to get more meaningful performance result, we need to
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average out the effect of noise by increasing the epoch size. If epoch size is too large, the

performance curve summarizes too much run-time performance behavior, thus loosing the

detailed time-varying behavior information. In Section 5.3.1, we discuss the choice of the

epoch size, and in Section 8.1.2, we present the sensitivity of the choice of the epoch size

to the performance of our hill-climbing resource distribution implementation. Based on

our study, we picked 64K cycle for the granularity of the performance evaluation period

(i.e., epoch size).

4.2.2 Probe-Based Simulation Methodology

Normal simulator executes the workload’s simulation window only once and collects

the statistics. For the OFF-LINE-Analysis simulation, we developed a new simulation

methodology, called probe-based simulation, which executes each epoch multiple times to

explore the alternative configurations that the simulator can potentially choose, before

moving on to the next epoch. Such off-line probing is impractical for real machines. But,

its evaluation via simulation provides a oracle view of SMT processor resource distribution

space.

At the end of each epoch, probe-based simulation check-points every processor mem-

ory structure (register file, pipeline registers, branch predictors, caches, etc.), the contents

of main memory, as well as the simulator internal data structures. This check-point is a

fresh copy of simulator state from which all trials of the subsequent epoch begins. Probe-

based simulation repeatedly simulates the subsequent epoch with variety of resource dis-

tributions, thus discovering the performance of multiple alternative resource distributions.

We call each repeated test a probing. Each probing begins its simulation by restoring the

check-point to avoid any side effects from the previous probings. A probing simulate its

31



assigned resource distribution for one epoch only.

To simplify the implementation of check-pointing, we use a UNIX system call, fork().

The fork() generates a child process, which is a clone of the parent simulator process. The

clone is exactly same as the parent process except for its process id and its assigned re-

source distribution configuration. All probings are done by the child simulator processes

(i.e., clone). Since the child simulator process is allowed to update only its own memory,

the parent process is unaffected by the child process. After the child simulator process

simulates the assigned resource distribution configuration for an epoch, it reports its simu-

lation result to the parent process and terminates itself, discarding all the changes made by

the child simulator process. The parent process forks the child process again to probe an-

other resource distribution configuration from the saved simulator status thus making all

probings independent of each other. After trying all the probings, parent process updates

its configuration into one of the resource distributions based on their reported performance

result, executes itself for an epoch again, and initiates another set of probings.1

Figure 4.1 illustrates the probe-based simulation timing diagram. Only parent pro-

cess is allowed to simulate the whole simulation window. Child processes probes diverse

resource distribution configurations for an epoch.

4.2.3 Probe-Based Simulation Algorithm

Figure 4.2 shows the detailed probe-based simulation algorithm. Probing begins

after the parent process finishes execution of an epoch (line 7 and 12). The parent process

picks a sample resource distribution configuration (line 14), forks a child process (line 16),
1In this analysis, the parent process chooses one of the resource distributions for its execution using

the hill-climbing algorithm. But this choice is less related to the analysis of the run-time behavior of the

performance curve.
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Figure 4.1: Probe-based simulation timing diagram. Parent simulator process forks mul-
tiple child processes to investigate the various alternatives of the future (i.e., the next
epoch). Only the parent process is allowed to execute the end-to-end simulation.

1. #define compute_performance() compute the performance of the previous epoch

2. #define send_to_parent(X) send X to parent process

3. #define receive_from_child() receive data from child process

4. #define sample_a_conf() pick a configuration based on sampling method and (or) 
earlier sample configurations and their performance outcome

5. #define conf[] resource sharing configuration of child processes

6. #define perf[] performance of child processes

7. if (end_of_an_epoch) {

8. if (I_am_child_process) { // child process finished execution of an epoch

9. p = compute_performance();
// compute child process’s performance for the previous epoch

10. send_to_parent(p); // inform the parent process of the performance of the child process

11. exit(); // terminate itself (i.e. child process)

12. } else if (I_am_parent_process) {

13. for (i = 0 ; i < num_samples ; i++) {

14. current_conf = sample_a_conf(sampling_method, conf[0 : i-1], perf[0 : i-1]);
// pick a new configuration for the child process to investigate

15. conf[i] = current_conf; // save the new configuration

16. fork(); // create a child process which begins simulation
// from the parent process’s current machine state

17. if (I_am_parent_process) {

18. wait(); // wait for the completion of the child process

19. perf[i] = receive_from_child();
// save the child process’s performance outcome

20. } else if (I_am_child_process)

21. break; // do not allow child process to iterate this loop

22. }

23. if (I_am_parent_process) // set the best configuration for the parent process

24. current_conf = conf[m], where perf[m] is the best;

25. }

26. }

Figure 4.2: Probe-based simulation algorithm pseudo code. Child processes investigate
the alternative configurations that the parent process can potentially choose from (line
14).
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and suspends itself (line 18). After the child process executes an epoch (line 8), the child

process reports its performance measured during the simulated epoch to the parent process

(line 10), and terminates itself (line 11). The completion of the child process wakes up

the parent process (line 18). The parent process receives the probing result from the child

process and records it (line 19). The parent process iterates these steps until it finishes

trying all the alternative configurations.

Note, there are three metrics to compute the performance evaluation function, com-

pute performance() (line 9): average IPC, average weighted IPC [34], and harmonic mean

of weighted IPC [35]. Equation 4.2, 4.3, and 4.4 define the three metrics, where IPCi is

the IPC of the ith thread in SMT processor, SingleIPCi is the IPC of the stand-alone

execution of the ith thread, and T is the number of simultaneously running threads.

Average IPC =
∑

IPCi

T
(4.2)

Average Weighted IPC =

∑ IPCi
SingleIPCi

T
(4.3)

Harmonic Mean =
T

∑ SingleIPCi
IPCi

(4.4)

Each metric presents the performance of the SMT processor based on its own goal. Average

IPC quantifies throughput improvement (e.g., the number of finished programs); average

weighted IPC quantifies execution time reduction (e.g., the response time); and harmonic

mean of weighted IPC quantifies both performance and fairness improvement (e.g., the

completion time of the given group of jobs).

For our OFF-LINE-Analysis, we will use the average weighted IPC metric only.

Later, when we evaluate hill-climbing resource distribution in Section 7.2.2, we will use

all three performance metrics.
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4.2.4 Probe-Based Simulation Overhead

The fork() system call is implemented with copy-on-write paging technique to reduce

the fork overhead. Therefore, initially each virtual memory page is shared between parent

and child process without making any extra copies, until the page is written by any one

of the processes. We observe that the kernel mode execution and page copying overhead

due to the fork system call is less than 5% of the simulation time. The biggest overhead

comes from the repeated simulation of the epochs even after the down sampling (As shown

in Table 4.1, 128, 496, and 680 times of repetition, for 2-, 3-, and 4-threaded workloads,

respectively).

4.2.5 Experimental Methodology

Our experiments are performed on a detailed event-driven SMT processor simulator

that models the processor pipeline as illustrated in Figure 4.3. The simulator is derived

from sim-ssmt [36], an extension of the out-of-order processor model in SimpleScalar [37],

and has been used previously to study several SMT techniques [38, 39, 40, 41]. For our

evaluation, we model an 8-way issue SMT processor with up to 4 hardware contexts and a

512-entry reorder buffer. The processor and memory system settings for our simulations

are listed in Table 4.2.

Figure 4.3 illustrates our processor model. Like other techniques that explicitly

control resource distribution (e.g., DCRA [4]), we dynamically partition several shared

hardware resources in SMT pipeline. Specifically, we target the integer issue queue, in-

teger rename registers, and reorder buffer (ROB), which are shaded gray in Figure 4.3.

We simply keep per-thread occupancy counters for three resources and allow fetching

of a thread as long as its resource occupancy hasn’t exceeded any of the three resource
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Processor Parameters

Bandwidth 8-Fetch, 8-Issue, 8-Commit

Queue size 32-IFQ, 80-Int IQ, 80-FP IQ, 256-LSQ

Rename register / ROB 256-Int, 256-FP / 512 entry

Functional unit 6-Int Add, 3-Int Mul/Div, 3-FP Add, 3-FP Mul/Div

Memory port 4-Mem Port

Branch Predictor Parameters

Branch Predictor Hybrid 8192-entry gshare/2048-entry Bimodal

Meta Table / BTB / RAS Size 8192 / 2048 4-way / 64

Memory Parameters

IL1 config 64Kbyte, 64byte block size, 2 way, 1 cycle latency

DL1 config 64Kbyte, 64byte block size, 2 way, 1 cycle latency

UL2 config 1Mbyte, 64byte block size, 4 way, 20 cycle latency

Mem config 300 cycle first chunk, 6 cycle inter chunk

Table 4.2: SMT processor simulator settings.
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Figure 4.3: Block-level diagram of our SMT processor model. Shaded boxes indicate
shared hardware structures that are partitioned by the OFF-LINE-Analysis. Dashed
boxes indicate additional hardware needed for the implementation of our hill-climbing
resource distribution implementation, which we will detail in Section 5.4.
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ILP MEM

App Skip Ins Type App Skip Ins Type

bzip2 1,100M Int vpr 300M Int

perlbmk 1,700M Int mcf 2,100M Int

eon 100M Int twolf 2,000M Int

vortex 100M Int equake 400M FP

gzip 200M Int art 200M FP

parser 1,000M Int lucas 800M FP

gap 200M Int ammp 2,600M FP

crafty 500M Int swim 400M FP

gcc 2,100M Int applu 800M FP

apsi 2,300M FP

fma3d 1,900M FP

wupwise 3,400M FP

mesa 500M FP

Table 4.3: SPEC CPU2000 benchmarks used to create our multi-programmed workloads.

partitions. If one or more partitions become exhausted, the corresponding thread is fetch-

stalled until it releases some of its entries in the exhausted partition(s). In addition to

resource partitioning, we also use the ICOUNT policy [1] in the fetch stage to select the

threads from which to fetch every cycle. On top of this baseline SMT processor simula-

tor, we added a probe driving routine, which implements the algorithm in Figure 4.2, to

conduct probe-based simulation for the OFF-LINE-Analysis.

Our study is driven by 63 multiprogrammed workloads created from 22 SPEC

CPU2000 benchmarks. Table 4.3 lists our benchmarks. We use the pre-compiled al-

pha binaries from Chris Weaver2, which were built with the highest level of compiler

optimization. All of our benchmarks use the reference input set provided by SPEC. From

the benchmarks, we created multiprogrammed workloads by following the methodology
2These SPEC CPU2000 alpha binaries are available at the SimpleScalar website.
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in [4, 6]. We first categorized the SPEC benchmarks into either high-ILP or memory-

intensive applications, labeled “ILP” and “MEM,” respectively, in Table 4.3. Then, we

created 3 groups of 2-, 3-, and 4-threaded workloads. Table 4.4 lists our multiprogrammed

workloads. The ILP2, ILP3, and ILP4 workloads group high-ILP benchmarks; the MEM2,

MEM3, and MEM4 workloads group memory-intensive benchmarks; and the MIX2, MIX3,

and MIX4 workloads group both high-ILP and memory-intensive benchmarks.

We selected simulation regions for our multi-programmed workloads in the following

way. First, we used SimPoint [42] to analyze the first 16 billion instructions (or the entire

execution, whichever is shorter) of each benchmark, and picked the earliest representative

region reported by SimPoint. In our SMT simulations, we fast-forward each benchmark in

the multi-programmed workload to its representative region. Table 4.3 reports the number

of skipped instructions (“Skip Ins” column) in each benchmark during fast forwarding.

Finally, we turn on detailed multi-programmed simulation, and simulate for 100M “on-

line” instructions executed by the parent simulator process (i.e., not counting the “off-line”

probings needed for OFF-LINE-Analysis).

Due to the cost of OFF-LINE-Analysis simulation, we are unable to simulate more

instructions; however, the regions we simulate are representative thanks to the SimPoint

analysis. Note, we use 100M instruction window only for the analysis of the workload in

this chapter and for the limit study in Chapter 6. When evaluating the performance of

our hill-climbing algorithm, reporting the end-to-end performance, and comparing against

other techniques in Chapter 7, we use larger simulation regions of 1B instructions.
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TYPE 2-threaded 3-threaded 4-threaded

apsi eon gcc eon gap apsi eon fma3d gcc

fma3d gcc gcc apsi gzip apsi eon gzip vortex

gzip vortex crafty perlbmk wupwise fma3d gcc gzip vortex

ILP gzip bzip2 mesa vortex fma3d gzip bzip2 eon gcc

wupwise gcc fma3d vortex eon mesa gzip fma3d bzip2

fma3d mesa parser apsi wupwise crafty fma3d apsi vortex

apsi gcc gap mesa perlbmk apsi gap wupwise perlbmk

applu vortex twolf eon vortex ammp applu apsi eon

art gzip lucas gap apsi art mcf fma3d gcc

wupwise twolf equake perlbmk gcc swim twolf gzip vortex

MIX lucas crafty mcf apsi fma3d gzip twolf bzip2 mcf

mcf eon art applu wupwise mcf mesa lucas gzip

twolf apsi swim crafty parser art gap twolf crafty

equake bzip2 bzip2 mesa swim swim fma3d vpr bzip2

applu ammp mcf twolf vpr ammp applu art mcf

art mcf swim twolf equake art mcf swim twolf

swim twolf art twolf lucas ammp applu swim twolf

MEM mcf twolf equake vpr swim art twolf equake mcf

art vpr art ammp lucas vpr lucas swim applu

art twolf vpr swim ammp lucas swim art ammp

swim mcf art applu swim ammp equake lucas vpr

Table 4.4: Multiprogrammed workloads used in the experiments.
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4.2.6 SMT Processor Run-Time Performance Behavior Analysis

The performance curve provided by OFF-LINE-Analysis contains the SMT proces-

sor’s run-time performance changes represented as a function of both time and resource

distribution. But the volume of the raw data is very large as the simulation window and

the number of applications in the workload increase thus making the interpretation of the

data difficult. Therefore, we designed methodologies for both qualitative and quantitative

analysis of the performance curve. Our qualitative analysis visualizes the performance

curve into a still image (for 2-threaded workload) or into a motion picture (for 3- and 4-

threaded workload). The qualitative analysis allows us to visually inspect the time-varying

performance behavior. This inspection–albeit manual–provides intuition and in-depth un-

derstanding of the relationship between the SMT processor performance and the resource

distribution. In addition, the qualitative analysis enables the development of the quan-

titative analysis methodology. We detail the qualitative and quantitative analysis in the

following sections.

