

ABSTRACT

Title of Document: DESIGN OF A WIRELESS FISH LENGTH

MEASURING BOARD FOR FISHERIES
RESEARCH

 Omar Farooq Amin, Master of Science, 2006

Directed By: Associate Professor, Omar Ramahi, Department

of Electrical and Computer Engineering,
University of Waterloo.

The goal of this work is to design and implement the fundamental technology needed

to construct a wireless fish measuring board that performs non-contact length

measurements. After taking the measurement, the board sends the information

containing the length of the fish amongst other parameters wirelessly to a receiver

located several meters away. The receiver in turn decodes the information and sends

it for display on a computer monitor. The wireless transmission must be immune to

the typical non-line of sight (NLOS) environments that are found in the fisheries

industry. The non-contact technique used here is based on the Hall-effect sensing

mechanism. The wireless link operates in the 902-928MHz Industrial, Scientific and

Medical (ISM) band. The entire system was fully developed using Commercial Off-

the-Shelf (COTS) components and is shown to perform satisfactorily in typical NLOS

environment.

DESIGN OF A WIRELESS FISH LENGTH MEASURING BOARD FOR
FISHERIES RESEARCH

By

Omar Farooq Amin

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Master of Science

2006

Advisory Committee:
Professor Omar Ramahi, Chair
Professor Bruce Jacob
Professor Victor Granatstein

© Copyright by
Omar Farooq Amin

2006

 ii

DEDICATION

To my family.

 iii

ACKNOWLEDGEMENTS

Thanks to Professor Ramahi for all his help and the family for all the support.

 iv

TABLE OF CONTENTS

DEDICATION.. ii
ACKNOWLEDGEMENTS... iii
TABLE OF CONTENTS... iv
LIST OF TABLES... vi
LIST OF FIGURES .. vii
CHAPTER 1: GENERAL INTRODUCTION ... 1

Objectives ... 1
Available Technologies .. 1
Basic Scheme .. 2

CHAPTER 2: MICROCONTROLLERS ... 4
Selection.. 4
MSPF449 Basic Operation ... 6

Clock System .. 7
Interrupts ... 8
Operating Modes... 9

Peripherals... 10
Analog to Digital Conversion ... 10
Digital Communication... 12
Timer... 13

CHAPTER 3: SENSORS.. 15
Selection.. 15
Hall-Effect Devices... 18
Application.. 20

CHAPTER 4: WIRELESS TECHNOLOGY ... 23
Digital Modulation.. 23
Selection of the Operating Frequency... 25
Transceiver Selection.. 26
RF Circuitry .. 28

Modulator/Demodulator ... 29
Mixer... 30
Amplifiers ... 31
Data Slicer and Bit Synchronizer.. 34
Reception Modes .. 35

Basic Antenna Facts.. 36
Antenna Choice... 38

Radio Propagation... 39
CHAPTER 5: IMPLEMENTATION AND TESTING ... 42

System Design and Implementation ... 42
Length Measurement System.. 43
Wireless Transmission .. 49
Reception .. 51

Final Product... 54

 v

Device Testing .. 56
Testing Results.. 57
Majority Vote Analysis... 60

CHAPTER 6: CONCLUDING REMARKS ... 63
Future Work .. 63
Conclusion .. 63

APPENDIX A: LENGTH MEASUREMENT ... 65
APPENDIX B: TRANSMISION.. 94
APPENDIX C: RECEPTION... 125
REFERENCES ... 155

 vi

LIST OF TABLES
Table 1: Microcontroller Comparison .. 5
Table 2: Interrupt Priorities... 9
Table 3: Operation Mode Characteristics ... 10
Table 4: Sensor Comparison... 18
Table 5: Comparison of Transceiver Technology .. 27
Table 6: LOS Test Results .. 58
Table 7: Orientation Testing Results .. 58
Table 8: Distance Testing ... 59
Table 9: Principal NLOS Case.. 60
Table 10: Majority Vote Improvement ... 60

 vii

LIST OF FIGURES

Figure 1: Basic Implementation.. 3
Figure 2: MSP430 Block Diagram ... 6
Figure 3: Percent Error as a function of Measured Voltage 11
Figure 4: Example Data Packet... 13
Figure 5: Flux Density vs. TEAG... 20
Figure 6: Initial Characterization .. 21
Figure 7: Comparison of Error Rates.. 24
Figure 8: RF Transceiver Block Diagram... 29
Figure 9: PLL Block Diagram .. 33
Figure 10: Typical Half-Wave Dipole Radiation Pattern ... 39
Figure 11: Board Side Schematic ... 43
Figure 12: Receiver Side Schematic ... 43
Figure 13: Level 1 Multiplexer Connections .. 45
Figure 14: Level 2 Multiplexer Connections .. 45
Figure 15: Typical Voltage Characteristic.. 47
Figure 16: Transmission Data Timing .. 51
Figure 17: Triggering on the Rising Edge .. 53
Figure 18: Triggering on Falling Edge ... 53
Figure 19: Final Implementation .. 54
Figure 20: Example Messages on the Transmitter Side.. 55
Figure 21: Corresponding Messages on the Receiver Side .. 56
Figure 22: Majority Voting Process.. 61

 1

CHAPTER 1: GENERAL INTRODUCTION

Objectives

The goal of this project is to design the primary technology needed to construct a board

that allows a user to perform length measurements on an object accurate to 1mm and send that

information wirelessly to a receiver. The board will be used in fisheries research to measure the

length of fish for various environmental reasons. Since the creatures being measured often move

around unpredictably, we strive to design a device that has no moving parts and no wires

associated with it that the creatures could become entangled in or break. Moreover, since the

board will be subject to a diverse set of weather and other environmental conditions, the actual

sensing elements cannot be left exposed. Thus the position sensing then must be non-contact.

In addition to these basic functional goals, we also design the board out of Commercially

Off-the-Shelf (COTS) available products so that it can be produced in greater volumes at a later

time without the need for custom electronics. Another consequence of this mass production is that

the individual elements that make up the board should be as cost effective as possible. We also, of

course, take all steps to ensure that the use of the board is as simple as possible so as to remove

human error from the measurement.

 As far as the wireless connection is concerned, the most important feature is that it be

able to perform without line-of-sight. We design the device for short range operation in which the

receiver is located a few feet from the transmitter with various non-metallic barriers obstructing

the line of sight.

Available Technologies

There is a wide array of fish length measuring technologies available in the fisheries

industry. The main manufactures of these boards are Wildco, Limnoterra, Scantrol and Juniper

 2

Systems. The first of these companies, Wildco, manufactures the 118-B30 fish measuring board

(FMB). This FMB simply consists of a flat surface and a moving brass indicator arm that is

placed at the end of the fish. Instead of taking an electrical measurement, this device simply

allows for the end of the object to be marked and the measurement read off a number tape [1].

The next manufacturer is Limnoterra which offers many variations of the FMB IV. This FMB

improves over the previous technology in that it offers electronic measurement without any

moving parts. It has 1mm accuracy as desired and also performs non-contact length measurement.

This FMB, however, does not allow for wireless transmission of the data from board to a

receiver, rather it simply displays the data on a digital screen on the board itself [2].

 Similar to the device from Limnoterra, the Scantrol FM100 performs an electronic

measurement and displays it on the actual FMB, but does not wirelessly transmit the length data

to a receiver. This technology also has wires connecting the display to the FMB which can

become entangled when measuring a fish [3]. Finally, Juniper Systems manufacturers the LAT37

wFMB, which allows for electronic measurement to 1mm accuracy and wireless transmission to a

remote receiver. The main drawback of this system is that it uses a moving part to perform the

measurement [4]. Thus after surveying the available technologies we find that none fulfill our

goals.

Basic Scheme

Our basic principle in this project is to measure the length of the object using a stylus

placed at the end of the object. Sensing elements embedded in the actual board then will react to

the proximity of this stylus and produce an electrical output proportional to the proximity of the

stylus. The outputs of all the sensors will then be scanned using a series of multiplexers that

eventually report all output values to a microcontroller. This microcontroller then will determine

the length of the object and send its value to the transmitter. The transmitter will create the packet

to be sent, modulate the message and send the data to the receiver wirelessly. On the receiver

 3

side, the receiver will take the transmitted packet and extract the necessary information and

display this information using a computer on the receiver side. The basic implementation of the

system is shown in Figure 1.

Figure 1: Basic Implementation

 4

CHAPTER 2: MICROCONTROLLERS

Selection

The microcontrollers’ purpose is to make all decisions based on inputs from the various

sources and regulate the activity of other components. In this project, the most basic function of

the microcontroller will be to use sensor outputs to find the length of the object. After finding the

length, the microcontroller will send that data to the transmitting device which will wirelessly

send the data to the receiver.

The main criteria used to judge different microcontroller technologies are speed, cost,

power consumption, data and program memory and input/output capabilities. Since

microcontrollers are often complicated to implement, technical support and accompanying

software packages are also considerations. In accordance with our goal of designing the system

out of COTS technology, we restrict ourselves to readily available technologies.

 Although speed is usually among the most important characteristics of microcontrollers,

in this project it is a secondary concern. Since many microcontrollers can deliver speeds at

fractions of one million instructions per second (MIPS) and the programs in this project do not

carry out computationally intensive operations, most microcontrollers on the market can deliver

adequate performance. Likewise, the cost of the microcontroller itself is not of paramount

importance since there will only be three microcontrollers in the entire system.

 The power consumption of the microcontroller also is not of great importance since we

know beforehand that the sensors will be the main source of power usage in the system. On the

other hand, the random access memory (RAM) and program memory are important concerns in

the microcontroller selection. The microcontrollers will be responsible for holding information

from a multitude of sensors as well as holding somewhat extensive programs making the size of

the RAM and program memory important. In our case the size of the memory is more important

than the type as the speed of the memory look ups is not integral to the operation of the system.

 5

 The most important factor in selecting the microcontroller is its ability to take both digital

and analog inputs and send digital outputs. Since there will be multiple microcontrollers in the

entire system, they should have the ability to use both parallel and serial communication. The

metric chosen to evaluate the microcontroller’s parallel communicating ability is the number of

I/O ports as this is measure of the amount of information that can be sent at once. Next, the use of

the electrical sensors requires the microcontrollers to be able to take analog voltages

measurements. The main concern with the analog voltage measurement is the resolution of the

analog-to-digital converter (ADC) since it determines the accuracy of the measurement.

 Table 1 below shows how technologies from Texas Instruments (TI), Freescale and

Microchip compare [5] [6] [7].

Company Family Processor Type I/O Pins
Program
Memory (kB) RAM

ADC
Resolution

TI MSP430 MSP430F449 16 bit 48 60 2048 12-bit

Freescale HC16 68HC16Y1 16 bit 24 1024 2048 10-bit

Microchip PIC18 PIC18F8520 8 bit 68 32 2048 10-bit

Table 1: Microcontroller Comparison

 The family of microcontroller chosen from each company was based on which could

handle our requirements without being overly complex with many unrelated functions. The

particular microcontroller shown is representative of the performance of that family. The number

of I/O pins needed in this project is determined by the maximum number of parallel inputs and

outputs that are communicated by any of the microcontrollers. In our system, the length

measuring microcontroller performs the most parallel communication. Its parallel communication

load comprises of an eight-bit integer sent to the transmitter, six control bits to the analog

multiplexers and possibly various digital switches to communicate with the user. All of the

microcontrollers listed above have enough I/O pins to satisfy those requirements. Despite the

inferior program memory in comparison to the HC16 class from Freescale, in the end, we chose

 6

the MSP430 class, specifically the MSP430F449, from TI. The main reasons for this choice were

the superior resolution of the ADC and the abundance of literature available from TI.

MSPF449 Basic Operation

The MSP430 class of microcontrollers consists of a 16-bit microprocessor that is integrated with

various peripheral devices and a clock system that allows different modes of operation as shown

below in the block diagram provided by TI in Figure 2 [8].

Figure 2: MSP430 Block Diagram

As the block diagram indicates, the MSP430 brings together the operation of a 16-bit RISC CPU

with various peripherals and program memory into a single device that can handle all functions of

our project. The implementation of the device is greatly simplified using the embedded emulation

that allows for controlled experimentation using break points and single steps in code while still

allowing full speed operation. Once experimentation is complete, the same software used to for

the emulation can be used to program the device [8]. There will be a host of peripherals used in

this project. The specifics regarding the operation of these peripherals are set by internal registers.

For example, the clock used for the ADC can be chosen to be taken from a variety of signals and

the choice of signal to be used is set by an internal register.

 7

The MSP430 has sixteen total registers, four of which are dedicated to specific functions

while the other twelve can be used for general purpose. The first of these dedicated registers is the

program counter (PC) which points to the next instruction to be executed. Next, the stack pointer

(SP) points to the return address when an interrupt or subroutine is executed. After the stack

pointer, the status register holds the status of the CPU. Of importance in this status register are the

general interrupt enable (GIE), CPU off and oscillator off (OSCOFF) bits. When the GIE bit is

set, all maskable interrupts are enabled, interrupts will be discussed in further depth later. As the

names would suggest, the CPU off and OSCOFF bits turn off the CPU and LFXT1CLK oscillator

respectively when they are set. Lastly, the constant generator registers generate common

constants that are repeatedly used [8].

Clock System

Clock signals for the MSP430 are generated by a frequency-locked loop (FLL) that takes two or

three input clock signals, presumably from a crystal or other highly accurate device, and

generates four output signals. The three input signals that the FLL takes are [8]:

 LFXT1CLK: Oscillator that can use a crystal, resonator or other external clock sources.

In our case, a 32.768kHz crystal is used as the input here.

 XT2CLK: A high frequency oscillator that uses crystals, resonator or other sources. This

second source is not required.

 DCOCLK: Digitally controlled oscillator (DCO) which is stabilized by the FLL.

The output signals provided by the digital FLL are:

 ACLK: The ACLK, or the auxiliary clock, is sourced from the LFT1CLK, in our case the

ACLK will always have a frequency of 32.768kHz. It can be selected as the clock source

for many peripherals.

 8

 ACLK/n: This is the divided ACLK frequency, it can be divided by 1, 2, 4 or 8. This is

not used internally, rather it is used for external devices only.

 MCLK: The MCLK, or the master clock, can be sourced from the LFT1CLK, XT2CLK

or DCOCLK. In our system, it is sourced from DCOCLK. The output of the MCLK can

also be divided by 1, 2, 4, or 8.

 SMCLK: The SMCLK, or the submain clock, can also be sourced from the LFT1CLK,

XT2CLK or DCOCLK. It is used as a clock source for many peripherals.

