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Absence of arbitrage requires all claims to be priced as the expected value of

cash flows under a risk neutral measure on the path space and every claim must

be priced under the same measure. This motivates why we want to use the same

measure to price vanilla options and path dependent products, and hence why we

want to match marginal distributions.

There are many ways of matching marginal distributions. We present sim-

ulation methods for three stochastic processes that match prespecified marginal

distributions at any continuous time: the Azéma and Yor solution to the Skorohod

embedding problem, inhomogeneous Markov martingale processes with independent

increments using subordinated Brownian motion, and a continuous martingale using

Dupire’s local volatility method. Then the question is which way is a good way of

matching marginal distributions.

To make a judgement, we look at the properties of the processes. Since all

vanilla options are already matched, we want to use exotic options to investigate

properties of the processes. One of the properties that we investigate is whether for-



ward return distributions are close to spot return distributions as market structural

features.

We price swaps associated with the first passage time to barrier levels on these

processes and see which model gives the highest value of swaps, in other words, the

shortest passage time to levels. Moreover, we price monthly reset arithmetic cliquets

with local floors and global caps and with local caps and global floors. Then we

check the model risks of these models and find how model risks change when caps

or floors change. Finally, we price options on the realized quadratic variations to

see how option prices move as maturity increases.
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4.2.2 Simulation using Lévy measure . . . . . . . . . . . . . . . . . 33
4.2.3 Simulating Nonstationary Poisson Processes . . . . . . . . . . 34

4.3 Continuous martingales . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Hypothesis test for matching marginals . . . . . . . . . . . . . . . . . 37

5 Pricing exotic options 43
5.1 Forward return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Swaprate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Cliquets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Options on the realized quadratic variations . . . . . . . . . . . . . . 58

6 Conclusion 64
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A Histograms of forward motion 68

B Implied volatilities of forward return distributions 80

C Graphs for the swap rates 96

Bibliography 109

v



LIST OF FIGURES
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Chapter 1

Introduction

Originally, the concept of martingale was featured in betting strategies in

eighteenth century France. If a coin came up heads, the bettor won his stake; if it

came up tails, he lost. The gambler would double his bet after every loss, hoping

that a single win would net a sum equal to the stake and all subsequent losses. Paul

Pierre Lévy introduced the concept of martingale in probability theory and much of

the development of these theories was carried out in the twentieth century by the

American mathematician, Joseph Leo Doob. The martingale has become one of the

most important concepts in stochastic processes and probability theory.

Martingale is a critical concept in mathematical finance, since discounted asset

prices are martingales under a risk neutral measure or, alternatively, martingale

measure. By the fundamental theorem of asset pricing, the existence of a risk neutral

measure is equivalent to a no arbitrage condition in markets. A main assumption

in the study of finance is that the market is free of arbitrage, since we interpret an

arbitrage possibility as a case of mispricing in the market. Then the question arises

naturally: How to construct martingales?

Three generic constructions of martingales that match with prespecified marginal

densities and have the Markov property have been developed by Madan and Yor

[24]. The first construction uses the Azéma and Yor [27] solution to the Skorohod
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embedding problem. The second generates inhomogeneous Markov martingale pro-

cesses with independent increments using subordinated Brownian motion. The third

constructs a continuous martingale using Dupire’s method [14] for Markov martin-

gales. After having constructed martingales with the general marginal distributions,

they consider marginal distributions that satisfy a scaling property and then they

construct martingales with unit time density.

The main contribution of this dissertation is the construction of martingales by

simulating these three processes. We use an infinitesimal generator to investigate the

properties of the process obtained from the Azéma and Yor solution to the Skorohod

embedding problem. From the infinitesimal generator, we can conclude that the

process is a pure jump process and obtain the analytical forms for jump times

and jump sizes. To simulate this process, we use an inverse cumulative distribution

method and an acceptance-rejection method to generate random jump sizes. For the

time change Brownian motion, we show that this is a nonstationary process. Then,

we simulate this process using inverse Laplace transformation and a Lévy measure.

For the third construct, the continuous martingale, we use Milstein’s higher order

scheme. After we generate the three stochastic processes, we use the Kolmogorov-

Smirnov test to check if the marginal distributions of the processes match with

prespecified marginal distributions which, in this dissertation, are double negative

exponential distributions.

The pricing of exotic options is always of interest. Since these processes all

have the same marginal distributions across continuous time, the prices of European

options are consistent at any maturity. But the prices of exotic options that depend
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on the paths may be different. We price swaps with barriers, locally floored and

capped and globally floored and capped cliquets, and the options on the realized

quadratic variations.

Another interesting study is about forward motion, the agreement of delivery

being made in the future but the price determined on the initial trading day. For

Lévy processes, the forward return distributions are in the same class of distributions

as the spot return distribution. Many attempts at building path spaces adopt such

a procedure. However, it may not be a reasonable request to make of processes in

general. This dissertation investigates whether that assumption is valid for these

processes with a specified spot return distribution (in this case, double negative

exponential distribution).

The outline of this dissertation is as follows: In Chapter 2, we briefly introduce

constructions of martingales for all three cases. Then, in Chapter 3, we consider

the densities which have scaling properties. Chapter 4 is the main part, which

shows how to simulate those processes. Examples of pricing exotic options, such

as swaps, cliquets, options on the realized quadratic variation, and studies about

forward motions appear in Chapter 5. Chapter 6 summarizes the dissertation and

provides suggestions for future works.
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Chapter 2

Construction of martingales

The martingale is a central concept in finance research. One of the reasons

for this is that the price of an option can be expressed as an expectation under

a martingale measure, in other words, a risk neutral measure. Moreover, stock

prices are usually assumed to have Markov properties. The Markov property implies

that the probability distribution of the price at any particular future time is not

dependent on the particular path followed by the price in the past [32], conditional

on the present state of the process.

2.1 General background

We start with a few definitions here. General references on martingales can

be found in [4, 19]. Markov processes are discussed in [36].

Definition 2.1.1. A filtration (Ft)t∈T is an increasing family (Fs ⊆ Ft if s ≤ t ∈ T )

of sub-σ-fields of F on a stochastic base (Ω,F , P, (Ft), T ) with complete probability

space (Ω,F , P ) and the filtration (Ft)t∈T satisfies the following conditions:

1. F0 contains all P -null sets.

2. (Ft) is right-continuous: Ft = Ft+ :=
⋂

t<sFs for all t ∈ T .

A process (Xt)t∈T is adapted to (Ft) if for each t ∈ T , Xt is Ft-measurable.

4



Definition 2.1.2. A stochastic process (Xt)t∈T is called an (Ft)-martingale (resp.

supermartingale, submartingale) if the following conditions are satisfied.

1. (Xt)t∈T is adapted to the filtration {Ft}t≥0.

2. For all t, Xt ∈ L1; i.e., E[|Xt|] < ∞.

3. For all s and t with s ≤ t, the following relation holds

E[Xt|Fs] = Xs a.s.

(respE[Xt|Fs] ≤ Xs, E[Xt|Fs] ≥ Xs).

Definition 2.1.3. A sequence of integral-valued random variables {Xn : n =

0, 1, 2, ...} is called a discrete Markov chain if it has the Markov property:

P (Xn+1 = j|Xn, Xn−1, ..., X0) = P (Xn+1 = j|Xn),

n = 0, 1, 2, ..., j = 0, 1, 2, ...,

where, for each value of Xn, the probabilities P (Xn+1 = j|Xn) are called transition

probabilities.

It is natural to generalize from discrete time to continuous time, especially for

modelling stochastic processes.

Definition 2.1.4. Let {X(t) : t ≥ 0} be a continuous-time stochastic process with

finite or countable state space T ; usually T is {0, 1, 2, ...}, or a subset thereof. We

say X{(t)} is a continuous-time Markov chain if the transition probabilities have

the following property: For every t, s ≥ 0 and j ∈ T ,

P{X(s + t) = j|X(u); u ≤ s} = P{X(s + t) = j|X(s)}.

5



The stochastic processes that have the Markov property are called Markov

processes and the martingales that have the Markov property are called Markov

martingales.

Throughout this dissertation, we have Brownian motion, one of the most well-

known stochastic process, in many places. In finance, Brownian motion was intro-

duced in the Black-Scholes model in 1973 [5]. We present a definition of Brownian

motion.

Definition 2.1.5. A stochastic process {B(t)} is called a Brownian motion if the

following conditions are satisfied.