4.3 Qualitative Analysis of the Run-Time Performance Behavior

First, we built the workload performance behavior visualization tool to display the

raw data in an intuitive way and provide qualitative understanding of the performance

behavior of the workloads.

Like a topographical terrain map, our visualization tool displays the performance

curve graphically as shown in Figure 4.4. For 2-threaded workloads, the X-axis represents

the simulation time (in epochs) and the Y-axis represents the resource distribution of the

first application. (The second application gets the remaining resources.) For 3-threaded

workloads, the X- and Y-axis are the resource distribution of the first two applications (the
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(a) 2-threaded workload (swim-twolf)

(b) 3-threaded workload (equake-vpr-swim)

(c) 4-threaded workload (mesa-gzip-fma3d-bzip2)

Figure 4.4: Snapshot of SMT processor run-time behavior visualization tool for (a) 2-
threaded, (b) 3-threaded, and (c) 4-threaded workloads. The run-time behavior of a
2-threaded workload is displayed as a still picture frame, and those of 3- and 4-threaded
workload are displayed as motion pictures.
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third applications gets the remaining resources.), and each frame in the motion picture

represents the simulation time (in epochs). For 4-threaded workloads, X-, Y-, and height of

the bar represents the resource distribution of the first three applications, and each frame in

the motion picture represents the simulation time (in epochs). In each image, the weighted

IPC is reported as a gray scale. Dark colored areas denote high weighted IPC while light

colored areas denote low weighted IPC. In 2-threaded workloads, by following the change

in gray scale along any vertical line, we can determine the shape of the performance hill

within the corresponding epoch. The white dots indicate the position of the peak of the

hill (i.e., optimal resource distribution). Our visualization tool provides more information

than this dissertation covered up to this chapter. For example, this visualization tool shows

the synchronized performance of ICOUNT (green), FLUSH (blue), DCRA (yellow), and

HILL-WIPC (red), which we will detail in Section 6.2.1.

This visualization tool allows us to identify several key patterns of the performance

curve. The patterns of the time-varying shape of the performance curve include random

changing pattern, fine/coarse grain alternating pattern, and stable pattern. The patterns

of the performance curve within an epoch include single/multiple hump(s), deep/shallow

valley, and sharp/dull peak. Among these patterns, random changing pattern, fine grain

alternating pattern, multiple humps, and deep valley are potentially hostile to our hill-

climbing algorithm because these patterns delay (or prevent from) finding the peak of the

hill.

One of the sources of the random changing or fine grain alternating pattern of the

multi-threaded workloads is the frequent function calls in the integer applications. For

example, gcc and parser makes call to a function appropriate to handle each token found in

the input file sequence. Therefore, many small functions with diverse resource requirement
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are called frequently causing temporal variations in the performance curve.

One source of the multiple humps and deep valley in multi-threaded workloads

is a parallel loop with a long latency load instruction in each loop iteration. As we

increase the amount of the resource given to a thread with the parallel loop, the processor

pipeline contains more in-flight instructions from the parallel loop iterations. However,

the performance of the thread does not improve until the long latency load instruction

in the loop is included in the pipeline and overlap multiple memory operations. So, as

we increase the amount of resource given to the thread, we get step-shaped performance

improvement. Before the performance of the step-shaped thread jumps up, the overall

performance of the multi-threaded workload decreases as the other thread(s) gets less

amount of resources. But the overall performance jumps up when the processor pipeline

includes the long latency instruction in the step shaped thread, thus generating a local

hump.

These patterns that we observe via visualization tool guide us to develop metrics to

quantitatively measure the characteristics of the workloads.

4.4 Quantitative Analysis of the Run-Time Performance Behavior

In this section, we present the workload characterization metrics to quantify the

run-time performance behavior of the workloads. And then, we classify workloads based

on the measured metrics.

4.4.1 Workload Characterization

Here, we define 4 workload characterizing metrics.
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Reversed Gradient Area

The reversed gradient area metric measures the total depth of the slope whose

gradient vector points in the opposite direction of the optimal position. The bigger the

reversed gradient area, the more local maxima there are in the performance curve.

Figure 4.5(a) presents the definition of the reversed gradient area, where Y-axis

shows the performance in average weighted IPC and X-axis shows the resource distribution

space. We do not directly measure the volume of the local maxima because the definition

of the local maxima becomes less clear in 3 or higher dimensional space.

To extend this definition to 3- and 4-threaded workloads, we formally defined the

reversed gradient area in Equation 4.5. In this equation, −→P is the optimal resource distri-

bution, −→Ci is i’s resource distribution, BN(i) is one of i’s neighbors in resource distribution

space, which has the maximum performance among all i’s neighbors, −−−−→CBN(i) is BN(i)’s re-

source distribution, WIPCi is i’s weighted IPC, and WIPCBN(i) is the BN(i)’s weighted

IPC.

RGA =
∑

for all i

max(0, ((−1) × (−→P −−→
Ci) · (−−−−→CBN(i) −−→

Ci)

|(−→P −−→
Ci)| · |−−−−→CBN(i) −−→

Ci|
× (WIPCBN(i) − WIPCi)))

(4.5)

The reversed gradient area, RGA, is the sum of the performance difference (i.e., WIPCBN(i)−

WIPCi), whose gradient vector (i.e., −−−−→CBN(i) − −→
Ci) is opposite (i.e., −1) to the optimal

position (i.e., −→P − −→
Ci). The cosine (i.e., dot product of two vectors and the division by

their norm) of the angle between the gradient vector (i.e., −−−−→CBN(i) −−→
Ci) and vector to the

optimal position (i.e., −→P −−→
Ci) is added to incorporate how opposite the two vectors are.

Figure 4.5(b) and (c) are the snapshot from the visualization tool, whose depth of the

valley is small and large, respectively. In Figure 4.5(c), the local maxima is represented

as high contrast horizontal lines.

44



High

weighted IPC

Low

weighted IPC
The optimal resource distribution

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Resource Distribution Space

A
v
e
ra
g
e
 W
e
ig
h
te
d
 I
P
C
 .

L1

L2

L3

Reversed Gradient Area

= L1+L2+L3

R
e
s
o
u
rc
e
 D
is
tr
ib
u
ti
o
n
 S
p
a
c
e

Time

R
e
s
o
u
rc
e
 D
is
tr
ib
u
ti
o
n
 S
p
a
c
e

Time

(a) Definition
(b) Small reversed gradient

area (equake-bzip2)

(c) Large reversed gradient

area (art-mcf)

Figure 4.5: Reversed gradient area metric measures the amount of local maxima in the
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Hill-Width

Figure 4.6(a) illustrates the definition of the hill-width metric. This metric quantifies

the “sharpness” of the performance peak. We define hill-widthX to be the fraction of

the resource distribution whose performance outcome is better than X of the optimal

performance. In Figure 4.6(a), we indicate hill-width0.99, hill-width0.97, and hill-width0.95

on our hypothetical performance curve. Peak sharpness can be assessed by examining

hill-widthN : a small hill-widthN value indicates a sharp peak, while a large hill-widthN

value indicates a dull peak. Figure 4.6(b) and (c) show the workload examples with wide

and narrow hill, respectively.

ADJ Variance

Figure 4.7(a) shows the definition of the ADJ variance metric. The ADJ variance

metric measures the performance changes between two adjacent epochs, which represents

the “short term” temporal variation in the performance curve. ADJ variance is computed

by measuring the area difference in the performance curves between two adjacent epochs.

Figure 4.7(b) and (c) show the workload examples with low and high ADJ variance,

respectively.

AVG Variance

Figure 4.8(a) shows the definition of the AVG variance metric. The AVG variance

metric measures every epoch’s performance variation compared to the averaged perfor-

mance curve, which represents combination of “short and long term” temporal variation

in the performance curve. AVG variance is computed by measuring the area difference

between the individual epoch’s performance curve and the averaged one across all epochs.
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Figure 4.8(b) and (c) show the workload examples with low and high AVG variance,

respectively.

4.4.2 Workload Classification

Now we classify workloads based on the measured value of the four metrics, aver-

aged across all epochs in the simulation window. Table 4.5 shows the conditions for our

classification. This classification of the workloads discretizes the quantity measured using

four metrics just for the convenience of explaining the characteristics of their performance

curve. Therefore, the thresholds in the conditions are empirically chosen to balance the

classification of the workloads between two extreme performance curve characteristics.

If a workload’s reversed gradient area is less than 0.15, we call it SH (Single-Hump).

Otherwise, we call it MH (Multiple-Humps). If a workload’s hill-width0.95 is more than

0.6, 0.5, 0.4, and 0.3 for 1-, 2-, 3-, and 4-threaded workloads, we call it WH (Wide-Hill).

Otherwise, we call it NH (Narrow-Hill). We picked only hill-width0.95 for our classification

condition because hill-widthX values for all X’s are proportional to each other in most of

the workloads. If a workload’s ADJ variance is less than 0.05, we call it TS (Temporally-

Stable). Otherwise, we call it TU (Temporally-Unstable). If a workload’s AVG variance

minus two times ADJ variance is less than 0, we call it TC (Temporally-Consistent)3.

Otherwise, we call it TU (Temporally-Phased).

Figure 4.9 shows the reversed gradient area of our 63 workloads and the classifica-

tion of the workloads based on SH and MH. The X-axis shows the classification of the

workloads as well as the name of the workloads. Figure 4.10 reports hill-widthN across

several N (between 0.99 and 0.95) and classifies the workloads based on WH and NH;
3The intuition behind this condition is (short and long term temporal variation) - (short term temporal

variation) makes (long term temporal variation).
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each bar represents a hill-widthN value averaged across all epochs from its correspond-

ing workload. For the workloads labeled WH, 50% (2-threaded), 40% (3-threaded), and

30%(4-threaded) of all possible resource distribution’s performance is as good as 95% of

peak performance. As WH-labeled workloads have dull peaks, they are insensitive to

non-optimal resource partitions. Figure 4.11 shows the ADJ and AVG variance of the

workloads and the classification based on TS/TU, and TC/TP.

The 1-threaded workloads included in Figure 4.10 and Figure 4.11 are good refer-

ences because the characteristics of the multi-threaded workloads are mainly determined

by the individual characteristics of the participating applications. For example, in Fig-

ure 4.10, both fma3d and mesa have wide hill characteristics. So, the fma3d-mesa workload

also exhibits wide hill characteristics. In addition, in Figure 4.11, gcc has high ADJ vari-

ance. Therefore, any workloads that include gcc also have high ADJ variance. 1-threaded

workloads are excluded in Figure 4.9 because their performance curves are monotone

non-decreasing and do not have any local maxima.

In the subsequent chapters, we will use these classifications and show the strong

correlation between run-time characteristics of the workloads and SMT processor perfor-

mance.
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Condition Label for true condition Label for false condition

(Reversed Gradient Area)<0.15 SH (Single-Hump) MH (Multiple-Humps)

1-thread: (Hill-Width0.95)>0.6

2-thread: (Hill-Width0.95)>0.5 WH (Wide-Hill) NH (Narrow-Hill)

3-thread: (Hill-Width0.95)>0.4

4-thread: (Hill-Width0.95)>0.3

(ADJ variance)<0.05 TS (Temporally-Stable) TU (Temporally-Unstable)

(AVG variance)−2×(ADJ variance)<0 TC (Temporally-Consistent) TP (Temporally-Phased)

Table 4.5: The workload classifications based on the OFF-LINE-Analysis.
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Figure 4.9: Reversed gradient area (a local maxima metric for OFF-LINE-Analysis, as
illustrated in Figure 4.5) of our 63 workloads. Large reversed gradient area means many
local maxima. Based on the condition in Table 4.5, workloads are classified as either single
hump (SH) or multiple humps (MH).
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Figure 4.10: Hill-width (a metric illustrated in Figure 4.6) of our 63 workloads. Wide
hill width means that we can achieve good performance from a wide range of less optimal
resource distribution. Based on the condition in Table 4.5, workloads are classified as
either wide hill (WH) or narrow hill (NH).
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Figure 4.11: ADJ and AVG variance (metrics illustrated in Figure 4.7 and 4.8) of our 63
workloads. High ADJ variance means high frequency performance variation over time.
Based on the condition in Table 4.5, ADJ variance metric classifies workloads into tem-
porally stable (TS) and temporally unstable (TU). High AVG variance means either high
or(and) low frequent performance variation over the execution time. Based on the con-
dition in Table 4.5, AVG variance metric classifies workloads into temporally consistent
(TS) and temporally phased (TP).
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Chapter 5

Hill-Climbing SMT Processor Resource Distribution Algorithm

In this chapter, we realize the hill-climbing algorithm that searches for the opti-

mal resource distribution on-line. The insights provided by the OFF-LINE-Analysis in

Chapter 4 guides the design of the hill-climbing algorithm.