In normal operation, the source for the SMCLK and the MCLK is the DCOCLK which is

usually taken to be 32 times the LFT1CLK frequency or about 1.05MHz, but can also be other

multiples of the LFT1CLK frequency. In our system the frequencies of MCLK and SMCLK are

set to be 75 times the LFT1CLK frequency or 2.46MHz. Having many different clock signals

helps satisfy the variable requirements on the microcontroller. On one hand the microcontroller

must have a fast enough clock to respond to fast acting events, but on the other hand should have

a low clock frequency while in low power modes. The multiple signals coming from the FLL

allows for all of these requirements to be met [8].

Interrupts

In the programs for all of the microcontrollers in this system, interrupts play an important role.

They allow the current process of the microcontroller to be interrupted when a specified condition

is met. When the interrupt is executed, the corresponding interrupt service routine (ISR) is called.

After the code contained within the ISR is processed, the microcontroller is returned to the state it

was before the execution of the interrupt [9]. The MSP430 class of microcontrollers has three

main types of interrupts: system, non-maskable and maskable. System interrupts are used to reset

the operation of basic elements of the system such as the power up. Non-maskable interrupts are

not masked by the GIE bit, rather they are set by other fields specific to each type of interrupt.

Maskable interrupts can be enabled using an interrupt enable bit associated with each device or as

 9

a whole through the GIE. If the GIE bit in the system register is cleared then all of the maskable

interrupts are disabled. While an ISR is being executed, the GIE is cleared so that no maskable

interrupts will interrupt the progress of the ISR. All of the interrupts that are coded into the

program of microcontrollers in this project use maskable interrupts. The most common form of

these maskable interrupts are device specific interrupts which occur when a certain device

reaches a pre-determined condition. When two or more interrupts are pending concurrently they

are serviced according to their priority, these priorities are listed in Table 2 below from [5].

Table 2: Interrupt Priorities

Table 2 shows that the highest priorities go to the system and non-maskable interrupts which are

followed by peripherals masked using the GIE bit.

Operating Modes

One of the ways the MSP430 class of microcontrollers achieves low power operation is through

the use of multiple operating modes. There is one active mode for typical operation and four

different low power modes offering differing degrees of power saving. Once a low power mode is

 10

entered, interrupts are used to return to active mode. Table 3 compiled from [8] below lists the

different characteristics of the various operating modes.

Mode Characteristics

Active CPU and all clocks active

LPM0
CPU and MCLK disabled
SMCLK and ACLK active

LPM1

CPU, MCLK and DCO Oscillator disabled
SMCLK, and ACLK active
DC Generator disabled if DCO not used for
MCLK or SMCLK

LPM2

CPU, MCLK, SMCLK and DCO Oscillator
disabled
ACLK active
DC Generator Enabled

LPM3

CPU, MCLK, SMCLK and DCO Oscillator
disabled
ACLK active
DC Generator disabled

LPM4 CPU and all clocks disabled
Table 3: Operation Mode Characteristics

 Low power operation in this project will predominantly be done in the LMP0 mode. In

this mode the CPU and master clock are disabled, but the sub-master clock and the auxiliary

clock are active so that the LMP0 mode can be exited based on interrupt conditions defined by

those two signals.

Peripherals

Analog to Digital Conversion

MSP430F449 microcontroller has eight 12-bit ADC pins. This 12-bit resolution is covers entire

the range of conversion which is specified by the VR- and VR+ voltages that can be either input to

the microcontroller or generated by the microcontroller itself. In this project we use the range

from 0V to 2.5V, both ends are provided by the microcontroller.

The output of the ADC conversion is an integer, NADC, ranging from 0 to 4095, or 212 – 1,

this integer can then easily then be used to find the input voltage by the formula [8]:

 11

Input Voltage = −−+ +− rrr VVV)(
4095
N ADC (2.1)

Using our given range, (1.1) simply reduces to:

Input Voltage =)5.2(
4095
NADC V (2.2)

As Figure 3 shows, this ADC conversion delivers a highly accurate voltage when compared to the

result obtained through the use of a digital multimeter.

Figure 3: Percent Error as a function of Measured Voltage

Figure 3 shows that aside from the smaller measurements where even a very small deviation from

the digital multimeter output results in a large percentage error, most measurements had an error

of less than 2 percent. We experimented with applying voltages to specify VR- and VR+, but found

that having the microcontroller generate the appropriate values greatly simplifies the overall

operation.

 12

Digital Communication

The MSP430F449 comes with six digital communication ports with each port having eight pins

that can be used for parallel communication. Each of the pins can be read from and written to

independently. Many of the ports have alternate functions, for example, port six is also used for

analog-to-digital conversion. Ports 1 and 2 also have the ability to generate interrupts based on

either high to low or low to high transitions in digital data [8].

 The MSP430F449 also allows for two modes of serial communication: UART and SPI.

The SPI mode is a master-slave mode in which data is communicated by multiple devices all

using the same clock provided by the master. The UART mode allows for communication that is

asynchronous to other devices. Instead of sharing a clock, in the UART mode both the transmitter

and receiver operate at the same baud rate. The simplicity associated with not having to have a

shared clock makes the UART mode ideal for all serial communication in this project. Serial

communication will mainly be used for RS232 communication between the receiver and

computer.

 A character to be sent or received follows a standard form in which it starts with a start

bit followed by seven or eight data bits, a parity bit, an address bit, and one or two stop bits. All

possible choices in format are set by the appropriate internal register and should obviously be

shared by both the transmitter and receiver. The baud rate used to send the characters is

determined by the clock frequency and internal registers [8].

 The UART serial communication mode has two formats: the address bit multiprocessor

format and the idle-line multiprocessor format. The address bit multiprocessor format is typically

used when three or more microcontrollers communicate. The idle-line format is used when two

devices communicate. In our application the microcontroller will be communicating with the

RS232 line so the idle-line format is used.

 13

 In the idle-line format, sets of data are separated by idle times. Idle lines are defined to be

ten or more constant logic highs following the stop bit. A packet of information starts with a start

bit and is immediately followed by a character indicating the address of the information. This

character is then immediately followed by a stop bit. Another start bit indicates a data character

which is then again followed by a stop bit. This pattern of start bit, data and stop bit then

continues until the packet of information is completed as shown in Figure 4 below [8].

Figure 4: Example Data Packet

 The UART mode also has the ability to suppress glitches and detect framing, parity,

receive overrun and break condition errors. When a logic low is detected with a pulse width less

than the deglitch time, typically about 900ns, it is ignored and not considered when detecting the

start bit. When any of the errors are detected, the appropriate bit in the control registers is set [8].

Timer

There are two very similar 16-bit timers available on the MSP430F449, Timer_A and Timer_B,

and both will be used in this project. The basic principle behind the operation of the timer is that

the rising edges of the clock signal are counted and when that count reaches a predetermined

value, an interrupt is generated. The period of the clock is known beforehand so the count

effectively becomes the time elapsed since the start of the counter. This clock signal can be

chosen from the ACLK, SMCLK, or an external clock signal [8]. The timer can operate in three

different modes: up, continuous, and up/down. In the up mode, the counter counts from zero to a

predetermined value programmed in the software and once the value is reached an interrupt can

be generated and the counter begins to repeat the count again from zero. The continuous mode is

 14

very similar and can be considered simply an extension of the up mode, but instead of counting to

a value specified in the software it counts to 65,535, or 216 -1, as would be the maximum value

expected in a 16-bit timer. This is also, of course, the highest value the up mode can count to. In

up/down mode the timer counts up to a predetermined value just like the up mode, but instead of

starting at zero again, it decrements the counter to zero. The timer modes used most often are the

up and continuous modes, these will be used in the transmitting microcontroller to control the

digital transmission of the bits to the transceiver and to turn off the board when it has been left

idle for a specified time. The timers also have capture and compare capabilities. When an input is

fed to the timer, the timer can be programmed to copy the contents of the count register at

selected edges of the input signal. When used to compare, the timer can compare the occurrences

of several different interrupts [8].

 15

CHAPTER 3: SENSORS

Selection

As discussed earlier, the main goal of the entire board is to perform non-contact length

measurements. To accomplish this we propose a scheme in which the object is placed on the

board and the user uses a hand-held stylus to mark the end point of the object on a number line.

The stylus should not have any wires attaching it to the board or have to touch the sensors which

are placed in a protective covering inside the board.

 To accomplish these basic goals we plan to have a linear array of sensors underneath the

number line, when the stylus is brought close to a particular point on the number line, the sensors

underneath identify the position of the stylus. This scheme requires sensors that can, without

mechanical contact, measure the proximity of a stylus. In our case we chose to measure the

proximity of the stylus by inserting a permanent magnet inside of it and measuring the magnet

field emanating from it.

 In our search we found two basic types of sensors that can measure magnetic flux density

and can be placed in a linear array: Hall-Effect sensors and magnetorestrictive sensors. Each

produce an electrical output based on the input magnetic flux density. In either case, a

microcontroller will scan the results of all sensors in the linear array to determine the position of

the stylus. Since we strive to design the system out of COTS technology, we choose from readily

available products instead of custom designs.

Although there is a multitude of different characteristics that determine the performance

of a particular sensor, the most important in our case is repeatability. Repeatability specifies

difference between consecutive outputs that are held at identical conditions [10]. In our design, all

the data from the sensors is read by the microcontroller which can adjust the final output for

many types of predictable errors. Since repeatability errors are essentially unpredictable, the

microcontroller cannot adjust for them so the output is directly affected by the error.

 16

 After repeatability, the next main concern is the reliability of the sensor. The reliability is

defined as likelihood the sensor will function correctly [10]. Since the sensors will be placed

inside the board under a protective layer, any sensor that malfunctions cannot be replaced. This

either forces the user not to measure objects in the vicinity of that sensor or replace the entire

board. In our experience with Hall-Effect sensors, when they do malfunction, the output voltage

with no incident magnetic field density dramatically rises to close to the supply voltage, so

malfunctions are typically easily spotted by the microcontroller and the user can be alerted.

 The cost of a sensor is not typically identified as being a characteristic of a sensor, but in

our case it is a major criterion since we hope to build the board as cheaply as possible. Of course

the cost of the sensor is measured not only in how much each individual sensor costs, but also

how many sensors would be required to span the 1m and 2m boards. Furthermore, the current

consumption also indirectly affects the price, since additional current requires a battery which is

typically more expensive.

 The non-linear characteristic of the output values is also an important characteristic of the

sensor. If the output of the device can be approximated by a line and still maintain the necessary

accuracy, then interpolation calculations become simpler for the microcontroller. In this context,

interpolation calculations are used to find the location of the magnet when it is not over any

particular sensor. The FMB, however, is calibrated beforehand and a curve for the output can be

found using software such as MATLAB and be programmed into the microcontroller so this

concern is not as major as the previous three. Another somewhat less important concern is the

range of output values for the sensor. A larger range usually implies that changes in the input

magnetic flux density result in larger changes in the output making the overall system more

sensitive to changes in the input. Along with the range, the zero value of the sensor, that is the

output value when there is no input magnetic field must fall in range that can be measured by the

microcontroller.

 17

 Temperature effects are also normally a serious concern in sensor operation. Most

companies that manufacture sensors do rigorous testing on the performance of their sensors in

different temperature environments so that the microcontroller can use that data coupled with a

temperature sensor to predict any deviations in output value.

 As discussed earlier, our two choices for sensing technologies are Hall-Effect sensors and

magnetorestrictive sensors. In a Hall-Effect device, a current is run through a conductor or semi-

conductor material and when a magnetic field is applied a voltage develops that is perpendicular

to both the current and the magnetic field. In physical terms, the incident magnetic field causes a

build up of carriers on one side of the material which creates the potential difference [10]. An

important benefit of Hall-Effect sensors is that they can detect the polarity of the input magnet

field. These sensors then can have their output voltage either increased or decreased from the zero

value.

Magnetorestrictive sensors, on the other hand, produce a change in resistance as a

function of the magnitude of the input magnetic field. The basic physical principle behind

magnetoresistance is the Lorentz force which acts perpendicular to the velocity of the charges and

the magnetic field and tends to force the carriers to move in a circular pattern. This forces more

carriers on one side of the material than the other. Since the carriers are moved to one side of the

material the effective cross-sectional area of the material is reduced, this coupled with the

reduction of carrier speed due to the circular nature of the Lorentz force results in a change in the

resistance. The resistivity of the material is then given by [10]:

Resistivity =
VelocityCarrier nsity Carrier De

Voltage
×

 (3.1)

Typical advantages of magnetoresistive devices are that they can operate at higher frequencies

than Hall-Effect devices, offer greater sensitivity and consume less current [10].

 Conventional magnetoresistive and Hall-Effect devices can both deliver repeatability that

is significantly smaller than 1mm accuracy we hope to achieve so both technologies satisfy our

 18

most important concern. Moreover, both types of devices also are known to have high lifetimes

and thus high reliability [10]. Table 4 below compiled from [11]–[14] compares a Hall-Effect

sensor and a magnetoresistive sensor both made by Honeywell.

Type Part No.
Output
Current (mA)

Supply
Current (mA)

Operate
Point
(mT)

Temp
Range (˚C) Cost

Hall-Effect SS41 20 15 4 -55 to 150 $1.69
Magnetoresistive 2SS52M 20 11 1.5 -40 to 150 $2.68

Table 4: Sensor Comparison

The comparison shows that the technologies are very similar except for price where the

magnetoresistive sensors are much more expensive. Since there will be on the order of 100

sensors in the 1m board, this leads to a substantial increase in the total cost, outweighing the

savings its lower current consumption. Thus, we ended up choosing Hall-Effect sensors for our

final board. We decided to go with the sensors made by Allegro instead of Honeywell because of

the extensive documentation available from Allegro.

Hall-Effect Devices

The Hall-Effect stipulates that when charges are passed through a conductor with velocity v and a

magnetic field, B, is applied perpendicular to v that a voltage VH measured perpendicular to both

v and B develops such that:

VH = BvD (3.2)

Where D is the length across which the voltage is taken. This can also be expressed as [15]:

VH =
t

IKB
 . (3.3)

Where t is the thickness of the conducting material, I is the current and K is the Hall effect

constant. The latter representation clearly shows that the Hall Voltage, VH, is directly

proportional to the incident magnetic flux density and current and inversely proportional to the

thickness of the conductor. This VH that develops is typically very small and thus very difficult to

 19

measure accurately so packaged Hall-Effect devices usually come with some type of amplifying

circuitry built in to raise the voltage levels to a reasonable level [10]. When the Hall-Effect device

is exposed to high fields that often result with a magnet being very close, the device saturates so

there is no increased output voltage for an increase in input flux density. This saturation does not

arise from the Hall-Effect sensor itself, but rather the amplification circuit so the user can be

assured that high fields will not damage the device [16].

