
ABSTRACT

Title of dissertation: SALAM: A SCALABLE ANCHOR-FREE
LOCALIZATION ALGORITHM FOR
WIRELESS SENSOR NETWORKS

Adel Amin Abdel Azim Youssef, Doctor of Philosophy, 2006

Dissertation directed by: Professor Ashok K. Agrawala
Department of Computer Science

In this dissertation, we present SALAM, a scalable anchor-free protocol for local-

ization in wireless sensor networks. SALAM can determine the positions of sensor nodes

without any infrastructure support. We assume that each node has the capability to es-

timate distances to its corresponding neighbors, that are within its transmission range.

SALAM allows to trade the accuracy of the estimated position against node transmission

range and/or computational power. The application layer can choose from a whole range

of different options, to estimate the sensor node’s positions with different accuracy while

conserving battery power.

Scalability is achieved by dividing the network into overlapping multi-hop clusters

each with its own cluster head node. Each cluster head is responsible for building a local

relative map corresponding to its cluster using intra-cluster node’s range measurements.

To obtain the global relative topology of the network, the cluster head nodes collabora-

tively combine their local maps using simple matrix transformations.

In order for two cluster heads to perform a matrix transformation, there must be at

least three boundary nodes that belongs to both clusters (i.e. the two clusters are overlap-

ping with degree ≥ 3). We formulate the overlapping multi-hop clustering problem and

present a randomized distributed heuristic algorithm for solving the problem. We evaluate

the performance of the proposed algorithm through analytical analysis and simulation.

A major problem with multi-hop relative location estimation is the error accumu-

lated in the node position as it becomes multi-hop away from the cluster head node. We

analyze different sources of error and develop techniques to avoid these errors. We also

show how the local coordinate system (LCS) affects the accuracy and propose different

heuristics to select the LCS.

Simulation results show that SALAM achieves precise localization of sensors. We

show that our approach is scalable in terms of communication overhead regardless of the

network size. In addition, we capture the impact of different parameters on the accuracy

of the estimated node’s positions. The results also show that SALAM is able to achieve

accuracy better than the current ad-hoc localization algorithms.

SALAM: A SCALABLE ANCHOR-FREE LOCALIZATION
ALGORITHM FOR WIRELESS SENSOR NETWORKS

by

Adel Amin Abdel Azim Youssef

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:

Professor Ashok K. Agrawala, Chair/Advisor
Professor Eyad Abed, Dean’s Representative
Professor Raymond Miller
Professor A. Udaya Shankar
Associate Professor Amitabh Varshney

c© Copyright by

Adel Amin Abdel Azim Youssef

2006

To My Parents, My Wife, Habiba and Maryam

ACKNOWLEDGMENTS

Thanks to Allah the exalted, the most merciful, for giving me the strength and

persistence to keep going with this research even during the most difficult moments. May

Allah accept this work and count it as a good deed and help me to benefit the whole world

with the knowledge I obtain.

My deep gratefulness to my country Egypt where I grew up and learned the first

lessons and experiences in my life, and I hope that I can pay it back some day. My thanks

are as well for University of Maryland where I learned how to do research. I gratefully

acknowledge the support of the computer science department family because of whom

my graduate experience has been one that I will cherish forever.

I am indebted to my advisor Professor Ashok Agrawala for giving me an invaluable

opportunity to work on challenging and extremely interesting projects over the past years.

He has always made himself available for help and advice and there has never been an

occasion when I’ve knocked on his door and he hasn’t given me time. It has been a

pleasure to work with and learn from such an extraordinary individual.

I would also like to express my deepest thanks to Dr. Mohamed Younis for his

continuous support during my Ph.D. No doubt, you are the maestro of my research work.

Your ever valuable feedback, enthusiasm and friendship have helped me a lot. I would

like also to thank my dearest brother, Dr. Moustafa Youssef, for his invaluable guidance

and support through the long trip. He was always there for advice, and help. Jazakom

iii

Allah Khayran both of you.

Special thanks are due to Dr. Udaya Shankar, Dr. David Mount, Dr. Samir Khuller,

Dr. Raymond Miller, and Dr. Amitabh Varshney, for their advice and support. They were

always educating and available when I need them.

I owe my deepest thanks to my parents - my mother Sorya and my father Amin who

have always stood by me and guided me through my career, and have pulled me through

against impossible odds at times. Words cannot express the gratitude I owe them. You

did and still do lots to me. I would like also to extend my gratefulness to my parents in

law for their prayers for me and support.

These acknowledgements would not be complete without expressing my gratitude

and love to my wife Aliaa. Whatever I say will never express my feelings, appreciation,

respect towards her and ever love. I think, for a married (with children) Ph.D. student,

the degree is unattainable unless a very cooperative and helpful wife is there. Aliaa, you

deserve this degree with me, actually you deserve even a higher degree. May Allah reward

you for your efforts and patience.

This work would never come to an end without the two little angels by my side,

my daughters, Habiba and Maryam. With their smiles I managed to survive very dark

moment in my life. I love you so much and I hope you forgive me for being away most of

the time in the last couple of months. I promise I will try from now on to be always with

you and compensate you for this tough period we all had.

I would also like to thank my dearest friends, and brothers in Islam, Mohamed

Abdallah, and Tamer El Sharnouby. I love you for the sake of Allah. They were always

supporting me with continuous guidance, feedback, and encouragement.

iv

I am very grateful to the Tauba Halaqa community, where I gained lots of knowl-

edge and experiences, much more beyond my Ph.D. in different subjects of life. I think

the word ”lots” does not express the quantity and the quality of the knowledge I learned

from you. We, Youssef’s family, love you and will never forget you. You will always be

in our hearts forever. We love you for the sake of Allah. I hope that Allah SWT gather us

all in a superior place.

Finally, I would like to thank Mr. Amr Khaled and Dr. Tareq Suidan for helping me

understand the objective of this life. With their invaluable lectures, I managed to organize

my priorities not only in the PhD but also through the long trip to a better life.

It is impossible to remember all, and I apologize to those I have inadvertently left

out.

v

TABLE OF CONTENTS

1 Introduction 1
1.1 Wireless Sensor Networks . 1
1.2 The Location Discovery Problem . 3
1.3 Proposed Solution . 7
1.4 Contributions . 9
1.5 Dissertation Organization . 10

2 A Taxonomy of Localization Schemes for Wireless Sensor Networks 12
2.1 Taxonomy Features . 12

2.1.1 Anchor-based versus Anchor-free 13
2.1.2 Range Estimation Method . 14
2.1.3 Range Combining Technique . 15
2.1.4 Computational Model . 17
2.1.5 Accuracy . 17
2.1.6 Communication Power . 18
2.1.7 Computation Power . 18
2.1.8 Scalability . 19
2.1.9 Capital Cost . 19
2.1.10 Limitations . 19

2.2 An Overview of Location Discovery Algorithms 20
2.2.1 Hop-TERRAIN . 21
2.2.2 APS Algorithm . 22
2.2.3 GPS-less . 23
2.2.4 Convex Position Estimation . 23
2.2.5 Iterative Multilateration . 24
2.2.6 Collaborative Multilateration . 25
2.2.7 GPS-free . 26
2.2.8 MDS-MAP . 27
2.2.9 Improved MDS-MAP . 28

3 SALAM Overview 29
3.1 Introduction . 29
3.2 System Model . 31
3.3 Phase I: Range Estimation and Cluster Formation 32
3.4 Phase II: Local Location Discovery (LLD) 34
3.5 Phase III: Global Location Discovery (GLD) 36

vi

4 The Overlapped K-hop (OK) Clustering Algorithm 39
4.1 Introduction . 39
4.2 Related Work . 43
4.3 Problem Formulation . 48

4.3.1 Definitions . 49
4.3.2 The Overlapped K-hop (OK) Clustering Problem 52

4.4 The OK Protocol Architecture . 55
4.4.1 Data Structures . 58
4.4.2 Messages . 59
4.4.3 Timers . 60

4.5 Performance Evaluation . 61
4.5.1 Coverage, Cluster Overlapping and Connectivity Ratio 70
4.5.2 Cluster Size . 77
4.5.3 Scalability . 79

4.6 Analysis of The Results . 84
4.6.1 Assumptions . 86
4.6.2 Average Cluster Size . 90
4.6.3 Average Overlapping Degree . 91
4.6.4 Overall Communication Overhead 94

4.7 Correctness and Complexity . 97

5 The Local Location Discovery Phase 102
5.1 Problem Definition . 103
5.2 The Local Coordinate System (LCS) . 105
5.3 Relative Position Estimation Using Three Distances 106
5.4 Multi-hop Relative Position Estimation 108
5.5 Relative Position Estimation Using Two Distances 110
5.6 The Reflection Error . 111
5.7 Heuristics to Limit Error Accumulation 112

5.7.1 Selecting The Local Coordinate System (LCS) 113
5.7.2 Resolving Reflection . 117

5.8 The Multi-hop Relative Location Estimation (MRLE) Algorithm 118
5.8.1 Definitions and Terminologies 118
5.8.2 The MRLE Algorithm . 120

5.9 The Refinement Step . 120
5.10 Validation and Performance Evaluation 121

5.10.1 Experiments Setup and Goals 121
5.10.2 The Effect of Local Coordinate System (LCS) on Performance . . 123
5.10.3 Achievable Accuracy . 126
5.10.4 Optimization Factors . 131

6 The Global Location Discovery Phase 134
6.1 The Best Transformation Matrix Problem 135
6.2 The Overlapping Graph . 136
6.3 The Best Order of Transformations Problem 138

vii

6.4 The Spanning Tree of The Overlapping graph 140
6.5 The GLD Algorithm . 142
6.6 Validation and Performance Evaluation 145

6.6.1 Experiments Setup and Goals 145
6.6.2 The Effect of Spanning Tree on Accuracy 148
6.6.3 The Effect of Spanning Tree on Communication Overhead 149
6.6.4 Achievable Accuracy . 151

6.7 Comparison With Other Localization Techniques 152

7 Conclusions and Research Directions 158
7.1 Research Directions . 162

A Area of Intersection Between Two Identical Circles 165

Bibliography 166

viii

LIST OF TABLES

4.1 Events summary of the OK clustering algorithm 62

5.1 Time complexity of different heuristics to select the local coordinate sys-
tem (LCS) . 117

5.2 Trading accuracy with computational power and transmission power . . . 132

ix

LIST OF FIGURES

2.1 Range Combining Techniques: (a) Trilateration, (b) Triangulation, (c)
Multilateration . 15

3.1 Organizing the sensor network into overlapping multi-hop clusters 33
3.2 Building local coordinate system (LCS) within each cluster 35
3.3 Global network map can be obtained from local maps using simple matrix

transformations . 36

4.1 Illustrative Example . 51
4.2 Flowchart of the OK cluster formation algorithm 57
4.3 Finite state machine of the OK protocol 63
4.4 The OK Algorithm . 64
4.5 The relation between cluster head prob. (p) and percentage of covered nodes 71
4.6 The impact of average node degree (d) and cluster radius (k) on percent-

age of covered nodes . 72
4.7 The cluster head prob. (p) has no effect on the average overlapping degree

(AOD) . 73
4.8 The impact of average node degree (d) and cluster radius (k) on average

overlapping degree . 74
4.9 The effect of the cluster head prob. (p) and average node degree (d) on

percentage of connected clusters . 76
4.10 The cluster head prob. (p) has no effect on cluster size properties 78
4.11 The effect of average node degree on cluster size properties 80
4.12 The effect of cluster radius on cluster size properties 81
4.13 The effect of different simulation parameters on communication overhead

per node . 83
4.14 Increasing the network size n does not effect the communication overhead 85
4.15 Circle representation of clusters . 87
4.16 The relation between the analytical model for average cluster size (Nc)

and simulation results . 91
4.17 The relation between the analytical model for average number of edges

per cluster (Ec) and simulation results 92
4.18 Overlapping Degree (O) between two overlapping clusters 92
4.19 The relation between the analytical model for average overlapping degree

(AOD) and simulation results . 94
4.20 The CH AD message will follow a spanning tree rooted at the CH node

(k = 5) . 96

x

4.21 The relation between the analytical model for overall communication
overhead per node and simulation results 98

5.1 The local coordinate system (LCS) . 105
5.2 Estimating the position of a node (u) using three distances 107
5.3 Propagation of node position estimating starting from the reference nodes

and moving towards the border of the cluster. 109
5.4 Estimating the position of a node (u) using two distances 110
5.5 The reflection propagation phenomena. 112
5.6 Different cases for skinny triangles . 113
5.7 The cluster-head (CH) node is on the border of the cluster (k=2) 114
5.8 The Multi-hop Relative Location Estimation (MRLE) Algorithm 119
5.9 The effect of local coordinate system (LCS) on accuracy for different

values of k and d . 124
5.10 The effect of local coordinate system (LCS) on convergence latency . . . 125
5.11 The effect of different simulation parameters on accuracy 127
5.12 The effect of different simulation parameters on convergence latency . . . 128
5.13 The effect of CLIQUE factor (CF) on accuracy 129
5.14 The relation between CLIQUE factor (CF) and node transmission range

(Tr) . 130
5.15 The effect of CLIQUE Factor (CF) on convergence latency 130
5.16 The accuracy before and after optimization using MIE to select LCS . . . 133
5.17 A comparison between accuracy before and after optimization using MIE

and MET for selecting the LCS . 133

6.1 The overlapping graph . 137
6.2 Different methods for finding the spanning tree of the overlapping graph . 141
6.3 An example of GLD algorithm . 144
6.4 The effect of spanning tree weight on accuracy 149
6.5 The effect of spanning tree height on accuracy 150
6.6 The effect of spanning tree weight on communication overhead per node . 151
6.7 The effect of spanning tree height on communication overhead per node . 152
6.8 The effect of GLD phase on accuracy 153
6.9 The effect of average overlapping degree (AOD) on accuracy 153
6.10 A comparison between SALAM and MDS-based algorithms using uni-

form topology . 155
6.11 A comparison between SALAM and MDS-based algorithms using GRID

topology . 156

A.1 Area of intersection of two circles . 165

xi

Chapter 1

Introduction

1.1 Wireless Sensor Networks

Recent advances in micro-electro-mechanical systems (MEMS) technology, digital elec-

tronics, and wireless communications have led to the development of inexpensive, low-

power micro sensor nodes. These tiny sensor nodes that are capable of sensing, data

processing, and communicating with each other, leverage the idea of sensor networks. A

sensor network is a network composed of a large number of sensor nodes that are densely

deployed either inside the phenomenon or very close to it. Sensor networks promise a

significant improvement over the traditional sensing methods. The large-scale dense de-

ployment extends the spatial coverage and achieves higher resolution, and increases the

fault-tolerance and robustness of the system.

Sensor networks have wide applications including natural habitat monitoring [22,

39, 40], environmental observation, collecting information in disaster prone areas, mili-

tary, medical, and surveillance applications. Networked sensors can warn about smoke on

a remote forest indicating that a fire is about to start, or alternatively alert the possibility

1

of potential flooding by measuring rainfall and water level information [1]. In military,

sensor networks can be used in battlefield surveillance, monitoring friendly forces, and

target-tracking systems. In health, sensor nodes can also be deployed to telemonitor pa-

tients physiciological data, track and monitor of doctors and patients inside a hospital.

Embedding wireless biomedical sensors inside human body can be used to monitor Glu-

cose level, detect Cancer and monitor general health. Biomedical sensor network is cur-

rently a very active research area although many challenges still exist [78]. Some other

commercial applications include managing inventory, signal a machine malfunction to

the control center in a factory, monitoring product quality, home automation, and smart

home/office environments [83].

In general sensor networks classify as ad-hoc networks, especially when determin-

istic placement of nodes is not possible. However, ad-hoc networks have mostly been

studied in the context of high mobility, high power nodes, and moderate network sizes.

Although, many protocols and algorithms have been proposed for traditional wireless ad-

hoc networks, sensor networks have unique features and application requirements, which

make those protocols not well suited. To illustrate this point, the differences between

sensor networks and ad-hoc networks are summarized as follows [2]:

• Network size. The number of sensor nodes in a sensor network can be several

orders of magnitude higher than the number of nodes in an ad-hoc network.

• Node density. Sensor nodes are densely deployed. In general, the density can be

as high as 20 sensor nodes/m3 [81].

• Node capabilities. Sensor nodes are limited in power, computational capacities,

2

and memory.

• Communication model. Sensor nodes mainly use a broadcast communication

paradigm, whereas most ad-hoc networks are based on point-to-point communica-

tions. Moreover, since large number of nodes is densely deployed, neighbor nodes

may be very close to each other. Hence, multihop communication in sensor network

is expected to consume less power than single hop communication. Furthermore,

the transmission power levels can be kept low.

• Topology. The topology of a sensor network changes very frequently mainly due to

node failure. Mobility is another factor that may lead to topology changes although

in sensor networks, many applications assume that the network is stationary.

• Self-organization. The position of sensor nodes needs not to be engineered or

predetermined. Hence, sensor network protocols and algorithms must possess self-

organizing capabilities.

These unique features of sensor networks have raised some interesting challenges that

must be considered when designing a protocol or an algorithm for sensor networks. These

design challenges are addressed in the next section.

1.2 The Location Discovery Problem

Sensor nodes can be either thrown in as a mass, deployed by dropping from a plane, de-

livered in an artillery shell, missile, or simply placed one by one by either a human or a

robot. Knowledge of node location in such randomly deployed networks is an essential

3

requirement for many applications. Naturally, a sensor node needs to possess knowl-

edge of its physical location to report the geographical origin of events. For example in

target tracking applications the sensor readings have to be correlated to the sensor posi-

tion in order to located the target. Moreover, in large-scale sensor networks, localization

is commonly used for routing scalability. Geographic-aware routing algorithms such as

GEDIR [84], or geocast [67], maintain reduced or no routing tables at all which matches

well the limited memory of the sensor nodes. The location of the nodes can also be used

to study the coverage properties of the network [41]. Furthermore, it can be used to query

nodes over a specific geographical area. Sensor position can also serve as a unique node

identifier, making it unnecessary for each sensor to have a unique ID assigned prior to its

deployment. These are just a few applications where location aware nodes are required.

Location discovery1 in sensor networks is a challenging problem. Nodes need to

determine their locations in a reliable manner while operating under strict constraints in

computation, communication and energy resources. The design of a localization algo-

rithm is influenced by many factors, including:

• Scalability. Scalability is one of the main factors that should be taken into consid-

eration when designing a localization algorithm for sensor networks. The number

of sensor nodes in the network may be on the order of hundreds or thousands. A

location discovery algorithm that uses flooding to propagate position information

will cause a scaling problem since the sheer number of sensor nodes makes such

a global flooding undesirable. When thousands of nodes communicate with each

1Also called, in the literature, the node localization problem.

4

other, broadcast storms may result in significant power consumption and possibly a

network meltdown. A localization algorithm has to be distributed in order to scale

well for large sensor networks.

• Power Consumption. Wireless sensors are usually equipped with a limited power

source. Moreover, in some application scenarios, replenishment of power resources

might be impossible. Therefore energy conservation is one of the major system

design factors. A location discovery algorithm should be designed such that the

communication overhead between nodes is as minimum as possible. It can also be

designed by appropriately trading off accuracy with power efficiency.

• Sensor Network Topology. Deploying a high number of unattended sensor nodes,

which are prone to frequent failures, make topology maintenance a challenging

task. Due to the initial random deployment, a localization algorithm must possess

self-organizing capabilities; hence; it should not rely on any infrastructure infor-

mation. Moreover, a localization algorithm should not assume that any node in the

network has previous knowledge of position information.

• Accuracy. A localization algorithm should determine the node’s positions with

acceptable accuracy. Many of the localization algorithms often assume that each

sensor node will contain a global positioning system (GPS). Unfortunately, the

straightforward solution of adding GPS to all the nodes in the network is not prac-

tical for several reasons [75]:

1. Cost – Sensor nodes are assumed to have low production cost and be dispens-

5

able. If we are envisioning a network of thousands, or tens of thousands of

nodes, the production cost will dramatically increase.

2. Line-of-Sight (LOS) conditions – GPS requires line-of-sight signal reception

from the GPS satellites. However, nodes may be deployed indoors, in the

presence of dense vegetation, foliage, or GPS reception might be obstructed

by climatic conditions.

3. High power consumption– Sensor nodes have very limited power. The power

consumption of GPS will reduce the battery life of the sensor nodes thus re-

ducing the effective lifetime of the entire network.

4. Forming factor – The sensor node may need to fit into a matchbox-sized

module [56]. The required size may be smaller than even a cubic centime-

ter [71]. The size of GPS and its antenna increases the sensor node form

factor.

As a conclusion, with ad-hoc deployment one cannot accurately predict or plan a-priori

the location of each sensor node. Using GPS is not always a suitable solution. Based on

these facts, we propose SALAM, a scalable GPS-free (anchor-free) localization algorithm

that addresses the above design issues imposed by sensor networks while determining the

position of sensor nodes with consistent error margin.

6

1.3 Proposed Solution

Clustering is a standard approach for achieving efficient and scalable performance in wire-

less sensor networks. Clustering facilitates the distribution of control over the network

and, hence, enables locality of communication. Clustering nodes into groups saves en-

ergy and reduces network contention because nodes communicate their data over shorter

distances to their respective cluster heads instead of network-wide flooding. Moreover,

cluster-based protocols are robust to network partitioning and node failure.

In this dissertation, we present SALAM, an anchor-free cluster-based localization

protocol that can determine the position of sensor nodes consistently with low error mar-

gins and without any infrastructure support. We assume that each node has the capability

to estimate ranges (distances) to its corresponding neighbors, that are within its transmis-

sion range, with some error. The network is divided into overlapping multi-hop clusters

each with its own cluster head node. Each cluster head is responsible for building a local

relative map corresponding to its cluster using intra-cluster node’s range measurements.

We formulate an optimization model to minimize the cumulative intra-cluster errors that

may affect the accuracy of the established relative coordinate system. The cluster head

nodes collaboratively combine their local maps to obtain the global relative topology of

the network. A global coordinate system can be built from the local maps available at

each cluster head using simple matrix rotations, translations, and mirroring. We find the

best order of transformations to minimize the inter-cluster error that may affect the global

relative topology. In order to obtain absolute node positions, SALAM uses as few as three

GPS-enabled anchor nodes.

7

In order for two cluster heads to perform these matrix transformations, there must

be at least three boundary nodes2 (i.e. the two clusters are overlapping with degree at

least 3). We formulate the overlapping multi-hop clustering problem as an extension

to the k-dominating set (KDS) problem. Then we propose the overlapped k-hop (OK)

clustering algorithm, a randomized distributed algorithm, to solve the problem. After

the termination of the clustering process, each node is either a cluster head or within k

hops from at least one cluster head, where k, the cluster radius, is a parameter in the

algorithm. After that each node discovers its neighbors that are within its transmission

range and estimates their ranges and fuses the range measurements to the cluster head

node.

A problem that occurs here is the error accumulated in the node position as it be-

comes multi-hop away from the cluster head node. One of the contributions of this dis-

sertation is to show how the error accumulates, as the node becomes k-hop away from the

cluster head node, and what factors affect this error accumulation. We also propose some

heuristics to reduce this error.

A major motivation for our approach is that we believe that locally centralized al-

gorithms scale well with increased network size and are robust to network partitioning

and node failure. Yet, they can achieve acceptable accuracy compared to a centralized ap-

proach. A locally centralized algorithm should be a good compromise between accuracy,

communication overhead.

2A boundary node is a node that belongs to more than one cluster.

8

1.4 Contributions

The contributions of this dissertation are:

• Formulating the overlapping multi-hop clustering problem as an extension to the

k-dominating set (KDS) problem.

• Designing and implementing a distributed randomized multi-hop clustering algo-

rithm (OK) for organizing the sensors in a wireless sensor network into overlap-

ping clusters. We analyze the effect of different parameters (cluster radius, network

connectivity, cluster head probability) on the performance of the clustering algo-

rithm in terms of communication overhead, node coverage, average overlapping

degree, and average cluster size. We also develop a detailed analytical model for

the overlapped multi-hop clusters problem and validate it by comparison with the

simulation results.

• Analyzing the problem of multi-hop relative location estimation and different sources

of error and developing heuristics to avoid these errors. We design and imple-

ment the Multi-hop Relative Location Estimation (MRLE) algorithm that uses these

heuristics to estimate relative node’s positions with low error margins. We study the

effect of local coordinate system (LCS) on the accuracy of the estimated position

and propose different heuristics to select the LCS.

• Analyzing the accuracy of the intra-cluster location discovery and capturing the im-

pact of different parameters, such as cluster radius and connectivity on the accuracy

of the estimated position. We also introduce a new metric, the CLIQUE factor, to

9

measure how close a graph to the complete graph (CLIQUE). We show that the

CLIQUE factor is one of the major factors affecting accuracy.

• Designing a policy to trade accuracy for energy and/or computational power. The

application layer can choose from a whole range of different options, to estimate

the sensor node’s positions with different accuracy while conserving battery power.

• Formulating the problem of best order of transformations between clusters as a

spanning tree problem. We introduce a new data structure, the overlapping graph

and propose different heuristics to assign weights to the edges of the overlapping

graph in order to optimize a certain design goal.

• Analyzing the accuracy of the global (inter-cluster) location discovery and capture

the impact of the overlapping degree between clusters on the accuracy of the esti-

mated node’s positions.

• Comparing the performance of SALAM with other ad-hoc localization techniques

for wireless sensor networks.

We also relay lessons learned and identify opportunities for future research.

1.5 Dissertation Organization

In chapter 2, we present a taxonomy of localization algorithms in wireless sensor net-

works and survey current research in this field. Chapter 3 gives a brief overview of

SALAM and the system model used. In chapter 4, we discuss the problem of overlapping

multi-hop clustering and formulate the problem as an extension to the k-dominating set

10

problem. We also present the overlapped K-hop (OK) clustering algorithm and analyze

its performance both analytically and via simulations. We address the problem of multi-

hop relative location estimation in chapter 5, and discuss the major sources of error. We

present the multi-hop relative location estimation algorithm (MRLE) and evaluate the ac-

curacy of the intra-cluster estimated position through simulations. Chapter 6 discusses

the global location discovery (GLD) where the cluster head nodes collaborate to obtain a

global map of the network. We also analyze the overall accuracy of SALAM and compare

it with other localization schemes. Finally, Chapter 7 concludes the dissertation and gives

directions for extending the research work.

11

Chapter 2

A Taxonomy of Localization Schemes for Wireless Sensor Networks

Although a good survey of location systems can be found in [52], the survey focused more

on infrastructure-based location systems. Location discovery in sensor networks have

been an active research area for the past couple of years. Several localization algorithms

have been proposed and implemented. In this chapter, we describe a taxonomy consisting

of several distinct features of a localization algorithm. Then we present an overview of

earlier and current research in this field by surveying several localization algorithms. This

survey is by no means exhaustive. Location discovery have been an extremely active field

and in constant evolution for the past couple of years.

2.1 Taxonomy Features

Location discovery algorithms may be classified according to several criteria, reflecting

fundamental design and implementation choices. Those different criteria form a reason-

able taxonomy for characterizing and evaluating location discovery algorithms. In this

section, we try to summarize different design alternatives for location discovery algo-

rithms in general and in wireless sensor networks in particular.

12

2.1.1 Anchor-based versus Anchor-free

Anchor-based algorithms operate on an ad-hoc network of sensor nodes where a small

percentage of the nodes (anchors) are aware of their positions either through manual

configuration or using GPS. Anchor nodes broadcast their locations information to their

neighbors. The goal is to estimate the positions of as many unknown nodes as possible

using anchor node information. Anchor-based algorithms usually produce an absolute

location system where absolute node position is known, for example, latitude, longitude,

and altitude. However, the accuracy of the estimated position is highly affected by the

number of anchor nodes and their distribution in the sensor field [17]. Langendoen et

al. [63] showed that with anchor density of 20%, we could have an accuracy of 25% of

transmission range, which falls short from the required inaccuracy in many applications.

Moreover, most of these algorithms suffer from scalability problem. Propagating anchor

node location information through the network may lead to a network-wide flooding.

Anchor-free algorithms do not make any assumptions regarding node positions. In

this case, instead of computing absolute node positions, the algorithm estimates relative

positioning, in which the coordinate system is established by a reference group of nodes.

In some cases knowing the relative positions of the nodes compared to each other is

enough, for example, location-aided routing [84, 67]. Moreover, a relative coordinate

system can be transformed to an absolute coordinate system if the coordinates of three

separate non-colinear nodes are known in case of 2D (or four in case of 3D). Anchor-free

schemes have the disadvantage that when the reference node moves, positions have to be

recomputed for nodes that have not moved. This is considered a minor problem in sensor

13

networks where sensor nodes are usually assumed to be stationary.

2.1.2 Range Estimation Method

Ranging is the process of estimating node-to-node distances or angles. The recent re-

search work by He et al. [42] divides the location discovery algorithms in sensor networks

into two major categories: range-based algorithms and range-free algorithms. The former

is defined by protocols that use absolute point-to-point range (distance or angle) estimates

for estimating location. The later make no assumption about the availability or validity of

such information.

The most popular methods for estimating the range between two nodes are:

• Time-based methods. Time-of-Arrival (ToA) or Time-Difference-of-Arrival (TDoA)

methods record the signal transmission time and the signal arrival time or the differ-

ence of arrival times. The propagation time can be directly translated into distance,

based on the known signal propagation speed. These methods can be applied to

many different signals, such as RF, acoustic, infrared and ultrasound.

• Angle-of-Arrival methods. Angle-of-arrival (AoA) methods estimate the angle

at which signals are received and use simple geometric relationships to calculate

bearings to neighboring nodes with respect to node’s own axis.

• Received-Signal-Strength-Indicator (RSSI) methods. Received-Signal-Strength-

Indicator (RSSI) methods measure the power of the signal at the receiver. Based

on the known transmission power, the effective propagation loss can be calculated.