5.1 Locality of Performance

The design of our hill-climbing algorithm first focuses on the workloads with “good”

run-time performance curve characteristics, which we call temporal and spatial locality of

performance. As we will show in Section 6.3, our hill-climbing algorithm achieves near

optimal performance on workloads with temporal and spatial locality of performance. In

addition, we discuss “bad” situations in Section 5.2 and attempt to hand them for better

performance in Section 5.3.

5.1.1 Temporal Locality of Performance

Temporal locality of performance of a multi-programmed workload on an SMT pro-

cessor is detected by observing long sequence of stable performance. For multi-programmed

workloads that exhibit temporal locality of performance, the shape of the performance

curve changes “slowly.” Therefore, simple hill climbing algorithm which assumes static

hill is likely to be successful in finding the optimal resource distribution. The workloads

classified as TS (Temporally-Stable) and TC (Temporally-Consistent) have good temporal

locality of performance.
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5.1.2 Spatial Locality of Performance

Spatial locality of performance of a multi-programmed workload on an SMT proces-

sor is detected when the performance of a resource distribution D is similar to a resource

distribution close to D at a fixed point in time. For multi-programmed workloads that

exhibit spatial locality of performance, the shape of the performance curve is “smooth;”

therefore, the performance curve is less likely to have local maxima, allowing hill-climbing

algorithm to find the optimal resource distribution quickly. The workloads classified as

WH (Wide-Hill) and SH (Single-Hump) have good spatial locality of performance.

In Chapter 7, we will show that temporal and spatial locality of performance and

the performance of our hill-climbing algorithm has very string correlation.

5.2 Algorithm Design Issues

We first focus on the workloads with the locality of performance characteristics in

designing our hill-climbing algorithm. However, for better performance, our algorithm

should be able to deal with the situation where we cannot rely on these characteristics.

Before we detail our hill-climbing algorithm, we discuss the hill-climbing algorithm design

issues which we should address for better performance. And then we suggest the algorithm

design guidelines.

5.2.1 Lack of Temporal Locality of Performance

In this section, we discuss one approach to handle workloads that exhibit tempo-

ral instability. Temporal instability makes it difficult for our hill-climbing algorithm to

find the optimal resource distribution. Unlike the OFF-LINE-Analysis, our hill-climbing

implementation cannot use perfect oracle information. Instead, it must find the resource
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distribution using only the performance samples acquired on-line during the execution of

past epochs. Since we do not have the global view of the shape of the hill, we must com-

pute the movement direction on the hill (i.e., the gradient vector) based on past movement

trails. However, the quality of the information on the past movement trail depends on the

temporal stability of the workload. If the workload is not temporally stable, the history

information is less reliable in determining the current hill shape, making it difficult to find

the optimal resource distribution.

In addition, temporal instability makes our hill-climbing algorithm to deviate from

the optimal partition frequently. Hill-climbing needs learning time to reach the optimal

partition settings. During learning, non-optimal partitions are used, sacrificing perfor-

mance opportunities. For temporally unstable workloads, the optimal resource distribu-

tion changes frequently, causing our hill-climbing algorithm to perform learning frequently

as well. This can result in performance loss.

To handle the temporal instability of the workloads, we developed the following

guidelines for the hill-climbing algorithm design. First, one way to mitigate learning time

effects is to increase epoch size since larger epochs “smooth out” the noise in workload

behavior. Second, to minimize the effect of stale information, we design our hill-climbing

algorithm to compute the movement direction after executing only a small fraction of

the resource distribution samples. This increases learning speed. Third, to deal with the

moving target, we design our hill-climbing algorithm to continuously chase the optimal

resource distribution.
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5.2.2 Lack of Spatial Locality of Performance

In addition to temporal instability, we also considered spatial instability in design-

ing our hill-climbing algorithm. Spatial instability can potentially cause two problems.

First, hill-climbing may be limited by local maxima in the resource distribution perfor-

mance curve. As suggested by Figure 4.5(a), the performance curve within an epoch often

contains multiple humps. Hence, it is possible for hill-climbing to reach a non-optimal

hump and become trapped. If performance on separate peaks differs considerably, po-

tential performance gains may be sacrificed. Second, narrow peaks can make it difficult

for our hill-climbing algorithm to pin-point the optimal resource distribution. Since small

fluctuations away from optimal resource distribution setting can cause large reduction in

performance.

To handle the spatial instability of the workloads, we developed the following hill-

climbing algorithm design guideline. We pick the movement step size large enough to

jump over small local maxima and to accelerate the movement speed towards the peak of

the hill. At the same time, to deal with narrow peaks, the movement step size is small

enough to limit the deviations from the optimal resource distribution.

5.3 Algorithm Description

Like the OFF-LINE-Analysis algorithm, hill-climbing performs learning at epoch

granularity, and partitions three types of resources–integer issue queue, integer rename reg-

ister, and reorder buffer–proportionally as described in Section 4.2.5. Figure 5.1 presents

our hill-climbing algorithm. The algorithm consists of two parts: a sampling sequence,

called a “round” (lines 16-21 in Figure 5.1), and partition selection at the end of ev-

ery round (lines 8-15). An array variable, called anchor partition, stores the best-
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performing partition setting currently found.1 During each round, the performance of

several partition settings “near” anchor partition are sampled to determine the local

shape of the performance curve. For each sample, we slightly shift the partition away from

anchor partition by giving a single thread some resources from the other T − 1 threads

(lines 17-21). The amount taken from each of the T − 1 threads, Delta, determines how

far each sample shifts away from anchor partition. (In Figure 5.1, we assume Delta

specifies the number of shifted integer rename register entries; a proportional number of

integer IQ entries and ROB are also shifted). In total, T samples are taken, allowing each

of the T threads to take turns receiving additional resources.

At the end of a round, the best-performing partition among the T samples is identi-

fied (line 9). This best partition setting lies along the direction of the positive gradient (i.e.,

maximal performance increase) from the anchor partition. Our algorithm moves in this

positive gradient direction by setting anchor partition to the best-performing partition

found (lines 10-14). Then, the process repeats as another round begins to determine the

positive gradient direction for the new anchor partition.

Figure 5.2 illustrates an example of the hill-climbing algorithm on a hypothetical per-

formance curve. From the initial anchor partition (1), we evaluate the trial partition a for an

epoch (2), and record its performance outcome (3). And then, we try another trial partition

b for an epoch (4), and record its performance outcome (5). Since performance outcome

of the trial partition b is better than that of trial partition a, anchor partition is moved to

trial partition b (6). We repeat another round for the trial partition c and trial partition

d (7-10), and move the anchor partition to trial partition d because the performance of

trial partition d is better than that of trial partition c (11).
1In the very first round, anchor partition defaults to an equal partition for every thread.
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1. #define Epoch_Size 64k
2. #define N Total number of running threads
3. #define Delta 4
4. #define eval_perf(X) Evaluate the over all performance of SMT during the epoch X.
5. #define max(A, n) Get the index of the maximum value in the array A[0 : n]

6. For every Epoch_Size cycles {
7. perf[epoch_id % N] = eval_perf(epoch_id); // evaluate the performance of the previous epoch 

8. if (epoch_id % N == (N – 1)) { // move the anchor_partition every N-th epochs
9. gradient_thread = max(perf, N); // find the best performing trial_partition for the past N epochs
10. for (i = 0 ; i < N ; i++) 
11. if (i == gradient_thread) // move the anchor_partition in favor of gradient_thread
12. anchor_partition[i] += Delta * (N – 1);
13. else
14. anchor_partition[i] -= Delta;         
15. }

16. epoch_id++;
17. for (i = 0 ; i < N ; i++)
18. if (i == epoch_id % N) // try giving favor to thread (epoch_id % N)
19. trial_partition[i] += anchor_partition[i] + Delta * (N – 1);
20. else
21. trial_partition[i] -= anchor_partition[i] – Delta;
22. }

(a)

(b)

Figure 5.1: Hill-climbing algorithm pseudo-code. Shaded box (a) chooses a new partition
based on samples acquired by shaded box (b) among all possible directions from the
currently best partition, anchor partition.
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Figure 5.2: Hill-climbing algorithm working example. The position of the anchor partition
is determined by the performance outcome of the earlier trial partitions.
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Having presented the basic hill-climbing algorithm, we now discuss several algorithm

design issues raised in Section 5.2 in greater depth.

5.3.1 Epoch Size

The choice of the epoch size affects the performance of the hill-climbing algorithm

in three ways. First, the scheduling overhead of the software implementation of the algo-

rithm decreases as we increase the epoch size because the hill-climbing algorithm performs

scheduling at every epoch boundary. Second, the performance of the workload becomes

more temporally stable as we increase the epoch size because with large epoch size fre-

quent fluctuations in the resource distribution performance curve are “smoothed out” due

to averaging. And third, the search speed will be increased as we decrease the epoch size

because the hill-climber gets performance feedback more frequently, thus adapting to the

changes more quickly. In Section 8.1.2, we show the sensitivity of the epoch size to the

performance of the hill-climbing algorithm. Based on this sensitivity study, we pick a 64K

cycle epoch size. An alternative design choice is an adaptive epoch size, which finds the

optimal epoch size at run-time. But we did not experiment with this approach due to its

increased complexity.

5.3.2 Movement Direction

Our hill-climbing algorithm samples performance along all possible directions from

the current best partition setting (i.e., T directions around the anchor partition) before

moving the anchor partition. This approach provides complete information for making

the movement decision, but comes at the expense of sampling many directions, especially

when a large number of threads run simultaneously. We experimented with more expe-
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dient approaches that sample less comprehensively in the hope of reducing learning time.

One possible approach is to greedily move the anchor partition in the first sampled direc-

tion that provides a performance gain compared to that of the previous anchor partition;

another approach is to sample and move in without changing the direction as long as it

continues to provide a performance gain. While these approaches acquire fewer samples

per partition visited, our experiments show they result in longer overall learning times due

to increased search path length. We find the sampling approach in Figure 5.1 provides

the best performance.

5.3.3 Continuous Search for the Peak

Our hill-climbing algorithm runs continuously even after the hill-climbing algorithm

finds the optimal resource distribution and the workload becomes temporally stable be-

cause the behavior of the workload may suddenly change at any time. As a result,

our hill-climbing algorithm changes the resource distribution continuously around the

anchor partition to sense the behavior changes.

5.3.4 Step Size

Once a movement direction is chosen, our hill-climbing algorithm moves the current

partition setting by Delta units (measured in integer rename register entries). Clearly,

Delta affects learning time since it controls the speed at which the algorithm moves towards

the optimal partition. In addition, Delta controls the effect of the local maxima. By

choosing a large Delta, some local maxima–those whose peaks are narrower than Delta–

are skipped, saving the algorithm from becoming trapped. While a large Delta can address

both learning time and local maxima, unfortunately, a large Delta causes overshoot past
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the optimal partition setting, which is a serious problem when the hill width is narrow.

We choose Delta = 4 (line 3 in Figure 5.1) to balance these conflicting factors. Note, we

experimented with adapting Delta dynamically, but found a carefully chosen fixed Delta

provides higher performance due to the difficulty of managing adaptation.

5.4 Implementation Cost

Our hill-climbing algorithm can be implemented either in software or in hardware.

Software implementation needs less hardware support and hardware implementation has

less run-time overhead. In this section, we estimate the cost of both implementations.

5.4.1 Software Implementation

The software implementation needs minimal hardware support. The dashed boxes

with normal face labels in Figure 4.3 show the additional hardware on top of the baseline

SMT processor needed for the software implementation of the hill-climbing algorithm.

(The dashed boxes with bold face labels are required only for the hardware implementa-

tion.) First, our technique requires hardware statistics counters to track both the number

of committed instructions per thread (these counters are available in most SMT processors

already), labeled “Committed Instruction Counters” in Figure 4.3, as well as the number

of shared resources–integer IQ entries, integer rename registers, and ROB entries–occupied

by each thread, labeled “Resource Occupancy Counters.” These statistics counters are

updated every cycle by the processor pipeline. Second, our technique also requires a set

of resource partition registers, labeled “Resource Partition Registers,” that specify the

size of each thread’s partition in each of the three partitioned shared resources. These

partition registers implement the trial partition variable in Figure 5.1, and are updated
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every epoch by the hill-climbing algorithm. Third, our technique requires fetch stalling

logic, labeled as a circled “<” sign in Figure 4.3, that compares the resource occupancy

counters against the resource partition registers, and fetch-locks any thread that reaches

its partition limit in one or more of the partitioned shared resources. Fourth, our tech-

nique needs a count-down timer to trigger the hill-climbing algorithm, labeled “Down

Counter.” This is similar to a conventional timer-interrupt used by operating systems,

but we need a devoted counter just for our technique. Fifth, the software implementation

of our technique needs special instructions to control the fetch stalling logic.

The resource scheduling procedure of the software implemented hill-climber is as

follows. Every 64K cycles, the down counter triggers the interrupt to a randomly chosen

victim thread, causing (1) context switch from the victim thread to the scheduling thread.