 The Hall-Effect sensor we chose to use is the Allegro A1321 device. These are three-pin

devices that have a zero voltage that is half of the supply voltage which either increases or

decreases according to whether the South or North pole of the magnet is applied and do not

exhibit dramatic changes in output in different temperatures [17]. Their output is ratiometric, thus

the output voltage is not only proportional to the incident magnet field density but also the supply

voltage [18]. This allows the range of output values to be determined by the supply voltage.

 The first concern when operating a Hall-Effect device is that the magnetic flux lines

originating from the magnet must be perpendicular to the face of the device to bring about the

desired change in output [10]. In our case, this requires the stylus to be held perpendicular to the

face of the board to achieve the best results. Moreover, since the calibration of these devices will

be done assuming perpendicular placement of the stylus, any tilt will bring about errors.

 The next major concern is the consideration of the total effective air gap (TEAG). Figure

5 from [19] shows that the magnetic flux density is substantially reduced as the TEAG is

increased.

 20

Figure 5: Flux Density vs. TEAG

This graph also shows that the relative output voltage decreases dramatically as the TEAG is

increased as would be expected. The TEAG not only refers to the total air gap between the sensor

and the magnet, but rather the total depth between the sensor and magnet. In our case this requires

the protective material covering the sensors to also be included in the TEAG.

In this application we will effectively be measuring the TEAG to determine the proximity

of the stylus. In placing the stylus on the board, the user had three degrees of freedom. Our goal is

only to measure the length, thus the other two degrees of freedom must be constrained to the

calibration procedure. We require, therefore, that the measurement be taken when the stylus is

touching the board to constrain the vertical distance from the sensor and be within the number

tape on the board to constrain the depth, making the horizontal distance the only variable in the

TEAG.

Application

In our application of the Hall-Effect devices, we will be primarily be operating in the unipolar

slide-by mode. That is, one pole will dominate the readings coming from the Hall-Effect sensor

 21

and the magnet will be effectively moved from side to side with the components of the TEAG

from the packaging material and stylus predetermined. Given this mode of operation, we expect a

Gaussian curve of voltages with the highest coming when the magnet is directly over the sensor

and the voltages dropping off non-linearly as the magnet is moved horizontally away from the

magnet in either the positive or negative directions [16].

 The characterization and verification of a Gaussian characteristic of the sensors was done

by Abhinav Pathak. There were several characterizations done to ensure the predicable behavior

of the output voltages, one of these characterizations are shown below in Figure 6.

-20 -15 -10 -5 0 5 10 15 20

2.5

3.0

3.5

4.0

4.5

5.0

Output Voltage vs. Displacement From Center

V
ol

ta
ge

 (V
)

Displacement (mm)

Figure 6: Initial Characterization

In this initial characterization the magnet is held a fixed distance vertically from the sensor and

displaced in the horizontal direction. Figure 6 illustrates the expected Gaussian shape, but also

shows that as the magnet tends to saturate the sensor as it gets very close. In later

characterizations and the final implementation we will alter the TEAG and magnet strength to

avoid this saturation. Furthermore, when the sensors are actually implemented with the

 22

microcontroller we find it advantageous to use the North Pole instead of South Pole so that the

voltages drop from the zero value.

 23

CHAPTER 4: WIRELESS TECHNOLOGY

Digital Modulation

 The three main digital modulation schemes that were considered for this project are

amplitude shift keying (ASK), frequency shift keying (FSK), and phase shift keying (PSK). All of

these schemes will be used in their binary implementation so that each modulation scheme will

deliver a distinct signal corresponding to either a logic high or a logic low. Typically ASK

consists of the carrier signal being turned on or off depending on the input binary sequence. In

this sense ASK is also known as on-off keying (OOK). Binary FSK consists of a sinusoidal

carrier whose frequency is adjusted to according to the input binary data. Binary PSK consists of

a carrier whose phase is shifted between two different values to reflect the binary data. In practice

these phases are usually 0 and π [20].

 The two main criteria used to judge between different modulation schemes in this project

are the probability of error in the presence of additive white Gaussian noise (AWGN) and the

ease of implementation. Performance in AWGN is often used a performance metric to compare

different modulation schemes. The ease of implementation is important because it helps to

determine the diversity of products that implement that scheme. The eventual choice will also be

judged on a variety of hardware criteria, so it helps to have a diverse set of technology to choose

from.

 The performance of the different modulation schemes in AWGN is computed using an

optimum receiver based on the maximum likelihood rule. In all cases synchronous detection is

used to compare the schemes. For OOK the probability of error, Pe, can be shown to be [20]:

Pe =
2
1

erfc
on

E
4

b
. (4.1)

 24

Where Eb is the bit energy defined as the energy of the input binary signal over one bit period and

no is defined as the integration of the noise voltage over one bit period. Thus, the probability of

error then is a function of Eb/no which is defined as the signal to noise ratio (SNR) per bit. Next,

for FSK the probability of error can also be shown to be a function of the SNR per bit [20]:

Pe =
2
1

erfc
on

E
2

b
. (4.2)

Lastly, the probability of error in the case of PSK can be shown to be [20]:

Pe =
2
1

erfc
on

Eb
. (4.3)

These error probabilities are plotted as a function of the SNR per bit in Figure 7 below.

Figure 7: Comparison of Error Rates

 25

As expected, the probability of error with all the modulation schemes decreases as SNR per bit

increases. Figure 7 clearly shows that PSK performs the best in the presence of AWGN, followed

by FSK and ASK. The next criterion used to judge between modulation schemes is the ease of

implementation. OOK is the easiest to implement since it simply involves turning on and off the

carrier based on the binary data. OOK also does not require coherent demodulation and can

simply be demodulated using the received signal strength indication (RSSI). FSK is also simple

to implement as it can be generated coherently using an IQ modulator or incoherently using a

phase locked loop. Also since the signal has constant amplitude, a non-linear power amplifier can

be used in the transmitter circuit. Lastly, PSK is more complex to generate because it requires

coherent modulation [21].

 Considering both the error probabilities and the complexity of implementation we chose

FSK as our modulation scheme. This scheme provides better performance than ASK in the

presence of AWGN yet still is relatively simple to implement so that there is a diverse set of

technologies to choose from. Our eventual choice in transceiver technology, the basis for which

will be discussed later, is the TRF6903 transceiver. The transceiver modulates the signal using a

phase locked loop which produces signal with a frequency deviation of 32 KHz, thus a 64 KHz

difference between the two signals. The baseband signal is coded using non-return to zero (NRZ)

coding which doubles the maximum achievable data rate when compared to Manchester coding

[22] and has been experimentally shown to have fewer errors in wireless transmission in a device

similar, the TRF6900A, to the TR6903 [23].

Selection of the Operating Frequency

The selection of the frequency band is one of the most important decisions in the wireless

system design as it often dictates possible choices in transceiver and antenna technology. The

frequency bands that were considered are the 902-928 MHz and the 2.4-2.48GHz Industrial,

Scientific and Medical (ISM) bands. Higher frequencies tend to allow for more bandwidth thus

 26

allowing for higher data rates. It should be noted, however, that data rate is not a primary concern

in this project since this is not a high speed application requiring large amounts of data to be sent

over the wireless link. A selection of lower frequency is supported by the fact that antenna gain at

its resonant frequency normally increases with frequency. This increased gain implies that the

wave emanating from the antenna does not spread out as much, thus reducing its ability to

navigate around obstacles in a NLOS environments. After considering all of the options, we

chose the 902-928MHz band since data rates are not pivotal in this project and communication in

this band generally performs better than the 2.4-2.48GHz band in NLOS environments [20].

Transceiver Selection

The function of the transceiver, or a transmitter/receiver pair, is to take digital data on transmitter

side and convert it to an analog waveform fit for wireless transmission and to perform the

complementary action on the receiver side. The selection criteria include the modulation

technique, sensitivity, maximum output power and maximum data rate. Similar to the

microcontroller selection, ease of implementation is also a concern. Documentation regarding the

operation of the device and more importantly the simplicity in the integration with our chosen

microcontroller is important. We again restrict ourselves to readily available technology in so that

we can design the entire product out of COTS technology. This restricts us from designing a

custom transceiver for this specific application. We have already chosen to use FSK modulation

so we are obviously biased towards choosing a device that has FSK capability. The next

consideration is the sensitivity which is defined as minimum input signal that can be converted to

a meaningful voltage by the receiver [20]. This is a major concern for our project because the

FMB will often be operated in severe conditions. On the other hand, we would also like to deliver

as strong a signal as possible to receiver since , as was shown earlier, error rates tends to decline

as the signal to noise ratio increases. Furthermore, we also would like to be able to adjust the

output power based on application, increasing the power when conditions require while saving

 27

battery life by reducing the output power in more hospitable environments. Lastly, the maximum

data transfer rate is obviously a concern in designing any wireless system but as discussed earlier,

this is not a paramount concern in this project. Table 5 shows a comparison of technologies based

on our selection criteria [24] - [28].

 Table 5 shows that in the areas of concern the available technologies are somewhat

similar. The main significant differences in the devices are that the transceivers from Chipcon and

Analog Devices have superior sensitivity and output power. These devices also have considerably

higher data rates than the other technologies. After initially considering the Linx ES

transmitter/receiver technologies, we eliminated them from consideration because they

discontinued the line of products we were planning on using. Even though Linx has other

products that satisfy our needs, this kind of instability presents major concerns as the product

should be available reliably as our goals indicate.

This left the devices from Chipcon, Analog Devices and TI. Although the Chipcon and

Analog Devices technologies both out perform the TI technology in the areas of concern, we

ended up deciding that this better performance did not overcome the inherent integration

advantages provided by using the TI device since the chosen microcontroller is also made by TI.

TI also offers a demonstration board which integrates the microcontroller and transceiver on a

single PCB. This makes prototyping much simpler and can give us insights into designing a

custom board when prototyping is finished. Furthermore, TI also provides example code on how

Company Device
Modulation
Technique Sensitivity (dBm)

Max Output
Power (dBm)

Maximum Data
Rate (kb/s)

Texas
Instruments TRF6903 FSK, ASK -103 8 64
Chipcon CC1020 FSK, ASK -121 10 153.6
Linx ES Series FSK -102 4 56
Analog
Devices ADF7025 FSK -104.2 13 384

Table 5: Comparison of Transceiver Technology

 28

to execute wireless communication which simplifies the writing of our own code for this project.

So in the end, we chose to use the TRF6903 transceiver from TI.

RF Circuitry

Transceivers can generally be broken down into two main sides: the transmitter side and

the receiver side. On the transmitter side the main components usually are the modulator, up-

converter and the power amplifier. On the receiver side the main components consist of a low

noise amplifier (LNA), the down-converter and the decoder. Both the receiver and transceiver

share a transmit-receiver switch, oscillation circuit and the antenna [29]. It is important to note

that many of the components on the transmitter and receiver side complement each other. For

example, the up-converter and the down-converter both use mixer technologies to transform input

streams into different frequency ranges and essentially act as complements to each other. Figure 8

below is the block diagram of the TRF6903 provided by TI, it will be referenced throughout the

section [24].

 29

Figure 8: RF Transceiver Block Diagram

 The TRF6903 transceiver has a multitude of options that can be set for various aspects of

transmission and reception. These choices are set by the microcontroller through the serial

interface. Before the start of the transmission, the microcontroller sends data to the transceiver to

program the program words. The transceiver has five program words which can be used to set

choices such as desired output power, modulation scheme and whether the transceiver is in

reception or transmission mode [24].

Modulator/Demodulator

The first component on the transmitter side is the modulator. The modulator converts the

incoming digital data stream into an analog waveform specified by the modulation scheme. It also

increases the frequency of the entire stream to an intermediate frequency (IF) or in some cases all

 30

the way to the transmission frequency. In the case that the modulator takes the stream to an IF

frequency, the stream will later be converted to the band of choice later by an up-converter. The

modulation in the TRF6903 is done by a phase-locked loop (PLL) which delivers the modulated

signal at the desired transmit frequency, approximately 915MHz, without the need of an

additional up-converter. The demodulator decodes the modulated received analog signal back to

the original digital data signal. The TRF6903 uses a quadrature demodulator to demodulate the

signal. As the block diagram indicates, the demodulator takes its input from the limiter.

Mixer

Up and down conversion of frequency are complementary operations that can both be

accomplished using a mixer. In this project, only the down conversion is actually done by the

mixer, the PLL serves to deliver a modulated output at the desired frequency for transmission. An

ideal mixer produces an output that is proportional to the product of the inputs. When performing

down-conversion, the inputs to the mixer are the RF input signal and a signal at the local

oscillator frequency delivered by internal circuitry, in this case the PLL. Both of the signals can

be simplified and viewed as pure sinusoids and represented as [20]:

VRF (t) = cos(2ΠfRFt) (4.4)

VLO (t) = cos(2ΠfLOt). (4.5)

Then the output is the product of the two input signals with an additional constant term

introduced as a result of voltage loss in the operation of the mixer, it can be represented as:

VOUT = A cos(2ΠfRFt) cos(2ΠfLOt). (4.6)

Using simple trigonometric identities, the output signal can be viewed as:

vOUT =
2
A

[cos(2Πt(fRF - fLO) + cos(2Πt(fRF + fLO)]. (4.7)

Thus the output frequency of the transmission is then simply:

 31

fOUT = fRF ± fLO.. (4.8)

The desired frequency is the difference between the two frequencies which is selected using a low

pass filter. Since the LO and RF frequencies are very close together, their sum and difference are

then relatively far apart so that filtering out the sum signal can be done easily.

 For ideal mixer operation, impedances at all three ports of the mixer should be matched.

In many technologies, however, that is not the case. This leads to loss in output power, known as

conversion loss. Matching can be done through the use of resistors with real impendence or

reactive components such as capacitors and inductors which have imaginary impedance.

Adequate matching can be difficult in many cases since resistors dissipate power thus leading to

overall loss and reactive components used in matching are typically highly frequency dependent.

Although conversion loss is a reality for many mixer technologies, some technologies actually

boast a conversion gain. Usually diode mixers have losses in the range of 4 to 7 dB and transistor

mixers can deliver some gain [20]. The combination of the LNA and the mixer in the TRF6903

has a conversion gain of 18 dB [24]. The values for the LNA and mixer are given together since

they work so closely together in the transceiver.

