
ABSTRACT

Title of dissertation: USING ONTOLOGIES TO IMPROVE
ANSWER QUALITY IN DATABASES

Yu Deng, Doctor of Philosophy, 2006

Dissertation directed by: Professor V.S. Subrahmanian
Department of Computer Science

One of the known shortcomings of relational and XML databases is that they

overlook the semantics of terms when answering queries. Ontologies constitute a

useful tool to convey the semantics of terms in databases. However, the problem of

effectively using semantic information from ontologies is challenging.

We first address this problem for relational databases by the notion of an

ontology extended relation (OER). An OER contains an ordinary relation as well as

an associated ontology that conveys semantic meaning about the terms being used.

We then extend the relational algebra to query OERs. We build a prototype for the

OER model and show that the system scales to handle large datasets.

We then propose the concept of a similarity enhanced ontology (SEO), which

brings a notion of similarity to a graph ontology. We extend TAX, one of the best

known algebras for XML databases, with SEOs. The result is our TOSS system that

provides a much higher answer quality than TAX does alone. We experimentally

evaluate the TOSS system on the DBLP and SIGMOD bibliographic databases and

show that TOSS has acceptable performance.

These two projects have involved ontology integration for supporting semantic

queries across heterogeneous databases. We show how to efficiently compute the

canonical witness to the integrability of graph ontologies given a set of interoperation

constraints. We have also developed a polynomial algorithm to compute a minimal

witness to the integrability of RDF ontologies under a set of Horn clauses and

negative constraints, and experimentally show that our algorithm works very well

on real-life ontologies and scales to massive ontologies.

We finally present our work on ontology-based similarity measures for find-

ing relationships between ontologies and searching similar objects. These measures

are applicable to practical classification systems, where ontologies can be DAG-

structured, objects can be labeled with multiple terms, and ambiguity can be in-

troduced by an evolving ontology or classifiers with imperfect knowledge. The ex-

periments on a bioinformatics application show that our measures outperformed

previous approaches.

USING ONTOLOGIES TO IMPROVE ANSWER QUALITY IN

DATABASES

by

Yu Deng

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:

Professor V.S. Subrahmanian, Chair/Advisor
Assistant Professor Lise Getoor
Professor James A. Hendler
Professor Dana S. Nau
Associate Professor Donald Yeung

c© Copyright by

Yu Deng

2006

DEDICATION

This dissertation is dedicated to my husband and family.

ii

ACKNOWLEDGMENTS

I want to thank my advisor, Prof. V.S. Subrahmanian, who has given me

the best guidance and support throughout my PhD study. I also want to thank

Professors Lise Getoor, James A. Hendler, Dana S. Nau and Donald Yeung for being

on my dissertation committee, and for their insightful comments and questions.

I would like to thank Dr. Harumi Kuno and Dr. Peter Schwarz for being my

mentor during my internship at HP Labs and IBM Almaden respectively, where I

advanced my research in schema mapping and semantic similarity search.

My study at Maryland has been a great experience and I would like to thank

all of my colleagues. I especially thank Dr. Edward Hung, who often had stimulating

ideas. Edward has given a lot of help to me and contributed to the TOSS project.

I also want to give my sincere thanks to Octavian Udrea for the project of RDF

integration and for having a great time to work with him. Additionally I want to

thank T.J. Rogers for his technical support.

Finally, I must thank my family, who always believe in me and encourage me

to pursue my academic goals. Most importantly, I thank my husband for being

always with me to get through the difficulties in my study. Without the love and

support from my family, it is impossible for me to finish my dissertation and obtain

the degree of Doctor of Philosophy.

iii

TABLE OF CONTENTS

List of Figures vi

1 Introduction 1
1.1 The Recall Problem . 1
1.2 Ontology Integration . 4
1.3 Ontology-based Semantic Similarity Measures 5

2 Review of Ontologies 9
2.1 Graph-based Ontologies . 10
2.2 RDF . 12

2.2.1 Syntax of RDF . 12
2.2.2 Semantics of RDF . 15
2.2.3 RDF Schema . 16

2.3 SHOE . 18
2.3.1 Semantics of SHOE . 20

2.4 DAML+OIL . 20
2.5 OWL . 21
2.6 Description Logics . 23

3 Review of the State of the Art 26
3.1 Using IR Techniques to Improve Answer Quality 26

3.1.1 IR and RDBMS . 27
3.1.2 IR and XML DB . 28

3.2 Mediator Systems . 31
3.3 Ontology Merging and Alignment . 32
3.4 Object Matching . 35

3.4.1 Entity Resolution . 35
3.4.2 Similarity Measures on Ontologies 38

4 Ontology-extended Relational Algebra 42
4.1 Motivating Example . 43

4.1.1 Simple Industrial Parts Example 43
4.1.2 Insurance Example . 45

4.2 Ontologies and Ontology Integration 47
4.2.1 Ontologies . 47
4.2.2 Ontology Integration . 49

4.3 Ontology Extended Relational Algebra 55
4.3.1 Selection Conditions . 59
4.3.2 Ontological Relational Algebra 61

4.4 Implementation and Experiments . 63
4.4.1 HOME System . 63
4.4.2 Experiments . 64

4.5 Summary . 67

iv

5 TOSS: An Extension of TAX with Ontologies and Similarity Queries 69
5.1 Semistructured Instance and TAX . 71

5.1.1 Embeddings and Witness Trees 72
5.1.2 TAX . 74
5.1.3 Problems with TAX . 75

5.2 Similarity Enhanced Ontologies . 77
5.2.1 Ontologies . 77
5.2.2 Integrating Ontologies . 78
5.2.3 Similarity Enhanced Ontologies 80

5.3 Ontology Extended Semistructured Data Model 88
5.3.1 TOSS Algebra . 89

5.4 Implementation and Experiments . 95
5.5 Summary . 101

6 A Theoretical Foundation for Integrating RDF Ontologies 103
6.1 Preliminaries . 104
6.2 Horn constraints . 106
6.3 The RDF Ontology Integration Problem 108
6.4 The CROW Algorithm to integrate Ontologies 112
6.5 Implementation and Experiments . 119
6.6 Summary . 122

7 Finding Similar Objects Using a Taxonomy 123
7.1 Information-Theoretic Similarity . 125

7.1.1 Holistic Similarity . 127
7.1.2 Generic Similarity . 134

7.2 Related Work . 141
7.3 Implementation . 144

7.3.1 User-Defined Types . 145
7.3.2 Precomputation . 147

7.4 Experimental Evaluation . 149
7.4.1 Results . 152
7.4.2 Discussion . 153
7.4.3 Candidate Selection . 155

7.5 Summary . 158

8 Future Work 160
8.1 Improving Performance of Ontology-Extended Systems 160
8.2 Learning Ontologies and Interoperation Constraints 161
8.3 Semantic Similarity Join . 162
8.4 Semantic Web Databases . 163
8.5 OWL Integration . 165

Bibliography 166

v

LIST OF FIGURES

2.1 An RDF example describing artifact auctions in Christie’s auction
house . 14

2.2 A fragment of a weather ontology in DAML+OIL 22

2.3 A fragment of OWL ontology . 24

4.1 (a) Ontology associated with Claims1 relation, (b) Ontology associ-
ated with Claims2 relation . 49

4.2 (a)Integrated Ontology integrating the Claims1, Claims2 relations,
(b)Hierarchy Graph associated with the Claims1, Claims2 relations,
(c)Canonical Hierarchy associated with the Claims1, Claims2 relations 51

4.3 (a)Performance of HOME for conjunctive selection queries, (b)Join
queries with varying join selectivity and varying number of tuples per
relation . 65

4.4 Performance of HOME for join queries as size of relations being
joined is varied . 67

4.5 Performance of ontology integration algorithms 68

5.1 (a)A DBLP example, (b)A SIGMOD example 72

5.2 (a)A pattern tree P1, (b)A selection result, (c)A projection result . . 73

5.3 (a)A pattern tree P2, (b)A join result 75

5.4 (a)An example of ontology associated with SIGMOD, (b) An example
of ontology associated with DBLP 78

5.5 Hierarchy Graph associated with SIGMOD and DBLP 79

5.6 Canonical fusion of the ontologies of SIGMOD and DBLP 80

5.7 (a) An example ontology and (b) its similarity enhancement 87

5.8 A pattern tree P3 . 94

5.9 Architecture of TOSS system . 95

vi

5.10 (a) Recall against precision for TOSS and TAX results, (b) Square
root of product of recall and precision of TOSS and TAX results
against the square root of corresponding TAX recall for each query. . 97

5.11 (a) Improvement factor of TOSS recall compared with TAX recall
normalized by precision, (b) Performance of TOSS and TAX for se-
lection queries. 98

5.12 (a) Performance of TOSS and TAX for join queries, (b) TOSS com-
putation time of selection and join against ε. 100

6.1 RDF (respectively OWL) for the two example ontologies 105

6.2 Two simple ontologies . 106

6.3 HOG example (partial) . 110

6.4 Minimal integrability witness . 111

6.5 Intermediate result CROW phase (1) 114

6.6 CROW running time . 120

7.1 Similarity in Context . 132

7.2 Use of Anonymous Terms . 135

7.3 Generic Similarity in Context . 137

7.4 Labeling With Generic Terms . 139

vii

Chapter 1

Introduction

1.1 The Recall Problem

In recent years, people have developed various theories and techniques to han-

dle queries for relational and XML data. For example, relational algebra [1] is one

of the most important formalism of the relational data model. For XML, TAX [56]

is one of the best known algebras. One problem with TAX and many existing rela-

tional DBMSs is that the semantics of terms in databases is not taken into account

when answering queries. Thus, even though TAX and the relational DBMSs answer

queries with 100% precision, the recall is relatively low.

For example, a TAX query that wishes to find all papers in the DBLP database

written by “J. Ullman” will not find bibliographic references to papers by “J.D. Ull-

man” or by “Jeffrey Ullman.” This is because TAX does not use any notion of

similarity between search terms to answer queries. Likewise, TAX cannot answer

queries of the form “Find all papers having at least one author from the US gov-

ernment.” Such a query may be useful in order to identify papers that potentially

have no copyright restrictions. However, few authors if any will list their affiliations

as “US Government.” They are more likely to list their affiliations as “US Census

Bureau” or “US Army” and so on. As a consequence, TAX will miss these answers.

Problems such as these are not really an artifact of TAX’s design - rather, they are

1

caused by a general lack of lexical semantics in answering queries. Most commercial

relational DBMSs would not perform such reasoning either when answering queries.

The net effect of this shortcoming of TAX (as well as most commercial DBMSs) is

that such systems have high precision (all the answers to a query are correct) but

poor recall (not all the answers that should be returned are in fact returned). As

commonly adopted by the IR and DB communities, the precision of an answer is

the number of correct results returned divided by the number of results returned

and the recall of an answer is the number of correct results returned divided by the

total number of correct results that should have been returned. In Chapter 3, we

introduce recent works on combining IR techniques and relational/XML database

management systems for supporting keyword search, proximity search, relevance

ranking, word stemming and thesauri.

The recall problem exists not only in single DBMSs, but also when integrating

multiple DBMSs. For relational databases, though the problem of integrating these

diverse databases has been studied extensively [111] and many impressive mediator

systems have been built, it remains a fact that integration of data at the semantic

level remains an open problem. Consider a simple example consisting of industrial

parts data. There are numerous companies in the US and elsewhere that maintain

stocks of various industrial parts. Two different companies of this kind may maintain

part information in varying representations. One company may use the column Cost

to represent the price of the items and Shipping to represent the shipping cost while

the other one may use the columns Price and ShipCost. By looking at the fields, we

are not sure whether Cost and Price refer to the same things or the columns Shipping

2

and ShipCost refer to the same concept. Note that the semantic ambiguities exist

not only in schema, but also in instance data. In Chapter 3, we give a review on

several well-known mediator systems.

We address the recall problem by introducing the concept of an ontology to

capture inter-term lexical relationships. In Chapter 2, we give a review on ontologies

and ontology languages. In Chapter 4, we define a graph-based ontology and propose

the notion of an ontology extended relation (OER). An OER contains an ordinary

relation as well as an associated ontology that conveys semantic meaning about the

terms being used.

We extend the relational algebra to query OERs. Furthermore, we show how

multiple ontologies may be merged, which is imperative when executing queries over

multiple ontology extended relations. We describe an implementation of the OER

model and show (via experiments) that the system scales to handle large data sets.

We have made a similar effort on XML database systems. But differently,

we investigate how to use both similarity metrics and ontologies to answer queries

correctly. In Chapter 5, we introduce the TOSS system, which extends and enhances

the semantics of TAX (a tree algebra for XML databases) so that the resulting

system returns high quality answers. We show how to generate a similarity enhanced

ontology, a concept that brings a notion of similarity into a integrated ontology.

We describe a prototype implementation of TOSS on top of the Apache Xindice

XML database system [115]. Our experiments conducted on the SIGMOD XML

proceedings data set[96] and the DBLP data set[31] show that the TOSS system

consistently outperformed ordinary XML query engines in terms of answer quality.

3

1.2 Ontology Integration

It is a common case that distributed data sources may be associated with

different ontologies, but on similar topics. These associated ontologies provide se-

mantical information about the data. When semantically integrating such data and

performing queries over multiple ontology extended data sources, we may need to

merge multiple ontologies. On the other hand, since the adoption of “Resource De-

scription Framework” (RDF) as a web recommendation by the World Wide Web

Consortium, there has been growing interest in using RDF for expressing ontologies

about a diverse variety of topics. As more and more ontologies emerge about the

same topics, there is also a growing need to integrate these ontologies.

There are some initial approaches to merging ontologies in the literature. The

initial pioneering work of [80] showed that ontology merging is an important prob-

lem. In another important paper, [24] develops a model theoretic basis for merging

ontologies assuming they are in description logic. [98] uses natural language and

formal concept analysis methods to merge ontologies using a concept lattice which

is explored and transformed by user interactions. Meanwhile, there are many works

on finding relationships between ontologies, e.g. [21, 75]. We will give details on the

related work in Chapter 3.

Meanwhile, extensive research has been performed on integrating logical the-

ories from multiple sources. In Chapter 3, we introduce these research efforts moti-

vated by problems arising in areas such as cooperative information systems, multi-

databases, multi-agent systems and distributed expert systems. These works may

4

be applied to ontology integration. However, due to the special properties of some

ontologies, especially the underlying graph models, it is often possible to find a more

efficient method to integrate them, as we show in Chapter 4 and Chapter 6.

In Chapter 4, we provide a definition of a graph-based ontology and study the

problem of integrating ontologies under a given set of interoperation constraints.

We formally define the notion of canonical witness to the integrability of a set

of ontologies under such constraints. We have established a theory that a set S

of ontologies is integrable if and only if the canonical witness is a witness to the

integrability of the ontologies in S. We further provide an efficient algorithm to

compute the canonical witness given a set of ontologies and their interoperation

constraints.

We present our approach on integrating RDF ontologies in Chapter 6. Our

framework allows relationships to be not only between terms, but also allows com-

plex Horn Constraints, the Horn clauses that specify semantic relationships among

terms in ontologies. Note that our approach is rooted in the novel concept of an

integration witness and in graph theoretic methods. We also show the correctness

and complexity proofs of our approach as well as the experimental results on both

synthetic and real ontologies.

1.3 Ontology-based Semantic Similarity Measures

Finding interoperation constraints between ontologies is an important step for

integrating them. Since most existing approaches focus on the structures of ontolo-

5

gies, how to find such constraints at the semantic level is a challenging problem. In

Chapter 7, we introduce our work on ontology-based semantic similarity measures

which are applicable for identifying similarity relationships between two terms, two

sets of terms and two individuals.

Our measures are also useful for finding similar objects given a description of

a target in a domain. For example, one may wish to find patents similar to a given

patent, or subjects similar to a hypothetical “ideal” subject for a clinical trial, or

gene products (e.g. proteins) similar to a given gene product. When merging data

from multiple sources, it is often important to efficiently identify duplicate objects.

There have been some approaches on string matching, object matching and

entity resolution in the literature. For example, Cohen et al. [28] conduct extensive

experiments to compare a set of string metrics for matching names and records,

Zhou et al. [116] present a framework for supporting object matching in integrating

heterogeneous data, Hernandez and Stolfo [49] study the problem of merging data

and identifying distinct entities in large databases, Bhattacharya and Getoor [18]

show an iterative deduplication algorithm to identify similar entities, and Dong et

al. [35] propose a couple of algorithms for supporting similarity search for web ser-

vices. However, none of the above research groups has considered to use taxonomies

(ontologies) to find semantically similar objects, e.g., those objects that are highly

related, but not matched by traditional IR metrics.

Taxonomies have been a useful tool for classification. They also provide a

means of determining how similar one such individual is to another. In its sim-

plest form, a taxonomy defines a hierarchical grouping of individuals into ever more

6

specific classes. Two individuals share the properties of the most specific grouping

that includes both of them, and the degree to which the two individuals are similar

depends on the location of this class in the hierarchy. The lower in the hierarchy,

the more similar the individuals are. For example, two apples of the same species

are more similar than apples of different species, and an apple is more similar to

another apple of any species than it is to an orange. Based on this intuitive idea of

similarity, various authors, e.g. [94, 114, 66], have defined different ways to compute

a numeric value for measuring the similarity of objects. We will give details about

these works in Chapter 3.

However, previous ontology-based similarity measures may not be applicable

for complex cases as follows. Firstly, it is frequently the case that a class of individ-

uals may specialize the properties of more than one parent class, i.e., taxonomies

are often DAG-structured. Furthermore, taxonomies often evolve, as new special-

ized groupings are formed and older ones are reorganized. Even with an unchanging

taxonomy, the classification of a particular object may evolve as more is learned

about it, or users of the taxonomy may disagree as to how it should be classified.

Thirdly, real taxonomies tend to be quite large, and the sets of objects they are used

to classify are often very large. Lastly, in practice, an object is often associated with

a set of terms (instead of one term) in a taxonomy.

In Chapter 7, we present a pragmatic approach to the use of taxonomies to

identify similarity relationships between terms and objects. We have defined two

taxonomy-based similarity measures to take the above cases into account. The first,

holistic similarity, is a new information-theoretic similarity measure that is more

7

general and well-founded than prior art. The second, generic holistic similarity,

adapts our holistic similarity measure to cope with ambiguity, as introduced by

an evolving taxonomy or classifiers with imperfect knowledge. To the best of our

knowledge, this is the first attempt to consider this latter problem. We also describe

a scalable implementation of our measures that is tightly integrated with an object-

relational database, and we evaluate our approach by applying it to an object-

matching problem from bioinformatics for which the correct answers are known a

priori. The results show that our new measures are more successful than those

previously reported, and that our implementation scales well for large taxonomies

and data sets.

8

Chapter 2

Review of Ontologies

According to Thomas Gruber [41], “an ontology is an explicit specification

of a conceptualization”. Here, a conceptualization describes the classification of

entities in the universe and how they are related. An ontology defines a set of

representational terms to name the entities and associates text and axioms with the

terms to constrain their interpretation.

In a more practical point of view, ontologies provide a shared and common

understanding of a domain that can be communicated between people and hetero-

geneous and distributed application systems [61]. They are (meta)data schemas,

providing a controlled vocabulary of concepts, each with an explicitly defined and

machine processable semantics [72]. Ontologies play increasingly important roles in

the areas of Data Integration, Information Retrieval and Knowledge Sharing and

Reuse, etc. In 2001, Berners-Lee et al. [15] proposed the concept of Semantic Web

and described a promising picture for this future generation of World Wide Web.

Ontologies are used in this picture to resolve semantic ambiguities between differ-

ent databases. Since then, this picture has triggered a strong interest on ontology

research in the Semantic Web community.

In this chapter, we give a brief introduction to several well-known or widely-

used ontologies/ontology languages, which include graph-based ontologies, RDF,

9

SHOE, OWL, DAML+OIL and Description Logics.

2.1 Graph-based Ontologies

Graph-based ontologies cover various kinds, ranging from simple catalogs, IS-

A hierarchies, to complex graph systems, such as WordNet. These ontologies are

closely related to two early knowledge representation systems, semantic networks

and frame systems.

In 1960’s, Quillian proposed semantic networks [90], where each concept is

represented by a node (called type node) in a graph. The meaning of each type node

is implied by an associated structure, which consists of “token nodes” interconnected

by different kinds of links. These links are further labeled with semantic relations,

such as conjunctive and disjunctive relations. In addition, it is the token nodes that

connect a type node to other type nodes, because each token node is linked to a

type node out of the structure that the token node belongs to.

Later, Minsky introduced frame systems [79]. A frame is a named data object

with a set of slots that represent properties of the object. Each slot can specify the

conditions its assignments must meet. A assignment of a slot can be an object, or a

pointer to another frame. Meanwhile different frames can share slots in order to rep-

resent different ways of using the same information. Although frame systems seem

to have complex structures, it has been shown that those systems are isomorphic to

semantic networks.

Recent years, many graph-based ontologies have been built for specific appli-

10

cation domains. They more or less inherit some features from semantic networks

and frame systems. WordNet, as an example, is one of them.

WordNet is a lexical reference system which organizes lexical information by se-

mantic relations [78]. These relations include synonymy, antonymy, hyponymy, and

meronymy, etc. In WordNet, English nouns, verbs and adjectives are grouped into

synonym sets, each of which represents one lexical concept. For example, {board,

plank} and {board, committee} designate two different meanings of board. Seman-

tic relations, like pointers, link the synonym sets. It is important to note that the

three categories, nouns, verbs and adjectives, have different semantic organizations

in WordNet. For instance, nouns are organized into hierarchical trees while the

organization of adjectives is more or less a n-dimensional hyperspace. WordNet has

been widely used in information retrieval systems. A couple of semantic similarity

measures have been defined with regard to such a large lexical database. We will

come back to this in Chapter 3.

We also propose a simple notion of a graph-based ontology [19] which is a

partial mapping from a set of relations to a set of hierarchies. We formally define

the concept of “canonical witness”, based on which we provide an efficient algorithm

to merge such ontologies under a set of interoperation constraints. The details are

given in Chapter 4. Note that our notion of ontology generalizes the ontologies in

RDF, DAML+OIL and OWL, of which the underlying models are graphs.

11

2.2 RDF

Resource Description Framework (RDF) is a W3C recommendation endorsed

by approximately 400 companies. It is a foundation for processing metadata and it

provides interoperability between applications that exchange machine-understandable

information on the Web [64]. Lassila et al. [64] introduce a model for representing

RDF metadata as well as a syntax for encoding and transporting the metadata.

Their work is clarified and updated by W3C RDF Primer [74]. Brickley et al. [22]

introduce RDF’s vocabulary description language, RDF Schema (RDFS). Hayes [46]

specifies a precise semantics and corresponding complete systems of inference rules

for RDF and RDFS.

The basic elements of RDF are triples with the form (subject, predicate, ob-

ject). RDF is property-centric. RDF Schema defines vocabulary to describe classes,

properties and other resources.

2.2.1 Syntax of RDF

RDF defines a model for describing relationships between resources in terms of

uniquely identified properties (attributes) and values. RDF has become the standard

for the description and exchange of metadata on the Web.

The underlying model for RDF is a labeled directed graph where nodes are

either resources or literals. The graph is defined by a set of triples, statements of

the form (subject, predicate, object), where subject is a resource, predicate is the edge

label and object is either a resource or a literal. The basic elements in RDF data

12

model are as follows:

• Resource: A resource is anything identified by a URI reference (URI plus

optional anchor ids) and described in terms of simple properties and property

values.

• Literal: A literal may be plain or typed. A plain literal is a self-denoting

string combined with an optional language tag. A typed literal is a string

combined with a datatype URI reference. It denotes the member of the iden-

tified datatype’s value space obtained by applying the lexical-to-value mapping

to the literal string.

• Property: A property is a resource that represents a specific aspect, character-

istic, attribute, or relation used to describe resources. The set of properties is

a subset of the set of resources.

• Statement: A statement is composed of a subject, a predicate and an object

in an ordered manner. It is also called a triple. With a statement, a specific

resource (the subject) is associated with a property (the predicate) and a value

of that property (the object). Specially, a statement can be transformed into

a resource with a URI reference using reification, a mechanism in RDF for

describing statements.

Example 1 The bottom half of Figure 2.1 shows an RDF example for artifact auc-

tions. The top half shows the corresponding RDF schema. As illustrated in the fig-

ure, the resource r1, with URI http://www.artist.net�guyrose, is associated with sev-

13

Sc
he

m
a

In
st

an
ce

technique

technique&r3

"Guy"

"Rose"

title "The Model"

title

material

String

estimated
Price

"Christoffel"

presented

2004−04−28

estimated
&r5

"oil on canvas"

&r4

"oil on canvas"

2004−04−28
presented

estimated

ns1:http://www.auctionschema.com/schema1#

Literal

Literal

technique

String

String

fname

Artist

Sculptor

Painter

&r2

paints

paints
&r1

lname

fname

lname

creates

String

sculpts

paints

Sculpture

Painting

Artifact

fname

"10000"^^ns1:USD

2004−04−23
presented

"Tuffolina"

title

String

Datepresented

USD GBP

xsd:decimalhigh

low

high

r6 : http://www.artist.net#christberghe
r3 : http://www.christies.com/beverly/rockies.jpg
r2 : http://www.christies.com/beverly/model.jpg
r1 : http://www.artist.net#guyrose

r10 : http://www.christies.com/ny/tuffolina.jpg
r9 : http://www.artist.net#odotabacchi
r7 : http://www.christies.com/kingst/river.jpg

low

high

low

high

low

high

low

"15000"^^ns1:USD

"Van den Berghe"

&r6

lname
&r7

paints

"oil on copper"
technique

estimated
&r8

2004−04−21

presented

&r9
"Odoardo"

"Tabacchi" estimated

"40000"^^ns1:GBP

"60000"^^ns1:GBP

"300000"^^ns1:USD

"500000"^^ns1:USD

"600000"^^ns1:USD

"800000"^^ns1:USD

&r11
material "bronze"sculpts

&r10
lname

fname

rdf:type
rdfs:subClassOf
rdfs:subPropertyOf

Figure 2.1: An RDF example describing artifact auctions in Christie’s auction house

eral properties, e.g. <ns1:fname> with URI http://www.auctionschema.com/schema1�fname

(ns1 is the namespace http://www.auctionschema.com/schema1�). The value of

<ns1:fname> for the resource r1 is the plain literal “Guy”. Furthermore, the state-

ment (<http://www.artist.net�guyrose>, <ns1:fname>, “guy”) associates the re-

source r1 with the property <ns1:fname> and the value “Guy”.

In contrast to an object-oriented system, RDF is property-centric instead of object-

centric, although people might think RDF resources can be analogous to objects and

RDF properties are similar to attributes. RDF Properties are themselves resources,

and are independent from classes. The relationships between RDF resources and

14

properties are not tightly restricted by schemas.

2.2.2 Semantics of RDF

RDF is an assertional logic, in which each triple expresses a simple proposition.

An RDF graph is a set of RDF triples and a ground RDF graph is one with no blank

nodes (anonymous resources without URI references).

Hayes [46] gives very detailed discussion about RDF semantics. For reader’s

convenience, we present the important concepts of Graph Instance, Merge of RDF

Graphs and Interpretation here. Interested readers may refer to [46].

Definition 1 (Graph Instance [46]) Suppose M is a mapping from a set of blank

nodes to some set of literals, blank nodes and URI references. Then any graph

obtained from a graph G by replacing some or all of the blank nodes N in G by

M(N) is an instance of G.

A proper instance of a graph is an instance in which a blank node has been

replaced by a name, or two blank nodes in the graph have been mapped into the

same node in the instance. An RDF graph is lean if it has no instance which is a

proper subgraph of the graph.

Definition 2 (Merge of RDF Graphs [46]) If the graphs in the set have no blank

nodes in common, then the union of the graphs is a merge; if they do share blank

nodes, then it is the union of a set of graphs that is obtained by replacing the graphs

in the set by equivalent graphs that share no blank nodes.

15

Definition 3 (Interpretation [46]) A simple interpretation I of an RDF vocab-

ulary V is defined by:

1. A non-empty set IR of resources, called the domain or universe of I.

2. A set IP, called the set of properties of I.

3. A mapping IEXT from IP into the powerset of IR x IR i.e. the set of sets of

pairs <x,y> with x and y in IR .

4. A mapping IS from URI references in V into (IR union IP).

5. A mapping IL from typed literals in V into IR.

6. A distinguished subset LV of IR, called the set of literal values, which contains

all the plain literals in V.

2.2.3 RDF Schema

RDF-Schema (RDFS) extends RDF with special class and property constructs

that may be used to describe classes, properties and other resources. The important

constructs in RDFS are as follows:

• rdfs:Resource. All RDF resources are instances of rdfs:Resource.

• rdfs:Class, the class of resources that are RDF classes.

• rdfs:Literal, the class of literal values. rdfs:Literal is an instance of rdfs:Class

and a subclass of rdfs:Resource.

16

• rdfs:subClassOf, an instance of rdf:Property that is used to state that all the

instances of one class are instances of another. It is a transitive relationship

w.r.t. class hierarchy.

• rdfs:subPropertyOf, an instance of rdf:Property that is used to state that all

resources related by one property are also related by another. It is a transitive

relationship w.r.t. property hierarchy.

• rdf:type, an instance of rdf:Property that is used to state that a resource is an

instance of a class.

• rdfs:domain, an instance of rdf:Property that is used to state that any resource

that has a given property is an instance of one or more classes. For example,

a triple of the form (P rdfs:domain C) states that the resources denoted by

the subjects of triples whose predicate is P are instances of the class C.

• rdfs:range, an instance of rdf:Property that is used to state that the values

of a property are instances of one or more classes. A triple of the form (P

rdfs:range C) states that the resources denoted by the objects of triples whose

predicate is P are instances of the class C.

Besides the above constructs, RDFS also defines a vocabulary for RDF con-

tainer classes and properties, RDF collections and reification, etc. Please refer to

[22] for details.

As pointed out by Staab et al. [97], while support for modeling of ontological

concepts and relations has been extensively provided in RDF(S), the same cannot

17

be said about the modeling of ontological axioms since RDF(S) has relatively weak

expressiveness. They propose an approach to model axioms in RDF(S) while the

core semantics of RDF(S) is re-used and the semantics is preserved between different

inferencing tools.

2.3 SHOE

In 1995, Hendler’s group proposed the SHOE language at the University of

Maryland, and later they refined the language and experimented its use [71, 48, 47].