1. B(0) = 0.

2. The process B has independent increments, i.e., if r < s ≤ t < u, then

B(u)−B(t) and B(s)−B(r) are independent stochastic variables.

3. For s < t, the stochastic variable B(t) − B(s) has the Gaussian distribution

N [0, t− s].

4. B has continuous trajectories.

The following are well-known properties of Brownian motion.

Lemma 2.1.1. Consider two points in time, s and t, with s < t and

4t = t− s,

4B(t) = B(t)−B(s).

Then

6



1. E[4B] = 0.

2. E[(4B)2] = 4t.

3. V ar[4B] = 4t.

4. V ar[(4B)2] = 2(4t)2.

Before we start constructing martingales, we present more theorems that are

needed for the later part. Consider the stochastic differential equation

dXt = µ(t,Xt)dt + σ(t,Xt)dBt. (2.1)

where dBt = dB(t).

Definition 2.1.6. Given (2.1), the partial differential operator A, referred to as the

infinitesimal operator (or, infinitesimal generator) of X, is defined for any function

f(x) with f ∈ C2(R), by

Atf(x) = µ(t, x)
∂f

∂x
(x) +

1

2
σ2(t, x)

∂2f

∂x2
(x).

This operator is also known as the Dynkin operator, the Itô operator, or the

Kolmogorov backward operator.

Theorem 2.1.2 (Kolmogorov backward equation). Let X be a solution to

equation (2.1). Then the transition probabilities P (s, y; t, B) = P (Xt ∈ B|X(s) = y)

are given as the solution to the equation

(∂P

∂s
+ AP

)
(s, y; t, B) = 0, (s, y) ∈ (0, t)× Rn,

P (t, y; t, B) = IB(y),

7



where

IB(y) =





1, if y ∈ B

0, if y 6∈ B

.

The following is the transition density version of the Kolmogorov backward

equation.

Theorem 2.1.3 (Kolmogorov backward equation). Let X be a solution to

equation (2.1). Assume that the measure P (s, y; t, dx) has a density p(s, y; t, x)dx.

Then we have

(∂p

∂s
+ Ap

)
(s, y; t, B) = 0, (s, y) ∈ (0, t)× Rn,

p(s, y; t, x) → δx, as s → t.

where δx is the Dirac Delta function.

Define the adjoint operator A? by

(A?f)(t, x) = − ∂

∂x
[µ(t, x)f(t, x)] +

1

2

∂2

∂x2
[σ2(t, x)f(t, x)].

The next theorem is the Kolmogorov forward equation.

Theorem 2.1.4 (Kolmogorov forward equation). Assume that the solution

X of equation (2.1) has a transition density p(s, y; t, x). Then p satisfies the Kol-

mogorov forward equation

∂

∂t
p(s, y; t, x) = A?p(s, y; t, x), (t, x) ∈ (0, T )× R,

p(s, y; t, x) → δy, as t ↓ s.

8



Now, we start to construct martingales.

Suppose the density at time t is g(y, t), for y ∈ R and

∫
|y|g(y, t)dy < ∞,

∫
yg(y, t)dy = 0,

and B(t) is a Brownian motion. Hence these densities g(y, t) are candidates for a

martingale beginning at zero.

From the martingale property, we have the following Lemma.

Lemma 2.1.5. Let φ(y) be a convex function and let X(t) be a Markov martingale.

Then, for s < t,

E[φ(X(t))] ≥ E[φ(X(s))]

Proof. Since φ(y) is a convex function,

Es[φ(X(t))] ≥ φ(Es[(X(t))])

for s < t where Es[φ(X(t))] is the conditional expectation of φ(X(t)) given (Fs).

Since X(t) is a Markov martingale,

Es[(X(t))] = X(s).

Hence

E[φ(X(t))] ≥ E[φ(X(s))].

Definition 2.1.7. Let X and Y be two random variables such that

E[φ(X)] ≤ E[φ(Y )],

9



for all convex functions φ : R→ R, provided the expectations exist. Then X is said

to be smaller than Y in the convex order.

The following theorem shows that if a Markov martingale X(t) matching the

marginal densities g(y, t) exists, then the marginal densities across time have con-

vexity order, and vice versa.

Theorem 2.1.6. [24] Let p(y, t) be a family of marginal densities, with finite first

moment. The density at time t dominates the density at time s in the convex order

for s < t if and only if there exists a Markov process X(t) with these marginal densi-

ties under which X(t) is a submartingale. Furthermore, the means are independent

of t if and only if X(t)is a martingale.

2.2 Azéma and Yor’s solution to the Skorohod embedding problem

The Skorohod embedding problem was formulated and solved by Skorohod

in 1961 [35] and many people tried to find different ways to solve the Skorohod

embedding problem. Azéma and Yor’s solution was presented in 1979 [1]. In 2004,

Jan Oblój presented all known solutions in his paper [27].

We start with the definition of stopping time and the definition of the Skorohod

embedding problem.

Definition 2.2.1. A random variable τ : Ω → [0,∞] is a stopping time for the

filtration (Ft) if {τ ≤ t} ∈ Ft for each t ∈ T .

The Skorohod embedding problem is formulated using stopping times.

10



Definition 2.2.2. The Skorohod embedding problem or Skorohod stopping problem

is as follows : For a given centered probability measure µ with finite second moment

and a Brownian motion B, one looks for an integrable stopping time T such that

the distribution of BT is µ.

Now, we construct martingales with marginal distributions specified by densi-

ties g(x, t) using Azéma and Yor’s solution to the Skorohod embedding problem.

Define the family of barycentre functions by

ψ(x, t) =

∞∫
x

yg(y, t)dy

∞∫
x

g(y, t)dy

,

and the stopping time τ by

M(t) = sup
0≤s≤t

B(s),

τ = inf{s|M(s) ≥ ψ(B(s))}.

Shaked and Shantikumar [33] showed that the increasing mean residual value

(IMRV) property is stronger than convexity order. The mean residual value is

commonly used in survival analysis and in the analysis of life tables.

Definition 2.2.3. R(x) is called the mean residual life function at age x if

R(x) = E[X − x|X > x],

where X is a lifetime.

This Skorohod embedding solution constructs a martingale with the specified

marginal densities g(x, t) under the assumption that ψ(x, t) is increasing in t for

11



each x. Moreover, if ψ(x, t) is increasing in t, then a family of zero expectation

densities has the property of increasing mean residual value (IMRV)[24].

Let

Tt = inf{s|M(s) ≥ ψ(B(s), t)}.

Theorem 2.2.1. [24] Under the IMRV property for a family of zero mean densities

g(y, t) on the real line, let (B(u), u ≥ 0) be a standard Brownian motion. Then there

exists an increasing family of Brownian stopping times (Tt, t ≥ 0) such that:

1. B(Tt) is a martingale.

2. (B(Tt), t ≥ 0) is an inhomogeneous Markov process.

3. For each t, the density of B(Tt) is given by g(y, t).

The instructive way to investigate this process is to develop the infinitesimal

generator of the inhomogeneous Markov process B(Tt).

For the Azéma and Yor solution to the Skorohod embedding problem, the

derivation of the infinitesimal generator is presented in [24]. The infinitesimal gen-

erator is

At(f)(b) = at(b)
{ 1

ψt(b)− b

∞∫
b

g(y, t)(f(y)− f(b))dy

∞∫
b

g(y, t)dy

− f ′(b)
}

,

where ψt(b) = ψ(b, t) and

at(b) =
∂
∂t

ψ(b, t)
∂
∂x

ψ(b, t)
.

So, we notice that this process is a one-sided jump process with jump intensities

given by

12



at(b)

ψt(b)− b

g(b + x, t)
∞∫
0

g(b + x, t)dx

, for x > 0 (2.2)

where b = B(Tt) and a drift factor of −at(b), and again g(x, t) is a prespecified

density.

2.3 Inhomogeneous independent increments

The second way to construct martingales with prespecified marginals is to

build subordinating Brownian motion by an independent increasing Markov process

with independent increments. For this study, we need to start with Lévy processes.

The general reference is [29].

Definition 2.3.1. Let φ be the characteristic function of a random variable X.

Then X is self-decomposable if

φ(u) = φ(cu)φc(u)

for all u ∈ R and all c ∈ (0, 1) and for some family of characteristic functions

{φc : c ∈ (0, 1)}.

Definition 2.3.2. A process Xt =
∑n

i=1 Zi, where the Zi represent increments of

Xt over intervals of length t
n

and i.i.d., is said to be infinitely divisible if for all n,

ΦXt(u) =
(
ΦZi

(u)
)n

,

where Φ(u) is the characteristic function of a distribution.