 Another figure of merit relating to mixers is the noise figure. Noise figure is typically

defined as [29]:

Outputat SNR
Inputat SNR

=F [dB]. (4.9)

The combination of the LNA and the mixer in the TRF6903 has a single side band noise figure is

6.5 dB so the double side band noise figure then is 13 dB, including the external matching

network [24].

Amplifiers

Typically there are two general types of amplifiers that must be used in transceiver

design. The first is a traditional power amplifier which is used on the transmitter side to amplify

 32

the signal before it is transmitted. The second type of amplifier, a low noise amplifier (LNA) is

used to amplify the received signal. At full utilization, the TRF6903’s power amplifier delivers 8

dBm (or about 6.31mW) of output power to a matched 50Ω load. The power amplifier also has

the ability to attenuate the output power by either 10dB or 20dB resulting in -2dBm (0.631mW)

and -12dBm (0.0631 mW) output power to a matched load respectively. When the power

amplifier is disabled, the output power delivered to a matched load is -80dBm (10-8 mW) [24].

This attenuation value is set by the microcontroller through the appropriate program words in the

transceiver. In this project we normally output full power. The power amplifier is only activated

during transmission since the current consumed and thus the power consumed rises significantly

with the power amplifier active. When all other components are active but the power amplifier is

disabled, the transceiver normally consumes 10mA of current, while when the power amplifier is

active at full power in addition to all the other components the typical current consumption jumps

to 35mA [24].

In receiver systems where there are generally low losses after the first amplifier, the noise

figure of the entire system is most significantly affected by the performance of the first amplifier

so a low noise amplifier is used. The output of the LNA is then fed directly to the mixer. In the

TRF6903, the conversion gain of the LNA/mixer system is specified together since they work so

closely together. The conversion gain of the system is 18dB and the SSB noise figure is 6.5dB.

After passing through this stage, the frequency of the data is at the IF frequency, or 10.7MHz.

This signal is then fed to a 10.7MHz discriminator and then to a limiter that has a gain of 86dB

and a noise figure of 4dB. Finally this output is sent to the demodulator.

 Oscillation Techniques

Many of the RF components in a typical transceiver need a dependable input frequency. One

method of delivering such a known frequency is through the use of crystals that oscillate due to

the piezoelectric effect. When a voltage is applied across the faces of the crystal, forces are

applied to bound charges which result in a vibration at a resonant frequency [29]. The reference

 33

crystal used in this application is the Crystek 017119 which outputs a signal at 19.7MHz.

Multiples of this frequency is provided by a phase-locked loop (PLL) which takes a crystal

oscillator as an input and outputs a signal with multiples of that frequency with noise and stability

specifications similar to those of the highly accurate crystal oscillator [30].

 A block diagram of the PLL used in the TRF6903, provided by TI, is shown below in

Figure 9 [30].

Figure 9: PLL Block Diagram

The block diagram shows that the PLL basically consists of a phase detector that takes a signal at

the reference frequency along with an N divided version of the output frequency. The phase

detector then outputs a voltage proportional to the difference in phase of these two signals. The

output of the phase detector is then fed to the voltage controlled oscillator which outputs a signal

whose frequency is a function of the input of the voltage coming from the phase detector.

Eventually the PLL settles and delivers a frequency at a multiple, N, of the input reference.

 During FSK operation at least two frequencies are required for transmission. This is

accomplished by placing another capacitor (CFSK) in parallel to the external capacitor which is in

series with the crystal oscillator. Referring back both the block diagram of the entire transceiver

shown in Figure 8 and the block diagram of the PLL shown in Figure 9, we see that the effects of

the CFSK are controlled by the XTAL switch which is controlled by the input data. When the input

data is low, the XTAL switch is closed which effectively removes the external FSK capacitor so

that the net external capacitance is simply:

 34

Cnet = Cexternal. (4.10)

The output frequency (flogic low) then is based only on the single external capacitor and the crystal

oscillator. When the input data is high, the XTAL switch is open which gives the net external

capacitance:

Cnet = Cexternal + CFSK. (4.11)

The output frequency (flogic high) then is based on both capacitors [24]. In addition to serving as the

modulator, during reception the PLL also delivers the LO frequency to the mixer that is used for

down conversion. In the receive mode the XTAL switch is closed so that a constant frequency is

delivered to mixer.

Data Slicer and Bit Synchronizer

Before discussing the operation of the data slicer and bit synchronizer, it is instructive to look at

the basic structure of a wireless packet. The packet starts off with a training sequence of

alternating logic highs and lows that is used to train the internal components of the transceiver.

After the training sequence, a start bit is sent that is three times the length of a normal bit to

indicate that the training sequence has ended and data is about to begin. Lastly, the data is sent

and the transmission is completed.

 The purpose of the data slicer is to take data coming from the demodulator and output

digital data to match the data originally sent by the transmitter. This is accomplished by

comparing the output of the demodulator to a reference voltage. The reference voltage is set by

the sample-and-hold (S&H) capacitor. During learn mode the S&H capacitor charges to the

average value of the training sequence. After the training sequence is completed, the transceiver

switches from learn to hold mode where it holds the S&H capacitor voltage and uses it to

decipher the signal coming from the demodulator. The value of the S&H capacitor is given by

[24]:

 35

CSH =
(Hz)) in (Data Rate51k5

 BitsTraining of #
∗∗

. (4.12)

The time constant of the S&H capacitor is determined by factoring in an internal 51kΩ resistor.

Thus the time constant is:

τ =
 BitsTraining of #

 Hz)in (Data Rate5∗
. (4.13)

This time constant then also then puts constraints on the duration of the incoming RF signal. As

the voltage level of the S&H capacitor decays, the data slicer looses the ability to accurately

decipher between logic highs and lows. In our project we use a 5.6nF capacitor for CSH.

 The bit synchronizer ultimately recovers the data at a predetermined frequency. The

predetermined frequency is a function of the crystal and values provided by the microcontroller.

The transceiver provides both the final received data at the RX_DATA terminal and the

corresponding clock at the DCLK terminal as shown in the block diagram in Figure 8.

Reception Modes

Depending on the needs of the user, the TRF6903 can operate in one of four reception modes.

When operating in the raw data mode the output of the data slicer is directly fed to the output

terminal RX_DATA and the bit synchronizer is completely bypassed. In the Deglitch mode, the

output of the data slicer is fed to a deglitch filter. If five or more of the last seven samples taken

are logic highs, then the filter outputs a high, and if two or fewer of the last seven samples are

logic highs then the filter outputs a low. If neither one of the conditions apply the value is kept the

same. The frequency by which the filter samples that output of the slicer is programmed by the

microcontroller. The clock used to sample the slicer data is provided at the DCLK terminal and

the deglitched data is provided at RX_DATA [24].

 36

 In clock recovery mode, the output of the deglitch filter is synchronized to a bit-rate

clock. For the clock recovery mode to deliver the desired synchronous data the number of

consecutive logic highs or logic lows, NC, must meet the condition:

NC <
Δ

250000
 . (4.14)

Where Δ represents the error between the transmit bit rate and the receiver bit rate measure in

parts-per-million (ppm). The deglitched data is outputted at the RX_DATA terminal and the

synchronous bit-rate clock is outputted at the DCLK terminal [24].

 The last mode of operation is the self train mode where the transceiver also looks for the

end of the training sequence in addition to performing clock recovery. The transceivers being

used in this project operate in the self train mode. The outputs at the RX_DATA and the DCLK

terminal are identical to those when the transceiver is in the clock recovery mode but in the self

train mode the RX_FLAG terminal is raised to logic high for one clock cycle at the first bit not

within the training sequence [24].

Basic Antenna Facts

The antenna is the final piece of hardware on the transmitter side and the first piece of hardware

on the receiver side. On the transmitter side the antenna is takes an electrical signal and converts

it to an electromagnetic wave which propagates to the receiver side. On the receiver side, the

antenna performs the complimentary action by converting the incoming electromagnetic wave to

an electrical signal. By the Lorentz reciprocity theorem we find that the same antenna can be used

for transmission and reception [31].

 The radiation pattern of an antenna shows the strength of the field emanating from the

antenna as a function of either the azimuthal angle, φ, or the elevation angle, θ [20]. By the

reciprocity theorem, this radiation pattern also shows how well the antenna receives in each

direction.

 37

 The directivity of an antenna is a quantitative description of the radiation pattern. The

directivity, D, of an antenna is defined as [31]:

angle solidunit per radiatedpower Average
angle solidunit per radiatedPower),(=φϑD . (4.15)

Or equivalently as:

r

r

P
dP

4),(
Ω

Π=
d

D φϑ (4.16)

where Pr is defined to be the total radiated power. Manufactures often refer to the maximum

directivity simply as the directivity [31]. A high directivity cited by the manufacturer then implies

that the electromagnetic wave emanating from the antenna is tightly confined and highly

directional. The gain of an antenna is a closely related parameter that also takes into account the

efficiency, e, of the antenna which is defined as being [20]:

in

r

P
P

=e (4.17)

where Pin is defined as being the total input power. The gain, G, of an antenna then is [20]:

).,(),(φϑϕϑ eDG = (4.18)
 An important receiving characteristic of an antenna is how much of the incident power is

received by the antenna. This total received power can be expressed as [20]:

avger SAP = (4.19)
where Savg is the time average of the incident electromagnetic wave’s Poynting vector and Ae is

the effective area of the antenna. This area can be thought of being the effective area that captures

the incoming information bearing wave. It can be shown that under matched impedance and

polarization conditions, the effective area Ae can be expressed as [31]:

),(
4

2
0 φϑ

λ
GAe Π

= (4.20)

where 0λ is the operating wavelength of the antenna. We are operating in the 902-928MHz

frequency band so the characteristic wavelength is approximately 33cm.

 Another critical parameter of an antenna is its impedance. This impendence determines

the amount of power that will be delivered to the antenna. If the impedances of the transmission

 38

line and antenna are not matched, some of the power will be reflected rather than fed to the

antenna resulting in a reduction of the efficiency of the transmitting system.

Antenna Choice

In addition to the inverted-F PCB antenna that comes with the TI demonstration board, we also

considered using a dipole antenna. In choosing the antenna we require that the antenna be able to

be adjusted by the user to reduce the effects of polarization mismatch. This freedom in this

azimthual and elevation directions allows for an optimal relative configuration of the transmitting

and receiving antennas irrespective of the relative orientation of the FMB and the receiver. We

also require the antenna be a nearly omnidirectional in the azimuthal direction as we would like to

make the operation as simple as possible by not requiring a specific orientation for the antennas in

the azimuthal direction.

 In the end we chose a half-wave dipole antenna, the PSKN series, made by Mobile Mark.

This antenna comes with a knuckle that allows its orientation to easily be changed as we had

earlier stipulated. Furthermore, the dipole antenna has a predictable and an omnidirectional in the

azimuthal direction making it easier to use for both users on the FMB and receiver side. It can be

shown that the directivity of a half-wave dipole antenna is given by [31]:

.
sin

cos)2cos((64.1),(
2

⎟
⎠
⎞

⎜
⎝
⎛ Π

=
ϑ

ϑ
φϑD (4.21)

This pattern is plotted below in Figure 10:

 39

Figure 10: Typical Half-Wave Dipole Radiation Pattern

Figure 10 shows that the antenna radiates and receives best along the y-axis and has a minimum

transmission and reception along the z-axis. This shows that antenna should be oriented vertically

rather than horizontally for optimum transmission. The PSKN series antenna has a maximum gain

of 1.70 in the 870-960MHz band [32]. The PSKN series antenna also has an impedance of 50Ω

which also is the impedance of the transmission line that feeds the antenna thus assuring no

power is reflected back. Using (6.6) with a maximum gain of 1.70 we find that the maximum

aperture is 0.39m2.

Radio Propagation

Once the antenna radiates the electromagnetic wave, this information carrying wave must

propagate through the communication channel during which it can be subject to a variety of

effects that can impact its characteristics. The main propagation effects for communication in our

frequency band are reflections, diffraction, scattering, attenuation and Doppler spread [20].

 The effect of each of these factors depends heavily on the environment and application of

the particular wireless device. Our goal is to design this device to work in all environmental

conditions that fisheries researchers may encounter, thus we must plan for outdoor propagation in

all types of weather conditions as well as indoor propagation. We assume this indoor environment

to have various non-metallic obstacles blocking the line-of-sight.

 40

 Based on the conditions we expect to operate in, we make several assumptions. First we

assume that the FMB and the receiver will not be moving relative to each other so Doppler shift

will not be an important concern for us. Likewise, we also assume there will be no scattering

objects such as foliage in the channel and no edges or corners that may cause significant

diffraction. Our main concerns, then, are attenuation in the channel due to weather conditions and

reflections from within their environment either indoor or outdoor. All of these channels effects

tend to reduce the signal power from what would be expected in free-space propagation, thus

reducing the signal to noise ratio which has been shown earlier to increase error rate.

 The effects of reflections manifest themselves most when there is an absence of a line of

sight between the board and the receiver resulting in a fading environment. Fading is a small-

scale effect in which relatively small variations in distance result in large variations, 20-30dB in

severe cases, in the received signal [20]. To ensure that our wireless link can operate effectively

in a reflective environment, we make sure to test in a situation where there are multiple reflectors

such as walls, desks and appliances and no line of sight. The results of these tests will be

discussed later.

 The other main effect is the attenuation due to weather conditions. In our case, we will

have to plan for the attenuation effects of rain, ice and snow. The most substantial attenuation at

our operating frequency is caused by rain. Although rain can cause scattering, the attenuation

mostly derives from the fact that water has a complex permittivity and thus can be considered a

lossy dielectric [31]. In general, the attenuation from rain depends on the rate of rainfall,

operating frequency and temperature. These effects can be summed up in the equation [31]:

baRA = dB/km (4.22)

where R is the rate of rainfall in millimeters per hour, and the constants a and b depend on

temperature and frequency. In our case, for heavy rain which corresponds to about 16 mm/hr

[31], at 0°C we get an attenuation of -410 5.46× dB/km which obviously does not result in a

 41

significant decline in signal level at the receiver. So we conclude that main concern in the

propagation is reflections from various elements in the environment of the FMB and the receiver.

In our testing procedure we will then test the link in an environment prone to multiple reflections

rather than an anechoic chamber.

 42

CHAPTER 5: IMPLEMENTATION AND TESTING

System Design and Implementation

The operation of the entire system can be broken down into three main stages: length

measurement, wireless transmission and reception. Each of these segments performs a distinct

function and has a microcontroller dedicated to its operation. The length measurement segment

finds the location of the stylus and passes that information along with other parameters to the

transmitting microcontroller that programs the transceiver and sends it the data to be transmitted.