The scheduling thread (2) reads the committed instruction counters, (3) computes the

performance of the previous epoch, and (4) updates the resource partition registers. And

then, (5) switches back to the victim thread. The process from step (2) to (4) takes only

58 machine instructions in Alphas binary requiring 26 cycles on the simulator with the

processor model of Section 4.2.5.

In Section 8.1.2, we evaluate the overhead of the software implementation of the hill-

climbing algorithm and show that the software overhead is only 0.3% of total execution

time.

5.4.2 Hardware Implementation

The dashed boxes with bold face labels, as well as those with normal face labels, in

Figure 4.3 show the additional devices required for the hardware implementation of our

hill-climbing algorithm. Hardwire implementation requires two more hardware compo-
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nents on top of what is required for the software implementation. First, it requires local

variables to implement the anchor partition and perf variable from Figure 5.1. Second, the

hardware implementation requires control logic to implement the scheduler, labeled “Re-

source Scheduler.” The special instructions required for the software implementation are

not necessary for the hardware implementation. Among the control logic, the most costly

part is the performance evaluation function (line 4 in Figure 5.1) which implements one

of the performance metrics from Section 4.2.3 (Equations 4.2-4.4).2 However, because the

hill-climbing algorithm is invoked infrequently–only once per epoch–the hardware need

not be fast, potentially simplifying its design.

5.4.3 Single-Threaded IPC Computation Overhead

Of the 3 performance metrics discussed in Section 4.2.3, average weighted IPC and

harmonic mean of weighted IPC (Equations 4.3 and 4.4) require the stand-alone IPC of

each thread, SingleIPCi. Because the SingleIPCi values are not known a priori, the

hill-climbing algorithm must learn them along with the best partition. We continuously

sample the stand-alone IPC of each thread by periodically disabling the other T−1 threads

for a single epoch, and measuring the resulting IPC. To minimize its performance impact,

we acquire a sample every 40 epochs only; hence, each thread’s SingleIPCi is sampled

once every 40 ∗ T epochs. The required hardware to implement the stand-alone IPC

computation is the fetch stalling logic. We will show the effect of run-time stand-alone

IPC computation on SMT processor performance in Section 8.1.1.

2For the harmonic mean of the weighted IPC metric, the hardware can be simplified by modifying the

hill-climbing algorithm to minimize the inverse of the metric rather than maximizing it.
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Chapter 6

Performance Limit of SMT Processor

The performance limit of SMT processor will show the performance goal that any

SMT processor may potentially achieve. In addition, the performance gap between the

performance limit and the real implementation will reveal the source of the performance

bottleneck, thus suggesting a way to improve the performance.

To our knowledge, no one has successfully shown the performance limit of SMT

processor. One contribution of this dissertation is the development of the methodology

that approximates the SMT processor performance limit. In this chapter, we list the

simplifying assumptions that enables our limit study, validate our limit study methodology,

and show the performance limit of SMT processor suggested by our approximation.

Note, the limit suggested by our approximation it less than the ideal performance

limit of the SMT processor. Several simplifying assumptions make our limit study com-

putationally feasible at the cost of its bounded performance result. However, our approx-

imation is still useful in providing in-depth understanding of the existing techniques as we

will show in Section 6.3 and 6.4.

6.1 Limit Study Methodology

In this section, we first discuss the problems associated with evaluating the perfor-

mance limit of the SMT processor. Then, we present our simplifying assumptions that

enable the limit study. Finally, we detail our limit study methodology.
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# threads 2 3 4

space complexity O(N) O(N2) O(N3)

space volume 256 32,896 2,862,206

purpose Finding the performance limit of SMT processor

OFF- # samples / epoch 128 128 128

LINE- sampling rate 50.000% 0.389% 0.004%

Search sampling method Multiple applications of the hill-climbing algorithm

sampling frequency every epoch every epoch every epoch

purpose Validating the performance of OFF-LINE-Search

OFF- # samples / epoch 256 2,016 5,456

LINE- sampling rate 100.000% 6.128% 0.191%

Greedy sampling method uniform, step:1 uniform, step:4 uniform, step:8

sampling frequency every 64 epoch every 64 epoch every 64 epoch

Table 6.1: OFF-LINE-Search and OFF-LINE-Greedy simulation settings.

6.1.1 Issues on SMT Processor Performance Limit Study

Finding the optimal resource distribution is NP-hard even with the epoch gran-

ularity resource distribution. The resource distribution of an epoch is not independent

between that of other epochs because the configuration chosen in one epoch will affect the

stream of instructions of every thread in subsequent epochs, thus affecting the optimum

configuration for those subsequent epochs. Therefore, the number of all possible combina-

tions of resource distribution is O(SN ), where S is the resource distribution space volume

and N is the total number of epochs during the execution of the workload. As presented

in Table 6.1, S is O(ET−1), where T is the number of concurrently running threads and

E is the number of entries in the resource type that we partition. Even after we reduce

S using the down sampling technique we presented in Section 4.2.1, O(SN ) still implies

that the problem is NP-hard. Therefore, we cannot find the optimal epoch-granularity

resource distribution unless we try all O(SN ) combinations, which is extremely large.
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6.1.2 The Heuristics: OFF-LINE-Greedy and OFF-LINE-Search

We developed two polynomial time heuristics that approximate the optimal epoch-

granularity resource distribution: OFF-LINE-Greedy and OFF-LINE-Search.

OFF-LINE-Greedy

OFF-LINE-Greedy is an approximation of the optimal epoch-granularity SMT pro-

cessor resource distribution. It finds the sequence of resource distribution with the assump-

tion that the best performing resource distribution for the current epoch leads to finding

the best resource distribution for the future epochs. This assumption is equivalent to the

common belief that doing one’s best today is the best for one’s future, too. With this as-

sumption, we can safely find the optimal resource distribution locally within each epoch,

and repeat this sequentially from the first to the last epoch. Therefore, the computation

complexity of the OFF-LINE-Greedy is reduced to O(S × N) = O(ET−1 × N). However,

if T is 3 or more, OFF-LINE-Greedy is still not computationally feasible. For this reason,

we designed OFF-LINE-Search.

OFF-LINE-Search

To find the best performing resource distribution, OFF-LINE-Greedy tries all pos-

sible combinations of resource distributions within each epoch. Instead of exhaustively

trying every possible combination, OFF-LINE-Search uses the technique from multiple

restart stochastic hill-climbing (MRSH) [24] to performs hill-climbing multiple times off-

line. Each hill-climbing pass executes the algorithm in Figure 5.1 starting from the optimal

resource distribution of the previous epoch and continues over the same epoch until it finds

a peak. When a peak is found, we start a new hill-climbing pass from a randomly chosen
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anchor partition. By performing multiple hill-climbing passes initiated from random

points in the resource distribution space, OFF-LINE-Search can find good partitioning

solutions even when local maxima exist. After trying L unique resource distributions,

OFF-LINE-Search stops searching and picks the best performing resource distributions

among L trials. The computational complexity of OFF-LINE-Search is further reduced

to O(L × N) = O(N), as L is constant.

6.1.3 Implementation

We use probe-based simulation methodology (as presented in Section 4.2.3) to im-

plement both OFF-LINE-Greedy and OFF-LINE-Search simulator. The implementation

follows the algorithm shown in Figure 4.2. At the end of an epoch, the parent process forks

child processes to probe the resource distributions defined by either OFF-LINE-Greedy or

OFF-LINE-Search. After all the probings, the parent process picks the best performing

resource distribution among all the probings and uses it as the parent process’s resource

distribution for the next epoch. Therefore, the parent process can always make the best

choice and produces the performance close to the optimal since it knows the consequences

of the alternative resource distributions for the next epoch. We only consider weighted

IPC for this limit study; the same insights apply under other performance metrics as well.

Table 6.1 shows our OFF-LINE-Search and OFF-LINE-Greedy simulation settings.

OFF-LINE-Search probes the next epochs up to 128 times. OFF-LINE-Greedy probes

the next epochs 256, 2016, and 5456 times for 2-, 3-, and 4-threaded workloads uniformly

across the entire resource distribution space. The large number of samples in OFF-LINE-

Greedy is intended to make it close to exhaustively trying the entire resource distribution

space. (But still the sampling rate is very low because of the huge search space volume.)
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We ran 100M instructions counted only by the parent process. Even with this small

simulation window, OFF-LINE-Greedy needs excessive simulation time. So, we run OFF-

LINE-Greedy only once every 64 epochs.

Note, OFF-LINE-Analysis presented in Chapter 4 uses the same methodology as

that used in OFF-LINE-Greedy as both of them samples the resource distribution uni-

formly. OFF-LINE-Analysis is intended to show the characteristics of the workloads on

SMT processor. So, we do not report end performance of OFF-LINE-Analysis. Instead, we

run OFF-LINE-Analysis every epoch to show the time-varying behavior of the workload.

On the contrary, OFF-LINE-Greedy is intended to show its performance and approximate

the performance limit. So, we increase the sampling rate of OFF-LINE-Greedy to make it

close to exhaustively trying the entire resource distribution space. (Actually, we exhaus-

tively try the entire resource distribution space for 2-threaded workloads.) To limit the

simulation time with increased sampling rate, we ran OFF-LINE-Greedy once every 64

epochs.

6.2 Quality of the Limit Study Heuristics

At best, OFF-LINE-Greedy and OFF-LINE-Search provides optimal resource dis-

tribution of the SMT processor with three constraints; first, per-thread resource partition

is maintained to distribute resources, second, updating resource partition is allowed only

at every epoch boundary, and third oracle provides only the next epoch information. The

three constraints reduce the degree of freedom of our limit study thus potentially making

our limit study to suggest less meaningful performance goal. But, due to the bounded com-

putation time, we were able to figure only limited amount of oracle information resulting

in three constraints in our limit study.
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Therefore, we need to validate the quality of our OFF-LINE-Greedy and OFF-LINE-

Search implementation to make our approximations useful. However, the quality of our

approximations cannot be validated by directly comparing against the ideal optimal re-

source distribution because the ideal optimal is computationally infeasible, thus unknown.

So, we validate the quality of our two heuristics indirectly. Because of the above three

constraints, the performance of both OFF-LINE-Greedy and OFF-LINE-Search is “lower”

than the ideal optimal. We plan to show that the performance of two of our heuristics is

“higher” than almost all the existing techniques. So, the bottom line is that we can show

our two heuristics are good upper bound of the performance of the existing techniques.

6.2.1 OFF-LINE-Search vs. Existing Techniques

We compare the performance of OFF-LINE-Search and existing SMT processor

resource distribution techniques in two ways: end-to-end performance comparison and

side-by-side performance comparison. First, for the end-to-end performance comparison,

we execute all techniques, including ICOUNT, FLUSH, DCRA, and OFF-LINE-Search

for 100M instructions and compare their performance outcome. Out of 63 workloads,

OFF-LINE-Search outperforms DCRA for 59 workloads, and ICOUNT and FLUSH for

all workloads.

Second, for the side-by-side performance comparison, we “synchronized” the exe-

cution of all the techniques using the probe-based simulation methodology. At the end

of each epoch, we sequentially fork three child processes, which control the shared re-

sources using one of ICOUNT, FLUSH, or DCRA techniques. After that, we fork child

processes to perform OFF-LINE-Search simulation and find the best performing resource

distribution configuration. For each epoch, the performance of the OFF-LINE-Search is
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compared against the three existing techniques. This shows a time-varying performance

profile for each technique, as illustrated in Figure 6.1. Comparing the performance from

the same epoch in Figure 6.1 is meaningful because all the techniques are synchronized

to a common execution point. (We also verified that synchronization does not noticeably

alter the end-to-end performance of ICOUNT, FLUSH, and DCRA.) For all 63 workloads,

OFF-LINE-Search outperforms ICOUNT and FLUSH in 100% of the epochs. OFF-LINE-

Search also outperforms DCRA in 97.2% of the epochs averaged across all the workloads.

This result suggests that OFF-LINE-Search is at least a good upper bound. Note, this

is the only way of validating our heuristics considering that there is no way we can show

that a heuristic is close to an unknown ideal performance limit.

6.2.2 OFF-LINE-Greedy vs. OFF-LINE-Search

Since we increased the number of samples of OFF-LINE-Greedy to make it close

to trying the entire resource distribution space, running OFF-LINE-Greedy for our sim-

ulation window becomes computationally infeasible. Therefore, we cannot get the end

performance of OFF-LINE-Greedy–we run OFF-LINE-Greedy only once every 64 epochs.

Instead, we use realizable heuristic, OFF-LINE-Search. In order to validate the use of

OFF-LINE-Search, we compare its performance against OFF-LINE-Greedy only during

the epochs when OFF-LINE-Greedy runs.1

1There is a chance that OFF-LINE-Greedy’s performance is inferior to that of OFF-LINE-Search be-

cause OFF-LINE-Greedy’s uniform sampling may not pin point the optimal resource distribution, thus

making this comparison less useful. But still this comparison is statistically meaningful because OFF-

LINE-Greedy’s performance comes from the unbiased samples, while there is a chance OFF-LINE-Search’s

performance may be affected by the shape of the performance curve. Here is another indirect but significant

argument. Let a set S be an unbiased random sample from a set M . Let max(X) be the maximum value

among the elements in a set X. Let |X| be the cardinality of a set X. Let E(k) be the expected value of a
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Figure 6.1: Synchronized time-varying
performance of OFF-LINE-Search,
DCRA, FLUSH, and ICOUNT from
the art-mcf workload.