14

Theoretical and empirical models are used to translate this loss into a distance esti-

mate. This method has been used mainly with RF signals.

• Network Connectivity methods. Network connectivity methods can be used for

range estimation if the cost of range-estimation hardware is expensive or if a sensor

cannot receive signals from enough base stations (≥ 2 for AoA, ≥ 3 for ToA, TDoA,

and RSSI). In this case, network connectivity can be exploited for range estimation.

For example, the number of hops between two nodes can be used as an estimate of

the range between these two nodes.

2.1.3 Range Combining Technique

Once a location discovery algorithm estimates ranges to other neighboring nodes, it tries

to estimate node position using the estimated ranges. The most known techniques for

combining ranges are:

A

B

C

S

B

S

A N
or

th

A

B

S

C

D

E

(a) (b) (c)

Figure 2.1: Range Combining Techniques: (a) Trilateration, (b) Triangulation, (c) Multi-

lateration

• Trilateration. Trilateration locates a node by calculating the intersection of three

15

circles as shown in Figure 2.1a. If the ranges contain error, the intersection of the

three circles may not be a single point.

• Triangulation. Triangulation is used when the angle of the node instead of the

distance is estimated, as in AoA methods. The node positions are calculated in this

case by using the trigonometry laws of sines and cosines. In this case, at least two

ranges are required as shown in Figure 2.1b.

• Multilateration. In multilateration, the position is estimated from distances to

three or more known nodes by minimizing the error between estimated position

and actual position [30]. For example, in Figure 2.1c, we can use the following

function to compute the location (x, y) of node S.

min
∑

i

(DS,i −
∧

D
S,i

)2, (2.1)

where DS,i =
√

(x − xi)2 + (y − yi)2,
∧

D
S,i

is the estimated range from S to i,

i = A,B,C,D,E.

• Proximity-based. Proximity-based is usually used when no range information is

available. In a simple proximity based approach, position of a node is taken as the

centroid of positions of connected anchor nodes. An anchor node is considered

connected to a node if the percentage of messages received from the anchor node

in a time interval t exceeds a certain threshold.

16

2.1.4 Computational Model

There are different possibilities how to construct the localization algorithm and how to

divide the computation between nodes. A location discovery algorithm can be categorized

under one of the following computational models:

• Centralized. In the centralized model, all the range measurements are collected to a

central base station where the computation takes place and the results are forwarded

back to the nodes.

• Locally Centralized. Locally centralized (localized) algorithms are distributed al-

gorithms that achieve a global goal by communicating with nodes in some neigh-

borhood only. For example, the sensor network can be divided into local clusters,

where each cluster has a head. All the range measurements in a certain cluster are

forwarded to the cluster head where computation takes place.

• Fully Distributed. In the fully distributed, computation takes place at every node.

In other words, the cluster size is one. Each node is responsible for estimating its

own position.

2.1.5 Accuracy

A location discovery algorithm should estimate sensor position accurately. Accuracy is

usually measured as percentage of sensor transmission range. Accuracy usually depends

on range measurement errors. Range measurements with less error will lead to more

accurate position estimates. Moreover, in anchor-based algorithms, accuracy is affected

17

by the percentage and placement of anchor nodes in the network as well as the placement

error.

2.1.6 Communication Power

Wireless sensors are usually equipped with a limited power source. Therefore energy

conservation is one of the major system design factors. A sensor node spends maximum

energy in data communication. This involves both data transmission and reception. The

current generation of sensor platforms uses about 2 µJ per bit of data transmitted [2].

Usually sensor nodes communicate over a shared medium, and a high density of nodes,

coupled with a high messaging complexity, leads to a high collision rate and ultimately

to lower throughput and higher power consumption. Therefore, a location discovery al-

gorithm should minimize the amount of node-to-node communication. Data aggregation

techniques can be used to conserve communication bandwidth.

2.1.7 Computation Power

The processor is the second main source of draining battery life. Current small batteries

provide about 100mAh of capacity, this can power a small Amtel processor for 3.5 hours

(if no power management techniques would be applied) [2]. Energy expenditure in data

processing is much less compared to data communication. The example described in [71],

effectively illustrates this disparity. Assuming Rayleigh fading and fourth power distance

loss, the energy cost of transmitting 1 KB a distance of 100 m is approximately the same as

that for executing 3 million instructions by a 100 million instructions per second (MIPS)

18

processor. Hence, a location discovery algorithm should use local data processing in order

to minimize communication power.

2.1.8 Scalability

Scalability is one of the main factors that should be taken into consideration when design-

ing a protocol or an algorithm for sensor networks. The number of sensor nodes in the

network may be on the order of hundreds or thousands. Depending on the application, the

number may reach an extreme value of millions [2]. For example, a location discovery

algorithm should not use flooding to exchange information with other nodes. The sheer

number of sensor nodes makes such a global flooding undesirable. A cluster-based ap-

proach would work better. Moreover, location discovery systems should not require large

tables, which do not fit in the sensor node limited memory.

2.1.9 Capital Cost

Capital costs include factors such as the price per sensor node or extra hardware required

for location determination. For example, a simple civilian GPS receiver costs around

$100. This increases the cost of the sensor node significantly making it impractical to

develop.

2.1.10 Limitations

By limitations we mean the situations in which the location discovery algorithm fails

to position the nodes with acceptable accuracy. Some algorithms may fail to work in-

19

doors or in the presence of dense vegetation, due to the range estimation technique used.

Irregular topology shape is another factor affecting the performance of a localization al-

gorithm. A positioning algorithm depending on the network connectivity may fail in case

of anisotropic topology, as shown in Figure ??.

Another important factor is the network dynamicity. Sensor nodes are very prone

to failure due to lack of power, physical damage, or environmental interference. This may

cause the network to be disconnected. A positioning algorithm may fail if the network be-

comes disconnected or even if the degree of the node decreases under a certain threshold.

Mobility is another factor that may affect the performance of a localization algorithm.

In sensor networks since most of the applications assume that the network is stationary,

mobility is not considered a major design factor.

2.2 An Overview of Location Discovery Algorithms

Although, a very good survey of location systems is provided in [52], very few systems

are actually ad-hoc. Node localization has been the topic of active research and many sys-

tems have made their appearance in the past few years. In this section we consider several

recent localization algorithms for sensor networks. Although, some forms of ad-hoc local-

ization also exist in the domain of mobile robotics [54, 73], we focus more on the ad-hoc

localization problem investigated in the context of sensor networks. One main difference

between mobile robots and sensor networks is that mobile robots have additional odomet-

ric measurements that can help with estimating the initial robot positions [73], something

that is not available in sensor networks. Furthermore, localization studies in the sensor

20

network community also consider scalability communication and power consumption is-

sues that are not studied by the robotics community. The localization algorithm overviews

below are intended to emphasize key design issues and how they relate to the taxonomy

described in section 2.

2.2.1 Hop-TERRAIN

Hop-TERRAIN [74] is a range-based anchor-based distributed algorithm. The algorithm

consists of two phases: the start-up phase and the refinement phase. In the start-up phase,

anchor node location information is propagated across the network. When anchors be-

come aware of other anchor node locations, they use this information to estimate the

average hop length in their vicinity and broadcast it back into the network. Nodes with

unknown locations also note the shortest hop distance to each of the anchor nodes and

multiply it with the broadcasted average hop length to estimate the approximate range

between the node and each anchor. These computed ranges are then used together with

the anchor nodes’ known positions to perform a triangulation and get an initial estimated

nodes’ position. The triangulation consists of solving a system of linear equations by

means of a least squares algorithm. These initial estimates are not expected to be very

accurate, but are useful as rough approximations.

The start-up phase algorithm is run once at the beginning of the positioning algo-

rithm. The Refinement phase is run iteratively afterwards to improve upon and refine

position estimates generated by the start-up phase algorithm. Simulation studies have

shown that these technologies are independent of ranging technologies and can deliver

21

localization accuracy within one third of the communication range.

2.2.2 APS Algorithm

The APS algorithm [68] belongs to the class of anchor-based range-free algorithms. An-

chor nodes (beacons) flood their location to all nodes in the network using some propaga-

tion method. When anchors become aware of other anchor node locations, they use this

information to estimate the average hop length in their vicinity and broadcast it back into

the network. Nodes with unknown locations also note the shortest hop distance to each

of the anchor nodes and multiply it with the broadcasted average hop length to get an

approximate distance to each of the anchor nodes. With this information nodes perform a

multilateration to get an initial estimate of their locations.

The paper discussed three methods of hop-to-hop distance propagation:

1. DV-Hop Propagation Method. Each unknown node records the position and

minimum number of hops to at least three beacons. Whenever a beacon, bi, in-

fers the position of other beacons, it computes the average hop distance using

Eq.(Eq:APShopDist), and floods this average hop distance into the network. Aver-

age hop distance =
∑

√
(xi−xj)2+(yi−yj)2

∑

hj
, i 6= j

Where hj is the number of hops between beacon bi and bj . Each unknown node

then uses the average hop distance to convert hop counts to distances, and performs

a triangulation to three or more distant beacons to estimate its own position.

2. DV-Distance Propagation Method. This method is similar with the previous one

except that distance between neighboring nodes is measured using radio signal

22

strength and is propagated in meters rather than in hops.

3. Euclidean Propagation Method. In this method, the true Euclidean distance to

the beacon is propagated. An unknown node needs to know an estimate of distance

to at least two neighbors, which have estimates for the distance to a beacon. Then

using simple geometry, the unknown node can estimate its distance to the beacon

node.

2.2.3 GPS-less

The GPS-less [16] system is a distributed range-free anchor-based technique. It uses

connectivity between nodes in order to estimate node positions. The system employs

a grid of beacon nodes , powerful (compared to the nodes) base stations, with known

locations; each unknown node sets its position to the centroid of the beacon locations

it is connected to. Besides relying on infrastructure support, the accuracy of estimated

position depends highly on the density of the beacons. The reported position accuracy is

about one-third of the separation distance between beacons.

2.2.4 Convex Position Estimation

Convex position algorithm [37] belongs to the class of centralized range-free anchor-

based localization algorithms. The algorithm uses the connectivity between nodes to for-

mulate a set of geometric constraints and solve it using convex optimization. If one node

can communicate with another, a proximity constraint exists between them. For exam-

ple, if particular RF system can transmit 20m and two nodes are in communication, their

23

separation must be less than 20m. These constraints restrict the feasible set of unknown

node positions. Formally, the network is a graph with n nodes at the vertices and with

bidirectional communication constraints as the edges. Positions of the first m nodes, an-

chor nodes, are known (x1, y1...xm, ym,) and the remaining n−m positions are unknown.

The problem is then to find (xm+1, ym+1...xn, yn) such that the proximity constraints are

satisfied. The algorithm is based on semi-definite programming and requires rigorous

computation so it is not always suitable for sensor networks. The resulting accuracy de-

pends on the fraction of anchor nodes. A serious drawback is that convex optimization is

performed by a single, centralized node; hence; it is not suitable for many ad-hoc setups.

2.2.5 Iterative Multilateration

Iterative multilateration [75] is used in the AHLoS project. The algorithm is fully dis-

tributed and can run on each individual node in the network. An unknown node u that is

connected to at least three beacons can estimate their position by solving the following

system of equations:

d2
iu = (xi − xu)

2 + (yi − yu)
2∀u ∈ U and i ∈ Bu (2.2)

Where Bu is the set of all beacon neighbors of u. The resulting system of equations can be

linearized by rearranging terms, and subtracting the last equation from the rest to obtain

the following equation:

aixu + biyu = ci, where ai, bi, andciare constants. (2.3)

This system of equations can be solved using the matrix solution for minimum mean

square estimate (MMSE) [75].

24

Once a node estimates its position it becomes a beacon and can assist other un-

known nodes in estimating their positions by propagating its own location estimate through

the network. This process iterates to estimate the locations of as many nodes as possible.

Iterative multilateration requires high fraction of beacon nodes. It is sensitive to

beacon densities and can easily get stuck in places where beacon densities are sparse.

Another drawback of iterative multilateration is the error accumulation that results from

the use of unknown nodes that estimate their positions as beacons.

2.2.6 Collaborative Multilateration

Collaborative multilateration [77, 76], also known as The n-Hop Multilateration can be

used in case an unknown node does not have at least three neighboring beacons and

therefore cannot estimate its location using iterative multilateration. Collaborative multi-

lateration is a multilateration that spans over multiple hops. This enables nodes that are

not directly connected to beacon nodes to collaborate with other intermediate nodes with

unknown locations situated between themselves and the beacons to jointly estimate their

locations.

Collaborative multilateration consists of three main phases and a post-processing

phase. In the first phase, the nodes self-organize into groups, collaborative subtrees so

that nodes with unknown positions are over-constrained and can have only one possible

solution. During the second phase, the nodes use simple geometric relationships between

measured distances and known beacon locations to obtain a set of initial position esti-

mates. In the third phase, node locations are computed by setting up a global non-linear

25

optimization problem and solving it using a Kalman filter. The solution is presented in

two computation models, centralized and a fully distributed approximation of the central-

ized model.

2.2.7 GPS-free

In their GPS-free system [21], Capkun et al introduced the Self-Positioning Algorithm

(SPA) that enables nodes in a MANET to find their positions in the network using range

measurements between the nodes. The TOA method is used to obtain range between

two mobile devices. Each node in the network builds its own local coordinate system by

assuming itself as the origin of this coordinate system, and selecting two non-collinear

one-hob neighbors to form axes. Then the positions of one-hop neighbors are computed

accordingly. The local coordinate systems at each node can have different directions so

another phase is required to map all the local coordinate systems of the nodes to the

network coordinate system. This is done through simple matrix rotations and may be

mirroring. To compute the network coordinate system, a subset of nodes is chosen (Loca-

tion Reference Group) such that it is stable and less likely to disappear from the network.

Then the network coordinate center is chosen to be the geometrical center of the location

reference group and the direction of the network coordinate system is the mean value of

all directions of the local coordinate systems of the nodes belonging to location reference

group. As the nodes move, the location reference group is periodically updated using ex-

pensive message broadcast. Moreover, the network center and direction are recomputed

using expensive message broadcast. The work was focusing on the network mobility

26

and how this affects the localization accuracy. Power consumption at each node was not

considered as a major problem.

2.2.8 MDS-MAP

MDS-MAP [80] is a localization method based on multidimensional scaling (MDS). It

determines the positions of nodes given only basic information that is likely to be already

available, namely, which nodes are within communications range of which others. If the

distances between neighboring nodes can be measured, that information can be easily in-

corporated into the method. MDS-MAP is able to generate relative maps that represent

the relative positions of nodes when there are no ”anchor” nodes that have known abso-

lute coordinates. When the positions of a sufficient number of anchor nodes are known,

e.g., 3 anchors for 2-D localization and 4 anchors for 3-D, MDS-MAP then determines

the absolute coordinates of all nodes in the network. MDSMAP often outperforms pre-

vious methods when nodes are positioned relatively uniformly in space, especially when

the number of anchors is low. MDS-MAP uses the distance or connectivity information

between all nodes at the same time, whereas previous triangulation-based methods local-

ize one unknown node at a time and only use the information between the unknown and

anchor nodes.

However, like many existing methods, MDS-MAP does not work well on irregularly-

shaped networks, where the shortest path distance between two nodes does not correlate

well with their true Euclidean distance.

27

2.2.9 Improved MDS-MAP

In [79], an enhanced version of MDS-MAP is proposed that works well on both uniform

and irregular networks. The main idea is to compute a local map using MDS for each

node consisting only of nearby nodes, and then to merge these local-area maps together

to form a global map. The new technique is called MDS-MAP(P), which stands for MDS-

MAP using patches of relative maps. This approach avoids using shortest path distances

between far away nodes, and the smaller local maps, constructed using local information,

are usually quite good. An optional refinement step using least-square minimization may

be used to refine the relative maps computed by MDS. MDS is often good at finding the

right general layout of the network, but not the precise locations of nodes. That makes

the MDS solution a good starting point for the local optimization done in the refinement

step. The refinement improves solution quality but is much more expensive than MDS.

MDS computes analytical solutions in O(n3), where n is the number of nodes. Thus, the

refinement provides a trade-off between solution quality and computational cost.

28

Chapter 3

SALAM Overview

3.1 Introduction

Node localization has been the topic of active research and a number of systems have been

proposed over the past few years. Many of those systems fall into one of three classes or

a combination of them. The first class includes range-free algorithms, which assume that

there is no distance/angle information available at each node [57, 37, 68, 16]. Hence, they

try to use the basic proximity information available at each node, i.e. which nodes are

nearby. In general, range-free techniques provide the lowest level of accuracy among the

three classes. The second class includes anchor-based algorithms [30, 69, 74, 76, 75],

where nodes know their positions usually using GPS. Most of the approaches in this

class require a high percentage of anchor nodes in order to reach an acceptable accuracy.

Moreover, propagating anchor node location information through the network may lead

to a network-wide flooding [57, 30, 42, 69, 76, 68, 75]. Besides, the inclusion of a GPS

receiver on each node is not practical.

The third class of localization systems are anchor-free [80, 79, 21]. In this case,

29

instead of computing absolute node positions, the algorithm estimates nodes’ positions

relative to a coordinate system established by a reference group of nodes. A relative

coordinate system can still be transformed to absolute coordinate system by using only

three anchor nodes in case of 2-D (or four anchors in case of 3-D). Algorithms in this

class can be range-free or range-based. The multi-dimensional scaling (MDS) [80] is an

example of range-free anchor-free algorithms. Each node computes a local map for nodes

that are within 2 hops using mainly node connectivity. Then all the nodes in the network

communicate with each other to merge these local maps together to form a global map.

The Self-Positioning Algorithm (SPA) [21] is an example of range-based anchor-free

methods. Each node also builds its own local coordinate system, estimates the positions

of one-hop neighbors using triangulation and broadcasts this information to all the nodes

in the network to build a global network coordinate system.

SALAM belongs to the class of anchor-free range-based localization algorithms.

However, SALAM is different. In SALAM, instead of forming a local coordinate sys-

tem at each node like SPA and MDS, we build a cluster-wide coordinate system only at

each cluster head node. In this case we gain the following benefits: (1) since the cluster

head node has more information about the intra-node distances, we can use non-linear

optimization techniques to estimate the node’s positions more accurately; (2) the com-

munication overhead to build global network topology is reduced since only cluster head

nodes communicate with each other. While other anchor-free mechanisms consider nodes

that 1 or 2 hops away, we estimate the position of nodes that are within k-hops from the

cluster head node, where k, the cluster radius, is a parameter in our algorithm. SPA and

MDS can be viewed as a special case from SALAM where k = 1, 2 respectively. In large

30

sensor networks, SPA and MDS generate a large number of cluster heads and eventu-

ally lead to the same problem as if there is no clustering. Another important difference

between SALAM and MDS is that MDS-based methods are often good at finding the

general layout of the network, but not the precise locations of nodes; hence, the result-

ing topology from MDS-based technique may require scaling. In chapter 6, we compare

between MDS-based techniques, and SALAM and show that SALAM achieves a higher

accuracy with less computational overhead.

SALAM consists of three phases: (i) network bootstrapping and cluster formation,

(ii) local location discovery (LLD), and (iii) global location discovery(GLD). In the re-

mainder of this chapter, we present an overview of the different phases. The detailed

analysis of each phase, along with validation and performance evaluation, is presented in

the next three chapters. We start by describing the considered system model in the next

section.

3.2 System Model

We consider a typical sensor network which consists of sensor nodes that are scattered

in an area of interest to detect and possibly track events/targets in this area. All nodes

are alike and each node is assigned a unique id prior to deployment. Each sensor node is

equipped with data processing and communication capabilities. The nodes are location-

unaware, i.e. not equipped with GPS. There are neither base stations nor infrastructure

support to coordinate the activities of subsets of nodes. Therefore, all the nodes have to

collectively make decisions. We assume that the nodes are static. This assumption about

31

node mobility is typical for sensor networks. All sensors transmit at the same power level

and hence have the same transmission range (Tr). Sensors are also capable of long -haul

communications, however, this is mainly used by cluster heads to communicate with each

other to build the global network topology during the GLD phase. We also assume that

nodes have timers, but we do not require time synchronization across the nodes. Timers

are used for tasks such as timing out of a node when waiting on a condition.

All communication is over a single shared wireless channel. A wireless link can

be established between a pair of nodes only if they are within the transmission range

of each other. We only considers bidirectional links. It is assumed the MAC layer will

mask unidirectional links and pass bidirectional links to SALAM. Two nodes that have a

wireless link will, henceforth, be said to be 1-hop away from each other. They are also

said to be immediate neighbors. Nodes can identify neighbors using beacons. Each sensor

node is also capable of estimating the distance to neighboring nodes using any range

estimation technique as discussed in section 2.1.2, however, SALAM is independent of

the ranging technology used.

3.3 Phase I: Range Estimation and Cluster Formation

This phase usually starts during network bootstrapping after the sensor nodes are deployed

in the sensor field. The main tasks performed during this phase are: range estimation and

cluster formation. We are interested in organizing the sensor network into multi-hop

overlapping clusters as shown in Fig. 3.1. At the end of the clustering process, each node

is either a cluster head or within k hops from at least one cluster head node, where k, the

32

cluster radius, is a parameter in our algorithm. We require overlapping between clusters

with at least three nodes in order to be able to merge local cluster maps later during the

GLD phase using matrix transformations. Also by the end of this phase, each cluster head

should have all inter-node distances as reported by members of the clusters.

Cluster Head Node Sensor Node Boundary Node

C1

C2

C3

Figure 3.1: Organizing the sensor network into overlapping multi-hop clusters

In the last few years, there have been few clustering algorithms designed for sensor

networks [88, 9, 49, 36, 47, 45]. None of those algorithms construct overlapping clusters.

To the best of our knowledge, this is the first document to discuss the problem of over-

lapping multi-hop clustering. We formulate the overlapping k-hop clustering problem as

an extension to the k-dominating set (KDS) problem. Then we propose the overlapped

k-hop (OK) clustering algorithm, a randomized multi-hop distributed algorithm to solve

the problem. The nodes randomly elect themselves as cluster heads (CH) with some

33

probability p. The cluster head probability (p) is another parameter in the algorithm that

can be tuned to control the number of overlapping clusters in the network. Each clus-

ter head node broadcasts an advertisement message asking neighbors to join the cluster.

Each non-CH node then joins all the clusters it hear from and reports measured distance

to neighbors to the cluster head node. We shall refer to the set of nodes that belong to

more than one cluster as boundary nodes. Boundary nodes are essential for the global

localization phase as we will discuss later.

3.4 Phase II: Local Location Discovery (LLD)

The goal of the LLD phase is to build a local map at each cluster head using the range

measurements reported by the members of the cluster in the previous phase. The idea is to

form a local coordinate system (LCS) at each cluster head nodes as shown in Fig 3.2. The

cluster head node assumes that it is located at the origin of the cluster LCS and selects one

neighbor node to form the x-axis, we call this neighbor node the first reference point R1.

Then a second reference point (R2) is selected such that the y-axis is perpendicular to the

x-axis in the direction of R2. We show that the LCS affects the accuracy of the estimated

position dramatically and we propose different heuristics to select the LCS and compare

between those heuristics.

After selecting the LCS, we introduce the Multi-hop Relative Location Estimation

(MRLE) algorithm. MRLE uses a combination of triangulation and trilateration tech-

niques to find an initial position estimate (P0) for the nodes located within the cluster

using the received measurements of inter-node distances.

34

Cluster Head Node Sensor Node

Boundary Node Reference Node

R1

R2

R2

R1

R1

R2
C1

C2

C3

Figure 3.2: Building local coordinate system (LCS) within each cluster

Finally, we introduce an optional refinement step, where we iteratively improve the

initial position estimate by formulating a least-squares metric and solving it using non-

linear optimization techniques. Compared with the MREL algorithm, the refitment step

is much more expensive, in terms of computation power. Hence, it is optional if we are

seeking higher accuracy. We also introduce a new metric, the CLIQUE factor (CF). The

CLIQUE factor of a cluster measures how close the subgraph induced by cluster to a

complete graph. The simulation results show that the CF is the major factor affecting

accuracy regardless of cluster size. The CLIQUE factor is a function of the node trans-

mission range; hence we can use it to trade accuracy for transmission power. We show

that SALAM is an adaptive fidelity algorithm that gives a sensor network engineer the

35

x
A

xi
s

y Axis

y
A

xi
s

x Axis

x Axis

y Axis

C1

C2

C3

w
 23

w12

Figure 3.3: Global network map can be obtained from local maps using simple matrix

transformations

ability to trade accuracy for either transmission power or computational power or both.

3.5 Phase III: Global Location Discovery (GLD)

In the GLD phase, the cluster head nodes collaborate to obtain a global map of the net-

work. This phase can be optional if a global view of the network is not needed. After

forming a cluster-level map during the LLD phase, each cluster head has its own local

coordinate system (LCS). The axes of the LCS usually have different directions as shown

in Fig. 3.3. Two local maps have the same direction if their x-axes are pointing in the

same direction and similarly for the y-axes (and z-axes in case of 3-D). A global coordi-

nate system can be built from the local maps available at each cluster head using simple

matrix rotations, translations, and mirroring.

To be able to perform such transformation, there must be at least three boundary

36

nodes that belong to both clusters. We describe how to adjust the directions of the lo-

cal maps of the cluster head nodes to obtain the global topology of the network using

boundary nodes and show how the number of boundary nodes (overlapping degree) be-

tween two clusters affect the accuracy of the transformation from one coordinate system

to another.

Finally, we introduce a new problem, the best order of transformations between

clusters. To formulate the problem, we define a new data structure, the overlapping graph.

Each vertex in the overlapping graph represents one cluster in the network where an edge

between two vertices implies that there is at least three boundary nodes (i.e. a minimum

overlapping degree of 3) between the two corresponding clusters. Hence if an edge exists

between two vertices u and v, this means that we can transform from the local coordinate

system corresponding to u to that of v and vise versa.

Given an overlapping graph of m cluster head nodes, in order to find the global

map of the network, we need to preform m− 1 transformations in order to merge m local

coordinate systems. This is equivalent to finding a spanning tree (ST) for the overlap-

ping graph. There are many spanning trees that can link the cluster head nodes together.

Each spanning tree corresponds to a different order of transformations between the lo-

cal coordinate systems. Each order of transformations will result in a different accuracy,

and different communication overhead per node. We will refer to the problem of finding

the spanning tree, that satisfies a certain design goal, as the best order of transformations

problem. We propose different heuristics to assign weights to the edges of the overlapping

graph in order to optimize a certain design objective. We also propose two approaches to

construct the spanning tree of the overlapping graph. In the results section, we show how

37

the spanning tree highly affects both accuracy and communication overhead of the GLD

phase.

38

Chapter 4

The Overlapped K-hop (OK) Clustering Algorithm

4.1 Introduction

Clustering is a standard approach for achieving efficient and scalable performance in wire-

less sensor networks. Clustering facilitates the distribution of control over the network

and, hence, enables locality of communication. Clustering nodes into groups saves en-

ergy and reduces network contention because nodes communicate their data over shorter

distances to their respective cluster heads. The cluster heads forward the aggregated in-

formation to the base station. Only the cluster heads need to communicate far distances

to the base station; this burden can be alleviated further by hierarchical clustering, i.e., by

applying clustering recursively over the cluster heads of a lower level.

Many clustering protocols have been investigated as either stand alone protocols [8,

38, 10, 12, 35, 66, 11, 25, 6, 31, 62, 9, 7, 88, 49, 36] or as a side effect of other protocol

operations, e.g., in the context of routing protocols [59, 65, 49], or in topology manage-

ment protocols [86, 26, 23]. The majority of those protocols construct clusters where

every node in the network is no more than 1 hop away from a cluster head [8, 38, 12, 10,

39

35, 88, 36, 49]. We call these single hop (1-hop) clusters. In large networks this approach

may generate a large number of cluster heads and eventually lead to the same problem

as if there is no clustering. Few papers have addressed the problem of multi-hop (k-hop)

clustering [7, 9]. These algorithms are mostly heuristic in nature and aim at generating

the minimum number of disjoint clusters such that any node in any cluster is at most k

hops away from only one cluster head. The proposed OK clustering algorithm belongs to

the multi-hop category.

In the last few years, there have been few clustering algorithms designed for sensor

networks [88, 9, 49, 36, 47, 45]. Most of those algorithms aim at generating the minimum

number of disjoint clusters that maximize the network lifetime. The algorithms discussed

in [49, 88, 9] are randomized where the sensors elect themselves as cluster heads with

some probability p and broadcast their decisions to neighbor nodes. The remaining sen-

sors join the cluster of the cluster head that requires minimum communication energy.

The proposed OK clustering protocol belongs to the class of randomized algorithms. Both

the HEED algorithm [88] and LEACH algorithm [49] form single-hop non-overlapping

clusters with the objective of prolonging network lifetime. In [9], the authors proposed

a LEACH-like randomized multi-hop clustering algorithm for organizing the sensors in

a hierarchy of clusters with an objective of minimizing the energy spent in communi-

cating the information to the processing center. None of the above algorithms construct

overlapping clusters.

In this chapter, we propose a fast, randomized, distributed multi-hop clustering

algorithm (OK) for organizing the sensors in a wireless sensor network in overlapping

clusters. After the termination of the clustering process, each node is either a cluster head

40

or within k hops from at least one cluster head, where k (cluster radius) is a parameter

in the algorithm. To the best of our knowledge, this is the first document to discuss the

problem of overlapping multi-hop clustering. OK operates in quasi-stationary networks

where nodes are location-unaware and have equal significance. The protocol incurs low

overhead in terms of processing cycles and messages exchanged. OK was designed with

the following goals:

1. Is completely distributed (i.e. each node independently makes its decisions based

on local information and without any centralized control).

2. Is scalable in terms of processing time (i.e. the clustering process terminates in a

constant time independent of network size) and in terms of communication over-

head (the number of control messages transmitted by node is independent of net-

work size).