The transceiver then wirelessly sends the data to a transceiver on the receiver side. The receiving

microcontroller then takes the data coming from the receiving transceiver and sends it to the

computer on the receiver end through the RS232 port. The code for the length measuring,

transmitting, and receiving microcontrollers can be found in Appendices A, B, and C

respectively.

 The basic schematics shown in Figure 11 and Figure 12 show how the different elements

of the system interact, they will be referenced throughout this section.

 43

Figure 11: Board Side Schematic

Figure 12: Receiver Side Schematic

Length Measurement System

The main function of the length measuring system is to find the location of the stylus and

use that information to find the length of the object. It then sends that data along with other

parameters to the transmitter. It also provides a timer feature to allow the board to be turned off in

times of inactivity

 44

 The basic length measurement scheme is to measure the output voltage of all of the

sensors, when the output of one of the sensors changes, the microcontroller finds the sensor that

changed to determine the length. The course position of the sensor is simply corresponds to the

identity of the sensor whose output value changes the most. Since the sensors are spaced 6mm

apart, this gives us an accuracy of ± 3mm. After the measurement is taken, the microcontroller

uses a polynomial that describes the position of a magnet as a function of output value derived

from calibration data to find the fine position accurate to 1mm as required.

In practice, the Allegro 1321 Hall-effect sensor has a zero voltage that is half of the

supply voltage. The sensor is also known to have approximately linear operation with respect to

the input flux density when the supply voltage ranges from 4.5V to 5.5V. Though the linearity

does not hold with respect to the distance to magnet, since the flux density of a magnet is non-

linear with respect to distance to the measuring point, we decided to stay in this range to try to

make the calibration as simple and accurate as possible. Operation outside of this range would

require working in a regime that is non-linear with respect to input flux density which then would

lead to a higher degree of non-linearity with respect to distance. This added non-linearity would

make it more difficult to calibrate the sensors accurately. The microcontroller works on a separate

supply voltage of about 2.54V and should not take any inputs more 0.3V higher than its supply

voltage [5], so we chose a supply voltage 4.5V which corresponds to a zero voltage of about

2.25V, well within the range for the microcontroller. We also chose to use the North Pole of the

magnet to force the output voltage to fall from the zero value for the same reason.

 Once the board is turned on, the microcontroller begins to continually scan all the

sensors’ outputs by providing a digital address to a series of 8-to-1 analog multiplexers and

reading their output. In the current implementation we have one PCB module consisting of 42

sensors spanning about 25cm. For a 1m long board, we would then have to use four of these

modules. Each of these modules has seven total analog multiplexers, six of these multiplexers are

the considered level 1 multiplexers that are directly tied to seven sensors each and one level 2

 45

multiplexer that takes the output of all the lower level multiplexers. The schematics for the level 1

and level 2 analog multiplexers provided by the Electronics Design Group are shown in Figures

13 and 14 respectively. The PCB board was designed by the Electronics Design Group at the

University of Maryland and fabricated by Advanced Circuits.

Figure 13: Level 1 Multiplexer Connections

Figure 14: Level 2 Multiplexer Connections

 46

 As the general schematic diagram in Figure 11 shows, the addresses that are fed to the

analog multiplexers come from Port 3 of the microcontroller. The first three pins are tied to the

address lines for all the level 1 analog multiplexers, while the next three pins are tied to level 2

multiplexers. The output of each of the level 2 analog multiplexer’s are then tied to an ADC pin,

the microcontroller has eight total pins to be used for this purpose. Overall this implements a

basic coordinate system, for instance if the first three pins give an address of 5 and the next three

give an address of 3, then the sixth sensor of the fourth analog multiplexer is selected from each

of the modules to be read by its ADC pin. The results from the ADC pins are then converted into

voltages through the use of equation (2.2).

 We configure the ADC to operate based on the MCLK which has a frequency of

2.46MHz. For each conversion, the ADC spends 8 cycles sampling the voltage and 13 cycles

performing the conversion. Thus each conversion takes approximately 8.5 μs and an entire scan

of the module takes about 0.4ms.

 During normal operation when there are no appreciable changes in the output values of

the sensors, the microcontroller simply repeatedly scans all the sensors’ output voltages,

overwriting the values of the previous scan. When a sensor reacts to magnetic field and its value

drops below a set trigger value another measurement scheme is triggered. As soon as the value of

one or more sensors drops below the set trigger value and a scan is complete, the microcontroller

finds the sensor with lowest output voltage and the second lowest output voltage. We assume the

location of the lowest output to be the course position of stylus. For the next 32 voltage

measurements, the value of the most affected sensor is read into separate array in addition to the

normal scanning. To match the values obtained from a calibration, we need the minimum value of

the output voltage, i.e. the output value when the stylus actually touches the board as stipulated.

After the 32 measurements are completed, the microcontroller finds the minimum voltage which

is the value used to find the fine position. Figure 15 shows a typical voltage characteristic with a

trigger value of 1.5V.

 47

Figure 15: Typical Voltage Characteristic

Figure 15 shows the expected shape as the stylus is brought close to sensor and then taken away,

as would be the case in a normal measurement. It also shows that 32 measurements are enough to

resolve the minimum value since the sensor returns to its zero value towards the end of the

measurement. In our final design we use a trigger value of 1.0V instead of 1.5V, both allow for

the minimum output voltage value to be found as desired. Using this minimum value and

calibration data, ± 1mm accuracy can be attained. The location of the second-most affected

sensor then provides the ability to take the ± 1mm down to the required 1mm.

After the length of the fish has been determined, the status of the FMB is measured. This

status is found by taking the measurements of all the sensors in the vicinity of lowest sensor

except for the five sensors to the right and left of the lowest sensor. Five sensors to the left and

right of the lowest sensor are not measured since the magnet may still be in the area of those

 48

sensors causing their outputs to be affected. A sensor is defined as degrading if its output voltage

is below 2.0V and failed if its output voltage is below 1.0V. The number of degrading and failed

sensors is then counted. If there are no failing sensors and a non-zero number of sensors

degrading then the condition of the board is defined as ‘Fair’. If there are failing sensors then the

condition is ‘Fail’. In all other cases, the status is defined as ‘Good’. This status information in

addition to the length, measurement units and supply voltage are then sent to the transmitter

board. In our present implementation, the supply voltage is not measured rather if this needed to

be added, one of the sensors at either end of the board could be replaced by the supply voltage.

Since the microcontroller should not have a voltage on any of its pins more than 0.3V above its

own supply voltage, the supply voltage being measured will have to be divided by a voltage

divider. We also set the unit in the mm for the time being, a relatively simple addition to the code

can allow either mm or inches to be selected.

Once the array of information to be sent to the receiver is determined and the

transmission array filled, the parallel communication begins. To start the parallel communication

a UART message is sent from the length measuring microcontroller (L.M.) to the transmitting

microcontroller (T.M.). The information within the packet is not of importance, it is presently set

at the first entry in the transmission array, rather the packet is used to interrupt the T.M. – in

effect letting it know that a transmission is imminent. The basic protocol of the digital

transmission is a combination handshake and timeout. Referring back the basic schematic in

Figure 11, the information is sent through Port 1 on the L.M. and arrives at Port 5 on the T.M.

Once the T.M. is interrupted, its waits a set period of time and then reads the data on Port 5, it is

assumed that in this time the L.M. has entered the desired information. After reading the data and

assigning it in the proper location, the T.M. puts raises pin 6.4 to a logic high which is read in on

the 5.0 pin on the L.M. During the time the T.M. is processing the data, the L.M. is also waiting a

set period of time for the logic high, if the time elapses, a timeout occurs and the digital

transmission is aborted. Once the handshake arrives at the L.M., it changes the data to the next

 49

entry in the transmission array and this time waits for a logic low as the handshake. This process

then continues until the transmission is complete.

 The purpose of the timer in the L.M. is to allow for the ability to turn off the power to the

sensors if the board is idle. The timer performs this operation by providing an interrupt every

50,000 clock cycles. In this case, the clock used by the timer is the ACLK which has a period of

30.5 μs, thus produces and interrupt every 1.5s. At each interrupt, the microcontroller checks if

any measurement has occurred since the last interrupt and logs the number of consecutive

interrupts that have gone by without a measurement. After a specified number of interrupts, we

have specified 15 interrupts for a minimum latency time of about 25s but any reasonable number

can be used, an action is taken by the microcontroller. In the final integration of the board, a

simple addition to the code can allow for the microcontroller to raise a pin to a logic high to cut

off power to the sensors.

Wireless Transmission

After being turned on, the T.M. begins by initializing all input/output (I/O) ports and

programming the transceiver to all required specifications such as the bit rate and the output

power attenuation. Once these initialization steps are completed the T.M. enters the main phase of

its operation where it waits for an incoming wireless transmission. Although there are no wireless

transmissions sent to the T.M. in this project, we left this feature in place for further advancement

later which may include the receiving microcontroller (R.M.) sending messages to the T.M. The

operation of the microcontroller during this waiting for a transmission will be discussed in the

Reception section. For all practical purposes then, after all initializing steps are taken the T.M.

waits for an interrupt from the L.M.

Once the UART message associated with a digital transmission from the L.M. arrives at

the T.M., the reception mode is halted and the transmission ISR is run. The contents of the digital

transmission are then placed into the transmission buffer. The code behind the operation of the

 50

wireless transmission was written by Harsha Rao of TI which implements the basic program for

wireless transmission and reception. This code is edited to fit the needs of the project, but we

made sure to hold onto as much of the basic program as possible to preserve its reliability.

 The basic program has a 17 element transmission buffer with each element containing 2

bytes or 16 bits. Of the 17 elements, 16 are used for actual data and the last entry is used as a

checksum for error detection on the receiver side. Although our project only requires the

transmission of four basic data fields and the checksum, we decided not to shorten length of the

transmission buffer since our board will not conceivably be used in particularly high speed

environments thus reduction in transmission time is not significant and the implementation with

17 elements works reliably. To make use of the 12 unused entries we filled them with the most

important item of the transmission – the length of the fish. Thus we end up sending the data a

total of 13 times. We intend then to implement a majority vote system on the receiver side that

will decide on what the length of the fish is.

 Once the entire transmission buffer is filled, the Send_RF routine, written by Harsha Rao,

is run to send the data in to the transceiver. The goal of the Send_RF routine is to send the entire

transmission at 38.4Kbps, which corresponds to a bit period of 26.04 μs. The transmission

consists of a training sequence that sets the value of the sample and hold capacitor, a start bit

which is a logic high that is three times the length of a normal bit, a delay which is a logic low

that lasts twice a bit duration and the 34 bytes of data.

 When programming the transceiver in the initialization steps, the T.M. selects the self-

train mode for the transceiver. In this mode, the transceiver supplies a clock signal at the desired

bit rate at the DCLK pin. This signal is used to time the duration of each data bit coming from the

T.M. The basic process is shown in Figure 16 from TI [22]

 51

Figure 16: Transmission Data Timing

As shown in Figure 11, the signal coming from the DCLK pin is fed to pin 2.1 in the T.M. This

signal is used for the capture input to Timer_B. The timer is configured to provide an interrupt on

rising edges of the DCLK. The basic framework is that the microcontroller is in a sleep mode and

is interrupted by a Timer_B interrupt when there is a low to high transition in the DCLK. The

T.M. then returns from sleep mode and then either toggles or holds constant the output data and

then returns to sleep. The transmission data is timed to correspond to falling edges of the DCLK,

thus the rising edges correspond to the center of the transmission data bit. This process is

continued until all of the elements of the transmission have been sent to the transceiver [22].

Once the transmission is complete, the microcontroller returns to the state in which it again waits

for a UART interrupt from the L.M.

Reception

The reception of the wireless data is done in three different steps: training sequence and

start bit detection and data reception. During start up, the receiving microcontroller (R.M.)

programs the transceiver on the receiver end to the learn mode in which the value of the sample

and hold capacitor is set. It is important to note that while the transceiver is on it is always

outputting some type of data due to background noise. It is then the job of the R.M. to interpret

this output and decide when the data is actual data sent by the T.M. and when it is just noise. This

deciphering of the data coming from the transceiver, the RXDATA, is principally done using

 52

Timer_A in the capture mode to determine the pulse width of the incoming data. As Figure 12

shows, the RXDATA pin from the transceiver is tied to the 2.0 pin in the R.M. and is used as the

input to Timer_A. Timer_A is configured to interrupt and copy the value of the count to an

appropriate register on both the rising and falling edges of the RXDATA. The values from

consecutive interrupts are then subtracted and that pulse width is then compared to the expected

pulse width of 26.04 μs to determine if it is a valid pulse [22]. It is also important to note that this

validation step is done during the training sequence of alternating highs and lows so that there

will be no consecutive highs which would not match the desired pulse width but actually would

be valid data.

 Ideally the pulse width of a valid training sequence would always be 26.04 μs, but in

practice channel effects often have an impact on this pulse width. To compensate for this

possibility, the R.M. actually looks for data that falls in a range of pulse widths from 22.8 µs to

29.3 µs. The actual deciphering of the training sequence is done by the CC2_INT ISR. It looks

for 16 consecutive valid pulses to declare a valid training sequence. The reason for looking for 16

consecutive valid pulses rather than just one pulse is that given the background noise eventually

some pulse will come that falls in the acceptable range, requiring 16 such pulses reduces the

probability of an incorrect validation. After a valid training sequence is recognized, the R.M.

looks for the start bit which lasts for three times the duration of a single bit. Once the start bit is

received, the CC2_INT returns control to the Receive_RF routine for data reception [22].

 Once control is transferred to the Receive_RF routine, the Timer_A capture interrupt is

disabled and the transceiver is switched from learn to hold mode. Since the transceiver is

operating in the self-train mode, the data can be read with the help of a synchronous clock output

at the DCLK terminal. Similar to the transmission, the RXDATA is timed to the falling edge of

the DCLK which would logically lead to the R.M. triggering on the rising edge of the DCLK. It

turns out that triggering on the falling edge of the DCLK actually provides better results due to

the latency between the triggering and actual latching of the R.M. The differences between

 53

triggering on the rising and falling edges of the DCLK signal are shown in Figures 17 and 18

from TI [22].

Figure 17: Triggering on the Rising Edge

Figure 18: Triggering on Falling Edge

As shown in Figure 17, there is an approximately 10 μs latency period from when the R.M. is

triggered until when the RXDATA is actually latched, this leaves only about 3 μs until the next

bit period begins. Recall that channel effects often lead to a change in the bit period of the

 54

incoming data, thus a relatively small change in bit period may cause the RXDATA to be latched

on the wrong bit period. Figure 18 shows that if the R.M. is triggered on the falling edge of the

DCLK, there are 16 μs until the start of the next bit period, allowing for considerably larger jitter

in the pulse width [22]. This process continues until all the data has been read and stored in the

appropriate array.