SHOE, which stands for Simple HTML Ontology Extensions, supports knowledge

acquisition by augmenting the Web with tags that provide semantic meaning. To

eliminate the possibility of contradictions between agent assertions, the designers of

SHOE carefully chose some features for the language. For example, SHOE does not

permit logical negation, nor the specification of disjoint classes.

Syntactically, elements of SHOE can be described in HTML extended with

additional semantic tags, or in XML. A SHOE ontology has both an identifier and

a version number, where all ontologies with the same identifier are different versions

of the same ontology. For example 1,

<ONTOLOGY ID="university-ont" VERSION="1.0">

declares an ontology called ”university-ont” whose version is 1.0. In addition, SHOE

allows for ontology inclusion, which helps to reuse ontologies.

A SHOE ontology may contain a number of elements, in which categories,

1All the examples of the SHOE language are from [47].

18

relations, and inference rules are important components. A category (or class) is a

set of objects that share some common properties. The is− a relation is commonly

used to group categories together. For example,

<DEF-CATEGORY NAME="Faculty" ISA="Person">

defines a category called ”Faculty”, which is a subcategory of ”Person”. In SHOE,

a relation is equivalent to a n-ary predicate with zero or more arguments, which are

typed and explicitly ordered. For instance, a relation of ”advises” can be defined as

follows:

<DEF-RELATION NAME="advises">

<DEF-ARG POS="1" TYPE="Faculty">

<DEF-ARG POS="2" TYPE="Student">

</DEF-RELATION>

where ”Faculty” and ”Student” are its two arguments. SHOE also supports infer-

ence rules, each of which consists of a set of antecedents and a set of consequents.

Notice that the axioms in SHOE are restricted to Horn clauses since SHOE’s se-

mantics is based on datalog. The following example defines a rule that the head of

a Department is a Chair:

<DEF-INFERENCE>

<INF-IF>

<RELATION NAME="g.headOf">

<ARG POS="1" VALUE="x" USAGE="VAR">

19

<ARG POS="2" VALUE="y" USAGE="VAR">

</RELATION>

<CATEGORY NAME="Department" FOR="y" USAGE="VAR">

</INF-IF>

<INF-THEN>

<CATEGORY NAME="Chair" FOR="x" USAGE="VAR">

</INF-THEN>

</DEF-INFERENCE>

The subclauses enclosed by <INF-IF> and </INF-IF> tags are antecedents and the

ones enclosed by <INF-THEN> and </INF-THEN> are consequents.

2.3.1 Semantics of SHOE

A set of functions has been defined to translate different constructs of the

SHOE syntax to concepts in the logical model. For example, res : Url → R maps

a uniform resource locator from the set Url to a specific resource in R. Via these

functions, each tag in the SHOE language can be mapped into a set of assertions.

For detailed description, please see [47].

2.4 DAML+OIL

DAML+OIL [29], a semantic markup language for Web resources, provides

modeling primitives similar to frame-based languages. It was built from the original

DAML ontology language as well as the language components of OIL, the Ontology

20

Interface Layer defined by Horrocks et al. [50]. Figure 2.2 shows a fragment of a

weather ontology in DAML+OIL.

A DAML+OIL ontology consists of zero or more headers, followed by zero or

more class elements, property elements, and instances. The headers contain version

information and imports elements. As shown in Figure 2.2, the <daml:Ontology>

element contains the version information. A class element, <daml:Class>, con-

tains the definition of an object class. It refers to a class name (a URI), such as

“UnitAbbreviation” in the example ontology, and may contain other elements, like

<daml:disjointWith>. A daml:Property element refers to a property name (a URI),

e.g., “hasUnitAbbreviation”, and may contain other elements, like <rdfs:domain>

and <rdfs:range>. There are two kinds of instances: class instances and property

instances. For example, in Figure 2.2, celsiusMap is an instance of class UnitAb-

breviation. [29] provides details about syntax of DAML+OIL and [106] gives the

model-theoretic semantics for DAML+OIL.

2.5 OWL

OWL [13, 88], the Web Ontology Language, is a semantic markup language

for publishing and sharing ontology on the World Wide Web. It is a W3C recom-

mendation and provides three subsets of language constructs with different features:

OWL Full, OWL DL and OWL Lite.

OWL Full allows free mixing of OWL with RDF Schema, but it is not decidable

although it gains the highest expressivemess in the three sublanguages of OWL. OWL

21

<rdf:RDF

xmlns="http://www.csd.abdn.ac.uk/research/AgentCities/WeatherAgent/weather-ont.daml"

xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<daml:Ontology rdf:ID="metarOnt">

<daml:versionInfo>

$Id: metar1.1.daml,v 1.12 2002/01/23 16:11:17 ggrimnes Exp $

</daml:versionInfo>

</daml:Ontology>

<daml:Class rdf:ID="UnitAbbreviation">

<rdfs:label>Unit Abbreviation</rdfs:label>

</daml:Class>

<daml:Property rdf:ID="hasUnitAbbreviation">

<rdfs:label>Abbreviation</rdfs:label>

</daml:Property>

<UnitAbbreviation rdf:ID="celsiusMap">

<hasUnitAbbreviation>C</hasUnitAbbreviation>

<unitPropertyName rdf:resource="#celsuisTemperature"/>

</UnitAbbreviation>

</rdf:RDF>

Figure 2.2: A fragment of a weather ontology in DAML+OIL

22

DL is a subset of OWL Full and was designed to support the existing Description

Logics. Note that OWL DL maintains decidability while still has high expressiveness.

OWL Lite was targeted for easy implementation and providing users a functional

subset of constructs. Besides abiding by all the restrictions of OWL DL, it has further

requirements for some constructs. Figure 2.3 shows a fragment of an example OWL

DL ontology [13].

It is important to note that the meaning of an OWL ontology is solely deter-

mined by the underlying RDF graph. Patel-Schneider et al. [88] provide a thorough

analysis in the model-theoretic semantics for OWL.

2.6 Description Logics

As introduced in [8, 25], Description Logics are a family of knowledge repre-

sentation languages that can be used to represent the knowledge of an application

domain in a structured and formally well-understood way. They allow for modeling

an application domain in terms of objects, classes and relationships between classes,

and for reasoning about them. The important notions of a given domain are de-

scribed by concept descriptions, which are expressions built from atomic concepts

and roles. A knowledge base in DLs is formed by two components, called TBox and

ABox. A TBox expresses intensional knowledge about classes and relations and an

ABox expresses extensional knowledge about individual objects. Furthermore, DLs

are equipped with a formal and logic-based semantics.

An important problem for a DL system is the trade-off between the expressivity

23

<owl:Class rdf:about="#MusicDrama">

<owl:equivalentClass>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Opera"/>

<owl:Class rdf:about="#Operetta"/>

<owl:Class rdf:about="#Musical"/>

</owl:unionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

<owl:Class rdf:about="#Opera">

<rdfs:subClassOf rdf:resource="#MusicDrama"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasLibrettist" />

<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Figure 2.3: A fragment of OWL ontology

24

of DL and the complexity of its inference. Current DL systems can employ very

expressive DLs while still providing powerful inference tools. These strengths have

made DLs a popular choice for representing ontologies.

Note that our notion of graph-based ontology cannot generalize the ontologies

in Description Logics. In addition, since OWL DL is based on Description Logics, it

cannot generalize OWL DL either.

25

Chapter 3

Review of the State of the Art

3.1 Using IR Techniques to Improve Answer Quality

In recent years, it has become more and more common to have unstructured

text embedded in or connected to structured data in database systems. For example,

a database about books may have unstructured text about readers’ comments and

a database about patients may be associated for each patient record with detailed

symptoms stored as text. This has motivated the research on supporting keyword

search in databases.

On the other hand, since they may not know the detailed content or structure

of a database, users tend to be interested in (and often satisfied with) the results

that do not exactly match the query, but are highly relevant. Furthermore, they

often hope to have results ranked according to their relevance to the query.

As these changes and query patterns have attracted more and more attention

from both academia and industry, many research efforts have emerged to combine

IR techniques and relational/XML database management systems to query unstruc-

tured text embedded in (or connected to) structured data and to support keyword

search, proximity search, relevance ranking, word stemming and thesauri in database

systems. In this section, we introduce some of the works in keyword search and rele-

vance ranking for relational and XML database systems respectively. Note that some

26

of these systems have incorporated ontological information into query answering.

3.1.1 IR and RDBMS

DBXplorer [2] and DISCOVER [52] are two early systems to support keyword

search in relational database systems. But they do not support IR style ranking.

Commercial relational database management systems have provided keyword search

capabilities over single columns [30, 85, 76]. They use standard IR techniques to

rank query results.

However, several research groups have found that using standard IR ranking

functions has a few shortcomings. For example, traditional IR functions miss records

that do not contain the keywords, but are closely related to them. Furthermore,

the traditional IR semantics are unable to meaningfully sort the resulting objects

according to their relevance to the keywords [9]. Instead, they [9, 53] have adapted

PageRank [23] technology for ranking query results in databases.

Balmin et al. [9] develop the ObjectRank system which models databases as

labeled graphs and applies authority-based ranking to keyword search. The idea is

to first identify a base set where each object contains the keywords. Then author-

ity originates at the objects in the base set and flows to objects according to their

semantic connections. ObjectRank makes use of schema information when com-

puting the scores. In addition, it considers domain-specific link semantics and can

rank results with regard to specific keywords. However, it needs to materialize the

database graph which poses large space overhead. Although it incorporates certain

27

semantics, the system cannot support arbitrary semantic relationships such as is-a

and part-of. Furthermore, it relies on the base set which still requires exact match.

Note that the above research efforts do not consider answering a keyword

query by joining tuples from multiple relations (which is called free-form keyword

search). Hristidis et al. [51] adapt IR-style document-relevance ranking strategies

to the problem of precessing free-form keyword queries over RDBMSs. Different

from previous research efforts, their solution for ranking query answers is based

on existing search capabilities in RDBMSs as well as IR ranking techniques. In

addition, they can handle queries with not only AND, but also OR semantics. They

have also introduced several top-k query-processing algorithms and compared the

performance of the algorithms with regard to different parameters.

Different from the above work, we do not consider keyword search or relevance

ranking in our HOME system. Instead, our goal is to extend the relational algebra

with ontological information such that it is feasible to integrate heterogeneous rela-

tional databases at the semantic level. We provide details about the HOME system

in Chapter 4.

3.1.2 IR and XML DB

To the best of our knowledge, Florescu et al. [36] were the first to combine

XML query processing and keyword search capabilities. They extend the XML-QL

query language by adding a predicate called “contains”, which has four arguments:

an XML element variable, a word, an integer expression and a boolean expression.

28

The integer expression limits the depth at which the word is found within the ele-

ment. The boolean expression over the set of constants {tag name, attribute name,

content, attribute value} imposes a constraint on the location of the word. For ex-

ample, contains($A, “Database”, 3, any) is used to search for the elements containing

the string “Database” with a search depth no more than 3. The authors also dis-

cussed how to process such keyword queries using a relational database management

system. However, their work is limited to single keyword search. They do not con-

sider other cases, such as multiple keywords with AND/OR semantics.

Amer-Yahia et al. [4] propose TeXQuery, a full-text search extension to XQuery.

Instead of exploring only a few primitives at a time to support full-text search, they

provide a rich set of fully composable primitives including Boolean connectives,

phrase matching, proximity distance, word stemming and thesauri. They introduce

an underlying data model called FullMatch to guarantee that full-text search prim-

itives can be closed under the model. The FullMatch model also helps to integrate

the primitives seamlessly into the XQuery language. An interesting feature of TeX-

Query is that it provides an interface to incorporate terms from thesauri, such as

synonyms. However, the system does not support other kinds of queries (such as

join) with regard to thesauri.

Note that the above systems do not consider relevance ranking for query

results. We introduce a couple of research efforts to support ranking in XML

databases.

The TAX algebra by Jagadish et al. [56] is a formal theoretical basis for

semistructured data. It proposes the concept of a pattern tree to query semistruc-

29

tured data sources. However, ontologies are not used in TAX and TAX does not

support similarity search. Based on TAX, Al-Khalifa et al. introduced a bulk algebra

TIX [3] to integrate information-retrieval style query processing into a traditional

pipelined query evaluation engine for an XML database. TIX uses a scored pattern

tree instead of a pattern tree as in TAX. User-defined score functions are given to

some nodes in a scored pattern tree to specify how to compute scores of nodes using

IR-style conditions. By extending existing operators in TAX and introducing new

operators, an IR-style query can be expressed in TIX to find relevant results, with

weighting and ranking support. However, they only support traditional IR meth-

ods (i.e., exact keyword match) for scoring such as term frequencies. Hence, they

cannot incorporate lexical relationships into query answering. As a result, TIX may

miss those instances that are highly related to a query but do not contain those

keywords in the query. Compared to TIX, our work on TOSS uses similarity en-

hanced ontologies to support both lexical and similarity relationships between terms

in databases. In an ontology, users can define arbitrary relationships that they are

interested in. In addition, TOSS provides mechanisms to resolve semantic ambigu-

ities when answering queries across heterogeneous databases which TIX does not

consider.

Guo et al. [42] present the XRANK system that supports ranking results for

keyword search queries over XML documents. The ranking is at the granularity of an

XML element and the algorithm for computing the ranking is based on the PageR-

ank [23] technology. Different from previous work, they support two dimensional

proximity search by considering both the keyword distance and ancestor distance.

30

They also propose new inverted list index structures to efficiently evaluate XML

keyword search queries.

Theobald and Weikum [100] present an interesting work on relevance ranking

in XML databases. They consider a similarity operator ∼ which takes ontological

information into account. They also propose similarity metrics (with regard to on-

tologies) and special index structures to evaluate XML queries with similarity search

conditions. Different from our work, they only consider similarity relationships (in-

cluding synonyms, hypernyms and hyponyms), but do not support other interterm

lexical relationships such as part-of . Our TOSS system supports both interterm

lexical relationships and similarity metrics defined in the IR literature. Another

difference is that their work is based on an XML query language while our work is

based on an XML algebra. Furthermore, we support semantic integration of XML

databases but they focus on relevance ranking.

3.2 Mediator Systems

Wiederhold [110, 111] proposed the important concept of a mediator - a pro-

gram that would integrate data from multiple heterogeneous information sources.

The first efforts of mediator systems were SIMS [6], HERMES [70] and TSIMMIS

[37]. Subsequent efforts included the DISCO system [101].

SIMS [6] is targeted at efficiently mapping a query at the domain level into

a set of subqueries to individual information sources. A planner is used to select

the information sources to be used in answering a query and also to order the

31

subqueries in a more efficient way. Their domain model is a simple form of ontology

which is used to reformulate an original domain-model query into a query in terms

of database concepts. This step of reformulation is important to find out the related

information sources. However, different from our work, their focus is not on defining

an ontology-extended algebra. They define a set of operators, some of which are

similar to our operators in selection conditions. They use constraints to specialize

concepts while we use ontology itself.

Similar to SIMS, most of these efforts focused on developing query languages,

optimization algorithms or caching strategies with regard to the system performance.

However, the above efforts do not take into account lexical semantical relationships

between terms occurring in databases such as those shown in previous examples.

They do not have the ability to automatically reason that “US Census Bureau” is

part-of “US Government” and “Maryland” is part-of the “USA”, and so on. Other

such relationships between terms include isa (e.g. duck isa bird) or affects (e.g.

rain affects visibility).

3.3 Ontology Merging and Alignment

Wiederhold et al [112, 73, 81] at Stanford University have proposed an on-

tology algebra for manipulating ontologies from different domains. Their algebras

consisted of logical statements [73] using a LISP style syntax. In their later work

(combined in their ONION system), they represent ontologies with a graph-based

model and provide a set of operators to articulate multiple ontologies into a unified

32

ontology using both logical rules and functional rules. However, they do not consider

interoperation constraints in [112, 73], which we think are important when merging

ontologies. Although a similar concept was considered in [81], their integrated on-

tologies were not concise. Furthermore, [112, 73, 81] only merges together ontologies

without directly addressing the impact of how the query algebra is affected. And,

no concept of similarity search is involved in these works.

[21] extends the syntax of OWL by adding constructs to express relationships

between multiple OWL ontologies, but don’t actually tell us how to merge ontologies

together using these relationships. [75] describes a tool called Chimaera that finds

taxonomic “areas” for merging as well as a list of similar terms. Noy and Musen [84]

propose the PROMPT algorithm to semi-automatically merge and align ontologies.

Based on an initial matched terms, the PROMPT algorithm iteratively executes

user’s selected operation, checks for any conflicts and makes a list of suggestions to

user. Different from previous tools, the PROMPT approach provides good guidance

to the user in the process of ontology alignment. Notice that the output of the

ontology alignment tools can be used as interoperation constraints for our ontology

integration algorithm in Chapter 4.

Dou et al. [33] proposed an approach (based on ontology merging and auto-

mated reasoning) for ontology translation, which is useful for datasets translation,

ontology extension generation and querying through different ontologies. They built

an inference engine to process assertions and queries in semantic translation. Differ-

ent from ontology alignment, ontology translation requires human experts to specify

semantic differences between ontologies.

33

On the other hand, extensive research has been performed on integrating log-

ical theories from multiple sources (e.g., [65, 26, 40, 14, 62, 63, 67, 99, 12, 11, 10].)

These studies have been motivated by problems arising in areas such as cooperative

information systems, multi-databases, multi-agent systems and distributed expert

systems.

Baral et al. [12, 11, 10] have studied the combination of multiple knowledge

bases under a set of integrity constraints when each of the knowledge bases is a nor-

mal Horn logic program, a first order theory and a default logic theory respectively.

Their idea is to obtain a maximally combined knowledge base with respect to the

union of knowledge bases that is consistent with the integrity constraints.

Subrahmanian [99] presents a uniform theoretical framework, based on an-

notated logics, for amalgamating multiple knowledge bases when these knowledge

bases (possibly) contain inconsistencies. In the framework, individual knowledge

bases are transformed into new annotated logic programs and amalgamated under

a new axiom scheme.

Based on epistemic logic, Liau [65] provides a modal logic framework for rea-

soning about multi-agent belief and its fusion. Two strategies are considered for the

cautious merging of beliefs. In addition, the author proposes two logics for these

two strategies respectively. An important concept of this framework is the different

degrees of reliability for the agents.

Different from the above efforts, we study the problems of integrating graph

ontologies and RDF ontologies in Chapter 4 and Chapter 6 respectively. We have

provided efficient algorithms to integrate the ontologies based on their special prop-

34

erties.

3.4 Object Matching

The problem of object matching is important in data integration. It helps to

determine whether object representations in different databases refer to the same

entity and helps to remove duplicates when combining information from different

sources. There has been a large body of work in this aspect. Object matching may

be referred to as entity resolution, object identification, and record linkage, etc. We

review some of them in Section 3.4.1.

3.4.1 Entity Resolution

Entity resolution has received significant attention from both industry and

academia, due to its wide use in many problems, such as deduplication in data

integration and reference reconciliation in Personal Information Management. The

approaches in the literature can be divided into two kinds: single class resolution

and multiple class resolution.

Earlier work in the literature explored various methods to resolve entities in a

single class that has a number of attributes. Many similarity metrics have been pro-

posed to match strings or textual values, for example, Levenstein distance, Monge-

Elkan distance[82], Jaro metric[57], and token-based distance like Jaccard similarity

and cosine similarity, etc[28]. [28] provides an experimental comparison for these

string metrics. Meanwhile, a lot of work has been focused on matching records where

35

each record has a set of attributes and each attribute can be matched by those string

metrics or some domain-specific similarity measures. For example, Hernandez and

Stolfo [49] proposed a efficient merge/purge process to compute the transitive clo-

sure over multiple independent passes, each of which uses a different key to sort

the data such that similar records are in a small neighborhood. Their system also

includes a declarative rule language to define equivalence of two values.

Recent research efforts have made intensive use of dependency relationships

between different class resolution decisions. Pasula et al. [87] have defined a genera-

tive model in the context of citation matching. Their model is based on a relational

probability model and adopts an approximation method based on Markov chain

Monte Carlo. In [86], Parag and Domingos proposed a multi-relational approach

to allow information to propagate from one candidate match to another via their

common attributes. Their systems makes a collective decision for all the candidate

pairs instead of making a decision for each pair seperately.

Bhattacharya and Getoor [18, 16, 17] have proposed various approaches for

entity resolution. In [18], an interative algorithm for deduplication was proposed

to identify authors. Their main idea is to make use of coauthor relationships and

iteratively identify additional potential co-references as more evidence is collected.

In [16], they regarded entity resolution as a clustering problem and defined similarity

measures to group the references. In [17], they proposed a generative probabilistic

model to make collective decisions for resolving entities. In contrast to previous

approaches, they introduced two hidden variables for each reference instead of one

decision variable for each duplicate pair. In addition, they presented an unsupervised

36

method for determing the number of entities.

Dong et al. [34] describe an algorithm to reconcile references (entities) which

belong to multiple related classes and each reference may have very few attribute

values. The major application of their algorithm is in Personal Information Manage-

ment. In their algorithm, they build dependency graph to represent the dependency

between a pair of similarities, which may be the similarity of a pair of references

or the similarity of a pair of attribute values. By enriching the references while

propagating similarity decisions from node to node in the dependency graph, their

algorithm makes a continuous loop between computing similarities and matching

decisions until a fixed point is reached.

None of the above efforts has considered to use ontologies for matching objects.

Ontologies constitute a useful tool to convey the semantics of terms in databases.

For example, a “blue” shirt is considered to be similar to a “navy” shirt, and a gene

product is close to another gene product with similar cellular locations, molecular

functions and biological processes. However, the colors and the properties of gene

products are ontological terms which are hard to match using string metrics or

the above approaches. We present our work on ontology-based object matching in

Chapter 7. It is important to note that our ontology-based similarity measures can

be used as domain-specific metrics in the above approaches, such as the framework

in [34].

37

3.4.2 Similarity Measures on Ontologies

Recently, people have proposed a range of ontology-related approaches to com-

pute the semantic similarity scores. The literature describes three distinct groups of

similarity measures that can be applied to taxonomies (ontologies). The first group

of measures, which we will refer to as term-similarity measures, can be used to com-

pute the similarity of two individual terms. The other two groups of measures can

be used when an object is labeled with multiple terms.

Wu and Palmer[114] defined a term-similarity measure based on the depth (in

the taxonomy) of the least common ancestor of two terms relative to the depths of

the terms individually. The “closer” the common ancestor is to the terms themselves,

the greater the similarity. Wu and Palmer did not describe how to use their approach

when the taxonomy is a DAG. Another problem with this approach is that some

portions of the taxonomy may have been extensively developed and contain many

terms, whereas other areas are sparse. Such variations in the “density” of terms

make this and other measures (such as [91, 92]) that rely on edge counts a poor

estimate of similarity.

To the best of our knowledge, the idea of using information content to mea-

sure similarity is due to Resnik[94]. Using the WordNet taxonomy and frequency

estimates derived from a large body of English text, Resnik calculated the seman-

tic similarity of word pairs by selecting the common ancestor with the greatest

information content. For words with multiple senses, Resnik used the sense that

produced the maximum similarity. Using judgments made by human subjects as

38

the standard, Resnik found that his measure worked better than earlier ones based

on edge-counting. Although Resnik’s measure can be used when the taxonomy is

structured as a DAG, it cannot be used directly when objects are labeled with mul-

tiple terms, and it has a number of other disadvantages. Its range is not normalized

to [0, 1], but more importantly, by selecting the ancestor with the greatest informa-

tion content it understates the similarity of objects by focusing on the single most

significant aspect of their commonality, at the expense of all others.

Lin[66] provided an axiomatic definition of similarity, and showed how Resnik’s

approach could be adapted to fit this framework. Whereas Resnik’s measure was

based solely on the commonality between word meanings, Lin’s also takes into ac-

count the differences in meaning to determine a normalized similarity score. Lin

compared his measure to Resnik’s and to Wu and Palmer’s, and found that it pro-

duced scores that were better correlated with human judgments than those produced

by the other two measures. However, Lin does not describe how to use his mea-

sure when the taxonomy is a DAG, or when multiple terms are used to describe an

object.

The similarity measures in the second group described in the literature measure

the similarity of objects based on the number or frequency of terms that are common

to the descriptions of both objects. Measures in this group include Jaccard, Dice and

Set Cosine, which are used frequently in information retrieval systems and differ in

how the count of common terms is normalized, as well as the FMS measure of Keller

at al[60]. These measures do not take the structure of the taxonomy into account.

Any candidate object that does not share terms with the target will receive a score

39

of zero, even though it may be quite similar.

The third set of proposed similarity measures relies on an underlying term-

similarity measure to determine the similarity between individual pairs of terms, and

then combines these to yield an overall similarity score. Halkidi et al.[45] defined

a similarity measure of this type for use in clustering web documents. Using the

Wu and Palmer term similarity measure, they consider each term in the target and

candidate sets individually, and find the most similar term from the other set. Then,

over each term set (the target set and the candidate set), they average the similarity

of these best matches. Finally, they combine the average similarity from the two sets

with equal weight. Since they use Wu and Palmer as the underlying term similarity

measure, it is not clear how to apply this measure when the taxonomy is a DAG.

Wang et al.[109] developed a similarity measure that avoids this problem by

using a generalized form of Lin’s measure to determine the similarity of each term-

pair. They generalize Lin’s formula for use in a DAG taxonomy by selecting the

least common ancestor with the maximum information content. Note that they use

a different function than Halkidi et al. for combining term-pair scores. Instead of

averaging the scores of the best match from the other set for each term, they average

the term similarity scores across all term pairs.

Keller et al.[60] present several ways of quantifying similarity using fuzzy mea-

sures based on the depth or information content of terms. However, their measures

either require subjectively-specified weights, or the solution of a high-order polyno-

mial equation for each pair of target and candidate objects. We believe this to be

prohibitively expensive for large problems.

40

In Chapter 7, we present two taxonomy-based similarity measures which are

applicable to practical classification systems, where taxonomies (ontologies) can be

DAG-structured, objects can be labeled with multiple terms, and ambiguity can be

introduced by an evolving ontology or classifiers with imperfect knowledge.

41

Chapter 4

Ontology-extended Relational Algebra

Heterogeneous relational databases being integrated vary widely in how the

same data is represented. The discrepancy exists not only in the syntax, such as

data structures and storage systems, but also in the semantics, such as the different

expressions referring to the same concept. It is widely acknowledged that integra-

tion of data at the semantic level remains an open problem. As we mentioned in

Chapter 1, semantic discrepancies degrade recall and affect the quality of query

answers. In this chapter, we present our approach [19] on semantically integrat-

ing heterogeneous relational databases. An important notion in our approach is

ontology extended relation.

Ontologies provide semantic information about some body of data (e.g. num-

bers, strings, etc.). An ontology extended relation is a relation that has an associated

ontology. Intuitively, the ontology associated with a relation provides some seman-

tical information about the relation and about the syntactic objects (e.g. attribute

names, attribute values) associated with the relation. For example, given a relation

about stock information, an ontology associated with this relation may contain an

explanation of the terms in the relation and/or an explanation of some of the rela-

tionships between such terms. For example, it may tell us that database companies

are software companies, and that a carburettor is part of a car and that a car is

42

Name Cost Shipping

Tire 54.19 20.05

Gasket 3.05 1.55

Valve 3.35 1.55

Brake pads 78.50 8.50

Evaporator 305.00 11.50

· · · · · · · · ·

Table 4.1: Parts1 relation

equivalent to an automobile. We use a running industrial parts example and an

insurance example to illustrate the basic concepts of our approach. In addition,

when performing queries over multiple ontology extended relations, we may need to

merge multiple ontologies. We show how multiple ontologies may be merged.

4.1 Motivating Example

In this section, we present a simple parts database example and an insurance

claims database example. Both these examples are toy examples used primarily to

illustrate the basic definitions and results of this paper.

4.1.1 Simple Industrial Parts Example

Consider a very simple example consisting of industrial parts data. There

are numerous companies in the US and elsewhere that maintain stocks of various

43

Item Price ShipCost

Wheel 50.05 18.00

Air Gasket 3.00 1.70

Valve 3.35 1.55

Hubcap 11.50 6.00

Spark Plug 20.00 8.50

· · · · · · · · ·

Table 4.2: Parts2 relation

industrial parts (e.g. Grainger in the USA). Two different companies of this kind

may maintain part information such as those shown in the Parts1 (Table 4.1) and

Parts2 (Table 4.2) relations below.

When we examine these two databases, we notice several things. First, the

fields Cost and Price probably refer to the same things. Second, the fields Shipping

and ShipCost probably refer to the same concept. However, by looking at the fields,

we really are at a loss to determine whether these fields use the same units or not.

For example, Cost in the Parts1 relation may be in US dollars, while Prices in the

Parts2 table may be in Euros. In addition, wheel may be a part of tire, and likewise,

a hubcap is also a part of a tire. Evaporator and AC Evaporator probably mean

the same thing. And an air gasket probably is a gasket.

A user asking queries spanning these two databases would probably like an-

swers that resolve the above types of semantic ambiguities when answering his

queries. For example:

44

• If a user wants to find all tuples dealing with Gaskets for either the parts1 or

parts2 database, then the system should be smart enough to know that the

attribute names Name and Item are the same, and that an “Air Gasket” is a

kind of gasket.

• Likewise, if the user wants to find prices of all tire parts, the system should be

smart enough to know that a wheel is part of a tire and hence constitutes a tire

part. Similarly for hubcaps. It should therefore return the tuples associated

with wheels, hubcaps and tires.

• A more mundane retrieval may arise because the user may want to find valves

that cost less than $3.50. In this case, if the parts1 relation uses Euro to

express units, then the system should automatically convert the value in Euros

to USD.

In this paper, we develop a model of ontologies and a concept of ontology extended

relations that address these issues.

4.1.2 Insurance Example

Consider the case of an insurance company that maintains records about in-

surance claims. Such a company may keep track of who made a claim, what the

claim was about, etc. This information may be entered by diverse claim adjusters

who work for the company and may have been entered in different ways over the

years. When the insurance company buys another company, they may need to exe-

cute queries spanning both databases. We show below two such relations - Claims1

45

ClaimId Type Cost

1 burglary 2000

2 theft 150

3 mugging 860

4 arson 1800

Table 4.3: Claims1 relation

ClaimNumber Type Value

1 robbery 400

2 fire 550

3 auto accident 500

4 burglary 250

Table 4.4: Claims2 relation

(Table 4.3) and Claims2 (Table 4.4) - that may contain the data from two such

databases.