3. Does not make any assumptions about the location of the nodes.

4. Is asynchronous (Due to the large number of nodes involved, it is desirable to let

the nodes operate asynchronously. OK does not assume any kind of clock synchro-

nization between nodes, hence, The clock synchronization overhead is avoided,

providing additional processing savings).

5. Is energy efficient in terms of processing complexity and message exchange (con-

trol overhead is linear in the number of nodes).

6. Is efficient in terms of memory used by the data structures required to implement

the algorithm.

41

7. Chooses cluster heads that are well distributed over the sensor field.

8. Allows multi-hop clusters to be formed.

9. Ensures overlapped clusters with some average overlapping degree.

To the best of our knowledge, the proposed algorithm is the first algorithm to address the

above goals in an integrated manner. We formulate the overlapping k-hop clustering prob-

lem as an extension to the k-dominating set problem [48]. Then we propose OK, a ran-

domized multi-hop distributed algorithm to solve the problem. The nodes randomly elect

themselves as cluster heads with some probability p. The cluster head probability (p) is

another parameter in the algorithm that can be tuned to control the number of overlapping

clusters in the network. The clustering process terminates in O(1) iterations, independent

of the network diameter. It does not depend on the network topology or size. We also

analyze the effect of different parameters (e.g. node density, network connectivity) on

the performance of the clustering algorithm in terms of communication overhead, node

coverage, and average cluster size. The results show that although we have overlapped

clusters, the OK clustering algorithm still produces approximately equal-sized clusters,

which is a desirable property because it enables an even distribution of control between

cluster head nodes.

The chapter is organized as follows. section II briefly surveys related work. Section

III states the overlapping k-hop problem. Section IV presents the OK protocol architec-

ture and proves that it satisfies its design goals. Section V shows the performance of OK

via simulations and in section VI, we provide analytical models for the results. We study

the complexity and correctness of the proposed protocol in section VII.

42

4.2 Related Work

In the last few years, many algorithms have been proposed for clustering in wireless

ad-hoc networks [88, 49, 36, 9, 7, 47, 45, 8, 38, 10, 12, 35, 66, 11, 25, 6, 31, 62]. Clus-

tering algorithms can be classified as either deterministic or randomized. Determinis-

tic algorithms [11, 12, 25, 8, 38, 7, 65, 70] use weights associated with nodes to elect

cluster heads. These weights can be calculated based on number of neighbors (node de-

gree) [11, 12], node id [8, 38, 7], residual energy, and mobility rate [25]. Each node

broadcasts the calculated weight. Then a node is elected as a cluster head if it is the high-

est weight among its neighboring nodes. In randomized clustering algorithms, the nodes

elect themselves as cluster heads with some probability p and broadcast their decisions

to neighbor nodes [49, 88, 10, 9, 13]. The remaining nodes join the cluster of the cluster

head that requires minimum communication energy. The probability p is an important

parameter in a randomized algorithm. It can be a function of node residual energy [49]

or hybrid of residual energy and a secondary parameter [88]. In [9], the authors obtain

analytically the optimal value for p that minimizes the energy spent in communication.

In OK, the probability p is tuned to control the number of overlapping clusters in the

network.

The Distributed Clustering Algorithm (DCA) [12] elects the node that has the high-

est node degree among its 1-hop neighbors as the cluster head. The DCA algorithm is

suitable for networks in which nodes are static or moving at a very low speed. The Dis-

tributed and Mobility-adaptive Clustering Algorithm (DMAC) [11] modifies the DCA

algorithm to allow node mobility during or after the cluster set-up phase. The Weighted

43

Clustering Algorithm (WCA) [25] calculates the weight based on the number of neigh-

bors, transmission power, battery-life and mobility rate of the node. The algorithm also

restricts the number of nodes in a cluster so that the performance of the MAC protocol

is not degraded. In the Linked Cluster Algorithm (LCA) [8], a node becomes the cluster

head if it has the highest identity among all nodes within one hop of itself or among all

nodes within one hop of one of its neighbors. The LCA algorithm was revised [38] to de-

crease the number of cluster heads produced in the original LCA. In this revised version

of LCA (LCA2), the algorithm elects as a cluster head the node with the lowest id among

all nodes that are neither a cluster head nor are within 1-hop of the already chosen cluster

heads. Both LCA and LCA2 heuristics were developed to be used with small networks of

less than 100 nodes. As the number of nodes in the network grows larger, LCA/LCA2 will

impose greater delays between node transmissions in the TDMA communication scheme

and may be unacceptable.

Many of these clustering algorithms [8, 38, 25, 11, 65] are specifically designed

with an objective of generating stable clusters in environments with mobile nodes. But

in a typical wireless sensor network, the sensors’ locations are fixed and the instability of

clusters due to mobility of sensors is not an issue. However, the network is still dynamic

because of node failure or adding new nodes. Moreover, the clustering time complexity in

some protocols [12, 25, 10, 65, 70] is dependent on the network diameter. Most of these

algorithms have a time complexity of O(n), where n is the total number of nodes in the

network. This makes them less suitable for sensor networks that have a large number of

sensors. Unlike those protocols, OK terminates in a constant number of iterations.

Some clustering algorithms make assumptions about node capabilities, e.g., location-

44

awareness or clock synchronization. In [86, 87, 23, 26], the geographic location of each

node is assumed to be available based on a positioning system such as GPS or through

broadcast messages and routing updates [SPAN]. This is again not a reasonable assump-

tion in case of low-cost low-power sensor networks. The clustering algorithm proposed

in [Chiasserini02] assumes that each node is aware of the whole network topology, which

is usually impossible for wireless sensor networks with a large number of nodes. Some

algorithms [8, 38, 49, 25, 12, 11] require time synchronization among the nodes, which

makes them suitable only for networks with a small number of sensors.

The majority of clustering algorithms construct clusters where every node in the net-

work is no more than 1 hop away from a cluster head [8, 38, 12, 25, 11, 10, 35, 88, 36, 49].

We call these single hop (1-hop) clusters. For example, the HEED [88] algorithm forms

single-hop non-overlapping clusters with the objective of prolonging network lifetime.

Cluster heads are randomly selected according to a hybrid of their residual energy and a

secondary parameter, such as node proximity to its neighbors or node degree. A careful

selection of the secondary clustering parameter can balance load among cluster heads.

HEED performance was analyzed assuming synchronized nodes. However, the authors

showed that unsynchronized nodes can still execute HEED independently, but cluster

quality will be affected. In [36], the authors present a clustering algorithm (FLOC) that

produces non-overlapping and approximately equal-sized clusters. The clustering is such

that all nodes within one hop from a cluster head belongs to its cluster, and no node m

hops away from the cluster head may belong to its cluster. In [47, 45] the clustering algo-

rithm assumes gateway (master) nodes are already known and the objective is to perform

load balancing between different clusters by changing cluster radius. In large networks

45

single-hop clustering may generate a large number of cluster heads and eventually lead to

the same problem as if there is no clustering.

In [49], Heinzelman et al. have proposed a distributed algorithm for wireless sensor

networks (LEACH) in which the sensors randomly elect themselves as cluster heads with

some probability and broadcast their decisions. The remaining sensors join the cluster

of the cluster head that requires minimum communication energy. This algorithm allows

only 1-hop clusters to be formed. LEACH assumes that all nodes are within communi-

cation range of each other and the base station (i.e. complete graph). LEACH clustering

terminates in a constant number of iterations (like OK), but it does not guarantee good

cluster head distribution and assumes uniform energy consumption for cluster heads [88].

Few papers have addressed the problem of multi-hop (k-hop) clustering [7, 9, 13].

These algorithms are mostly heuristic in nature and aim at generating the minimum num-

ber of disjoint clusters such that any node in any cluster is at most k hops away from

the cluster head. For example, the algorithm described in [13] constructs clusters such

that all the nodes within R/2 hops of a cluster head belong to that cluster head and the

farthest distance of any node from its cluster head is 3.5R hops where R is an input pa-

rameter to the algorithm. With high probability, a network cover is constructed in O(R)

rounds; the communication cost is O(R3). The OK clustering algorithm has a much lower

communication overhead. In [7], the authors presented the Max-Min heuristic to form

non-overlapping k-clusters in a wireless ad hoc network. Nodes are assumed to have non-

deterministic mobility pattern. Clusters are formed by broadcasting node identities along

the wireless links. When the heuristic terminates, a node either becomes a cluster head,

or is at most k wireless hops away from its cluster head. The value of k is a parameter of

46

the heuristic. Although the Max-Min algorithm generates k-hop clusters with a run-time

of O(k) rounds, it does not ensure that the energy used in communicating information to

the information center is minimized. Both OK and MaxMin have O(k) iterations. How-

ever, OK needs exactly 2k iterations to terminate but MaxMin needs at least 2k iterations.

This means that the communication overhead is reduced in OK compared with MaxMin.

In case of sensor networks, this directly affects the energy level of the node. In [9],

the authors proposed a LEACH-like randomized clustering algorithm for organizing the

sensors, in a wireless sensor network, in a hierarchy of clusters with an objective of mini-

mizing the energy spent in communicating the information to the processing center (base

station). They used results from stochastic geometry to obtain analytically the optimal

number of cluster heads at each level of clustering.

None of the above algorithms construct overlapping clusters. Most of these algo-

rithms are heuristic in nature and their aim is either to generate the minimum number of

multi-hop clusters [7] or to minimize the energy spent in the network [9]. To the best of

our knowledge, this is the first document to discuss the problem of overlapping multi-hop

clustering. We show that constructing the minimum overlapping k-hop dominating set

in an ad hoc network is NP-complete. Then we propose OK, a randomized multi-hop

distributed algorithm to solve the problem. The nodes randomly elect themselves as clus-

ter heads with some probability p. The clustering process terminates in O(1) iterations,

independent of the network diameter, and does not depend on the network topology or

size. OK operates in quasi-stationary networks where nodes are location-unaware and

have equal significance. The protocol incurs low overhead in terms of processing cycles

and messages exchanged. We also analyze the effect of different parameters (e.g. cluster

47

radius, network connectivity, cluster head probability) on the performance of the cluster-

ing algorithm in terms of communication overhead, node coverage, and average cluster

size.

OK is similar to the clustering algorithm described in [9] since both algorithms be-

long to the class of randomized multi-hop clustering. In [9], the main focus of the work

was to find the optimal number of cluster heads at each level of clustering analytically,

and apply this recursively to generate one or more levels of clustering. However, our main

focus is to generate overlapping clusters with certain overlapping degree. Our main con-

tributions are (i) to formalize the problem of overlapping multi-hop clustering; (ii) extend

the work in [9] to meet the design goals; (iii) show how to tune the parameters (p and k)

given to the algorithm in order to achieve the design goals; (iv) give analytical models to

formulate the problem. In [9], the cluster radius (k) was calculated analytically to min-

imize the energy. In OK, the cluster radius is a parameter that can be tuned to increase

overlapping degree between clusters, or to decrease the cluster size (load balancing), or

to decrease communication overhead.

4.3 Problem Formulation

An ad-hoc network can be modelled as a graph G = (V,E), where two nodes are con-

nected by an edge if they can communicate with each other. If all nodes are located in

the plane and have the same transmission range (Tr), then G is called a unit disk graph.

We will start by describing the considered system model. Then, we will review a number

of definitions from graph theory that will be used in the problem formulation. Finally,

48

we will formulate the overlapping k-hop clustering problem as an extension to the k-

dominating set problem.

4.3.1 Definitions

Let n denote the number of vertices (nodes) and e denote the number of edges. That is,

n = |V | and e = |E|.

• Open Neighbor Set, N(u) = {v|(u, v) ∈ E}, is the set of vertices that are neighbors

of u. For a set of nodes S, N(S) =
⋃

u∈S N(u).

• Closed Neighbor Set, N [u] = N(u) ∪ {u}, is the set of neighbors of u and u itself.

For a set of nodes S, N [S] =
⋃

u∈S N [u] = N(S) ∪ S.

• Node Degree, deg(u) = |N(u)|.

• Graph Distance, dG(u, v), the distance between two vertices u and v is the mini-

mum number of edges in a u − v path.

• Graph Power, the kth power of a graph G (Gk) is a graph with the same set of

vertices as G and an edge between two vertices iff there is a path of length at

most k between them [82]. Given G = (V,E) then Gk = (V,Ek) where Ek =

{(u, v)| u, v ∈ V and dG(u, v) ≤ k.

• Dominating Set, S, is defined as a subset of V such that each vertex in V − S is

adjacent to at least one vertex in S. Thus, every MIS is a dominating set. How-

ever, since vertices in a dominating set may be adjacent to each other, not every

49

dominating set is an MIS. Finding a minimum-sized dominating set or MDS is

NP-Hard [44].

• Minimum Dominating Set (MDS) is the dominating set with minimum cardinality.

Each MIS is also an MDS. Finding the MDS is also NP-Hard [44].

The above definitions can be generalized for the multi-hop (k-hop) case as follows:

• k-Connected Set, S, a set S is said to be k connected if each vertex in S is within

distance k from at least one other vertex in S, where k ≥ 1 is an integer.

• Open k-Neighbor Set, Nk(u) = {v|dG(u, v) ≤ k}, is the set of vertices, different

from u, that are at distance at most k from u. For a set of nodes S, Nk(S) =

⋃

u∈S Nk(u).

• Closed k-Neighbor Set, Nk[u] = Nk(u) ∪ {u}, is the set of k-neighbors of u and u

itself. If u is a cluster head, then Nk[u] is the set of all vertices in the cluster and

|Nk[u]| is the cluster size. For a set of nodes S, Nk[S] =
⋃

u∈S Nk[u] = Nk(S) ∪ S.

• Node k-Degree, degk(u) = |Nk(u)|.

• k-Dominating Set (KDS) OR Distance Domination, S, is defined as a subset of V

such that each vertex in V − S is within distance k from at least one vertex in S,

where k > 1 is an integer. That is Nk[S] = V .

• The Overlapping Graph, GS , Let S be a KDS, then the overlapping graph is the

weighted graph induced by S as follows:

1. The set of vertices are S.

50

2. An edge exists between two vertices u, v iff Nk[u] ∩ Nk[v] ≥ ω, where ω is

some threshold representing the minimal intersection.

The edge weights can be calculated according to different design goals. In sec-

tion 6.3 we discuss different heuristics to calculate the weights. The overlapping

graph could be undirected or directed graph based on how the weights are calcu-

lated. In the remainder of this chapter, we shall assume that the weights correspond

to the overlapping degree between adjacent clusters; hence; the overlapping graph

will be undirected graph.

 A

B C D E G

F

H

I

Figure 4.1: Illustrative Example

To clarify the above definitions, we will use the graph in Fig. 4.1 as an illustra-

tive example. For the graph shown, S1 = {A,G} is a 2-dominating set (2DS) and it is

also a 2-independent set (2IS); hence; S1 is a 2-independent-dominating set (2IDS). The

set S2 = {C,D,E,G} a 2-connected-dominating set (2CDS). The set is S3 = {C,G}

is a 2-weakly-connected-dominating set (2WCDS). The set S4 = {C,E,H} a total 2-

dominating set.

51

4.3.2 The Overlapped K-hop (OK) Clustering Problem

Given an ad-hoc network that is modelled as a unit disk graph G = (V , E), the OK clus-

tering problem can be formulated as finding the set of nodes S that satisfies the following

conditions:

1. Coverage Condition. S is a KDS. This means that each node is either a cluster head

or within k hops from a cluster head (i.e. Nk[S] = V).

2. Overlapping Graph Connectivity Condition. The overlapping graph induced by S,

GS , is connected. This condition implies that for each cluster head node u, there is

at least one other cluster head node v such that the two clusters are overlapped with

degree ≥ 1 (i.e. there is no isolated vertices in the overlapping graph). Moreover,

there is at least one spanning tree that connects all the cluster head nodes together.

Finding the minimum KDS (MKDS) is a nice design goal to achieve. Minimizing the

cardinality of the computed KDS can help to decrease the control overhead since broad-

casting for node discovery and topology maintenance is restricted to a small subset of

nodes. However, from a computational point of view, the problem of finding the mini-

mum KDS (MKDS) is very difficult. In fact there is no known efficient centralized algo-

rithm for solving this problem and a corresponding decision problem is NP-hard [48].

Even if the graph G belongs to certain special classes of graphs (for example if G is bi-

partite or chordal graph), the problem remains NP-hard [15]. The MKDS remains also

NP-hard for unit-disk graphs as the case in wireless ad-hoc networks. Further aspects of

the commutability of MKDS are discussed in [48, 24].

52

In [51], the authors described a centralized algorithm that finds a KDS of cardinal-

ity at most n/(k+1). The algorithm firsts creates a rooted spanning tree from the original

network topology. Then, an iterative labelling strategy is used to classify the nodes in the

tree to be either dominator (cluster head) or dominated (non-cluster head). In [50], the

authors described another centralized algorithm for finding the total KDS such that the

cardinality is bounded by 2n/(2k+1). Since both algorithms are centralized, the commu-

nication overhead is high in case of large-scale networks like sensor networks. There is

no known efficient distributed algorithm for finding the MKDS with some performance

bound. For example, the MaxMin heuristic [7] finds a KDS, however, there is no reported

performance bound on the cardinality of the resulting KDS. Similarly, in [9] the objective

is to find a KDS that minimize energy consumption and maximize network lifetime.

A related problem that has been widely investigated in the context of wireless net-

works is the problem of finding the minimum connected dominating set (MCDS). The

MCDS problem can be viewed as a special case of MKDS problem when k =1. The

MCDS is NP-hard for general graphs and for unit-disk graphs in particular [33]. Although

there are many applications for CDS in wireless networks [14], the primary application

of CDS is the construction of virtual backbone (spine) in wireless ad hoc networks. In

the last decade, many CDS construction algorithms have been proposed in the context of

MANETs and sensor networks. These algorithms are either centralized [18, 19, 28, 46]

or distributed [5, 3, 4, 27, 29, 20, 85]. The centralized approaches seek a minimum con-

nected dominating set (MCDS) as their major design goal. Thus performance bounds are

their primary design parameter. However, centralized algorithms have high communi-

cation overhead and time complexity. On the other hand, distributed algorithms seek a

53

connected dominating set (not necessarily the minimum) that provides a good resource

conservation property. Thus performance bound is not their primary consideration. In-

stead, time complexity (specially when nodes are mobile) and message complexity is

taken into consideration. Distributed algorithms have a time complexity of O(n) and a

message complexity of O(nlogn) [3, 29] or O(n) [4, 20]. This quicker execution time

comes at a cost of a larger CDS. A more detailed analysis of the performance of those

algorithms is discussed at [14].

Any of the distributed heuristics for finding a CDS can be modified to find a KDS.

In this case, we need to construct a k-closure (a graph power of order k) on the original

connectivity network graph before running any of the heuristics. Recall from section 3.2

that the kth power of the graph yields a modified graph in which nodes A and B are 1-hop

neighbors if they were at most k-hops away in the actual topology graph. When any of the

distributed CDS heuristics are run on this modified graph, they form clusters where each

node is at most k wireless hops away from its cluster head. Constructing the kth power

of a graph is O(kn3), where n is the number of vertices in the graph [82]. Even if we

used Strassen’s algorithm for matrix multiplication [34], the best performance in terms

of floating point operations is O(kn2.807). For sensor networks, this is considered very

expensive not in terms of communication overhead only but also the Strassen’s algorithm

is difficult to implement efficiently because of the data structures required to maintain

the array partitions [34, 55]. Moreover, we are still generating non-overlapping clusters!

Modifying an existing distributed CDS algorithm, to generate a KDS in a distributed

randomized fashion, is a challenging problem in itself. We leave this as a future work.

54

The problem of overlapping clusters is totally new. There was no formulation of the

problem in the literature. So there is no known algorithm that satisfies the three condi-

tions described at the beginning of this section. The proposed OK clustering algorithm is

a distributed simple randomized algorithm that meets the above three conditions with high

probability. The main design goal behind the proposed algorithm is not to find the min-

imum KDS. Thus performance bound is not the primary consideration. Instead, we are

more concerned about time complexity, processing complexity, and message complexity.

We will show that by tuning some of the protocol parameters (k, p, node density), we can

generate overlapping multi-hop clusters that satisfy the above three conditions with high

probability. OK is scalable; the clustering formation terminates in a constant time O(k)

regardless of the network topology or size. The protocol incurs low overhead in terms

of processing cycles and messages exchanged. OK assumes a quasi-stationary network

where nodes are location-unaware and have equal significance. No synchronization is

needed between nodes. In general, OK will produce a an overlapping KDS with the goal

of minimizing the overall communication overhead, and processing complexity.

4.4 The OK Protocol Architecture

In this section we describe the operations of the OK protocol in more detail. The es-

sential operation in any clustering protocol is to select a set of cluster heads among the

nodes in the network, and cluster the rest of the nodes with these heads. OK does this in

a distributed fashion, where nodes make autonomous decisions without any centralized

control. The algorithm initially assumes that each sensor in the network becomes a cluster

55

head (CH) with probability p. Each cluster head then advertises itself as a cluster head

to the sensors within its radio range. This advertisement is forwarded to all sensors that

are no more than k hops away from the CH. Any sensor that receives such advertisements

joins the cluster even if it already belongs to another cluster. Any sensor that is neither a

CH nor has joined any cluster itself becomes a CH. Since the advertisement forwarding is

limited to k hops, if a sensor does not receive a CH advertisement within time duration t1

(where t1 units is a value greater than the time required for data to reach the cluster head

from any sensor k hops away), it can infer that it is not within k hops of any cluster head

and hence become a CH. We assume that each cluster has a unique identifier, which is the

node identifier of the cluster head. The flowchart of the OK algorithm is shown in Fig. 4.2.

Each node maintains a table that stores information about the clusters known to this node.

If the table contains more than one entry, this means that the node is a boundary node.

Each cluster head maintains a list of all cluster members, a list of adjacent clusters, and

a list of boundary nodes to reach those clusters. There can be multiple boundary nodes

between overlapping clusters. Moreover, a node can be a boundary node for more than

two overlapping clusters. In the remainder of this section, we first discuss the necessary

data structures to be maintained at each node for the clustering protocol. We also discuss

the message formats and the timers maintained by each node. We then explain the cluster

formation protocol and give pseudo-code. Finally, we prove that the protocol meets its

design goals.

56

Node is cluster-
head?

Send CH_AD(node ID, 0, node ID)
message to neighbors

Event
received?

Event received?

Set timer event for t1 units

Set timer event for t2 units

Yes No

No

No

Timeout
Event

Yes

CH_AD
Received

Event

Node becomes CH

Yes

JREQ
Received

Event

Forward JREQ

No

Yes

Yes

Timeout
Event

CH_AD
Received

Event

No
No

No

Terminate Cluster Formation

Yes

JREQ
Received

Event

Yes

No

Add node to local cluster graph

No

Yes

non-CH
wait

non-CH
wait

Yes

Add CH to CH_table
Increment HC

SID = node ID
Forward CH_AD to

neighbors

Is HC < k ?

non-CH
wait

No

Is CH_table
empty?

Yes

Send JREQ message to each
cluster head in the CH_table

No

CH_ID = node ID

Yes
Forward message to neighbor

No

Is HC < k ?

SID = node ID
Forward CH_AD to neighbors

Yes

CH
wait

CH
wait

CH
wait

No
Yes

Increment HC

Figure 4.2: Flowchart of the OK cluster formation algorithm

57

4.4.1 Data Structures

Each node maintains the following variables:

• Node ID (NID): A unique ID assigned to each node before deploying the network.

• Status: {CH, NCH}. The status of the node. A node can be either a cluster head

(CH) or a non-CH (NCH). Initially all nodes are set to NCH.

• Node Degree (d): The number of 1-hop neighbors. Calculated after discovering the

number of neighbors.

• Reliable Ranges (RR): The number of reliable ranges known to the node. RR 6 d.

Initialized during range estimation phase.

• Local Cluster Graph (LCG): LCG = (V; E), a weighted undirected graph maintained

by CH nodes corresponding to the local cluster that belongs to this CH node. The

edge weight (wij) represents the range measurement between nodes i and j. Ini-

tially LCG consists of the CH node and all one-hop neighbors that it hears from

during range estimation phase, i.e. |V | = d+1 and |E| = d, where d is the CH

node degree. The LCG is very important for the localization purposes since it con-

tains all range measurements between nodes. The LCG is used in the LLD phase to

build the local map of the cluster and in the GLD phase to build the global network

topology.

• Adjacent Clusters Table (AC table): A table maintained by CH nodes to store in-

formation about adjacent clusters. The table consists of tuples of the form (CHID,

58

BN), where CHID is the CH node ID, and BN is a list of boundary node Ids. Ini-

tially the table is empty.

• Cluster Heads Table (CH table): A table maintained by each node to store infor-

mation about the clusters known to this node. If the table contains more than one

entry, this means that the node is a boundary node. The table consists of tuples of

the form (CHID, HC, prev), where CHID is the CH node ID, HC is the number of

hops leading to this cluster head, and prev is the node ID of a 1-hop neighbor node

that can lead to the CH node of this cluster using minimum number of hops. The

table acts as a routing table where the CHID field uniquely identifies a route to a

CH node. Initially the table is empty.

4.4.2 Messages

There are two types of messages:

• CH advertisement (CH AD) message: This is the message broadcast by a CH node

to advertise its existence. It has the form (CH AD, SID, CHID, HC), where SID is

the sender node ID, CHID is cluster head ID, and HC is the number of hops leading

to the CH node. The SID field is used to update the CH table.prev field such that

each node knows a unique path to the cluster head. The HC field is used to limit the

flooding of the CH AD message to k hops. The CH AD message has a fixed size.

• Join request (JREQ) message: This is a message sent by a node when it knows

about the existence of a CH node and decides to join this cluster. To limit the

flooding, the message is unicasted using the field CH table.prev. The message

59

contains information about the range measurements to neighbors along with the

clusters that this node can hear from. The message has the form (JREQ, RID, SID,

CHID, d, (NID, RSID,NID)1..nd, nc, (CHID)0..nc), where RID is the receiver ID1,

SID is the ID of the node that will join the cluster, CHID is the ID of the CH node

responsible for this cluster, d is the node degree, (NID, RSID,NID)1..nd are one or

more couples containing information about the range measurements between this

node and its 1-hop neighbors, nc is the number of clusters that this node can hear

from them (=|AC table|), and (CHID)0..nc are 0 or more clusters that this node can

hear from. Notice that the size of the JREQ message is variable and depends on the

number of clusters (nc) and the node degree (d).

4.4.3 Timers

Each node maintains the following timers2:

• CH AD WAIT timer. This timer is set by a non-CH node. It represents the max-

imum time that a node should wait for CH advertisement messages. It is equal to

t1 = t(k) + δ, where t(k) is the time needed for a message to travel k hops and δ is

the maximum time needed for any node to finish bootstrapping and start executing

the OK protocol. In our simulator, we assume that all the CH nodes will finish boot-

strapping and start transmitting CH AD messages within t(k)/2 time units. Hence,

we set δ to be t(k)/2.

1This equals to CH table.prev corresponding to the CH table.CHID.

2We assume a timer that is set to a certain number of units and fires once.

60

• JREQ WAIT timer. This timer is set by a non-CH node. It represents the maximum

time that a node should wait for JREQ messages to forward to CH nodes. It is also

equal to t1.

• CH WAIT SHORT timer. This timer is set by a CH node that was initially an NCH

node but change status. It represents the time a CH node should wait for JREQ

messages before terminating the cluster formation phase. It is approximately equal

to t2 = 2 ∗ t(k) + δ.

• CH WAIT LONG timer. This timer is set by a CH node. It represents the maximum

time that a CH node should wait for JREQ messages before terminating the cluster-

ing algorithm. It is longer than the CH WAIT SHORT timer and is approximately

equal to t3 = 3 ∗ t(k) + δ.

The events of the OK clustering algorithm are listed in table 4.1. A finite state

machine for the protocol is given in Fig. 4.3. The activities of the OK clustering algorithm

are shown in Fig. 4.4, using an event-based notation.

4.5 Performance Evaluation

We have validated the OK clustering algorithm using simulation. The OK clustering

algorithm was implemented using MATLAB 6.1 release 12.1. Initially, each node is

assigned a unique node id. There are four parameters used in our simulation:

1. Network size (n): the number of sensor nodes in the network. Since all the sim-

ulation experiments assume a square area of side length l, changing the network

61

Event Name Description

Initialization() An event executed once to initialize the

status of the node.

CH AD Received (SID, CHID, HC) An event triggered when CH AD message

is received.

JREQ Received (RID, SID, CHID, nd, (NID,

RSID,NID)1..nd, nc, (CHID)0..nc)

An event triggered when JREQ message is

received.

ChangeStatus An event triggered when the

CH AD WAIT timer fires indicating

that an NCH node should either change its

status to CH node or join a cluster if any.

EndClusterFormationPhase An event triggered when the JREQ WAIT

timer fires indicating that a CH node

should terminate the clustering phase and

start the Local Location Discovery (LLD)

phase.