13



We can simply rewrite the definition of infinitely divisible process as

ΦXt(u) =
(
ΦX1(u)

)t

.

Definition 2.3.3. An adapted process X = (Xt)0≤t<∞ is a Lévy process if

1. X0 = 0 almost surely.

2. X has increments independent of the past: that is, Xt −Xs is independent of

Fs, 0 ≤ s < t < ∞.

3. X has stationary increments: that is, Xt − Xs has the same distribution as

Xt−s, 0 ≤ s < t < ∞.

4. Xt is continuous in probability: that is, limt→s Xt = Xs, where the limit is

taken in probability.

So, the Lévy process is a class of stochastic processes which includes the Pois-

son process and Brownian motion as special cases. A random variable with self-

decomposability law in Lévy’s class is infinitely divisible.

Next, we define Lévy measure.

Let

NΛ
t =

∑
0<s≤t

1Λ(4Xs),

where Λ is a Borel set in R bounded away from 0, and 4Xs = Xs −Xs−, the jump

at time s, and then we observe that NΛ is a counting process without an explosion.

Definition 2.3.4. The measure ν defined by

ν(Λ) = E[NΛ
1 ] = E[

∑
0<s≤1

1 ∧ (4Xs)]

14



is called the Lévy measure of the Lévy process X.

The following theorem gives us a formula for the Fourier transform of a Lévy

process. This well known representation is called the Lévy-Khintchine formula.

Theorem 2.3.1. Let X be a Lévy process with Lévy measure ν. Then

E
[
eiuXt

]
= e−tψ(u)

where

ψ(u) =
1

2
σ2u2 − iγu +

∞∫

−∞

(1− exp(iux) + iux1{|x|<1})ν(dx), (2.3)

and ν(dx) is a measure on R \ {0} such that

∞∫

−∞

(1 ∧ x2)ν(dx) < ∞.

Moreover, given ν, σ2, γ, the corresponding Lévy process is unique in distribution.

We note that Lévy-Khintchine formula has three components: a deterministic

component with a drift coefficient γ, a diffusion coefficient σ and a pure jump

component. If ν(dx) = k(x)dx, then we call k(x) a Lévy density.

Now, we construct martingale by seeking an increasing Markov process with

inhomogeneous independent increments.

Let L(t) be an increasing Markov process with inhomogeneous independent

increments such that the process

X(t) = B(L(t))

has the prespecified marginals, where B(u) is a Brownian motion independent of

(L(t), t ≥ 0).
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We identify Laplace transform of L(t) by noting that

E[eiuX(t)] = E
[
exp

(−u2

2
L(t)

)]

=

∞∫

−∞

eiuyg(y, t)dy.

The infinitesimal generator for this process can be derived by Laplace trans-

formation for L(t) written in infinitely divisible form as

E[exp(−λL(t))] = exp
( t∫

0

∞∫

0

(e−λx − 1)kL(x, u)dxdu
)
. (2.4)

where kL is the Lévy density of L. Using Sato’s [31] Theorems 30.1 and 31.5, we

have

At(f)(x) =

∞∫

−∞

(f(x + y)− f(x)− 1|y|≤1yf ′(x))kX(y, t)dy,

where

kX(x, t) =

∞∫

0

1√
2πs

exp
(
−x2

2s

)
kL(s, t)ds.

2.4 Continuous martingales

The Black-Scholes model has been the most famous option pricing model since

1973 [5]. But its implied volatilities are dependent on the maturity and the strike of

the European option. So, Merton suggested volatility be a time-dependent function

in 1973 [26]. However, the strike-dependence of the implied volatility for a given

maturity still remained as a big problem. In 1994, Dupire [14] introduced local

volatility to solve this problem. Before we introduce local volatility, we need to

know one of the most famous formulas, called Itô’s formula [4].
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Theorem 2.4.1 (Itô’s formula). Assume that the process X has a stochastic

differential given by

dX(t) = µ(t)dt + σ(t)dB(t),

where µ and σ are adapted processes, and let f be a C1,2-function. Define the

processes Z by Z(t) = f(t,X(t)). Then Z has a stochastic differential given by

df(t, X(t)) =
{∂f

∂t
+ µ

∂f

∂x
+

1

2
σ2∂2f

∂x2

}
dt + σ

∂f

∂x
dB(t). (2.5)

The following is the brief sketch of the derivation of Dupire’s local volatility.

Let C(K, T ) be arbitrage-free European call price of all strikes K and matu-

rities T . Suppose the spot S follows risk-neutral process

dS = rSdt + σ(S, t)SdB.

Let Xt be a Markov process with stochastic differential equation

dX = µ(X, t)dt + σ(X, t)dB,

and let q(x, t, u, T ) be the transition kernel, where x is a value of X at time t and

u is a value of the process X at time T . The Kolmogorov forward equation is used

for the derivation. Let us take a test function f(u) and consider the martingale

V (x, t, T ) = E[f(X(T ))|X(t) = x] =

∞∫

−∞

f(u)q(x, t, u, T )du.

Then

VT (x, t, T ) =

∞∫

−∞

f(u)qT (x, t, u, T )du. (2.6)
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By applying Itô’s formula (Theorem 2.4.1) to f(u) and using integration by parts,

VT (x, t, T ) =

∞∫

−∞

f(u)
(− ∂

∂u
µ(u, T )q(x, t, u, T ) +

1

2

∂2

∂u2
σ2(u, T )q(x, t, u, T )

)
du.

(2.7)

By (2.6) and (2.7), we have

qT (x, t, u, T ) = − ∂

∂u
µ(u, T )q(x, t, u, T ) +

1

2

∂2

∂u2
σ2(u, T )q(x, t, u, T ). (2.8)

This equation (2.8) is the Kolmogorov forward equation in u, T , and is expressed by

qT (u, T ) = − ∂

∂u
µ(u, T )q(u, T ) +

1

2

∂2

∂u2
σ2(u, T )q(u, T ). (2.9)

Using the option pricing formula

C(K,T ) = e−rT

∞∫

K

(u−K)q(u, T )du

and the derivatives of C(K, T ) with respect to K and T ,

CT = −re−rT

∞∫

K

(u−K)q(u, T )du + e−rT

∞∫

K

(u−K)qT (u, T )du,

CK = −e−rT

∞∫

K

q(u, T )du,

CKK = e−rT q(K, T ),

we find σ easily:

σ2(K, T ) =
2
(
CT + ηC + (r − η)KCK

)

K2CKK

, (2.10)

where µ = r − η.

Hence, if σ is a local volatility, then the price of European option is consistent

with that in market for all strikes and maturities.
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Now, we are ready to construct a martingale with prespecified marginals

g(y, t). Define Markov martingale by

X(t) =

t∫

0

σ(X(s), s)dB(s). (2.11)

And g(y, t) satisfies (2.9) with µ = 0. Using the function

C(k, t) =

∞∫

k

(y − k)g(y, t)dy,

we get

σ2(k, t) =
2Ct

Ckk
. (2.12)

Hence, we have a continuous martingale representation with the prespecified marginals

if the diffusion coefficients (2.12) are Lipschitz.
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Chapter 3

Construction of Martingales on the Scaling Marginals

Many researchers have evaluated the relevance of scaling in describing asset

returns. Initially, they used scaling properties for the sake of simplicity, but scaling

properties have been very effective for many types of data and for the research.

In this chapter, we construct martingales on the marginals which have a scaling

property.

We suppose that marginals have a scaling property, specifically,

X(t) ∼=
√

tX(1).

Let h(x) be the unit time density. Then

P (X(t) < y) = P (
√

tX(1) < y)

= P (X(1) <
y√
t
).

Let G(y, t) and H(y) be the cumulative distribution functions of g(y, t) and h(y) .

Then

G(y, t) = H(
y√
t
).

We take derivative in terms of y. Then the prespecified densities are expressed in

terms of the unit time density as

g(y, t) =
1√
t
h
( y√

t

)
. (3.1)
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3.1 Skorohod embedding under scaling

Using (3.1), we get the family of barycentre functions

ψt(x) =

∞∫
x

yh
(

y√
t

)
dy

∞∫
x

g(y, t)dy

=

√
t

∞∫
x/
√

t

uh(u)du

∞∫
x/
√

t

h(u)du

.

where ψt(x) = ψ(x, t).