 Once the wireless transmission is complete, the R.M takes a majority vote on the message

to determine the length of the object. The R.M. records both the entry getting the most votes and

the number of votes it got so that the user on the receiver side can judge whether or not to trust

the data. Once majority vote is taken and the checksum computed and compared to the expected

value, the received values are output to the computer on the receiver end via an RS232

connection and displayed on the receiver computer using HyperTerminal. In our setup we have

the option for a computer to be connected to the FMB side as well through the RS232, which can

be used for diagnostic testing in the field.

Final Product

Figure 19 below shows what the final project looks like.

Figure 19: Final Implementation

 55

The board on the far right is the sensor board module which sends its output to the L.M. which is

located inside of the gold board in the center of apparatus. The L.M. is the connected to the

demonstration board for the TRF6903 which has both the transceiver and the T.M.

 Figures 20 and 21 are screen shots of the messages from the transmitter and receiver end

respectively.

Figure 20: Example Messages on the Transmitter Side

 56

Figure 21: Corresponding Messages on the Receiver Side

The first field in the display is the board number, as an example we have used ‘$FMB23’, but this

can easily be changed for each board by a simple edit in the code. Next is the length of the object

followed by the measurement units and the supply voltage. On the transmitter side the next field

is the status of the board, but the message on the receiver has two additional fields. The first of

these additional fields is the number of votes the length displayed got, 13 being the maximum,

and the next field indicates whether the checksum was correct, i.e. 1 for a correct checksum and 0

for an incorrect checksum.

Device Testing

After designing and implementing the system, the next step was to test it to understand how it

performed in a variety of circumstances. The principal metric used to measure the performance in

each of the circumstances in was the packet error rate. In most of the tests an incorrect

transmission is defined as the situation in which the checksums do not match up, however, in

some tests each entry is checked for errors.

 57

For all of the tests, the transmitting board is powered by a constant voltage source which

prevents a fall in supply voltage during the test. Since the power amplifier of the transceiver is on

for much of the transmitting time, batteries would not accomplish the task as the power drain

would result in a dramatic reduction in the supply voltage. On the receiver side, batteries are used

since the power amplifier will never be on so that the supply voltage will not diminish

significantly. During the tests, the value of the supply voltage of the receiver at the end of the test

is noted to make sure it has not dropped too far. The packets were filled with data that would be

typically sent in the transmission and the length was changed every transmission as would be

expected in actual practice. So in each of the transmissions we send the length of the object 13

times and the remaining slots in the packet are used for the systems parameters such as status and

supply voltage. In each of the tests 100,000 packets are sent and both the number of total and

incorrect receptions were logged. We then measure the packet error rate (PER) defined as:

PER Received (PER)
ReceivedPacketsTotal

 ReceivedPacketsIncorrect
≡ (5.1)

In addition to receiving incorrect packets, lost packets also turn out to be a major concern. We

define the pack lost rate (PLR) as:

PLR
Sent Messages
 LostMessages

≡ . (5.2)

Testing Results

The first test was the control case in which the transmitter and receiver are located about

1m apart in a LOS environment. We design the system to function when the transmitter and

receiver will be located a few feet apart, so this is the best case of the actual transmission since

there are no obstacles obstructing the transmission. Results from this case are shown in Table 6

below.

 58

PA Attenuation
(dB)

Vcc(V)
Receiver PER PLR

0 2.6 0 0
10 2.58 0 0
20 2.35 0 0

Table 6: LOS Test Results

As expected, all three power levels deliver perfect performance with respect to the PER and PLR.

Next we looked at the effect the orientation of the antennas has on the transmission. We would

assume that the worst case scenario with one of the antennas horizontal and the other vertical

would cause significant errors. We also put a copper sheet underneath the transmitter to model the

use of the board on a metal table. Moreover, we chose the transmitter to be horizontal and the

receiver vertical since this was the initial configuration that we were proposing to use. We tested

this scenario for 0 and 20dB attenuation levels, the transmitter supply voltage was held constant

at 2.85V as in the other trials and the separation is again held at 105cm, the results are shown in

Table 7 below.

PA
Attenuation (dB) Vcc Receiver PER PLR

20 2.52 4.19E-02 6.98E-03
0 2.57 1.00E-05 0

Table 7: Orientation Testing Results

The results of this test show that especially in the 20dB attenuation case, the polarization

mismatch caused by orienting the antennas in this fashion causes a significant rise in the PER and

the PLR. Even though the full power case results in only one incorrect message, we concluded

that the antenna in the final board should be oriented vertical to maximize the performance of the

wireless link.

 The next test was to look at how distance affects the operation of the wireless link. We

expect to see a significant rise in both incorrect packets and lost packets as the distance increases

 59

since the received power decreases as a function of the distance squared. The test was conducted

in a narrow corridor 6 feet wide with cinderblock walls and we also keep the metal sheet

underneath the transmitting antenna for the same purpose as before. In addition to the normal

parameters, we also noted the received signal strength indicator (RSSI) outputted by the

transceiver due to the background and during a transmission, the results are shown in Table 8

below.

Distance (ft)
Vcc
Receiver PER PLR

RSSI
Background (V)

RSSI
Transmission(V)

28 2.43 0 0 0.24 0.57
58 2.74 7.43E-2 8.88E-3 0.24 0.32

105 2.67 N/A 1 0.24 0.24

Table 8: Distance Testing

The results show that at 105 feet the wireless link completely breaks down, there is no increase in

the RSSI voltage and no messages were received by the receiver in this case. At 58 feet the link

performs better but still has substantial PER and PLR and only has a 0.08V rise in RSSI. At 28

feet, the link performs very well, the RSSI increases by 0.33V and there are no incorrect packets

or packets lost. We conclude that the link works well at relatively small distances as would be the

typical use of the device, but if longer distances would be required a relay system may have to be

used to extend the operating range.

 Our next testing case is the most important case which mimics the actual use of the

device. In this test we have the transmitter and receiver located a few feet apart and a person in a

chair sitting in front of the received antenna. Thus, we create the NLOS environment we are most

likely to see where a person is working on the receiver while the board is being used. We keep the

metal sheet as before underneath transmitter. Since this is the most important test case, we

performed three identical tests in which the separation distance was held constant at 185cm and

the full power setting was used. The results of this test are shown in Table 9 below

.

 60

Test Vcc Receiver (V) PER PLR
1 2.49 0 0
2 2.44 0 0
3 2.42 3.20E-04 4.50E-04

Table 9: Principal NLOS Case

The results show that the device satisfies the goal of operating in an NLOS environment typical to

what the device may be placed in. In the first two testes there were no errors and in the last case

there were a small number of errors and lost packets.

Majority Vote Analysis

After establishing that the link satisfies the goals, we next looked at the effect the

majority vote has on the transmission of length of the object. Since we were checking the value of

a particular field in the packet, we had to keep the values sent constant so that when the check

was done on the receiver end it would know what to look for. Moreover, we also sought to induce

errors in this test so we used 20dB and 10dB attenuation levels. For this test we recorded the

length error rate (LER) and the corrected length error rate (CLER), defined as:

LER
 ReceivedMessages
 ErrorsLength

≡ and (5.3)

CLER
 ReceivedMessages

sCorrectionMajority - ErrorsLength
≡ . (5.4)

The majority vote is only considered valid for times when the result gets at least 7 votes. The

results of this test are shown in Table 10 below.

PA
Attenuation (dB) LER CLER PER Improvement

20 5.91E-3 2.89E-3 7.69E-03 51%
20 3.00E-5 0 3.00E-05 100%
10 2.08E-3 1.25E-3 2.81E-03 40%
10 2.29E-3 1.45E-3 3.06E-03 36%

Table 10: Majority Vote Improvement

 61

The results show that the majority vote does have a significant effect on the LER. In the second

case there were only 3 errors total so 100% the improvement in that case is somewhat misleading.

In all of the other cases, though, there was a significant drop in the number of length errors using

this majority voting process. Overall this test shows that our device that already satisfies the goals

has increased performance in terms of correct length transmission through the use of the majority

voting process. During this process we also logged the number of times the majority vote,

whether the result has at least seven votes or not, delivered a correct value as a function of the

number of votes given that there was an error in the length. Over all four of the tests, Figure 22

shows these results.

Figure 22: Majority Voting Process

The data shows that the most corrections occur when the majority result gets 12 votes i.e. only

one of the length entries is incorrect. The data also shows that there are a number of corrections

that would be correct when the number of votes the result gets is less than a majority. Thus,

depending on the accuracy requirements, a result that gets less than a majority can also be used as

the length of the object.

 62

 Overall, throughout the various tests we have shown that the wireless link that will be

used in the final board works sufficiently well in a typical NLOS environment. We also have seen

that the orientation of the two antennas plays a significant role in performance and that the device

works well at small distances but performance drops of steeply for larger distances. Finally we

showed that the majority voting process does have a positive impact on the correct reception of

the length of the object.

 63

CHAPTER 6: CONCLUDING REMARKS

Future Work

Through the course of this project we have succeeded in designing and implementing the

basic technology needed for a wireless FMB that has 1mm accuracy. What remains is to package

this technology effectively and then use that final packaging in the calibration procedure. The

calibration cannot be done until the material and thickness of the stylus and protective packaging

have been decided on since they severely impact the TEAG.

 Aside from the final packaging, there are improvements that can be made in the wireless

technology. We have left open the possibility of the receiver sending data to the FMB, so that

with minimal additions in the code of the receiver the receiver can query the FMB for its status,

ask for a repeat transmission in the case that the majority vote returns a length that does not get at

least seven votes and acknowledge the reception of a transmission. Moreover, the majority voting

concept can be improved upon greatly by using the myriad of coding techniques available. Since

we have allocated 208 bits to be used for the transmission of the length of the fish, this gives great

flexibility in choosing a coding scheme that can maximize the performance of the system. Lastly,

to deal with lost packet, the T.M. can use the timer to wait a predetermined amount of time for an

acknowledgement from the receiver, once this time has elapsed with no acknowledgement, the

T.M. would then re-transmit the data.

Conclusion

 In conclusion, through the course of this project we have designed, implemented and

tested the basic technology needed to create a FMB that can take electronic measurements and

send them wirelessly to a receiver. We accomplished our goal of designing a wireless link that

can operate in conditions similar to what FMB operators often encounter and designed the system

out of COTS available technology. We also implemented a majority voting process that has a

 64

positive impact on the length error rate. Moreover, we also designed a scheme in which only

calibration is necessary for 1mm accuracy to be achieved. We left open the possibility for

improvements in the wireless technology by allocating 208 bits to be used to code the length of

the fish and allowing the FMB to receive transmissions from the receiver.

 65

APPENDIX A: LENGTH MEASUREMENT

What follows is the code necessary for the length measuring microcontroller, the files included
are:

1. Length_Measure.c
2. Program_Reg.c
3. SetDCO.s43
4. trf6903_Registers.s43
5. WirelessUART_RF.s43

Of these programs, we wrote Length_Measure.c with parts of it from trf6903_WirelessUART.c
written by Harsha Rao of TI, the other files are completely written by Harsha Rao as a part of the
“Single-Channel Firmware” which can be found at [33].

 66

// Length_Measure.c

/** include files **/
#include "msp430x44x.h"
#include "in430.h"
#include "stdio.h"
#include "rf_reg.h"
#include "Ctype.h"
#include "intrinsics.h"

#define GIE (0x0008)
#define CPUOFF (0x0010)

/** local definitions **/
//TRF6903 control signals
#define TRF_STROBE 0x2
#define TRF_DATA 1
#define TRF_MODE 0x80
#define TRF_CLK 0x40
#define TRF_STANDBY 0x20
#define TRF_LH 0x10
#define tx 0x4 //; P2.2 TXDATA transmit data to the TRF6901
#define rx 0x8 //; P1.3 RXDATA receive data from the TRF6901
#define TRF_LOCKDET 0x40 // P2.6 USED FOR LOCK DET
#define TRF_DCLK 0x2 // P2.1 USED FOR DCLK
#define TRF_RXFLAG 0x8 // P2.3 USED FOR RXFLAG
#define LEDALL 0xf0

// Port definitions of Freq Select pins according

#define FSEL4 0x8
#define FSEL3 0x4
#define FSEL2 0x2
#define FSEL1 0x1

#define MAXWORD 17 //size in word
#define MAXBYTE 32 //size in byte
#define ACK_CODE 0x6F6B // OK in ascii
#define SAMPLEPERIOD 0x7800;
#define XTAL_OFFSET 0

#define rF_REC_FULL 0x0001 /* RF RX buffer is full - send data to PC */
#define rS232_FULL 0x0002 /* RS232 Buf is full - read for TRF6901 to send */
#define rF_ACK_SEND 0x0004 /* RF Acknowledge is to be sent */
#define rF_ACK_WAIT 0x0008 /* RF Acknowledge is to be received */
#define RCVD 0x0010

#define RX_DLY_CNT 0x0020 // Defines the Delay from Start Bit to Data @01010h
#define TS_PULSES 0x0028 // Number of pulses in the training sequence @01014h
#define Num_of_Results 8
/** external functions **/

 67

extern void Set_Clk(void);
extern void Set_DCO(int);
extern void program_TRF69(unsigned int, unsigned int); //trf6903.s43
extern void receive_RF(unsigned char, unsigned int *);
extern void send_RF(unsigned int,unsigned int*);
extern void rs232_link_send(unsigned int,unsigned int*);
extern void configure_trf6903(void);
extern void InitTRF6903(void);

/** external data **/

extern struct TRF_REG trf6903;
extern int PreAmbleSize;

/** internal functions **/

/** public data **/
int f_sel;
int opstate;
unsigned int DR_DLY_CNT = 0x003F;
unsigned int DR_DLY_CNT2;
unsigned int DR_DLY_CNT3;
unsigned int PULSE_WIDTH_TOL;
unsigned int START_WIDTH_TOL;

/* k1, m1 and j1 are global variables used in UART RX ISR*/
int k1=1;
int m1=0;
int j1=MAXBYTE;

//Conversion Variables

unsigned int results[42];
float volts[42];
float volts_min[32];
float min_volt;
int min_array_counter = 0;

int counter1; //upper level MUX select lines
int counter2; //lower level MUX select lines

int n;
int k;

float smallest;
float dummy;
int second;
float final_location;
unsigned int transmit[MAXWORD - 1] = {0}; //What is communicated to the transmitter
int length;
int location;

int sent = 0;
int index;