Table 4.1: Events summary of the OK clustering algorithm

62

r <= p

status := NCH
set timer event for t1 units

Generate
a random
number

r

CH_AD waitCH wait

Terminate
clustering
formation

set timer event for t1 units

status := CH
HC:=0
broadcast(CH_AD,NID,CHID,HC)
set timer event for t2 units

Timeout

add (CHID,NID) to AC_table
add (CHID,HC,SID) to CH_table
HC:=HC+1
if HC<k
 SID:=NID
 broadcast(CH_AD,NID,CHID,HC)

if CHID = NID
 add SID to LCG
 add (CHID,SID)0..nc to AC_table
else
 forward message to designated
 neighbor after chaning RID

add (CHID,HC,SID) to CH_table
HC:=HC+1
if HC < k
 broadcast(CH_AD,NID,CHID,HC)

Timeout && isNotEmpty(CH_table)

CH_AD Received &&
isNotInCH_table(CHID)

r > p

JREQ Received

CH_AD Received && CHID != NID

status := CH
HC:=0
broadcast(CH_AD,NID,CHID,HC)
set timer event for t3 units

Timeout && isEmpty(CH_table)

CH_AD wait
2 add (CHID,HC,SID) to CH_table

HC:=HC+1
if HC < k
 broadcast(CH_AD,NID,CHID,HC)

CH_AD Received &&
isNotInCH_table(CHID)

JREQ Received && NID=RID

JREQ wait

unicast message to designated neighbor after
chaning RID

send JREQ to each CHID in CH_table
set timer event for t1 units

Timeout

Timeout

Figure 4.3: Finite state machine of the OK protocol

63

Initialization() // executed once
1. ac:
2. r = generate random number from 0..1;
3. if r < p then
4. status := CH;
5. broadcast (CH AD, NID, NID, 1);
6. set CH WAIT timer;
7. else
8. status := NCH;
9. set CH AD WAIT timer;

CH AD Received (SID, CHID, HC)
10. ac: if status = NCH
11. if CHID is not in the CH table
12. Add (CHID, HC, SID) to CH table;
13. if HC < k
14. HC := HC + 1;
15. broadcast (CH AD, NID, CHID, HC);
16. // else HC ≥ k, do not forward the message more than k hops
17. // else you have already heard of this cluster, do nothing
18. else
19. // node is a CH node
20. if CHID = NID
21. discard the message; // This is an echo message
22. if CHID is not in the AC table
23. Add (CHID, NID) to AC table;
24. Add (CHID, HC, SID) to CH table;
25. if HC < k
26. HC := HC + 1;
27. broadcast (CH AD, NID, CHID, HC);
28. // else HC ≥ k, do not forward the message more than k hops
29. // else you have already heard of this cluster, do nothing

JREQ Received (RID, SID, CHID, nd, (NID, RSID, NID)1..nd, nc, (CHID)0..nc)
30. ac: if status = NCH
31. if RID = NID
32. RID := CH table[CHID].prev;
33. broadcast (JREQ, RID, SID, CHID, nd, (NID, RSID, NID)1..nd, nc, (CHID, cost)0..nc);
34. // else do nothing to limit the flooding of JREQ message
35. else
36. // node is a CH node
37. if CHID = NID
38. Add SID to the set of vertices in LCG;
39. Add (NID, RSID, NID)1..nd to the set of edges in LCG;
40. Add (CHID, cost, SID)0..nc to the AC table;
41. else
42. RID := CH table[CHID].prev;
43. broadcast (JREQ, RID, SID, CHID, nd, (NID, RSID, NID)1..nd, nc, (CHID, cost)0..nc);

EndClusterFormationPhase
44. ec: (CH WAIT timer fires && status = CH)

OR (CH WAIT SHORT timer fires && status = CH)
OR (JREQ WAIT timer fires && status = NCH)

45. ac: Start the Local Location Discovery (LLD) phase using information stored in LCG and AC table.

ChangeStatus
46. ec: CH AD WAIT timer fires. // for NCH node
47. ac: if CH table empty
48. status := CH;
49. broadcast (CH AD, NID, NID, 1);
50. set CH WAIT SHORT timer;
51. else
52. for all CHID in CH table
53. RID := CH table[CHID].prev;
54. broadcast (JREQ, RID, NID, CHID, (NID, RSID, NID)1..d, (CHID)0..m);
55. set JREQ WAIT timer;

Figure 4.4: The OK Algorithm

64

size will implicitly change the node density in the network (µ). Node density (µ) is

defined to be the number of nodes in unit area:

µ = n/l2 (4.1)

2. Cluster radius (k): the maximum graph distance between any node in the cluster

and the cluster head. Recall from section 3.2 that the graph distance between two

vertices u and v, dG(u, v), is the minimum number of edges in a u− v path. Hence,

if u is a CH node, then k = max
v∈Nk(u)

(distG(u, v)).

3. Average Node Degree (d): the average node degree in the network. Recall from sec-

tion 4.3.1 that the node degree of a node u, is the number of nodes that are neighbors

of u. Node degree is a function of the node transmission range (Tr). Assuming that

n sensor nodes are uniformly distributed over a square field of side l, the probability

P(d) of a node u having degree d is given by binomial distribution [75]:

P (d) = P d
r (1 − Pr)

n−d−1

n − 1

d

(4.2)

where Pr is the probability of being within the transmission range Tr from node u

Pr =
π.T 2

r

l2
(4.3)

For large values of n tending to infinity, the above binomial distribution converges

to a Poisson distribution:

P (d) =
λd

d!
e−λ (4.4)

65

where λ = nPr is the average node degree. Hence, the relation between the average

node degree (d) and the transmission range (Tr) of a node is given by:

d = nPr =
n.π.T 2

r

l2
= µ.π.T 2

r (4.5)

We will use the above equation frequently to map between average node degree and

transmission range.

4. The cluster head probability (p). Since each node decides randomly to be a cluster

head with probability p, then the average number of clusters is pn. Hence, increas-

ing p will increase the number of clusters in the network.

All experiments were performed over 150 different topologies representing differ-

ent network sizes (n) ranging from 50 to 800 sensor nodes. The nodes were randomly

placed according to a uniform distribution on a 100x100 area. For each topology, the

transmission range of each node (Tr) was varied in order to achieve different average

node degree (d) ranging from 7 to 21. In a wireless ad-hoc network with a uniform dis-

tribution of nodes, in order to guarantee global network connectivity, the average node

degree should be at least 6 [61]. Hence, we chose the minimum average node degree to

be 7. The cluster radius (k) ranges from 1 to 5. The cluster head probability (p) was varied

from 0.05 to 0.5. For each topology, since cluster heads are chosen randomly, we repeat

the experiment 30 times, each time with a different random set of cluster heads. To eval-

uate the performance of the OK clustering algorithm, we use the following performance

metrics:

1. Percentage of Covered Nodes (CN): this metric tests if the generated clusters satisfy

the coverage condition as defined in section 4.3.2. CN is defined as the percentage

66

of nodes that are either cluster heads or within k-hops from a cluster head after the

first wave of CH advertisement is propagated though the network (i.e. after t(k)

time units where t(k) is the time needed for a message to be forwarded for k hops).

We will prove in section 4.7 (lemma 4.2) that after 3t(k) + δ, the OK clustering

terminates and each node is either CH or NCH.

2. The Average Overlapping Degree (AOD): this metric tests if the generated clusters

satisfy the overlapping condition as defined in section 4.3.2. AOD is defined as the

average overlapping degree between any two overlapping clusters in the network.

Assume that u, v are any two cluster head (CH) nodes. Then the overlapping degree

between the two corresponding clusters (O) is a discrete random variable where O

= |Nk[u] ∩ Nk[v]| and Nk[u] ∩ Nk[v] 6= ∅. Notice that the overlapping degree is

defined only for overlapping clusters (i.e. the random variable O can not take the

value 0). We define AOD as the mean of this random variable O (i.e. AOD = E(O)).

3. The Connectivity Ratio (CR): this metric tests if the generated clusters satisfy the

connectivity condition as defined in section 4.3.2. Let S be the set of CH nodes.

Let GS be the undirected graph induced by S such that an edge exists between two

nodes u, v ∈ S if distG(u, v) < 2k (i.e the two corresponding clusters overlap).

Notice that GS is not necessary a connected graph. Then the connectivity ratio

(CR) is defined as ratio between the number of nodes in the largest spanning tree of

GS to the number of CH nodes (|S|). If CR = 1, this means that GS is a connected

graph.

4. The Average Cluster Size (Nc): the average number of nodes per cluster taken over-

67

all clusters. If u is a CH node, then Nc = |Nk[u]|. We use this metric to show that

OK generates equal-sized clusters, which is a desirable property to balance the load

of control overhead between cluster head nodes.

5. The Average Number of Edges per Cluster (Ec): the average number of edges per

cluster taken over all clusters. This metric is important for localization applica-

tions [89] since the number of edges in the graph affect the accuracy of the esti-

mated node positions.

6. The Average CLIQUE Factor per Cluster (CF): the CLIQUE factor of a cluster

measures how close the subgraph induced by cluster to a complete graph. The CF

is calculated as follows:

CF =
2 ∗ Ec

Nc ∗ (Nc − 1)
(4.6)

7. Communication Overhead: this metric measures the total energy spent in commu-

nication. Without loss of generality, it is assumed that the cost of transmitting 1

unit of data (byte) is 1 unit of energy. This is a valid assumption since we assume

that all the nodes have a fixed transmission range.

The first three performance metrics measure how close is OK to meet the conditions

listed in section 4.3.2. Nc, Ec, and CF give more insight into the size of each cluster.

Finally, measuring the communication overhead shows how scalable the proposed algo-

rithm is in terms of messages exchanged between nodes. For simplicity, we assume that

the communication environment is contention-free and error-free; hence, sensors do not

have to retransmit any data. The Multiple Access with Collision Avoidance (MACA) pro-

tocol [72] may be used to allow asynchronous communication while avoiding collisions.

68

MACA utilizes a Request To Send/Clear To Send (RTS/CTS) handshaking to avoid colli-

sion between nodes. Other MAC protocols such as TDMA [32] may be used to provide

collision-free MAC layer communication.

Our main goals behind the simulation experiments are: (1) to show that with the

careful selection of input parameters (p, k, d), the proposed clustering algorithm meets

the conditions listed in section 4.3.2 with high probability; (2) to show that although

we have overlapped clusters, the OK clustering still produces approximately equal-sized

clusters; (3) to show that OK is scalable in terms of communication overhead. Since

each of the above protocol parameters has a different effect on one of the performance

metrics, we wanted to give a sensor network engineer a set of parameters to tune to achieve

different design goals (minimize power consumption by playing with node transmission

range, increase overlapping degree, reduce cluster size, increase inter-cluster connectivity,

reduce number of clusters, reduce cluster formation time). In order to qualify the impact

of the various parameters, we will try answering the following questions:

• Q1: What is the effect of different simulation parameters (k, d, p) on the percentage

of covered nodes (CN) (section 4.5.1)?

• Q2: What is the effect of different simulation parameters (k, d, p) on the average

overlapping degree (section 4.5.1)?

• Q3: What is the effect of different simulation parameters (k, d, p) on the connec-

tivity ratio (section 4.5.1)?

• Q4: What is the effect of different simulation parameters (k, d, p) on Nc, Ec and

CF (section 4.5.2)?

69

• Q5: What is the total energy spent in communication until the clustering protocol

terminates (section 4.5.3)?

• Q6: Is the OK protocol scalable (section 4.5.3)?

• Q7: Given (n, k, d), what are the best protocol parameters that guarantee that all

the conditions discussed in section 4.3.2 are satisfied with high probability?

4.5.1 Coverage, Cluster Overlapping and Connectivity Ratio

We start by studying the effect of cluster head probability (p) on the percentage of covered

nodes (CN). From Fig. 4.5, we can see that increasing p increases the coverage almost

exponentially specially for lower values of d (i.e. low transmission range). The standard

deviation curves (Fig. 4.5(c) and 4.5(d)) show that the coverage is guaranteed within 2%

for p > 0.25. It is also clear that for each combination of (k, d), there is a minimum value

for p that guarantees 100% coverage with high probability. We will discuss this in more

details in section 5.4.

The impact of average node degree (d) on the percentage of covered nodes is shown

in Fig. 4.6(a). Increasing d increases the coverage almost exponentially for lower values

of k. For k > 1, increasing d above a certain threshold has almost no effect on the cov-

erage. The standard deviation curve (Fig. 4.6(c)) shows that this is guaranteed within 1%

with high probability for d > 16 and k > 1. In Fig. 4.6(b), the relation between cluster

radius (k) and percentage of covered nodes is shown. Increasing k seems to increase the

coverage exponentially. Again we can see from the standard deviation curve in Fig. 4.6(d)

that the results are within 1% if k > 2 and d ≥ 9. These values for k and d are very com-

70

5 10 15 20 25 30 35 40 45 50
60

65

70

75

80

85

90

95

100

P

C
ov

er
ed

 N
od

es
 (%

)
Node Coverage Vs. P (N=400,K=2)

ND=7
ND=9
ND=13

(a) The impact of cluster head prob. (p) on the per-

centage of covered nodes (different d)

5 10 15 20 25 30 35 40 45 50
60

65

70

75

80

85

90

95

100

P

C
ov

er
ed

 N
od

es
 (%

)

Node Coverage Vs. P (N=400,ND=7)

K=2
K=3
K=4

(b) The impact of cluster head prob. (p) on the per-

centage of covered nodes (different k)

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

P

C
ov

er
ed

 N
od

es
 (%

)

Node Coverage Vs. P (N=400,K=2)

ND=7
ND=9
ND=13

(c) The standard deviation of percentage of covered

nodes as (p) increases (different d)

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

P

C
ov

er
ed

 N
od

es
 (%

)

Node Coverage Vs. P (N=400,ND=7)

K=2
K=3
K=4

(d) The standard deviation of percentage of covered

nodes as (p) increases (different k)

Figure 4.5: The relation between cluster head prob. (p) and percentage of covered nodes

71

8 10 12 14 16 18 20
70

75

80

85

90

95

100

Node Degree

C
ov

er
ed

 N
od

es
 (%

)
Node Coverage Vs. Node Degree (N=400,P=15)

K=1
K=2
K=3
K=4
K=5

(a) The impact of average node degree (d) on the

percentage of covered nodes

1 1.5 2 2.5 3 3.5 4 4.5 5
70

75

80

85

90

95

100

Cluster Radius (K)

C
ov

er
ed

 N
od

es
 (%

)

Node Coverage Vs. Cluster Radius (K) (N=400,P=15)

ND=7
ND=9
ND=11
ND=13
ND=15
ND=17
ND=19
ND=21

(b) The effect of cluster radius (k) on the percentage

of covered nodes

7 9 11 13 15 17 19 21
0

1

2

3

4

5

6

7

8

Node Degree

C
ov

er
ed

 N
od

es
 (%

)

Node Coverage Vs. Node Degree (N=400,P=15)

K=1
K=2
K=3
K=4
K=5

(c) The standard deviation of percentage of covered

nodes as d increases

1 2 3 4 5
0

1

2

3

4

5

6

7

8

Cluster Radius (K)

C
ov

er
ed

 N
od

es
 (%

)
Node Coverage Vs. Cluster Radius (K) (N=400,P=15)

ND=7
ND=9
ND=11
ND=13
ND=15
ND=17
ND=19
ND=21

(d) The standard deviation of percentage of covered

nodes as k increases

Figure 4.6: The impact of average node degree (d) and cluster radius (k) on percentage of

covered nodes

72

mon and realistic in sensor networks applications. As a summary, the effect of increasing

d, k is the same. However, d is directly proportional to transmission range; hence it affects

node energy dramatically. On the other hand, k is application dependent. For example, in

routing protocols, increasing k will increase cluster size, and latency; in localization ap-

plications, increasing k will reduce the accuracy of the estimated node position. We will

see later in section 4.5.3, that both k and d increase communication overhead. However,

the communication overhead is proportional to k3 as we will discuss in section 4.5.3. Fi-

nally, from the figures we can see that by careful selection of the parameters (p, d, k) we

can guarantee 100% coverage with high probability. This means that each node is either

a cluster head or belongs to at least one cluster (i.e. the coverage condition discussed in

section 4.3.2 is satisfied with high probability).

5 10 15 20 25 30 35 40 45 50
6

8

10

12

14

16

18

20

22

P

A
O

D

AOD Vs. P (N=400,ND=7)

K=2
K=3
K=4

Figure 4.7: The cluster head prob. (p) has no effect on the average overlapping degree

(AOD)

73

7 9 11 13 15 17 19 21
0

20

40

60

80

100

120

140

160

180

Node Degree

A
O

D

AOD Vs. Node Degree (N=400,P=15)

K=1
K=2
K=3
K=4
K=5

(a) The impact of average node degree (d) on the

average overlapping degree (AOD)

1 2 3 4 5
0

20

40

60

80

100

120

140

160

180

Cluster Radius (K)

A
O

D

AOD Vs. Cluster Radius (K) (N=400,P=15)

ND=7
ND=9
ND=11
ND=13
ND=15
ND=17
ND=19
ND=21

(b) The effect of cluster radius (k) on the average

overlapping degree (AOD)

7 9 11 13 15 17 19 21
0

0.5

1

1.5

2

2.5

3

3.5

4

Node Degree

A
O

D

AOD Vs. Node Degree (N=400,P=15)

K=1
K=2
K=3
K=4
K=5

(c) The standard deviation of average overlapping

degree (AOD) as d increases

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

Cluster Radius (K)

A
O

D

AOD Vs. Cluster Radius (K) (N=400,P=15)

ND=7
ND=9
ND=11
ND=13
ND=15
ND=17
ND=19
ND=21

(d) The standard deviation of average overlapping

degree (AOD) as k increases

Figure 4.8: The impact of average node degree (d) and cluster radius (k) on average

overlapping degree

74

We will now turn our discussion to the study of the average overlapping degree

between clusters. Fig. 4.7 shows an interesting anomaly. Although one may think that

increasing p (i.e. increasing number of cluster heads and hence clusters) should increase

the average overlapping degree (AOD), the results showed that p has no effect on AOD

regardless of the values of other parameters (d, k) and network size (n). We will prove

analytically in section 4.6.3 that the AOD does not depend on p. This will leave us with

only two parameters to play with to control the overlapping between clusters d, and k.

As shown in Fig. 4.8(a), the AOD is linearly proportional with d. Notice that AOD can

never exceed the network size n so the curve saturates at n. On the other hand, increasing

the cluster radius (k) will increase the AOD quadratically as shown in Fig. 4.8(b). We

will discuss analytically in mode details the relation between AOD and d and k in sec-

tion 4.6.3. Notice that for many applications, the required AOD between clusters should

be below 10. For example in SALAM, an AOD of 3 is enough and in routing protocols

having 10 gateway nodes between clusters is more than enough. It is clear that we can

guarantee an AOD of more than 10 with high probability using small d (i.e. low trans-

mission range) and small cluster radius (k = 2). This is confirmed also by the standard

deviation curves, Fig. 4.8(c) and 4.8(d). We can clearly see from the curves that an AOD

of at least 10 can be guaranteed with high probability if k ≥ 2 and any d > 6.

Finally, to show that the OK protocol satisfies the connectivity condition, as defined

in section 4.3.2, we study the connectivity between clusters. Fig. 4.9(a) shows the relation

between connectivity ratio and p for different values of k. The figures show that with 15%

of the nodes are cluster heads; we can have 100% connectivity with high probability. This

means that for any cluster head, there is a path of less than 2k hops to at least another

75

5 10 15 20 25 30 35 40 45 50
96

96.5

97

97.5

98

98.5

99

99.5

100

P

P
er

ce
nt

ag
e

of
 C

on
ne

ct
ed

 C
lu

st
er

s

Connectivity Vs. P (N=400,ND=15)

K=2
K=3
K=4

(a) The relation between connectivity ratio (CR)

and the cluster head prob. (p)

8 10 12 14 16 18 20
98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

Node Degree

P
er

ce
nt

ag
e

of
 C

on
ne

ct
ed

 C
lu

st
er

s

Connectivity Vs. Node Degree (N=800,P=15)

K=2
K=3
K=4
K=5

(b) The relation between connectivity ratio (CR)

and average node degree (d)

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

P

P
er

ce
nt

ag
e

of
 C

on
ne

ct
ed

 C
lu

st
er

s

Connectivity Vs. P (N=400,ND=7)

K=2
K=3
K=4

(c) The standard deviation of percentage of con-

nected clusters as p increases

8 9 10 11 12 13 14 15 16 17 18 19
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Node Degree

P
er

ce
nt

ag
e

of
 C

on
ne

ct
ed

 C
lu

st
er

s

Connectivity Vs. Node Degree (N=800,P=15)

K=2
K=3
K=4
K=5

(d) The standard deviation of percentage of con-

nected clusters as d increases

Figure 4.9: The effect of the cluster head prob. (p) and average node degree (d) on

percentage of connected clusters

76

cluster head (i.e. there is at least one border node between the two clusters). We can see

that this still holds for any value of k and d > 10 as shown in Fig. 4.9(b). the standard

deviation curves (Fig. 4.9(c) and 4.9(d)) confirm the above results with high probability.

As a general conclusion, it is clear that the OK protocol satisfies with high proba-

bility the three conditions, defined in section 4.3.2. The cluster head probability (p) plays

an important role in terms of coverage and connectivity between cluster. The average

node degree (d) and the cluster radius (k) can be tuned to achieve a reasonable average

overlapping degree between clusters regardless of p.

4.5.2 Cluster Size

In this section we will study the properties of the generated clusters in terms of average

cluster size (Nc), average number of edges per cluster (Ec) and average CLIQUE factor

(CF). Since the clusters are overlapping, increasing the number of clusters will not affect

the cluster size. Hence, p has no effect on Nc, Ec and CF as shown in Fig. 4.10. On

the other hand, increasing d increases Nc linearly, as shown in Fig. 4.11(a), and increases

Ec quadratically (Fig. 4.11(b)). Substituting in Eq. 4.6, we can see why the CF is almost

constant as d increases (Fig. 4.11(c)). A detailed analytical model for the average cluster

size is discussed in section 4.6.2.

As a measure of load balancing, the standard deviation of average number of nodes

per cluster is shown in Fig. 4.11(d). The figure shows very low standard deviation re-

gardless of the values of d and k. This means that the OK protocol produces equal-sized

clusters. The same facts can be concluded from the standard deviation curves of number

77

5 10 15 20 25 30 35 40 45 50
15

20

25

30

35

40

P

A
ve

ra
ge

 N
um

be
r

of
 N

od
es

/c
lu

st
er

 (N
c)

Nodes/Cluster Vs. P (N=400,K=2)

ND=7
ND=9
ND=13

(a) The cluster head prob. (p) has no effect on the

average number of nodes/cluster

5 10 15 20 25 30 35 40 45 50
60

80

100

120

140

160

180

200

220

240

P

A
ve

ra
ge

 N
um

be
r

of
 E

dg
es

/c
lu

st
er

 (E
c)

Edges/Cluster Vs. P (N=400,K=2)

ND=7
ND=9
ND=13

(b) The cluster head prob. (p) has no effect on the

average number of edges/cluster

5 10 15 20 25 30 35 40 45 50
29

30

31

32

33

34

35

36

P

A
ve

ra
ge

 C
LI

Q
U

E
 F

ac
to

r/
cl

us
te

r
(C

F)

CLIQUE Factor/cluster Vs. P (N=400,K=2)

ND=7
ND=9
ND=13

(c) The cluster head prob. (p) has no effect on the

average CLIQUE factor (CF)

Figure 4.10: The cluster head prob. (p) has no effect on cluster size properties

78

of edges per cluster (Fig. 4.11(e)) and the average CLIQUE factor (Fig. 4.11(f)). From

Fig. 4.12(a) and 4.12(b), we can see that both Nc and Ec are proportional with the square

of the cluster radius (k2). Hence, from Eq. 4.6, we can see why the average CLIQUE

factor (CF) decreases quadratically as k increases (Fig. 4.12(c)). Again the standard de-

viation curves, Fig. 8 4.12(d), 4.12(e), 4.12(f), confirm that OK produces equal-sized

clusters regardless of the values of d and k.

As a final conclusion, although the OK protocol generates overlapping clusters,

the simulation results show that those clusters are equal-sized. Equal-sized clusters is a

desirable property because it enables an even distribution of control (e.g., data processing,

aggregation, storage load) over cluster heads; no cluster head is overburdened or under-

utilized. Moreover, the results show that the average cluster size can be controlled by

tuning the average node degree (d) or the cluster radius k. A closed form for the upper

bound of the average cluster size (Nc) as a function of d and k is given in section 4.6.2.

Finally, the average number of edges and the intra-cluster connectivity, measured by the

CF metric, can also by controlled by changing d and k. This is a desirable feature in

SALAM as we will discuss in section5.10.3.

4.5.3 Scalability

In this section we analyze the communication overhead of the OK clustering protocol

and show that OK is scalable and energy efficient in terms of communication overhead.

The total energy spent in communication is measured in terms of the number of bytes

transmitted per node. Without loss of generality, it is assumed that the cost of transmitting

79

7 9 11 13 15 17 19 21
0

50

100

150

200

250

Node Degree

A
ve

ra
ge

 N
um

be
r

of
 N

od
es

/c
lu

st
er

 (N
c)

Nodes/Cluster Vs. Node Degree (N=400,P=15)

K=1
K=2
K=3
K=4
K=5

(a) The effect of average node degree (d) on number

of nodes/cluster (Nc)

7 9 11 13 15 17 19 21
0

500

1000

1500

2000

2500

3000

Node Degree

Edges/Cluster Vs. Node Degree (N=400,P=15)

K=1
K=2
K=3
K=4
K=5

(b) The effect of average node degree (d) on number

of edges/cluster (Ec)

7 9 11 13 15 17 19 21
0

10

20

30

40

50

60

70

80

Node Degree

A
ve

ra
ge

 C
LI

Q
U

E
 F

ac
to

r/
cl

us
te

r
(C

F)

CLIQUE Factor/cluster Vs. Node Degree (N=400,P=15)

K=1
K=2
K=3
K=4
K=5

(c) The effect of average node degree (d) on the

CLIQUE factor (CF)

7 9 11 13 15 17 19 21
0

0.5

1

1.5

2

2.5

3

Node Degree

A
ve

ra
ge

 N
um

be
r

of
 N

od
es

/c
lu

st
er

 (N
c)

Nodes/Cluster Vs. Node Degree (N=400,P=15)

K=1
K=2
K=3
K=4
K=5

(d) The standard deviation of the average number of

nodes/cluster (Nc) as d increases

7 9 11 13 15 17 19 21
0

5

10

15

20

25

30

35

Node Degree

A
ve

ra
ge

 N
um

be
r

of
 E

dg
es

/c
lu

st
er

 (E
c)

Edges/Cluster Vs. Node Degree (N=400,P=15)

K=1
K=2
K=3
K=4
K=5

(e) The standard deviation of the average number of

edges/cluster (Ec) as d increases

7 9 11 13 15 17 19 21
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Node Degree

A
ve

ra
ge

 C
LI

Q
U

E
 F

ac
to

r/
cl

us
te

r
(C

F)

CLIQUE Factor/cluster Vs. Node Degree (N=400,P=15)

K=1
K=2
K=3
K=4
K=5

(f) The standard deviation of the average CLIQUE

factor (CF) as d increases

Figure 4.11: The effect of average node degree on cluster size properties80

1 2 3 4 5
0

50

100

150

200

250

Cluster Radius (K)

A
ve

ra
ge

 N
um

be
r

of
 N

od
es

/c
lu

st
er

 (N
c)

Nodes/Cluster Vs. Cluster Radius (K) (N=400,P=15)

ND=7
ND=9
ND=11
ND=13
ND=15
ND=17
ND=19
ND=21

(a) The effect of cluster radius (k) on number of

nodes/cluster (Nc)

1 2 3 4 5
0

500

1000

1500

2000

2500

3000

Cluster Radius (K)

A
ve

ra
ge

 N
um

be
r

of
 E

dg
es

/c
lu

st
er

 (E
c)

Edges/Cluster Vs. Cluster Radius (K) (N=400,P=15)

ND=7
ND=9
ND=11
ND=13
ND=15
ND=17
ND=19
ND=21

(b) The effect of cluster radius (k) on number of

edges/cluster (Ec)

1 2 3 4 5
0

10

20

30

40

50

60

70

80

Cluster Radius (K)

A
ve

ra
ge

 C
LI

Q
U

E
 F

ac
to

r/
cl

us
te

r
(C

F)

CLIQUE Factor/cluster Vs. Cluster Radius (K) (N=400,P=15)

ND=7
ND=9
ND=11
ND=13
ND=15
ND=17
ND=19
ND=21

(c) The effect of cluster radius (k) on the CLIQUE

factor (CF)

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

Cluster Radius (K)

A
ve

ra
ge

 N
um

be
r

of
 N

od
es

/c
lu

st
er

 (N
c)

Nodes/Cluster Vs. Cluster Radius (K) (N=400,P=15)

ND=7
ND=9
ND=11
ND=13
ND=15
ND=17
ND=19
ND=21

(d) The standard deviation of the average number of

nodes/cluster (Nc) as k increases

1 2 3 4 5
0

5

10

15

20

25

30

35

Cluster Radius (K)

A
ve

ra
ge

 N
um

be
r

of
 E

dg
es

/c
lu

st
er

 (E
c)

Edges/Cluster Vs. Cluster Radius (K) (N=400,P=15)

ND=7
ND=9
ND=11
ND=13
ND=15
ND=17
ND=19
ND=21

(e) The standard deviation of the average number of

edges/cluster (Ec) as k increases

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Cluster Radius (K)

A
ve

ra
ge

 C
LI

Q
U

E
 F

ac
to

r/
cl

us
te

r
(C

F)

CLIQUE Factor/cluster Vs. Cluster Radius (K) (N=400,P=15)

ND=7
ND=9
ND=11
ND=13
ND=15
ND=17
ND=19
ND=21

(f) The standard deviation of the average CLIQUE

factor (CF) as k increases

Figure 4.12: The effect of cluster radius on cluster size properties81

1 unit of data (byte) is 1 unit of energy. This is a valid assumption since we assume that all

the nodes have a fixed transmission range. We will start by describing the model used for

estimating the communication overhead. Then we show the impact of different simulation

parameters on the overall communication overhead and study the scalability of the OK

protocol. An analytical model for the communication overhead is discussed in the next

section (4.6.4).