By Theorem 2.1.6, we need that ψt(x) be increasing in t. The following Lemma

and Theorem give useful information to decide if we can construct martingales with

scaling densities. The proofs of the following Lemma and Theorem are in [24].

Lemma 3.1.1. The functions ψt are increasing with respect to t if and only if the

function
a

ψ1(a)
is increasing in a ∈ R+.

Theorem 3.1.2. If h(y) = exp(−V (y)) and yV ′(y) is increasing in y > 0, then

h(y) admits IMRV under scaling.

3.2 Inhomogeneous independent increment process under scaling

We now construct martingales using subordinating Brownian motion by inde-

pendent inhomogeneous increasing process L(t) as

X(t) = B(L(t)).

Assume the increments have the scaling property

L(ct) ∼= cL(t), t > 0. (3.2)
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where ∼= means they are same in distribution.

Then we have the following theorem.

Theorem 3.2.1. [24] Let L(1) ≥ 0. Then the following three properties are equiv-

alent:

1. There exists an increasing process with independent increments (L(t), t ≥ 0)

which satisfies (3.2).

2. L(1) is self-decomposable.

3. The Laplace transform of L(1) is given by

E[exp(−λL(1))] = exp
(
−

∞∫

0

(1− e−λlν(dl))
)

where ν(dl) = (k(l)/l)dl and k is increasing.

3.3 Continuous martingales under scaling

By the assumption of the scaling property in the beginning of this chapter, we

know that for any fixed c > 0,

(Xct, t ≥ 0) ∼= (
√

cXt, t ≥ 0). (3.3)

Then the following theorem gives the simple form of volatility.

Theorem 3.3.1. [24] Assume that a process satisfies the scaling property (3.3) and

simultaneously has the representation (2.11). Then we must have that

σ2(s, x) = a
( x√

s

)
, (3.4)
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a(y) =
1

h(y)

∞∫

y

zh(z)dz. (3.5)

Furthermore, if we have a density h and an associated function a(y) that is Lipschitz,

then there exists a continuous martingale satisfying the scaling property (3.3) and

the Markov property, and for which

〈X〉t =

t∫

0

a(
Xs√

s
)ds.
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Chapter 4

Simulation

Now, we simulate these three stochastic processes. For the prespecified density,

we use double negative exponential densities,

g(x, t) =
1

σ
√

2t
exp(−

√
2|x|

σ
√

t
), −∞ < x < ∞, (4.1)

which have mean 0 and variance σ2t. Moreover, these densities have the scaling

property.

4.1 Skorohod embedding

Assume that the process is at level b at time t, i.e., B(Tt) = b. By (2.2),

at(b)dt

ψt(b)− b

is arrival rate of a Poisson jump in the interval (t, t + dt). And if there is a jump,

then it has a jump size x drawn from distribution

g(y, t)

∞∫
b

g(y, t)dx

, y > b.

If we use double negative exponential functions as marginals, the family of
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barycentre functions is

ψ(x, t) =

−
1

2
x exp

(
√

2x

σ
√

t

)
+

σ
√

t

2
√

2
exp

(
√

2x

σ
√

t

)

1−
1

2
exp

(
√

2x

σ
√

t

)
, if x < 0

ψ(x, t) =

1

2
x exp

(−
√

2x

σ
√

t

)
+

σ
√

t

2
√

2
exp

(−
√

2x

σ
√

t

)

1

2
exp

(−
√

2x

σ
√

t

)
, if x ≥ 0.

And the jump size distributions are

g(x + b, t)

∞∫
0

g(x + b, t)dx

=





√
2

σ
√

t
exp

(−
√

2x
σ
√

t

)
if b ≥ 0

1
σ
√

2t
exp

(−
√

2|x+b|
σ
√

t

)

1−
1

2
exp

(√
2b

σ
√

t

)
if b < 0

. (4.2)

Let

C = 1− 1

2
exp

(√2b

σ
√

t

)
.

To get the random jump size, we can use either inverse CDF method or

acceptance-rejection method.

4.1.1 Simulating using Inverse CDF method

The most well known method of generating random variable from given distri-

bution is inverse cumulative distribution function method. First, we use this method

to generate random numbers which represent jump sizes of Azéma and Yor’s solution

to the Skorohod embedding problem.
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Let f(x) be a probability distribution function and F (x) be a cumulative

distribution function. We want to generate random numbers x from F (x).

The algorithm of the inverse cumulative distribution function method is as

follows.

1. Generate an uniform random number u ∼ U(0, 1).

2. Let x = F−1(u).

3. Repeat step one and two.

Then x has a probability distribution f .

After the rigorous derivation work, the random jump size using inverse cdf

method is

x =





−
σ
√

t
√

2
ln(1− p), if b ≥ 0

σ
√

t
√

2
ln

[
2pC exp

(−
√

2b

σ
√

t

)
+ 1

]
, if b < 0 and p <

1

2C

(
1− exp

(
√

2b

σ
√

t

))

−
σ
√

t
√

2
ln

[2Cp− 2 + exp
(
√

2b

σ
√

t

)

− exp
(−
√

2b

σ
√

t

)

]
, if b < 0 and p ≥

1

2C

(
1− exp

(
√

2b

σ
√

t

))

.

where p is a uniformly distributed random number in [0, 1].

4.1.2 Simulating using Rejection method

Even though, the inverse cdf method is quite simple to understand, it may

be very complicated or sometimes impossible to derive the inverse of a cumulative
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distribution function. So, the rejection method, which is based on a simple geometry,

was introduced. The rejection method does not require one to know the cumulative

distribution function.

Let f(x) be the probability density function we wish to generate random num-

bers from. We choose another probability density function g(x) such that

f(x) ≤ cg(x) for all x,

for some constant c. We call g(x) the comparison function.

The algorithm appears below [17].

1. Generate a random number x from g(x).

2. Let

r =
cg(x)

f(x)
.

3. Generate uniform random number u ∼ U(0, 1).

4. If ur < 1, return x.

5. Otherwise, repeat steps from 1.

The expected number of iterations is c.

Note that the jump size distribution with double negative exponential distri-

bution is (4.2). Then the possible comparison function g(x) and the constant c are

as follows.

1. For b ≥ 0,

g(x) =

√
2

σ
√

t
exp

(−
√

2x

σ
√

t

)
,
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c =
1

0.5 exp
(−

√
2b

σ
√

t

).

2. For b < 0,

g(x) =
1

d
exp

(−x

d

)
,

c = exp
(− b

d

)
,

where

d = σ
√

2t
(
1− 0.5 exp

(
√

2b

σ
√

t

))
.

4.1.3 Measure change

Since the arrival rate of jumps in (t, t + dt) is

at(b)dt

ψt(b)− b
,

we may have a very small number of jumps if dt is very small. In that case, we

can use change of measure to make jumps occur more often. Before we derive

measure change of Skorohod embedding process, we introduce general definitions

and theorems about measure change. The reference about measure change is in

[29].

Definition 4.1.1. Let X, Y be semimartingales. The quadratic variation process

of X, denoted [X, X] = ([X, X]t)t≥0, is defined by:

[X, X] = X2 − 2

∫
X dX.
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The quadratic covariation of X, Y , also called the bracket process of X,Y , is defined

by:

[X, Y ] = XY −
∫

X dY −
∫

Y dX.

It is clear that the operation (X,Y ) → [X, Y ] is bilinear and symmetric.

Theorem 4.1.1. [29] Let X be a semimartingale with X0 = 0. Then there exists a

(unique) semimartingale Z that satisfies the equation:

Zt = 1 +

t∫

0

Zs−dXs.

And Z is given by

Zt = exp
(
Xt − 1

2
[X, X]t

) ∏
0<s≤t

(1 +4Xs) exp
(
−4Xs +

1

2
(4Xs)

2
)

(4.3)

where the infinite product converges and 4Xs = Xs −Xs−, jump of the process X

at time s.

Definition 4.1.2. For a semimartingale X with X0 = 0, the stochastic exponential

of X, written E(X), is the (unique) semimartingale Z that is a solution of

Zt = 1 +

t∫

0

Zs−dXs.

The stochastic exponential is also known as the Doléans-Dade exponential.

Simply, if X is a continuous semimartingale with X0 = 0, then

E(X)t = exp
(
Xt − 1

2
[X,X]t

)
.

Now, we are ready to derive measure change (in other words, Radon-Nikodym

derivative) in the Skorohod embedding case.
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Let the true compensator νP be

νP (dx, dt) =
at(b)

ψt(b)− b

g(b + x, t)
∞∫
0

g(b + x, t)dx

,

Define the reference compensator, νR by

νP (dx, dt) = y(t)νR(dx, dt).