# threads # sample epochs average std dev

2 238 0.9998 0.0002

3 151 0.9999 0.0002

4 133 0.9999 0.0001

overall 522 0.9999 0.0002

Table 6.2: Performance of OFF-LINE-Search com-
pared to OFF-LINE-Greedy. (Performance of
OFF-LINE-Search) / (Performance of OFF-LINE-
Greedy) is computed across all 63 workloads.

As shown in Table 6.2, during the 522 sampled epochs, OFF-LINE-Search’s per-

formance is 0.01% worse than that of OFF-LINE-Greedy and the the standard deviation

of the performance difference is 0.02%. This means that the performance of OFF-LINE-

Search and OFF-LINE-Greedy is almost identical all the time.

It is important to note that even though OFF-LINE-Search performs resource dis-

tribution at epoch granularity, which uses a fixed resource partition during the 64K-cycle

epoch (the other techniques update resource distribution decisions every cycle), it still

achieves higher performance in practically every epoch.

random variable k. Then, E(max(S)) = (1− 1/|S|) ×E(max(M)), if M ’s values follow uniform distribu-

tion. In our case, we believe that the distribution of the performance from the entire resource distribution

space is not far away from the uniform distribution. (The performance curve study in Chapter 4 shows

this.) So, our OFF-LINE-Greedy’s performance for 3- and 4-threads will be close to 1 − 1/2016 = 0.9995

and 1 − 1/5456 = 0.9998, respectively, of that of the exhaustively trying (i.e.without down sampling)

OFF-LINE-Greedy.
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6.3 Results of the Limit Study

Using the limit study methodology presented in Section 6.1, we measured the per-

formance of OFF-LINE-Search for our 63 multi-programmed workloads for 100M instruc-

tions. Figure 6.2 compares OFF-LINE-Search against ICOUNT, FLUSH, DCRA, and

HILL-WIPC. HILL-WIPC is the hardware implementation of the hill-climbing algorithm

described in Chapter 5, which uses weighted IPC as the performance evaluation function

(i.e., performance feedback). This figure plots the weighted IPC, normalized against OFF-

LINE-Search, versus different resource distribution techniques applied to the 2-, 3-, and

4-threaded workloads. On the bottom of each graph, we added the classification of the

workload from the OFF-LINE-Analysis presented in Chapter 4 (i.e. SH/MH, WH/NH,

TC/TP, and TS/TU labels) to correlate the run-time workload characteristics and the

performance.

Figure 6.3 plots the same performance data as Figure 6.2, but categorizes the work-

loads by the classifications. X-axis shows the classification and the number of workloads

that belongs to the class. OFF-LINE-Search outperforms ICOUNT by 16.5%, FLUSH by

17.2%, DCRA by 7.4% and HILL-WIPC by 4.4%. This implies that the epoch-granularity

resource distribution has the potential to consistently make higher quality resource dis-

tribution decisions compared to existing techniques. In addition, the performance gap

between the limit suggested by OFF-LINE-Search and the real techniques shows the per-

formance opportunities that the real techniques can potentially achieve.

Below, we investigate the performance opportunities of the prior resource distribu-

tion techniques as well as our hill-climbing resource distribution by analyzing the Figure 6.2

and Figure 6.3. In addition, we identify the bottleneck of each technique.
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Figure 6.2: The weighted IPC of ICOUNT, FLUSH, DCRA, and HILL-WIPC normalized
against OFF-LINE-Search. The labels (SH/MH, WH/NH, TC/TP, and TS/TU) from the
OFF-LINE-Analysis are added to each workload to present the correlation between SMT
performance and workload characteristics.
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6.3.1 Performance Opportunities of ICOUNT and FLUSH

As shown in “ALL” bars in Figure 6.3, the average performance of ICOUNT and

FLUSH is as good as 86.8% and 86.5% of OFF-LINE-Search, respectively. Except for the

ILP and WH workloads, both ICOUNT and FLUSH cannot fully exploit the potential per-

formance of SMT processor. The following two observations can explain the performance

opportunities lost by ICOUNT and FLUSH techniques.

First, both ICOUNT and FLUSH have difficulty in dealing with long latency mem-

ory operations. ICOUNT achieves 84.1% and 84.0% of OFF-LINE-Search for MIX and

MEM workloads, respectively, as shown in “MIX” and “MEM” bars in Figure 6.3. FLUSH

achieves 78.5% of OFF-LINE-Search on MEM workloads. ICOUNT slows down fetching

of an application with large pre-decoded instruction count to give advantage to an appli-

cation which uses the resource more efficiently. But, with ICOUNT, an application may

still hold shared resources during the L2 cache miss and just wait for the resolution of the

cache miss, decreasing the resource utilization. Because of this hold-and-wait condition,

ICOUNT cannot achieve good performance for MIX workloads (84.1% of OFF-LINE-

Search), since the MEM application may prevent the progress of the ILP applications

during the time MEM application waits for the L2 miss resolution. FLUSH has diffi-

culty in exploiting memory parallelism because after an L2 cache miss, all the instructions

next to the load instruction are flushed. Therefore, any subsequent load instructions in

the instruction queue, which can potentially overlap their cache miss with the current

outstanding cache miss, are also flushed, losing the opportunity to exploit the memory

parallelism. For example, the benchmark “art” is one of the applications with significant

memory level parallelism. So, FLUSH achieves only 74.9%, 66.5%, 61.3%, and 59.3% of

OFF-LINE-Search for the art-gzip, art-mcf, art-vpr, and art-twolf workloads, respectively,
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as shown in Figure 6.2 because FLUSH cannot fully exploit memory parallelism of art.

Second, both ICOUNT and FLUSH achieve good performance only for WH work-

loads showing 91.8% and 93.1% of OFF-LINE-Search performance because WH tolerates

less accurate resource distributions. Unfortunately, both techniques are unable to dis-

tribute the resources properly for NH workloads.

6.3.2 Performance Opportunities of DCRA

DCRA achieves fairly good performance. (93.4% of OFF-LINE-Search on average

as shown in “ALL” bars in Figure 6.3) Especially for WH workloads, the performance of

DCRA is almost as good as OFF-LINE-Search (98.7% of OFF-LINE-Search) since WH

workloads tolerate less accurate resource distribution. On NH workloads, however, DCRA

misses two performance opportunities: memory level and instruction level parallelism.

Memory Level Parallelism

DCRA achieves significantly better performance compared to ICOUNT and FLUSH

for MIX and MEM workload by giving more resources to memory-intensive applications.

As a result, memory-intensive applications are allowed to overlap the independent long

latency memory operations thus achieving memory parallelism. But, there is still room

for performance improvement by exploiting more memory level parallelism.

For example, the benchmark ”art” iterates over the independent array elements2

and ”mcf” iterates over the pointer chains3. Both applications cause one L2 cache miss

per iteration making them memory intensive. However, mcf’s memory operations should

be serialized due to the dependencies in the pointer chain. In contrast, art has abundant
2The inner most loop in scan recognize() is an example.
3The loop in refresh potential() is an example.
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memory parallelism. For the art-mcf workload, DCRA tends to give the same amount of

resources to both art and mcf because both applications are memory intensive. However,

giving more resources to art improves the performance by overlapping more L2 misses.

OFF-LINE-Search “learns” this behavior and provides high performance for art-mcf. As

a result, DCRA achieves only 84.3% of OFF-LINE-Search performance on the art-mcf

workload.

Instruction Level Parallelism

The resource distribution behavior of DCRA converges to ICOUNT if there is no

outstanding cache miss. Therefore, DCRA’s performance of ILP workloads is similar to

that of ICOUNT. (On ILP workloads, DCRA and ICOUNT have 95.6% and 92.1%, respec-

tively. On non-ILP workloads, DCRA and ICOUNT have 92.3% and 84.1%, respectively.)

ICOUNT tries to keep the number of pre-decoded instruction count balanced across all

the simultaneously running threads. However, applications with long instruction depen-

dence chains or those with poor branch prediction accuracy should receive small amount

of instruction issue queue resources. On the contrary, applications whose independent

instructions can fit only within large instruction window can utilize a large amount of

instruction issue queue resources. But ICOUNT does not consider the per-application

demand for the instruction issue queue resources, losing performance opportunities.

For example, in the apsi-gcc workload, if we give more fetch bandwidth to apsi than

what ICOUNT normally gives, we can achieve better performance because apsi can find

more independent instructions when it receives a large instruction window. As a result,

ICOUNT and DCRA only achieve 84.4% and 85.7% of OFF-LINE-Search on the apsi-gcc

workload, respectively.
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6.3.3 Performance Opportunities of Hill-Climbing Resource Distribution

Compared to OFF-LINE-Search, HILL-WIPC performs searching for the optimal

resource distribution on-line thus increasing the run-time scheduling overheads discussed

in Section 5.1. However, as shown in Figure 6.3, HILL-WIPC achieves the closest perfor-

mance to OFF-LINE-Search among all the techniques implying that HILL-WIPC faithfully

approximates OFF-LINE-Search (95.9% of OFF-LINE-Search). In addition, HILL-WIPC

handles DCRA’s memory and instruction level parallelism problems properly by using the

feedback information to find the optimal resource distribution.

One drawback of HILL-WIPC, however, is that its performance becomes worse as

the number of simultaneously running threads increases, while all the other techniques’

performance is independent of the number of threads (HILL-WIPC has 97.0%, 96.0%,

and 94.7% of OFF-LINE-Search performance for 2-, 3-, and 4-threaded workloads, respec-

tively). This is because the number of epochs to determine the next movement direction

increases as the number of threads increases, thus delaying the search speed.

Like all the other techniques, HILL-WIPC performs well on WH workloads, achiev-

ing 98.4% of OFF-LINE-Search. Among the NH workloads, HILL-WIPC has good per-

formance for the workloads with temporal and spatial locality, which we defined in Sec-

tion 5.1. As hill climbing can enjoy the locality of performance property, HILL-WIPC

has better performance for workloads labeled NH-TC, NH-TS, and NH-SH than for those

labeled NH-TP, NH-TU, and NH-MH, respectively. In the next section, we will detail the

conditions under which HILL-WIPC suffers performance loss.
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6.4 Performance Hazards of the Hill-Climbing Resource Distribution

Figure 6.4 shows how our hill-climbing algorithm searches for the optimal resource

distribution at run-time on 2-threaded workloads. In the figure, the white dots indicate the

optimal resource distribution that OFF-LINE-Search finds, and the red dots indicate the

resource distribution that our hill-climbing algorithm finds. If the red dots and white dots

are close to each other, our hill-climbing algorithm finds the optimal resource distribution.

If the red dots are far away from the white dots, the hill-climbing algorithm has difficulty

in finding the optimal resource distribution.

Figure 6.4(a), (b), and (c) show examples of workloads that exhibit rich spatial

and temporal locality of performance. Figure 6.4(a) shows a single hump example, Fig-

ure 6.4(b) shows a wide hill example, and Figure 6.4(c) shows a temporally stable example.

For these three examples, our hill-climbing algorithm successfully finds the optimal re-

source distributions. There are no bottlenecks that limit hill-climbing’s movement; hence,

hill-climbing moves along the positive gradient, and after a short time reaches the optimal

partition, remaining there to enjoy the highest possible performance. (Note that the red

dots and the white dots overlap in these three examples.)

On the other hand, Figure 6.4(d), (e), and (f) show examples of workloads without

locality of performance. Figure 6.4(d) shows a multiple hump example, Figure 6.4(e) shows

a temporally phased example, and Figure 6.4(f) shows a temporally unstable example.

For these three examples, hill-climbing has difficulty in reaching the optimal resource

distributions. (Note that the red dots are far away from the white dots.) We refer to the

causes of our hill-climbing algorithm’s performance loss performance hazards.
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Figure 6.4: Three workload examples with rich locality of performance: (a) single hump,
(b) wide hill, and (c) temporally stable, and three workload examples with performance
hazards: (d) multiple humps, (e) temporally phased, and (f) temporally unstable. The
white dots indicate the optimal resource distribution, and the red dots indicate the resource
distribution that HILL-WIPC finds.

6.4.1 Spatial Hazards

A Spatial hazard is the condition that our hill-climbing algorithm suffers from the

performance loss due to the lack of spatial locality of performance. Here are the specific

cases.

Narrow Hill Width

As shown in Figure 6.3, the performance of HILL-WIPC is 94.4% of OFF-LINE-

Search, if hill-width is narrow. (For workloads with wide hills (WH), HILL-WIPC’s per-

formance is 98.4% of OFF-LINE-Search.) On narrow hill workloads, small deviations

from the optimal resource distribution suffers significant performance loss. The other

performance hazards listed below have narrow hill width condition as well because work-

loads with wide hills allow the performance of any resource distribution to be as good as

OFF-LINE-Search.
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Multiple Humps

Figure 6.4(d) illustrates the situation where hill-climbing has difficulty in finding

the peak of the hill due to multiple humps in the performance curve. (Note that the red

dots linger around the local maxima shown as horizontal high contrast strips.) However,

hill-climbing is not permanently trapped at the local maxima because the shape of the

hill changes over time and so does the local maxima. But still, multiple humps slow down

the searching speed, making hill-climbing to sacrifice its performance opportunities.

6.4.2 Temporal Hazards

A Temporal hazard is the condition that our hill-climbing algorithm suffers from the

performance loss due to the lack of temporal locality of performance. Here are the specific

cases.