There are two phases in the OK protocol: the cluster head advertisement phase

(CHAD phase) and the join request phase (JREQ phase). For each network topology i

with network size n, we calculate the total number of bytes sent by all the nodes dur-

ing the two phases (TotalMsgSize(i)). We then repeat the experiment over 900 different

topologies, with the same network size n. Hence, the average number of bytes sent by all

nodes (avgTotalMsgSize) is the mean of the vector TotalMsgSize (i) for i= 1..900. Finally,

we divide avgTotalMsgSize by the network size (n) in order to get the average number

of bytes sent by one node avgCommOverhead. We use the last metric to measure the

average energy spent by a node in communication.

Fig. 4.13 shows the impact of different simulation parameters on communication

overhead. The effect of increasing cluster head probability (p) is shown in Fig. 4.13(a).

We observe that the communication energy increase linearly as p increases. We can also

notice that the rate increases significantly as the cluster radius (k) increases. This is can

be clearly seen in Fig. 4.13(c) where it can be shown that the communication overhead

is cubically proportional to the cluster radius (k). Mainly this cost is incurred during the

JREQ phase as we will show analytically in section 4.6.4.

The effect of average node degree (d) on communication overhead is shown in

82

5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

P

C
om

m
. O

ve
rh

ea
d/

no
de

 (B
yt

es
)

Overall Comm. Overhead Vs. P (N=400,ND=9)

K=1
K=2

(a) The relation between communication overhead

and the cluster head prob. (p)

7 9 11 13 15 17 19 21
0

2000

4000

6000

8000

10000

12000

14000

16000

Node Degree

Overall Comm. Overhead Vs. Node Degree (N=400,P=15)

K=1
K=2
K=3
K=4

(b) The relation between communication overhead

and the average node degree (d)

1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Cluster Radius (K)

C
om

m
. O

ve
rh

ea
d/

no
de

 (B
yt

es
)

Overall Comm. Overhead Vs. Cluster Radius (K) (N=400,P=15)

ND=7
ND=9
ND=11

(c) The relation between communication overhead

and the cluster radius (k)

5 10 15 20 25 30 35 40 45 50
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

P

C
om

m
. O

ve
rh

ea
d/

no
de

 (B
yt

es
)

Overall Comm. Overhead Vs. P (n=400,d=9)

K=1
K=2

(d) The standard deviation of the communication

overhead as the cluster head prob. (p) increases

7 9 11 13 15 17 19 21
0.5

1

1.5

2

2.5

3

Node Degree

C
om

m
. O

ve
rh

ea
d/

no
de

 (B
yt

es
)

Overall Comm. Overhead Vs. Node Degree (N=400,P=15)

K=1
K=2
K=3
K=4

(e) The standard deviation of the communication

overhead as the average node degree (d) in-

creases

1 2 3 4 5
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Cluster Radius (K)

C
om

m
. O

ve
rh

ea
d/

no
de

 (B
yt

es
)

Overall Comm. Overhead Vs. Cluster Radius (K) (N=400,P=15)

ND=7
ND=9
ND=11

(f) The standard deviation of the communication

overhead as the cluster radius (k) increases

Figure 4.13: The effect of different simulation parameters on communication overhead

per node

83

Fig. 4.13(b). We can notice that the communication overhead increases linearly as d

increases. Although, we will discuss the relation between communication overhead and

average node degree (d) analytically in section 4.6.4, we can intuitively explain that by

analyzing the relation between average number of nodes per cluster Nc and average node

degree (d) (Fig. 4.11(a)). As the average node degree increases, the average number of

nodes per cluster increases linearly and hence the average number of JREQ messages

increases linearly leading to a linear increase in the overall communication overhead.

Finally, we will show that OK is scalable in terms of processing time in section 4.7,

(lemma 4.2). However, in this section, we study the scalability in terms of communication

overhead. We tested the OK protocol for different network size ranging from 50 to 800

nodes. Fig. 4.14 shows the overall communication overhead per node as network size

increases. We can clearly see that the number of bytes transmitted by a node slowly

increases as the network size increases from 100 to 400. Then it remains almost constant

afterwards. The standard deviation curves (Fig. 4.14(b)) show that this happens with high

probability (± 2 bytes).

4.6 Analysis of The Results

In this section, using unit disk graph properties, and simple geometry, we will analytically

show the following:

• The average number of nodes per cluster (Nc) is linear in d and quadratic in k

(section 4.6.2).

• The average number of edges per cluster (Ec) is quadratic in both d and k (sec-

84

100 200 300 400 500 600 700 800
600

800

1000

1200

1400

1600

1800

2000

2200

Number of Nodes (N)

C
om

m
. O

ve
rh

ea
d/

no
de

 (B
yt

es
)

Overall Comm. Overhead Vs. Number of Nodes (N) (K=2,P=15)

ND=11
ND=15
ND=19

(a) The impact of network size (n) on the communication overhead

incurred per node

100 200 300 400 500 600 700 800
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Nodes (N)

C
om

m
. O

ve
rh

ea
d/

no
de

 (B
yt

es
)

Overall Comm. Overhead Vs. Number of Nodes (N) (K=2,P=15)

ND=11
ND=15
ND=19

(b) The standard deviation of the communication overhead as the net-

work size n increases

Figure 4.14: Increasing the network size n does not effect the communication overhead

85

tion 4.6.2).

• The cluster head probability (p) does not affect the average overlapping degree

(AOD) between clusters (section 4.6.3).

• The average overlapping degree (AOD) is linearly proportional to the average node

degree (d) and quadratically proportional to the cluster radius (k) (section 4.6.3).

• The overall communication overhead is linearly proportional with d and cubically

proportional with k (section 4.6.4).

We will start by describing the assumptions behind the proposed analytical model.

4.6.1 Assumptions

In order to simplify the proofs, we make the following assumptions:

• Each cluster can be approximated ideally by a circle of radius R.

• Since the transmission range of each node is fixed (Tr), and since only nodes that

are within k hops from the cluster head can belong to this cluster, then we can

approximate R as follows:

R = kTr (4.7)

In this case, R is considered the maximum euclidian distance that a node can be

away from cluster head. Hence, the circle representing the cluster is considered the

largest area that can be covered by a cluster.

• The cluster head is located at the center of this circle.

86

The above geometric representation of a k-hop cluster is considered the largest possible

area for the cluster. This will lead to considering some areas as belonging to the cluster

when they are not. We will refer to such an area as a false area. For example, if the

cluster head node is located within distance R from the boundary of the sensor field, the

circle representing the cluster will be clipped by the rectangle representing the field as

shown in Fig. 4.15. Hence, the area which lies outside the sensor field is a false area

since it is considered within the cluster but it does not really belong to it. Since the� �� �

� �� � � �� �
R

R

Cluster head node

Non-Cluster head node

false area

Figure 4.15: Circle representation of clusters

proposed analytical model represents an upper bound, false area will just make the upper

bound not tight enough when compared with the simulation results. We will also show

in the following that as the number of cluster heads increases, either because the network

size (n) increases or the cluster head probability (p) increases, the probability of having

87

cluster heads within distance R decreases; hence the effect of false area decreases. So

by carefully selecting the simulation parameters, we can safely ignore the effect of false

area.

Recalling that the average number of cluster heads is pn, and assuming a square

field with side length l, then the probability (PIN) that a cluster head node is at least at

distance R away from the boundary of the field (i.e. inside the dotted rectangle as shown

in Fig. 4.15), is given by the following:

PIN =
(l − 2R)2

l2
(4.8)

Then the probability that a cluster head node is within distance R from the boundary will

be (POUT):

POUT = 1 − PIN

Let I be a discrete random variable representing the number of cluster heads that are

within distance R from the boundary of the field. Then I can be expressed as a binomial

distribution:

P (I = m|pn) = P m
OUT P pn−m

IN

pn

m

and the expected number of cluster head nodes that are within distance R from the field

boundary is:

E(I) = pnPOUT

88

In order to ignore the effect of cluster heads that are near the boundary; hence decreasing

the size of false area:

POUT � PIN

l2

(l−2R)2
� 2

4R2 − 8lR + l2 � 0

Solving the quadratic equations in R, and substituting R = kTr, one of the following

conditions must hold:

Tr �
(1 −

√
3/2)l

k
(4.9)

OR

Tr �
(1 +

√
3/2)l

k
(4.10)

The first condition was used in the simulations since it implies reducing the node trans-

mission range; hence reducing energy consumption. However, we must be careful in

reducing the node transmission range (Tr) since there is a minimum critical value for Tr

in order for the graph to be connected [61]. Moreover, as k increases, it becomes difficult

to satisfy the first condition while guaranteeing connectivity. Since our main goal is to

have a connected graph, we have to violate the first condition as k increases. In a similar

way, we notice that in order to increase the average node degree (d), we have to increase

Tr; hence, we may violate the first condition to achieve a certain average node degree.

That’s why we will notice that the analytical model diverges a little bit from the simula-

tion results as k or d increases since the effect of cluster heads near the boundary starts

increasing.

89

4.6.2 Average Cluster Size

We shall start by estimating an upper bound of the average cluster size (average number

of nodes per cluster). The cluster will be represented by a circle with radius R = kTr as

discussed in section 4.6.1. Assume that Nc is a discrete random variable representing the

cluster size. Then using the same analysis as we did in the previous section, we can show

that Nc can be expressed by the following binomial distribution:

P (Nc = m) = P m
c (1 − Pc)

n−m

n

m

(4.11)

where n is the network size and Pc is the probability that a node is inside the circle

representing the cluster

Pc =
πR2

l2
=

πk2T 2
r

l2
(4.12)

where l is the side length of the square field. Now substituting from equation 4.5, in order

to get Pc in terms of average node degree (d), we get

Pc =
dk2

n
(4.13)

Hence the average cluster size (E(Nc)) is:

E(Nc) = nPc = dk2 (4.14)

The above equation shows that the average cluster size is linearly proportional with aver-

age node degree (d) and quadratically proportional to the cluster radius (k). This conforms

with the simulation results shown in section 4.6.2. Moreover, we can see that Nc is not

a function of the cluster head probability (p). Fig. 4.16 shows the relation between the

simulation results and analytical model given by equation 4.14.

90

1 2 3 4 5
0

50

100

150

200

250
Simulation Vs. Analytical Model (Nc)

Cluster Radius

A
ve

ra
ge

 N
um

be
r

of
 N

od
es

/c
lu

st
er

 (N
c)

Sim(d=7)
Sim(d=9)
Anal(d=7)
Anal(d=9)

(a) As cluster radius (k) increases

7 9 11 13 15 17 19 21
0

20

40

60

80

100

120

140

160

180

200
Simulation Vs. Analytical Model (Nc)

Node Degree

A
ve

ra
ge

 N
um

be
r

of
 N

do
es

/c
lu

st
er

 (N
c)

(b) As average node degree (d) increases

Figure 4.16: The relation between the analytical model for average cluster size (Nc) and

simulation results

Using the above model, we can estimate the average number of edges per cluster

(Ec) as follows. Since each node has an average node degree (d), and since the average

number of nodes per cluster is Nc, then

Ec =
dNc

2
=

d2k2

2
= O(d2k2) (4.15)

Fig. 4.17 shows the relation between the simulation results and analytical model given

by equation 4.15.

4.6.3 Average Overlapping Degree

Using the assumptions in section 4.6.1, we shall calculate an upper bound for the average

overlapping degree (AOD). Assume that A, B are any two cluster head (CH) nodes. Then

we recall from section 4.5 that the overlapping degree between the two corresponding

clusters (O) is a random variable where O = |Nk[A] ∩ Nk[B]| and Nk[A] ∩ Nk[B] 6=

∅. Notice that the overlapping degree is defined only for overlapping clusters (i.e. the

91

1 2 3 4 5
0

200

400

600

800

1000

1200

Simulation Vs. Analytical Model (Ec)

Cluster Radius

A
ve

ra
ge

 N
um

be
r

of
 E

dg
es

/c
lu

st
er

Sim(d=7)
Ana(d=7)
Sim(d=9)
Ana(d=9)

(a) As cluster radius (k) increases

7 9 11 13 15 17 19 21
0

100

200

300

400

500

600

700

800

900

Simulation Vs. Analytical Model (Ec)

Average N ode Degree

A
ve

ra
ge

 N
um

be
r

of
 E

dg
es

/C
lu

st
er

Sim(k=1)
Ana(k=1)
Sim(k=2)
Ana(k=2)

(b) As average node degree (d) increases

Figure 4.17: The relation between the analytical model for average number of edges per

cluster (Ec) and simulation results

random variable O does not take the value 0). We define AOD as the mean of this random

variable O (i.e. AOD = E(O)). As shown in Fig. 4.18, the two clusters A and B are

BA

D

C

R R

w

PSfrag replacements

θθ

Figure 4.18: Overlapping Degree (O) between two overlapping clusters

represented by two symmetric circles of radius R = kTr. Instead of calculating the exact

intersection of the two sets (Nk[A] ∩ Nk[B]), we shall estimate the intersection of the

two sets by the area of intersection between the two corresponding circles. Let W be the

92

euclidian distance between the two CH nodes. Then, W is a continuous random variable

that can take values ranging from 0 to 2R. The two clusters are completely overlapped if

W = 0 and there is no overlapping if the distance between the two cluster heads is greater

than or equal 2R. Let F (w) and f(w) be the CDF and PDF of the random variable W

consequently. Then

F (w) = P (W < w) =
πw2

π(2R)2
=

w2

4R2
(4.16)

∴ f(w) =
dF (w)

dw
=

w

2R2
(4.17)

We will express O as a function of w as follows. The area of intersection between two

symmetric circles A and B (IAB) is 3:

IAB = (2θ − sin 2θ)R2 = E(O | w) (4.18)

where w = 2R cos θ (using cosine rule). Hence, O is a continuous random variable that

is represented as a function of θ or w alternatively.

∴ E(O) =

2R
∫

0

E(O | w)f(w)dw =

2R
∫

0

(2θ − sin 2θ)R2f(w)dw (4.19)

Substituting from Eq. 4.17, 4.18, and noticing that dw = 2R sin θ, we have the following:

E(O) =

π/2
∫

0

(2θ − sin 2θ)R22 sin θ cos θdθ = R2

π/2
∫

0

(2θ − sin 2θ) sin 2θdθ (4.20)

It can be shown that
π/2
∫

0

(2θ − sin 2θ) sin 2θdθ = π
4
. Hence,

E(O) =
πR2

4
(4.21)

Substituting from Eq. 4.7, we have:

E(O) =
πk2T 2

r

4
(4.22)

3For more details of the proof, please refer to appendix A

93

1 2 3 4 5
0

10

20

30

40

50

60

70
Simulation Vs. Analytical Model (AOD)

Cluster Radius

A
ve

ra
ge

 O
ve

rl
ap

pi
ng

 D
eg

re
e

(A
O

D
)

Sim(d=7)
Sim(d=9)
Anal(d=7)
Anal(d=9)

(a) As cluster radius (k) increases

7 9 11 13 15 17 19 21
0

10

20

30

40

50

60
Simulation Vs. analytical Model (AOD)

Node Degree

A
ve

ra
ge

 O
ve

rl
ap

pi
ng

 D
eg

re
e

(A
O

D
)

Sim(k=2)
Anal(k=2)
Sim(k=3)
Anal(k=3)

(b) As average node degree (d) increases

Figure 4.19: The relation between the analytical model for average overlapping degree

(AOD) and simulation results

Substituting from Eq. 4.5 to get the relation in terms of average node degree, we reach

the following:

E(O) =
dk2l2

4n
=

dk2

4µ
= AOD (4.23)

The above equation shows that the average overlapping degree is linearly proportional

with average node degree d and quadratically proportional to the cluster radius k. This

conforms with the simulation results shown in section 4.6.3. We can also notice that AOD

is not a function of cluster head probability p. Fig. 4.19 shows the relation between the

simulation results and analytical model given by equation 4.23.

4.6.4 Overall Communication Overhead

In this section, we will calculate an upper bound of the average number of control mes-

sages transmitted by a node. As we did in the previous sections, the cluster will be

approximated by a circle with radius R = kTr. Recall that there are two phases in the

94

OK protocol: the cluster head advertisement phase (CHAD phase) and the join request

phase (JREQ phase). We will estimate the number of messages sent during each phase

per node. Then the overall communication overhead per node will be the total number

of messages. We will start by estimating the average number of nodes that are exactly k

hops away from the cluster head (nk). From equation 4.14, the average number of nodes

in k-hop cluster is:

E(Nc) = nPc = dk2 = Ek(Nc) (4.24)

Then

nk = Ek(Nc) − Ek−1(Nc) = dk2 − d(k − 1)2 (4.25)

∴ nk = d(2k − 1) (4.26)

Using the above results, we can calculate the average number of CH AD messages

sent during the CHAD phase. Initially, the cluster head (CH) node broadcasts one CH AD

message to neighbors. The message is then flooded for k hops with no duplication (i.e. if

a node received the same CH AD message multiple times, it will just forward it once to

its neighbors. Hence, the CH AD message is forwarded through the edges of a spanning

tree of the cluster graph as shown in Fig. 4.20. Initially, the CH node broadcasts one

message to all its neighbors {A, C, D}. Now each of those nodes will broadcast the same

message to its corresponding neighbors, after incrementing the hop count. Hence, B will

receive the same message from {A, C} and N will receive the same message from {C, D}.

However, since the OK protocol uses smart flooding, the second CH AD will be dropped

by both B and N. The CH AD broadcast will continue for k hops away from the CH node

(in this particular example, k = 5).

95

Cluster head node

Non-Cluster head node

C

L

U
T

K

A

B

I

E

R

G

S

M

Q

N

J

H

D
O

P

F

C

L

U
T

K

A

B

I

E

R

G

S

M

Q

N

J

H

D
O

P

F

cluster graph corresponding spanning tree

Figure 4.20: The CH AD message will follow a spanning tree rooted at the CH node

(k = 5)

Let MCHAD be the average number of CH AD messages broadcasted within the

cluster. Then MCHAD is equal to the average number of non-leaf nodes in breadth-first

tree of the graph rooted at the CH node.

MCHAD = 1 +
k−1
∑

i=1

ni (4.27)

where ni is the expected number of nodes that are exactly i hops way from the CH node

(Eq. 4.26). Substituting from Eq. 4.26 and simplifying the expression, we reach the

following:

MCHAD = 1 +
2d(k − 1)2

2
= O(dk2) (4.28)

Using a similar approach, we can calculate the average number of JREQ messages

(MJREQ) unicasted from non-CH nodes to the CH node. We assume that we do not do

96

any aggregation of the messages4; hence; a JREQ message, unicasted from a leaf node in

the spanning tree, will be forwarded k times till it reach the CH node. Therefore, MJREQ

can be calculated as follows:

MJREQ = knk + (k − 1)nk−1 + . . . + 2n2 + n1 =
k

∑

i=1

ini (4.29)

Substituting from Eq. 4.26 and simplifying the expression, we reach the following ex-

pression:

MJREQ =
dk(4k − 1)(k + 1)

6
= O(dk3) (4.30)

Fig. 4.21 shows the relation between the simulation results and analytical model of the

communication overhead.

4.7 Correctness and Complexity

In this section we shall discuss that the OK protocol provided in Fig. 4.4 meets the fol-

lowing design goals (requirements):

1. Completely distributed.

2. Terminates within O(k) iterations, regardless of network diameter, where k is the

cluster radius.

3. At the end of the algorithm, each node is either a cluster head, or non-cluster head

node that belongs to one or more clusters.

4Of course, if message aggregation is used, the overall communication overhead will improve. So the

above analysis is considered a worst case analysis.

97

1 2 3 4 5
0

50

100

150
Simulation Vs. Analytical Model (Num. of CH_AD Messages)

Cluster Radius

N
um

be
r

of
 C

H
_A

D
 M

es
sa

ge
s/

cl
us

te
r

Sim(d=7)
Sim(d=9)
Anal(d=7)
Anal(d=9)

(a) Average number of CH AD messages per clus-

ter as cluster radius (k) increases

7 9 11 13 15 17 19 21
0

20

40

60

80

100

120

140

160

180

200
Simulation Vs. Analytical Model (Num. of CH_AD Messages)

Node Degree

N
um

be
r

of
 C

H
_A

D
 M

es
sa

ge
s/

cl
us

te
r

Sim (k=3)
Anal(k=3)
Sim (k=4)
Anal(k=4)

(b) Average number of CH AD messages per clus-

ter as average node degree (d) increases

1 2 3 4 5
0

100

200

300

400

500

600

700

800

900
Simulation Vs. Analytical Model (Num. of JREQ Messages)

Cluster Radius

N
um

be
r

of
 J

R
E

Q
 M

es
sa

ge
s/

cl
us

te
r

Sim(d=7)
Sim(d=9)
Anal(d=7)
Anal(d=9)

(c) Average number of JREQ messages per cluster

as cluster radius (k) increases

7 9 11 13 15 17 19 21
0

50

100

150

200

250

300

350

400

450

500
Simulation Vs. Analytical (Num. of JREQ Messages)

Node Degree

N
um

be
r

of
 J

R
E

Q
 M

es
sa

ge
s/

cl
us

te
r

(d) Average number of JREQ messages per cluster

as average node degree (d) increases

Figure 4.21: The relation between the analytical model for overall communication over-

head per node and simulation results

98

4. Efficient in terms of memory usage.

Observation 1. OK is completely distributed (requirement 1). A node can either

elect to become a cluster head, or join a cluster if it receives CH AD messages within its

cluster radius. Thus, node decisions are based solely on local information.

Lemma 4.1. The time complexity of OK is O(k) (requirement 2).

Proof. The worst case scenario is: a non-CH (NCH) node does not receive any CH AD

messages and changes its status to CH. Then broadcasts a CH AD message and waits for

JREQ messages. Recall from section 4.4.3 that the maximum time that an NCH node

waits for a CH AD message is equal to t(k) + δ, where t(k) is the time needed for a

message to travel k hops and δ is a constant value independent from k. Hence, the total

time of this worst case scenario is t(k) + δ + 2t(k). Therefore the maximum time that a

node should wait before terminating OK is t(k) + δ + 2t(k) = 3t(k) + δ = O(k).

Lemma 4.2. At the end of the OK algorithm, a node is either a cluster head, or non-

cluster head node that belongs to one or more clusters (requirement 3).

Proof. Initially each node is either CH or NCH node. If the node is a CH node, it will

terminate the OK algorithm after 2t(k) + δ time units when the JREQ WAIT timer fires.

In case of NCH node, after t(k) + δ time units, either it joins one or more clusters that

it heard from or changes status to CH and terminates the OK algorithm after 2t(k) time

units.

Lemma 4.3. The expected number of adjacent overlapping clusters is O(pdk2), where p

is the cluster head probability, d is the average node degree, and k is the cluster radius.

99

Proof. Recall that the expected number of clusters is np where n is the network size.

Let u and v be two cluster head nodes. Then the two corresponding clusters of u and v

are overlapping iff distG(u, v) < 2k. Using the circle approximation of the cluster as

discussed in section 4.6.1, then the probability (PAdj) that a CH node is within distance

2R,R = kTr, from m other CH nodes is given by the following binomial distribution:

PAdj(m) = P m
2R(1 − P2R)np−m−1

np − 1

m

, where P2R =
π(2R)2

l2
(4.31)

Hence, the expected number (f adjacent clusters is (E(PAdj):

E(PAdj) = P2R(np − 1) ' npP2R =
4πnpR2

l2
(4.32)

Since R = kTr, substituting from equation 4.5 and simplifying the expression, we get the

following:

E(PAdj) = 4πpdk2 = O(pdk2) (4.33)

Lemma 4.4. The OK algorithm has an average memory usage of O(1) per node (require-

ment 4).

Proof. The two major data structures used by the OK protocol are: CH table and AC table.

Any other data structures will take O(1) memory to store. Recall from section 4.4.1,

CH table is used by each node, whether CH or NCH, to store information about the known

CH nodes. Hence, the average size of the CH table is equal to the expected number of

clusters that cover a certain node; which is equal to the expected number of adjacent clus-

ters (E(PAdj). Therefore, using lemma 4.3, the average size of the CH table is O(dk2).

100

Since both d, and k are constants and independent of the network size, the average size of

CH table is O(1)5.

Recall from section 4.4.1, AC table is used by only CH nodes to keep track of

adjacent clusters. Hence, we can calculate the average size of AC table as follows:

size(AC table) = E(PAdj x the expected number of boundary nodes

However, the expected number of boundary nodes is equal to the average overlapping

degree (AOD). Substituting from Eq.4.23, we get the following:

size(AC table) = E(PAdj) x dk2

4µ
= O(d2k4

µ
)

Since both d, and k are constants and independent of the network size, the average size of

AC table is O(1). Hence, on the average, the total memory usage per node is O(1).

5Notice that the maximum size of CH table can not exceed the average number of clusters (pn

101

Chapter 5

The Local Location Discovery Phase

The focus of this chapter is on estimating the relative nodes’ positions within local cluster.

We will start by formulating the problem and show how we can select a local coordinate

system (LCS) for the cluster. Then we will discuss the major cause of error (reflection

error) and propose some heuristics to reduce this error. We then propose the Multi-hop

Relative Location Estimation (MRLE) algorithm and the following refinement step as an

optional enhancement to the estimated position. Finally the accuracy of the proposed

scheme is evaluated through simulation. The results confirm the high accuracy of the

positions estimated by our approach and capture the impact of the different parameters,

such as cluster size (nc), cluster radius (k), and connectivity (d) on the accuracy of the

estimated position. We also introduce a new metric, the CLIQUE factor (CF), as a mea-

sure of performance. The CLIQUE factor of a cluster measures how close the subgraph

induced by cluster to a complete graph. We will show that the CF is the major factor

affecting accuracy regardless of cluster size.

102

5.1 Problem Definition

The local location discovery (LLD) problem can be formalized as follows:

”Given a subset of ad-hoc network where each node knows the distance mea-

surements, perhaps with some high margin of error, between nodes that are

within its listening range, the objective is to construct a local map for this

cluster with accurate relative node positions such that the error between es-

timated distances based on the local map and measured distances is mini-

mized.”

At the end of the cluster formation phase, the cluster head node receives node-

to-node range measurements for each node belonging to this cluster. This information is

stored in the local cluster graph (LCG) data structure, as described in the previous chapter.

During the LLD phase the cluster head node uses the LCG to build a local coordinate

system for its corresponding cluster as follows.

Let (xi, yi, zi) be the 3-D position of node i, where i = 0, 1, . . . , nc − 1, and nc is

the number of nodes in the cluster including the cluster head node. Let P be an (nc × 3)

matrix representing all node positions such that:

P =

x0 y0 z0

x1 y1 z1

...
...

...

xnc−1 ync−1 znc−1

(5.1)

103

Let P (i) be a function that returns the position of node i such that: P (i) = [xi, yi, zi].

Assume that D is an (nc × nc) matrix representing the intra-node distance measurements

as estimated by the nodes during the cluster formation phase. Keep in your mind that

these measurements could have an error. Let Dp = D(P) be a vector function that re-

turns an (nc × nc) matrix representing the calculated intra-node distances given a node

position estimate P , where

DP [i, j] =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2, i, j = 0, 1, . . ., nc − 1 (5.2)

Given a certain position estimate P , define the following vector error function E:

E(P) =
nc−1
∑

i=1

i−1
∑

j=0

(DP (i, j) − D(i, j))2 (5.3)

The error function measures the least square error between the estimated inter-node

distances (DP) using P and the actual measured distances measured by nodes (D). The

objective is to find the optimal node positions P ∗ that minimizes the error function E.

In the LLD phase, we first start by estimating an initial relative position (P0) for all

the nodes within the cluster. We introduce the Multi-hop Relative Location Estimation

(MRLE) algorithm. MRLE uses inter-node distances in order to estimate relative node

position with respect to some local coordinate system (LCS). Then we introduce an op-

tional refinement step, where we iteratively improve the initial position estimate such that

the error function E (Eq. 5.3) is minimized. Compared with the MREL algorithm, the re-

fitment step is much more expensive, in terms of computation power. Hence, it is optional

if we are seeking higher accuracy. We will see in the results section that the accuracy of

the estimated initial position (P0) using MRLE is acceptable. For simplicity, we shall use

104

2-D coordinates in the following analysis. However, the technique can be easily extended

to the 3-D case.

5.2 The Local Coordinate System (LCS)

The relative node position is calculated with respect to some coordinate system. We shall

refer to this coordinate system as the local coordinate system (LCS). The local coordinate

system (LCS) is defined by fixing three non-colinear nodes: R0, R1, and R2. We shall

refer to these nodes as the reference nodes. For simplicity, we will assume that the cluster

head node is the origin of the coordinate system (R0). However, we will discuss later in

this section that this is not always the case and any other node could be the origin.

Y−ax
is

X−axis

PSfrag replacements

θR0

R1

R
2

d1

d2

d
3

∆
x

∆
y

Figure 5.1: The local coordinate system (LCS)

To form the positive x-axis, we select another node R1 that is within the transmis-

sion range of R0 as shown in Fig. 5.1. Finally, a third node that is within the transmission

105

range of both R0 and R1, but not co-linear with them, will be positioned in the upper

half-plane. Hence, the y-axis is selected to be perpendicular to the x-axis in the direc-

tion of R2 as shown in Fig. 5.1. Thus, the placement of R1 has the effect of fixing a

particular rotational orientation, while the placement of R2 locks in a particular reflective

orientation. The positions of the nodes R0, R1, and R2 are given as follows:

P0(R0) = (0, 0)

P0(R1) = (D(R0, R1), 0)
(5.4)

The coordinates of R2 = (x2, y2) can be computed using the law of cosines as follows:

cos(θ) =
d2

1
+d2

3
−d2

2

2d1d3

x2 = d1 cos(θ)

y2 =
√

d2
1 − x2

2

(5.5)

where d1 = D(R0, R2), d2 = D(R1, R2), d3 = D(R0, R1) and D is the distance matrix

representing the measured distances by nodes during bootstrapping. After selecting the

LCS, we compute the relative node positions starting from the neighbors of the reference

nodes first and moving away from the LCS towards the border of the cluster. We will

discuss this in more details in the next three sections.