Again, in the above example, we see that burglaries and muggings are types

of theft. Likewise, arson is a kind of fire. Burglaries are a kind of robbery (which is

synonymous with theft). As a consequence, queries about thefts should include all

tuples involving such terms. For example, consider the two situations listed below.

• If a user wanted to find all thefts that involved a cost of over $ 1000 dollars, the

system should automatically recognize that burglaries, muggings and robberies

count as thefts. If costs are represented in different currencies, conversions

46

should be automatically performed.

• Likewise, if a user wanted to automatically find all fires, it should recognize

that arsons are fires and hence should return the appropriate tuples.

4.2 Ontologies and Ontology Integration

In this section, we define ontologies, and describe how to integrate a set of on-

tologies. We only consider ontologies involving simple concepts - ontologies involving

boolean concepts of ontologies are not considered.

4.2.1 Ontologies

In order to define an ontology, we first need the notion of a hierarchy. A couple

of definitions are needed in order to get a formal definition of a hierarchy. If S is a

nonempty set and ≤⊆ S×S, then (S,≤) is an ordering. As usual, (S,≤) is a partial

ordering if ≤ is a reflexive, transitive, and anti-symmetric binary relation on S.

Definition 4 (better than) Suppose (S,�1), (S,�2) are two orderings. We say

(S,�1) is better than (S,�2) iff (∀x, y ∈ S)x �1 y → x �2 y.

We will say that (S,�1) is strictly better than (S,�2) iff (S,�1) is better than

(S,�2) and (S,�2) is not better than (S,�1).

Definition 5 (hierarchy) Suppose S is a partially ordered set under ordering ≤.

A hierarchy for S is an ordering (S,�) such that

1. (S,�) is better than (S,≤) and

47

2. (S,≤) is the reflexive, transitive closure of (S,�).

3. there is no other ordering (S,) satisfying the preceding two conditions such

that (S,) is strictly better than (S,�).

A simple example is shown below.

Example 2 Consider the set S={wheel, car, hubcap}. A partial ordering reflecting

the “part of” relation may say that a wheel is part of a car, a hubcap is part of a

car, and a hubcap is part of a wheel1. In addition, everything is a part of itself.

In this case, the natural definition of the part of relation, denoted ≤ is given by

the set {(wheel, wheel), (car, car), (hubcap, hubcap), (wheel, car), (hubcap, car),

(hubcap, wheel)}.

There is only one hierarchy associated with this partial ordering, viz. the set {

(wheel, car), ((hubcap, wheel)}.

The astute reader will note that a hierarchy as defined above is nothing but the

Hasse diagram associated with a partial ordering. Taking advantage of this fact,

we will often talk about hierarchies as though they are graphs (hence, we will talk

about paths in hierarchies, etc.).

Definition 6 Suppose Σ is some finite set of strings and S is some set. An ontology

w.r.t. Σ is a partial mapping Θ from Σ to hierarchies for S.

Throughout the rest of this chapter, we will assume that Σ and S are arbitrarily fixed.

We will further assume that Σ contains a distinguished string called isa (representing

the usual isa relationship) and that Θ(isa) is always defined.

1The “part of” relation in this example has nothing to do with philosophical argument.

48

Example 3 Suppose Σ = {isa}. Figures 4.1(a) and 4.1(b) show ontologies associ-

ated with the relations Claims1 and Claims2 respectively.

theft

burglary mugging

arson

(a)

robbery

burglary

auto-accident fire

(b)

theft

burglary mugging

arson

(a)

robbery

burglary

auto-accident fire

(b)

Figure 4.1: (a) Ontology associated with Claims1 relation, (b) Ontology associated

with Claims2 relation

4.2.2 Ontology Integration

Recall that we intend to associate ontologies with relations (though we have

not done so yet) and then to extend the relational algebra to handle such ontology-

extended relations. When performing binary operations between two such ontology-

extended relations, we need to know the relationship between the terms in each

ontology. We start by describing the relationship between terms in two hierarchies.

Definition 7 (interoperation constraints) Suppose (Hi,≤i), 1 ≤ i ≤ n are n

different hierarchies and suppose i
= j. Then (x : i = y : j), (x : i ≤ y : j), (x : i
≤

y : j), (x : i
= y : j) are called interoperation constraints.

NOTE: As the constraint x : i = y : j can be written as two constraints x : i ≤ y : j

and y : j ≤ x : i, we will henceforth assume (without loss of generality) that equality

constraints are not present.

49

For example, an interoperation constraint involving an English and a French

veterinary practice may say that dog : 1 = chien : 2 explaining that Dog (in

English) in the first hierarchy and Chien (in French) in the second hierarchy mean

the same thing. In the case of the two claims relations for the insurance application,

our interoperation constraints may say that: theft : 1 = robbery : 2 and that

arson : 1 isa fire : 2.

Definition 8 (integration) Suppose (Hi,≤i), 1 ≤ i ≤ n are n different hierarchies

and suppose IC is a finite set of interoperation constraints. A hierarchy (H, ≤) is

said to be an integration of (Hi,≤i), 1 ≤ i ≤ n iff there are n injective mappings

ψ1, . . . , ψn from H1, . . . , Hn respectively to H such that:

1. (∀i ∈ {1, . . . , n})x �i y → ψi(x) ≤ ψi(y).

2. (∀x ∈ Hi)(∀y ∈ Hj)(x : i op y : j) ∈ IC→ ψi(x) op ψj(y).

In this case, (H,≤), ψ1, ψ2, . . . , ψn is a witness to the integrability of (Hi,≤i), 1 ≤

i ≤ n in the presence of interoperation constraints IC.

Intuitively, an integration of two hierarchies is a new hierarchy. Each member of

the hierarchies being merged must be associated with a member of the integrated

hierarchy. Axiom (1) above says that the integrated hierarchy must preserve the

ordering associated with each of the input hierarchies. Axiom (2) above says that

they must preserve the interoperation constraints.

It is important to note that there could be many different ways of integrating

hierarchies. Some will be better than others.

50

Example 4 Consider integrating the two hierarchies of Figures 4.1(a) and 4.1(b)

w.r.t. the interoperation constraints theft : 1 = robbery : 2 and that arson :

1 isa fire : 2. Figure 4.2(a) shows the integrated hierarchy. The mappings that

witness this integration are:

ψ1 ψ2

burglary �→ burglary robbery �→ theft

theft �→ theft fire �→ fire

mugging �→ mugging autoaccident �→ autoaccident

arson �→ arson burglary �→ burglary

theft

burglary mugging

fire

arson

auto-accident

(a)

theft:1

burglary:1

robbery:2burglary:2

mugging:1 arson:1

fire:2

auto-accident:2

(b)

theft

burglary mugging

fire

arson

auto-accident

(c)

theft

burglary mugging

fire

arson

auto-accident

(a)

theft:1

burglary:1

robbery:2burglary:2

mugging:1 arson:1

fire:2

auto-accident:2

(b)

theft

burglary mugging

fire

arson

auto-accident

(c)

Figure 4.2: (a)Integrated Ontology integrating the Claims1, Claims2 relations,

(b)Hierarchy Graph associated with the Claims1, Claims2 relations, (c)Canonical

Hierarchy associated with the Claims1, Claims2 relations

Definition 9 (graph associated with a set of hierarchies) Suppose (Hi,≤i), 1 ≤

i ≤ n are n different hierarchies and suppose IC is a finite set of interoperation con-

straints. The hierarchy graph G associated with (Hi,≤i), 1 ≤ i ≤ n is defined as

follows:

• The set of vertices is the set {x : i | x ∈ Hi};

51

• The set of edges is the union of:

– {(x : i, y : i) | x, y ∈ Hi ∧ x ≤i y}

– {(x : i, y : j) | x : i ≤ y : j ∈ IC}.

Example 5 Returning to our running claims example, Figure 4.2(b) shows the hi-

erarchy graph associated with the two claims ontologies.

Definition 10 (canonical hierarchy) Suppose (Hi,≤i), 1 ≤ i ≤ n are n differ-

ent hierarchies and suppose IC is a finite set of interoperation constraints. The

canonical hierarchy (H�,≤�) of (Hi,≤i), 1 ≤ i ≤ n is defined as follows.

• H� is the set of all strongly connected components2 of the graph associated with

(Hi,≤i), 1 ≤ i ≤ n.

• If x�, y� ∈ H�, then x� ≤� y� iff either x� = y� or there exists a directed path

from x : i to y : j (for some x : i ∈ x� and y : j ∈ y�) in the hierarchy graph

associated with (Hi,≤i), 1 ≤ i ≤ n.

The following example illustrates the concept of a canonical hierarchy.

Example 6 Figure 4.2(c) shows the canonical hierarchy associated with our run-

ning claims ontologies.

Definition 11 (canonical witness) Suppose (Hi,≤i), 1 ≤ i ≤ n are n different

hierarchies and suppose IC is a finite set of interoperation constraints and (H�,≤�)

2Recall that the strongly connected components of a graph are the maximal sets of vertices C

such that there is a directed path between any two vertices of C.

52

is the canonical hierarchy. The canonical witness for (Hi,≤i), 1 ≤ i ≤ n is (H�,≤�

), ψ�
1, . . . , ψ

�
n where ψ�

i (x) = [x : i], i.e. ψ�
i maps x into the strongly connected

component of the graph containing x.

The canonical witness associated with our example is the obvious one - each element

in either of the two hierarchies is mapped onto the node in the canonical hierarchy

that contains that element.

Suppose (Hi,≤i), 1 ≤ i ≤ n are n different hierarchies and suppose IC is a

finite set of interoperation constraints.

The following lemma is an important result stating that the dependencies that

hold in the canonical hierarchy (H�,≤�) of (Hi,≤i), 1 ≤ i ≤ n must also hold in any

arbitrary witness to the integration of the hierarchies (Hi,≤i), 1 ≤ i ≤ n .

Lemma 1 Let (Hi,≤i), 1 ≤ i ≤ n be a family of hierarchies and suppose (H�,≤�)

is its canonical hierarchy. Suppose (H,≤), ψ1, . . . , ψn is any arbitrary witness to the

integration of (Hi,≤i), 1 ≤ i ≤ n. Then:

[x : i] ≤� [y : j]→ ψi(x) ≤ ψj(y).

In the above, [x : i] (resp. [y : j]) denotes the strongly connected component con-

taining x : i (resp. y : j).

The reader should note that the above theorem does not say that a witness to

the integration of the hierarchies (Hi,≤i), 1 ≤ i ≤ n exists ! It merely says that if at

least one such witness exists, then that witness must include all the dependencies in

the canonical hierarchy. The following theorem now says that a set of hierarchies can

53

be integrated if and only if the canonical hierarchy and the canonical translation

constitutes a witness to the integrability of (Hi,≤i), 1 ≤ i ≤ n.

Theorem 1 A set (Hi,≤i), 1 ≤ i ≤ n of hierarchies is integrable if and only if the

canonical witness of (Hi,≤i), 1 ≤ i ≤ n is a witness to the integrability of (Hi,≤i),

1 ≤ i ≤ n.

The above theorem is very important. It says that to check whether a set of

hierarchies is integrable, all we need to do is to compute the canonical hierarchy

associated with the hierarchies involved, and then explicitly check if the canonical

hierarchy is a witness to their integrability. This can be easily done in polynomial

time.

We are finally ready to define what it means to integrate two different ontolo-

gies.

Definition 12 (integrability of a set of ontologies) Suppose Σ is some finite

set of strings, S is some set, and Θ1, . . . ,Θn are ontologies w.r.t. Σ, S. Suppose IC

is a finite set of interoperation constraints. The ontologies Θ1, . . . ,Θn are integrable

iff for every x ∈ Σ, the hierarchies Θ1(x), . . . ,Θn(x) are integrable.

The preceding results suggest a simple algorithm to integrate a collection Θ1, . . . ,Θn

of ontologies w.r.t. Σ, S. First, for each x ∈ Σ, compute the canonical hierarchy Hx

of Θ1(x), . . . ,Θn(x). Check if this canonical hierarchy satisfies the interoperation

constraints. If this check evaluates to true for all x ∈ Σ, then we know that the

ontologies Θ1, . . . ,Θn are integrable and in fact, the integration of these ontologies

54

is the new integrated ontology Θ which maps x to Hx. We call Θ the canonical

fusion (or just fusion) of the ontologies Θ1, . . . ,Θn.

Once again, we emphasize that in this paper, we are only considering simple

ontologies composed of atomic concepts. Some authors [24] have proposed that

expressive logics much richer than those above be used for expressing ontologies, but

have not provided extensions of the relational algebra incorporating such ontologies.

Extension to richer ontology structures is left for future work.

4.3 Ontology Extended Relational Algebra

In this section, we extend the relational model of data and the relational

algebra to utilize the information contained in ontologies associated with relations.

Without this capability (as in the standard relational algebra) the answer returned

by queries may be semantically incorrect and/or incomplete.

Due to space restrictions, in the rest of this paper, we will assume that the set

Σ equals {isa}, i.e. only one hierarchy is associated with each ontology. The results

of the paper can be easily extended to incorporate other kinds of hierarchies such as

part of.

Types, Domain Values, and Hierarchies

We assume there exists a set T of strings called types. Each type τ ∈ T has an

associated set dom(τ) called its domain. The members of dom(τ) are called values

of type τ . When T ⊆ T , we will often use dom(T) to denote
⋃

τ∈T dom(τ).

55

For example, we may have T = {int, string}. We may have dom(int) be the

set of all integers and dom(string) be the set of all strings over {a, . . . , z}. However

we may also have in T a type like mm whose domain is the set of all non-negative

integers (representing millimeters).

A hierarchy of the form H = (TH ,≤H) where TH is a set of types is called a

type hierarchy.

Suppose τ ∈ TH is a type and a ∈ dom(τ) is an arbitrary value of type τ .

Clearly, we could also have a type called a with dom(a) = {a}. Thus, each value of

a type may also be viewed as a type. Given any type hierarchy H = (TH ,≤H) and

a τ ∈ TH , let

belowH(τ) := {τ ′ | τ ′ ≤ τ} ∪ dom(τ) .

Intuitively, belowH extends the partial ordering of the hierarchy H to include the

values of the types.

Extended Schemas and Relations

In this section, we show how to extend schemas and relations to include type

information. Let A be a set of attribute names. If A1, . . . , An ∈ A, and τ1, . . . , τn ∈

T , then (A1 : τ1, . . . , An : τn) is called a schema.

Intuitively, an extended schema associates types with each attribute name.

This is important because a type could be something like USD representing US

Dollars or cm representing (intuitively) centimeters.

An extended relation is a triple (R,S,Hisa), where S is a schema (A1:τ1,. . .,

56

An:τn), Hisa is an isa hierarchy3 and the following constraints are satisfied:

τ1, . . . , τn ∈ Tisa (4.1)

R ⊆ belowHisa
(τ1)× · · · × belowHisa

(τn) (4.2)

where Hisa is the hierarchy associated with isa. If t ∈ R and t = 〈 x1, . . . , xn 〉, then

we use t(Ai) to denote xi.

Conversion Functions

As the reader has already seen, as different units might be used in relations,

there is often a need to convert from one unit to another. In this section, we

introduce the concept of a conversion function.

For each pair of types τi and τj , we assume there exists at most one conversion

function τi2τj : dom(τi)→ dom(τj). We assume that conversion functions are total.

Moreover, we assume that the set of conversion functions enjoys the following closure

conditions and constraints:

• for each τ ∈ T , τ2τ exists and equals the identity function,

• if both τ12τ2 and τ22τ3 exist, then τ12τ3 exists and equals the composition

τ22τ3 ◦ τ12τ2. (Note that as τ12τ3 is assumed to be unique, all the possible

conversion function compositions that convert τ1’s values into τ3’s values must

3When we allow Σ to contain not just isa but other strings as well, the Hisa term needs to

be replaced with Θ with obvious corresponding changes to the rest of the paper. For the sake

of simplicity and due to space restrictions, in this section, we only consider the case where one

hierarchy is used.

57

be equivalent.) Moreover, it is not necessary to specify τ12τ3 explicitly. The

system may automatically compose it from the other functions.

• for all hierarchies H , if τ1 ≤H τ2 then there exists a conversion function τ12τ2.

The third requirement may cause a significant burden during system specifi-

cation and implementation. To reduce this burden we adopt the following intuitive

strategy. Units of measure always require an explicit conversion function, because

they always adopt different scales. Therefore, given a type ‘Currency’ with sub-

types ‘Euro’ and ‘Pound’, we need a unified representation for Currency together

with conversion functions Euro2Currency and Pound2Currency. On the contrary,

when types represent classes of objects (as in the parts and insurance examples), it

seems reasonable to assume by default that the conversion functions from subtypes

to supertypes are the identity function. These two cases (types as units and types

as classes) are explicitly distinguished through suitable declarations of the form:

unit τ1, . . . , τn and class τ1, . . . , τn.

There are cases in which types represent classes, but heterogeneous notation

has been adopted in the subclasses. As a result, some objects may have multiple

names or identifiers. In these cases, a conversion function is needed to produce a

non-ambiguous naming, otherwise equalities and other comparisons involving these

objects are potentially erroneous. Such types should not be declared to be units or

classes, as that would force the system to check that all the necessary conversions

have been specified.

58

4.3.1 Selection Conditions

Selection conditions are used both in defining the selection operation as well

as the join operation. In this section, we define selection conditions.

Simple (or atomic) conditions have the form X op Y , where op ∈ { =,
=, <,

≤, >, ≥, instance of , isa, subtype of, above, below }, and X, Y are terms, that

is, attributes, types, or typed values v:τ , with v ∈ dom(τ). Types will sometimes be

omitted in typed values when they can be unambiguously derived from the context.

Selection conditions can now be defined as follows:

• all simple conditions are selection conditions,

• if c1, c2 are selection conditions then c1∧c2, c1∨c2, ¬c1 are selection conditions,

• nothing else is a selection condition.

Example 7 For instance, in our claims example, Type isa theft and Type isa theft

∧ Cost > 140 : pounds are selection conditions. Note that if we apply the second

selection condition to the claims1 relation and we assume that the type of Cost is

USD (US dollars), we should only get the first tuple as the answer (the second tuple

would have been in the answer if the selection condition had been Type isa theft ∧

Cost > 140 : usd.

In the rest of this section, let R = (R, (A1:τ1, . . . , An:τn), Hisa) be an arbitrary

but fixed extended relation. In the context of R, the type of a term X is defined as

follows:

59

type(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τi if X = Ai

τ if X = τ or X = v:τ .

When type(X), type(Y) are both in a type hierarchy T and the least upper bound

of type(X) and type(Y) in T exists, then it is called the least common supertype of

X and Y w.r.t. a.

We say that a simple condition X op Y with op ∈ {=,
=, <,≤, >,≥} is well-

typed if X and Y have a least common supertype τ and the conversion functions

type(X)2τ and type(Y)2τ exist. Simple conditions with other operators are always

well-typed. A selection condition is well-typed if all its simple subconditions are.

The value of a term X w.r.t. a tuple t ∈ R is

X t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

t.Ai if X = Ai

τ if X = τ

v if X = v:τ .

A tuple t ∈ R satisfies a well-typed condition c in the context of R (denoted

R, t |= c) in the following cases:

• c = X op Y , op ∈ {=,
=, <,≤, >,≥}, τ is the least common supertype of X

and Y , and (type(X)2τ)(X t) op (type(Y)2τ)(Y t) is true.

• c = X instance ofY , Y t ∈ T , type(X) ≤H Y t, and X t ∈ dom(Y t).

• c = X subtype of Y , X t ∈ T , Y t ∈ T ,X t ≤H Y t.

• c = c1 ∧ c2, R, t |= c1 and R, t |= c2.

60

• c = c1 ∨ c2, and either R, t |= c1 or R, t |= c2.

• c = ¬c1, and R, t
|= c1.

• c = X below Y , and R, t |= X instance ofY ∨X subtype of Y .

• c = X above Y , and R, t |= Y belowX.

4.3.2 Ontological Relational Algebra

Suppose (R1, S1, H1), . . . , (Rz, Sz, Hz) are ontology extended relations , and

suppose F is a fusion of H1, . . . , Hz via witness trF .

For all algebraic expressions E, [E]F is inductively defined as follows. Let op

range over the operators of the relational algebra.

• If E is a relation Ri with schema Si = (A1 : τ1, . . . , An : τn), then [E]F =

(trF(R), S,ΘF), where S = (A1 : trF (τ1), . . . , An : trF(τn)). In this case, E is

always well-typed.

• (Projection) If E is ΠAi1
,...,Aik

(E ′) (1 ≤ ij ≤ n, 1 ≤ j ≤ k) and if [E ′]F =

(R′,(A1:τ1,. . .,An:τn), ΘF), then [E]F = (R, S,ΘF), where R is the standard

projection of R′ onto Ai1 ,. . .,Aik and S = (Ai1 :τi1 ,. . ., Aik :τik). If E ′ is well-

typed then E is.

• (Cross product) If E is E1 × E2 and [Ei]F = (Ri, Si,ΘF), (i = 1, 2), then

[E]F = (R, S,ΘF), where R is the standard cross product of R1 and R2 and

S is the concatenation of S1 and S2. If E1, E2 are well-typed and S1, S2 have

no common attribute, then E is well-typed.

61

• (Selection) If E is σc(E
′), [E ′]F = (R′, S,ΘF), and c is a well-typed selection

condition in the context of (R′, S,ΘF), then [E]F = (R, S,ΘF), where R =

{t ∈ R′ | (R′, S,ΘF), t |= c}. E is well-typed if E ′ and c are.

The standard relational condition join operator can be expressed as usual as a

composition of σc and ×. For the remaining set theoretic algebraic operators we

need a notion of schema compatibility.

Two schemas S ′ = (A1:τ
′
1, . . . , An:τ ′n) and S ′ = (A1:τ

′′
1 , . . . , An:τ ′′n) are com-

patible if for all i = 1, . . . , n, τ ′i and τ ′′i have a least common supertype τi and the

conversion functions τ ′i2τ and τ ′′i 2τ exist. When this is the case, (A1:τ1, . . . , An:τn) is

called the least common superschema of S ′ and S ′′. Moreover, the conversion func-

tion S ′2S is defined by S ′2S(R) = {〈 τ ′12τ1(x1), . . . , τ
′
n2τn(xn) 〉 | 〈x1, . . . , xn 〉 ∈ R}.

• (Union, Intersection and Difference) If E = E1 op E2 where op ∈ {∪,∩,−},

and [Ei]F = (Ri, Si,ΘF), (i=1,2), and S1, S2 have a least common superschema

S, then [E]F = (R, S,ΘF), where R is the standard result of S12S(R1) op S22S(R2).

E is well-typed if E1, E2 are, and S1, S2 have a least common superschema.

• (Cast) If E = (S)E ′ where S is a schema, and [E ′]F = (R, S ′,ΘF), then

[E]F = (S ′2S(R), S,ΘF). If S and S ′ have the same number of attributes and

the conversion functions needed for S ′2S exist, and E ′ is well-typed, then E

is well-typed.

Proposition 1 For all relational expressions E over (R1, S1, H1),. . .,(Rz, Sz, Hz)

and all fusions F of H1, . . . , Hz, [E]F is an extended relation (i.e., it satisfies con-

ditions (4.1) and (4.2)).

62

4.4 Implementation and Experiments

In this section, we briefly describe our HOME (Heterogeneous Ontology Man-

agement Engine) system.

4.4.1 HOME System

The HOME system is implemented in Java and currently consists of 23,562

lines of code. HOME accesses an Oracle server across the network. HOME

consists of the following components:

1. HOME’s graphical user interface allows users to express queries as well as

view answers. In addition, users can create ontologies and edit them.

2. HOME has an Ontology Maker that automatically takes a relational database

as input and uses WordNet [77] and a commercial thesaurus (ThesDB) to

automatically generate ontologies. In addition, the Ontology Maker contains

a rule maker that allows a user to specify rules that can be used to further

derive isa and part of relations over and above those derived automatically.

In addition, the Ontology Maker has a zooming graphical user interface that

allows users to zoom in on part of the ontology and either browse it or modify

it.

3. HOME’s Query Executor parses queries expressed via the HOME GUI. The

Query Executor contains code that transforms a user query into a query that

takes ontological information into account. It implements the ontology ex-

tended algebra described in this paper. The query executor also contains code

63

to access any JDBC source (the current backend used is an Oracle server).

The query executor contains the necessary socket code needed to access re-

mote servers.

In addition to the above components, we have also developed code to query XML

and MPEG-7 data (on top of the XINDICE database system) using ontologies as

well as to infer ontologies from XML and MPEG-7 sources.

4.4.2 Experiments

In all our scalability experiments, we used the GNIS data sets from the US

Geological Survey which contains data about social and cultural locations in the

US on a state by state basis. We populated Oracle relations with this data on a

state by state basis. The data was stored in a Windows NT server with 300 MHz

Pentium II processor and 64 MB memory. In addition, we used the Ontology Maker

to generate ontologies based on the GNIS data sets. The experiments were run on

a workstation with 2GHz Pentium 4 processor, 1 GB memory and RedHat Linux

enterprise platform. Notice that the workstation was not stand-alone during the

experiments.

The times taken in all experiments include the following: (i) time to ship the

query to a networked Oracle server running multiple concurrent workloads (not just

our experiments), (ii) the time to execute the query using JDBC, (iii) the time to ship

the answer back to the client from the remote networked Oracle server, and (iv) the

time required to convert the JDBC format to the the HOME GUI’s presentation

64

format.

Scalability of selection

Figure 4.3(a) shows the results of evaluating conjunctive selection queries

where each atomic selection condition in the conjunct has the form A subtype of v

or A = v. We vary selectivity (ratio of the number of tuples selected and the number

of tuples in the relation) for data sets of successively larger sizes.

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
30

40

50

60

70

80

90

100

110

120

Selectivity

E
xc

ut
io

n
T

im
e

(s
ec

on
ds

)

Experiment Result

528397 total records
819030 total records
1109637 total records
1381134 total records
1614292 total records

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
0

50

100

150

200

250

300

Selectivity

E
xc

ut
io

n
T

im
e

(s
ec

on
ds

)

Experiment Result

166321 Average Records
252268 Average Records
350681 Average Records
473305 Average Records
625353 Average Records

(a) (b)

Figure 4.3: (a)Performance of HOME for conjunctive selection queries, (b)Join

queries with varying join selectivity and varying number of tuples per relation

The reader can easily see that our algorithms handle approximately 1,600,000

tuples in 88-104 seconds (the variation depends on selectivity). The slope of the

graph is more or less linear - approximately 16,000-20,000 records can be processed

in one second.

65

Scalability of join

We also ran scalability experiments on join. Figure 4.3(b) shows how perfor-

mance of join changes when we vary the join selectivity (ratio of number of tuples in

the answer and the product of the number of tuples in the relations being joined).

We plotted different charts based on the number of tuples (from the GNIS data sets)

that were considered. The reader can see that on the average, selectivity did not

make a big difference but the number of tuples in the relations being queried did.

As the average size of the relations being joined increased, we had a linear increase

in the time taken to do the joins. Unlike relational databases, varying selectivity

did not make a big difference. Part of the reason for this is that the computation

time was dominated by network costs and by ontology management costs.

Figure 4.4 shows the scalability of join as the size of the two ontology extended

relations varies up to a little over 1.6 million tuples.

Scalability of ontology integration algorithm

We tested the scalability of our ontology integration algorithm by varying

the size of the ontologies being integrated as well as the number of interoperation

constraints. Figure 4.5 shows that as the average size of the two ontologies being

merged increased from 5000 to 32,000, the time taken to merge that ontologies was

under 2 seconds, exhibiting only a linear increase. However, when the average size

of the ontologies went over 32,000, there was a sharp increase in the time taken. We

believe that was because we almost ran out of memory.

66

0 2 4 6 8 10 12 14 16 18

x 10
5

0

50

100

150

200

250

300

Total Number of Records

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Experiment Result

Figure 4.4: Performance of HOME for join queries as size of relations being joined

is varied

4.5 Summary

In this chapter, we provide a graph-based simple definition of an ontology and

propose the notion of an ontology extended relation (OER) to semantically integrate

heterogeneous relational databases. For the problem of ontology integration, we for-

mally define the notion of canonical witness to the integrability of a set of ontologies

under a set of interoperation constraints. We have established a theory that a set

S of ontologies is integrable if and only if the canonical witness is a witness to the

integrability of the ontologies in S. Furthermore, we provide an efficient algorithm

to compute the canonical witness. We then extend the relational algebra to query

OERs. Finally we describe an implementation of the OER model and show (via

67

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

2000

4000

6000

8000

10000

12000

Average Graph Size

T
im

e
(M

ill
iS

ec
on

ds
)

Experiments for Ontology Integration

10 constraints
20 constraints
30 constraints
40 constraints
50 constraints
60 constraints
70 constraints
80 constraints
90 constraints
100 constraints

Figure 4.5: Performance of ontology integration algorithms

experiments) that the system scales well.

68

Chapter 5

TOSS: An Extension of TAX with Ontologies and Similarity Queries

TAX is perhaps the best known extension of the relational algebra to handle

queries to XML databases. One problem with TAX (as with many existing relational

DBMSs) is that the semantics of terms in a TAX DB are not taken into account

when answering queries. In this chapter, we introduce our TOSS algebra [55], which

extends the TAX algebra and improves the recall of TAX via the concept of a simi-

larity enhanced ontology (SEO). We introduce the following mechanisms to alleviate

the recall problem:

1. We define an ontology extended semistructured instance (OES instance), which

consists of a semistructured instance (e.g. an XML instance) and an associated

ontology. Intuitively, an ontology is a set of graphs describing relationships

(such as isa, partof, etc.) between terms in a DB (see the definition in Chap-

ter 4). With an ontology, we can express that “US Census Bureau” is part of

“US government” or “Google” isa “web search company” isa “Computer com-

pany” isa Company (in case people want to ask the DBLP database for a list

of all authors of papers written by someone in a web search company).