Phased Behavior

Figure 6.4(e) shows the example of phased behavior (the sudden hill shape and

optimal resource distribution changes). If the optimal resource distribution changes in

phases, hill-climbing does not have enough time to track the changes, thus losing perfor-

mance opportunities. The example in Figure 6.4(e) shows two behaviors, a long period of

low performance followed by a short period of high performance. Hill-climbing effectively

tracks the optimal partition in the low-performing period due to its long duration. When

the optimal partition changes, it does not remain stable long enough for hill-climbing

to adjust; hence, hill-climbing misses significant performance opportunities during the

high-performing period.
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Temporally Unstable Behavior

Figure 6.4(f) shows the example of temporally unstable behavior (the fine grained

vertical lines). If the performance changes frequently over time, hill-climbing has diffi-

culty in deciding the movement direction because hill-climbing algorithm uses the history

information to pick the movement direction. The “jittered” performance curve makes

the history information less consistent and confuses the hill-climbing algorithm in finding

the optimal resource distribution. The example in Figure 6.4(f) shows that the positive

gradient within each epoch always points towards the maximal peak. But, inter-epoch jit-

ter creates transient positive gradients between epochs that temporarily point away from

the maximal peak. These bogus gradients fool the hill-climbing algorithm, causing it to

reverse course occasionally and move away from the optimal partition.
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Chapter 7

Performance Evaluation of the Hill-Climbing Resource Distribution

So far, we have analyzed the performance characteristics of the workloads (in Chap-

ter 4), designed the hill-climbing algorithm (in Chapter 5), and studied the performance

limit of SMT processor (in Chapter 6). In this chapter, we evaluate the performance

of our hill-climbing resource distribution implementation. We will first show the exper-

imental methodology and the performance results. And then, we will present improved

hill-climbing algorithm.

7.1 Experimental Methodology

Our evaluation of hill-climbing resource distribution uses SMT simulator described

in Section 4.2.5 of Chapter 4. However, this experiment has two different simulator settings

compared to what we used for the OFF-LINE-Analysis (Chapter 4) and OFF-LINE-Search

(Chapter 6). First, we pick simulation windows using the methodology described in Sec-

tion 4.2.5, but we extend their duration to 1 billion instructions to get results that may

closely reflect the whole benchmark run. Second, instead of using probe-based simula-

tion, we use end-to-end simulation throughout the simulation window, which executes the

simulation window only once.

Note that there are two run-time overheads associated with the hill-climbing resource

distribution simulation which we do not account for. First, at every epoch boundary, the

software implementation of the hill-climbing resource distribution triggers an interrupt to

invoke the resource scheduling thread that computes the resource distribution for the next
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epoch. The performance that we present in this chapter assumes hardware implementation

of the hill-climbing resource distribution, thus including no run-time resource distribution

overhead. In Section 8.1.2, we evaluate the run-time overhead of software implementation

of the hill-climbing resource distribution in detail. Second, when calculating the perfor-

mance with a metric that requires stand-alone IPC (i.e., SingleIPCi), the stand-alone

IPC should be either computed off-line or on-line. For on-line computation, we sample

the stand-alone IPC once every 40 epochs. During the sampling epoch, we stall fetching

of all threads except one and measure the IPC of the live thread. The performance that

we present in this chapter assumes the stand-alone IPC is computed off-line. Section 8.1.1

details the analysis of the on-line stand-alone IPC computation overhead.

7.2 Performance Results

Using the experimental methodology presented in the previous section, we conduct

comprehensive experiments to show the baseline performance of our hill-climbing resource

distribution.

7.2.1 Baseline Performance Results

Figure 7.1 compares hill-climbing resource distribution (labeled “HILL-WIPC”)

against ICOUNT, FLUSH, and DCRA on our 63 workloads. The comparison is made

using the weighted IPC metric; hill-climbing also uses weighted IPC as the performance-

feedback function for learning. Figure 7.2 shows the same performance data as what is

shown in Figure 7.1, but categorized by the workload type and run-time characteristics.

Comparing Figure 6.3, which uses 100M instruction window, and Figure 7.2, we cannot

find any noticeable differences in general performance trends. This is expected because
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Figure 7.1: The weighted IPC of ICOUNT, FLUSH, DCRA, and HILL-WIPC for all 63
workloads. Run-time characteristics and type are labeled on each workload.

Figure 7.2: The weighted IPC of ICOUNT, FLUSH, DCRA, and HILL-WIPC by the
workload type and characteristics. All bars are normalized against HILL-WIPC.
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we used SimPoint to identify the representative simulation window. This implies that

the workload classification from the OFF-LINE-Analysis and the limit study from the

OFF-LINE-Search using 100M instruction window is still useful for understanding the 1B

instruction window simulation results.

Comparing HILL-WIPC, ICOUNT, and FLUSH, we see HILL-WIPC outperforms

ICOUNT and FLUSH in all but 2 and 6 out of our 63 workloads, providing an average

performance boost of 11.4% and 11.5%, respectively.

Comparing HILL-WIPC and DCRA, we see HILL-WIPC outperforms DCRA by

2.8% averaged over the 63 workloads. This overall performance gain is achieved non-

uniformly across the different workload type and run-time characteristics. As shown in

“2-Thrd”, “3-Thrd”, and “4-Thrd” bars of Figure 7.2, performance gains are larger for

the 2- and 3-thread workloads (3.3% and 3.6%, respectively) compared to the 4-thread

workloads (1.3%) because the number of epochs to determine the next anchor partition (i.e.,

the number of epochs for a round) increases as the number of running threads increases.

Another observation is that the performance gain becomes larger for the MEM category

(4.8%) compared to the ILP and MIX categories (1.3% and 2.1%, respectively), because

of the HILL-WIPC’s ability to exploit memory parallelism effectively. More importantly,

HILL-WIPC outperforms or matches DCRA independent of the workload type (2-, 3-,

and 4-threaded workload, and ILP, MIX, and MEM) in Figure 7.2, which we believe is a

positive result given the size and diversity of our workload set.

As we expected, HILL-WIPC works well on workloads with temporal or spatial

locality of performance property. For WH (Wide-Hill) workloads, the performance of

DCRA is slightly better than that of HILL-WIPC because WH allows wide range of

resource distribution to achieve good performance and cycle-by-cycle scheduling of DCRA
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makes their performance slightly better. However, on NH-TC and NH-SH workloads,

HILL-WIPC can enjoy the locality of performance property achieving 5.5% and 5.2%

performance gain, respectively compared to DCRA. On the other hand, for NH-TP and

NH-MH workloads, the performance advantage of HILL-WIPC becomes small because of

the performance hazards that we described in Section 6.4. However, HILL-WIPC still

outperforms DCRA by 1.5% and 3.9% for NH-TP and NH-MH workloads, respectively.

7.2.2 Adaptive Optimization Goals

Figure 7.3 compares all the techniques using different metrics for both measuring

the performance and feedback-based learning. Three graphs, labeled (a)-(c), report per-

formance in terms of (a) average IPC, (b) average weighted IPC, and (c) harmonic mean

of weighted IPC. Within each graph, hill-climbing uses either average IPC (HILL-IPC),

weighted IPC (HILL-WIPC), or harmonic mean of weighted IPC (HILL-HWIPC) as the

performance-feedback metric for learning. The bars in (a) are normalized against HILL-

IPC bar, (b) are normalized against HILL-WIPC bar, and (c) are normalized against

HILL-HWIPC bar. Results are summarized by workload group to conserve space.

Comparing HILL-IPC, HILL-WIPC, and HILL-HWIPC across the graphs, we see

hill-climbing achieves its best performance when using the same metric for both driv-

ing feedback-based learning and measuring the performance. Figure 7.3(a) and (c) show

hill-climbing achieves a performance gain under the average IPC and harmonic mean of

weighted IPC metrics in addition to the gains already demonstrated under the weighted

IPC metric in Figure 7.2. Comparing HILL-IPC against ICOUNT and FLUSH in Fig-

ure 7.3(a), we see hill-climbing outperforms ICOUNT and FLUSH under average IPC in

all the workload groups, providing an average performance boost of 23.7% and 10.7%,
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Figure 7.3: Hill-Climbing versus ICOUNT, FLUSH, and DCRA under the (a) average IPC,
(b) weighted IPC, and (c) harmonic mean of weighted IPC metrics. Hill-Climbing uses
average IPC (HILL-IPC), weighted IPC (HILL-WIPC), and harmonic mean of weighted
IPC (HILL-HWIPC) as the performance-feedback metric.
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respectively. Comparing HILL-HWIPC against ICOUNT and FLUSH in Figure 7.3(c),

we see hill-climbing outperforms ICOUNT and FLUSH under harmonic mean of weighted

IPC in all the workload groups as well, providing an average performance boost of 18.3%

and 13.6%, respectively. Comparing HILL-IPC and DCRA in Figure 7.3(a), we see hill-

climbing outperforms DCRA by 5.9% under average IPC, and comparing HILL-HWIPC

and DCRA in Figure 7.3(c), we see hill-climbing outperforms DCRA by 2.5% under har-

monic mean of weighted IPC.

This demonstrates one of the strengths of hill-climbing resource distribution: the

ability to directly optimize the performance metric most important to the user. Existing

techniques cannot optimize for a particular performance goal.

7.3 Improving Hill-Climbing Resource Distribution

In Section 6.4, we studied the performance hazards of hill-climbing resource dis-

tribution that lead to performance lose in HILL-WIPC. In addition, in Section 8.2, we

witnessed that the performance hazards decrease the advantage of hill-climbing resource

distribution. In this section, we present two techniques to overcome the performance

hazards of the hill-climbing resource distribution.

7.3.1 Phase-Based Learning

A natural approach to attack the performance hazard and make the search speed

fast is to exploit existing phase detection and prediction techniques. Phase detection [42]

can be used to determine which epochs are similar to each other. Instead of re-learning a

resource distribution for such an epoch, we can simply reuse a previously learned resource

distribution for the similar phase to save the learning time. Phase prediction [43] can
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Figure 7.4: Improving the baseline hill-climbing resource distribution. Hill-WIPC-Phase
trains the resource distribution per phase basis. HILL-WIPC-Momentum uses momentum
term to jump over the small jitters. All bars are normalized against HILL-WIPC.

be used to predict a future phase so that we can apply a previously learned resource

distribution to the next epoch.

We implemented Sherwood’s Basic Block Vector (BBV) signature analysis tech-

nique [42] to perform phase detection on the epochs. We use a BBV with 64 entries per

SMT thread. We also implemented Sherwood’s phase prediction technique [43] to predict

the phase ID of the next epoch. Our phase predictor stores 128 unique phase IDs, and

uses a 2048-entry run-length encoded (RLE) Markov predictor.

Figure 7.4 shows the performance result of the phase based learning (labeled HILL-

WIPC-Phase). In Figure 7.4, the X-axis shows the workload type and class, and the

Y-axis shows the weighted IPC normalized against the baseline HILL-WIPC. With phase

detection and prediction, we are able to boost hill-climbing performance by only 0.05%

across our 63 workloads, on average. Interestingly, almost all the performance benefit

comes from speeding up workloads exhibiting phased behavior (NH-TP). Considering

only NH-TP workloads, we see a 1.7% performance boost. We believe this is a promising

approach to improving hill-climbing, especially for dealing with the performance hazard

caused by phased behavior.
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7.3.2 Hill-Climbing with Momentum Term

Since the momentum term allows jumping over small local maxima, the traditional

hill-climbing algorithm should have the momentum term. Otherwise, the hill-climber

may be trapped at any small local maxima forever. However, our target hill is dynamic

and time varying. Therefore, our hill-climber may not be trapped at the local maxima

forever because the local maxima at an epoch may not be the local maxima in future

epochs. Instead, local maxima may impede the speed of searching for the optimal resource

distribution.

In the baseline hill-climbing algorithm in Figure 5.1, we do not include a momentum

term. To implement the momentum term, we modified line 7 of the hill-climbing algorithm

in Figure 5.1 in the following manner.

perf[epoch id % N] = (perf[epoch id % N] + eval perf(epoch id)) / 2;

This equation makes the performance of the current epoch a function of both the new

information and previous history information. So, the choice of the gradient thread is

determined not only by the most recent performance behavior, but also by the past per-

formance trends. To simplify the implementation of the modified line, we can use shift

and add operation, rather than a division operation.

Figure 7.4 shows the performance result of the momentum term (labeled HILL-

WIPC-Momentum). The Y-axis is the weighted IPC normalized against the baseline

HILL-WIPC. With momentum term, the overall performance is improved by 0.28%. How-

ever, the momentum term boosts the performance of workloads with temporal jitter (NH-

TU) and spatial jitter (NH-MH) by 0.62% and 0.67%, respectively. This is because the

momentum term tends to keep its movement direction and this allows jumping over noisy

within each epoch (NH-MH) and across adjacent epochs (NH-TU). However, the mo-
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mentum term decreases the performance of workloads with phased behavior (NH-TP) by

0.83% because momentum term delays the prompt adaptation to sudden phase changes.
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Chapter 8

Overhead Analysis And Sensitivity Study

So far, we evaluate the performance of hill-climbing resource distribution by com-

paring against prior techniques. To better understand our technique, we perform more

experiments. First, we investigate the run-time overhead of our approach. Then, we study

the sensitivity of the hill-climbing resource distribution’s performance to various design

parameters.

8.1 Run-time Overhead Analysis

There are two run-time overheads in the implementation of hill-climbing resource

distribution: stand-alone IPC computation and resource distribution scheduling overhead.

To measure the run-time overhead, we incorporated them into the simulator and experi-

mented with them.