5.3 Relative Position Estimation Using Three Distances

Assume that we want to estimate the position of a node u that knows the distances to

three non-colinear neighbors Ru
0 , R

u
1 , andRu

2 as shown in Fig. 5.2(a). The distances were

estimated during the network bootstrapping as discussed in the previous chapter. We will

further assume that we know the relative position of the three nodes.

Let d1 = D(Ru
0 , u) and d2 = D(Ru

1 , u) where D is the distance matrix representing

the measured distances by nodes during bootstrapping. Let
−−−→
Ru

0R
u
1 be the vector connect-

ing Ru
0 and Ru

1 in the direction of Ru
1 as shown in Fig. 5.2. We will refer to the vector

106

d3

d1

d4

d2

R1
u

u

R2
u

R0
u

PSfrag replacements

θ

Ru
0

Ru
1

Ru
2

u1

u2

d1

d2

d3

l1

l2

∆x

∆y

(a) Node u knows the distance to three neighbors

PSfrag replacements

θRu
0

Ru
1

Ru
2

u
1

u2

d1

d2

d
3

l1

l2

∆
x

∆
y

∆
y

(b) Node u has two candidate positions

PSfrag replacements

θ

Ru
0

Ru
1

Ru
2

u1

u2

d1

d2

d3

l1

l2

∆x ∆
y

∆
y

(c) selecting one candidate

Figure 5.2: Estimating the position of a node (u) using three distances

107

−−−→
Ru

0R
u
1 as the base line. Let d3 =‖ −−−→

Ru
0R

u
1 ‖ be the length of this vector. Let −→x be the

unit vector in the direction of the base line (
−−−→
Ru

0R
u
1). Let −→y be the unit vector in the direc-

tion perpendicular to the base line in the direction1 of Ru
2 . Then there are two candidate

positions for the node u (u1 and u2) that can be computed, using vector notations, as

follows:
cos(θ) =

(d2

1
+d2

3
−d2

2
)

(2d1d3)

∆x = d1 cos(θ)

∆y =
√

(d2
1 − δ2

x)

−→u1 =
−→
Ru

0 + ∆x
−→x + ∆y

−→y = (ux, uy)

−→u2 =
−→
Ru

0 + ∆x
−→x − ∆y

−→y = (ux,−uy)

Notice that u2 is the reflection of u1 across the base line. The third node Ru
2 is used

to resolve the reflection as shown in Fig. 5.2(c). Let d4 = D(u,Ru
2) (i.e. the measured

distance between the two nodes during network bootstrapping). We chose the candidate

that is closer to Ru
2 as compared to d4. The node Ru

2 is called the reflection resolver. So in

the example given in Fig. 5.2(c), we will chose u1 since | d4 − l1 |<| d4 − l2 |. Resolving

reflection is the most important decision in relative position estimation. We will discuss

the problem in more details in the next section and show that we can not always resolve

the reflection.

5.4 Multi-hop Relative Position Estimation

As discussed in section 5.2, the local coordinate system (LCS) is defined by three refer-

ence nodes: R0, R1, and R2. Initially, we fix the position of the three reference nodes

as shown before. We will refer to the set of nodes that have known relative position as

the set of Identified Nodes (I). It follows that, initially, I = {R0, R1, R2}. Using the

1It does not matter which direction−→y is pointing too as long as it is perpendicular to −→x

108

identified nodes, we can calculate the relative position of other nodes that are multi-hop

away from the LCS. For example, using the subgraph shown in Fig. 5.3, since nodes

A,B,C know distances to three non-colinear neighbors (R0, R1, andR2), they can esti-

mate their positions as described in section 5.3. Hence, the set of identified nodes now

include {R0, R1, R2, A,B,C}. Now we can estimate the position of nodes D and E since

they have distances to three or more identified nodes. In a similar way, we can calculate

the position of nodes F and G, then nodes H and I . One thing to notice here is that as

we move away from the LCS, the error accumulation increases. We will describe some

heuristics to limit the accumulated error section 5.7.

C

E

H

R1

A

R2

G

I

D
F

B

x-A
xis

R0

Figure 5.3: Propagation of node position estimating starting from the reference nodes and

moving towards the border of the cluster.

109

5.5 Relative Position Estimation Using Two Distances

Now assume that the node u knows the distances only to two neighbors2 Ru
0 and Ru

1 as

shown in Fig. 5.4. Normally this will happen when the node is on the border of the cluster.

Hence, we have already computed the relative positions of the nodes that are away from

the border. Using the base line
−−−→
Ru

0R
u
1 , we can calculate two candidate positions for the

node u as discussed in the previous section. In order to resolve the reflection and select

one candidate, we will use a simple observation.

B

A

R0
u

R1
u

u1

u2

Figure 5.4: Estimating the position of a node (u) using two distances

Assume a node v with known relative position and v /∈ {Ru
0 , R

u
1}. If the distance

between v and candidate ui, i = 1, 2 is less than the node transmission range (Tr) then

this contradicts with the fact that v is not a neighbor of u; hence candidate position ui

can not be the right position. Applying this heuristic to the example shown in Fig. 5.4.

The candidate position u2 is within the transmission range of nodes A and B. Hence, the

2A similar situation is when the node u has three or more colinear neighbors; hence we can not resolve

reflection.

110

correct position is u1.

5.6 The Reflection Error

In section 5.3 we discussed how the base line (
−−−→
Ru

0R
u
1) is used to calculate two candidate

positions for a node u and how the reflection resolver (Ru
2) is used to select one candidate.

Notice that if the wrong candidate is selected, the error in the position of the node is equal

to 2∆y, where ∆y is the perpendicular distance between u and the base line as shown

in Fig. 5.2. Actually, the reflection error in one node can cause much worse error: the

reflection propagation error.

Consider the subgraph shown in Fig. 5.5(a). Initially the set of identified nodes

(I) contains the three reference nodes. Using the base line
−−−→
R0R1, we can calculate the

two candidate positions for node A of which one is wrong (Ae). Now using the node

R2 to resolve reflection, and noticing that the measured distances contain some error, we

can select the wrong candidate for node Ae. Now the set of identified nodes contains

{R0, R2, R2, Ae}. We can now estimate the position of node B using
−−−→
R1R2 as the base

line and node Ae as a reflection resolver. That will lead to estimating a wrong position for

node B (Be) as shown in Fig. 5.5(b). In a similar way, the reflection error will propagate

to node C. What makes the problem worse is that the refinement phase can not correct

this type of error.

The best way to solve this problem is to avoid it! So the question is what leads to

a reflection error. The answer is: a skinny triangle. Fig. 5.6(a) shows an example when

the reflection resolver (Ru
2) is close to the base line (

−−−→
Ru

0R
u
1). In this case, the difference

111

C

B

R2

R0

A

R1

Ae

(a) The correct node positions.

Ce

Be

R1

R0

Ae

R1

(b) Node positions after reflection propagation due

to initial reflection error in node A

Figure 5.5: The reflection propagation phenomena.

between l1 and l2 is very small; hence; we may not be able to resolve reflection correctly.

Another case of skinny triangle is shown in Fig. 5.6(b). Here the node u is close to the

base line and again l1 is very close to l2. From the two examples, we can notice that a

skinny triangle will exist if ‖ −−−→
u2R

u
2 − −−−→

u1R
u
2 ‖≤ δ where δ is some threshold depending

on the error in the measured distances. In the simulation results, we set δ = 3σ, where σ

is the standard deviation of the range estimation error.

5.7 Heuristics to Limit Error Accumulation

In order to limit error accumulation, we will assign to each node an error level (EL). The

error level of the node is value indicating how much error the node may have. We assume

that the three reference nodes (R0, R1 and R2), representing the local coordinate system

112

l2

l1

R0
u R1

u

u2

R2
u

u1

(a) Node Ru

2
is close to the base line

l2

l1

R0
u R1

u

u2

R2
u

u1

(b) Node u is close to the base line

Figure 5.6: Different cases for skinny triangles

(LCS), have an error level of 0 (i.e. EL(R0) = EL(R1) = EL(R2) = 0). Then the error

level of a node u (EL(u)) can be computed as a function of the error levels of the the

base-line nodes (Ru
0 and Ru

1) as follows:

EL(u) =
EL(Ru

0) + EL(Ru
1)

2
+ 1

As the node moves away from the LCS, its error level increases because of error accumu-

lation. In the remainder of this section we will discuss two techniques to limit the error

accumulation.

5.7.1 Selecting The Local Coordinate System (LCS)

As discussed in section 5.2, the local coordinate system (LCS) is defined by fixing three

non-colinear nodes (the reference nodes): R0, R1, and R2. The three reference nodes

together form a triangle ∆(R0, R1, R2). We will refer to this triangle as the LCS triangle.

The selection of this triangle affects the overall accuracy of the estimated node positions.

As we showed in Fig. 5.5(a), if the LCS triangle is skinny this may lead to the reflection

113

propagation error. Moreover, since the set of identified nodes (I) initially contains only

those three nodes, the error in the estimated position of all other nodes will be highly

effected by the error in the estimated position of the reference nodes (specially R1 and

R2). Finally, as we move away from the LCS, the node error level increases (i.e. the

accumulated error increases). Based on this it is better to have the LCS near the center

of the graph. That is why we assume that the cluster- head (CH) node is the origin (R0)

since, most probably, it will be at the center of the cluster. However, this is not always the

case as shown in Fig. 5.7, where the CH node is on the border of the cluster. Usually this

happens when the CH node is near the boundary of the sensor field.

CH node

Figure 5.7: The cluster-head (CH) node is on the border of the cluster (k=2)

Based on the above analysis, the LCS should have the following features:

1. The LCS triangle must not be skinny. We shall use the aspect ratio (AR) of the LCS

triangle to measure how skinny it is where the higher the aspect ratio, the skinnier

114

the LCS triangle and vise versa. Assuming the side lengths of the LCS triangle

are: d1, d2nandd3. Then the aspect ratio (AR) of the triangle can be calculated as

the ratio between the circum radius (CR) and inner radius (IR) of the triangle as

follows:

s = d1+d2+d3

2
;

CR = d1∗d2∗d3

4∗
√

s(s−d1)(s−d2)(s−d3)
;

IR =
√

(s−d1)(s−d2)(s−d3)
s

;

AR = CR/IR;

(5.6)

2. The error in estimating the positions of R1 and R2 should be minimized. Notice

that the position of R1 is (D(R0, R1), 0) (Eq. 5.4). Hence, the error in R1 position

depends on the range estimation technology used. For example, if we are using

RSSI (section 2.1.2), then as the distance between R0 and R1 increases, the error

in the distance increases. Hence, it is better to chose R1 to be closer to R0, without

violating the skinny triangle condition.

3. The LCS should be near the center of the local cluster graph. Most of the time, the

CH node will be the origin of the LCS since it is almost the center of the cluster.

Assuming that there are nc nodes in the cluster, then there is a maximum of Cnc−1
2

different possible LCS triangles that can be formed, i.e. different local coordinate systems

(LCS). Of course, the actual number is less than this since the three reference nodes must

be non-colinear neighbors. In order to show the effect of the selection of the LCS on the

accuracy, we propose four different heuristics to select the local coordinate system (LCS)

as follows3:

3For simplicity, we will assume that the CH node is chosen to be the origin (R0) and we just want to

115

• Lowest Aspect Ratio (LAR): Select R1, and R2 such that the triangle ∆(R0, R1, R2)

has the lowest aspect ratio among all different candidate triangles. This method usu-

ally selects nicely shaped triangles and avoids skinny triangles. However, it does

not take into consideration the side lengths of the triangle.

• Maximum Equilateral Triangle (MET): This method is similar to LAR but takes

the side length of the triangle into consideration. In this case, we search for all

approximately equilateral triangles. Then we select the one with maximum side

length. An approximately equilateral triangle is a triangle with aspect ratio close to

2. Hence, this method avoids skinny triangles while taking into consideration the

side length of the triangle.

• Highest Aspect Ratio (HAR): Select R1, and R2 such that ∆(R0, R1, R2) has

the highest aspect ratio among all different triangles. This method usually selects

skinny triangles. We include this method to show how bad the accuracy could be if

we are not careful selecting the coordinate system.

• Minimum Initial Error (MIE): In this method we try all possible local coordi-

nate systems with origin R0 located at the cluster-head node. For each coordinate

system i, we calculate the initial position estimate P0 using the MRLE algorithm,

as described in section 5.8. Then we pick a coordinate system that gives an initial

position estimate P0 with minimum error function E(P0) given by Eq. 5.3. The

intuition behind this method is to choose an initial position estimate P0 such that

the error function at this position E(P0) is as close as possible to 0. Although

select R1 and R2.

116

this method is computationally expensive, we will show in the results section that

it gives very acceptable accuracy that may lead to avoid the expensive refinement

phase.

Table 5.1 compares between the above heuristics in terms of time complexity where

d refers to the average node degree, nc is the number of node per cluster, and ec is the

number of edges in the cluster. In section 5.10, we shall compare between the above

methods in terms of the accuracy of the estimated node positions.

LCS Heuristic Complexity

LAR O(d2nc)

HAR O(d2nc)

MET O(dec)

MIE O(d2n3
c)

Table 5.1: Time complexity of different heuristics to select the local coordinate system

(LCS)

5.7.2 Resolving Reflection

As discussed in section 5.6, a skinny triangle will exist if ‖ −−−→
u2R

u
2 − −−−→

u1R
u
2 ‖≤ δ. This

means that we should select the base line to be as far as possible from the node u. Now

for the selector resolver node (R2
u), it should be selected as the neighbor node to u with

the highest altitude from the base line among all other neighbors. Notice that R2
u must

also belong to the set of identified nodes. So if we can not find a node R2
u such that

117

the reflection is resolved, we can postpone estimating the position of node u until more

neighbors are identified.

5.8 The Multi-hop Relative Location Estimation (MRLE)

Algorithm

5.8.1 Definitions and Terminologies

• Identified Nodes Set,I , is the set of all nodes with known relative position with

respect to the LCS. Initially, I = {R0, R1, R2}. Similarly the set of unidentified

nodes (U) is defined as U = Nc − I , where Nc is the set of all nodes inside the

cluster.

• Identified Neighbors Set, I(u) = I ∩ N(u), is the of neighbor nodes of u that have

known relative position.

• Node Error Level, EL(u), is the error level associated with node u as described in

section 5.7.

• Measured distance between two nodes, D(u, v), is the measured distance between

nodes u and v as reported during the network bootstrapping phase.

• Candidate Positions for a node, u1 and u2, are the two candidate positions for node

u such that they are reflection of each other across the base line.

118

MRLE(R0, R1, R2)
1. I = {R0, R1, R2};
2. U = N(R0) ∩ N(R1) ∩ N(R2);
3. While there is no new identified nodes
4. For each node u ∈ U and | I(u) | ≥ 3
5. [Ru

0
Ru

1
] = selectBaseLine(u, I(u));

6. [ux u1 u2] = findPositionUsingCosLaw(u, Ru
0
, Ru

1
);

7. ue = selectCandidate(Ru
0
, Ru

1
, u, I(u), u1, u2, errorFlag);

8. if errorFlag = FALSE // If reflection resolved
9. P0(u) = ue

10. EL(u) = mean(EL(Ru
0

), EL(Ru
1

)) + 1;
11. I = I ∪ {u};
12. end // for
13. end // while
14. // Estimate position for nodes with circular dependency or with only two known ranges
15. For each node u ∈ U and | N(u) ∩ I | ≥ 2
16. Select Ru

0
and Ru

1
with the lowest error level and Ru

0
∈ I(u) and Ru

1
∈ I(u);

17. [u1 u2] = findPositionUsingCosLaw(u, Ru
0
, Ru

1
);

18. ec1 = ec2 = 0;
19. For each node v ∈ I − I(u)
20. ∆1 = ‖ −−→u1v ‖; ∆2 = ‖ −−→u2v ‖;
21. if ∆1 ≤ Tr

22. ec1 = ec1 + 1;
23. if ∆2 ≤ Tr

24. ec2 = ec2 + 1
25. if ec1 < ec2
26. P0(u) = u1

27. else
28. P0(u) = u2;
29. EL(u) = mean(EL(Ru

0
), EL(Ru

1
)) + 1;

30. I = I ∪ u;
31. end //for
[u1 u2] = findPositionUsingCosLaw(u, Ru

0
, Ru

1
)

// Input:
// u → The node to estimate its position.
// Ru

0
, Ru

1
) → The base line of u.

// return:
// u1, u2 → the two candidate positions for node u.
32. d1 = D(Ru

0
, u), d2 = D(Ru

1
, u)

33. d3 = ‖ Ru
0
Ru

1
‖;

34. −→x =
−−−−→
Ru

0
Ru

1

‖
−−−−→
Ru

0
Ru

1
‖

;

35. −→y = x⊥
‖ x⊥ ‖

;
36. cos(θ) = (d2

1
+ d2

3
− d2

2
)/(2d1d3);

37. δx = d1 cos(θ);
38. // There are two candidates for the Y-coordinate
39. δy =

√

(d2

1
− δ2

x);

40. −→u1 =
−→
Ru

0
+ δx

−→x + δy
−→y ;

41 −→u2 =
−→
Ru

0
+ δx

−→x − δy
−→y ;

ue = selectCandidate(Ru
0
, Ru

1
, u, u1, u2, errorFlag)

// Input:
// u → The node to estimate its position.
// Ru

0
, Ru

1
) → The base line of u.

// u1, u2 → Two different candidate positions for u.
// return:
// errorFlag → true if we can not resolve reflection.
// ue → the estimated position of node u and errorFlag = false in this case.
42. Sort I(u) based on the altitude with respect to

−−−→
R0R1.

43. for R2 ∈ I(u) starting from highest altitude first
44. l1 = ‖ −→u1 −

−→
Ru

2
‖; l2 = ‖ −→u2 −

−→
Ru

2
‖;

45. l = D(u, Ru
2
);

46. δ1 = | (l − l1) |; δ2 = | (l − l2) |;
47. if | (δ1 − δ2) | > ε
48. if (δ1 < δ2)
49. return ue = u1;
50. else
51. return ue = u2;
52. end; // for
52. errorFlag = true; // If we reached this point, this means we could not resolve reflection

Figure 5.8: The Multi-hop Relative Location Estimation (MRLE) Algorithm
119

5.8.2 The MRLE Algorithm

The MRLE algortihm starts by selecting the LCS reference nodes R0, R1, and R2 as

described in section 5.7.1 and adds R0, R1, and R2 to the set of identified nodes (I). Then

iteratively, try to estimate the position of an unidentified node (u) that has three or more

distances to identified nodes using the technique described in section 5.3. If the node u

has two or more distances to identified nodes, then MRLE uses the technique described

in section 5.5 to estimate node position. The algorithm terminates when all nodes are

identified or we have no more nodes with two or more distances to identified nodes. The

algorithm details are given in Fig. 5.8.

5.9 The Refinement Step

The main goal behind the refinement step is to reduce the accumulated error in the initial

position estimate using LSE optimization. This step is optional if higher accuracy is

required. In the results section we will show that with careful selection of the initial LCS,

we can achieve acceptable accuracy without the need for the expensive refinement step.

The refinement step iteratively uses gradient descent method to refine the initial position

estimates P0. The gradient ∇E(P), of the error function E (Eq. 5.3) can be calculated as

follows:

∇E(P) =

∂E
∂x0

(P) ∂E
∂y0

(P) ∂E
∂z0

(P)

∂E
∂x1

(P) ∂E
∂y1

(P) ∂E
∂z1

(P)

...
...

...

∂E
∂xnc−1

(P) ∂E
∂ync−1

(P) ∂E
∂znc−1

(P)

(5.7)

120

The gradient (∇E(P)) is an nc ×3 matrix function of P , where nc is the number of

nodes in the cluster. It has the property that when it is evaluated at any position estimate

P , it points in the direction of travel from P that will maximally increase the error (i.e.,

uphill). Therefore, to decrease the error (E), the value of P should be slightly changed in

the opposite direction (i.e., −∇E(P)). The new value of P at iteration j is calculated as

follows:

Pj = Pj−1 − λj∇E(Pj−1) (5.8)

Where P0 is calculated using the MRLE algorithm. At each iteration, E(Pj) < E(Pj−1)

as long as the parameter λj is small enough. The non-linear error function given by

Eq. 5.3 has many local minima; so selecting the initial position estimate P0 affects the

accuracy of the estimated position significantly as well as the convergence latency. Since

each different LCS will lead to a different initial position estimate (P0), selecting the LCS

will also affect the accuracy of the estimated position after the refinement step. This

emphasize more on how important it is to select the best LCS. The terminating condition

for the iterative minimization process is when the maximum change in any node position

is ≤ η, where η is the desired position accuracy.

5.10 Validation and Performance Evaluation

5.10.1 Experiments Setup and Goals

Both the MRLE algorithm and the refinement step were implemented using MATLAB 6.1

release 12.1. All experiments were performed over more than 1500 different cluster rep-

121

resenting different cluster sizes (nc) ranging from 20 to 60 nodes. For each topology, the

transmission range of each node (Tr) was varied in order to achieve different node connec-

tivity levels ranging from 7 to 17. The cluster radius (k) ranges from 2 to 4 depending on

the cluster size and node connectivity. Initially, the nodes were randomly placed accord-

ing to a uniform distribution on a 100x100 area. The inter-node distance measurements

were perturbed with a Gaussian random noise with zero mean and variance σ2, where σ

ranges from 0 to 8.

There are four parameters used in our simulation:

1. Cluster size (nc): the number of nodes in the cluster including the cluster head node.

2. Cluster radius (k): the maximum number of hops between any node in the cluster

and the cluster head node.

3. Average Node Degree (d): the average node degree in the cluster. Recall from

section 4.5 that node degree is a function of the node transmission range (Tr).

4. Range error (σ): this is the measurement error associated with each distance be-

tween any two nodes. This is dependent on the technology used for distance esti-

mation (TOA, AOA, RSSI). In the simulation, we assume that the TOA method is

used; hence we assume Gaussian range error with zero mean and variance σ2.

We consider the following two performance metrics:

1. Accuracy: the accuracy of the estimated positions is measured in terms of the me-

dian error between the estimated positions and the true node positions.

122

2. Convergence latency: the number of iterations taken till the refinement step termi-

nates (i.e. a minimum for the error function E (Eq. 5.3) is reached)

The overall goal of the following experiments is to quantify these metrics and qualify the

impact of the various parameters. Mainly, we are interested in answering the following

questions:

• Q1: Does selecting the local coordinate system (LCS) affect the accuracy of the

estimated position and the convergence latency of the optimization? If so, how to

select the local coordinate system? In the simulator, we are trying the four different

heuristics described in section 5.7.1.

• Q2: What are the factors (cluster size, cluster radius, node degree, etc.) that affect

accuracy, as the node becomes k-hops away from the cluster head node? Our goal

here is to find different parameters that we can tune to obtain different levels of

accuracy.

• Q3: If a good local coordinate system were selected, would the initial position

estimates (P0) be close enough to the positions resulting from the optimization? In

other words, what added accuracy do we gain by conducting the optimization?

5.10.2 The Effect of Local Coordinate System (LCS) on Performance

The first set of experiments studies the effect of the selection of the local coordinate

system on the accuracy of the estimated positions and how the network size impacts it.

The effect of the selection of a local coordinate system on achieved accuracy is captured in

123

0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

Range Error (σ)

M
ed

ia
n

E
rr

or

The Effect of LCS on Accuracy (K=2, ND=17)

MIE
MET
LAR
HAR

(a)

0.5 1 1.5 2 2.5 3 3.5 4
3

4

5

6

7

8

9

10
The Effect of LCS on Accuracy (K=4, ND=9)

Range Error (σ)

M
ed

ia
n

E
rr

or

MIE
MET
LAR
HAR

(b)

Figure 5.9: The effect of local coordinate system (LCS) on accuracy for different values

of k and d

figure 5.9. In general, the experiments clearly indicate that selecting the local coordinate

system is one of the most important factors affecting the accuracy of the estimated final

nodes’ positions. For high node degree (d = 17) and low cluster radius, the accuracy

obtained if we use MIE is almost double the accuracy obtained using LAR or MET. The

gap actually increases as the cluster size increases. The HAR curve shows how bad it

could be if we do not carefully select the LCS. The figures also show that for low node

degree, and as k increases, the error increases and the performance deteriorates regardless

of which method we use for selecting the LCS.

From both figures, one can confirm that the MIE approach, which corresponds to

minimum initial error E(P0), performs very well compared with other methods. The very

good accuracy of MIE can be explained if we investigate the error function E (Eq. 5.3)

closely. The function E is a function in 2nc variables, assuming 2D coordinates, where

nc is the number of nodes in the clusters. The function has many local minima; hence; the

124

initial position estimate (P0) is important since the refinement step can get stuck in one of

the local minima. MIE is the only method that chooses an initial position estimate close

to the optimal, and hence the probability of reaching a local minima decreases.

It is also interesting to note that the closeness to the performance of the LAR and

MET methods, which is mainly due to the high similarity between the two methods. In

the most part MET leads to slightly better accuracy because it considers triangles with

large side length. Increasing the side length of the triangle reduces the effect of the error

introduced by the range-estimation technology used (TOA). One more thing to notice

from the figure is that the effect of range error is mostly symmetric on all methods of

picking the local coordinate system, with an order of magnitude increase of error variance

approximately worsening the accuracy by factor of 0.5. As the range error increases, the

median error increases linearly.

20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

Cluster Size (Nc)

N
um

be
r

of
 It

er
at

io
ns

The Effect of LCS on Convergence Latency

MIE
MET
LAR
HAR

Figure 5.10: The effect of local coordinate system (LCS) on convergence latency

125

Fig. 5.10 reflects another implication of the local coordinate system, which is the

convergence latency of the optimization. Not only has the MIE method performed well,

as demonstrated by the figure, it actually expedite the convergence latency of the opti-

mization. The convergence latency if MIE is used is almost half the latency if any other

method is used. Although, MIS is computationally expensive compared with LAR and

MET, we gain a lot during the refinement step. We can also see that the cluster size is the

major factor affecting the complexity of the optimization. It is also worth noting that the

number of iterations increases linearly with the growth in network size demonstrating the

scalability of our approach. In the remainder of this chapter, if not explicitly mentioned,

the MIE method will be used to select the local coordinate system (LCS).

5.10.3 Achievable Accuracy

In the second set of experiments, we report the achievable accuracy of our algorithm

and captures the effect of cluster radius (k), node degree and range error. Figure 5.11

shows how the accuracy of the estimated position is affected by the node connectivity

(d) and the cluster radius (k). The error bars represent 95% confidence interval. The

effect of the range error is also captured in both charts. From Fig. 5.11(a), it can be

concluded that increasing node degree has a very positive impact on the overall accuracy

but it seems to saturate after a certain level (d = 13). It is also clear from the figures that

increasing the connectivity decreases the uncertainty in the results. Fig. 5.11(b) shows that

an increased value of the cluster radius worsens the accuracy and increases the uncertainty

of the results. This is very much expected since the further the node is, the higher the

126

7 8 9 10 11 12 13 14 15 16 17
1

2

3

4

5

6

7
The Effect of Node Degree on Accuracy (K=3)

Node Degree (d)

M
ed

ia
n

E
rr

or

σ=1
σ=2
σ=4

(a) The impact of average node degree (d) on accu-

racy

1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Cluster Radius (K)

M
ed

ia
n

E
rr

or

The Effect of Cluster Radius on Accuracy (d=17)

σ=1
σ=2
σ=4

(b) The impact of cluster radius (k) on accuracy

Figure 5.11: The effect of different simulation parameters on accuracy

accumulative range error becomes.

Combing the findings of figures 5.11(b) and 5.11(a), it can be concluded that as

the cluster radius increases, the network connectivity should also be increases in order

to maintain high accuracy. Looking into the problem in more details, we can see that

the reason for this is that the number of constraints (edges) per node increase; hence;

minimizes the possibility of reflection error. This means that we need to find a metric that

related the number of edges in the local cluster graph (LCG) to the number of nodes (nc).

Notice also that the optimal case is when the local cluster graph is complete (i.e. each

node is connected to all other nodes). In the OK clustering algorithm, section 4.5, we

introduced the CLIQUE Factor (CF) as a measure of performance. The CLIQUE factor

of a cluster measures how close the subgraph induced by cluster to a complete graph.

Hence the CF related the number of edges in the LCG to the maximum number of edges

we can have (optimal case). It turned out that the CF is the major parameter that affects

127

1 2 3 4 5
50

55

60

65

70

75

80

85

90

95

100

Cluster Radius (K)

Num. of Iterations Vs. Cluster Radius (K) (ND=17)

N
um

be
r

of
 It

er
at

io
ns

σ=1
σ=2
σ=4

(a) The effect of average node degree (d) on conver-

gence latency

1 1.5 2 2.5 3 3.5 4
96

96.1

96.2

96.3

96.4

96.5

96.6

96.7

96.8

96.9

97

Range Error (σ)

N
um

be
r

of
 It

er
at

io
ns

Num. of Iterations Vs. Range Error (σ) (K=4)

ND=9

(b) The effect of cluster radius (K) on convergence

latency

Figure 5.12: The effect of different simulation parameters on convergence latency

the accuracy within the cluster. The CF combine the effect of both cluster radius (k) and

node degree (d) regardless of the cluster size.

Fig. 5.13 shows the impact of CLIQUE factor on accuracy for different values of

k. We can see from the figures that the median error is high if the CF is less than 60%.

The CLIQUE factor has slight effect on the accuracy beyond 60%. The 95% confidence-

interval error bars is almost 0 as the CF increase. For acceptable accuracy, we recommend

that the CF be at least 50%. The results shown in Fig. 5.13 explain the results show in

Fig. 5.11. In Fig. 5.11(a), as the node degree increases within the cluster, the number

of edges increase while the cluster size (nc) is fixed. Hence, the CF increases and that’s

why the accuracy improves as node degree increases. When the cluster radius increases,

Fig. 5.11(b), the cluster size increases while fixing the node degree (i.e. number of edges

is fixed). Hence the CF decreases and the accuracy deteriorates.