2. We consider the delicate issue of how to take similarities into account when

merging ontologies together. We show that once ontologies are merged to-

gether without taking similarity concepts into account, we can apply a simi-

69

larity enhancement operation to the merged ontology to capture such notions

of similarity. The resulting similarity enhanced ontology (SEO for short) can

be generated using any notion whatsoever of similarity between strings with

a specified threshold. We do not propose to reinvent notions of string/lexical

similarity in this paper. Rather, we can adapt many notions of similarity in the

text processing literature, such as Levenstein distance, Monge-Elkan distance

[82], Jaro metric[57], Jaccard similarity[28] and rule-based similarity where a

set of domain-specific rules are used to define what is similar to what. Thus,

we can identify similarities between terms (even if the term are not necessarily

semantically identical). Note that not all of the similarities can be captured

by a lexical semantical system such as WordNet [77]. For example, the strings

“J. Ullman”, “J.D. Ullman” and “Jeffrey D. Ullman” may all refer to the same

DB researcher.

3. We show how to extend the TAX algebra to answer queries w.r.t. such a

similarity enhanced ontology. Our algebra is called TOSS.

We develop a prototype implementation of TOSS on top of the Apache Xindice

XML database system[115]. We ran experiments to measure the following proper-

ties: (i) how does the quality1 of answers returned by TOSS (with different similarity

threshold) compare against the quality of answers returned by TAX? (ii) how is the

performance of TOSS queries compared with that of TAX when we vary the size

of the semistructured instance being queried and/or the size of the ontology used

1The quality of an answer is the square root of the product of the precision and recall of the

answer[107].

70

in executing the query? (iii) how is the performance of TOSS queries affected by

the similarity threshold? Our experiments were run on the entire SIGMOD XML

proceedings data set[96] and on a part of the DBLP data set[31].

In this chapter, we first provide a quick overview of TAX. We start with the

notion of a semistructured instance, followed by the concept of a pattern tree used

to express queries in TAX. We will use a small subset of DBLP[31] and SIGMOD[96]

bibliographies (in XML format) to illustrate why we may get (intuitively) inadequate

answers from TAX and how the ontology and similarity mechanisms we propose can

overcome these problems.

5.1 Semistructured Instance and TAX

TAX assumes XML documents to be in ordered tree structures. Figure 5.1 (a)

and (b) show the sample DBLP and SIGMOD bibliographic data respectively.

Definition 13 A semistructured instance I over a set O of objects, a set L of

strings called labels, a set T of types, and a domain dom(τ) for each type τ ∈ T ,

is a triple I = (V,E, t) where:

1. G = (V,E) is a set of rooted, directed trees where V ⊆ O and E ⊆ V × V .

2. t is a mapping such that for each object o ∈ V , t(o, string) assigns a type in

T with:

• the tag of o, i.e. o.tag, if string = tag,

• the content of o, i.e. o.content, if string = content

71

pages[402−426]
year[1999]
booktitle[Advances in Distributed Systems]

author[Sanjay Agrawal]
author[Surajit Chaudhuri]
author[Vivek R. Narasayya]
title[Materialized View and Index Selection

year[2001]
booktitle[SIGMOD Conference]

author[Elisa Bertino]
author[Silvana Castano]
author[Elena Ferrari]
title[Securing XML Documents: the

year[2001]
booktitle[SIGMOD Conference]

inproceedings

inproceedings

dblp

inproceedings

author[Paolo Ciancarini]

Distributed Java Applications]

Tool for Microsoft SQL Server 2000]

Author−X Project Demonstration]

title[Mobility and Coordination for

author[Andrea Giovannini]
author[Davide Rossi]

month[June]
year[2001]
confYear[2001]
conference[ACM SIGMOD International

date[May 21−24, 2001]
location[Santa Barbara, California, USA]ProceedingsPage

articles
title[Materialized View and Index Selection

authors author[Sanjay Agrawal]
 author[Surajit Chaudhuri]
 author[Vivek Narasayya]

title[Securing XML Document: the

authors author[E. Bertino]

Engine for Dynamic Web Pages]

Author−X Project Demonstration]

Tool for Microsoft SQL Server 2000]

Conference on Management of Data]

article

article

article

 author[Henrique Pagues]
 author[Calton Pu]
 author[Ling Liu]
authors author[David Vuttler]

title[OminiSearch: an Internet Search

 author[E. Ferrari]
 author[S. Castano]

number[2]
volume[30]

(a) (b)

Figure 5.1: (a)A DBLP example, (b)A SIGMOD example

Intuitively, o.tag is the label of the edge between o and its parent. We call an

object’s tag and content its attributes. A semistructured database (SDB) is a finite

set of semistructured instances.

Example 8 Consider the DBLP example in Figure 5.1(a). V consists of all nodes

in the tree and E consists of all edges. Let us use o to denote the first node “author”

at the top of the figure. Then, o.tag = author, t(o, tag) = string, o.content = Paolo

Ciancarini and t(o, content) = string.

5.1.1 Embeddings and Witness Trees

TAX uses the concept of a pattern tree to express queries. We recapitulate the

concepts of a pattern tree, an embedding and a witness tree from [56].

72

Definition 14 A pattern tree is a pair P = (T, F), where T = (V,E) is an object-

labeled and edge-labeled tree such that:

• each object in V has a distinct integer as its label;

• each edge is either labeled pc (for parent-child) or ad (for ancestor-descendant);

• F is a selection condition applicable to objects.

Example 9 Figure 5.2(a) shows an example pattern tree, where T is the tree on

the left and F is the condition on the right.

#1.tag = inproceedings &
#2.tag = author &
#3.tag = year &
#3.content = 1999

#3

#2

#1

pc

pc

author[Paolo Ciancarini]

inproceedings

inproceedings

inproceedings

year[1999]
author[Davide Rossi]

year[1999]
author[Andrea Giovannini]

year[1999]

author[Andrea Giovannini]
author[Davide Rossi]
year[1999]

inproceedings

author[Paolo Ciancarini]

(a) (b) (c)

Figure 5.2: (a)A pattern tree P1, (b)A selection result, (c)A projection result

Suppose SDB is a semistructured database and P = (T, F) a pattern tree. An

embedding of a pattern tree P into SDB is a total mapping h : P → ⋃
(V,E)∈SDB V

from the nodes of T to those in SDB such that:

• h preserves the structure of T , i.e., whenever (u, v) is a pc (resp., ad) edge in

T , h(v) is a child (resp., descendant) of h(u) in SDB.

• The image under the mapping h satisfies the selection condition F . (The

reader may consult [56] for a formal definition of satisfaction).

Each embedding h of a pattern tree P into SDB induces a witness tree to the

embedding, denoted hSDB(P), which is defined as follows:

73

• a node n of SDB is in the witness tree if n = h(u) for some node u in the

pattern tree P .

• for any pair of nodes n,m in the witness tree, whenever m is the closest

ancestor (of the nodes in the witness tree) of n in SDB, the witness tree

contains the edge (m,n).

• the witness tree preserves order between nodes in SDB, i.e., for any two nodes

in hSDB(P), whenever m precedes n in the preorder enumeration of SDB, m

precedes n in the preorder node enumeration of hSDB(P) as well.

Example 10 Figure 5.2(b) shows all the possible witness trees from the pattern tree

P1 in Figure 5.2(a) to the DBLP example in Figure 5.1(a).

5.1.2 TAX

Selection in TAX. Consider the pattern tree P1 in Figure 5.2(a) and suppose SL

is any set of nodes. In TAX, the selection query σP,SL(SDB) will return all witness

trees w.r.t. pattern query P and SDB. In addition, if a node n in SL appears in a

witness tree above, then all descendants of n will also be added to the witness tree.

Example 11 Figure 5.2(b) shows the result of σP1,{}(dblp).

Projection in TAX. Projection takes a semistructured DB SDB, a pattern tree

P and a projection list PL (a list of node labels appearing in P) as inputs. The

projection operation πP,PL(SDB) returns tree(s) consisting of all nodes n selected

from SDB such that for every node n in the result, there exists some witness tree

hSDB(P) and n′ ∈ PL where hSDB(n′) = n.

74

Example 12 To find the authors of papers published in 1999, we can use the pattern

tree P1 shown in Figure 5.2(a) and apply projection w.r.t. the semistructured DB

shown in Figure 5.1(a). This query, πP1,{$1,$2,$3}(dblp), returns the collection of trees

in Figure 5.2(c).

Product in TAX. The product SDB1×SDB2 of two semistructured DBs SDB1, SDB2

contains for each pair of trees T1 ∈ SDB1, T2 ∈ SDB2, a tree, whose root is a new

node (called tax prod root), left child is the root of T1 and right child is the root of

T2. Condition join consists of a product followed by selection.

Example 13 The join of the two XML instances in Figure 5.1(a) and Figure 5.1(b),

by taking the product and applying a selection with the pattern tree shown in Fig-

ure 5.3(a), yields the result shown in Figure 5.3(b).

pc #6

#4.content = #6.content
#5.content = "SIGMOD Conference" &
#6.tag = title &
#5.tag = booktitle &
#4.tag = title &
#3.tag = article &
#2.tag = inproceedings &
#1.tag = tax_prod_root &

pc

pc

ad

ad

#5

#4

#3

#2

#1

article
 Author−X Project Demonstration]

title[Securing XML Documents: the

booktitle[SIGMOD Conference]
 Author−X Project Demonstration]

title[Securing XML Documents: the inproceedings

tax_prod_root

tax_prod_root

article

inproceedings

 Tool for Microsoft SQL Server 2000]

booktitle[SIGMOD Conference]

title[Materialized View and Index Selection

 Tool for Microsoft SQL Server 2000]
title[Materialized View and Index Selection

(a) (b)

Figure 5.3: (a)A pattern tree P2, (b)A join result

5.1.3 Problems with TAX

When we examine the two databases in Figure 5.1 (a) and (b), we notice several

things. First the object tags booktitle and conference refer to the same thing. Also,

the name of the SIGMOD conference is stored differently in the DBLP and SIGMOD

75

databases (“SIGMOD Conference” in DBLP DB but the full name in SIGMOD DB),

but they both refer to the same thing. Likewise, names of the three authors of the

paper titled “Securing XML Documents...” are stored differently: their first names

are stored in full in DBLP but only initials are stored in SIGMOD. In general, there

may be many people with the same last name and first initial of the first name,

e.g., Marco Ferrari and Mauro Ferrari. Furthermore, there may be errors in data

collection and input, e.g., Gian Luigi Ferrari and GianLuigi Ferrari are probably the

same person.2 Thus, it is reasonable to use some similarity measure ds to indicate

the degree of similarity between two strings. For example, ds(Gian Luigi Ferrari,

GianLuigi Ferrari) = 0.1 (i.e., very similar), ds(Marco Ferrari, Mauro Ferrari) = 2.2

(quite similar) and ds(Marco Ferrari, GianLuigi Ferrari) = 6.5 (much less similar).

Second, cost and book-price probably refer to the same concept. However, by

looking at the objects, we really are at a loss to determine whether these fields use

the same units or not. For example, cost may be in US dollars, while book-price

may be in Euros. Our TOSS system can handle this as well via a clean extension

of the TAX algebra.

A user asking queries spanning these two databases would probably like these

semantic ambiguities resolved. For example if we wish to find all conference papers

published by Mauro Ferrari by looking at both DBLP and SIGMOD DBs, the system

must know that: (1) the tag names booktitle and conference are identical, (2) the

short names and full names of SIGMOD conference refer to the same thing. (3) It

should be also smart enough to consider sufficiently similar names to be the same.

2All the four names above can be found in DBLP.

76

5.2 Similarity Enhanced Ontologies

In this section, we define ontologies and then recapitulate how [19] integrates

ontologies based on graph merging algorithms in [20]. We then show how to enhance

an ontology with similarity measures.

5.2.1 Ontologies

Suppose (S,≤) is a partially ordered set. A hierarchy for (S,≤) is the Hasse

diagram for (S,≤). Note that the Hasse diagram for a partial order (S,≤) is a

directed acyclic graph whose set of nodes is S. The Hasse diagram of (S,≤) has a

minimal set of edges such that there is a path from u to v in the Hasse diagram iff

u ≤ v.

Example 14 Consider the set S = {article, author, title}. A partial ordering re-

flecting the part of relation may say that author is part of article and title is part of

article. In addition, everything is part of itself. In this case, the natural definition of

the part of relation, denoted ≤ is given by the set { (author, article), (title, article),

(article, article), (author, author), (title, title)}. There is only one hierarchy as-

sociated with this partial ordering, viz. the set {(author, article), (title, article)}.

Definition 15 Suppose Σ is some finite set of strings and S is some set. An on-

tology w.r.t. Σ is a partial mapping Θ from Σ to hierarchies for S.

Throughout the rest of this paper, we will assume without loss of generality that Σ

and S are arbitrary but fixed. We will further assume that Σ contains distinguished

77

strings called isa and part of (representing the usual isa and part of relationships)

and that Θ(isa) and Θ(part of) are always defined.

confYear
number
volume
location

date
month
year
conference

title

articles article authors author

ProceedingsPage

author
title
booktitle
year
pages

inproceedings

(a) (b)

Figure 5.4: (a)An example of ontology associated with SIGMOD, (b) An example

of ontology associated with DBLP

Example 15 Suppose Σ = {part of}. Figures 5.4 (a) and (b) show the simplified

examples of ontologies associated with SIGMOD and DBLP respectively.

5.2.2 Integrating Ontologies

Suppose our SDB = {I1, . . . , In}. Suppose, for the sake of simplicity, that

Σ = {part of}. Suppose (Hj,≤j) is the part of hierarchy associated with Ij . To

answer queries spanning these different semistructured instances, we need to take

into account the relationships between terms in these hierarchies. These are captured

by interoperation constraints (specified by the database administrators) defined in

Chapter 4. The formal definitions and algorithm for integrating ontologies are given

in Chapter 4. In this section, we present examples of interoperation constraints,

hierarchy graph and canonical fusion of ontologies to illustrate the concepts.

78

Example 16 We may write an interoperation constraint booktitle:1 = conference:2

to indicate that booktitle (in DBLP) is the same as conference in the SIGMOD

collection.

title:1

conference:1
year:1
month:1
date:1

location:1
volume:1
number:1
confYear:1

ProceedingsPage:1 author:2
title:2
booktitle:2
year:2

inproceedings:2

pages:2

articles:1 article:1 authors:1 author:1

Figure 5.5: Hierarchy Graph associated with SIGMOD and DBLP

Example 17 Consider integrating the two hierarchies of Figures 5.4 (a) and (b)

w.r.t. the following five interoperation constraints conference:1 = booktitle:2, title:1

= title:2, author:1 = author:2, year:1 = year:2, confYear:1 = year:2, which means

that conference in the first hierarchy (SIGMOD) is equal to booktitle in the second

hierarchy (DBLP), etc. Figure 5.5 shows the hierarchy graph associated with the

two ontologies. Note that there may be many different ways of integrating hierar-

chies. [20, 19] describe how to find an integration, which is called the canonical

hierarchy. We call this integration the canonical fusion (or just fusion) Θ of ontolo-

gies Θ1, . . . ,Θn via a witness (which maps a node of a hierarchy onto a node in the

canonical hierarchy). Figure 5.6 shows the fused ontology.

We would like to mention that there are various works in the literature on

integrating ontologies that have a very rich structure (e.g. definitions where an

79

ProceedingsPage

articles article authors author

title

conference
year
month
date

location
volume
number

inproceedings

pages

Figure 5.6: Canonical fusion of the ontologies of SIGMOD and DBLP

ontology is any arbitrary first order logic theory, and so on) [24]. However, to date,

we have seen no extension that uses these very rich ontology definitions to answer

queries over even relational sources. In this paper, we have only considered simple

ontologies expressible as graphs.

5.2.3 Similarity Enhanced Ontologies

In the rest of this section, we assume that given a semistructured database

SDB, an ontology associated with each I ∈ SDB and a set of interoperation con-

straints IC, we have computed the fusion of all the ontologies w.r.t. IC. We will

now show how to enhance such a fused ontology using similarity notions. As is com-

mon in many aspects of information retrieval, similarity between terms is measured

using a distance function[28].

Definition 16 A string similarity measure ds is any function which takes two

strings X, Y and returns a non-negative real number such that:

• ∀X, ds(X,X) = 0.

• ∀X, Y , ds(X, Y) = ds(Y,X).

80

A string similarity measure ds is strong iff for all strings X, Y, Z, ds(X, Y) +

ds(Y, Z) ≥ ds(X,Z).

A similarity measure d is any function which takes nodes A,B as input and

returns a non-negative real number such that d(A,B) = minX∈SA,Y ∈SB
ds(X, Y),

where ds is a string similarity measure, SA, SB are the sets of strings contained in

nodes A,B respectively, and for any node A, if X, Y ∈ SA, then ds(X, Y) = 0. d is

strong iff ds is strong and satisfies the previous condition.

Intuitively, two nodes get more and more similar as the distance between them gets

smaller.

The following result says that for strong similarity measures, we can avoid

trying all combinations of strings between two nodes.

Lemma 2 Suppose SA, SB are the sets of strings contained in nodes A,B respec-

tively. If a similarity measure d is strong, then ∀X,P ∈ SA, Y, Q ∈ SB, ds(X, Y) =

ds(P,Q). Therefore, ∀X ∈ SA, Y ∈ SB, d(A,B) ≡ ds(X, Y).

Proof sketch: ∀Y,Q ∈ SB, ds(Y,Q) = ds(Q, Y) = 0. Because d is strong, so

ds is also strong. Therefore, ds(X, Y) + ds(Y,Q) ≥ ds(X,Q), i.e., ds(X, Y) ≥

ds(X,Q). Similarly, ds(X,Q) + ds(Q, Y) ≥ ds(X, Y), i.e., ds(X,Q) ≥ ds(X, Y).

Thus, ds(X,Q) = ds(X, Y). Similarly, we can prove ∀X,P ∈ SA, ds(X,Q) =

ds(P,Q). Thus, ∀X,P ∈ SA, Y, Q ∈ SB, ds(X, Y) = ds(P,Q). �

Many different similarity measures can be used. The information retrieval com-

munity has proposed various string distances such as Levenstein distance3, Monge-

3The Levenstein distance is strong. It assigns a unit cost to every edit operation.

81

Elkan distance[82], Jaro metric[57], and token-based distance like Jaccard similarity4

and cosine similarity, etc[28]. In addition, products such as WordNet[77] define sim-

ilarity measures between terms in English and various foreign languages (but not

between proper nouns). In certain domains, rule based methods can also be used

to specify similarity between proper nouns (in our SIGMOD/DBLP application for

example, we could write a set of rules describing when two names are considered

similar). There are also statistical approaches to checking similarity between strings

used in methods such as latent semantic indexing. Our goal in this paper is not to

invent a new notion of similarity between terms - this has already been well done by

the IR community. Instead, the TOSS framework can plug in any such similarity

implementation and use it to answer queries in a manner that increases the quality

of an answer.

Definition 17 (similarity enhancement) Suppose H is an integrated hierarchy,

d is a similarity measure and ε ≥ 0. The pair (H ′, µ) is called a similarity enhance-

ment of H w.r.t. d, ε iff H ′ is a hierarchy and µ is a function from H to 2H′
(2H′

is the power set of H ′) such that

1. ∀A,B ∈ H,Aµ ∈ µ(A), Bµ ∈ µ(B), if there is a path from A to B in H, then

there is a path of length zero or more from Aµ to Bµ in H ′. Let us define

µ−1 : H ′ → 2H such that µ−1(A′) = {A | A ∈ H ∧ A′ ∈ µ(A)}. Similarly,

∀A′, B′ ∈ H ′, if there is a path for A′ to B′ in H ′, then ∀A ∈ µ−1(A′), B ∈

µ−1(B), there is a path from A to B in H.

4Jaccard similarity between two word sets S, T is |S∩T
S∪T |.

82

2. ∀A,B ∈ H,Aµ ∈ µ(A), Bµ ∈ µ(B), if Aµ = Bµ, then d(A,B) ≤ ε.

3. ∀A,B ∈ H, if d(A,B) ≤ ε, then ∃Aµ ∈ µ(A), Bµ ∈ µ(B) such that Aµ = Bµ.

4. ∀A′, B′ ∈ H ′, µ−1(A′) ∩ µ−1(B′)
= µ−1(A′).

The first condition ensures that the similarity enhanced hierarchy preserves the

original partial orderings in H and does not include unwarranted orderings in the

result. The second condition ensures that all nodes mapped into the same node

are sufficiently similar to each other - the threshold ε, specified by the database

administrator, says two terms are sufficiently similar if the distance between them is

ε or less. The fourth condition removes redundant nodes which are a subset of some

other node in the similarity enhancement. Furthermore, our similarity enhancement

says that two strings are similar if and only if the two strings are jointly present in

some node in the similarity enhancement. That is why we have the third condition.

For example, let us consider a hierarchy H consisting of nodes A,B,C. If

d(A,B) ≤ ε, d(A,C) ≤ ε, but d(B,C) > ε, then we must have one and only one

enhancement: we should have a node containing {A,B} AND a node containing

{A,C}. We define the similarity enhancement in this way such that if a query is

on a string in A, then we can find the result of all similar strings in the nodes

containing {A,B} and {A,C} easily. If we just have two nodes containing {A,B}

and {C} then we do not know that strings in C are similar to those in A from the

resulting ontology. In this case, we will need to either (i) compare all nodes with A

to find those similar; or (ii) use an index to find those nodes similar to A quickly.

But then, we can just use (i) or (ii) directly and do not need to use the similarity

83

enhancement.

By definition, an ontology is not allowed to have cycles. This may mean, on

occasion, that no similarity enhancement exists for some similarity measures and

some thresholds ε.

Definition 18 (similarity inconsistency) Suppose H is a hierarchy, d is a sim-

ilarity measure and ε ≥ 0. The triple (H, d, ε) is similarity consistent (resp. simi-

larity inconsistent) iff there exists (resp. does not exist) a similarity enhancement

of H w.r.t. d, ε.

The following theorem states that all similarity enhancements of a particular

hierarchy (w.r.t a similarity measure d and a threshold ε) are equivalent.

Theorem 2 (Equivalence of Similarity Enhancements) Suppose H = (S,�) is a

hierarchy, d is a similarity measure and ε ≥ 0. If (H ′
1, µ1) and (H ′

2, µ2) are similarity

enhancements of H, then there exists an one-to-one mapping M : S ′
1 → S ′

2 such

that M ◦ µ1 = µ2 and ∀A,B ∈ S ′
1, (A,B) ∈�1 iff (M(A),M(B)) ∈�2, where

H ′
1 = (S ′

1,�1) and H ′
2 = (S ′

2,�2).

Proof sketch: Conditions (2) – (4) of Definition 17 equivalently define the set of

nodes and the mapping in the similarity enhancement as follows. First, we define

S ′′ = {V | ∀A,B ∈ V,A ∈ S ∧ B ∈ S ∧ d(A,B) ≤ ε}. Then, define S ′′ ←

S ′′−{V | ∃V ′ ∈ S ′′ ∧ V ⊂ V ′}. Thus, S ′′ is unique. Next, we can define a mapping

M1 : S → 2S′′
s.t. M1(A) = {V | A ∈ V }.

For any similarity enhancement, say, (H ′
1, µ1), we can define a one-to-one map-

ping M2 : S ′′ → S ′
1 s.t. M2(B) = C iff ∀A ∈ B, C ∈ µ1(A).

84

Similarly, for (H ′
2, µ2), we can define a one-to-one mapping M ′

2 : S ′′ → S ′
2 s.t.

M ′
2(B) = C iff ∀A ∈ B, C ∈ µ2(A).

Now we can define M : S ′
1 → S ′

2 s.t. M(C1) = C2 iff ∀A ∈ {A | C1 ∈ µ1(A)},

C2 ∈ µ2(A). Thus, M ◦ µ1 = µ2.

Because M ◦ µ1 = µ2, µ
−1
1 ◦M−1 = µ−1

2 .

From condition (1) in Definition 17, ∀A,B ∈ S ′
1, (A,B) ∈ �1 iff ∀a ∈

µ−1
1 (A), b ∈ µ−1

1 (B), (a, b) ∈�. Similarly, ∀A,B ∈ S ′
2, (A,B) ∈�2 iff ∀a ∈

µ−1
2 (A), b ∈ µ−1

2 (B), (a, b) ∈ �. Thus, ∀A,B ∈ S ′
1, (M(A),M(B)) ∈�2 iff

∀a ∈ µ−1
2 (M(A)), b ∈ µ−1

2 (M(B)), (a, b) ∈�. But ∀X ∈ S ′
1, µ

−1
2 (M(X)) =

µ−1
1 ◦M−1(M(X)) = µ−1

1 (X). Thus, ∀a ∈ µ−1
2 (M(A)), b ∈ µ−1

2 (M(B)), (a, b) ∈� is

equivalent to ∀a ∈ µ−1
1 (A), b ∈ µ−1

1 (B), (a, b) ∈�. Therefore, ∀A,B ∈ S ′
1, (M(A),

M(B)) ∈�2 iff (A,B) ∈�1. �

Table 5.1 presents the SEA algorithm (short for Similarity Enhancement

Algorithm) to find a similarity enhancement of a hierarchy w.r.t. d, ε.

In Line 14, the function check-acyclic(H ′) checks whether H ′ is acyclic or not.

We can modify a depth-first search to detect cycles in O(| �′ |) time where | �′ |

indicates the number of edges in the hierarchy of the similarity enhancement. The

time complexity of the SEA algorithm is O(|S| · |S ′|(|S|+ |S ′|) + | � ||S ′|2).

Theorem 3 (Correctness of Algorithm) Given a hierarchy H, a similarity measure

d and a real number ε ≥ 0, the SEA algorithm in Table 5.1 returns a similarity

enhancement (H ′, µ) of H if one exists.

85

algorithm SEA(H, d, ε)

Input: hierarchy H = (S,�), similarity measure d, real number ε ≥ 0

Output: H ′ = (S′,�′), µ

1. S′ ← ∅

2. for each s ∈ S,

3. S′ ← S′ ∪ {s}

4. for each s′ ∈ S′,

5. if ∀a ∈ s′, d(s, a) ≤ ε, then s′ ← s′ ∪ {s}

6. else if ∃a ∈ s′, d(s, a) ≤ ε, then

7. S′ ← S′ ∪ {{s} ∪ {a | a ∈ s′ ∧ d(s, a) ≤ ε}}

8. S′ ← S′ − {s′ | ∃s′′ ∈ S′ ∧ s′ ⊂ s′′}

9. for each s ∈ S,

10. define µ(s) = {s′|s′ ∈ S′ ∧ s ∈ s′}

11. �′← ∅

12. for each (a, b) ∈�,

13. �′←�′ ∪{(c, d) | c ∈ µ(a) ∧ d ∈ µ(b) ∧ c
= d}

14. if check-acyclic(H ′) == TRUE, then

15. return H ′ = (S′,�′), µ

16. else return “Similarity inconsistent”

Table 5.1: Similarity Enhancement Algorithm SEA

86

Proof sketch: Lines 5 – 7 produce nodes such that the second condition of a

similarity enhanced hierarchy is satisfied. Lines 3, 5 – 7 ensure that the third

condition is satisfied because line 3 ensures that, for every s ∈ S, there exists some

node in S ′ that contain s, and lines 5 – 7 ensures that ∀s1, s2 ∈ S, if d(s1, s2) ≤ ε,

then there must exist some node in S ′ to contain both of them. Line 8 removes

redundant nodes to ensure that the fourth condition is satisfied. Lines 11 – 13 create

� to satisfy the first condition. Lines 9 – 10 define µ according to the definition. �

(a) (b)

title

data

models

data relation

relational model

data models

relation
relational,

model,

title

relational

relation

data

model

models

data relation

relational model

data models

Figure 5.7: (a) An example ontology and (b) its similarity enhancement

Example 18 Figure 5.7(a) shows a toy ontology consisting of a isa hierarchy. Sup-

pose we use Levenstein distance as the similarity measure d and a threshold ε = 2.

Because d(relation, relational) = 2, d(model,models) = 1, the algorithm SEA will

form two new nodes in the similarity enhancement, containing {relation, relational}

and {model, models} respectively. SEA will also remove the four redundant nodes

relation, relational, model and models. Then it defines µ, which maps each node

in the original hierarchy to itself in the result, except for the four nodes removed,

which are mapped to the two new nodes respectively. �′ is defined as shown in

Figure 5.7(b).

87

5.3 Ontology Extended Semistructured Data Model

In this section, we extend the semistructured data model and the TAX algebra

to handle ontology and similarity concepts. For the sake of simplicity, in the rest

of this section, we will assume that the set Σ equals {isa}, i.e. only one hierarchy

is associated with each ontology. The results of our work can be easily extended to

incorporate arbitrary hierarchies such as part of.

SEO Semistructured Instance. In this section, we show how to extend a

semistructured instance to include type5, ontology, and similarity information. Re-

call that a semistructured instance is defined as I = (V,E, t) where t associates a

type in T with each attribute (tag and/or content) of each object o ∈ V .

Intuitively, an extended instance associates types with each object attribute.

This is important because a type could be something like USD representing US

Dollars or cm representing (intuitively) centimetres. It is also associated with an

ontology (which for now is just a hierarchy Hisa, a distance function d and a real

number ε > 0).

An ontology extended semistructured instance is a quadruple (V,E, t, Hisa),

where Hisa is an isa hierarchy6 and the following constraints are satisfied:

5The formal definitions of types, domain values and hierarchies (as well as conversion functions)

are given in Chapter 4.
6When we allow Σ to contain not just isa but other strings as well, the Hisa term needs to

be replaced with Θ with obvious corresponding changes to the rest of the paper. For the sake

of simplicity and due to space restrictions, in this section, we only consider the case where one

hierarchy is used.

88

• ∀ object o, t(o, tag) ∈ Tisa and o.tag ∈ belowHisa
(t(o, tag))

• ∀ leaf object o, t(o, content) ∈ Tisa and o.content ∈ belowHisa
(t(o, content))

An SEO(similarity enhanced ontology extended) semistructured instance is a

quadruple (V,E, t, Hisa
′) where (Hisa

′, µ) is the similarity enhancement of Hisa for

some µ w.r.t. similarity measure d and threshold ε.

5.3.1 TOSS Algebra

Throughout this section, we assume without loss of generality that we are

querying some semistructured database SDB and that the ontologies of semistruc-

tured instances in SDB have been fused together as described in Section 5.2.2 and

that the fused ontology was then enhanced with similarity using the SEA algorithm

shown in Table 5.1. All algebraic operators therefore assume the existence of this

similarity enhanced (fused) ontology.

SEO Embeddings and Witness Trees

Selection conditions are used in pattern trees which are used in both selection

and projection. In this section, we define selection conditions and show how to

extend the definitions of embedding and witness trees to support ontologies and

similarity.