Assume νR(dx, dt) has fixed arrival rate λ with jump size distribution (4.2). Then

νR(dx, dt) = λ
g(b + x, t)

∞∫
0

g(b + x, t)dx

.

Let

θt =
at(b)

ψt(b)− b
.

Then

y(t) =
θt

λ
.

By the equivalence of measure,

EP [
dR

dP
F (Xs, s ≥ t)] = ER

[
F (Xs, s ≥ t)

]
.

with stochastic exponential

dR

dP
= E(

(y(t)− 1) ∗ (ρ− νP )
)
.

where ρ is the integer valued random measure associated with the jumps of a process

with compensator νP . So, in this case, the stochastic exponential is
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dR

dP
= E(

(y(s)− 1) ∗ (ρ− νP )
)

= E
( t∫

0

∞∫

−∞

(θs

λ
− 1

)
(ρ(dx, dt)− νP (dx, dt))dxds

)

= E
( t∫

0

∞∫

−∞

(θs

λ
− 1

)
ρ(dx, dt)dxds−

t∫

0

∞∫

−∞

(θs

λ
− 1

)
y(s)νR(dx, dt)dxds

)

= E
(∑

s≤t

(θs

λ
− 1

)
∆Ns −

t∫

0

(
θs

λ
− 1)y(s)

∞∫

−∞

νR(dx, dt)dxds
)

= E
(∑

s≤t

(θs

λ
− 1

)
∆Ns −

t∫

0

(
θs

λ
− 1)y(s)λds

)

= E
(∑

s≤t

(θs

λ
− 1

)
∆Ns −

t∫

0

(
θs

λ
− 1)θsds

)

=
∏
s≤t

((θs

λ
− 1

)
∆Ns + 1

)
exp

(−
t∫

0

(
θ2

s

λ
− θs)ds

)
,

where

∆Ns =





1 if jump occurs at time s

0 if no jump occurs at time s

.

4.2 Inhomogeneous independent increment processes

To simulate this case, first we get the arrival rate of jumps and distribution

of jump size. Let L(a) be the local time at zero of a Brownian motion up to the

first passage time of this Brownian motion to the level a. Then, it is well known

that L(a) is an exponential random variable with mean 2a [30]. So, the Laplace

transform of L(a) is
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L(L(a)) = E
[
e−λL(a)

]

=
1

1 + 2aλ
. (4.4)

The characteristic function for an independent Brownian motion at L(a) is

E
[
exp(iuB(L(a)))

]
=

1

1 + au2
.

With comparing characteristic function of the double negative exponential

density, we see

X(t) = B(L(σ2t)). (4.5)

To simulate (4.5), we have to know what kind of process L(σ2t) is.

Without loss of generality, we consider the process L(t) instead of L(σ2t).

4.2.1 Simulation using Inverse Laplace Transformation

First, we simulate the inhomogeneous independent increment process using

inverse Laplace transformations.

Let’s consider discrete times between zero and one, 0 = t0 < t1 < t2 < ... <

tn−1 < tn = 1, where n > 1 is an integer. Let ti−1 = a and ti = b, i = 1, 2, ..., n.

Since L(t) is increasing, let

L(b) = L(a) + x,

where x is an independent increment.
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We take Laplace transform. Then

L(L(b)) = L(L(a))L(x).

So, by (4.4)

L(x) =
L(L(b))

L(L(a))

=
1 + 2aλ

1 + 2bλ
.

So, the inverse Laplace transform of L(x) is

L−1(s) =
a

b
δ(s) +

b− a

2b2
exp

(− 1

2b
s
)
. (4.6)

where δ(s) is Dirac delta.

It can be easily checked that (4.6) is a probability density function. So the

cumulative distribution function is

y = 1− b− a

b
exp

(− 1

2b
x
)
.

We can use inverse CDF method to simulate this case.

4.2.2 Simulation using Lévy measure

Now we simulate inhomogeneous independent increment process using Lévy

measure. So, time is continuous for this case.

Using the Lévy measure ku(x) and (2.4), we can rewrite Laplace transformation

of L(t) as
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1

1 + 2tλ
= exp

( t∫

0

∞∫

0

(
e−λx − 1

)
ku(x)dxdu

)
.

Taking the logarithm and differentiating with respect to t and λ, we see that

2

(1 + 2tλ)2
=

∞∫

0

x exp(−λx)kt(x)dx.

To get kt(x), we use gamma distribution. Note that

∞∫

0

cγxγ−1e−cx

Γ(γ)
dx = 1.

Let γ = 2, and c = 1 + 2tγ.

Then we get the Lévy measure after we change t to tσ2,

kt(x) =
2

(2tσ2)2

e−
1

2tσ2 x

Γ(2)
. (4.7)

So, the rate of jumps occurred at time t is

∞∫

0

kt(x)dx =
1

σ2tΓ(2)
, (4.8)

and the distribution of jump size is

kt(x)

∞∫
0

kt(x)dx

=
1

2tσ2
e−

1
2tσ2 x. (4.9)

4.2.3 Simulating Nonstationary Poisson Processes

As we find from the Lévy measure and rate of occurance of jumps, this process

L(t) is a nonstationary Poisson process. To simulate this, we follow the method in

Law and Kelton, Chapter 8 [21].
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Let λ(t) be a rate function at time t. Then the expectation function

Λ(t) =

t∫

0

λ(y)dy

is always a continuous function of t and Λ(t) is the expected number of arrivals

between time 0 and time t. Using (4.8),

Λ(t) =
1

Γ(2)σ2

(
ln(t)− ln(t1)

)
,

where t1 is very close to 0. We can use t1 close enough to 0 since the jump size

density is negligible when t is very close to 0 as we see in (4.9).

Now, we use the following recursive algorithm:

1. Generate a Poisson arrival time t
′
0 at rate 1.

2. Set t0 = Λ−1(t
′
0).

3. For i ≥ 1, generate U ∼ U(0, 1).

4. Set t
′
i = t

′
i−1 − ln U .

5. Return ti = Λ−1(t
′
i).

4.3 Continuous martingales

Again, Dupire’s approach for a continuous Markov martingale is

X(t) =

t∫

0

σ(X(s), s)dB(s). (4.10)

Then (4.10) is equivalent to
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dX(t) = σ(X(t), t)dB(t). (4.11)

We use Milstein’s higher order method [18] to simulate this case. Let us

consider the stochastic differential equation

dX(t) = µ(X(t), t)dt + σ(X(t), t)dB(t).

Then Milstein’s method defines {Yn}N
n=0 by

Y0 = X(0),

Yn+1 = Yn + µ(Yn, tn)hn + σ(Yn, tn)4Bn +
1

2
σ(Yn, tn)σ′(Yn, tn)((4Bn)2 − hn),

where

hn = tn+1 − tn, 4Bn = B(tn+1)−B(tn).

Furthermore, it converges with strong order h:

E[|Yn −X(tn)|] ≤ Ch,

where C ∈ R.

For continuous martingale case, µ = 0. By (3.4), we determine the function

a(y) corresponding to the double negative exponential distribution (4.1). Then

a(y) =

√
2

2
σ
(|y|+ σ√

2

)
.

Then by (3.5),

σ(x, s) =

√√
2

2
σ
( |x|√

s
+

σ√
2

)

=

√
σ2

2
+ σ

|x|√
2s

.
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4.4 Hypothesis test for matching marginals

In this section, we show that the marginal distributions obtained by simula-

tions match the prespecified marginal distributions, in this case, double negative

exponential distributions, at any points. One of the most widely used for tests of

goodness of fit is the χ2 test. The advantage of using χ2 is that we can apply this

test to discrete distributions, such as binomial or Poisson. But for the continuous

data, the value of the chi-square test statistic depends on how the data are binned.

Another disadvantage of the chi-square test is that it requires a large sample size in

order for the chi-square approximation to be valid (see [38] chapter 1.3.5).

An alternative way to test goodness of fit is the Kolmogorov-Smirnov test (K-

S test). An attractive feature of this test is that the distribution of the K-S test

statistic itself does not depend on the underlying cumulative distribution function

being tested as long as it is continuous. We use the Kolmogorov-Smirnov test in

this dissertation. The one-sample test is following.

Let x1, x2, ...xn be observations on continuous i.i.d. random variables, X1, X2, ..., Xn

with a c.d.f. F . We want to test the hypothesis

H0 : F (x) = F0(x), for all x,

where F0 is a known c.d.f.