One more interesting thing to notice is that the accuracy could be 60% of range-

128

30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

CLIQUE Factor (CF)

Median Error After Optimization Vs. CLIQUE Factor (CF) (K=2)

M
ed

ia
n

E
rr

or

σ =1
σ =2
σ =4

(a) Cluster Radius (k=2)

30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

CLIQUE Factor (CF)

M
ed

ia
n

E
rr

or

σ =1
σ =2
σ =4

Median Error After Optimization Vs. CLIQUE Factor (CF) (K=4)

(b) Cluster Radius (k=4)

Figure 5.13: The effect of CLIQUE factor (CF) on accuracy

error standard deviation if the CF is greater than 80%. The accuracy increases as the

range error variance increases and can reach up to 75% as CF reaches 100% (i.e. complete

graph). We think that this very interesting observation since this gives the sensor network

engineer a trade-off between power and accuracy. Figure 5.14 shows the relation between

the CLIQUE factor (CF) and node transmission range (Tr) for a square area of side length

100 distance units and node density 0.01, which is considered a low node density.

Finally, we want to study the impact of CLIQUE factor (CF) on convergence la-

tency. As we may expect, Fig. 5.15 shows that the CLIQUE factor does not affect the

convergence latency. Since changing the CF only changes the number of edges in the lo-

cal cluster graph but not the cluster size, the convergence latency should not be affected.

129

20 30 40 50 60 70 80 90 100 110
20

30

40

50

60

70

80

90

100

110

CLIQUE Factor (CF)

Tr
an

sm
is

si
on

 R
an

ge

Transmission Range Vs. CLIQUE Factor (CF)

N
c
 =30

N
c
 =40

N
c
 =50

Figure 5.14: The relation between CLIQUE factor (CF) and node transmission range (Tr)

30 40 50 60 70 80 90 100
93

94

95

96

97

N
um

be
r

of
 It

er
at

io
ns

Num. of Iterations Vs. CLIQUE Factor (CF)

CLIQUE Factor (CF)

N
c
 =20

N
c
 =30

N
c
 =40

Figure 5.15: The effect of CLIQUE Factor (CF) on convergence latency

130

5.10.4 Optimization Factors

The last set is dedicated to the convergence latency and the added value of the optimiza-

tion. We compare the quality of the optimized position estimate to that of the initial

estimates under two different methods for picking the local coordinate system and qual-

ify the value of conducting optimization. In Fig. 5.16, we try to show how much accuracy

we gain by solving the non-linear optimization problem using the MIE method to select

the local coordinate system (LCS). The figure compares between the accuracy of the es-

timated position before and after the refinement step for different range-error standard

deviation (σ). It is clear from the figure that the refinement step increases the accuracy

more than 100%. This gives the sensor network engineer another parameter to play with,

the node computation power, since the non-linear optimization during the refinement step

does require a lot of computation power. An interesting thing to notice from Fig. 5.16 is

that the error in the estimated position using MIE is almost the same as the range error.

The enhancement is much better as range error increases and the error in the estimated po-

sition can reach approximately 50% of the range error. This confirms the effectiveness of

the MRLE algorithm and show how accurate the initial estimated position is. One thing

to notice here is that the CLIQUE factor affects the accuracy of the estimated position

whether optimization is used or not because increasing the CLIQUE factor reduces the

probability of having reflection error which is the major source of localization error.

In Fig. 5.17, we compare between the accuracy of the initial position (i.e. before

optimization) using just two different methods MIE and MET and the accuracy of the

position obtained after performing optimization. The reason for selecting MET is that

131

it is not computationally expensive as MIE and gives acceptable accuracy in terms of

initial position estimate. Hence, we consider MET as the method to use if the node has

very low computational power capabilities. Clearly, the position estimated using MIE is

more accurate than the position estimated using MET even after performing optimization.

The figures gives the application a trade-off between computational power and accuracy.

Table 5.2 summarizes different accuracy levels for range error σ = 4. Each row represents

different CLIQUE factor (i.e. different transmission power) while each column represents

different computational power.

CF Low (MET NOPT) Meium (MIE NOPT) High (MIE OPT)

Low (40%) 4.5 3.25 2.25

Medium (60%) 3.75 2.75 1.5

High (100%) 2.75 2.25 1.25

Table 5.2: Trading accuracy with computational power and transmission power

132

30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

CLIQUE Factor (CF)

M
ed

ia
n

E
rr

or

MIE − Optimization (OPT) Vs. No Optimization (NOPT)

MIE−OPT (σ = 1)
MIE−OPT (σ = 4)
MIE−NOPT (σ = 1)
MIE−NOPT (σ = 4)

Figure 5.16: The accuracy before and after optimization using MIE to select LCS

30 40 50 60 70 80 90 100
1

2

3

4

5

6

7
MIE Vs. MET (No Optimization)

CLIQUE Factor (CF)

M
ed

ia
n

E
rr

or

MIE (σ = 1)
MIE (σ = 4)
MET (σ = 1)
MET (σ = 4)

(a) Before Optimization

30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10
MIE Vs. MET

CLIQUE Factor (CF)

M
ed

ia
n

E
rr

or

MIE (σ=1)
MIE (σ=4)
MET (σ=1)
MET (σ=4)

(b) After Optimization

Figure 5.17: A comparison between accuracy before and after optimization using MIE

and MET for selecting the LCS

133

Chapter 6

The Global Location Discovery Phase

In the GLD phase, the cluster head nodes collaborate to obtain a global map of the net-

work. After forming a cluster-level map during the LLD phase, the local maps have

different directions. Two local maps have the same direction if their x-axes are pointing

in the same direction and similarly for the y-axes (and z-axes in case of 3-D). A global

coordinate system can be built from the local maps available at each cluster head using

simple matrix rotations, translations, and mirroring. In this chapter, we describe how to

adjust the directions of the local maps of the cluster head nodes to obtain the global topol-

ogy of the network using boundary nodes and show how the number of boundary nodes

(overlapping degree) between two clusters affect the accuracy of the transformation from

one coordinate system to another.

As described in the SALAM system model, section 3.2, we assume that the sensor

nodes are capable of long-haul communication. Hence all cluster head nodes are capable

of communicating directly with each other. Using this assumption, we will discuss in

more details how to construct the overlapping graph1 of the cluster heads and propose

1The definition of the overlapping graph is given in section 4.3.1.

134

four different heuristics to assign weights to the edges of the overlapping graph. We also

introduce a new problem, the best order of transformations, and show that it maps to

finding a spanning tree for the overlapping graph. In the results section, we show how the

spanning tree affect both accuracy and communication overhead of the GLD phase. One

last thing to notice is that the GLD phase can be optional if a global view of the network

is not needed, e.g. when the cluster head nodes do not perform joint application tasks. It

is up to the application layer to decide whether to perform GLD phase or not.

6.1 The Best Transformation Matrix Problem

In order to compute the transformation matrix between two clusters, there must be at least

three boundary nodes that belong to both clusters (i.e. within k-hops from both cluster

head nodes). Since range measurements are typically inaccurate, we do not expect to find

a transformation that maps the node coordinates of one cluster exactly into the measured

coordinates of these nodes in the other cluster. Instead we need to formulate and solve

another optimization problem by minimizing the sum of the squares of the residual errors

as follows:

Let C1 and C2 be two adjacent clusters that have m common boundary nodes and

m ≥ 3. Let vi(C1) and vi(C2) be the coordinates of boundary node i in C1 and C2

respectively, where i =1,.., m. We will refer to C1 as the child cluster and to C2 as the

parent cluster. The objective is to find the transformation matrix MCP that maps node

coordinates of C1 (child cluster) into C2 (parent cluster), and minimizes the following

error function:

135

min E(MCP) =
m

∑

i=1

‖vi(C2) − MCP vi(C1)‖2 (6.1)

where MCP =

r1 r2 tx

r3 r4 ty

0 0 1

where tx, ty are the translation transformation, ri is the rotation transformation and

possibly mirroring with the following properties:

|r1| = |r4|

|r2| = |r3|

r1r4 − r2r3 = −1 formirroring, 1 otherwise

(6.2)

There is a closed form solution to the above minimization problem as described

in [53] that takes O(m). Apparently, increasing the overlapping degree (m) between the

two clusters will reduce the error due to transformation. In the results section, we will

analyze the effect of the overlapping degree on the accuracy of the estimated position.

6.2 The Overlapping Graph

The overlapping graph is defined in section 4.3.1as follows:

Let S be the set of cluster head nodes. Then the Overlapping Graph (OG), GS , is

the weighted graph induced by S as follows:

1. The set of vertices are S.

2. An edge exists between two vertices u, v iff Nk[u] ∩ Nk[v] ≥ ω, where Nk is the

136

closed neighbor set, and ω is some threshold representing the minimal overlapping

degree between any two clusters.

3

4
7

4

3

4

6

CH Node Sensor Node Boundary Node

1

A

B

D

1

F

C

E

A

B

D

F

C

E

3

Figure 6.1: The overlapping graph

Each vertex in the overlapping graph represents one cluster in the network where

an edge between two vertices implies that there is some overlapping between the two

clusters. The threshold ω is application dependent. In SALAM, in order to be able to

transform one local coordinate system to another, we need at least three boundary nodes

(i.e. a minimum overlapping degree of 3); hence; we set ω = 3). Therefore if an edge

exists between two vertices u and v, this means that we can transform from the local

coordinate system corresponding to u to that of v and vise versa.

Fig. 6.1 shows an example of the overlapping graph. There are six clusters in the

network; hence; S = {A,B,C,D,E, F}. Each vertex in the graph represents one clus-

ter. An edge exists between two vertices if the corresponding clusters overlap with more

than 3 (i.e. ω = 3). The edge weights represent the overlapping degree between the

two corresponding clusters. Notice that there is no edge between B and C although the

137

corresponding clusters are adjacent because the overlapping degree is 2 (< 3).

The overlapping graph is a weighted graph. The edge weights are also application

dependent and can be calculated according to different design goals. In the next section,

we propose different heuristics to calculate the edge weights to optimize a certain design

objective. Finally, the overlapping graph could be undirected or directed graph based

on how the weights are calculated. The graph shown in Fig. 6.1 is undirected since the

weights correspond to the overlapping degree between clusters.

6.3 The Best Order of Transformations Problem

In order to build a global network topology, we need to transform from one coordinate

system to another as described in section 6.1. Given an overlapping graph of m cluster

head nodes, we need to preform m − 1 transformations in order to merge m local coor-

dinate systems into one big global coordinate system (GCS). This is equivalent to finding

a spanning tree2 (ST) for the overlapping graph. Given an overlapping graph, there are

many spanning trees that links the cluster head nodes together. Each spanning tree corre-

sponds to a different order of transformations between the local coordinate systems. Each

order of transformations will result in a different accuracy, and different communication

overhead per node. We will refer to the problem of finding the spanning tree, that satisfies

a certain design goal, as the best order of transformations problem. In SALAM we are

2A spanning tree is a connected, acyclic subgraph containing all the vertices of a graph. Informally, a

spanning tree of a graph is a selection of edges from the graph that form a tree spanning every vertex; that

is, no vertex is not connected to the tree.

138

interested in finding the best order of transformations (spanning tree) that satisfy one of

the following design goals:

1. Reduce average communication overhead per node to build a global map.

2. Reduce inter-cluster accumulated error; hence; minimize the overall global node

position error and enhance the accuracy of the estimated position.

Finding a spanning tree is dependent on how the edge weights are interpreted. We

propose the following heuristics to assign weights to the edges of the overlapping graph

in order to satisfy one of the above design goals:

1. Euclidian Distance (ED). Setting the weight of the edge between two cluster head

(CH) nodes as the Euclidian distance between the two node aims at minimizing the

communication overhead per CH node. In this case the overlapping graph is undi-

rected graph. In order to estimate the Euclidian distance between the two CH nodes,

we have two cases. If the two CH nodes are within k hops from each other, then

the Euclidian distance can be calculated based on the estimated position during the

LLD phase. Otherwise, the distance between the two CH nodes could be estimated

as the number of hops between the two CH nodes multiplied by the transmission

range (Tr) or the average edge length calculated from the LCG.

2. Weighted Euclidian Distance (WED). This method also aims at reducing the com-

munication overhead per node. It is similar to the previous heuristic except that

the Euclidean distance between the two nodes is weighted by the number of non-

boundary nodes between the two clusters. The overlapping graph is also undirected

graph in this case.

139

3. The CLIQUE Factor (CF). In section 5.10.3, we have shown the effect of CLIQUE

factor on accuracy. Given two cluster head nodes u and v with corresponding

CLIQUE factors uCF and vCF ; respectively; where uCF > vCF , it is better to

transform from the local coordinate system of v to that of u in order to enhance the

accuracy of the estimated position. Hence, the weight of the edge connecting v to

u (w(v, u)) is set to be uCF and w(u, v) = vCF . Clearly, the overlapping graph is a

directed graph in this case.

4. LLD Error (LE). In section 5.7.1, we have shown that selecting the local coordinate

system with minimum initial error (MIE) leads to a highly accurate position esti-

mate. This means if we have two cluster head nodes u and v where the error value

of the estimated position, as calculated by Eq. 5.3, is Eu and Ev, where Eu < Ev,

it is better to transform from the local coordinate system of v to that of u in order

to enhance the accuracy of the estimated position. Hence, the weight of the edge

connecting v to u (w(v, u)) is set to be Eu and w(u, v) = Ev. The overlapping

graph is also a directed graph in this case.

In the result section, we compare between the above heuristics in terms of com-

munication overhead and achievable accuracy. In the next section, we shall discuss two

different approaches to find a spanning tree for the overlapping graph.

6.4 The Spanning Tree of The Overlapping graph

Given a weighted overlapping graph, we propose two approaches to find the spanning

tree. The two approaches result in a spanning trees (ST) of different heights as follows:

140

-4
-7

-4

-4

-6

A

B

D

F

C

E

(a) Minimum spanning tree

-3

-7

-3

-4

-6

B

D

F

C

E

A

(b) Minimum height spanning tree

Figure 6.2: Different methods for finding the spanning tree of the overlapping graph

1. Finding the Minimum Spanning Tree (MST). The minimum spanning tree is the

minimum-weight tree in a weighted graph which contains all of the graph’s ver-

tices. There are two well-known algorithms to solve the MST problem: Prim’s al-

gorithm, and Kruskal’s algorithm. In the current implementation, we use Kruskal’s

algorithm. Fig. 6.2(a) shows the MST of the overlapping graph given in Fig. 6.1.

2. Finding the Minimum Height Spanning Tree (MHST). The distributed imple-

mentation for the minimum height spanning tree is based on Bellman Ford algo-

rithm [43, 58]. The specific algorithm is available at [34]. To build a minimum

height spanning tree, we use the minimum height spanning tree heuristic described

in [60] as follows:

• Using Floyd-Warshall algorithm, we compute the length of the shortest paths

between all pairs of nodes.

• Assign a weight for each node equal to the maximum shortest path length

emanating from that node.

141

• Select the node with the smallest weight to be the root of the base tree.

• Create the spanning tree by merging the shortest paths from root to all other

nodes in the overlapping graph.

Fig. 6.2(b) shows the MST of the overlapping graph given in Fig. 6.1.

In the result section, we compare between the two approaches and show how the

height of the spanning tree affects both the communication overhead and the accuracy of

the estimated global node position.

6.5 The GLD Algorithm

The GLD phase runs in parallel on all nodes. We assume that all CH nodes communicate

with each other and exchange information that can be used to assign weights to the edges

of the overlapping graph. For example, if we are going to use the CF heuristic, the CH

nodes exchange the CF of their corresponding clusters. After that each CH node build a

spanning tree (MST or MHST) by executing either Kruskal’s MST or the MHST algo-

rithm described in the previous section. Now each CH node has a spanning tree of the

overlapping graph. The root of the spanning tree will be the origin of the global coordi-

nate system (GCS). Hence, we start transforming from one coordinate system to another

starting from the leaf nodes. Leaf nodes send the coordinates of non-boundary nodes to

their corresponding parent clusters in the spanning tree. Then, The parent cluster merge

all the child clusters with its own cluster and remove the leaf nodes (children) from the

spanning tree; hence, the parent cluster becomes a leaf node. The process is repeated until

142

there is only one node in the tree. The algorithm is highlighted as follows:

1. After terminating the LLD phase, all cluster head nodes exchange information using

long-haul communication in order to build a local copy of the overlapping graph at

each CH node. The information exchanged contains data that can be used to assign

weights to the edges of the overlapping graph.

2. Using the above information, each CH node construct the overlapping graph. An

edge exists between two CH nodes if the corresponding clusters have three or more

boundary nodes. Each edge is assigned a weight based on one of the heuristics as

discussed in the previous section.

3. Each CH node constructs either the minimum spanning tree (MST) or the minimum

height spanning tree (MHST) for the overlapping graph.

4. If the CH node is a leaf, it transmits its local map to the parent in the MST and just

wait to receive the global map before terminating the GLD phase.

5. Each non-leaf parent node receives the local maps of its children and remove the

children from the MST; hence the parent becomes a leaf node. The parent finally

calculates the joint cluster map by transforming all children clusters to its own

coordinate system.

6. Repeat steps 3 and 4 until there is only one edge in the MST as shown in Fig. 6.3.

7. Now we have only two CH nodes left in the graph as shown in Fig. 6.3. In order to

determine which node should be the root of the MST, we use the following rules:

143

• Select the CH node which has more joint clusters as the root of the tree be-

cause it has more children nearby and most probably is near the center of the

network.

• If the two CH nodes has the same number of joint clusters, select the one with

lower node ID as the root.

8. Finally, the root of the MST broadcasts the global map of the network to the CH

nodes either by direct communication or by multi-hop using the children in the

MST.

Fig. 6.3 shows a step-by-step example of applying the GLD algorithm on the over-

lapping graph shown in Fig. 6.1. We assume that the MHST approach is used to construct

a spanning tree of the graph.

-3

-7

-3

-4

-6

B

D

F

C

E

A

step 1

-3

{A,C}

{B,D,E,F}

step 2

{A,B,C,D,E,F}

step 3

Figure 6.3: An example of GLD algorithm

144

6.6 Validation and Performance Evaluation

6.6.1 Experiments Setup and Goals

The GLD algorithm was implemented using MATLAB 6.1 release 12.1. All experiments

were performed over more than 150 different topologies representing representing differ-

ent network sizes (n) ranging from 50 to 800 sensor nodes. The nodes were randomly

placed according to a uniform distribution on a 100x100 area. For each topology, the

transmission range of each node (Tr) was varied in order to achieve different node con-

nectivity levels (d) ranging from 7 to 17. The cluster radius (k) ranges from 1 to 5 de-

pending on the cluster size and node connectivity. This configuration leads to an average

CLIQUE factor (CF) ranging from 10% to 40%. The inter-node distance measurements

were perturbed with a Gaussian random noise with zero mean and variance σ2, where σ

ranges from 0 to 8.

There are five parameters used in the GLD simulation experiments:

1. Number of Clusters (m): this is the number of clusters in the network. This corre-

sponds to the number of nodes in the overlapping graph.

2. Spanning Tree Weight (W): this corresponds to how the weights of the overlapping

graph are calculated. In the simulation, we tried the four different heuristics: ED,

WED, CF, and LE as described in section 6.3.

3. Spanning Tree Height (STH): this corresponds to how the spanning tree is con-

structed. In the simulation, we tried two methods: minimum spanning tree (MST)

and minimum height spanning tree (MHST), as described in section 6.4.

145

4. The Average CLIQUE Factor (CF): the average CLIQUE factor of the network

taken overall clusters.

5. The Average Overlapping Degree (AOD): AOD is defined as the average overlap-

ping degree between any two overlapping clusters in the network. Assume that u, v

are any two cluster head (CH) nodes. Then the overlapping degree between the two

corresponding clusters (O) is a discrete random variable where O = |Nk[u]∩Nk[v]|

and Nk[u]∩Nk[v] 6= ∅. Notice that the overlapping degree is defined only for over-

lapping clusters (i.e. the random variable O can not take the value 0). We define

AOD as the mean of this random variable O (i.e. AOD = E(O)).

6. Range error (σ): this is the measurement error associated with each distance be-

tween any two nodes. Like the LLD phase, we assume that the TOA method is

used; hence we assume Gaussian range error with zero mean and variance σ2.

We consider the following two performance metrics:

1. Accuracy: the accuracy of the global estimated positions is measured in terms of

the median error between the estimated positions and the true node positions.

2. Communication Overhead: this metric measures the average energy spent in com-

munication per cluster head (CH) node. We assume a simple model for the radio

hardware energy dissipation where the transmitter dissipates energy to run the radio

electronics and the power amplifier. For the experiments described here, we use the

free space channel model [49]. Thus, to transmit an b-bit message a distance l, the

146

radio expends

ET (b, l) = ET−elec(b) + ET−amp(b, l)

= bEelec + bεfsl
2

(6.3)

The electronics energy, Eelec, depends on factors such as the digital coding, modu-

lation, filtering, and spreading of the signal, whereas the amplifier energy, εfsl
2,

depends on the distance to the receiver. For the experiments described in this

section, the communication energy parameters are set as: Eelec = 50nJbit, and

εfs = 10pJ/bit/m2.

The overall goal of the following experiments is analyze the following:

• Q1: The effect of the overlapping graph spanning tree on accuracy. Two things

to consider here, how the weights of the graph are calculated and the effect of the

spanning tree height on accuracy. Again, our goal here is to find different parame-

ters that we can tune to obtain different levels of accuracy.

• Q2: The effect of spanning tree height and weight heuristic on communication

overhead per cluster head node. The objective is to give the sensor network engineer

different parameters that can be tuned to obtain different levels power consumption

and to confirm that SALAM is scalable during the GLD phase.

• Q3: The effect of GLD phase on the accuracy of the global estimated position

and how much error the GLD phase introduces to the overall position estimation

process. We will also study the impact of the overlapping degree between two

clusters on the accuracy of.

147

6.6.2 The Effect of Spanning Tree on Accuracy

In the first set of experiments we report the accuracy of GLD phase and capture the ef-

fect of the overlapping graph spanning tree (ST) on the accuracy of the global estimated

positions. The effect of the spanning tree weight on achieved accuracy is captured in

figure 6.4. The figures compare between the accuracy of the estimated position before

GLD phase (BEFORE) and after GLD phase using different heuristics to calculate edge

weights. Initially, one would think that after performing the GLD phase, the error in the

estimated position will increase due to transformation error. However, this is not always

true. As shown from the figure, the experiments clearly indicate that setting the weight of

the overlapping graph edges using the LE method leads to improving accuracy regardless

of how the spanning tree is constructed (MST or MHST). The accuracy is almost doubled

in case of low CF (10-20%). However, as the CLIQUE factor (CF) increases, the im-

provement decreases. This gives the sensor network engineer an inexpensive method to

enhance accuracy for low CF (i.e. low transmission power). We will see in the next sec-

tion that the effect of LE heuristic on communication overhead per node is not that bad.

Using other heuristics to calculate edge weights may result to reducing communication

overhead per CH node but may lead to decreasing the accuracy of the global estimated

position up to 50%.

Fig. 6.5 reflects the implication of the effect of spanning tree height on accuracy

using LE and ED methods to calculate weights. Using the LE method with minimum

height spanning tree (MHST) leads to slight improvement in the accuracy as compared

with using the MST. This can be explained as follows. As the height of the spanning

148

15 20 25 30 35
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

CLIQUE Factor (CF)

M
ed

ia
n

E
rr

or

The Effect of Weight Type on Accuracy using MST (σ=1)

BEFORE
ED
WED
CF
LE

(a) using MST

15 20 25 30 35
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

CLIQUE Factor (CF)

M
ed

ia
n

E
rr

or

The Effect of Weight on Accuracy using MHST (σ=1)

BEFORE
ED
WED
CF
LE

(b) using MHST

Figure 6.4: The effect of spanning tree weight on accuracy

tree increases, the number of coordinate system transformations also increases, leading

to an increase in the inter-cluster transformation error. Using a minimum height spanning

tree will result in minimizing the number of transformations, which in turn leads to better

accuracy. However, this does not hold in case of ED method since the primary goal there

is to minimize communication overhead to enhance accuracy.

Finally, we can clearly see from the figures that the CLIQUE factor (CF) is still on

of the major factors affecting accuracy. Increasing the average CF of the network leads to

a more accurate estimated global nodes’ positions and mutes the inaccuracy added by the

GLD phase.

6.6.3 The Effect of Spanning Tree on Communication Overhead

The second set of experiments analyzes the communication overhead per node during the

GLD phase and studies the effect of the spanning tree (ST) on communication overhead.

Fig. 6.6 shows the impact of spanning tree weight on communication overhead per CH

149

15 20 25 30 35
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

CLIQUE Factor (CF)

M
ed

ia
n

E
rr

or

The Effect of Spanning Tree Height on Accuracy (σ=1)

BEFORE
MST (LE)
MHST (LE)
MST (ED)
MHST (ED)

Figure 6.5: The effect of spanning tree height on accuracy

node as the number of clusters increase. We observe that the ED heuristic leads to the

minimum communication overhead per node regardless of the tree height. We also notice

that although LE method improves the accuracy, it costs almost double the communica-

tion overhead per node as compared with ED specially in the case of MHST. It is clear

from the figures that the communication overhead per node is constant as the number of

clusters increase. This, with the results discussed in section 4.5.3, confirms that SALAM

is scalable in terms of communication overhead.

In Fig. 6.7 we study the effect of spanning tree height on communication overhead

per CH node using the two different heuristics aiming at minimizing communication over-

head (ED and WED). We observe that the minimum highest spanning tree (MHST) al-

ways leads to minimum communication overhead per node regardless of how the weights

are calculated (i.e. ED or WED). We can also see from the figure that the energy con-

150

10 15 20 25
10

15

20

25

30

35

40

45

Number of clusters

A
vg

. C
om

m
./N

od
e

(µ
 J

)

The Avg. Comm. Overhead per CH Node using MST

ED
WED
CF
LE

(a) Using MST

10 15 20 25
0

5

10

15

20

25

30

35

Number of clusters

A
vg

. C
om

m
./N

od
e

(µ
 J

)

The Avg. Comm. Overhead per CH Node using MHST

ED
WED
CF
LE

(b) Using MHST

Figure 6.6: The effect of spanning tree weight on communication overhead per node

sumed per node slowly decreases as the number of cluster increases from 10 to 20. Then

it remains almost constant afterwards.

6.6.4 Achievable Accuracy

In the last set of experiments, we report the achievable accuracy of SALAM and compare

between the accuracy before and after performing the GLD phase for different values of

range error. We shall use the MHST method to construct the spanning tree since it leads to

better accuracy as compared with MST. In order to simplify the graphs, we shall compare

between only two heuristics to calculate edge weights: ED which leads to minimum

communication overhead per node and LE which leads to minimum error.

Fig. 6.8(a) reports the improvement in accuracy using the LE method after per-

forming GLD. We can see that we have 100% improvement in accuracy for low CLIQUE

factor regardless of the range error. However, from Fig. 6.8(b), we can notice that if the

ED method is used, the GLD phase will slightly decrease the accuracy. The error resulting

151

10 15 20 25
0

5

10

15

20

25

30

35

Number of clusters

A
vg

. C
om

m
./N

od
e

(µ
 J

)

The Effect of ST Height on Comm. Overhead per CH Node

ED (MHST)
WED (MHST)
ED (MST)
WED (MST)

Figure 6.7: The effect of spanning tree height on communication overhead per node

from the GLD phase is minimal compared to the error introduced during the LLD phase

(e.g. reflection error). Increasing the CLIQUE factor always guarantees better accuracy.

Finally, we want to show the effect of average overlapping degree (AOD) between

clusters on the accuracy of the estimated nodes’ positions. From Fig. 6.9 we can see

that increasing the AOD decreases the error introduced by the GLD phase because of the

inaccurate transformation matrix (Eq. 6.1). Clearly, if the AOD is increases beyond 20,

the effect is minimal and almost no change in accuracy for AOD > 30.

6.7 Comparison With Other Localization Techniques

In this section, we compare the accuracy of SALAM with the accuracy of different ad-

hoc localization algorithms. We chose a subset of algorithms that represents a variety of

different taxonomy features, as discussed in chapter 2. The following algorithms will be

152

15 20 25 30 35
1

2

3

4

5

6

7

8

9

CLIQUE Factor (CF)

M
ed

ia
n

E
rr

or

The Effect of GLD on Accuracy using MHST and LE

BEFORE (σ=2)
BEFORE (σ=4)
AFTER (σ=2)
AFTER (σ=4)

(a) using LE to calculate ST weights

15 20 25 30 35
2

3

4

5

6

7

8

9

10

11

CLIQUE Factor (CF)

M
ed

ia
n

E
rr

or

The Effect of GLD on Accuracy using MHST and ED

BEFORE (σ=2)
BEFORE (σ=4)
AFTER (σ=2)
AFTER (σ=4)

(b) using ED to calculate ST weights

Figure 6.8: The effect of GLD phase on accuracy

15 20 25 30 35
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

CLIQUE Factor

M
ed

ia
n

E
rr

or

The Effect of AOD on Accuracy using MHST and LE

BEFORE (σ=1)
BEFORE (σ=2)
AFTER (σ=1)
AFTER (σ=2)

Figure 6.9: The effect of average overlapping degree (AOD) on accuracy

153

used in the comparison:

1. MDS-MAP algorithm [80] is a localization method based on multidimensional

scaling (MDS). It is classified as a centralized anchor-free range-free algorithm.

2. MDS-MAP(P) algorithm [79] is an improved version of MDS-MAP. Like SALAM,

MDS-MAP(P) is also cluster-based, where k = 2. It is classified as a distributed

anchor-free range-based algorithm. We consider MDS-MAP(P) as the highest com-

petitor localization algorithm to SALAM. MDS-MAP(P) can use an optional refine-

ment phase to enhance the position accuracy using least squares minimization. In

this case, we shall refer to the algorithm as MDS-MAP(P,R).