Simple (or atomic) conditions have the formX op Y , where op ∈ { =,
=, <, ≤,

>, ≥, ∼, instance of , isa, subtype of, above, below }, and X, Y are terms, that

is, attributes, types, or typed values v:τ , with v ∈ dom(τ). Types will sometimes be

89

omitted in typed values when they can be unambiguously derived from the context.

Here ∼ represents the similarTo operation which will return true if both operands

are sufficiently similar (i.e., ≤ ε for a given similarity measure d).

Selection conditions can now be defined as follows:

• all simple conditions are selection conditions,

• if c1, c2 are selection conditions then c1∧c2, c1∨c2, ¬c1 are selection conditions,

• nothing else is a selection condition.

Example 19 Suppose we want to find the titles of all papers in DBLP related to Mi-

crosoft (independently of the field in which Microsoft appears). We may change the

selection condition in the pattern tree in Figure 5.2 (a) to the following and apply it to

dblp: #1.tag = inproceedings ∧ #2.tag = title ∧ #3.tag part of inproceedings ∧

#3.content = “ � Microsoft �′′ (where � is a wild card).

In order to ensure an embedding to be correct w.r.t an SDB with an associ-

ated similarity enhanced ontology, we need to redefine the satisfaction of selection

conditions.

In the rest of this section, let EI = (V,E, t,Hisa) be an arbitrary but fixed

ontology extended or SEO instance.7 In the context of EI, the type of a term X

7The semantics of both ontology extended and SEO instances are similar except that an ontol-

ogy extended instance uses an ontology but a SEO instance uses a SEO and it allows similarity

operations.

90

w.r.t. a mapping h8 from a pattern to a tree collection is defined as follows:

type(X)h =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

t(h(X), tag) if X is the tag of an object

t(h(X), content) if X is the content of an object

τ if X = τ or X = v:τ .

When type(X), type(Y) are both in a type hierarchy T and the least upper bound

of type(X) and type(Y) in T exists, then it is called the least common supertype of

X and Y .

We say that a simple condition X op Y with op ∈ {=,
=, <,≤, >,≥} is well-

typed if X and Y have a least common supertype τ and the conversion functions

type(X)h2τ and type(Y)h2τ exist. Simple conditions with other operators are always

well-typed. A selection condition is well-typed if all its simple subconditions are.

The value of a term X w.r.t. a mapping h from a pattern to a tree collection

is

Xh =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h(X).tag if X is the tag of an object

h(X).content if X is the content of an object

τ if X = τ

v if X = v:τ .

The image (witness tree WI) under the mapping h (from a pattern P to a

collection C), i.e., hC(P), satisfies a well-typed condition c in the context of the

ontology extended instance EI (denoted EI,WI |= c) in the following cases:

8Strictly speaking, h maps a node in the pattern tree to a node in a tree collection. However,

X in h(X) is not a node but a node’s attribute. For convenience, here we abuse the notation such

that, suppose X = y.b where y is a node and b is an attribute, we use h(X) to denote h(y).

91

• c = X op Y , op ∈ {=,
=, <,≤, >,≥,∼}, τ is the least common supertype of

X and Y , and (type(X)h2τ)(Xh) op (type(Y)h2τ)(Y h) is true. For A ∼ B,

the condition is true iff ∃ a node containing both of them in the similarity

enhancement.

• c = X instance ofY , Y h ∈ T , type(X)h ≤H Y h, and Xh ∈ dom(Y h).

• c = X subtype of Y , Xh ∈ T , Y h ∈ T ,Xh ≤H Y h.

• c = c1 ∧ c2, EI,WI |= c1 and EI,WI |= c2.

• c = c1 ∨ c2, either EI,WI |= c1 or EI,WI |= c2.

• c = ¬c1, EI,WI
|= c1.

• c = X below Y , EI,WI |= X instance ofY ∨ X subtype ofY .

• c = X above Y , EI,WI |= Y belowX.

TOSS Algebra

In this section, we are able to give a succinct definition of the TOSS algebra.

Note that this algebra is easy to implement on top of any semistructured DBMS

system.

Suppose EI1 = (V1, E1, t1, H1), . . ., EIz = (Vz, Ez, tz, Hz) are ontology ex-

tended instances. Suppose F ′ is a fusion of H1, . . . , Hz via witness trF ′ , (F , µ) is

the similarity enhancement of F ′, trF = µ ◦ trF ′. ΘF is the ontology that associates

the hierarchy F with isa.

For all algebraic expressions Exp, [Exp]F is inductively defined as follows.

• If Exp is an instance EIi, then [Exp]F = (trF(Vi), Ei, trF(ti),ΘF), which is

92

an SEO instance. Here trF(Vi) (resp. trF (ti)) maps the tags and contents of

objects o ∈ Vi (resp. their types) to terms in ΘF . In this case, Exp is always

well-typed.

• (Selection) If Exp is σP,SL(Exp′) and the selection condition F in P is well-

typed in the context of [Exp′]F , then [Exp]F returns the set of witness trees

WI such that [Exp′]F ,WI |= F . SL specifies the nodes whose descendants

should be included in the final output. Exp is well-typed if Exp′ and F are.

• (Projection) If Exp is πP,PL(Exp′) and the condition F in P is well-typed in

the context of [Exp′]F , then [Exp]F keeps the nodes in [Exp′]F which match

some pattern node in P (and also in PL) for some embedding h : P → C (such

that the witness tree under h satisfies F in the context of [Exp′]F) and their

hierarchical relationships but eliminates all other nodes. Exp is well-typed if

Exp′ and F are.

• (Cross product) If Exp is Exp1 ×Exp2 then [Exp]F contains for each pair of

trees Ti ∈ [Exp1]F , Tj ∈ [Exp2]F , a tree, whose root is a new node, left child

is the root of Ti and right child is the root of Tj . If Exp1, Exp2 are well-typed,

then Exp is.

The join operator can be expressed in the standard way as a composition of

σP,SL and ×. For the remaining set theoretic algebraic operators we need to specify

when two data trees should be considered identical as described in [56]: two data

trees T1, T2 are equal iff there exists an isomorphism ι : T1 → T2 between the two

sets of nodes that preserves edges and order, and furthermore, for every value-based

93

atom of the form “attribute θ value” (θ is one of =,
=, >, etc), the atom is true at

node u in T1 iff it is true at node ι(u) in T2.

• (Union, Intersection and Difference) If Exp = Exp1 op Exp2 where op ∈

{∪,∩,−}, then [Exp]F is the standard result of [Exp1]F op [Exp2]F . Exp is

well-typed if Exp1, Exp2 are.

Proposition 2 For all algebraic expressions Exp over EI1 = (V1, E1, t1, H1), . . . , EIz =

(Vz, Ez, tz, Hz) and the similarity enhanced fusion F of H1, . . . , Hz, [Exp]F is an

SEO instance.

pc

ad

ad

ad

#1.tag = tax_product_root &
#2.tag = inproceedings &
#3.tag = ProceedingsPage &
#4.tag = title &
#5.tag = booktitle &
#6.tag = article &

#5.content ~ #7.content
#4.content ~ #8.content &
#8.tag = title &
#7.tag ~ #5.tag &

pc
#4

ad

ad

#1

#2

#3

#8

#7

#6

#5

Figure 5.8: A pattern tree P3

Example 20 Suppose we want to find the papers in SIGMOD DB such that the

title of that paper is similar to the title of some SIGMOD conference paper recorded

in DBLP. A join of both databases by taking product of them and a selection with the

pattern tree shown in Figure 5.8 can solve this task, i.e., σP3,{}(dblp×ProceedingsPage).

The result will contain two trees corresponding to the papers titled “Materialized View

...” and “Securing XML ...” respectively.

94

5.4 Implementation and Experiments

Figure 5.9 shows the architecture of our TOSS system, which is implemented

in Java and currently consists of 24402 lines of code.

WordNet User−specified
rules

Ontology Maker

XML files

Similarity

similarity
measure

Fusion of
Ontologies Enhanced Ontology Query Executor results

user queries

Similarity
Enhancer

Xindice system

εthreshold

Figure 5.9: Architecture of TOSS system

TOSS is built on top of the Xindice[115] database system and consists of

the following components: (1) the Ontology Maker automatically takes XML files

as input and uses WordNet[77] and user-specified rules to automatically generate

ontologies, and then integrate them to obtain their fusion; (2) the Similarity En-

hancer automatically finds the similarity enhancement of the ontology according to

the threshold ε and the similarity measure specified by the database administrators

among a variety of possible choices (supported by a JAVA toolkit available in [28]);

(3) the Query Executor implements the ontology extended algebra, transforms a user

query into a query that takes ontological information into account, and accesses the

remote or local Xindice system.

Recall and precision. We obtained the recall and precision of results returned by

TOSS and TAX by evaluating 12 selection queries on 3 data sets (each containing

100 random papers from DBLP). Each query contains 1 isa, 1 similarTo and 3 tag

matching conditions. For isa and similarTo conditions, “contains” and exact match

95

are used for TAX respectively. The precision and recall of TOSS and TAX results for

each query are calculated by checking against semantically correct results generated

manually. A query result contains 1 to 38 papers.

Figure 5.10 (a) shows that TAX always get 100% precision but low recall (lower

than 0.5 for 75% of queries) because the exact match in TAX guarantees that the

results it returns are correct but it misses most of the correct results. Its recall

is 1 for 3 queries whose semantically correct results contain 3 or fewer papers. In

contrast, the average precision and recall of TOSS (with ε = 3) results are 0.942 and

0.843. For most of queries, it maintains its precision close to 1 with much higher

recall. For the query with lowest TOSS precision, by comparing with TAX recall,

it shows that it takes a tradeoff of 1/3 of precision degradation for 3 times of recall

increase. For TOSS (with ε = 2), the average precision and recall are 0.987 and

0.596. The higher precision and lower recall compared with the one of ε = 3 are

expected because the SEO obtained using a lower ε can only merge very similar

terms together, missing some correct answers.

Figure 5.10(b) shows the square root of product of recall and precision as a

quality measure[107] of TOSS and TAX results against the square root of TAX

recall for the corresponding query. It clearly shows that TOSS (ε=3) outperforms

TAX for all queries (except the 3 queries mentioned above). Figure 5.11(a) shows

how much the recall is improved by TOSS compared with TAX normalized by the

precision. In TOSS (ε=3), most of the queries get their normalized recall more than

doubled. Again, the performance of TOSS (ε=2) lies between TOSS (ε=3) and the

96

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
ec

al
l

Precision

TOSS (threshold = 3)
TOSS (threshold = 2)

TAX

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S
Q

R
T

(R
ec

al
l(X

)
*

P
re

ci
si

on
(X

))

SQRT(Recall(TAX))

X = TOSS (threshold = 3)
X = TOSS (threshold = 2)

 X = TAX

(a) (b)

Figure 5.10: (a) Recall against precision for TOSS and TAX results, (b) Square root

of product of recall and precision of TOSS and TAX results against the square root

of corresponding TAX recall for each query.

original TAX with the similar reason.

We also compared TAX and TOSS with F-measure, defined as

F −measure =
2 · precision · recall
precision + recall

Table 5.2 shows the performance of TAX and TOSS with regard to F-measure.

Similar to the result in Figure 5.10 (b), TOSS (ε=3) still outperforms TAX for all

queries (except the 3 queries mentioned above). Except query 9, TOSS (ε=2) has

equal or better F-measure quality than TAX. It is even more than three times better

for query 2 and 6.

Scalability experiments. In all our scalability experiments, we used the DBLP

and SIGMOD proceeding data. The total DBLP file size is 188,566,002 bytes. We

97

1

2

3

4

5

6

7

8

9

0 0.2 0.4 0.6 0.8 1

R
ec

al
l(T

O
S

S
)

*
P

re
ci

si
on

(T
O

S
S

)
/ R

ec
al

l(T
A

X
)

Recall(TAX)

Improvement (threshold = 3)
Improvement (threshold = 2)

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

XML File Size (MB)

T
im

e
(S

ec
on

ds
)

Experiments for Conjunctive Selection Queries

TOSS (ontology size: 1378 Terms)
TOSS (ontology size: 982 Terms)
TOSS (ontology size: 588 Terms)
TAX

(a) (b)

Figure 5.11: (a) Improvement factor of TOSS recall compared with TAX recall

normalized by precision, (b) Performance of TOSS and TAX for selection queries.

selected all proceeding records and removed unnecessary spaces. Then we truncated

the file such that it has 4,753,774 bytes containing 3712 papers due to the 5MB max-

imum data size limitation of Xindice. The SIGMOD data contains 16 proceedings

pages having a total size of 712KB. The experiments were run on a PC with 1.4GHz

CPU, 524MB memory and Windows 2000 Professional platform.

The times taken in all experiments include the following: (i) time to parse a

pattern tree and rewrite the pattern tree into XPath queries, (ii) time to execute the

XPath queries in the Xindice system, (iii) time to parse the result returned from the

Xindice system and convert the result to the form defined by TAX.

Scalability of selection. Figure 5.11 (b) shows the results of evaluating TOSS and

TAX conjunctive selection queries, each of which contains 2 isa and 4 tag matching

conditions, on the DBLP data. For isa conditions, exact match is used for TAX. We

98

Query TAX TOSS (threshold=2) TOSS (threshold=3)

1 0.62 0.77 0.84

2 0.18 0.57 0.53

3 0.52 0.64 0.97

4 0.47 0.47 0.96

5 0.43 0.71 0.76

6 0.17 0.67 0.86

7 0.55 0.55 1

8 1 1 1

9 0.68 0.66 0.75

10 1 1 1

11 0.18 0.54 0.93

12 1 1 1

Table 5.2: F-measure for TOSS and TAX results

tested the scalability of selection queries by varying the size of ontologies (only for

TOSS) as well as the size of XML files.

The reader can easily see that our algorithms handle data size of approximately

4.75 MB in 12.5-14 seconds, almost independent of the ontology size. The slope of

the curves are more or less linear - approximately 500 KB can be processed in one

second. As the last XML data file has 4,753,774 bytes, very close to the 5MB

maximum data size of Xindice, there was a sudden slope up at the last point.

The difference between the lowest TOSS curve in the figure and TAX is in

0.4064-3.1544 seconds. The difference between the highest TOSS curve and TAX

is in 0.6228-4.1402 seconds. When data size grows, the difference increases because

99

0.5 1 1.5 2 2.5 3 3.5 4
2

4

6

8

10

12

14

16

18

XML File Size (MB)

T
im

e
(S

ec
on

ds
)

Experiments for Join Queries

TOSS (ontology size: 1769 Terms)
TOSS (ontology size: 1369 Terms)
TOSS (ontology size: 969 Terms)
TAX

0 1 2 3 4 5
9

10

11

12

13

14

15

16

17

18

Epsilon

T
im

e
(S

ec
on

ds
)

Experiments for Computation Time Versus Epsilon

selection
join

(a) (b)

Figure 5.12: (a) Performance of TOSS and TAX for join queries, (b) TOSS compu-

tation time of selection and join against ε.

there are more accesses to the ontology. The bigger difference is also due to the

empty result returned by TAX.

Scalability of join. We also ran scalability experiments on join. Each query

contains 5 tag matching and 1 similarTo conditions. For similarTo conditions, exact

match is used for TAX. Figure 5.12 (a) shows the scalability of join of the DBLP

and SIGMOD data as the total size of the two XML files varies up to a little over

3.7 MB.

As the total size of the data being joined increased, we had a linear increase

in the time taken to do the joins except the two last data points. These two data

points show a faster increase because Xindice system returns intermediate results

in a super-linear time and dominates the total execution time when the size of

intermediate result is large. For example, in the experiment of the last data point,

100

the total execution time was 17 seconds, where 12.1 seconds is from Xindice and 4.9

seconds from our code.

The difference between the lowest TOSS curve in the figure and TAX is in

0.3078-1.3 seconds. The difference between the highest TOSS curve and TAX is in

0.532-2.7238 seconds. The difference increases with the data file size because the

number of accesses to the ontology increases.

TOSS computation time vs ε. Finally, we conducted experiments to show how

the evaluation time of conjunctive selection queries and join queries are affected by

the different values of ε (in generating SEO). The selection experiment was on a

dblp file with 4,753,774 bytes with ontology size of 1003 terms. The join experiment

was on a dblp file of 3,071,430 bytes and the sigmod data of 692,188 bytes with

ontology size of 1769 terms. Figure 5.12 (b) shows that both execution time increase

approximately linearly to the increase of ε because when ε increases, each node will

contain more similar terms in average and thus more time is needed to output a

larger result.

5.5 Summary

Our work builds on two important recent contributions in databases, viz. the

TAX algebra for semistructured databases by Jagadish et al.[56] and the need to

use ontologies for query processing by Wiederhold’s group[110, 111].

As mentioned before, TAX is the starting point for our work. The landmark

TAX paper proposes a formal theoretical basis for semistructured data, together

101

with an algebra to query semistructured data sources using the concept of a pattern

tree. Wiederhold’s group was the first to notice that ontologies can be used to

improve the quality of answers to queries. They proposed an ontology algebra [112,

73, 81].

TOSS is fundamentally different from both these works and other related works

in many ways. First, in TOSS, ontologies are merged under some interoperation

constraints – no such constraints were considered in [112, 73]. However, this is

important because terms in one ontology may have a relationship with terms in

another. Second, TOSS does not just merge ontologies together - it extends the

semistructured DB model and algebra so that semistructured instances with associ-

ated ontologies can be queried. Third, our framework introduces for the first time,

the concept of similarity search in semistructured databases - something that nei-

ther the TAX work nor Wiederhold’s prior work did. Fourth, we have developed

experimental results showing that TOSS greatly improves the quality of answers

compared to TAX.

102

Chapter 6

A Theoretical Foundation for Integrating RDF Ontologies

Resource Description Framework (RDF) is a W3C recommendation for pro-

cessing metadata and exchanging machine-understandable information on the Web.

It defines a model for describing relationships between resources. Triples with the

form (subject, predicate, object) are the basic elements of RDF.

RDF has become the de facto standard for the description and exchange

of metadata on the Web. Many RDF ontologies have been constructed in do-

mains such as food, geography and transportation. For example, both SchemaWeb

(www.schemaweb.info) and DAML web site (www.daml.org) have hosted a number of

RDF ontologies. Since many of these ontologies are about the same topics, there is a

growing need to integrate them in order to facilitate reasoning and query answering

across distributed data sources.

In this chapter, we present our work on integrating RDF ontologies [103] which

includes a theoretical framework and a set of experiments on real and synthetic

ontologies. We focus on the integration of RDF ontologies at the instance level1,

each of which is a finite set of triples.

1In some literature, such an RDF ontology at the instance level may be called an RDF graph.

103

6.1 Preliminaries

In this section, we provide a brief overview of the most important constructs

in RDF and show how RDF documents may be viewed as graphs.

An RDF-ontology is a finite set of triples (r, p, v) where r is a resource name,

p is a property name, and v is a value (which could also be a resource name). RDF-

ontologies assume the existence of some set R of resource names, some set P of

property names, and a set dom(p) of values associated with any property name

p. We do not address reification and containers in RDF due to space constraints.

Throughout the rest of this chapter, we will assume that R,P , dom are all arbitrary,

but fixed.

Definition 19 (RDF Ontology graph). Suppose O is an RDF-ontology. An RDF

ontology graph for O is a labeled graph (V,E, λ) where

(1) V = R ∪ ⋃
p∈P dom(p) is the set of nodes.

(2) E = {(r, r′) | there exists a property p such that (r, p, r′) ∈ O} is the set of

edges.

(3) λ(r, r′) = {p | (r, p, r′) ∈ O} is the edge labeling function.

It is easy to see that there is a one-one correspondence between RDF-ontologies

and RDF-ontology graphs. Given one of them, we can uniquely determine the other.

As a consequence, we will often abuse notation and interchangeably talk about

both RDF-ontologies and RDF-ontology graphs. Figure 6.1 shows parts of RDF

ontologies 64 and 322 from the DAML web site (www.daml.org) — their graphs are

104

<Property ID ="affiliateOf ">
 <domain resource ="#Organization " />
 <range resource ="#Person " />
</Property >
<Class ID="Student "> <subClassOf resource ="#Person" /> </Class>
<Class ID="GraduateStudent "> <subClassOf resource ="#Student " / > </Class>
<Class ID="Organization "> <subClassOf resource ="#SHOEEntity " /> </Class>
<Class ID="Faculty "> <subClassOf resource ="#Worker" /> </Class>
<Class ID="Person"> <subClassOf resource ="#SHOEEntity " /> </Class>
<Class ID="W orker"> <subClassOf resource ="#Person" /> </Class>

<owl:Class rdf :ID="Person "/>
<owl:Class rdf :ID="Organization "/>
<owl:Class rdf :ID="W orking-Person "><rdfs:subClassOf rdf : resource="#Person"/></owl:Class>
<owl:Class rdf :ID="Affiliated -Person"><rdfs :subClassOf rdf :resource="#Person"/></owl:Class>
<owl:Class rdf :ID="Organization -Unit "/>
<owl:Class rdf :ID="Researcher "><rdfs:subClassOf rdf : resource="#Working-Person"/></owl:Class>
<owl:Class rdf :ID="Researcher -In-Academia">
 <rdfs :subClassOf rdf :resource="#Academic "/>
 <rdfs :subClassOf rdf :resource="#Researcher "/>
</owl:Class>
<owl:Class rdf :ID="Employee ">
 <rdfs :subClassOf rdf :resource="#Working-Person "/>
 <rdfs :subClassOf rdf :resource="#Affiliated -Person"/>
</owl:Class>
<owl:Class rdf :ID="Educational -Employee"><rdfs:subClassOf rdf :resource="#Employee "/></owl :Class>
<owl:Class rdf :ID="Academic "><rdfs:subClassOf rdf :resource="#Educational -Employee"/></owl:Class>
<owl:Class rdf :ID="Student "><rdfs:subClassOf rdf :resource="#Affiliated -Person "/></owl:Class>
<owl:Class rdf :ID="PhD -Student "><rdfs :subClassOf rdf :resource="#Student "/></owl:Class>
<owl:ObjectProperty rdf :ID="has -sub-unit ">
 <rdfs :range rdf :resource="#Organization -Unit"/>
 <rdfs :domain rdf :resource="#Organization "/>
</owl:ObjectProperty >

Figure 6.1: RDF (respectively OWL) for the two example ontologies

shown in Figure 6.2. Note that both ontologies have had terms renamed (through

the attachment of strings “:1” and “:2” respectively). Thus, student:2 refers to

the student concept in ontology 2.

Given two nodes r, r′ in an RDF-ontology graph, and a property name p, we

say that there exists a p-path from r to r′ if there is a path from node r to node

r’ such that every edge along the path contains p in its label. For example, in the

second graph of figure 6.2, there is an S-path from Researcher-in-Academia

to Employee. Here S stands for “subClassOf”. However, there is no A-path from

Student:2 to Organization-Unit:2 where A stands for “Affiliate-Of”.

Our techniques differentiate between transitive and non-transitive properties.

For instance, subClassOf is a transitive relationship, while affiliateOf as de-

picted in Figure 6.2 is not. A cycle involving a transitive relationship could indicate

a semantic problem (e.g. a BossOf b, b BossOf c, c BossOf a seems to indicate

a problem). However, a cycle involving a non-transitive properties may not be a

problem (e.g. a FriendOf b, b FriendOf c, c FriendOf a is not unusual).

105

Researcher-
In-

Academia:2

Student:2

Graduate
Student:1

PhD-
Student:2

Person:1

Organiza -
tion-

Unit:2

Organiza -
tion:1

Organiza-
tion:2

Student:1

Person:2

Resear-
cher:2

Working-
Person:2

Academic
:2

Worker:1

Faculty:1

S

S

S

S

A

Affiliated
Person:2

S PS

A

Employee
:2

S

Educational
Employee :2

S

S

S

S

S

S

S

S=subClassOf ; A=affiliateOf; P=hasSubUnit

S

Figure 6.2: Two simple ontologies

Definition 20 (Graph embedding) Let G1 = (V1, E1, λ1) and G2 = (V2, E2, λ2)

be two RDF-ontology graphs. G1 can be embedded into G2 (denoted by G1 	 G2)

iff there exists a mapping ω : V1 → V2 such that:

(1) For p transitive, if there is a p-path from r to r′ in G1, then there is a p-path

from ω(r) to ω(r′) in G2.

(2) For q non-transitive, if there is an edge labeled with q from r to r′ in G1, then

there is an edge labeled with q from ω(r) to ω(r′) in G2.

Graphs G1 and G2 are equivalent iff G1 	 G2 and G2 	 G1.

Note that for any RDF ontology O, we can uniquely determine its RDF-

ontology graph — however, there may be many other graphs that are equivalent to

it.

6.2 Horn constraints

When integrating two RDF ontologies, there may be various kinds of con-

straints linking the terms in the two ontologies. For instance, we may say that the

106

terms Person:1 and Person:2 are equivalent. Likewise, we may say that if x is a

Researcher-in-Academia:2 and also a Student:2, then x is also a Graduate-

Student:1. In general, for any property p, we may have a Horn clause saying that

as far as property p is concerned, if an individual is in all classes in a given set, then

he is also in another given class.

Definition 21 (Horn constraint) If r1, . . . , rn, r are all resource names, then

r1 ∧ · · · ∧ rn → r

is a Horn2 constraint.

Note that Horn constraints only specify class subclass relationships, and nothing

else.

Definition 22 (Negative constraints) Suppose a, b are nodes and q is a prop-

erty. Then:

(1) a
= b is a negative constraint.

(2) a
→q b is a negative constraint (which states that there is no q-path from a to

b in the graph in question).

Two examples of negative constraints associated with Figure 6.2 are:

• Faculty:1
→S Student:2 which states that Faculty is not a subclass of

Student.

2Strictly speaking, we should say “definite clause”[68] constraint here rather than Horn con-

straint, but we will abuse notation and call these Horn clauses.

107

• Student:2
→S Faculty:1 which states that Student is not a subclass of

Faculty.

Satisfaction of a Horn clause or a negative constraint by an ontology is straightfor-

ward to define.

6.3 The RDF Ontology Integration Problem

In this section, we will declaratively define the problem of integration of two

RDF ontologies under a given set of Horn and negative constraints. To do this, we

first define the notion of a “Horn Ontology Graph” (HOG for short) which merges

Horn constraints with an ontology.

Definition 23 (Horn Ontology Graph (HOG)) Suppose O is an ontology and

H is a finite set of Horn constraints over R,P , dom. The Horn Ontology Graph,

HOG(O,H) is defined as the labeled graph G = (V,E, λ) where:

(1) If a is either a resource name or a domain value in O, then {a} is a node in

V .

(2) If r1 ∧ . . .∧ rn → r is in H, then there is a node in V called “ {r1, . . . , rn}” —

sometimes, we may abuse notation and write this node’s label as “r1 ∧. . .∧ rn”

(3) Whenever there are two nodes A,B in V such that A ⊆ B, then there is an

edge labeled S from B to A.

(4) If r1 ∧ . . . ∧ rn → r is in H, then there is an edge labeled S in E from “

{r1, . . . , rn}” to {r}.

108

(5) If there is an edge in O′s graph from a to b labeled p, then there is an edge in

E from {a} to {b} labeled p.

Intuitively, the nodes in the Horn ontology graph are obtained by taking nodes

in O’s graph and making singleton sets out of them. In addition, we take the body

of each Horn constraint and make it a node labeled by the entire body of the Horn

constraint.

As far as edges are concerned, condition (5) says that all edges in O are present

in the HOG (the only difference is that an edge in the original RDF graph from a to

b ends up being an edge from {a} to {b}). In addition, for every Horn clause in H ,

we add an edge from the set associated with its body to the singleton set associated

with its head.

Strictly speaking, we may be able to eliminate some edges from HOG(O,H).

For instance, if we have one Horn clause with the body {a, b, c}, another with the

body {a, b} and yet another with the body {a}, then condition (3) above states that

there should be an edge from both {a, b} and {a, b, c} to {a} as well as an edge from

{a, b, c} to {a, b}. We henceforth assume all such redundant edges are eliminated.

It is easy to see that the Horn Ontology Graph thus defined is unique and can be

constructed from H and O in time O(|H| · |R ∪ ⋃
p∈P dom(p)|).

Figure 6.3 shows the HOG associated with the union of the two RDF graphs

shown in Figure 6.2 under a given set of Horn constraints.

Definition 24 (Integrability witness) Suppose O1, O2 are two ontologies, H is

a finite set of Horn clauses and NC is a finite set of negative clauses. An ontology

109

Person:1 ↔ Person:2
Organization:1 ↔ Organization:2
Worker:1 ↔ WorkingPerson:2
Student:1 ↔ Student:2
Faculty:1 → Academic:2

Researcher-In-Academia:2 Λ Student::2 → GraduateStudent:1
PhD-Student:2 → GraduateStudent :1

Person:1 Person:2S

Organiza-
tion:1

Organiza-
tion:2

Student:1 Student:2

Worker:1

Working-
Person:2

Faculty:1

Academic:2

Researcher-
In-

Academia:2
Researcher-In-
Academia:2 ∧

Student:2

Graduate-
Student:1

S

S

S S

S

SS

PhD-
Student:2

S

Person:1 ↔ Person:2
Organization:1 ↔ Organization:2
Worker:1 ↔ WorkingPerson:2
Student:1 ↔ Student:2
Faculty:1 → Academic:2

Researcher-In-Academia:2 Λ Student::2 → GraduateStudent:1
PhD-Student:2 → GraduateStudent :1

Person:1 Person:2S

Organiza-
tion:1

Organiza-
tion:2

Student:1 Student:2

Worker:1

Working-
Person:2

Faculty:1

Academic:2

Researcher-
In-

Academia:2
Researcher-In-
Academia:2 ∧

Student:2

Graduate-
Student:1

S

S

SS S

S

SSSS

PhD-
Student:2

SS

Figure 6.3: HOG example (partial)

graph G = (V,E) is said to be a witness to the integrability of O1, O2 w.r.t. H and

NC iff:

(1) G contains no p-cycles3 for any transitive property p,

(2) HOG(O1 ∪ O2, H) 	 G.

We define the distance between a witness G to the integrability of ontologies

O1, O2 subject to Horn constraintsH and negative constraintsNC as: d(G, 〈O1, O2, H〉) =

|G1|+ |G2|+ |H| − |G| where Gi is the graph associated with ontology Oi.