The Kolmogorov-Smirnov test statistic Dn is defined by

Dn = sup
x∈R

|F̂ (x)− F0(x)|,
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where F̂ is the empirical cumulative distribution function defined as

F̂ (x) =
#(i : xi ≤ x)

n
.

We extend the one-sample test to a two-sample test.

Let

x1, x2, ...xm be observations on i.i.d. rvs X1, X2, ..., Xm with CDF F1,

y1, y2, ...ym be observations on i.i.d. rvs Y1, Y2, ..., Ym with CDF F2.

The null and alternative hypotheses for this test are

H0 : F1(x) = F2(x), for all x,

H1 : F1(x) 6= F2(x).

Then the Kolmogorov-Smirnov test statistic is

Dm,n = sup
t
|F̂1(t)− F̂2(t)|,

where F̂1 and F̂2 are empirical CDF of X ′s and Y ′s, respectively.

In the interest of brevity, we will refer to the Azéma and Yor solution to

the Skorohod embedding problem, the inhomogeneous Markov martingale processes

with independent increments using subordinated Brownian motion, and the contin-

uous martingale using Dupire’s method as the Azéma and Yor process, the Sato

process, the Dupire process, repectively.

Figures 4.1 to 4.3 show the paths of the simulated processes, sample histogram

of marginal density at time 1 by simulation, sample histogram of double negative
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exponential density at time 1 and cumulative distributions of two histograms, re-

spectively. Tables 4.1 to 4.3 present the Kolmogorov-Smirnov test between that

processes which were simulated and double negative exponential distribution at any

time points. Seven time points were chosen to check hypothesis test, p-value, and

Kolmogorov-Smirnov distance.

As we can see in the table, the null hypothesis is accepted for every case.
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Figure 4.1: CDF match for Azéma and Yor process.

Table 4.1: Kolmogorov-Smirnov test for the Azéma and Yor process.

1day 1week 1month 3months 6months 9months 12months

H 0 0 0 0 0 0 0

p value 0.2197 0.2399 0.7953 0.5802 0.6972 0.3693 0.2582

KS distance 0.0347 0.0340 0.0214 0.0257 0.0234 0.0303 0.0334
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Figure 4.2: CDF match for Sato process.

Table 4.2: Kolmogorov-Smirnov test for the Sato process.

1day 1week 1month 3months 6months 9months 12months

H 0 0 0 0 0 0 0

p value 0.5602 0.5953 0.7953 0.7022 0.4828 0.7953 0.9390

KS distance 0.0261 0.0254 0.0214 0.0233 0.0277 0.0214 0.0176
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Figure 4.3: CDF match for Dupire process.

Table 4.3: Kolmogorov-Smirnov test for the Dupire process.

1day 1week 1month 3months 6months 9months 12months

H 0 0 0 0 0 0 0

p value 0.0675 0.5113 0.7123 0.7373 0.6666 0.6156 0.9090

KS distance 0.0430 0.0271 0.0231 0.0226 0.0240 0.0250 0.0186
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Chapter 5

Pricing exotic options

This chapter is a comparative investigation of the resulting stochastic processes

as exemplified through the pricing of exotic options. For this study, we assume that

all spot return distributions are double negative exponential distributions at any

continuous time and consider the unit time volatility σ to be fixed at 0.25.

First, we study the forward return distribution to determine if it is the double

negative exponential distribution used as the spot return distribution in this study.

We also study the implied volatility curves for forward return distribution for all

three stochastic processes.

Second, we obtain swap rates to study the first passage times of certain barri-

ers. Here, we consider swap rate for the credit default swap with up and in barriers

and down and in barriers.

Third, we consider the prices of locally floored and capped and globally floored

and capped cliquets on monthly resets.

Lastly, we consider options on the realized quadratic variation. For this study,

we use daily increments of spot return distributions.

The basic concepts will be presented in each section.
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5.1 Forward return

Now, we investigate forward return distributions on three stochastic processes.

A forward contract, made at t, is an agreement between two parties, a buyer and a

seller, to buy an asset or currency at a later delivery date at a fixed price [12]. The

holder of contract pays a deterministic amount and receives a stochastic amount at

delivery date. We assume the contract is made at time t = 0.5. Nothing is paid or

received at time 0.5, although the price of forward contract is determined at this

time.

Let X1 denote the Azéma-Yor process, let X2 denote the Sato process, and

let X3 denote the Dupire process. Let Xx
j be a random variable generated by the

conditional law of Xj(1) − Xj(0.5) given that Xj(0.5) = x for j = 1, 2, 3. We note

that by construction, the forward return distribution has a zero conditional mean.

We measure its distance from the double negative exponential. Clearly, the Sato

process is independent of x since it is an independent increment process but the

Azéma-Yor process and the Dupire process depend on x.

As we mentioned in the introductory chapter, there are many attempts at

building path spaces with condition that the forward return distributions are in

the same class of distributions as the spot return distributions. It is true for Lèvy

processes since they are stationary independent increment processes. We are inves-

tigating whether our paths follow this condition.

For that purpose, we estimate best fitting volatility of double negative expo-

nential distribution to the forward return distribution using the maximum likelihood
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method. We also investigate the distance between the forward return distribution

and the initial spot return distribution that, in this case, is the double negative

exponential with volatility σ
√

0.5 = 0.1768.

Table 5.1 to 5.3 show the Kolmogorov-Smirnov distances between the forward

return distribution and the double negative exponential distribution with best fit-

ting volatility and the Kolmogorov-Smirnov distance between the forward return

distribution and the spot return distribution with theoretical volatility σ
√

0.5. We

choose 5 values of the level x at time 0.5 to condition on: 0,±σ
√

0.5,±2σ
√

0.5. The

volatilities at time 0.5 are given in the table. Again, we are testing

H0 : distribution of X(1)− x = distribution of X(0.5),

H1 : distribution of X(1)− x 6= distribution of X(0.5).

As we can see in the table, the null hypothesis is rejected in all cases except

Dupire process at X(0.5) = 0. Histograms of the forward return density, best fit-

ting double negative exponential density, double negative exponential density with

volatility 0.25×√0.5 = 0.1768 and cumulative distribution functions of these three

histograms are presented in Appendix A.

The conclusion we get from this section is that the attempts at building path

spaces with the condition that the forward return distributions are in the same class

of distributions as the spot return distribution are not reasonable, in general. The

forward return distribution is skewed to the left if x is negative and skewed to the

right if x is positive except for the Sato process case.

Additionally, we investigate the departures form the initial spot return in
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Table 5.1: Kolmogorov-Smirnov test for the forward motion and double negative

exponential on the Azéma and Yor process.

forward motion and best fitting

x -0.3536 -0.1768 0 0.1768 0.3536

volatility 0.3998 0.2349 0.1273 0.1261 0.1258

H 1 1 1 1 1

p value 1.2320e-05 0.0012 0.0052 3.1603e-04 3.1235e-05

KS distance 0.0809 0.0636 0.0570 0.0691 0.0777

forward motion and theoretical case

x -0.3536 -0.1768 0 0.1768 0.3536

H 1 1 1 1 1

p value 5.4930e-37 2.7234e-08 7.8386e-05 1.9144e-05 1.8846e-06

KS distance 0.2143 0.0994 0.0744 0.0794 0.0870

terms of double negative exponential implied volatility curves. If the forward return

distribution is in the same double negative exponential family as the initial spot

return density, then its implied volatility curve should be flat.