8.1.1 Run-time Stand-Alone IPC Computation Overhead

Of the 3 performance metrics discussed in Section 4.2.3, average weighted IPC and

harmonic mean of weighted IPC (Equation 4.3 and 4.4) require the stand-alone IPC of

each thread, SingleIPCi. Because the SingleIPCi values are not known a priori, the

hill-climbing algorithm must learn them along with the best resource distribution. We

continuously sample the stand-alone IPC of each thread by periodically disabling the

other T − 1 threads for a single epoch, and measuring the resulting IPC. To minimize

its performance impact, we acquire a sample every 40 epochs only; hence, each thread’s
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SingleIPCi is sampled once every 40×T epochs. To warm up the cache and clear out the

instructions belonging to the stalled threads from the pipeline, we measure the stand-alone

IPC only during the second half of the SingleIPCi sampling epoch.

Our study shows that there are three ways that the stand-alone IPC computation

affects performance. First, there is performance loss due to the fetch stalling of T − 1

threads during the SingleIPCi sampling epoch. Second, if the application is not tem-

porally stable, the run-time sampled stand-alone IPC is not representative. Third, if the

application needs large amount of cache, the run-time sampled stand-alone IPC is lower

than the actual stand-alone IPC because the cache is not fully warmed up during the

sampling period.

Figure 8.1 shows the overhead of the run-time stand-alone IPC computation. The

bars labeled HILL-WIPC-Online present the weighted IPC normalized against the baseline

HILL-WIPC, which uses the off-line computed SingleIPCi. As a reference, we included

the DCRA bars.

On NH-TP and NH-TU workloads, the HILL-WIPC-Online has 0.68% and 0.42%

worse performance compared to HILL-WIPC. This performance loss is caused by the

temporal instability of the workloads. On workloads that exhibit less temporal locality

of performance, the sampled stand-alone IPC becomes less representative. Therefore, the

hill-climbing algorithm is guided by an inaccurate performance evaluation function, thus

losing the performance. On MEM workloads, the HILL-WIPC-Online has 0.29% worse

performance compared to HILL-WIPC because the cache is not sufficiently warmed up

during the sampling epoch. As a result, the sampled stand-alone IPC becomes less accu-

rate on MEM workloads. Interestingly, on WH and NH-TS workloads, HILL-WIPC-Online

shows slightly better performance than HILL-WIPC (0.09% and 0.35%, respectively). On
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Figure 8.1: Stand-alone IPC computation overhead. HILL-WIPC-Online computes the
stand-alone IPC at run-time. All bars are normalized against the HILL-WIPC.

workloads with temporal locality of performance, the sampled stand-alone IPC is more

representative of the current application characteristics than the off-line computed stand-

alone IPC, which is averaged across the entire application run. Therefore, on WH and NH-

TS workloads, even after counting the run-time stand-along IPC computation overhead,

HILL-WIPC-Online has better performance. On average, performance of HILL-WIPC-

Online is 0.12% worse than that of HILL-WIPC. Considering the hill-climbing resource

distribution’s 2.8% performance gain over DCRA, this performance loss does not signif-

icantly reduce the performance advantage of the hill-climbing resource distribution over

existing techniques.

8.1.2 Resource Distribution Overhead vs. Epoch Size

We varied the epoch size to study how epoch size affects the performance of software

and hardware implementation of the hill-climbing algorithm. For the software implemen-

tation of the hill-climbing algorithm, we conservatively stall not only the victim thread but

the whole processor for 200 cycles to account for the time to interrupt and save/restore

the few registers needed by the hill-climbing algorithm. Considering that the resource

distribution thread consumes only 26 cycles for its computation and no operating system

is involved in this type of interrupt, we believe 200 cycle stall is a conservative setting.
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Figure 8.2 shows the performance of software and hardware implementation of HILL-

WIPC as we increase the epoch size from 8K to 256K cycle. All bars are normalized against

the performance of the hardware implementation with 64K epoch size.

The epoch size affects the performance of the hill-climbing resource distribution in

three ways. First, the resource distribution overhead of the software implementation of

the algorithm decreases as we increase the epoch size because the hill-climbing algorithm

performs resource distribution at the epoch boundary. When the epoch size is 8K, 16K,

32K, 64K, 128K, and 256K cycles, the resource distribution overhead of the software

implementation is as large as 2.4%, 1.2%, 0.6%, 0.3%, 0.15%, and 0.08%, repectively, of

the total execution time. Second, the performance of the workload becomes temporally

stable as we increase the epoch size because large epoch size averages out the effect of noise

caused, for example, by the L2 misses or branch mispredictions. So, hill-climbing benefits

by reducing the unnecessary movement towards false peaks. On WH workloads, large

epoch size reduces the unnecessary resource distributions around the optimal one, thus

increasing performance. Third, hill-climbing’s search speed will be increased as we decrease

the epoch size because the hill-climber gets the performance feedback more frequently thus

adapting to the changes more quickly. So, NH-TU and NH-MH workloads prefers small

epoch size because the fast learning can help avoid their performance hazards.

Overall, the influence of the epoch size on the performance is small, especially for

the hardware implementation. However, in software implementation, small epoch size

significantly degrades the performance due to the run-time resource distribution overhead.

As “ALL” bars in Figure 8.2 shows, 64K epoch size is in the middle of the stable range

of both software and hardware implementation of the hill-climbing resource distribution.

Therefore, we picked 64K cycle epoch size for our experiments throughout the dissertation.
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Figure 8.2: The resource distribution overhead of software and hardware implementation
as we vary the epoch size from 8K to 256K cycle. All bars are normalized against 64K
epoch size performance of hardware implementation.

At this epoch size, the run-time overhead of the software implementation is only 0.3%.

8.2 Sensitivity Study

To understand the effect of varying design parameters on the hill-climbing resource

distribution performance, we conducte three sensitivity studies: varying memory latency,

amount of pipeline resources, and priority of threads.

8.2.1 Memory Latency

We investigate the sensitivity of the HILL-WIPC’s performance on the memory

latency by varying memory latency between these settings–100, 300, and 500 cycles. Fig-

ure 8.3 shows the result of our memory latency study. In the figure, all bars are normalized

against HILL-WIPC.

In this figure, we make two observations. First, within the range of the memory

latencies that we experimented with, the HILL-WIPC achieves the best performance con-

97



0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

100 300 500 100 300 500 100 300 500 100 300 500 100 300 500 100 300 500 100 300 500 

ALL 2-Thrd 3-Thrd 4-Thrd ILP MIX MEM

A
v
e
ra
g
e
 W
e
ig
h
te
d
 I
P
C

ICOUNT FLUSH DCRA HILL-WIPC

Figure 8.3: The weighted IPC of ICOUNT, FLUSH, DCRA, and HILL-WIPC as we vary
the memory latency from 100 to 500 cycle. All bars are normalized against HILL-WIPC.

sistently. This is a promising result, implying hill-climbing resource distribution can be

applied to future platforms, where the processor-memory performance gap is larger. Sec-

ond, HILL-WIPC’s performance improvement over ICOUNT and DCRA increases as the

memory latency increases by achieving performance advantage over ICOUNT by 3.0%,

11.4%, and 17.8%, and over DCRA by 0.8%, 2.8%, and 3.5% for 100, 300, and 500 cy-

cle memory latencies, respectively. As the memory latency gets larger, the hill-climbing

resource distribution’s ability to exploit the memory level parallelism becomes more im-

portant.

8.2.2 Amount of Processor Resource

To understand the performance of the hill-climbing resource distribution on diverse

platforms, we varied SMT processor simulator settings as shown in Table 8.1. In the table,

the configurations labeled “half” and “double” have half and double the amount of queue

type resources (we explained queue type in Section 2.2) in the processor compared to the

“normal”, respectively. The half configuration is similar to current modern processors,

and the double configuration forcasts future platforms. Figure 8.4 shows our result on

varying the amount of processor resources. In the figure, all bars are normalized against

HILL-WIPC.
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configuration half normal double

IFQ 16 32 64

IQ 40-Int / 40-FP 80-Int / 80-FP 160-Int / 160-FP

LSQ 128 256 512

ROB 256 512 1024

Rename register 128-Int / 128-FP 256-Int / 256-FP 512-Int / 512-FP

Table 8.1: Simulator settings for the sensitivity study on the amount of the processor
resource.
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Figure 8.4: The weighted IPC of ICOUNT, FLUSH, DCRA, and HILL-WIPC as we
vary processor resource budget to “half” and “double.” All bars are normalized against
HILL-WIPC.

Across all configurations, HILL-WIPC achieves the best performance compared to

ICOUNT, FLUSH, and DCRA. For the half configuration, the performance of FLUSH

gets better because FLUSH allows better resource utilization which is crucial as resources

become scarce. In addition, with the half configuration, there is not much opportunity to

exploit memory level parallelism within a thread. This is because back-to-back L2 cache

misses are unlikely to fit inside the small instruction window of the half configuration.

Therefore, in half the configuration, intra-thread memory parallelism generally cannot be

exploited by any technique. Among all techniques, FLUSH exploits inter thread memory

parallelism the best, thus achieving good performance in the half configuration.

For the double configuration, the performance of DCRA improves because the hill-

width becomes wider, which benefits DCRA.
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Figure 8.5: The effect of prioritizing the first thread. Shaded bars show the weighted IPC
of the first thread and white bars show the sum of the weighted IPC of the rest of the
thread(s), as we vary the priority of the first thread from 1 to 16.

8.2.3 Thread Priority

Enforcing the priority among multiple threads in SMT processor was studied by

[44, 45]. We experimented with the possibility of prioritizing threads by simply modifying

the performance evaluation function of hill-climbing resource distribution. Equation 8.1

shows the modified performance evaluation function for prioritizing threads, where Pi is

the externally given priority of threadi.

Sum of Prioritized IPC =
∑

IPCi × Pi (8.1)

Figure 8.5 shows our results when P0 is set to be 1, 2, 4, 8, and 16, while Pi (i �= 0) is set

to 1. With a large value of P0, small IPC0 increases result in bigger improvements of the

sum of prioritized IPC. Therefore, the hill-climbing resource distribution tends to improve

IPC0 to maximize sum of prioritized IPC. As a result, thread0 gets the highest priority.

In Figure 8.5, two segments in the bar represent the weighted IPC of the first thread

and the sum of weighted IPC of the rest of the threads, making the height of the stack

the sum of weighted IPC of all the threads. The P0 value of each bar is shown in X-axis.

When the priority of 16 is given to thread0, the performance of thread0 reaches

86.4%, 71.1%, and 65.7% of the single threaded execution, degrading the overall perfor-

mance by 5.6%, 13.4%, and 14.6% compared to equal priority, for 2-, 3-, and 4-threaded
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workloads, respectively.
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Chapter 9

Case Study: Optimizing Multi-Threaded Run-Time System

So far we investigate our hill-climbing SMT processor resource distribution for mul-

tiple independent applications. Recently, modern programming language environments

provide rich run-time services to support flexibility, performance, security, and the cor-

rectness of the program. For example, Java (from Sun Microsystems) and C# (from

Microsoft) provide just-in-time compilation, garbage collection, dynamic binding, and au-

thentication service to the applications. These run-time services can potentially exploit

SMT processor’s support for multiple threads by running the services concurrently with the

application, thus reducing the overall execution time. Compared to other multi-threaded

applications, multi-threaded run-time system has advantage as it needs no programmer

intervention to extract thread level parallelism.

In this chapter, we conduct preliminary study to show the benefit and potential of

the multi-threaded run-time system running on SMT processor.

9.1 Kaffe–Multi-Threaded Run-Time System

Kaffe is a complete Java run-time environment, consisting of a Java virtual machine

and a set of class libraries necessary to execute Java programs. This section details our

target multi-threaded run-time system, Kaffe.
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Figure 9.1: The fraction of execution time spent by garbage collection (GC), just-in-time
compilation/optimization (JIT/OPT), and application execution (APPL) on 5 popular
JVMs. Average execution time of 6 applications from SPECjvm98 is measured on Pentium
III 500MHz processor using the profiling tool embedded in each JVM.

9.1.1 Kaffe

Kaffe has a JIT compiler that dynamically translates Java bytecodes into the native

machine code. In addition, Kaffe supports automatic memory management using a non-

copying mark-sweep garbage collection. The entire Kaffe is publicly available and has

been ported to several platforms. To maintain compatibility with our simulator (see

Section 4.2.5), we use the Alpha port of Kaffe version 1.0.7. We modify Kaffe to run on

our SMT processor simulator. Our modified version of Kaffe is equipped with a concurrent

garbage collection thread and multiple compiler threads.

Figure 9.1 shows the average execution time of SPECjvm98 applications on sev-

eral popular JVMs; JikesRvm, HotSpot, and Kaffe. The execution time is divided into

application execution time, labeled “APPL”, garbage collection time, labeled “GC”, and

JIT compilation/optimization time, labeled “JIT/OPT”. As Figure 9.1 indicates, garbage

collection overhead is bigger than JIT compilation overhead because JIT compilation is

one-time service per method and garbage collection service is constantly invoked as ap-

plications consume heap space during the execution. Therefore, we investigate the effect

of concurrent execution of garbage collection thread with the application thread on SMT
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processor.

9.1.2 Garbage Collection

The garbage collector in the original Kaffe runs sequentially with the application

thread, even though features for the concurrent execution is in place for the future im-

provement. To make the garbage collector run concurrently with the application thread,

we added write barrier synchronization.