Definition 25 (Minimal integrability witness) Suppose O1, O2 are two ontolo-

gies with associated graphs G1, G2, H is a finite set of Horn constraints and NC

is a finite set of negative constraints. A witness G to the integrability of G1, G2

w.r.t. H and NC is minimal if and only if there is no strict subgraph4 G′ of

3A p-cycle is a p-path of length 1 or more from a node to itself.
4We use the standard definition of subgraph.

110

Faculty:1

Graduate
Student:1

Person
{1,2}

Organiza-
Tion
{1,2}

Working-
Person:2,
Worker:1

Resear-
cher:2

Researcher-
In-

Academia:2

Academic:2

Educational
Employee:2

Affiliated
Person:2

Organization-
Unit:2

Student
{1,2}

Researcher-In-
Academia:2 ∧

Student:2

Employee:2

PhD-
Student:2

A

S S P

A

S

SS S

S

S

S

S

S

S

S

SS

S=subClassOf; A=affiliateOf; P=hasSubUnit

Faculty:1

Graduate
Student:1

Person
{1,2}

Organiza-
Tion
{1,2}

Working-
Person:2,
Worker:1

Resear-
cher:2

Researcher-
In-

Academia:2

Academic:2

Educational
Employee:2

Affiliated
Person:2

Organization-
Unit:2

Student
{1,2}

Researcher-In-
Academia:2 ∧

Student:2

Employee:2

PhD-
Student:2

AA

SS SS PP

AA

SS

SSSS SS

SS

SS

SS

SS

SS

SS

SS

SSSS

S=subClassOf; A=affiliateOf; P=hasSubUnit

Figure 6.4: Minimal integrability witness

G which is a witness to the integrability of O1, O2 w.r.t. H and NC such that

0 ≤ d(G′, 〈O1, O2, H〉) ≤ d(G, 〈O1, O2, H〉).

Note that the minimal integrability witness is minimal in two respects: first, its

graph structure is minimal (i.e. it does not contain unnecessary nodes and edges) and

in addition, the distance according to the d-metric is minimized. Figure 6.4 shows

a minimal witness to the integrability of the ontologies in Figure 6.2 using the Horn

Constraints shown in Figure 6.3 and the negative constraints Faculty:1
→SStudent:2

and Student:2
→SFaculty:1 discussed earlier.

RDF Ontology Integration Problem. The RDF ontology integration problem

is specified as follows:

Input: RDF ontology graphs O1, O2, a finite set H or Horn constraints, and a finite

set NC of negative constraints.

Output: Return a minimal witness to the integrability of O1, O2 w.r.t. H and NC

if a witness exists — otherwise return NULL.

111

6.4 The CROW Algorithm to integrate Ontologies

In this section, we present the CROW (Computing RDF Ontology Witness)

algorithm to solve the RDF ontology integration problem. The CROW algorithm

has four distinct phases:

(1) In the pre-processing phase, we rename the ontologies being merged so that

terms in different ontologies are different (this is done by merely appending

the ontology id to the end of each term).

(2) In the graph construction phase, CROW constructs HOG(O,H).

(3) In the graph transformation phase, the above graph is simplified using vari-

ous kinds of strongly connected computations which we will describe shortly.

Redundant edges are also eliminated during this phase.

(4) In the negative constraint check phase, we check whether the graph produced

above satisfies the negative constraints. If not, we return “NULL” otherwise

we return the graph produced in (3) above.

The heart of the algorithm is in step (3) above — we have already explained

steps (1) and (2) earlier on in the paper. We apply two graph transformations.

Definition 26 Suppose G is an RDF ontology graph, and p is any relation in P

that is known to be transitive.

• A p-strongly connected component (or p-SCC for short) is any set S of nodes

in G such that for all a, b ∈ S, there is a p-path from a to b.

112

• The operator ςp(G) returns that graph G′ = (V ′, E ′) where:

– V ′ is the set of all p-SCCs in G and

– E ′ contains an edge from an SCC S1 to an SCC S2 labeled p iff there is

an edge in G from some node in S1 to some node from S2 labeled p.

ςp(G) reduces all p-SCCs in G to a single node and then draws edges between

two such reduced nodes if there was some node in one of the SCCs that was connected

in the original graph G to some node in the other SCC. This is an intuitive method

for reducing cycles for transitive relationships (e.g.: if Worker:1 subClassOf

WorkingPerson:2 and WorkingPerson:2 subClassOf Worker:1, it would

be safe to conclude that Worker:1=WorkingPerson:2). Note that ςp(G) is a

lossy transformation as edges not labeled with p between nodes in the p-SCCs are

lost. The second transformation - υp(O) - is used to eliminate redundant edges and

thus obtain a minimal integration witness.

Definition 27 An edge from a to b labeled p is said to be redundant w.r.t. graph

G iff there is a p-path from a to b in the graph obtained by deleting this edge from

G.

The operator υp(G) returns a graph G′ by eliminating as many redundant edges

on transitive properties from G as possible.

There may be many ways in which redundant edges are removed from a graph

G — all we require here is that υp(G) return any subgraph of G with no redundant

113

Person:1 Organiza-
tion:1

Worker:1 Student:1

Faculty:1 Graduate-
Student:1

Person:2
Organiza-

tion:2

Working-
Person:2

Resear-
cher:2

Researcher-
In-

Academia:2 Academic:2

Employee:2

Affiliated
Person:2

Organization-
Unit:2

Student:2

A

S

S

S S

S S P

A

S

Educational
Employee:2

S S

S

S S

S

PhD-
Student:2

S

S

S

S

S

S

Researcher-In-
Academia:2 ∧

Student:2

S
S

S S

S

S=subClassOf; A=affiliateOf; P=hasSubUnit

Person:1 Organiza-
tion:1

Worker:1 Student:1

Faculty:1 Graduate-
Student:1

Person:2
Organiza-

tion:2

Working-
Person:2

Resear-
cher:2

Researcher-
In-

Academia:2 Academic:2

Employee:2

Affiliated
Person:2

Organization-
Unit:2

Student:2

AA

SS

SS

SS SS

SS SS PP

AA

SS

Educational
Employee:2

SS SS

SS

SS SS

SS

PhD-
Student:2

SS

SS

S

S

S

S

Researcher-In-
Academia:2 ∧

Student:2

S
S

S S

S

S=subClassOf; A=affiliateOf; P=hasSubUnit

Figure 6.5: Intermediate result CROW phase (1)

edges.5

Theorem 4 For any graph G:

(1) G 	 ςp(G)

(2) G 	 υp(G).

The proof is based on the analysis of a single p-SCC or redundant edge elimi-

nation operation; each such operation preserves the 	 relation.

Proof sketch: (1) We represent ςp(G) as a sequence of operations 〈ς1p (G), . . . , ς ip(G), . . .〉,

where each ς ip(G) collapses exactly one p-SCC into one node. Let us denote by Gi

the graph resulting from the application of the first i transformations and let Vi

5As such there can be many different implementations of υp(G). One such algorithm works as

follows. First, it computes an adjacency matrix A for G. It then computes a path matrix B such

that B[i, j] = 1 iff there is a path of length two or more from node i to j. This can be computed

by a straightforward adaptation of Dijkstra’s algorithm. Now remove all edges (i, j) for which

A[i, j] = 1 and B[i, j] = 1.

114

be its set of nodes. Let Si be the set of nodes that form a p-SCC and should be

collapsed at step i + 1. Let nS
i+1 be the node resulting by collapsing Si and let mi

be an arbitrary node in Si. Then we define a mapping ω : Vi → Vi+1 such that

∀ x ∈ Si, ω(x) = nS
i+1 and ∀ x ∈ Vi − Si, ω(x) = x. To prove that ςp is order

preserving, we need to show that ω satisfies the conditions in Definition 20. Let

x, y ∈ Vi, x
= y be such that there exists a q-path between x and y represented

by 〈n1, . . . , nk〉. Let us consider the sequence 〈ω(n1), . . . , ω(nk′) 〉, where we have

omitted consecutive duplicate nodes. As ςp only removes edges not labeled with p

in Si (collapsed into one node in Gi+1), this is a q-path in Gi+1 (maybe containing

fewer nodes than the original). Hence, every step in ςp is order preserving. So by

induction we conclude that ςp is order preserving.

(2) Let pathq(x, y) be true iff there is a q-path between x and y. By definition,

υp(G) does not modify the value of this predicate for any property q. Hence, the

conditions in Definition 20 are preserved. �

We are now ready to present the CROW algorithm (after the pre-processing

step) in Table 6.1. Although the CROW algorithm is designed for integrating two

ontologies, a simple extension can be used to integrate sets of ontologies 6.

In lines 1-9, CROW first constructs the Horn Ontology Graph. The result

of this first phase is depicted in Figure 6.5. The reader may notice that this

graph contains both strongly connected components for the subClassOf hierar-

chy (Student:1 ↔S Student:2) as well as redundant edges (PhD-Student:2

6For instance, by using CROW repeatedly or by merging all the ontology graphs at the same

time.

115

Algorithm: CROW(O1, O2,H,NC)

Inputs: Ontologies O1, O2, set of Horn constraints H and set of negative constraints NC.

Let G1 = (V1, E1), G2 = (V2, E2) be the associated graphs.

Output: G = (V,E, λ), minimal witness to the integrability of O1, O2 w.r.t. H and NC

or NULL if no minimal witness exists.

1. V ← V1 ∪ V2;

2. E ← E1 ∪ E2;

3. for r1 ∧ . . . ∧ rk → r ∈ H in ascending order of k do

4. V ← V ∪ {r1, . . . , rk};
5. E ← E ∪ {({r1, . . . , rk}, r)};
6. for all n ∈ V , n ⊂ {r1, . . . , rk} do

7. E ← E ∪ {({r1, . . . , rk}, n)};
8. end

9. end

10. for all properties p

11. if p transitive then

(* the transitivity of p is specified a priori *)

12. while ∃ S, p-SCC in G do

13. for a ⇀ b ∈ NC do

(* by ⇀ we denote any type of negative constraint *)

14. if a ∈ S and b ∈ S return NULL;

15. end

16. G = ςS
p (G);

(* it collapses only S into one node *)

17. end

18. G = υp(G);

19. end

20. for cons ∈ NC labeled with p do

21. if G does not satisfy cons then return NULL;

22. end

23. end

24. return O;

Table 6.1: Computing RDF Ontology Witness Algorithm CROW

116

subClassOf Student:2). The reduction of strongly connected components and

redundant edges is suitable only for transitive properties, as discussed in the Pre-

liminaries Section. After these transformations (lines 16-18) the algorithm verifies

the satisfiability of the negative constraints against the integrated ontology (lines

20-22). Note that some negative constraints can be checked directly while detect-

ing SCC, which optimizes the response time for cases when there is no minimal

integrability witness. Figure 6.4 shows the result of integrating the ontologies in

Figure 6.2 using the Horn constraints in Figure 6.3 and using the negative con-

straints: NC = {Faculty:1
→S Student:2,Student:2
→S Faculty:1}.

The following result shows that CROW is correct.

Theorem 5 (Correctness of CROW) CROW is correct, i.e.

(i) If CROW(O1, O2, H,NC) does not return NULL, then it returns a minimal wit-

ness to the integrability of G1, G2 w.r.t. H and

(ii) If CROW(G1, G2, H,NC) returns NULL, then there is no witness to the inte-

grability of G1, G2 w.r.t. H.

Proof sketch. (i) Since all sets are finite and operations on lines 10-19 reduce the

number of edges and/or nodes in the ontology, the algorithm will terminate. By the

construction of the HOG in lines 1-9 we can easily see that G1 	 HOG(G1∪G2, H)

and G2 	 HOG(G1∪G2, H). Furthermore, by Theorem 4 the graph transformations

applied to G = HOG(G1∪G2, H) preserve order. Also, G will satisfy NC according

to lines 14, 20-22. Hence, the returned ontology G is an integration witness for

G1, G2 w.r.t H and NC. Let us assume that G is not a minimal integrability witness

117

and ∃ G′ an integrability witness which is a strict subgraph of G. If G′ has fewer

nodes than G, it would violate the distance condition in Definition 25. Otherwise, if

G′ has fewer edges than G, since all redundant edges for transitive properties have

been eliminated in G, that would mean G′ violates condition (2) of Definition 24.

Our hypothesis was false, hence G is a minimal integrability witness. (ii) Let us

assume that there is a minimal integrability witness G that the CROW algorithm

does not find. This means that CROW has returned NULL on either line 14 or

21. However, these directly correspond to checks against the negative constraints

in NC. Therefore, G does not satisfy NC and cannot be a minimal integrability

witness. �

The following theorem states that CROW runs quite fast.

Theorem 6 (CROW complexity) Let ni, ei be the number of nodes and respec-

tively edges in Gi, i ∈ {1, 2}. Let nh be the number of constraints in H and t

the number of transitive properties. We denote by n, e the number of nodes and

respectively edges in G. Then according to the CROW algorithm:

(1) n ≤ n1 + n2 + nh and e ≤ e1 + e2 + 2 · nh.

(2) CROW is O(t · n · e · (n+ e)).

The proof follows directly from the analysis of the CROW algorithm. Proof:

Proof sketch. (i) The CROW algorithm adds all nodes from the source ontologies

and at most one node for each Horn constraint to G. Also, aside from the edges in

the source ontologies, each Horn constraint can add at most two edges. One is the

118

edge specified by the Horn constraint itself. The other may be a subset-induced edge

according to condition (3) in Definition 23. There is at most one such edge in G

since S is a transitive relationship and redundant edges for transitive relationships

are eliminated.

(ii) The initial phase of the algorithm (lines 1-9) is performed in O(nh · n).

SCC detection on the constructed graph can be performed in O(n + e), while ςSp

elimination for a p-SCC S can be performed in O(e · (n + e)) (due to the edge

rebuilding phase in Definition 26). Therefore, ςp for all p-SCCs can be performed

in O(n · e · (n + e)). Meanwhile, by adapting Dijkstra’s algorithm, in O(n2) we

can detect whether there is a p-path of length more than 1 from a fixed source to a

target. Therefore, υp(G) can be performed in O(e·n2) to eliminate all the redundant

edges. Since these two transformations are performed for all transitive relationships,

the G ontology is obtained in O(t ·n · e · (n+ e)). Negative constraint satisfiability is

linear in the number of constraints, which cannot be greater than n2 (which would

mean there are negative constraints for every pair of nodes in the graph). Therefore,

the complexity of the CROW algorithm is bounded by O(t · n · e · (n + e)). �

6.5 Implementation and Experiments

Our prototype is implemented in Java and currently consists of 3041 lines of

code. It consists of the following components:

1. The RDF Graph Generator. We use Jena 2.2, a Semantic Web toolkit from

Hewlett-Packard Labs, to digest an ontology data file. Then the RDF Graph

119

CROW Running Time

0

50

100

150

200

250

300

350

0 5000 10000 15000 20000 25000 30000 35000 40000

Source ontology size

T
im

e
(s

)
10 constraints

20 constraints

30 constraints

40 constraints

50 constraints

60 constraints

70 constraints

80 constraints

90 constraints

100 constraints

Figure 6.6: CROW running time

Generator constructs an ontology graph by reading a set of RDF triples stored

in Jena.

2. The HOG Generator generates a HOG for a set of Horn clauses.

3. The Synthetic Data Generator randomly generates ontology graphs, Horn con-

straints and negative constraints.

4. The Ontology Integrator integrates ontologies by taking a set of Horn con-

straints and a set of negative constraints into account.

Scalability experiments. We report here the performance of CROW algorithm on

both real-life and synthetically generated ontologies. The experiments were run on

a PC with 1.4GHz CPU, 524MB memory and Windows 2000 Professional platform.

The times taken in the experiments include the time to construct an HOG and the

time to integrate ontologies.

120

Ont 1 Ont 2 # conts size1 size2 size3 size4 (KB) # trans Time (ms)

D - 64 D - 189 17 485 820 826 17.944 3 40.2

D - 4 D - 62 25 1171 2142 2147 52.564 1 32

D - 62 ka2 20 1019 1864 1868 51.972 1 22.2

S - 236 S - 197 8 959 1829 1841 51.152 1 24

D - 276 S - 162 32 1706 2938 2946 81.667 4 58.4

Table 6.2: Experimental results

Scalability on real-life ontologies. We have applied our CROW algorithm to

five pairs of similar ontologies7 selected from DAML, SchemaWeb and OntoBroker

ontology libraries. We list the detailed experimental results in Table 6.2. In the

table, due to space constraints, we use D to stand for DAML, S for SchemaWeb and

ka2 for the ontology ka2.daml in OntoBroker. In addition, “# conts” represents

the number of constraints and “# trans” is the number of transitive properties.

We have used various metrics for the size of ontologies (using the notations from

Theorem 6): (i) size1 = n1 + n2 + nh,(ii) size2 = n1 + n2 + e1 + e2 + nh, (iii) size3

is the number of nodes and edges in the HOG and (iv) size4 is the total file size of

the source ontologies. The running time of CROW algorithm is related to not only

the number of terms and edges, but also to the number of transitive properties. We

can see the effect of this factor in Table 6.2 by comparing the first and third pair of

ontologies.

Scalability on synthetic data. We randomly generated ten pairs of ontology

graphs (each with only one transitive property). The total number of terms in each

7Two on academic departments, one each on publications, travel and music.

121

pair of ontologies varies from 8000 to 35000 with a step of 3000. For each pair,

we generate ten sets of constraints (including Horn and negative constraints) whose

sizes vary from 10 to 100 with a step of 10.

Figure 6.6 shows the scalability of CROW algorithm on the ten pairs of on-

tologies. As the total number of terms increased, we had a slightly faster than linear

increase in the time taken to do the integration. The increase in running time is

mainly due to the increase in number of terms (and the size of the HOG) more than

to the increase in number of constraints, as shown in Figure 6.6.

6.6 Summary

In this chapter, we have developed a formal model to integrate RDF ontolo-

gies in the presence of both Horn constraints and negative constraints. We have

explained the concept of a witness to the integrability of two ontologies and we have

developed the CROW algorithm to integrate two ontologies. We have tested CROW

and found that it is very fast, both on ontologies at the DAML, SchemaWeb and

OntoBroker sites, and on synthetically generated ontologies.

122

Chapter 7

Finding Similar Objects Using a Taxonomy

Finding interoperation constraints between ontologies is fundamentally impor-

tant for integrating them. In this chapter, we present our work on ontology-based

similarity measures [95] applicable for identifying interoperation constraints and

searching similar objects.

Taxonomies provide a precise way to name classes of individuals that share

certain properties or behavior. They also provide a means of determining how

similar one such individual is to another. Two individuals share the properties of

the most specific grouping that includes both of them, and the degree to which the

two individuals are similar depends on the location of this class in the hierarchy.

As we have introduced in Chapter 3, several authors have defined ways of turning

this intuitive idea of similarity into a numeric value that can be used to rank the

similarity of objects.

The ability to find similar objects given a description of a target is useful in

many domains. For example, one may wish to find patents similar to a given patent,

or gene products (e.g. proteins) similar to a given gene product. In these domains,

and many others, comprehensive taxonomies have been defined and used by vari-

ous organizations to classify sets of objects. Examples include the Gene Ontology

(GO)[7], Medical Subject Headings (MESH)[83] and the patent classification tax-

123

onomies of the United States Patent and Trademark Office (USPTO)[105] and the

World Intellectual Property Organization (WIPO)[113].

In this chapter, we address several issues that arise when putting the idea of

searching similar objects with taxonomies into practice. In particular, we provide a

definition of information-theoretic similarity for taxonomies that are structured as

directed acyclic graphs from which multiple terms may be used to describe an object.

We discuss how our definition should be adapted in the presence of ambiguity, as

introduced by an evolving taxonomy or classifiers with imperfect knowledge. We

also present a pragmatic implementation of our similarity measures, and a variety

of others from the literature, that is tightly integrated with an object-relational

database and scales to large taxonomies and large datasets. Our experiments —

on a bioinformatics application that matches the annotations for gene products in

the Gene Ontology supplied by Proteome Inc. and UniProt — show that our two

measures outperformed previous approaches.

The remainder of this chapter is organized as follows. At the beginning of

Section 7.1, we review the information-theoretic definition of similarity. Next, in

Section 7.1.1, we define our holistic similarity measure. In Section 7.1.2, we con-

sider how classifiers that have incomplete knowledge of the objects being classified

introduce ambiguity, and define the generic holistic similarity measure for such sit-

uations. Section 7.2 briefly summarizes related work. In Section 7.3 we describe

our implementation, and Section 7.4 compares the efficacy of our new similarity

measures to a variety of others. Section 7.5 summarizes our contributions.

124

7.1 Information-Theoretic Similarity

The idea of using an information-theoretic definition of similarity to compare

objects labeled using a taxonomy was introduced by Resnik[94]. Given a taxonomy

defined over a set of terms T , Resnik defined the similarity of two terms t1 ∈ T and

t2 ∈ T with respect to a corpus of objects O as

simResnik = max
t̂∈S(t1,t2)

[− log p(t̂)]

where S(t1, t2) is the set of terms in T that subsume1 t1 and t2 and p(t) is the prob-

ability that an object randomly chosen from O represents an occurrence (instance)

of term t [94]. An object represents an occurrence of a term t if it is labeled with t

or a descendant of t.

The quantity

I(t) = − log p(t)

is known as the information content of term t. Resnik’s definition of similarity

captures the idea that the similarity between two objects depends not only on what

they have in common, but also on the context in which they are compared. It has

many intuitively appealing properties. If the taxonomy is a hierarchy (i.e a tree),

the term t̂ satisfying Resnik’s definition will be the least common ancestor of t1 and

t2. As the commonality of the terms decreases, the position of t̂ moves higher in the

hierarchy, becoming the root r if the terms have nothing in common. Since every

object in O represents an occurrence of the root, p(r) = 1 and I(r) = 0. Conversely,

if t1 = t2, I(t̂) = I(t1) = I(t2).

1Concept C1 subsumes C2 if C1 is a superclass of C2 in the taxonomy.

125

Lin[66] derives an axiomatic definition for similarity based on a limited set of

assumptions that can be summarized as follows:

1. The maximum similarity between two (identical) objects is 1 and the minimum

similarity is 0.

2. The similarity between two objects is a function of their commonality and

their differences.

3. If each object can be described from several perspectives, the overall similarity

of two objects is a weighted average of their similarities as seen from the

individual perspectives.

Under these assumptions, and additionally assuming that the target and can-

didate objects are selected independently, the similarity between a target object T

and a candidate object C is[66]:

sim(T, C) =
I(common(T, C))

I(descr(T)) + I(descr(C))
(7.1)

where common(T, C) represents a description of what the two objects have in com-

mon, and descr(T) and descr(C) represent descriptions of the two objects individ-

ually.

If T and C are each labeled by a single term from a hierarchical taxonomy,

their commonality is represented by the term that is the least common ancestor a

of the terms t and c that were used to describe T and C, respectively. With respect

to a particular corpus of objects O, the similarity becomes[66]:

simLin(T, C) =
2I(a)

I(t) + I(c)
=

−2 log p(a)

− log p(t)− log p(c)
(7.2)

126

Suppose, for example, that O is a set of edible things and that t, the label of T , is

“apple” and c, the label of C, is “pear”. If a, the least common ancestor of t and

c, is the term “fruit”, then the numerator of the similarity measure represents the

probability that two objects randomly chosen from O are both labeled with terms

that denote kinds of fruit, and the denominator represents the probability that one

is labeled an apple and one is labeled a pear.

7.1.1 Holistic Similarity

Equation 7.2 intuitively captures the idea of similarity in the most straightfor-

ward case, in which the taxonomy is structured as a tree and each object is labeled

by a single term. However, in practice many taxonomies are not trees, but allow a

new term to be derived from multiple parents. Furthermore, classification systems

often allow an object to be labeled using multiple terms. In this section, we examine

how to define similarity under these more general conditions. We begin by defining

a taxonomy as a directed acyclic graph.

Definition 1 (Taxonomy) A taxonomy T is a directed acyclic graph (N,E, r),

where N is a set of nodes, E ⊆ {N × N} is a set of directed edges, r ∈ N is a

unique root node of T , and for every other node n ∈ N , there is at least one path

from n to the root r.

Each node n ∈ N represents a term of T , and we will use the words “node” and

“term” interchangeably. Each directed edge e ∈ E connects a more specific child

term to a more general parent term. Typically, the relationship between parent and

127

child terms can be described as an is-a or kind-of relationship, but our measures can

also be used with other transitive relationships, such as part-of, works-for, belongs-to,

etc., as long as one wishes to treat objects closely related in these ways as similar.

For convenience, we will refer to nodes in the out-neighbor region of a given

node (i.e all nodes on the paths from the given node to the root) as “ancestors” of

the given node, and similarly use the term “descendants” to refer to nodes in the

given node’s in-neighbor region. We will also find it useful to describe portions of

the taxonomy as subgraphs of T . We will use the notation Terms(g) to refer to the

set of nodes in a subgraph g.

A label is a subset of the terms in the taxonomy. A label can be used to

represent the classification of a specific object, but it can also be used to represent

more general concepts, like what two objects have in common.

Definition 2 (Label) Given a taxonomy T = (N,E, r), a label is a nonempty set

of terms L ⊆ N .

A cheeseburger labeled with terms from a food taxonomy, for example, might

have the label {Beef, Cheese}.

If a term in a taxonomy applies to an object, so do the terms that correspond

to each of its ancestors. Therefore, some of the terms in a label may be redundant.

Although, as will be seen, such redundant terms do not affect similarity as calculated

by our measures, their presence complicates the descriptions of objects, and obscures

the equivalence of labels. We therefore define the concept of a minimal label to

eliminate such terms.

128

Definition 3 (Minimal Label) A label L is a minimal label if for every term

l ∈ L, no ancestor of l is also in L.

Given a label L, one can derive a unique minimal label L′ by removing from

L every term that is an ancestor of another term in L. Let Lmin(L) denote the

minimal label derived from L.

A labeling assigns a label to each object in some corpus.

Definition 4 (Labeling) Given a taxonomy T and a corpus O, a labeling is a

total function L : O �→ 2N . If o is an object in O, let L(o) denote the label for object

o.

A label can also be associated with any subgraph of the taxonomy. The label

for a subgraph g is the set of nodes contained in the subgraph, i.e Terms(g). For

convenience, however, we will generally refer to labels with the notation LX , where

X may be either an object or a graph.

A labeling is a proper labeling if for all o ∈ O, L(o)
= ∅, and a minimal labeling

if for all o ∈ O, L(o) is a minimal label. For the remainder of this chapter we will

assume that all labelings are minimal proper labelings unless otherwise noted.

We interpret the labeling of an object with one or more terms to imply only

that at least those terms (and their ancestors) apply to the object. This open-world

interpretation of labels is an important assumption of our work, and contrasts with

the closed-world model of traditional databases, under which all terms not included

in a label do not apply to the labeled object. We adopt the open-world model in

this paper for a number of reasons. In the first place, we believe it more accurately

129

reflects how taxonomies are used in many domains. Frequently, both the label of an

object and the structure of the taxonomy itself change as knowledge accumulates

concerning the domain and the objects of interest. At any point in time, the label

of an object only reflects what has been discovered about it so far. Secondly, when

the taxonomy is structured as a DAG, the closed-world assumption is incompatible

with the use of interior terms in labels. We defer a discussion of this latter point to

Section 7.1.2.

It is also useful to be able to enumerate all the terms associated with a label,

either directly or indirectly. We therefore formalize the concept of an ancestor graph.

Definition 5 (Ancestor Graph) Let L be a label. For each term l ∈ L, let out(l)

be the out-neighbor region of l in T . The ancestor graph of L is the union of the

out-neighbor regions of the terms contained in L. That is:

Anc(L) = ∪l∈Lout(l)

Given an object o with label Lo, we will use the notation Anc(o) to refer to

the ancestor graph of Lo. The set of nodes Terms(Anc(o)) represent an exhaustive

list of the terms associated with o.

We now associate a probability with an arbitrary label. Its value is the prob-

ability of finding an object to which at least those terms in the label L apply. We

refer to this as the inclusion probability, pi(L).

Definition 6 (Inclusion Probability) Let L be a label. Then pi(L) is the prob-

ability that the ancestor graph of the label of an object chosen at random from O

130

contains L. That is, given a randomly chosen object o:

pi(L) = p(L ⊆ Terms(Anc(o)))

If the ancestor graph of an object’s label contains L, it also contains Lmin(L)

and vice versa. Hence, if L is not minimal, the extra terms do not affect its inclusion

probability. That is, pi(L) = pi(Lmin(L)).

Inclusion probability gives us the tool we need to apply Lin’s general definition

of similarity from Equation 7.1 to a taxonomy. To quantify the individual informa-

tion content of the objects being compared (the denominator of Equation 7.1), we

use the inclusion probability of their labels. To quantify the information content

of the commonality between the two objects (the numerator of Equation 7.1), we

find a label LA to represent that commonality, and use the corresponding inclusion

probability. The label LA is constructed by intersecting the ancestor graphs of the

labels of the objects being compared. We refer to the resulting measure as holistic

similarity because it treats all the terms in a label as a group. As we will see in Sec-

tion 7.2, other measures that have been suggested for use when objects are labeled

with multiple terms treat each term individually.

Definition 7 (Holistic Similarity) Let LT and LC be the labels of objects T and

C, respectively, and let LA = Lmin(Terms(Anc(LT) ∩ Anc(LC))). Then:

simH(T, C) =
−2 log pi(LA)

− log pi(LT)− log pi(LC)

Alternatively, expressed in terms of the information content corresponding to each

131

(a) (b)

LA
LC

C
LT

T

O

LA
LC

C
LC

CC
LT

T
LT

TT

O
LA

LT
T LC

C

O
LA

LT
TTT LC

C
LC
CC

O

Figure 7.1: Similarity in Context

probability:

simH(T, C) =
2I(LA)

I(LT) + I(LC)

Figure 7.1 illustrates the idea behind our measure graphically, by depicting

two objects being compared, T and C, as members of populations to which their

particular label applies. All such objects are also members of the larger set of objects

for which label LA applies, and are of course also members of O, the corpus. The

sizes of these sets relative to each other and the size of the corpus determine the

similarity of the objects being compared. The larger the region associated with LA

relative to the size of O, the less significant it is that the objects being compared

are included in this set, because the same also applies to many other objects in O.

Similarly, the smaller the size of regions LT and LC relative to LA, the less significant

it is that both objects are in LA, because many objects share this trait. Thus, as

illustrated in Figure 7.1(a), maximum similarity (short of identity) occurs when LA

is a small fraction of O and only objects labeled with LT or LC are contained within

it. Conversely, similarity is at a minimum when LA contains most of O, including

many objects other than those labeled with LT or LC , as in Figure 7.1(b).