 68

int measurement_made = 0; // Track whether a measurement has been made for Timer purposes
int interrupt_count = 0; // Tracks the number of interrupts
int found = 0;
int num_made = 0;

int number_of_measurements[32];

/** private data **/

/** public functions **/
void InitIo(void);
void volt_conversion();
void status(void);

/** private functions **/

struct RF_XMIT_PACKET {
 int packetsize;
 unsigned int xmit[MAXWORD];
 unsigned int rcv[MAXWORD];
 unsigned int rs232buf[MAXWORD];
 unsigned int chk[1]; // stores checksum generated at the receiver for the received data
}buf;

unsigned int Btime;
unsigned int Btime1_5;

void main(void)
{

 DR_DLY_CNT2 = DR_DLY_CNT -12 ;
 DR_DLY_CNT3 = DR_DLY_CNT2 * 3 ;
 PULSE_WIDTH_TOL = 0x18;
 START_WIDTH_TOL = PULSE_WIDTH_TOL * 3;
 WDTCTL = WDTPW+WDTHOLD; // Stop watchdog timer

 InitIo();

 // Set Digital Ports
 P1DIR = 255;
 P3SEL = 0;
 P3DIR = 255;
 P3OUT = 0;

 P6SEL = 0x0F; // Enable A/D channel inputs

 ADC12CTL0 = ADC12ON+MSC+SHT0_1+REFON+REF2_5V;
// ADC12 on, trigger next conversion as soon as previous ends
 // Set Reference to 2.5V
 ADC12CTL1 = SHP+CONSEQ_2+ADC12SSEL_2;
// Use sampling timer, repeated single channel, use Master Clock
 ADC12MCTL0 = SREF_1+INCH_0; // ref+=AVcc, channel = A0
 ADC12IE = 0x01; // Enable Interrupt from A0

 69

 ADC12CTL0 |= ENC; // Enable conversions

 counter1 = 0;
 counter2 = 0;
 min_volt = 0;

 // Setup the Timer
 TBCCTL0 = CCIE; // CCR0 interrupt enabled
 TBCCR0 = 50000; // How high to count
 TBCTL = TBSSEL_1 + MC_2; // ACLK, continuous mode
 while(1)
 {
 P3OUT = counter1;
 P3OUT += counter2;
 ADC12CTL0 |= ADC12SC; // Start conversion
 _BIS_SR(LPM0_bits+GIE); // Enter LPM0, enable interrupts

 }

}

#pragma vector=TIMERB0_VECTOR
__interrupt void Timer_B (void)
{
 interrupt_count++;
 if(interrupt_count == 15 && measurement_made == 0) // 15 Consecutive Interrupts can be used to trigger
a response
 {
 interrupt_count = 0;
 }
 if(interrupt_count < 15)
 return;
 if(measurement_made > 0)
 {
 measurement_made = 0;
 interrupt_count = 0;
 }
 TBCCR0 += 50000; // Add Offset to CCR0
}

#pragma vector=ADC_VECTOR
__interrupt void ADC12ISR (void)
{
 int n1 = 0;
 float smallest = 2.5;

 long int counter;
 int k;

 P5DIR = 0;
 if(ADC12IFG & 0x01 == 1)
 {

 results[(counter1)*7 + (counter2/8)] = ADC12MEM0;
 volt_conversion();

 70

 if(counter1 == 5 && counter2 == 48)
 {
 volts[11] = 2.5; // Compensate for sensors that went bad in board population
 volts[14] = 2.5;
 volts[26] = 2.5;
 volts[38] = 2.5;
 if(found == 0)
 {
 for(n = 0; n < 42; n++)
 {
 if(smallest > volts[n])
 {
 location = n;
 smallest = volts[location];
 } //Close if statement

 } //Close for loop

 if(location == 0)
 second = 1;

 else
 {
 if(volts[location-1] <= volts[location+1])
 second = location - 1;
 else
 second = location+1;
 }

 if(volts[location] < 1.0)
 found = 1;
 } //Close if(found == 1)

 if(volts[location] == min_volt) // Records any repeat measurments
 number_of_measurements[min_array_counter]++;

 // If the sensor is activated and the value taken is not a
 // repeat value then record it.
 if(found == 1 && volts[location] != min_volt)
 {
 min_volt = volts[location];
 volts_min[min_array_counter] = volts[location];
 min_array_counter++; // Number of unique measurements taken.

 // If all 32 unique readings have not been taken
 // then return to take another reading.
 if(min_array_counter <32)
 return;

 // Reset variables after measurement taken.

 min_array_counter = 0;
 found = 0;
 // A complete measurement has been made
 // Keep track of it for the Timer Interrupt.

 71

 measurement_made++;

 //Find the Smallest Voltage in the Measured Array.

 for(k = 0;k<32; k++)
 {
 if(smallest > volts_min[k])
 {
 smallest = volts[k];

 }
 }

 //Length transmitting mode
 length = location;
 transmit[0] = length;
 status();

 //Set Units to mm
 transmit[2] = 1;

 // Supply Voltage Capability to be added later
 // For now set it to be 4.5V
 transmit[3] = 450;

 //Begin Transmission by interrupting

 P1OUT = (transmit[0]&255);
 while (!(IFG1 & UTXIFG0));
 TXBUF0 = transmit[0] & 255;

 for(k = 0; k < MAXWORD - 1; k++)
 {

 // Send data, wait for Ack.
 P1OUT = (transmit[k]&255);
 if(n1 ==1)
 n1 = 0;
 else
 n1 = 1;
 // Allows for Timeout if the receiver is not responding.
 for(counter = 0; counter <= 10000; counter++)
 {
 if((P5IN&0x01) == n1)
 break;
 }
 if(counter == 10000)
 {
 counter1 = 0; //If a timeout occurs, reset and measure all sensors over again.
 counter2 = 0;
 return;
 }

 P1OUT = (transmit[k] >> 8);
 if(n1 ==1)
 n1 = 0;

 72

 else
 n1 = 1;
 for(counter = 0; counter <= 10000; counter++)
 {
 if((P5IN&0x01) == n1)
 break;
 }
 if(counter == 10000)
 {
 counter1 = 0;
 counter2 = 0;
 return;
 }

 } // Close the transmision for loop

 } // Close the if found == 1

 } //Close if counter1 == 5 && counter2 = 14

}// Close if reading ready if statement

if(counter1 == 5 && counter2 == 48) // Just measured last sensor, start over
{
 counter1 = 0;
 counter2 = 0;
}
 else
 if(counter2 == 48 && counter1 < 5) // Last Sensor of a Level One Mux
 {
 counter1++;
 counter2 =0;
 }
 else
 if(counter2 < 48) // Move on to the next sensor in the same MUX.
 counter2+=8;

P3OUT = counter1;
P3OUT+= counter2;
}

void status(void)
{
 int u; // Loop Variable
 int num_degrading = 0; //The number of sensors that are degrading
 int num_failed = 0; //The number of sensors that have failed.

 //Check the status of the sensors except for sensors that are close to the location
 if (location >=6)
 {
 for(u = 0; u < location - 6; u++)
 {
 if(volts[u] < 2.0)
 {
 num_degrading++;
 if(volts[u] <1.0)

 73

 {
 num_failed++;
 num_degrading--;
 }
 }
 } // End of for loop
 } //Close if statement

 if (location <38)
 {
 for(u = location +4; u<42; u++)
 {
 if(volts[u] < 2.0)
 {
 num_degrading++;
 if(volts[u] <1.0)
 {
 num_failed++;
 num_degrading--;
 }
 }
 } // End of for loop
 } //Close if statement

 if(num_degrading == 0 && num_failed ==0)
 transmit[1] = 1;

 else
 if(num_degrading > 0 && num_failed ==0)
 transmit[1] = 2;

 else
 if(num_failed >0)
 transmit[1] = 3;
}
void volt_conversion()
 {
 volts[(counter1)*7 + (counter2/8)] = (((float)results[(counter1)*7 + (counter2/8)])/4095)*2.50;
 }

void InitIo(void)
{

 opstate|=0x00; // initilalize opstate
 P2DIR|= tx; // TXDATA is set to output direction
 P2SEL=0x33; //UART for P2.4 and P2.5, TimerA,TimerB capture for RXDATA and DCLK

 Set_DCO(30000); //set dco for = 2.4576 MHz

 //initialize UART port. Default Baud =38.4K
 UTCTL0=0x20; // Select SMCLk as the source for UART clock
 URCTL0=0x8;
 UBR00 = 0; //9600bps
 UBR10 = 0x01;

 74

 UMCTL0=0x0;
 UCTL0=0x11;
 UCTL0&=0xfe; // at first disable UART
 ME1|=URXE0+UTXE0; //enable both transmitter and receiver
}

 75

// Program_Reg.c

/***
*
 RF_reg.c
 AUTHOR: Harsha Rao
**
*/
/**************************** Programming the TRF6903
**

 TX = Mode_0: A Word is programmed for FSK transmission (Mode bit =1)
 RX = Mode_1: B Word is programmed for FSK receive (Mode bit =0)
;***
******************/

#include "rf_reg.h"
#include "msp430x44x.h"
#include "in430.h"
#include "stdio.h"
#include "f_6903.h"
#define ENABLE_DCLK 1

extern int f_sel,fsel_update;
extern unsigned int DR_DLY_CNT;

struct TRF_REG trf6903;

extern void program_TRF69(unsigned int, unsigned int); //trf6903.s43

void program_TRF6903_word(unsigned long);
void configure_trf6903(void);
void InitTRF6903(void);

int PreAmbleSize;

void InitTRF6903(void)
{

 trf6903.a.bit.BND = 2; //select 900Mhz
 trf6903.a.bit.CP_Acc=0;
 trf6903.a.bit.PI = 0;
 trf6903.a.bit.TX_RX0 = 1; //low on mode means transmit
 trf6903.a.bit.PA0=0;
 trf6903.a.bit.B_DIV_M0 = 68; //set to 902
 trf6903.a.bit.A_DIV_M0 = 27 ;
 trf6903.a.bit.ADDR =0; //0x2854A2

 trf6903.b.bit.DET_EN = 1; //start off disabled
 trf6903.b.bit.DET_THRESH = 0; //2.2V
 trf6903.b.bit.PARXED = 1;
 trf6903.b.bit.FSK_OOK=1;
 trf6903.b.bit.TX_RX1=0; //receive when mode input =high
 trf6903.b.bit.PA1=0;
 trf6903.b.bit.B_DIV_M1 = 68;

 76

 trf6903.b.bit.A_DIV_M1 = 1;
 trf6903.b.bit.ADDR=1; //0x685599

 trf6903.c.bit.reserved = 0; //start off disabled
 trf6903.c.bit.REF_DIV_COEF = 48;
 trf6903.c.bit.ADDR = 2;

 trf6903.d.bit.reserved1 = 0; //start off disabled
 trf6903.d.bit.OOKXS = 0; //2.2V
 trf6903.d.bit.DEM_TUNE = 7; //6
 trf6903.d.bit.PFD_reset=1;
 trf6903.d.bit.XTAL_Tune=6; //receive when mode input =high
 trf6903.d.bit.RXS=1;
 trf6903.d.bit.reserved2 = 0;
 trf6903.d.bit.ADDR = 3; //0XC0E000

 trf6903.e.bit.reserved1 = 1; //
 trf6903.e.bit.PAI = 2; //Nominal
 trf6903.e.bit.TCOUNT = 5; //Minimum training = 4 times the value
 //trf6903.e.bit.TCOUNT =30 ; //Minimum training = 4 times the value

 trf6903.e.bit.TWO=0; //receive when mode input =high
 //#ifdef ENABLE_DCLK
 trf6903.e.bit.TXM = 1; //use DCLK to send data
 //#else
 // trf6903.e.bit.TXM = 0; //use RAW
 //#endif
 trf6903.e.bit.RXM = 3;

 if (DR_DLY_CNT == 0x007F)
 { trf6903.e.bit.D3 = 0 ;
 trf6903.e.bit.D2 = 3 ; // 19.2 k
 trf6903.e.bit.D1 = 3 ;}

 if (DR_DLY_CNT == 0x003F)
{ trf6903.e.bit.D3 = 0 ;
 trf6903.e.bit.D2 = 2 ; // 38.4 k
 trf6903.e.bit.D1 = 3 ;}

 if (DR_DLY_CNT == 0x002F)
 { trf6903.e.bit.D3 = 0 ;
 trf6903.e.bit.D2 = 2 ; // 51.2 k
 trf6903.e.bit.D1 = 2 ;}

 trf6903.e.bit.ADDR = 2;
 PreAmbleSize = trf6903.e.bit.TCOUNT;
 PreAmbleSize =(PreAmbleSize*4) + 100;
}

void configure_trf6903(void)
{
 int pointer;
 P4OUT&=0xfe; //start with 0 on data

 77

 pointer=(int)f_sel;

 trf6903.a.bit.B_DIV_M0=MAIN_B_T[pointer];
 trf6903.a.bit.A_DIV_M0=MAIN_A_T[pointer];
 program_TRF6903_word(trf6903.a.all);

 trf6903.b.bit.B_DIV_M1=MAIN_B_R[pointer];
 trf6903.b.bit.A_DIV_M1=MAIN_A_R[pointer];
 program_TRF6903_word(trf6903.b.all);

 program_TRF6903_word(trf6903.c.all);

 trf6903.d.bit.XTAL_Tune = XTAL_OFFSET;
 program_TRF6903_word(trf6903.d.all);

 program_TRF6903_word(trf6903.e.all);

}

void program_TRF6903_word(unsigned long control)
{
 unsigned int high,low;
 high = (unsigned int)(control>>16);
 low =(unsigned int)control;
 program_TRF69(high,low);

}

 78

; set_dco.s43

;This module sets the clock.