We consider K = x +u for a range of strikes with u ∈ [−2σ
√

0.5, 2σ
√

0.5] and

assume the interest rate r is equal to 0. Then the value of the European option

price with strike K with maturity 0.5 is
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Table 5.2: Kolmogorov-Smirnov test for the forward motion and double negative

exponential on the Sato process.

forward motion and best fitting

x -0.3536 -0.1768 0 0.1768 0.3536

volatility 0.1131 0.1131 0.1131 0.1131 0.1131

H 1 1 1 1 1

p value 5.9277e-56 5.9277e-56 5.9277e-56 5.9277e-56 5.9277e-56

KS distance 0.2641 0.2641 0.2641 0.2641 0.2641

forward motion and theoretical case

x -0.3536 -0.1768 0 0.1768 0.3536

H 1 1 1 1 1

p value 4.8466e-62 4.8466e-62 4.8466e-62 4.8466e-62 4.8466e-62

KS distance 0.2782 0.2782 0.2782 0.2782 0.2782

E[(Y −K)+] =

∞∫

K

(y −K)g(y)dy

=





σ

4
exp

(− 2
σ
K

)
, if K ≥ 0

σ

4
exp

(
2
σ
K

)−K, if K < 0

where the distribution of the random variable Y is double negative exponential. This

comments on the departures that can occur in forward return implied volatility

curves from the initial spot implied volatility curve. The graphs in Appendix B
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Table 5.3: Kolmogorov-Smirnov test for the forward motion and double negative

exponential on the Dupire process.

forward motion and best fitting

x -0.3536 -0.1768 0 0.1768 0.3536

volatility 0.2519 0.2033 0.1580 0.2031 0.2518

H 1 1 0 1 1

p value 4.3226e-07 1.6905e-08 0.3939 3.5117e-08 1.0213e-06

KS distance 0.0915 0.1007 0.0297 0.0987 0.0889

forward motion and theoretical case

x -0.3536 -0.1768 0 0.1768 0.3536

H 1 1 0 1 1

p value 1.7707e-16 5.2727e-12 0.2945 2.6401e-11 6.1144e-19

KS distance 0.1420 0.1206 0.0323 0.1169 0.1525

present the call price curves and implied volatility curves for forward return at 5

different x values for the three stochastic processes. As we see in the graphs, we also

get the same result that the forward return distribution is not in the same class of

the spot return distribution.

5.2 Swaprate

Along with basic instruments such as options, forwards, and futures, in deriva-

tive markets, one of the most popular contracts is the swap. A swap is a derivative
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contract in which two parties agree to exchange cash flows calculated according to

different formulas [12]. One of the most popular swaps is the interest rate swap:

fixed interest rate payments are exchanged for a stream of floating interest pay-

ments. Some other examples of swaps are commodity swap, currency swap, credit

default swap, variance swap, etc. The swap rate is the fixed rate that a swap dealer

will pay or receive on a swap. The notional is the fixed amount that a swap dealer

will pay or receive on a swap.

In this section, we price credit default swaps. The credit default swap means

that one party makes regular payments to the counterparty but receives nothing

except in the event of a default on some other contract. The event of this swap is

to hit the barrier. We consider the swap which pays coupons monthly and receives

notional if the process hits the barrier.

Of interest to the prices of barrier options and the prices of swaps associated

with first passage to levels is the distribution of the running supremum or infimum

of the process. Let τ denote the first passage time of the process X to the barrier

B. Then

P (Ut ≤ B) = P (τ > t),

where Ut = sup0≤s≤t Xs.

Let r be the annual interest rate continuously compounded, c the fixed coupon

payment, N the notional, and T the settlement date. Let t1, t2, ..., t12 be the monthly

coupon payment dates, i.e., ti = i
12

where i = 1, 2, ..., 12. Assume the first passage

time τ is in the interval [ti−1, ti] where ti ≤ T . Then the present values of the two
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cash flows are

V (1) =
i−1∑
j=1

CN

12
e−rtj + CN(τ − ti−1)e

−rτ (5.1)

V (2) = Ne−rτ (5.2)

The last term in (5.1) reflects the accrued interest, i.e., accumulated since the

last interest payment up to but not including the settlement date. If the pathes

don’t hit the barrier, then the present values of two cash flows are

V (1) =
T∑

j=1

CN

12
e−rT (5.3)

V (2) = 0. (5.4)

Then the probability of V (1) is equal to the probability of V (2).

After we investigate the swaprate on three processes, we conclude this section

by saying that the swap prices are higher on the continuous process than on the

jump processes. The graphs are presented in Appendix C.

The following graphs (5.1) show the average of the first passage time of each

barrier. We can see that the paths of the Dupire process hits the barrier faster

than the other two processes. The reason is that the two jump processes have the

features: if time is close to zero, there are a lot of jumps but jump sizes are very

small, and if time is increasing, there are very small number of jumps occurred.
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Figure 5.1: Average of the first passage time of the barrier.
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5.3 Cliquets

Cliquet options are financial derivative contracts that provide a minimum re-

turn in exchange for capping the maximum return. The cap is an option transaction

in which a party borrowing at a floating rate pays a premium to another party, which

reimburses the borrower in the event that the borrower’s interest costs exceed a cer-

tain level, thus making the effective interest paid on a floating rate loan have a cap

or maximum amount [12]. The floor is same as cap except lender’s interest rate are

below a certain level to make it effective for lender. These options are attractive

since they can protect against loss using the floor, even though they have to cap

their return. Cliquet options periodically reset the strikes at the spot. So, it is a

series of at-the-money options, but the price is determined in advance.

We consider the prices of locally floored and capped and globally floored and

capped cliquets on monthly resets. Define

Zi = X i
12
−X i−1

12

for i = 1, 2, ..., 12. Let a, b be local floors and caps and let A, B be the global floors

and caps. Then the cash flow of the locally floored and capped and globally floored

and capped arithmetic cliquet is

c(a, b, A, B) = notional ×
[( 12∑

i=1

(
(Zi ∨ a) ∧ b

) ∨ A
)
∧B

]
.

In this dissertation, we consider two cases, local caps with global floors and

local floors with global caps. Figures 5.2, 5.4, and 5.6 are local caps with global

floors and the figures 5.3, 5.5 and 5.7 are local floors with global caps.
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To see the model risk, we use spread defined as maximum minus minimum.

Figure 5.8 is the spread for locally capped globally floored cliquets and Figure 5.9

is the spread for locally floored globally capped cliquets.

As we see in the figures, the model risk on the locally capped globally floored

cliquets is decreasing as the local cap is increasing. And the model risk on the locally

floored globally capped cliquets is increasing as the local floor is increasing.
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Figure 5.2: Local capped and global floored Cliquets for Azéma and Yor process
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Figure 5.3: Local floored and global capped Cliquets for Azéma and Yor process
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Figure 5.4: Local capped and global floored Cliquets for Sato process
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Figure 5.5: Local floored and global capped Cliquets for Sato process
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Figure 5.6: Local capped and global floored Cliquets for Dupire process
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Figure 5.7: Local floored and global capped Cliquets for Dupire process
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Figure 5.8: Spread for local capped and global floored Cliquets
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Figure 5.9: Spread for local floored and global capped Cliquets
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5.4 Options on the realized quadratic variations

The quadratic variation process of a jump process is defined by

Q(t) =
∑
s≤t

(∆Xs)
2.

where ∆Xs is the jump of X at time s.

We consider an option on the quadratic variation with strike K and maturity

t given by

(Q(t)−K)+.

So, the value of this option at time zero is

E
[
e−rt(Q(t)−K)+

]
.

But continuous processes don’t have jumps. So we consider daily increments as

Ri = Xti −Xti−1
,

where ti = i
252

, 0 ≤ i ≤ 252.

For this study, we consider the option that pays

w(K, t) = E
[
(

√
252

N
Q(t)−K)+

]
(5.5)

= E
[(√

252

N

∑
ti≤t

(Ri)2 −K
)+]

,

where N is the number of days in time t and the daily increments are used to get

values of option.

Figures 5.10 to 5.12 represent the option values on the realized quadratic

variations. It shows that the values of options on the realized quadratic variation
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are slightly decreasing as maturities are increasing. The data1 is the value of options

with maturity 3 months, data2 6 months, data3 9 months and data4 12 months.

Figure 5.13 represent the value of options on the realized quadratic variation with

the notional 10, 000.

59



0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

strike

V
al

ue

Value of options on realized quadratic variation for the Azema and Yor Process

data1
data2
data3
data4

0.25 0.26 0.27 0.28 0.29 0.3

0.018

0.019

0.02

0.021

0.022

0.023

0.024

strike

V
al

ue

Value of options on realized quadratic variation for the Azema and Yor Process

data1
data2
data3
data4
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Figure 5.11: Value of options on realized quadratic variation for Sato process.
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Figure 5.12: Value of options on realized quadratic variation for Dupire process.
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Chapter 6

Conclusion

In this chapter, we summarize this dissertation and provide suggestions for

future work.

6.1 Conclusion

We began by introducing three ways to construct Markov martingales that

meet prespecified marginal distributions: the Azéma and Yor solution to the Sko-

rohod embedding problem, the inhomogeneous Markov martingale processes with

independent increments using subordinated Brownian motion, and the continuous

martingale using Dupire’s method. We then considered the marginal distributions

that have scaling properties.