132

When the taxonomy is a tree and each object is labeled with a single term,

Definition 7 reduces to Equation 7.2. Consider objects T and C, labeled with terms

t and c, respectively. When T is a tree, LA, the minimal label for the intersection

of the ancestor graphs of t and c, is a, the least common ancestor of t and c in T .

As defined by Equation 7.2, Lin’s formulation cannot be used when the tax-

onomy is a DAG, because the terms describing the objects do not necessarily have

a unique least common ancestor. Nor is it applicable when objects are labeled with

multiple terms. Resnik’s similarity measure, which is defined in terms of the ances-

tor with the maximal information content, could be used with a DAG taxonomy,

but not when multiple terms are used as labels. However, because it is specified

over labels, not terms, holistic similarity is well-defined in both of these cases.

Definition 7 can also be viewed in terms of conditional probability. Suppose

one has randomly picked two objects, o1 and o2 from O. Let p(X) represent the

probability that label L1 applies to one of the objects and label L2 applies to the

other, given that LA applies to both of them. Then:

p(X) = pi(L1|LA)pi(L2|LA)

=
pi(L1 ∩ LA)pi(L2 ∩ LA)

pi(LA)2

Since LA applies to any object to which L1 applies, p(L1∩LA) = p(L1), and likewise

p(L2 ∩ LA) = p(L2). So:

p(X) =
pi(L1)pi(L2)

pi(LA)2

= log−1[log pi(L1) + log pi(L2)− 2 log pi(LA)]

I(X) = − log p(X)

133

= I(L1) + I(L2)− 2I(LA)

When I(X) is large, the situation is analogous to that of Figure 7.1(b): know-

ing that LA applies to both objects tells one relatively little about whether the

objects come from the populations labeled L1 and L2. As I(X) approaches its mini-

mum value, the situation becomes analogous to that of Figure 7.1(a): knowing that

LA applies to both objects is tantamount to knowing that they are drawn from the

desired populations.

I(X) ranges between 0 and I(L1) + I(L2). If we normalize I(X) to the range

[0..1], we find that:

I(X)

I(L1) + I(L2)
=

I(L1) + I(L2)− 2I(LA)

I(L1) + I(L2)

= 1− 2I(LA)

I(L1) + I(L2)

= 1− simH(o1, o2)

simH(o1, o2) = 1− I(X)

I(L1) + I(L2)

In other words, I(X) represents the un-normalized distance between the labels of

objects o1 and o2, and simH(o1, o2) normalizes this value and converts it from a

distance to a similarity.

7.1.2 Generic Similarity

In this section, we consider more carefully the use of the interior terms of a

taxonomy in labels. We begin by examining the meaning of using such a term in a

label.

134

Fruit
F

Apple
A

Cherry
C

(Other Fruit)
F*

Orange
O

Pear
P

Fruit
F

Apple
A

Cherry
C

Orange
O

Pear
P

(a) (b)

Fruit
F

Apple
A

Apple
A

Cherry
C

Cherry
C

(Other Fruit)
F*

(Other Fruit)
F*

Orange
O

Orange
O

Pear
P

Pear
P

Fruit
F

Apple
A

Apple
A

Cherry
C

Cherry
C

Orange
O

Orange
O

Pear
P

Pear
P

(a) (b)

Figure 7.2: Use of Anonymous Terms

When an interior term is used in a label, there are two possible interpretations.

The term may have been selected because no more specific term in the taxonomy ap-

plies to the object in question. For example, consider the taxonomy of Figure 7.2(a).

If the object to be labeled is a mango, the interior term “fruit” is the most appro-

priate label, because none of the more-specific terms apply. On the other hand, the

individual doing the labeling may choose an interior term because he or she does

not know which (if any) more specific term applies. We refer to the first type of

labeling as careful and to the second as generic. Both often occur in practice, in

particular as a taxonomy evolves. Initially, a single term may be applied to what

later turns out to be a whole group of distinct subclasses of objects. Over time,

as these subclasses are recognized, new more-specific terms are created. However,

objects classified under one version of the taxonomy are not necessarily reclassified

whenever the taxonomy evolves.

To accommodate the careful use of interior terms as labels, we augment the

taxonomy by adding a new descendant term, X∗, for every interior term X used as

a label. We refer to X∗ as an anonymous term, because it describes an unnamed

subset of the objects to which the term X applies. In the taxonomy of Figure 7.2(b),

an anonymous term F ∗ has been added to the taxonomy of Figure 7.2(a). An object

135

carefully labeled “fruit” will be considered an instance of F ∗ and all of its ancestors

(including F). If an object can be labeled with multiple terms, it may also be

necessary to introduce an anonymous term for combinations of terms that are used

carefully. As far as our definition of similarity is concerned, anonymous terms behave

exactly like real terms in T and we will not consider them further in this chapter.

Unlike careful labeling with interior terms, generic labeling forces us to rethink

our basic understanding of similarity by introducing uncertainty into the labeling of

objects. If a target object is labeled “fruit”, and we are uncertain as to which specific

kind of fruit it is, candidate objects labeled “apple”, “pear”, or ‘fruit” all fulfill the

only specific requirement posed by the labeling of the target object, that of being

a fruit. However, if we apply Definition 7, only the candidate labeled “fruit” will

receive a similarity score of 1 with respect to the target. In effect, simH penalizes

objects labeled “apple” or “pear” for being “too specific” when the target object is

generic. Note that the situation changes when the roles of target and candidate are

reversed. If the target object is labeled “apple”, a candidate object labeled “apple”

is a better match than one labeled “pear” or “fruit”.

To reflect the asymmetry introduced by generic labeling, we define a revised

similarity measure, simG, such that simG(T, C) = 1 if and only if object C is

substitutable for object T . This idea is familiar from the use of type hierarchies

in programming languages, where an instance of a subtype is substitutable for an

instance of a supertype, but not the other way around.

Definition 8 (Generic Holistic Similarity) Let LT and LC be the labels of ob-

136

LA

TT

CC

LA

C
LT

T

LT

TT

(a) (b)

LT

O O

Figure 7.3: Generic Similarity in Context

jects T and C, respectively, and let LA = Lmin(Terms(Anc(LT) ∩ Anc(LC))).

Then:

simG(T, C) =
−2 log pi(LA)

− log pi(LT)− log pi(LA)

Alternatively, expressed in terms of the information content corresponding to each

probability:

simG(T, C) =
2I(LA)

I(LT) + I(LA)

The generic similarity measure views the candidate object, C, as an instance

of the most specific class of objects that includes both the target and the candidate.

Figure 7.3 depicts a target object T compared to a candidate object C using simG.

As in the case of simH , the larger the region associated with LA relative to the

size of O, the less significant it is that the objects being compared are included

in this set. Similarly, the smaller the size of region LT relative to region LA, the

less significant it is that both objects are in LA. As illustrated in Figure 7.3(a),

maximum similarity (short of identity) occurs when LA is a small fraction of O and

most of the objects within it are labeled with LT . Conversely, similarity is at a

minimum when LA contains most of O, including many objects other than those

137

labeled with LT , as in Figure 7.3(b).

Like simH , simG can also be viewed in terms of conditional probability. Sup-

pose one has randomly picked two objects, o1 and o2 from O. Let p(X) represent

the probability that label L1 applies to o1, given that LA applies to both objects.

Then:

p(X) = pi(L1|LA)

=
pi(L1 ∩ LA)

pi(LA)

=
pi(L1)

pi(LA)

= log−1[log pi(L1)− log pi(LA)]

= log−1[log pi(L1) + log pi(LA)− 2 log pi(LA)]

I(X) = − log p(X)

= I(L1) + I(LA)− 2I(LA)

Normalizing I(X) to the range [0..1], gives:

I(X)

I(L1) + I(LA)
=

I(L1) + I(LA)− 2I(LA)

I(L1) + I(LA)

= 1− 2I(LA)

I(L1) + I(LA)

= 1− simG(o1, o2)

simG(o1, o2) = 1− I(X)

I(L1) + I(LA)

So, as in the case of simH , simG represents a normalized distance viewed as a

similarity. In this case, the distance is between L1, the label of o1, and LA, the label

representing what o1 and o2 have in common.

138

Meat VegetableDairy

Cheese Milk TomatoChicken Beef

Food

Steak Cheeseburger Lasagna Casserole

Broccoli

Meat VegetableDairy

Cheese Milk TomatoChicken Beef

Food

Steak Cheeseburger Lasagna Casserole

Broccoli

Figure 7.4: Labeling With Generic Terms

The use of generic labeling also reinforces our choice of an open-world model,

because when the taxonomy is structured as a DAG, the closed-world model is

incompatible with the use of generic terms as labels. To see why, consider the

taxonomy of Figure 7.4. If an object is labeled with the generic term {Beef}, under

generic labeling we interpret that to mean the labeler is uncertain as to which of the

terms describing a more specific type of beef applies. The object could be a steak,

which is “just” beef, or it could be a cheeseburger. Because a cheeseburger contains

additional ingredients (i.e. cheese), the ancestor graph of the label {Cheeseburger}

contains terms like {Cheese} that are neither descendants nor ancestors of the term

{Beef}, and these terms may also apply to the object in question. Thus, labeling a

cheeseburger {Beef} would violate the closed-world assumption, which states that

terms not in the ancestor graph of {Beef} do not apply to the object.

We conclude this section with a set of examples that demonstrates how simG

orders candidate objects with respect to a fixed target. The examples are based

on the taxonomy of Figure 7.4, and are intended to be illustrative rather than to

provide an exhaustive case analysis.

139

C LC LA simG(T, C)

c1 {Cheeseburger} {Beef, Cheese} 2I(Beef,Cheese)
I(Beef,Cheese)+I(Beef,Cheese)

= 1

c2 {Beef, Cheese, Tomato} {Beef, Cheese} 2I(Beef,Cheese)
I(Beef,Cheese)+I(Beef,Cheese)

= 1

c3 {Steak} {Beef} 2I(Beef)
I(Beef,Cheese)+I(Beef)

c4 {Steak,Milk} {Beef,Dairy} 2I(Beef,Dairy)
I(Beef,Cheese)+I(Beef,Dairy)

c5 {Casserole} {Meat,Dairy} 2I(Meat,Dairy)
I(Beef,Cheese)+I(Meat,Dairy)

Table 7.1: Similarity to Target Labeled {Beef, Cheese}

Table 7.1 shows the similarity of five candidate objects to a common target

object T labeled {Beef, Cheese}. The first candidate, labeled {Cheeseburger}, is

a specialization of the target object and therefore substitutable for it. It receives a

similarity score of 1 because its ancestor graph includes the complete ancestor graph

of the target. The same is true of c2, the candidate labeled {Beef, Cheese, Tomato}.

The ancestor graph of c3, labeled {Steak}, includes the term “Beef” and all

its ancestors, but only intersects with the ancestors of “Cheese” at the root of the

taxonomy (“Food”). LA is therefore {Beef}, the minimal label of the intersection

of the target and candidate ancestor graphs. Since I(Beef) is calculated using

inclusion probability, it reflects not only the number of objects labeled {Beef},

but also the populations of objects whose labels are descendants of {Beef} (e.g.

{Steak}, {Lasagna}) and those that include the term “Beef” among others in their

label (e.g. {Beef,Broccoli}). c4, the candidate labeled {Steak,Milk}, is similar to

c3, but in this case LA = {Beef,Dairy}. The size of the population associated with

140

this label is smaller than the one associated with {Beef}, since it includes only those

objects whose label includes the term “Dairy” (or one of its descendants) as well as

the term “Beef” (or one of its descendants). Hence the information content of this

label is higher, and c4 will receive a higher similarity score than c3. For c5, labeled

{Casserole}, LA = {Meat,Dairy}. Because inclusion probability associates more

objects with this label than with the label {Beef,Dairy}, c5 will receive a lower

similarity score than c4.

7.2 Related Work

We have introduced in Chapter 3 three groups of similarity measures which

can be applied to taxonomies: the term-similarity measures, the common-term mea-

sures, the measures that combine the similarity scores between individual pairs of

terms. In this section, we briefly review some of them, which are evaluated and

compared with our measures in the experimental section.

The simplest measure we studied was Common Term Count, which ranks

candidates based solely on the number of terms they have in common with the

target. We also evaluated the Jaccard measure, a normalized form of Common

Term Count that is commonly used to measure similarity in IR tasks. If LT and

LC represent the labels of the target and candidate objects respectively:

simJaccard(T, C) =
|LT ∩ LC |
|LT ∪ LC |

Another two analogous measures that are also based on common terms are

Common Term IC and its normalized form. For these two measures, we weight

141

each common term by its information content. For the measure of Common Term

IC, we sum the information content of the common terms to determine similarity:

simCTIC(T, C) =
∑

a∈LT ∩LC

I(a)

We then normalize this measure by comparing the common information content to

the total information content of all the terms in the two labels:

simNorm−CTIC(T, C) =
2 ∗∑

a∈LT ∩LC
I(a)∑

t∈LT
I(t) +

∑
c∈LC

I(c)

We also considered the measure proposed by Wang et al.[109] and the one

proposed by Halkidi et al.[45]. These two measures are not based solely on common

terms, but also count as similar pairs of terms that are close in the taxonomy. They

calculate the pairwise similarity of individual terms from the target and candidate

labels, and combine these to produce an overall score.

As mentioned in Chapter 3, Wang et al.’s measure uses a generalized form of

Lin’s similarity measure to determine the similarity of each term-pair. If t and c are

the target and candidate terms:

simLin∗(t, c) =
2 ∗maxta∈Terms(Anc(c)∩Anc(t))(I(ta))

I(t) + I(c)

Note that this is not the same as applying our formulation in Definition 7 to a pair of

single terms, and does not follow directly from Lin’s axiomatic definition of similarity

in Equation 7.1 because it considers only a portion of the commonality between the

terms (selecting the least common ancestor with the maximum information content).

Given this definition of term similarity, Wang et al.’s measure combines the pairwise

142

similarities by averaging them across all pairs of terms in the two labels:

simWang(T, C) =
1

|LT ||LC |
∑

t∈LT ,c∈LC

simLin∗(t, c)

Halkidi et al. used the similarity measure defined by Wu and Palmer[114] to

compute the similarity of term pairs, but it is unclear how to generalize this to a

taxonomy structured as a DAG. Hence we instead used the same generalized form

of Lin’s measure as Wang et al. in order to evaluate Halkidi et al.’s measure:

simHalkidi−IC(T, C) =

1

2

⎡
⎣ 1

|LT |
∑

t∈LT

max
c∈LC

(simLin∗(t, c))+

1

|LC |
∑

c∈LC

max
t∈LT

(simLin∗(c, t))

⎤
⎦

Note that Halkidi et al.’s measure considers each term individually, and finds

the most similar term from the other set. Then, the similarity of these best matches

is averaged over the terms in each set. Finally, the average similarity from the two

sets is combined with equal weight.

It is important to note that our holistic measures simH and simG do not

belong to any of these groups. Unlike the term similarity measures, they can be

used when labels contain multiple terms. Unlike the common term measures, they

take distinct but similar terms into account. Unlike the pairwise measures, they

do not consider individual terms, but rather take all the terms in each label into

account simultaneously.

In Section 7.4, we describe how we evaluated our similarity measures using

the taxonomy and associations defined by the Gene Ontology[7]. Other authors

143

have also used taxonomic similarity measures over the Gene Ontology to address

the problem of finding gene products similar to a specified target. For example,

Lord et al.[69] evaluate the Resnik and Lin measures, and a distance measure due

to Jiang and Conrath[58], by determining how well their similarity scores correlate

with similarities discovered by comparing the genetic sequences of the target and

candidate objects. Similarly, Wang et al.[109] evaluate their measure by determining

how well it correlates with functional properties derived from gene expression data.

7.3 Implementation

To accommodate both large taxonomies and large corpora of objects, we built

our implementation in the context of an object-relational database management

system, specifically IBM DB2 Universal Database V8.2.2 We believe this approach

offers a number of advantages. In the first place, storing the corpus in a database

allows the full power of SQL to be used to select those objects of interest in a

particular situation. For example, a user searching for similar objects in a large

database of gene products may wish to restrict the search to human gene products.

Secondly, the ability to extend the database management system with user-defined

types and functions allowed us to implement certain critical operations very effi-

ciently within the database, without requiring large amounts of data to be retrieved

for manipulation by an application.

In our implementation, each similarity measure is implemented as an SQL

2http://www.ibm.com/software/data/db2/udb/

144

query against a set of relations with a fixed schema. The primary purpose of these

relations is to present, in a standard format, the taxonomy itself and the associations

between terms from the taxonomy and objects in the corpus. In our database, the

taxonomy is represented as a table of (parent term id, child term id) pairs; the

associations are represented as (term id, object id) pairs. Since the associations for

the target and candidate objects may in general come from different sources, we use

separate relations to represent them. These relations may be base tables, but are

more likely views created over the native representation of the associations.

Once the taxonomy and the associations have been specified, additional tables

are defined to store information that can be precomputed once and used repeat-

edly in subsequent evaluations of the similarity measure. We will provide more

information on this auxiliary data in Section 7.3.2.

7.3.1 User-Defined Types

Within each query, certain critical operations are implemented as User Defined

Functions (UDF’s) that operate on User Defined Types (UDTs) represented in the

database as Binary Large Objects (BLOBs). Two types of operations warranted

such special treatment.

Firstly, the taxonomy is naturally represented as a directed graph, and a key

step in the evaluation of simH , simG, and various other measures involves the deter-

mination of common ancestors between the labels of target and candidate objects.

Therefore, we have made extensive use of a general-purpose graph library for DB2.

145

The library allows graphs to be constructed efficiently from database data using

a user-defined aggregate function. Once constructed, they can be stored in the

database as BLOBs and manipulated by UDFs that implement a wide range of

graph-theoretic operations, e.g. finding the in-neighbor region of a node, intersect-

ing graphs, etc. Table functions are provided that return the edges or nodes in a

graph, along with payload values and various properties, e.g. the incoming edge

count for a node. A full discussion of the graph library, which scales to very large

graphs, is beyond the scope of this chapter.

A second critical step in the evaluation of simH and simG is the determina-

tion of the inclusion probabilities of particular labels. To determine the inclusion

probability of a label L, one must know its frequency, that is, the number of objects

in the corpus to which all of the terms in L apply. Recall that a term t applies to

an object o if and only if the ancestor graph of the object’s label includes the term

in question, i.e. if t ∈ Terms(Anc(o)).

In principle, one could precompute frequencies for each of the 2|N | combinations

of terms that can be used as a label. For taxonomies of realistic size, however, this

approach is impractical. Instead, we build an inverted list for each term, identifying

the objects to which the term applies, i.e. those objects whose labels contain the

term or any of its descendants. Let O(t) denote the list of objects for term t. The

frequency of a label can then be determined by finding the size of the intersection

of the inverted lists of its individual terms. The inclusion probability is therefore:

pi(L) =
| ∩t∈L O(t)|
|O|

146

Like the taxonomy graph, the inverted lists are implemented as a User Defined Type

optimized to support the operations needed to compute label frequency: intersection

and length. The inverted list UDT stores a list of object identifiers as a simple

vector. Identifiers can be inserted in any order as the list is built (using a user-

defined aggregate function), and the list is sorted once when insertion is complete.

The intersection of two lists can be computed with a single pass through both lists,

and a user-defined aggregate function is provided to find the intersection of a set of

lists.

7.3.2 Precomputation

In principle, all the information needed to compute simH or simG can be

derived dynamically from the relations that define the taxonomy and the association

corpus. However, certain information used to find and rank candidate objects can

be used repeatedly for different target objects, as long as neither the taxonomy nor

the corpus changes. In this section we consider several situations in which we chose

to precompute such values.

Whenever a target and candidate object are compared, we need to find the

intersection of their respective ancestor graphs. Furthermore, at least in our exper-

iments, the same candidates are evaluated for many different targets. We therefore

precompute the ancestor graph for the label of each object in the corpus of can-

didate objects. The graph library can generate ancestor graphs quite quickly, so

precomputation is practical even for corpora of large size. The space requirement is

147

modest, because the ancestor graph for an object is typically a small fraction of the

entire taxonomy. Details for our experimental scenario can be found in Section 7.4.

Updates to the candidate corpus can be handled incrementally, but updates to the

taxonomy may require a complete recomputation of these graphs.

Note that we only precompute the ancestor graphs for candidate object labels,

not target object labels, because each target object is generally only referenced once.

However, we also precompute the ancestor graph for each individual term in the

taxonomy. These graphs make the dynamic computation of ancestor graphs for

target object labels more efficient, and are reused many times since many targets

refer to the same terms. They consume much less space than the candidate label

ancestor graphs, because there are far fewer terms than labels, and each graph is

smaller. The term ancestor graphs are not affected by updates to the corpus, but

may need recomputation when the taxonomy changes.

We also precompute the inverted lists. For each term in the taxonomy, we

build a list containing the identifiers of all objects in the corpus that contain the

term, or a descendant of the term, in their label. This is for the purpose of finding

the inclusion probability of an arbitrary label by intersecting the lists corresponding

to its terms. Note that the size of these lists is proportional to the size of the corpus.

The lists can be updated incrementally as objects are added to the corpus, but may

need to be recomputed if objects are deleted or the taxonomy changes.

148

7.4 Experimental Evaluation

Similarity measures are difficult to evaluate, since similarity of objects is nor-

mally subjective in nature and individuals may differ in how they rank candidate

objects with respect to a particular target. Other authors have tried to work around

this problem by comparing their rankings to those of a panel of human subjects (e.g.,

[94, 66]) or to an independent measure of similarity appropriate to their domain (e.g.,

[69, 109, 60]).

We took a different approach. In search of a result that could be more objec-

tively quantified, we applied our similarity measures to the more difficult problem

of matching. Suppose that two sources of associations are using the same taxonomy

to assign labels to objects. Given the label of a target object as supplied by one

source, the task is to find the same object in a corpus of labels supplied by another

source. In our experiments, the two sources use a common identifier for objects, so

it is easy to verify that a match has been found.

Specifically, we use the Gene Ontology (GO)[7] as the taxonomy in our ex-

periments. This taxonomy contains about 17000 terms, and can be represented by

a graph with as many nodes and about 22000 edges. The terms are divided into

three independent facets, representing a gene product’s cellular location(s), molecu-

lar function(s) and the biological process(es) in which it participates. Each facet is

a directed acyclic graph, and in our experiments, we ignored the facets and consid-

ered all terms as a single label. The relationships between terms are characterized

as either is-a or part-of. We also ignored this distinction, since both relationships

149

possess the transitive behavior that underlies our understanding of classification.

Finally, a small number of terms in the taxonomy are considered obsolete, and have

been gathered together as children of a special node. We removed these nodes from

the taxonomy, since their location in the taxonomy does not reflect their semantics.

Various organizations have used the GO taxonomy to annotate a large number

of gene products, and the taxonomy and annotations can be downloaded from the

GO Consortium.3 Over one million gene products have been annotated with over

4 million term associations, but we restrict our attention to human gene products

registered in the SwissProt databank, which number about 28000. Almost all of

these gene products have annotations supplied by the UniProt Knowledgebase[5],

and we use these gene products as our candidate objects. There are approximately

110000 annotations for these objects, and these annotations constitute our corpus of

term associations. We removed only those annotations that associate a gene product

with an obsolete term.

Of the 28000 gene products, 5789 also have annotations supplied by Proteome,

Inc.4 These gene products constitute our target objects, and the corresponding set of

about 20000 annotations becomes our target associations. Therefore our matching

task is: given the annotations for a gene product supplied by Proteome Inc., find

the same gene product using the annotations supplied by UniProt.

We note that this is inherently a very difficult problem. The two organizations

that generated the annotations we use for matching are completely independent.

3http://www.geneontology.org
4http://www.proteome.com

150

They did not necessarily have the same goals or use the same guidelines in assign-

ing terms to gene products, nor did they necessarily work from the same source

information. Furthermore, the space to search is large (28000 objects), and often

contains many objects similar to the desired target.

To apply a similarity measure to this problem, we rank the candidate objects

using the similarity measure, and then determine whether the matching object is

found in the top K objects as ranked by the measure. We also keep track of the

depth in the candidate list at which the matching object was found.

In practice, it is too expensive to compute the similarity score of a target with

respect to all 28000 objects in the corpus. Hence we applied the following heuristic

to limit the candidate set: we considered as candidates only those objects whose

labels have at least one term in common with the label of the target object. We

chose this heuristic because it could be applied to all the measures we wished to

evaluate, some of which are based entirely on common terms and their properties.

However, it should be noted that for many target objects, the labels supplied by the

two organizations have no terms in common. Thus, regardless of the measure used,

this heuristic limits the number of targets that can be successfully matched to a

maximum of 3660 of 5789, or 63.2%. We considered other heuristics for determining

the candidate set; see Section 7.4.3 for discussion.

151

7.4.1 Results

We tested simH , simG and the six measures described in Section 7.2 on targets

from the set of 5789 gene products annotated by both UniProt and Proteome, Inc.

Using the candidate-selection heuristic described above, we calculated the similarity

score for each candidate with respect to the target. If the measure ranked the object

corresponding to the target among the top 100 candidates, we considered it to have

found a match. While this may seem like a generous definition of success, we note

again the inherent difficulty of the matching problem.

We calculated the success rate for each measure, along with the depth at which

the matching object was found, averaged over the successful matches. The results

are presented in Table 7.2.5

Recall that the maximum possible success rate using the common-term heuris-

tic for candidate selection is 63.2%.

We do not compare the measures on the basis of speed, since we made a

concerted effort to reduce costs only for simH and simG. However, we note that

our strategy of precomputation enabled us to test a single candidate in about 4.4ms

using simG and about 6.4ms using simH . These values are for a 2.4GHz Pentium

4 with 1Gb of memory, running Windows XP and DB2 UDB v.8.2. The space

requirements for the precomputed object ancestor graphs, term ancestor graphs

and term inverted lists were modest: 122Mb, 40Mb and .5Mb, respectively.

5For one measure where we did not test the entire set of targets, a confidence interval is provided

for the success rate.

152

Method Success Rate (%) Average Depth

simH 39.3 23.9

Common Term IC 39.1 22.2

simG 37.5 25.2

Normalized CT IC 36.9 25.4

Halkidi IC 36.1 26.2

Common Term Cnt. 35.2 28.4

Jaccard 30.9 28.7

Wang 24.5 (± 2.42@95%) 35.9

Table 7.2: Comparison of Similarity Measures

7.4.2 Discussion

Although the differences in the success rates are not striking, some observations

can be made. Firstly, the measures based solely on common terms did not adequately

take into account pairs of terms that were closely related, but not identical. Because

such pairs do not contribute at all to the similarity score, common-term measures

that penalize candidates for terms that are not shared with the target understate

similarity to a greater extent than those which do not. Thus, both Common Term

Count and Common Term IC, which ignore unmatched terms, outperformed

their normalized counterparts, Jaccard and Normalized Common Term IC,

which incur a penalty for unmatched terms. For the holistic measures, all terms

contribute to the similarity score, and indeed simH outperforms the other measures.

However, our candidate-selection heuristic requires each candidate to have at least

one term in common with the target. While this heuristic provides a level playing

153

field for comparing the various measures, it limits the beneficial effect of taking

related (but not common) terms into account. We explore the effects of relaxing

this restriction in Section 7.4.3.

We also observe that measures that weight the importance of pairs of com-

mon terms based on their information content performed better than the analogous

measures based on counting common terms. In particular, Common Term IC

outperformed Common Term Count, and Normalized Common Term IC

outperformed Jaccard.

The differences among the measures based on information content stem from

differences in how similarity is derived from information content in each case. Both

Wang and Halkidi IC normalize the common information content of each term-

pair independently, and then combine these normalized values to reach an overall

similarity value. As a result, term-pairs with relatively low common information

content are given the same weight as pairs with much greater common information

content. This is particularly so in the case of Wang, which pairs each term with

every other, as opposed to Halkidi IC, which just pairs each term with its best

match. However both measures suffer in comparison to those based on common

term information content, which weight each common term in accordance with its

information content. Another source of error in these measures is correlation. If a

label contains two terms whose occurrence is correlated, these measures overestimate

their information content when they occur together.

The holistic measures simH and simG avoid both these problems by calculating

the combined information content of all the terms in each relevant set. Although we

154

believe that generic labeling with interior terms occurs pervasively in our corpus,

we note that simH outperformed simG in our experiments. We believe this reflects

our choice of a matching problem rather than one based strictly on similarity. The

difference between the measures is that simG does not penalize a candidate for being

labeled with terms that are more specific than those used to label the target. This

may elevate the score of the matching candidate enough to make it competitive

with others labeled with more general terms. However, it also elevates the scores

of candidates that use more specific terms than the matching candidate and its

competitors, which has the opposite effect. If one views the terms associated with

the target as requirements, these additional candidates satisfy the requirements as

well as the matching candidate does, and therefore they are equivalently similar.

But in a matching problem, we are looking for a particular object, and the presence

of the others makes finding it more difficult.

7.4.3 Candidate Selection

As we mentioned previously, all the measures we evaluated were limited by our

candidate-selection heuristic. For the measures entirely based on common terms,

this limitation does not hurt, since objects that have no terms in common with the

target have a similarity score of zero. However, the other measures we evaluated

have the potential to find additional matches if we consider additional candidates.

We tested this hypothesis with an alternative candidate-selection heuristic.

For each association between a target object and a term, we augmented the set of

155

KNN Patent ID Score Title

0 14019 1.0 ’Apparatus and method for collecting flue gas particulate
with high permeability filter bags’

0 47255 0.9673537 ’Advanced hybrid particulate collector and method of
operation’

0 195208 0.9673537 ’Volatile materials treatment system’
0 265087 0.9673537 ’Char for contaminant removal in resource recovery unit’
2 304641 0.9673537 ’System and method for removing gas from a stream of

a mixture of gas and particulate solids’
0 344644 0.9673537 ’Electric dust collector and incinerator’
1 21467 0.9441908 ’Thief process for the removal of mercury from flue gas’
0 25179 0.9441908 ’Multi-stage particulate matter collector’
1 473644 0.9441908 ’Method of regulating the flue gas temperature and

voltage supply in an electrostatic precipitator...’
0 92698 0.92622423 ’Electrically enhanced electrostatic precipitator with

grounded stainless steel collector electrode...’
0 354751 0.92622423 ’Device and method for filtering internal combustion

engine exhaust gases and vehicle equipped’...’