Parallel execution of the garbage collection and application threads introduces a race

condition: the application thread, or “mutator,” may alter the references to an unmarked

object in such a way that hides it from the collector. This problem can be addressed

using Dijkstra’s Tricolor formulation [46]. As the name implies, objects take on one of

three colors during marking. All objects start white. When an object is marked, its

color becomes gray. A gray object becomes black after all its children have also been

marked (and thus colored gray). The JVM must ensure that a black object never directly

references a white object. This would constitute an invalid state because the white object,

while still reachable, may never be marked since the collector assumes all children of black

objects have been processed.

To maintain this invariant in a parallel garbage collector, a check or write barrier is

necessary every time the application thread writes an object reference into a heap object.

The check tests the color of the written object. If it is black, the object is recolored gray,

forcing the collector to reprocess the object’s children.

In our modified JVM, write barriers are necessary in two places: Java code and non-

Java JVM code (i.e., C code). Instrumenting Java code is straight forward because only

a limited number of bytecodes write object references and all bytecodes are translated.
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We modified the JIT compiler to insert a write barrier whenever it translates one of the

relevant bytecodes. Instrumenting the JVM C code is more challenging because there are

hundreds of places in the JVM where object references are written. Rather than identifying

these sites via code analysis, we identified them via profiling. We used our simulator to

examine the contents of the data register each time a store instruction executes. Since

we know the range of the heap in memory, we can recognize when a store instruction is

writing a possible heap pointer. All static store instructions in the JVM C code meeting

this condition were instrumented with write barriers (stores to the stack were excluded).

Note, our approach, while complete, instruments too many write barriers since our test

for heap pointer writes can falsely identify some store instructions.

9.2 Experimental Methodology

We use SPECjvm98 applications as listed in Table 9.1 with the problem size of 10.1

We begin our simulation after loading and compiling all the classes, and simulate appli-

cations to the completion. We pick three applications out of 7 SPECjvm98 applications,

which successfully run to the completion on our simulator. In Table 9.1, the column la-

beled “app insn” shows the number of simulated instructions by the application thread,

“gc insn” shows the number of simulated instructions by the garbage collection thread,

and “heap size” shows the maximum heap size allowed to the application.2

For concurrent garbage collection, the garbage collection triggering time affects the

overall performance. Too early triggering makes garbage collector to collect small amount
1SPECjvm98 provides problem size of 10 and 100. 100 is for reporting the performance result and 10

is for testing. We chose the smaller one because we need to simulate the application to the completion.
2The number of instructions slightly varies depending on the SMT processor resource distribution

techniques.
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application app insn gc insn heap size gc trig
compress 2,431M 7M 13M 90%

jess 727M 131M 9M 30%
db 502M 409M 11M 90%

Table 9.1: Description of applications from SPECjvm98 benchmark suite. “app insn”
shows the number of simulated instructions from the application thread, “gc insn” shows
the number of simulated instructions gc thread, “heap size” shows the maximum heap
size allowed to the application, “gc trig” indicates the garbage collection thread triggering
time.

of garbage per invocation, thus increasing the run-time overhead. Too late triggering

makes the application thread to be blocked because the insufficient amount of available

memory may not support the memory request from the application. However, finding

the proper garbage collection triggering time is beyond the scope of our research. In fact,

operating system or run-time system should be designed to deal with this issue. Therefore,

we tried 10 different garbage collector triggering time and pick the best performing one.

We triggered garbage collector when application consumes 10%, 20%, 30%, ... 100% of the

available heap space, which is measured right after the previous garbage collection, and

we picked the best performing garbage collection triggering time for each application. The

column labeled “gc trig” in Table 9.1 indicates the garbage collection thread triggering

time of each application.

9.3 Results

To measure the performance impact of the concurrent execution of the garbage col-

lection, we use ICOUNT, FLUSH, DCRA, and our hill-climbing resource distribution. We

used two performance evaluation functions for our hill-climbing resource distribution; sum

of IPC (used in Section 7.2.2) and sum of prioritized IPC (used in Section 8.2.3). Figure 9.2

shows the normalized execution time of sequential garbage collection (labeled “SEQ”) and

parallel garbage collections (labeled “ICOUNT”, “FLUSH”, “DCRA”, “HILL-IPC”, and
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Figure 9.2: The normalized execution time of three SPECjvm98 applications with se-
quential garbage collection (labeled “SEQ”) and parallel garbage collections (labeled
“ICOUNT”, “FLUSH”, “DCRA”, “HILL-IPC”, and “HILL-PRI”).

“HILL-PRI”).

A result shows that concurrent garbage collection improves the performance over

sequential garbage collection by exploiting the parallelism between application thread

and garbage collection thread. The performance gain of concurrent garbage collection in

compress is small because the number of instruction executed by garbage collection thread

is only 0.29% of the application thread. (See “app insn” and “gc insn” column of compress

in Table 9.1.) The performance gain of concurrent garbage collection in db is small because

the concurrent execution of the garbage collection thread and application thread increases

the number of instruction due to the write barriers. Therefore, garbage collection thread

triggering time of 90% performs the best as it reduces the parallelism between two threads,

thus reducing the write barrier overhead. As a result, db’s performance of concurrent

garbage collection becomes close to that of sequential garbage collection.

Among the concurrent garbage collection, the performance of most of the SMT re-

source distribution techniques are almost same except for jess. In compress, the garbage

collection overhead is very small (refer to “gc insn” column of Table 9.1) making the per-

formance of any resource distribution technique same. In jess, our hill-climbing algorithm
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does not have enough time to find the optimal the resource distribution considering that

hill-climbing algorithm is active only when garbage collection thread is running. In db,

our hill-climbing algorithm has enough time to find the optimal resource distribution, thus

achieves as good performance as all the other resource distribution techniques.
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Chapter 10

Conclusion

10.1 Summary and Conclusion

In this dissertation, we propose a new approach to SMT processor resource distri-

bution that optimizes end performance directly. Our approach observes the impact that

resource distribution decisions have on performance at runtime, and feeds this information

back to the resource distribution mechanisms to improve future decisions. By successively

applying and evaluating different resource distributions, our approach tries to learn the

best resource distribution over time. Because we perform learning on-line, learning time

is crucial. We develop a hill-climbing SMT processor resource distribution technique that

efficiently learns the best distribution of resources by following the performance gradient

within the resource distribution space.

From this research, we draw following four conclusions. First, as shown in Chap-

ter 4, we found that the performance curve is not random. Instead, the performance curve

is hill-shaped and is stable over time for many workloads. Second, our heuristic that ap-

proximates performance limit of SMT processor shows that prior resource distribution

techniques have missed many performance opportunities, which we discussed in Chap-

ter 6. This limit study shows that the performance of ICOUNT, FLUSH, and DCRA is

13.2%, 13.5%, and 6.6%, respectively, lower than our approximated performance limit.

Third, as shown in Chapter 7, hill-climbing resource distribution technique achieves the

best performance compared to the prior techniques. The performance evaluation of our

approach provides 11.4% gain over ICOUNT, 11.5% gain over FLUSH, and 2.8% gain over
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DCRA across a large set of 63 multiprogrammed workloads. Fourth, we showed that the

traditional hill-climbing algorithm works well not only on the static hills, but also on the

time-varying hills, which opens the possibility of applying the hill-climbing algorithm to

a variety of adaptive optimization problems.

10.2 Contributions

This dissertation makes six contributions within the context of learning-based SMT

processor resource distribution.

1. The performance of SMT processor is mainly determined by the resource distri-

bution among the concurrently running threads. So, we view the SMT processor

resource distribution problem as a search problem whose goal is finding a resource

distribution that produces the maximum performance. We believe this is a unique

view in the SMT processor resource distribution study. This view makes us translate

the resource distribution problem into the classical optimization problem, allowing

us to apply general optimization problem solvers, hill-climbing algorithm, to SMT

processor domain. In this dissertation, we define the performance curve as a function

of SMT processor resource distribution. Then, we design the hill-climbing algorithm

to climb up the performance curve to search for the optimal resource distribution.

2. The nature of SMT processor performance as a function of the resource distribution

space is unknown prior to our research. In order to understand the time-varying

behavior of this SMT processor performance curve, we built a visualization tool.

Using this tool, we identified several workload characteristics. Some characteristics

are hostile to hill-climbing algorithm by having multiple humps or extremely fre-

quent time-varying behavior. On the other hand, many workloads have favorable
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characteristics to the hill-climbing, like single hump and stable temporal behavior.

3. Based on the knowledge acquired through the visualization tool, we developed four

new metrics that quantitatively measure the shape of the performance curve. Two

metrics quantify the static shape of the performance curve and two metrics measure

the temporal variation of the performance curve. Using these metrics, we classify

workloads. This classification helps understanding and analyzing the workload’s

performance of prior SMT processor resource distribution techniques as well as our

hill-climbing technique.

4. We are the first to apply the hill-climbing algorithm to SMT processor resource

distribution. The understanding of the time-varying performance curve from both

the visualization tool and quantitative measurement enable us to customize the hill-

climbing algorithm for the SMT processor resource distribution problem. We design

our hill-climbing algorithm so that it can handle both problematic and favorable

workload characteristics, making it applicable to a diverse set of workloads.

5. We faithfully evaluate the performance of the hill-climbing resource distribution

technique across 63 workloads. Then, we compare hill-climbing performance against

three prior SMT processor resource distribution techniques. We suggest two im-

provements over the baseline hill-climbing algorithm; phase based learning and hill-

climbing with momentum term. In addition, we study hill-climbing resource distri-

bution’s sensitivity to three design parameters: memory latency, amount of processor

resource, and thread priority.

6. A performance comparison of existing resource distribution techniques against an

ideal SMT processor can uncover performance bottlenecks, and suggest ways to
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improve performance. However, figuring out the ideal performance limit of SMT

processor is computationally infeasible because it is an NP-hard problem. For the

first time in SMT study, we developed a heuristic that approximates the ideal per-

formance limit of SMT processor. To make our heuristic computationally feasible

we made three simplifying constraints; first, per-thread resource partition is main-

tained to distribute resources, second, updating resource partition is allowed only

at every epoch boundary, and third oracle provides information only on the next

epoch. Using the performance limit suggested by our approximation, we re-evaluate

four SMT processor resource distribution techniques (including ours) and detail their

performance potential/bottleneck. This limit study shows that hill-climbing algo-

rithm is the closest to the performance limit because our technique handles most of

the bottlenecks of the existing techniques properly.

10.3 Future Directions

In this dissertation, we show that our hill-climbing SMT processor resource dis-

tribution is effective in achieving the best performance on multi-programmed workloads

compared to the prior techniques. We believe that the idea presented in this dissertation

can be extended to wider range of problems.

First, we can apply our technique to multi-threaded applications. Compared to the

multi-programmed workload that we used in this dissertation, all threads in multi-threaded

application belong to an application cooperating to accomplish a common job. So, the

concurrently running threads interact each other via synchronization mechanisms for com-

munication making some threads to be blocked waiting for the signal from other threads.

These interactions make the resource distribution decision more complicated because any
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thread that may potentially delay other thread’s execution should get the priority. To

optimize the execution of the multi-threaded applications, the operating system should

be aware of the dynamic criticality among the threads. Based on the criticality informa-

tion, operating system schedules the threads to reduce the end-to-end execution time. To

achieve better performance of a multi-threaded application on an SMT processor, the SMT

processor resource distribution mechanism should adapt to dynamically changing demands

from the operating system. Since our hill-climbing resource distribution technique is able

to adaptively pursue any performance goal by just changing the performance evaluation

function, our technique has advantage over any of the prior SMT resource distribution

techniques. In Chapter 9, we opened this problem by conducting the preliminary study

on executing parallel garbage collection thread and application thread simultaneously on

SMT processor. For the complete experiment, we need more comprehensive experimental

environment that includes the criticality aware operating system, multi-threaded bench-

mark applications, and our hill-climbing resource distribution technique.

Second, our idea can be used to deal with more general problems. In this disserta-

tion, we designed a hill-climbing algorithm that searches for the peak on the time-varying

hills, and showed its effectiveness on SMT processor resource distribution problem do-

main. However, our technique can be used for more general optimization problems, if we

can translate the problem into “the chasing the moving target on the time-varying hill

problem.” For example, applying our hill-climbing algorithm to run-time hardware opti-

mization problem requires the following steps. First, design the performance evaluation

function that consists of any metrics that people care about in the specific problem domain.

These metrics need to be easily looked up at run-time. An example of the performance

evaluation function can be the weighted sum of (throughput), 1/(response time), 1/(power
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consumption), and 1/(power density). Then, we define the configuration space consisting

of all valid settings of the multiple parameters which we tune to maximize the perfor-

mance evaluation function. Third, we deploy our hill-climbing algorithm to search for the

configuration that produces the maximum value of the performance evaluation function.

We believe that our hill-climbing technique is useful for the class of optimization problems

that needs to search for the optimal configuration out of large search space.

For example, using our hill-climbing algorithm, we can search for the proper size of

activated cache entries for optimizing either throughput or power consumption. For opti-

mizing the throughput, small cache reduces hit latency but increases the miss rate. Our

hill-climbing technique measures the throughput of the application during an epoch (i.e.,

end performance). So, our technique searches for the optimal cache size that maximize

the throughput considering both hit latency and miss rate. For optimizing the power con-

sumption, small cache reduces the power consumption by the cache. But it may increases

the traffic to the memory, thus increasing the power consumption by the other part of

the memory system. Our hill-climbing technique measures the total power consumption

of the whole memory system during an epoch (i.e., end power consumption). So, our

technique finds the optimal cache size that minimizes the power consumption considering

power consumption by both cache and rest of the memory system.
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