3. Convex position estimation algorithm [37] is a well-known centralized localiza-

tion algorithm. It is classified as a centralized anchor-based range-free algorithm.

4. Hop-TERRAIN algorithm [74] represents the class of distributed anchor-based

range-based algorithms.

Fig. 6.10 compares between the accuracy of SALAM and MDS-based algorithms

on networks with 200 nodes uniformly distributed in a square field with side length = 100.

The x-axis represents connectivity (i.e. average node degree) and the y-axis represents

the medina error as percentage of transmission range (Tr). The node transmission range

ranges from 12.5 to 25, with an increment 2.5, which lead to average connectivity levels

8.8, 12.3, 16.4, 20.9, 25.9, and 31.1, respectively. The corresponding average CLIQUE

factor ranges from 20 to 50. The range error standard deviation (σ) is equal to 0.5.

154

5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

Connectivity

M
ed

ia
n

E
rr

or
 (%

T r)

A Comparison Between SALAM and MDS−based Algorithms

MDS−MAP
MDS−MAP(P)
MDS−MAP(P,R)
SALAM

Figure 6.10: A comparison between SALAM and MDS-based algorithms using uniform

topology

Although, MDS-MAP algorithm is a range-free algorithm, the results shown in

Fig. 6.10 are based on ranges not connectivity information. The MDS-based techniques

use ten anchor nodes to achieve the accuracy shown in the figure. However, SALAM uses

only three anchor nodes. The curves show that SALAM is consistently better than the

basic MDS-MAP technique and is more than 30%Tr better when the connectivity is low.

Compared with the improved version (MDS-MAP(P)), SALAM is approximately 15%Tr

better for low connectivity (¡ 16). For higher connectivity, the accuracy is almost the

same. However, the authors reported in [79] that as connectivity increases, the accuracy

does not improve. This is actually show in the figure as connectivity goes beyond 25,

the error is almost the same. This is not the case in SALAM. In Fig 5.13, we have

shown that increasing the connectivity (i.e. implicitly increasing the CLIQUE factor) the

155

accuracy increase. The reason for this is that SALAM uses the new added edges to resolve

reflection and during the refinement phase. We can also see form the figure that even after

performing the refinement step (MDS-MAP(P,R)), SALAM is still approximately 5%Tr

better than MDS-MAP(P,R) for low connectivity. Please keep in your mind that the above

results of MDS-based techniques is when using 10 anchor nodes while SALAM is using

just three nodes.

In [79], the authors also done experiments on grid networks. Figure 6.11 compares

the results of SALAM, using uniform topology, and MDS-based, using grid networks

with 4 random anchors. Although MDS-based techniques obtain much better results than

on the random networks, they could not outperform the accuracy of SALAM.

5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Connectivity

M
ed

ia
n

E
rr

or
 (%

T r)

A Comparison Between SALAM and MDS−based Algorithms (GRID)

MDS−MAP
MDS−MAP(P)
MDS−MAP(P,R)
SALAM

Figure 6.11: A comparison between SALAM and MDS-based algorithms using GRID

topology

156

We also compared the accuracy achieved by SALAM against the accuracy of cen-

tralized range-free algorithms. SALAM is much better than the convex optimization ap-

proach [37] when the number of anchor nodes is low. For example, with 4 to 10 anchors

in a 200-node random network, the convex optimization approach has an average estima-

tion error of more than twice the transmission range, when the transmission range is 12.5

and above (i.e. more than 25 units of distance).

SALAM is also better than Hop-TERRAIN [74], especially when the number of an-

chors is small. For example, with 3 anchors (2%) and a average node degree 12, SALAM

has an average error of about 10%Tr, whereas Hop-TERRAIN has an average error of

about 90%Tr.

157

Chapter 7

Conclusions and Research Directions

Sensor networks classify as ad-hoc networks with large number of nodes and limited

power and computational capacities. With ad-hoc deployment one cannot accurately pre-

dict or plan a-priori the location of each sensor node. Moreover, using GPS is not always a

suitable solution. These unique features have raised some interesting challenges that must

be considered when designing a localization algorithm for sensor networks. The protocol

must be scalable, power efficient, GPS-free, and still achieves acceptable accuracy.

In this dissertation, we have presented SALAM, a scalable GPS-free range-based

localization algorithm for wireless sensor networks. SALAM assumes that each node has

the capability to estimate ranges (distances) to its corresponding neighbors, that are within

its transmission range, with some error. We laid out a taxonomy of the current research

in the area of ad-hoc location determination systems and showed where SALAM belongs

in this taxonomy.

Scalability is achieved through grouping sensors into overlapping multi-hop clus-

ters. Clustering facilitates the distribution of control over the network and, hence, enables

locality of communication. Clustering nodes into groups saves energy and reduces net-

158

work contention because nodes communicate their data over shorter distances to their

respective cluster heads instead of network-wide flooding.

Each cluster head is responsible for building a local relative map corresponding to

its cluster using intra-cluster node’s range measurements. To obtain the global relative

topology of the network, the cluster head nodes collaboratively combine their local maps

using simple matrix transformations.

In order for two cluster heads to perform these matrix transformations, the two

clusters must be overlapping with degree at least 3. We formulated the overlapping multi-

hop clustering problem as an extension to the k-dominating set (KDS) problem. Since

the problem is NP-Hard, we introduced the OK randomized multi-hop heuristic algorithm

for solving it. OK is scalable in terms of communication overhead and terminates in a

constant number of iterations independent of the network size.

We studied the characteristics of OK through analytical analysis and simulation.

OK parameters, such as cluster radius, average node degree, and cluster head probability

can be easily tuned to achieve the application design goals with high probability. The

results showed that with high probability OK provides high network coverage and con-

nectivity. Moreover, by selecting the parameter values we can achieve a certain average

overlapping degree and control the cluster size. Although OK generates overlapping clus-

ters, the simulation results show that the clusters are approximately equal in size. This is

desirable to achieve load balancing between different clusters. We have developed a de-

tailed analytical model and have shown that it is valid by comparison with the simulation

results.

A major problem with intra-cluster (local) location discovery is the error accumu-

159

lated in the node position as it becomes multi-hop away from the cluster head node. We

analyzed different sources of error and developed techniques to avoid those errors. We de-

signed and implemented the Multi-hop Relative Location Estimation (MRLE) algorithm

that uses these heuristics to estimate relative node’s positions with low error margins.

For higher accuracy, we use an optional refinement step, where we iteratively improve

the initial position estimate by formulating a least-squares metric and solving it using

non-linear optimization techniques. By using the optional refinement phase, we give the

sensor network engineer a tool to trade between computational power and accuracy.

We showed how the local coordinate system (LCS) affects the accuracy of the es-

timated position dramatically and we proposed different heuristics to select the LCS and

compare between these heuristics in terms of accuracy and time complexity. The re-

sults show that the minimum initial error (MIE) heuristic can estimate an initial node

position that is very close to the optimal position. However, the MIE heuristic require

more computational overhead compared with other heuristics; hence, allowing the appli-

cation to trade computational power for accuracy. We have shown that we can avoid the

computationally expensive optimization problem by spending some time in selecting the

coordinate system.

We analyzed the accuracy of the intra-cluster location discovery via simulation. We

captured the impact of the different parameters, such as cluster radius and connectivity

on the accuracy of the estimated position. We introduced a new metric, the CLIQUE

factor. Our experiments have concluded that the CLIQUE factor has a very dominant

effect on the estimation accuracy regardless of the cluster size. We showed that we can

trade trade the accuracy of the estimated position against node transmission range; hence,

160

the application layer can choose from a whole range of different options, to estimate the

sensor nodes’ positions with different accuracy while conserving battery power.

We also analyzed the accuracy of the inter-cluster (global) location discovery. We

introduced a new problem, the best order of transformations between clusters. We for-

mulated the problem as finding a spanning tree for the overlapping graph. We proposed

different heuristics to assign weights to the edges of the overlapping graph in order to to

minimize the inter-cluster error and minimize the communication overhead per node. We

also proposed two approaches to construct the spanning tree of the overlapping graph:

minimum spanning tree and minimum height spanning tree.

Simulation results show that the spanning tree of the overlapping graph highly af-

fects both accuracy and communication overhead of the system. The minimum height

spanning tree always leads not only to better communication overhead, but also better ac-

curacy since the number of transformations is reduced. We also captured the impact of the

overlapping degree between clusters on the accuracy of the estimated node’s positions.

We compared the performance of SALAM to the performance of MDS-based tech-

niques. We showed that SALAM is more accurate than both the MDS-MAP system and

the enhanced MDS-MAP system by more than 30%Tr, 15%Tr respectively, at low node

connectivity. We also compared SALAM against centralized range-free algorithms [37].

With 4-10 anchor nodes, the convex optimization approach has an average estimation er-

ror of more than 25 units of distance, however, SALAM has an average median error of

less than 1 unit distance when the ranges have error with standard deviation 4. Finally,

we compared the accuracy of SALAM to the accuracy of range-based anchor-based algo-

rithms (HOP-TERRAIN), we showed that with 3 anchors, SALAM has an average error

161

of about 10%Tr, whereas Hop-TERRAIN has an average error of about 90%Tr.

To conclude, we showed in this research work that locally centralized algorithms

scale well with increased network size; yet, they can achieve acceptable accuracy com-

pared to a centralized approach. We showed that a locally centralized algorithm is indeed

a good compromise between accuracy, communication overhead. Although we analyzed

the performance of SALAM in the context of wireless sensor networks, SALAM is ap-

plicable for general ad-hoc networks.

7.1 Research Directions

1. Finding absolute position. In order to find the absolute position of the nodes, some

sensor nodes must be GPS-enabled. SALAM currently assumes only three anchor

nodes in order to find the absolute nodes’ positions. In the future research, we plan

to study the effect of increasing the number of GPS-enabled nodes on accuracy, and

where to place them.

2. Mobility. In the current implementation of SALAM, the sensor nodes are assumed

to be stationary, which is a valid assumption, for sensor networks. The mobility

of the some nodes can be desirable in numerous applications. For example, an

emergency vehicle equipped with computing and communication devices in the

context of a disaster management application and a walking soldier with a laptop

computer in his backpack in a battle environment. However, as the nodes moves

around, the relative node positions need to be recomputed. As a future research

direction, we plan to study the power consumption due to node mobility.

162

3. Edge-based Clustering. Almost all clustering algorithms divide the network such

that all clusters have the same number of nodes. However, in SALAM, we have

shown how the CLIQUE factor affects accuracy. In order to achieve a certain ac-

curacy, the number of edges per cluster should be above a certain threshold. This

indicate that the clustering should be edge-based not node-based. As a future work,

we plan to design a clustering algorithm that divides the network into clusters such

that the CLIQUE factor per cluster is greater than a certain threshold.

4. Cluster Maintenance. In the current implementation of SALAM, we assume static

nodes. Hence, SALAM runs once after the network bootstrapping to estimate

nodes’ positions and terminates. Therefore, we do not analyze the performance in

case of node failure (cluster head or non-cluster head nodes). However, if mobility

is to be considered, we need to investigate the behavior of the proposed algorithm

in the event of sensor failures.

5. Load Balancing. In general, cluster head nodes spend relatively more energy than

other sensors because they have to receive information from all the sensors within

their cluster. Hence, they may run out of their energy faster than other sensors.

In the current implementation, the clustering algorithm runs once during network

bootstrapping. Hence, there is no need to share the cluster head role among all

nodes. However, if mobility is to be considered, it is necessary to switch the cluster

head role between nodes in order to maximize the network life time. One possible

solution is to run the clustering algorithm periodically for load balancing. Another

possibility is that cluster heads trigger the clustering algorithm when their energy

163

levels fall below a certain threshold. We leave this as a future extension to the OK

protocol.

6. More Accurate Analytical Model. In the analytical model, we assume circle rep-

resentation for the cluster. As a future extension, we may want to look into different

improvements to derive a tighter bound by studying the actual cluster shape using

more complex stochastic geometry techniques.

164

Appendix A

Area of Intersection Between Two Identical Circles

Assume that we have two identical circles A and B that intersect in some area IAB. Let r

be the radius length and w be the distance between the two centers A and B as shown in

Fig. A.1. then the intersection (IAB) can be calculated as follows:

IAB = 2 (area of sector CBD - area of triangle CBD)

Area of sector CBD = 1
2
.2θ.R2 = θ.R2

∴ IAB = 2(θR2 − 1
2
.R2 sin 2θ) = (2θ − sin 2θ)R2

where w = 2R cos θ (using cosine rule)

BA

D

C

R R

w

PSfrag replacements

θθ

Figure A.1: Area of intersection of two circles

165

BIBLIOGRAPHY

[1]

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E.Cayirci. Wireless sensor net-

works: a survey. Computer Networks, 38(4):393–422, 2002.

[3] K.M. Alzoubi, P.-J. Wan, and O. Frieder. Distributed Heuristics for Connected Dom-

inating Sets in Wireless Ad Hoc Networks. Journal of Communications and Net-

works, 4(1), March 2002.

[4] K.M. Alzoubi, P.-J. Wan, and O. Frieder. Message-Optimal Connected Dominating

Sets in Mobile Ad Hoc Networks. In MOBIHOC, EPFL Lausanne, Switzerland,

June 2002.

[5] K.M. Alzoubi, P.-J. Wan, and O. Frieder. New Distributed Algorithm for Connected

Dominating Set in Wireleess Ad Hoc Networks. In Proceedings of the 35th Hawaii

International Conference on System Sciences, Big Island, Hawaii, 2002.

[6] A.D. Amis and R. Prakash. Load-Balancing Clusters in Wireless Ad Hoc Networks.

In Proceedings of ASSET, Richardson, Texas, March 2000.

166

[7] Alan D. Amis, Ravi Prakash, Thai H. P. Vuong, and Dung T. Huynh. Max-Min

D-Cluster Formation in Wireless Ad Hoc Networks. In IEEE INFOCOM, March

2000.

[8] D. J. Baker and A. Ephremides. The Architectural Organization of a Mobile Ra-

dio Network via a Distributed Algorithm. IEEE Transactions on Communications,

29(11):1694–1701, November 1981.

[9] Seema Bandyopadhyay and Edward Coyle. An Energy-Efficient Hierarchical Clus-

tering Algorithm for Wireless Sensor Networks. In IEEE INFOCOM, San Francisco,

CA, March 2003.

[10] S. Banerjee and S. Khuller. A clustering scheme for hierarchical control in multi-hop

wireless networks. In IEEE INFOCOM, 2001.

[11] S. Basagni. Distributed and Mobility-Adaptive Clustering for Multinedia Support in

Multi-Hop Wireless Networks. In Proceedings of Vehicular Technology Conference,

volume 2, pages 889–893, 1999.

[12] S. Basagni. Distributed Clustering for Ad Hoc Networks. In Proceedings of In-

ternational Symposium on Parallel Architectures, Algorithms and Networks, pages

310–315, June 1999.

[13] J. Beal. A robust amorphous hierarchy from persistent nodes. AI Memo, (11), 2003.

[14] Jeremy Blum, Min Ding, Andrew Thaeler, and Xiuzhen Cheng. Handbook of Com-

binatorial Optimization. Kluwer Academic Publishers, 2004.

167

[15] K. S. Booth and J. H. Johnson. Dominating sets in chordal graphs. SIAM J. Comput.,

11:191–199, 1982.

[16] N. Bulusu, J. Heidemann, and D. Estrin. GPS-less Low-cost Outdoor Localiza-

tion for Very Small Devices. IEEE Personal Communications, 7(5):28–34, October

2000.

[17] Nirupama Bulusu, J. Heidemann, V. Bychkovskiy, and D. Estrin. Density-adaptive

beacon placement algorithms for localization in ad hoc wireless networks. In IEEE

Infocom 2002, June 2002.

[18] S. Butenko, X. Cheng, C. Oliveira, and P.M. Pardalos. Recent Developments in

Cooperative Control and Optimization. Kluwer Academic Publishers, 2004.

[19] S. Butenko, C. Oliveira, and P.M. Pardalos. A new algorithm for the minimum

connected dominating set problem on ad hoc wireless networks. In Proceedings of

CCCT’03, pages 39–44, 2003.

[20] M. Cadei, X. Cheng, and D.-Z. Du. Connected Domination in Ad Hoc Wireless Net-

works. In Proc. 6th International Conference on Computer Science and Informatics,

2002.

[21] S. Capkun, M. Hamdi, and J.-P. Hubaux. Gps-free positioning in mobile adhoc

networks. In in Hawaii International Conference on System Sciences (HICSS-34),

pages 3481–3490, January 2001.

[22] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat monitor-

ing: Application driver for wireless communications technology. In In ACM SIG-

168

COMM Workshop on Data Communications in Latin America and the Caribbean,

April 2001.

[23] A. Cerpa and D. Estrin. ASCENT: Adaptive Self-Configuring Sensor Networks

Topologies. In Proceedings of IEEE INFOCOM, New York, NY, June 2002.

[24] G. J. Chang and G. L. Nemhauser. The k-domination and k-stability problem on

graphs. Technical Report 540, School of Operations Research and Industrial Engi-

neering, Corenll University, 1982.

[25] M. Chatterjee, S. K. Das, and D. Turgut. WCA: A Weighted Clustering Algorithm

for Mobile Ad hoc Networks. Journal of Cluster Computing, Special issue on Mo-

bile Ad hoc Networking, (5):193–204, 2002.

[26] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: an Energy-Efficient

Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks.

ACM Wireless Networks, 8(5), September 2002.

[27] Y. Chen and A. Liestman. Approximating minimum size weakly-connected domi-

nating sets for clustering mobile ad hoc networks. In MOBIHOC, EPFL Lausanne,

Switzerland, June 2002.

[28] X. Cheng, M. Ding, and D. Chen. An approximation algorithm for connected dom-

inating set in ad hoc networks. In Proc. of International Workshop on Theoretical

Aspects of Wireless Ad Hoc, Sensor, and Peer-to-Peer Networks (TAWN), 2004.

169

[29] X. Cheng, M. Ding, D.H. Du, and X. Jia. On The Construction of Connected Dom-

inating Set in Ad Hoc Wireless Networks. Special Issue on Ad Hoc Networks of

Wireless Communications and Mobile Computing, 2004.

[30] X. Cheng, A. Thaeler, G. Xue, and D. Chen. Tps: A time-based positioning scheme

for outdoor sensor networks. In in the Proceedings of IEEE Conference on Computer

Communications (INFOCOM), March 2004.

[31] C.F. Chiasserini, I. Chlamtac, P. Monti, and A. Nucci. Energy Efficient design of

Wireless Ad Hoc Networks. In Proceedings of European Wireless, February 2002.

[32] L. Clare, G. Pottie, and J. Agre. Self-organizing distributed sensor networks. In

SPIE Conf. Unattended Ground Sensor Technologies and Applications, pages 229–

237, Orlando, FL, April 1999.

[33] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Mathe-

matics, 86:165–177, 1990.

[34] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001.

[35] B. Das and V. Bharghavan. Routing in Ad-Hoc Networks Using Minimum Con-

nected Dominating Sets. In ICC, 1997.

[36] Murat Demirbas, Anish Arora, and Vineet Mittal. FLOC: A Fast Local Clustering

Service for Wireless Sensor Networks. In 1st Workshop on Dependability Issues in

Wireless Ad Hoc Networks and Sensor Networks, Florence, Italy, June 2004.

170

[37] L. Doherty, K. Pister, and L. El Ghaoui. Convex position estimation in wireless

sensor networks. In in the Proceedings of IEEE Conference on Computer Commu-

nications (INFOCOM), April 2001.

[38] A. Ephremides, J.E. Wieselthier, and D. J. Baker. A Design concept for Reliable

Mobile Radio Networks with Frequency Hopping Signaling. Proceeding of IEEE,

75(1):56–73, 1987.

[39] A. Mainwaring et al. Wireless sensor networks for habitat monitoring. In In ACM

International Workshop on Wireless Sensor Networks and Applications (WSNA’02),

September 2002.

[40] H. Wang et al. Target classification and localization in habitat monitoring. In IEEE

International Conference on Acoustics, Speech, and Signal Processing (ICASSP

2003), April 2003.

[41] S. Meguerdichian et al. Coverage problems in wireless ad-hoc sensor networks. In in

the Proceedings of IEEE Conference on Computer Communications (INFOCOM),

April 2001.

[42] T. He et al. Range-free localization schemes for large scale sensor networks. In

in the Proceedings of the ACM Conference on Mobile Computing and Networks

(MOBICOM’03), September 2003.

[43] M. Faloutsos and M. Molle. Optimal distributed algorithm for minimum spanning

trees revisited. In Proceedings of the Fourteenth Annual ACM Symposium on Prin-

ciples of Distributed Computing, 1995.

171

[44] M. R. Garey and D. S. Johnson. Computers and Intractability: A guide to the theory

of NP-completeness. Freeman, San Frncisco, 1978.

[45] S. Ghiasi, A. Srivastava, X. Yang, and M. Sarrafzadeh. Optimal Energy Aware

Clustering in Sensor Networks. Sensors Magazine, (1):258–269, January 2002.

[46] S. Guha and S. Khuller. Approximation algorithms for connected dominating sets.

Algorithmica, 20(4):374–387, April 1998.

[47] G. Gupta and M. Younis. Load-Balanced Clustering in Wireless Sensor Networks.

In the International Conference on Communication (ICC 2003), Anchorage, Alaska,

May 2003.

[48] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Domination in Graphs: Advanced

Topics. Marcel Dekker, Inc. New York, 1998.

[49] W. B. Heinzelman, A. P. Chandrakasan, , and H. Balakrishnan. An Application Spe-

cific Protocol Architecture for Wireless Microsensor Networks. IEEE Transactions

on Wireless Networking, 1(4), October 2002.

[50] M. A. Henning, O. R. Oellermann, and H. C. Swart. The diversity of domination.

Discrete Mathematics, 161(3):161–173, December 1996.

[51] M. A. Henning, O.R. Oellermann, and H.C. Swart. Bounds on distance domination

parameters. J. Combin. Inform. System Sci., 16:11–18, 1991.

[52] Jeffrey Hightower and Gaetano Borriella. Location Systems for Ubiquitous Com-

puting. IEEE Computer, 34(8):57–66, August 2001.

172

[53] B. Horn, H.M. Hilden, and S. Negahdaripour. Closed form solution of absolute

orientation using orthonormal matrices. Journal of the Optical Society of America,

5:1127–1135, 1998.

[54] A. Howard, M.J. Mataric, and G.S. Sukhatme. Relaxation on a mesh: a formalism

for generalized localization. In in Proc. of the IEEE International Conference on

Intelligent Robots and Systems (IROS01), pages 1055–1060, 2001.

[55] Steven Huss-Lederman, Elaine M. Jacobson, Anna Tsao, Thomas Turnbull, and

Jeremy R. Johnson. Implementation of strassen’s algorithm for matrix multiplica-

tion. In Supercomputing ’96: Proceedings of the 1996 ACM/IEEE conference on

Supercomputing (CDROM), Washington, DC, USA, 1996.

[56] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable and

robust communication paradigm for sensor networks. In in the Proceedings of the

ACM Conference on Mobile Computing and Networks (MOBICOM), pages 56–67,

September 2000.

[57] X. Ji. Sensor positioning in wireless ad-hoc sensor networks with multidimensional

scaling. In in the Proceedings of IEEE Conference on Computer Communications

(INFOCOM), March 2004.

[58] L.R. Ford Jr. and D.R. Fulkerson. Flows in Networks. Princeton University Press,

1962.

[59] V. Kawadia and P. R. Kumar. Power Control and Clustering in Ad Hoc Networks.

In IEEE INFOCOM, San Francisco, CA, March 2003.

173

[60] T. Kim and V. Bharghavan. Multicast routing in heterogeneous wireline/wireless

environments. In IEEE Wireless Communications and Networking Conference,

September 1999.

[61] B. Krishnamachari, S. Wicker, and R. Bejar. Phase Transition Phenomena in Wire-

less Ad-hoc Networks. In in GLOBECOM, San Antonio, TX, 2001.

[62] T. J. Kwon and M. Gerla. Clustering with Power Control. In Proceeding of Mil-

COM99, 1999.

[63] K. Langendoen and N. Reijers. Distributed Localization in Wireless Sensor Net-

works: A Quantitative Comparison. Computer Networks (Elsevier), special issue

on Wireless Sensor Networks, pages 374–387, August 2003.

[64] L. Li and J.Y. Halpern. Minimum-energy mobile wireless networks revisited. In

IEEE International Conference on Communications, June 2001.

[65] C. R. Lin and M. Gerla. Adaptive Clustering for Mobile Wireless Networks. Journal

on Selected Areas in Communication, 15:1265–1275, September 1997.

[66] A. B. McDonald and T. Znati. A Mobility Based Framework for Adaptive Clustering

in Wireless Ad-Hoc Networks. IEEE Journal on Selected Areas in Communications,

17(8):1466–1487, August 1999.

[67] J. C. Navas and T. Imielinsk. Geographic addressing and routing. In in the Pro-

ceedings of the ACM Conference on Mobile Computing and Networks (MobiCom),

September 1997.

174

[68] D. Niculescu and B. Nath. Ad-hoc positioning system. In in the Proceedings of

IEEE Global Communication Conference (Globcom’01), November 2001.

[69] D. Niculescu and B. Nath. Ad hoc positioning system (aps) using aoa. In in the Pro-

ceedings of IEEE Conference on Computer Communications (INFOCOM), March

2003.

[70] A. K. Parekh. Selecting Routers in Ad-Hoc Wireless Networks. In Proceedings of

ITS, 1994.

[71] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Communications

of the ACM, 43(5):51–58, April 2000.

[72] T. Rappaport. Wireless Communications: Principles & Practice. Englewood Cliffs,

NJ: Prentice-Hall, 1996.

[73] S.I. Roumeliotis and G.A. Bekey. Synergetic localization for groups of mobile

robots. In in Proc. of the 39th IEEE Conference on Decision and Control, page

34773482, December 2000.

[74] C. Savarese, J. Rabaey, and K. Langendoen. Robust positioning algorithms for dis-

tributed ad-hoc wireless sensor networks. In USENIX Technical Annual Conference,

June 2002.

[75] A. Savvides, C. C. Han, and M. Srivastava. Dynamic fine-grained localization in ad-

hoc networks of sensors. In in the Proceedings of the ACM Conference on Mobile

Computing and Networks (MOBICOM’01), July 2001.

175

[76] A. Savvides, H. Park, and M. B. Srivastava. The bits and flops of the n-hop mul-

tilateration primitive for node localization problems. In in the Proceedings of the

first ACM international workshop on Wireless Sensor Networks and Applications,

September 2002.

[77] Andreas Savvides and M. B. Srivastava. The N-Hop Multilateration Primitive for

Node Localization Problems. ACM MONET special issue on Wireless Sensor Net-

works and Applications, 2003.

[78] Loren Schwiebert, Sandeep K. S. Gupta, and Jennifer Weinmann. Research chal-

lenges in wireless networks of biomedical sensors. In in the Proceedings of the ACM

Conference on Mobile Computing and Networks (MOBICOM’01), pages 151–165,

July 2001.

[79] Y. Shang and W. Ruml. Improved mds-based localization. In in the Proceedings of

IEEE Conference on Computer Communications (INFOCOM), March 2004.

[80] Yi Shang, Wheeler Ruml, Ying Zhang, and Markus P. J. Fromherz. Localization

From Mere Connectivity. In In Proc. of ACM MOBIHOC 2003, pages 201–212,

Annapolis, MD, June 2003.

[81] E. Shih, S. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan. Phys-

ical layer driven protocol and algorithm design for energy-efficient wireless sensor

networks. In in the Proceedings of the ACM Conference on Mobile Computing and

Networks (MOBICOM’01), pages 272–286, July 2001.

176

[82] S. Skiena. Handbook of Combinatorial Optimization. Reading, MA: Addison-

Wesley, 1990.

[83] Mani Srivastava, Richard Muntz, and Miodrag Potkonjak. Smart kindergarten:

Sensor-based wireless networks for smart developmental problem-solving environ-

ments. In in the Proceedings of the ACM Conference on Mobile Computing and

Networks (MOBICOM’01), pages 132–138, July 2001.

[84] I. Stojmenovic and X. Lin. Loop-free Hybrid Single-path Flooding Routing Al-

gorithms with Guaranteed Delivery for Wireless Networks. IEEE Transactions on

Parallel and Distributed Systems, 12(10):1023–1032, October 2001.

[85] P.-J. Wan, K.M. Alzoubi, and O. Frieder. Distributed Construction of Connected

Dominating Sets in Wireless Ad Hoc Networks. In IEEE INFOCOM, 2002.

[86] Y. Xu, J. Heidemann, and D. Estrin. Geography-Informed Energy Conservation for

Ad Hoc Routing. In Proceedings of the ACM/IEEE International Conference on

Mobile Computing and Networking (MOBICOM), pages 70–84, Rome, Italy, July

2001.

[87] F. Ye, H. Luo, J. Chung, S. Lu, and L. Zhang. A Two-Tier Data Dissemination Pro-

tocol for Large-Scale Wireless Sensor Networks. In Proceedings of the ACM/IEEE

International Conference on Mobile Computing and Networking (MOBICOM), At-

lanta, Georgia, September 2002.

177

[88] Ossama Younis and Sonia Fahmy. Distributed Clustering in Ad-hoc Sensor Net-

works: A Hybrid, Energy-Efficient Approach. In IEEE INFOCOM, Hong Kong,

March 2004.

[89] A. Youssef, A. Agrawala, and M. Younis. Accurate Anchor-Free Localization in

Wireless Sensor Networks. In in the Proceedings of the 1st IEEE Workshop on In-

formation Assurance in Wireless Sensor Networks (WSNIA 2005), Phoenix, Arizona,

April 2005.

178