Next, we investigated the simulation methods for each process, for this study,

we used double negative exponential distributions as the prespecified marginals. For

the Aźema and Yor solution to the Skorohod embedding problem, we used the inverse

cumulative distribution method and the rejection method. By the infinitesimal

generator,

at(b)dt

ψt(b)− b

is arrival rate of a Poisson jump in the interval (t, t + dt) and the jump size x is
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drawn from the distribution

g(y, t)
∞∫
b

g(y, t)dx

, y > b.

We found that if dt is very small, then jumps occur rarely. In order to increase the

number of jumps, we could use measure change from P to R

dR

dP
= E(

(y(s)− 1) ∗ (µ− νP )
)

=
∏
s≤t

((θs

λ
− 1

)
∆Ns + 1

)
exp

(−
t∫

0

(
θ2

s

λ
− θs)ds

)
.

For the inhomogeneous Markov martingale processes with independent incre-

ments using subordinated Brownian motion,

X(t) = B(L(t)),

we used inverse Laplace transformation and a Lévy measure. Let x be the indepen-

dent increment of L(t). The inverse Laplace transform of L(x) is

L−1(s) =
a

b
δ(s) +

b− a

2b2
exp

(− 1

2b
s
)
.

And, using the Lévy measure, we showed that the rate of jumps occurrence at time

t is

∞∫

0

kt(x)dx =
1

σ2tΓ(2)
,

and the distribution of jump size is

kt(x)

∞∫
0

kt(x)dx

=
1

2tσ2
e−

1
2tσ2 .
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For the continuous martingale using the Dupire method,

X(t) =

t∫

0

σ(X(s), s)dB(s),

we used Milstein’s higher order method with

σ(x) =

√
σ2

2
+ σ

|x|√
2s

.

For the application of these simulations, we priced exotic options on these pro-

cesses. First, we confirmed that the assumption that forward return distributions

are in the same class of distributions as the spot return distributions is not valid

except for the Dupire process with values of the process equal to zero at time 0.5

when double negative exponential distributions are used as the spot return distri-

butions. The forward motion is skewed to the left if x is negative and skewed to the

right if x is positive, except for the Sato process case.

Second, we priced credit default swaps with barriers at maturities 3, 6, 9 and

12 months. We found that the swap prices are higher on the continuous process

than those on the jump processes. Also, the average time of the first passage time

to the barrier is shorter on the continuous process, the Dupire process, than on the

jump processes, the Azéma and Yor process and the Sato process.

Third, we priced cliquets with local caps and global floors and with local floors

and global caps. Then we checked model risk using spread. The model risk on the

locally capped globally floored cliquets decreased as the local cap increased. On the

locally floored globally capped cliquets, the model risk increases as the local floor

increased.
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Last, we priced options on the realized quadratic variations. We noticed that

the values are slightly decreasing as maturities are increasing.

6.2 Future work

In this dissertation, we used double negative exponential distributions as the

prespecified marginal distributions. However, one could use other distribution func-

tions for the marginal distributions, such as Gaussian. Likewise, one could price

other kinds of exotic options, such as forward starting options and barrier options.

Furthermore, it could be possible to construct a martingale using inhomogeneous

Markov martingale processes with independent increments using subordinated Lévy

processes. Moreover, one might also construct a martingale using other solutions to

the Skorohod embedding problem. Any of these variations would provide areas for

future research.
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Appendix A

Histograms of forward motion

For the value of x = X(0.5), we choose 5 different points:

−2σ
√

0.5, −σ
√

0.5, 0, σ
√

0.5, 2σ
√

0.5,

and σ was chosen to be 0.25.

Figures A.1 to A.5 display histograms of forward return, best fitting double

negative exponential, double negative exponential with unit time volatility 0.25,

and the three corresponding cumulative distributions for the Skorohod embedding

process at each value of x.

Since the Sato process is an independent increment process, the forward motion

is independent of X(0.5). So, the results for all 5 different values of x agree and

appear in Figure A.6.

Figures A.7 to A.11 present same graphs for the Dupire process.
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Figure A.1: Histograms and cdfs for Azéma and Yor process at x=-0.3536
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Figure A.2: Histograms and cdfs for Azéma and Yor process at x=-0.1768
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Figure A.3: Histograms and cdfs for Azéma and Yor process at x=0
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Figure A.4: Histograms and cdfs for Azéma and Yor process at x=0.1768
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Figure A.5: Histograms and cdfs for Azéma and Yor process at x=0.3536
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Figure A.6: Histograms and cdfs for Sato process
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Figure A.7: Histograms and cdfs for Dupire process at x=-0.3536
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Figure A.8: Histograms and cdfs for Dupire process at x=-0.1768

76



−1 −0.5 0 0.5 1
0

500

1000

1500

2000
sample histogram of forward

−1 −0.5 0 0.5 1
0

50

100

150

200
sample histogram of dned with theoretical volatility

−1 −0.5 0 0.5 1
0

50

100

150

200
sample histogram of dned with best fitting volatility

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
three cdfs

r : 1st
b : 2nd
g : 3rd

Figure A.9: Histograms and cdfs for Dupire process at x=0
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Figure A.10: Histograms and cdfs for Dupire process at x=0.1768
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Figure A.11: Histograms and cdfs for Dupire process at x=0.3536
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Appendix B

Implied volatilities of forward return distributions

Figures B.1, B.2 and B.3 present the call price curves and implied volatility

curves for the Azéma and Yor process, the Sato process and the Dupire process,

respectively, when the value at time 0.5 is −0.3536. Similarly, Figures B.4 to B.6

present call price curves and implied volatility curves for the Azéma and Yor process,

the Sato process and the Dupire process, respectively when the value at time 0.5 is

−0.1768, and so on.
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Figure B.1: Call price and implied volatility curve for Azéma and Yor process at

x=-0.3536
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Figure B.2: Call price and implied volatility curve for Sato process at x=-0.3536
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Figure B.3: Call price and implied volatility curve for Dupire process at x=-0.3536
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Figure B.4: Call price and implied volatility curve for Azéma and Yor process at

x=-0.1768
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Figure B.5: Call price and implied volatility curve for Sato process at x=-0.1768
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Figure B.6: Call price and implied volatility curve for Dupire process at x=-0.1768
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Figure B.7: Call price and implied volatility curve for Azéma and Yor process at

x=0
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Figure B.8: Call price and implied volatility curve for Sato process at x=0
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Figure B.9: Call price and implied volatility curve for Dupire process at x=0
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Figure B.10: Call price and implied volatility curve for Azéma and Yor process at

x=0.1768
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Figure B.11: Call price and implied volatility curve for Sato process at x=0.1768
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Figure B.12: Call price and implied volatility curve for Dupire process at x=0.1768
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Figure B.13: Call price and implied volatility curve for Azéma and Yor process at

x=0.3536
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Figure B.14: Call price and implied volatility curve for Sato process at x=0.3536
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Figure B.15: Call price and implied volatility curve for Dupire process at x=0.3536
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Appendix C

Graphs for the swap rates

We suppose the coupon payments are monthly and the interest rate is 3%

annually continuously compounded. Using (5.1) and (5.3) and the values of two

cash flows at initial time are same, we get the monthly coupon payment in percent

which we call swaprate, and we get the following graphs. We choose four different

settlement dates: 3 months, 6 months, 9 months, and 12 months. Figures C.1, C.2

and C.3 represents 3 month swaprate for the Azéma and Yor, Sato, and Dupire

processes, respectively. Figures C.4, C.5 and C.6 represent 6 month swaprate for

the Azéma and Yor, Sato and Dupire processes, respectively, and so on.
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Figure C.1: 3 month swaprate for Azéma and Yor process
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Figure C.2: 3 month swaprate for Sato process
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Figure C.3: 3 month swaprate for Dupire process
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Figure C.4: 6 month swaprate for Azéma and Yor process
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Figure C.5: 6 month swaprate for Sato process

101



−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05
0

20

40

60

80

100

120

140

160

barrier levels

sw
ap

ra
te

6 months Swap rates for Dupire process

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

20

40

60

80

100

120

140

160

barrier levels

sw
ap

ra
te

6 months Swap rates for Dupire process

Figure C.6: 6 month swaprate for Dupire process
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Figure C.7: 9 month swaprate for Azéma and Yor process
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Figure C.8: 9 month swaprate for Sato process
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Figure C.9: 9 month swaprate for Dupire process
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Figure C.10: 12 month swaprate for Azéma and Yor process
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Figure C.11: 12 month swaprate for Sato process
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Figure C.12: 12 month swaprate for Dupire process
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