Table 7.3: Patent Similarity Search

terms associated with the target by adding associations between the target object

and the original term’s immediate neighbors. We then used as candidates all objects

that have at least one term in common with this expanded set. We refer to this

heuristic as KNN-1, because the candidate set comprises those objects that are

described by at least one of the original terms or a neighboring term one hop away.

The original common term heuristic could be described as KNN-0; KNN-2 and other

values could be considered as well.

When we tested simH with KNN-1 on the matching problem, we found that

it raised the success rate from 39.3% to 40.5%. Although not a dramatic increase,

this suggests that our measures can find similar objects even when they have no

terms in common with the target. However, the time required to match a target

is proportional to the number of candidates considered, and increasing the value

156

of N increased the number of candidates to test significantly. For KNN-0 on our

dataset, the average number of candidates per target was 1429. For KNN-1 this

rose to 3705, causing a greater than twofold increase in the average time required

to match a target. For KNN-2, the average number of candidates rose to 6824.

We also tested the KNN candidate-selection heuristic on a second dataset.

The United States Patent and Trademark Office (USPTO) maintains a classifica-

tion scheme for patents based on a tree-structured taxonomy of about 160000 terms,

referred to as classes and subclasses.6 Individual patents are labeled with one or

more terms from the taxonomy. We tested simH and simG on a corpus of approxi-

mately 500000 patents filed between 2001 and 2003, as classified by about 1.9 million

associations between patents and terms.

While we could not perform an objective matching experiment with this dataset,

it nevertheless provided a number of interesting opportunities for evaluating our

measures and their implementation. Firstly, we were able to verify that our imple-

mentation could scale to a much larger corpus and a much larger taxonomy with

satisfactory performance. The USPTO taxonomy also has a different structure than

the GO taxonomy; it is broader and flatter, and does not have facets or multiple

inheritance. Finally, our candidate-selection heuristics generated fewer candidates

per target than in the matching experiment. We were thus able to more easily ob-

serve the value of the KNN heuristic, coupled with our measures’ ability to detect

similarity without the presence of common terms between the candidate and target

objects.

6http://www.uspto.gov/web/patents/classification/

157

Table 7.3 shows the combined result of three similarity searches for a typical

target, with KNN values of 0, 1 and 2. The first patent listed, ID 14019, is the

target, and thus had a perfect similarity score of 1.0. Below, similar patents are

listed with their similarity scores, as well as the KNN value of the search in which

they were initially found. For example, patent 304641 was found by the search

that used KNN-2 to select candidates, and scored as highly as any of the patents

found with smaller KNN values. Similarly, two other highly-scored patents were

found with KNN-1 that would not have been found with KNN-0, nor by any of the

measures that rely solely on common terms.

7.5 Summary

Similarity ranking of objects labeled using a taxonomy is an interesting prob-

lem with a variety of useful applications. Our work has made several contributions

to the state of the art. Starting from Lin’s axiomatic definition of similarity, we

developed new similarity measures that are applicable to real classification systems,

in which the taxonomy can be structured as a DAG, objects can be labeled with

multiple terms, internal terms can be used in labels, and different users may label

the same object in different ways.

We implemented our measures using SQL and a pair of libraries for specialized

data structures, realized as user-defined types. The result is a flexible, scalable

implementation that is tightly integrated with a database management system and

achieves good performance through strategic precomputation of key data structures.

158

We evaluated our measures on an object-matching task using the Gene Ontol-

ogy, a taxonomy with all the properties noted above. Our experiments show that

Our measures were more successful at matching objects than those reported in the

literature. We also tested our measures on a search task, using the patent classi-

fication taxonomy of the USPTO to find patents similar to a specified target. We

evaluated two heuristics for candidate selection, a critical issue for large data sets.

159

Chapter 8

Future Work

In this chapter, we present future directions for improving or extending our

work on ontologies and ontology-based query answering.

8.1 Improving Performance of Ontology-Extended Systems

It is true that on average, existing ontologies in various domains have a mod-

erate size (usually of the order of hundreds of terms) [102]. For example, most

ontologies at www.daml.org have less than 500 terms. However, recently, in some

application domains, we often encounter ontologies of huge size. For example, the

Gene Ontology has 17000 nodes and the taxonomy of the United States Patent and

Trademark Office has 160000 nodes.

On the other hand, in previous chapters, we have presented experimental re-

sults to demonstrate that our algorithms can scale well to handle certain amount

of data. However, most of the operations are still memory-based, e.g., query pro-

cessing and ontology integration. It is not efficient to frequently run graph-based

operations on a large ontology in memory. Hence, it would be natural to have some

index structures to take those operations on large ontologies into account. This

ontology-based indexing mechanism will help our system respond to user’s queries

in much shorter time. Furthermore, with such index structures at hand, it would be

160

feasible to design algorithms in support of disk-based integration for large ontologies.

8.2 Learning Ontologies and Interoperation Constraints

In Chapter 4 and Chapter 6, we show how to integrate graph-based and RDF

ontologies respectively. These efforts also present a challenge in finding interopera-

tion constraints. In our HOME (Chapter 4) and TOSS (Chapter 5) systems, there

is a component called Ontology Maker. It automatically takes relational or XML

data as input and uses WordNet [77] and user-specified rules to generate ontolo-

gies. Inside Ontology Maker, there is a subcomponent called Rule Maker, which

helps users to specify the interoperation constraints between ontologies. However,

it is not reasonable to assume that end-users can always provide interoperation con-

straints. In our probabilistic ontologies project [102], we have proposed an algorithm

to infer simple equality constraints. This part of our work is yet far from completion.

Learning ontologies and interoperation constraints are still open problems [72, 33].

Notice that there has been a strong interest in recent years to learn ontologies

from multimedia data, such as audio and video data. Such ontologies can be used

to convey semantics in audio and video and to answer semantic queries over the

multimedia data.

On the other hand, we often need to incrementally maintain the interoperation

constraints when changes are made to the ontologies. In [32], we present method-

ologies for maintaining mappings (constraints) between evolving schemas by using

the rich constructs in OWL. This area is still relatively new, however, and more

161

efforts are needed as well as collaboration with other areas (e.g., machine learning

and natural language processing).

8.3 Semantic Similarity Join

As we mentioned in Chapter 3, it is often the case that the same entity may

have different representations (identifications) in heterogeneous data sources. In

previous approaches for integrating such data sources, people usually assume that

objects from different data sources can be mapped into a globe domain such that

matching those objects is easy. However, in practice, such a common domain is not

easy to construct due to the subtle difference on the semantics of the objects as well

as various understandings to the semantics of even a single object. Hence, several

research groups have investigated various methods of approximate joins between

string-valued or text-valued columns in relational databases.

Cohen [27] proposes a system called WHIRL to reason about the similarity

of textual values in databases. The similarity is measured using the vector-space

model based on the intuition that two documents are more similar if they share more

pairs of terms with high weights. The system relies on an A* search to return the

highest-scoring answers efficiently. Gravano et al. [39] present a filtering technique

for computing approximate string joins based on the notion of edit distance. Their

core idea is to match the q-grams (substrings of length q) of the two strings to

be compared. They have identified three important q-gram properties to filter the

candidate set of strings for join. Later, Gravano et al. [38] propose a sampling-based

162

technique for approximate text join by adopting the cosine similarity metric over

the vector-space model. To join relation R1 and R2, they extract a sample set of

tuples from relation R2 for each tuple t in R1. This sample set contains tuples highly

similar to t. For each tuple t′ in R2, whether t′ should be put into the sample set

for tuple t in R1 depends on a probability function approximating the similarity

between t and t′.

However, none of these decent methods considers the semantic similarity func-

tions based on taxonomies (ontologies). On the other hand, these approaches are

not applicable for joining two sets of ontological terms since they are based on edit

distance or the cosine similarity metric. Hence, it would be interesting to investigate

new join methods that take ontology-based similarity functions into account.

8.4 Semantic Web Databases

Recently, there has been a large amount of web data and services available in

RDF. Several research teams have been working on the formal aspects of the RDF

data model, the RDF model’s extension to represent additional information (e.g.,

temporal and context-dependent data), and query processing on RDF data.

Many query languages for RDF data have been proposed, e.g., RQL [59],

RDQL [93], and SPARQL [89]. Considering that RDF data on the web is sub-

ject to frequent change, several research groups have been working on RDF views

and the maintenance. For example, Voltz et al [108] introduced an RDF view mech-

anism which requires that (i) the results contain class instances (i.e., a subject or

163

object variable), or (ii) the result itself has the pattern of RDF statement (i.e., a

triple containing subject, predicate and object). Later, Hung et al [54] developed

sophisticated view maintenance algorithms that take the graph structure of RDF

data into account in order to answer queries very efficiently. They also proposed

an efficient algorithm to answer aggregate queries over RDF databases and a set of

algorithms to maintain views involving those aggregates.

The research efforts on RDF databases have also motivated the study on formal

aspects of RDF data model and query processing. Gutiérrez et al[44] have studied

the features of RDF data model (such as reification, typing and inheritance) as well

as the foundational aspects of RDF query languages (such as complexity of query

processing and query containment). They defined a formal query language for RDF

and investigated the theoretical aspects with regard to this language.

More recently, there has been a surge of interest on extending RDF data model

to represent temporal and context-dependent information. For example, Gutierrez

et al [43] present a framework to incorporate temporal reasoning into RDF. They

present both a syntax and a semantics for temporal RDF graphs. They also show the

complexity analysis for the entailment in temporal RDF graphs. Udrea et al [104]

presented a unified framework, annotated RDF, to support all forms of reasoning in

RDF, such as temporal reasoning and uncertainty reasoning. In this framework, RDF

triples are annotated by members of a partially ordered set. They also presented

a formal semantics for annotated RDF and proposed algorithms for consistency

checking and query answering in this extend RDF data model.

Nevertheless, there is still a large set of open issues in this area to explore, for

164

instance, how to represent temporal, spatial and uncertainty information in OWL

data model; how to query on these extended OWL data models; how to learn such

models from data etc. OWL has more complicated features and constructs than RDF

which has made the extension of OWL data model very interesting and challenging.

8.5 OWL Integration

In Chapter 4 and Chapter 6, we show how to integrate graph ontologies and

RDF ontologies respectively. It would be interesting to continue this journey on

OWL ontologies as well. Yet, integrating OWL ontologies is a more challenging

task due to the more complex features and constructs in the model. There are a

range of problems to be considered in this task, e.g., consistency checking, how to

eliminate inconsistency from an integrated ontology, how to incorporate open-world

assumption in the integration, etc.

165

BIBLIOGRAPHY

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-

Wesley, 1995.

[2] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for keyword-

based search over relational databases. In ICDE ’02: Proceedings of the 18th

International Conference on Data Engineering (ICDE’02), Washington, DC,

USA, 2002.

[3] S. Al-Khalifa, C. Yu, and H. V. Jagadish. Querying structured text in an

XML database. In Proc. ACM SIGMOD Conf. on Management of Data, San

Diego, CA, 2003.

[4] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram. TeXQuery: A full-text

search extension to XQuery. In WWW2004, pages 583–594, New York, USA,

2004.

[5] R. Apweiler, A. Bairoch, C. Wu, W. Barker, B. Boeckmann, S. Ferro,

E. Gasteiger, H. Huang, R. Lopez, and M. Magrane. UniProt: the univer-

sal protein knowledgebase. Nucleic Acids Res., 32(1):D115–119, Jan. 2004.

[6] Y. Arens, C. Y. Chee, C. N. Hsu, and C. A. Knoblock. Retrieving and in-

tegrating data from multiple information sources. International Journal of

Cooperative Information Systems, 2(2):127–158, 1993.

[7] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry,

A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P.

166

Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson,

M. Ringwald, G. M. Rubin, and G. Sherlock. Gene Ontology: Tool for the

unification of biology. Nature Genetics, 25(1):25–29, May 2000.

[8] F. Baader, I. Horrocks, and U. Sattler. Description logics as ontology lan-

guages for the Semantic Web. Lecture Notes in Artificial Intelligence, 2003.

[9] A. Balmin, V. Hristidis, and Y. Papakonstantinou. ObjectRank: Authority-

based keyword search in databases. In Proceedings of the 30th VLDB Confer-

ence, Toronto, Canada, 2004.

[10] C. Baral, S. Kraus, and J. Minker. Combining multiple knowledge bases.

IEEE Transaction on Knowledge and Data Engineering, 3(2):208–220, 1991.

[11] C. Baral, S. Kraus, J. Minker, and V. S. Subrahmanian. Combining knowledge

bases consisting of first order theories. Computational Intelligence, 8(1):45–71,

1992.

[12] C. Baral, S. Kraus, J. Minker, and V. S. Subrahmanian. Combining default

logic databases. International Journal on Intelligent Cooperative Information

Systems, 3(3):319–348, 1994.

[13] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,

P. F. Patel-Schneider, and L. A. Stein. OWL Web ontology language reference.

W3C recommendation. http://www.w3.org/TR/owl-ref/, 10 February 2004.

[14] S. Benferhat and S. Kaci. Logical representation and fusion of prioritized

information based on guaranteed possibility measures: application to the

167

distance-based merging of classical bases. Artificial Intelligence, 148(1-2):291–

333, 2003.

[15] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific

American, May 2001.

[16] I. Bhattacharya and L. Getoor. Relational clustering for multi-type entity

resolution. In The 11th ACM SIGKDD Workshop on Multi Relational Data

Mining (MRDM-05), 2005.

[17] I. Bhattacharya and L. Getoor. A latent dirichlet model for unsupervised

entity resolution. In The 6th SIAM Conference on Data Mining (SIAM SDM-

06), 2006.

[18] I. Bhattacharya and L. Getoor. Iterative record linkage for cleaning and in-

tegration. In The 9th ACM SIGMOD Workshop on Research Issues in Data

Mining and Knowledge Discovery, Paris, France, June 2004.

[19] P. Bonatti, Y. Deng, and V. S. Subrahmanian. An ontology-extended re-

lational algebra. In Proceedings of the IEEE International Conference on

Information Reuse and Integration (IEEE IRI 2003), 2003.

[20] P. Bonatti, M. L. Sapino, and V. S. Subrahmanian. Merging heterogeneous

security orderings. Journal of Computer Security, 5(1):3–29, 1997.

[21] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stucken-

schmidt. C-OWL: Contextualizing ontologies. In International Semantic Web

Conference, pages 164–179, 2003.

168

[22] D. Brickley and R. Guha. RDF vocabulary description language 1.0: RDF

Schema. W3C recommendation. http://www.w3.org/TR/rdf-schema/, 10

February 2004.

[23] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search

engine. In Proceedings of the 7th WWW Conference, Brisbane, Australia,

1998.

[24] D. Calvanese, G. D. Giacomo, and M. Lenzerini. A framework for ontology

integration. In Proc. of the First Semantic Web Working Symposium, pages

303–316, 2001.

[25] D. Calvanese, G. D. Giacomo, and M. Lenzerini. Description logics: Foun-

dations for class-based knowledge representation. In Proc. of the 17th IEEE

Sym. on Logic in Computer Science (LICS 2002), pages 359–370, 2002.

[26] L. Cholvy and C. Garion. Answering queries addressed to several databases

according to a majority merging approach. J. Intell. Inf. Syst., 22(2):175–201,

2004.

[27] W. W. Cohen. Integration of heterogeneous databases without common do-

mains using queries based on textual similarity. In Proc. ACM SIGMOD,

pages 201–212, Seattle, WA, 1998.

[28] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string

metrics for matching names and records. In Proc. of the First Workshop on

Data Cleaning, Record Linkage, and Object Consolidation, 2003.

169

[29] D. Connolly, F. van Harmelen, I. Horrocks, D. L. McGuinness, P. F. Patel-

Schneider, and L. A. Stein. DAML+OIL (March 2001) reference descrip-

tion. W3C note. http://www.w3.org/TR/daml+oil-reference, 18 December

2001.

[30] http://www.ibm.com/software/data/db2/extenders/textinformation/index.html,

2001.

[31] DBLP XML records. Available at http://dblp.uni-trier.de/xml/, Nov

2003.

[32] Y. Deng, H. Kuno, and K. Smathers. Managing the evolution of simple and

complex mappings between loosely-coupled systems. In Proceedings of the

Second Workshop on Semantics in Peer-to-Peer and Grid Computing at the

Thirteenth International World Wide Web Conference, New York, USA, 2004.

[33] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and A. Halevy. Learning

to match ontologies on the Semantic Web. VLDB Journal, Special Issue on

the Semantic Web, 12(4):303–319, 2003.

[34] X. Dong, A. Halevy, and J. Madhavan. Reference reconciliation in complex

information spaces. In SIGMOD Conference, Baltimore, USA, 2005.

[35] X. Dong, A. Y. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Simlarity

search for Web services. In VLDB, pages 372–383, Toronto, Canada, 2004.

170

[36] D. Florescu, D. Kossmann, and I. Manolescu. Integrating keyword search into

XML query processing. In Proceedings of the 9th International World Wide

Web Conference, Amsterdam, The Netherlands, 2000.

[37] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv,

J. Ullman, V. Vassalos, and J. Widom. The TSIMMIS approach to media-

tion: Data models and languages. Journal of Intelligent Information Systems,

8(2):117–132, 1997.

[38] L. Gravano, P. Ipeirotis, N. Koudas, and D. Srivastava. Text joins in an

RDBMS for Web data integration. In WWW 2003, pages 90–101, Budapest,

Hungary, 2003.

[39] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan,

and D. Srivastava. Approximate string joins in a database (almost) for free.

In VLDB 2001, pages 491–500, 2001.

[40] G. Greco, S. Greco, and E. Zumpano. A logical framework for querying and

repairing inconsistent databases. IEEE Transactions on Knowledge and Data

Engineering, 15(6):1389–1408, 2003.

[41] T. R. Gruber. A translation approach to portable ontology specifications.

Knowledge Acquisition, 5(2):199–220, 1993.

[42] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked

keyword search over XML documents. In SIGMOD, San Diego, USA, 2003.

171

[43] C. Gutiérrez, C. Hurtado, and A. Vaisman. Temporal RDF. In European

Semantic Web Conference (ESWC2005), pages 93–107, Heraklion, Greece,

2005.

[44] C. Gutiérrez, C. A. Hurtado, and A. O. Mendelzon. Foundations of Semantic

Web databases. In PODS, pages 95–106, 2004.

[45] M. Halkidi, B. Nguyen, I. Varlamis, and M. Vazirgiannis. THESUS: Organiz-

ing Web document collections based on semantics and clustering. Technical

Report 230, INRIA Project Gemo, 2003.

[46] P. Hayes. RDF semantics. http://www.w3.org/TR/rdf-mt/, 10 February

2004.

[47] J. Heflin. Towards the Semantic Web: Knowledge representation in a dynamic,

distributed environment. Ph.D. Dissertation, 2001.

[48] J. Heflin and J. Hendler. Semantic interoperability on the Web. In Proceedings

of Extreme Markup Languages 2000, pages 111–120, Alexandria, VA, 2000.

Graphic Communications Association.

[49] M. A. Hernandez and S. J. Stolfo. The merge/purge problem for large

databases. In SIGMOD Conference, pages 127–138, 1995.

[50] I. Horrocks, D. Fensel, J. Broekstra, S. Decker, M. Erdmann, C. Goble, F. van

Harmelen, M. Klein, S. Staab, R. Studer, and E. Motta. OIL: The ontology in-

ference layer. Technical Report IR-479. Vrije Universiteit Amsterdam, Faculty

of Sciences. http://www.ontoknowledge.org/oil/, September 2000.

172

[51] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-style keyword

search over relational databases. In Proceedings of the 29th VLDB Conference,

Berlin, Germany, 2003.

[52] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword search in rela-

tional databases. In Proceedings of the 28th VLDB Conference, Hong Kong,

China, 2002.

[53] A. Huang, Q. Xue, and J. Yang. TupleRank and implicit relationship discovery

in relational databases. In WAIM, Chengdu, China, 2003.

[54] E. Hung, Y. Deng, and V. S. Subrahmanian. RDF aggregate queries and

views. In ICDE, Tokyo, Japan, 2005.

[55] E. Hung, Y. Deng, and V. S. Subrahmanian. TOSS: An extension of TAX

with ontologies and similarity queries. In SIGMOD, Paris, France, June, 2004.

[56] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, and K. Thompson. TAX:

A tree algebra for XML. In Proceedings of DBPL’01, Rome, Italy, 2001.

[57] M. A. Jaro. Probabilistic linkage of large public health data files. Statistics

in Medicine, 14:491–498, 1995.

[58] J. J. Jiang and D. W. Conrath. Semantic similarity based on corpus statistics

and lexical taxonomy. In Proceedings of International Conference on Research

in Computationa Linguistics, Taiwan, 1998.

173

[59] G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plex-

ousakis, M. Scholl, and K. Tolle. Querying the Semantic Web with RQL.

Computer Networks and ISDN Systems Journal, 42(5):617–640, 2003.

[60] J. Keller, M. Popescu, and J. Mitchell. Taxonomy-based soft similarity mea-

sures in bioinformatics. In Proceedings of the 2004 IEEE International Con-

ference on Fuzzy Systems, 2004.

[61] M. Klein, D. Fensel, F. van Harmelen, and I. Horrocks. The relation between

ontologies and schema-languages: translating OIL-specifications in XML-

schema. In Proceedings of the ECAI’00 workshop on applications of ontologies

and problem-solving methods, Berlin, German, Aug 2000.

[62] S. Konieczny. On the difference between merging knowledge bases and com-

bining them. In Seventh International Conference on Principles of Knowledge

Representation and Reasoning (KR’00), pages 135–144, 2000.

[63] S. Konieczny and R. P. Prez. Merging with integrity constraints. In Fifth

European Conference on Symbolic and Quantitative Approaches to Reasoning

with Uncertainty (ECSQARU’99), pages 233–244, 1999.

[64] O. Lassila and R. R. Swick. Resource description framework

(RDF) model and syntax specification. W3C recommendation.

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/, 22 February

1999.

174

[65] C.-J. Liau. A modal logic framework for multi-agent belief fusion. ACM Trans.

Comput. Logic, 6(1):124–174, 2005.

[66] D. Lin. An information-theoretic definition of similarity. In Proc. 15th Inter-

national Conf. on Machine Learning, pages 296–304. Morgan Kaufmann, San

Francisco, CA, 1998.

[67] J. Lin. Integration of weighted knowledge bases. Artif. Intell., 83(2):363–378,

1996.

[68] J. Lloyd. Foundations of Logic Programming. Springer Verlag, 1987.

[69] P. W. Lord, R. D. Stevens, A. Brass, and C. A. Goble. Investigating seman-

tic similarity measures across the Gene Ontology: The relationship between

sequence and annotation. Bioinformatics, 19(10):1275–1283, 2003.

[70] J. Lu, G. Moerkotte, J. Schue, and V. S. Subrahmanian. Efficient mainte-

nance of materialized mediated views. In Proc. 1995 ACM SIGMOD Conf.

on Management of Data, San Jose, CA, 1995.

[71] S. Luke, L. Spector, D. Rager, and J. Hendler. Ontology-based Web agents.

In Proceedings of the First International Conference on Autonomous Agents,

pages 59–66, New York, NY, 1997. Association of Computing Machinery.

[72] A. Maedche and S. Staab. Learning ontologies for the Semantic Web. In

SemWeb, 2001.

175

[73] D. Maluf and G. Wiederhold. Abstraction of representation for interoperation.

Lecture Notes in AI, 1315, 1997.

[74] F. Manola and E. Miller. RDF primer. W3C recommendation.

http://www.w3.org/TR/rdf-primer/, 10 February 2004.

[75] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for

merging and testing large ontologies. In Proc. 7th Int. Conf. on Principles of

Knowledge Representation and Reasoning, 2000.

[76] http://msdn.microsoft.com/library, 2001.

[77] G. A. Miller. WordNet: A lexical database for English. Communications of

the ACM, 38(11):39–41, November 1995.

[78] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller. Intro-

duction to WordNet: an on-line lexical database. International Journal of

Lexicography, 3(4):235–244, 1990.

[79] M. Minsky. A framework for representing knowledge. The Psychology of

computer Vision, 1975.

[80] P. Mitra, G. Wiederhold, and J. Jannink. Semi-automatic integration of

knowledge sources. In Proc. of the 2nd Int. Conf. On Information FUSION’99,

1999.

176

[81] P. Mitra, G. Wiederhold, and M. Kersten. A graph-oriented model for articu-

lation of ontology interdependencies. In Proceedings Conference on Extending

Database Technology 2000 (EDBT’2000), Konstanz, Germany, 2000.

[82] A. Monge and C. Elkan. The field-matching problem: algorithm and applica-

tions. In Proc. of the Second International Conference on Knowledge Discovery

and Data Mining, 1996.

[83] National Library of Medicine. Medical subject headings fact sheet.

http://www.nlm.nih.gov/pubs/factsheets/mesh.html.

[84] N. F. Noy and M. A. Musen. PROMPT: Algorithm and tool for automated

ontology merging and alignment. In Proceedings of the Seventeenth National

Conference on Artificial Intelligence (AAAI-2000), 2000.

[85] http://technet.oracle.com/products/text/content.html, 2001.

[86] Parag and P. Domingos. Multi-relational record linkage. In KDD-2004 Work-

shop on Multi-Relational Data Mining, 2004.

[87] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser. Identity uncertainty

and citation matching. In Advances in Neural Information Processing (NIPS),

2002.

[88] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web on-

tology language semantics and abstract syntax. W3C recommendation.

http://www.w3.org/TR/owl-semantics/, 10 February 2004.

177

[89] E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF. W3C

candidate recommendation. http://www.w3.org/TR/rdf-sparql-query/, 6

April 2006.

[90] M. R. Quillian. Word concepts: A theory and simulation of some basic se-

mantic capabilities. Behavioral Science, 12:410–430, 1967.

[91] R. Rada and E. Bicknell. Ranking documents with a thesaurus. JASIS,

40(5):304–310, 1989.

[92] R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and application

of a metric on semantic nets. IEEE Transactions on Systems, Man, and

Cybernetics, 19(1):17–30, 1989.

[93] RDQL - a query language for RDF. W3C member submission.

http://www.w3.org/Submission/RDQL/, 9 Jan 2004.

[94] P. Resnik. Using information content to evaluate semantic similarity in a

taxonomy. In IJCAI, pages 448–453, 1995.

[95] P. Schwarz, Y. Deng, and J. E. Rice. Finding similar objects using a taxonomy:

A pragmatic approach. Draft, 2006.

[96] SIGMOD Record in XML. Available at

http://www.acm.org/sigmod/record/xml/, Nov 2002.

178

[97] S. Staab, M. Erdmann, A. Maedche, and S. Decker. An extensible approach for

modeling ontologies in RDF(S). In Proceedings of the ECDL 2000 Workshop

on the Semantic Web, 2000.

[98] G. Stumme and A. Maedche. FCA-MERGE: Bottom-up merging of ontologies.

In IJCAI, pages 225–234, 2001.

[99] V. S. Subrahmanian. Amalgamating knowledge bases. ACM Trans. Database

Syst., 19(2):291–331, 1994.

[100] A. Theobald and G. Weikum. The index-based XXL search engine for querying

XML data with relevance ranking. In EDBT, pages 477–495, Prague, Czech

Republic, 2002.

[101] A. Tomasic, L. Raschid, and P. Valduriez. Scaling access to heterogeneous

data sources with DISCO. IEEE TKDE, 1998.

[102] O. Udrea, Y. Deng, E. Hung, and V. S. Subrahmanian. Probabilistic ontolo-

gies and relational databases. In Proceedings of the Fourth International Con-

ference on Ontologies, Databases and Applications of Semantics (ODBASE

2005), Agia Napa, Cyprus, 2005.

[103] O. Udrea, Y. Deng, E. Ruckhaus, and V. S. Subrahmanian. A graph theoret-

ical foundation for integrating RDF ontologies. In AAAI, Pittsburgh, USA,

July, 2005.

[104] O. Udrea, D. R. Recupero, and V. S. Subrahmanian. Annotated RDF. In

European Semantic Web Conference (ESWC2006), to appear, 2006.

179

[105] United States Patent and Trademark Office. Patent classification home page.

http://www.uspto.gov/web/patents/classification/.

[106] F. van Harmelen, I. Horrocks, and P. F. Patel-Schneider. A

model-theoretic semantics for DAML+OIL (March 2001). W3C note.

http://www.w3.org/TR/daml+oil-model, 18 December 2001.

[107] V. G. Voiskunskii. Evaluation of search results: A new approach. Journal of

the American Society for Information Science, 48(2), Feb 1997.

[108] R. Volz, D. Oberle, and R. Studer. Towards views in the Semantic Web. In

The 2nd Int’l Workshop on Databases, Documents and Information Fusion

(DBFUSION02), Karlsruhe, Germany, 2002.

[109] H. Wang, F. Azuaje, O. Bodenreider, and J. Dopazo. Gene expression cor-

relation and Gene Ontology-based similarity: An assessment of quantitative

relationships. In The 2004 IEEE Symposium on Computational Intelligence

in Bioinformatics and computational Biology (CIBCB-2004), 2004.

[110] G. Wiederhold. Mediators in the architecture of future information systems.

IEEE Computer, pages 38–49, Mar 1992.

[111] G. Wiederhold. Intelligent integration of information. In Proc. 1993 ACM

SIGMOD Conf. on Management of Data, pages 434–437, 1993.

[112] G. Wiederhold. Interoperation, mediation and ontologies. In International

Symp. on Fifth Generation Computer Systems, Workshop on Heterogeneous

Cooperative Knowledge Bases, ICOT, pages 33–48, 1994.

180

[113] World Intellectual Property Organization. International patent classification

(sixth edition). http://www.wipo.int/classifications.

[114] Z. Wu and M. Palmer. Verb semantics and lexical selection. In 32nd. Annual

Meeting of the Association for Computational Linguistics, pages 133 –138,

New Mexico State University, Las Cruces, New Mexico, 1994.

[115] Apache Xindice XML database. Available at

http://xml.apache.org/xindice/.

[116] G. Zhou, R. Hull, R. King, and J. Franchitti. Using object matching and

materialization to integrate heterogeneous databases. In Proc. of 3rd Intl.

Conf. on Cooperative Information Systems (CoopIS95), Vienna, Austria, 1995.

181