;==
====
#include "msp430x44x.h"
#define Count1 R8
#define Count2 R9
 MODULE Set_DCO
 PUBLIC Set_DCO
 RSEG CODE

;Adjust DCO Routine

Set_DCO
 MOV.B #(75-1),&SCFQCTL_
 MOV.B #FN_3,&SCFI0_
 ;MOV.B #030h,&FLL_CTL0_ ;10pf load
 MOV.B #010h,&FLL_CTL0_ ;6pf load

Set_DCO1
 BIC.B #OFIFG,&IFG1_

NOT_COOKED MOV R12,Count1 ;20 is the wait time
WAIT? DEC Count1
 //JNZ WAIT?
 //BIT.B #OFIFG, &IFG1_ ;test oscillator fault flag
 //JNZ Set_DCO ; Repeat until test flag remains reset

 MOV #WDTPW+WDTHOLD,&WDTCTL ; if start detected, WDT
set to timeout every 52uS
 RET

 ENDMOD

 MODULE ReStart
 PUBLIC ReStart
 RSEG CODE
ReStart
 MOV #0fffeh,R5
 BR @R5
 RET
 ENDMOD
; END

// The Set_Clk routine is never called since XT2 OSC is not used on the demo board

 79

 MODULE Set_Clk
 PUBLIC Set_Clk
 RSEG CODE

Set_Clk
 BIC.B #XT2OFF, &FLL_CTL1_ ; Turn on the High XT2 Xtal

TST_OF
 BIC.B #OFIFG,&IFG1_
 MOV #20,Count1 ;20 is the wait time
LOOP
 DEC Count1
 JNZ LOOP
 BIT.B #OFIFG, &IFG1_ ;test oscillator fault flag
 JNZ TST_OF ; Repeat until test flag remains reset
 MOV.B #SELM_XT2+SELS,&FLL_CTL1_ ; select the proper clock
 RET
 ENDMOD
 END

 80

;trf6903_Registers.s43

/**************************** program_TRF69
**
; purpose:
; programs a word to A, B, C or D word register of the TRF6901
; gets the settings from the calling routine in R6 and R7
;
;***
******************/
#include "msp430x44x.h"
#include "std_f43x.asm"

#define Count1 R8
#define Count2 R9
#define counter R10 ; universal counter
 NAME TRF6901
 RSEG CODE(1)
 PUBLIC program_TRF69
 EXTERN ?CL430_1_23_L08
 RSEG CODE

program_TRF69

init_high_byte
 DINT

 PUSH R10
 PUSH R9
 PUSH R8
 PUSH R7
 PUSH R6
 PUSH R5
 PUSH R4
 MOV R12,word_h ;mov data to appropriate register
 MOV R14,word_l
 BIC.B #strobe,&P4OUT
 ; reset Strobe port
 BIS.B #strobe,&P4DIR
 ; switch Strobe to output direction
 MOV #02h,counter
 ; initialize the counter for high and low byte
 MOV #08h,bits_r
 ; initialize bitcounter
; MOV word_h,word_trf
 MOV R6,R4
 SWPB word_trf
 ; push the low byte to the high byte, only the

 ; data in the low byte is relevant
 JMP program_word

 81

init_low_byte
 MOV #010h,bits_r
 ; initialize bitcounter
; MOV word_l,word_trf ; push
the low byte to the programming buffer
 MOV R7,R4

program_word
 RLC word_trf
 ; push the msb of the programming buffer to carry
 JNC program_low

program_high
 BIS.B #data,&P4OUT
 ; set data(P1.7)

program_clock
 BIS.B #clk,&P3OUT
 ; generate a pulse on the clock line
 BIC.B #clk,&P3OUT

program_next_bit
 DEC bits_r
 ; decrement bit counter
 JNZ program_word
 ; have already all bits been sent?
 DEC counter
 ; decrement counter for low byte recognition
 JNZ init_low_byte
 ; low byte is to be programmed

generate_strobe
 BIC.B #data,&P4OUT
 ; reset data
 BIS.B #strobe,&P4OUT
 ; set strobe(P1.5)
 BIC.B #strobe,&P4OUT
 ; clear strobe(P1.5)
 BIC.B #strobe,&P4DIR
 ; set strobe(P1.5) to input direction
 POP R4
 POP R5
 POP R6
 POP R7
 POP R8
 POP R9
 POP R10
 EINT

 RET
 ; back to calling routine

program_low
 BIC.B #data,&P4OUT
 ; clear data(P1.7)

 82

 JMP program_clock

end_program_TRF69
 END

 83

;WirelessUART_RF.s43

;/**
; Author - Harsha Rao
;Interrupt subroutines and send and receive RF drivers
;**/
#include "msp430x44x.h"
#include "std_f43x.asm"

#define rF_REC_FULL 0x0001 /* RF RX buffer is full - send data to PC */
#define rS232_FULL 0x0002 /* RS232 Buf is full - read for TRF6901 to send */
#define rF_ACK_SEND 0x0004 /* RF Acknowledge is to be sent */
#define rF_ACK_WAIT 0x0008 /* RF Acknowledge is to be received */
#define RCVD 0x0010

#define RSTAT R8 ; status of the reception
#define wait_r R9 ; counter register for all waiting loops

#define counter R10 ; universal counter

#define RX_DLY_CNT 0x0028 // Not Used in the Firmware
#define TS_PULSES 0x0080 // Number of pulses in the training sequence @01014h*/

 NAME radio(16)
 RSEG CODE(1)
 COMMON INTVEC(1)

 EXTERN time_out_count
 EXTERN opstate
 EXTERN DR_DLY_CNT
 EXTERN DR_DLY_CNT2
 EXTERN DR_DLY_CNT3
 EXTERN PULSE_WIDTH_TOL
 EXTERN START_WIDTH_TOL
 EXTERN k1
 EXTERN m1
 EXTERN j1
 EXTERN Set_DCO
 EXTERN Btime
 EXTERN Btime1_5
 PUBLIC Timer_A1
 PUBLIC receive_RF
 PUBLIC send_RF
 PUBLIC rs232_link_send
 PUBLIC wait_lockdet

 EXTERN ?CL430_1_23_L08
 RSEG CODE

 MOV #09F0h,SP

 84

Timer_A1:
 ADD &TAIV,PC

 RETI
 RETI
 JMP CC2_INT ; RF reception -> every edge of
 ; the rx-signal
 RETI
 RETI
?back RETI

;************************************* Timer_B Interrupt routine ***********
; purpose: handle the Timer_B interrupts, and decide which dedicated routine
; should be addressed. (TB_CCR0 / RF reception and transmission)
;**
TimerB0
 BIC #CPUOFF,0(SP) ; reactivate CPU
end_TB_CCR0
 RETI

;****************************** Capture Compare 2 Register

; used for RF-Reception
;***

CC2_INT
 ; used by biph_rx

 MOV RRFTAB(R8),PC ; conditional jump depends on
RSTAT
 ; RSTAT = 0, detecting the
Trianingsequence
 ; RSTAT = 1, Trainingsquence detected,
waiting
 ; for the Start Bit
 ; RSTAT = 2, Start Bit detected, Data
Reception
RRFTAB DW RSTAT00
 DW RSTAT01
 DW RSTAT10
 DW RSTAT11

RSTAT00
 MOV &CCR2,R14 ; save Reference Capture value
 MOV R14,R15 ; copy Timer_A value
 SUB R13,R15 ; subtract the current Timer_A value from
the

 ; old one -> Bitwidth in cycles in res_r

 85

 MOV R14,R13 ; current value now -> old value later

test_res_r00
 SUB DR_DLY_CNT2,R15
 CMP PULSE_WIDTH_TOL,R15 ;4/18 is the detected signal 20-34uS
long?
 JHS no_valid_pulse
 INCD R8 ; first valid pulse detected
 INC wake_up_counter ; count this valid pulse
 BIS #CCIE,&CCTL2 ; re-enable CCR2 interrupt
 JMP go_back

no_valid_pulse
 CLR R8 ; no the signal doesn't fit the wakeup
sequence
 CLR wake_up_counter ; reset the wake_up_counter, received an
 ; invalid pulse
 JMP go_back

/***
***/

RSTAT01
 MOV &CCR2,R14 ; save Reference Capture value
 MOV R14,R15 ; copy Timer_A value
 SUB R13,R15 ; subtract the current Timer_A
value from the
 ; old one -> Bitwidth in cycles in res_r
 MOV R14,R13 ; current value now -> old value
later

test_res_r01

 SUB DR_DLY_CNT2,R15
 CMP PULSE_WIDTH_TOL,R15 ;4/18 is the detected signal 20-
34uS long?
 JHS no_valid_pulse
 INC wake_up_counter ; next valid pulse
 JMP go_back

/***
**/
RSTAT10
 MOV &CCR2,R14 ; save Reference Capture value
 MOV R14,R15 ; copy Timer_A value
 SUB R13,R15 ; subtract the current Timer_A
value from
 ; the old one -> Bitwidth in cycles
in res_r
 MOV R14,R13 ; current value now -> old value
later

 86

test_res_r10

 SUB DR_DLY_CNT3,R15

 ;CMP #038,R15 ; is the detected signal x cycles long? This is
for asymmetric stuff
 CMP START_WIDTH_TOL,R15
 JGE invalid_bit ; restart detection, this is not a valid
sequence
 JHS no_start_int_enable
 INCD R8 ; go to RSTATE 2, Data Reception,
Start Bit
 ; detected
 BIC #CCIE,&CCTL2 ; disable CCR2 interrupt
 BIC #022h,&TACTL ; stop Timer_A and
disable interrupt

no_start_bit
 INC wake_up_counter ; count the pulses of the trainings
sequence,
 CMP #TS_PULSES,wake_up_counter ; compare the value of the counter
with the
 JGE invalid_bit ;
 JMP go_back ;get ready for data collection

no_start_int_enable
 JMP no_start_bit

invalid_bit
 CLR R8 ; restart the detection, this is not a
valid
 CLR wake_up_counter ; initialize the wake_up_counter

go_back
 BIC #CPUOFF,0(SP) ; wake up!
 RETI

/***
***/
/* Not Used in this version of Firmware*/
/***
**/
RSTAT11
 BIT #CAP,&CCTL2 ; if in capture mode, just
found start bit
 JNZ R_start_edge_detected ; due to negative edge

 BIC.B #rx,&P2SEL ;make it into GPIO
 BIT.B #rx,&P2IN ;read IObit
 RLC data_r ; push carry into the data register
 BIS.B #rx,&P2SEL ;go back to module

 ADD &Btime,&CCR2

 87

 INC bits_r
 CMP #010h,bits_r ; receive 16 bits in row
 JNE end_RSTAT11_INT ;get all bits
 BIC #CCIE,&CCTL2 ;no more int
 JMP end_RSTAT11_INT

R_start_edge_detected
 BIC #CAP,&CCTL2 ;go to compare mode
 ADD &Btime1_5,&CCR2 ;get ready to receive data
 CLR bits_r

end_RSTAT11_INT
 ; before the interrupt
request, but start
 BIC #CPUOFF,0(SP) ; wake up!
 ; subroutine
 RETI
kill_receive
 BIC #CCIE,&CCTL2 ; disable CCR2
interrupt
 BIC #022h,&TACTL ; stop Timer_A and
disable interrupt
 BIC #CPUOFF,0(SP) ; wake up!
 RETI

;*********************************** send_RF

; purpose: sends data through RF channel
;***

send_RF
 BIC.B #URXIFG0,&IFG1 ; Clear Receive Interrupt Flag
 BIC.B #URXIE0,&IE1 ; Disable USART1 Receive Interrupt
send_RF_acknowledge?
 BIT #rF_ACK_SEND,&opstate ; has an acknowledge to be send?
 JNZ send_RF_init
data_to_transmit?
 BIT #rS232_FULL,&opstate ; Is there any data to send via TRF6901?
 JZ end_send_RF ; No, nothing to send
send_RF_init
 DINT
 MOV R12,R10
 MOV R12,R6
 ADD R14,R10
 BIC.B #mode,&P3OUT ; Mode=0 -> Send mode
 BIC.B #tx,&P2OUT ; TXDATA(P2.2) is reset
 BIS.B #stdb_trf6901,&P3OUT ; TRF6900 active, STANDBY(P3.5) is
high
 DECD R10

 88

 MOV 0(R10),data_r ; first word to the send register

 ;This is where clock recovery happens--DCLK has to be connected to
the P2.1/TB0 pin
 MOV #0x4910,&TBCCTL0 ; enable TBCCR0 Interrupt, Capture on Positive Edge
of DCLK
 ; MOV #0x8910,&TBCCTL0 ;capture on negative edge
 MOV #0x0224,&TBCTL ; enable TIMERB and start in Continous mode

 EINT

send_RF_training_sequence ; the entire length ca. 4ms, 154 pulses

 MOV #TS_PULSES, tr_counter ; initialize the training sequence counter

send1_RF_toggle
 BIS #CPUOFF+GIE,SR ; CPU off
;------------------ Start of the trainings sequence --
 XOR.B #tx,&P2OUT ; toggle TXDATA(P2.2)
 DEC tr_counter ; decrement counter for the training
sequence
 JNZ send1_RF_toggle
 ; JMP send1_RF_toggle

 ; ADD TRIGGER HERE
 BIC.B #l_h,&P3OUT
 ; END TRIGGER

send_RF_long_bit
 BIS #CPUOFF+GIE,SR ; CPU off
;------------------ Start of the start bit ---
 BIS.B #tx,&P2OUT ; start of the long start-bit 78,12�ec
 BIS #CPUOFF+GIE,SR ; CPU off
 BIC #rS232_FULL,&opstate ; the RS232 buffer is ready for reception
 BIS #CPUOFF+GIE,SR ; CPU off
 BIS #CPUOFF+GIE,SR ; CPU off
;----------------- End of the start bit --
start_bit_low
 BIC.B #tx,&P2OUT ; reset TXDATA(P2.2)
 MOV DR_DLY_CNT,wait_r
 INC wait_r
 RRA wait_r ; used for DIV by 2

send_pause_dly
 DEC wait_r
 JNZ send_pause_dly

send_RF_data
 MOV #010h,bits_r ; init bitcounter, transmit first 16 bits

 89

send_RF_bit_test
 RLC data_r ; push the next data bit to carry
 JC send_RF_high

send_RF_low
 BIC.B #tx,&P2OUT ; reset TXDATA(P2.2)
 BIS #CPUOFF+GIE,SR ; CPU off
;-------------------------------- Start of the Databit ---

send_RF_next_word?
 DEC bits_r ; decrement bit counter
 JNZ send_RF_bit_test
 DECD R10 ; decrement word counter
 DECD R6
 JZ send_RF_complete
 JN send_RF_reset_ackn ; all data has been transmitted
 MOV 0(R10),data_r
 JMP send_RF_data ; get next word by sending active low
start bit first

send_RF_high
 BIS.B #tx,&P2OUT ; set TXDATA(P2.2)
 BIS #CPUOFF+GIE,SR ; CPU off
;-------------------------------- Start of the Databit ---
 JMP send_RF_next_word?

send_RF_reset_ackn
 BIC #rF_ACK_SEND,&opstate ; reset acknowledge state

send_RF_complete

 BIS.B #0xF0,&P1OUT
 MOV #01000,wait_r ;retry about 10 times

noyet
 DEC wait_r ;tried enough?
 JNZ noyet
 BIC.B #0xF0,&P1OUT

 BIS #CPUOFF+GIE,SR ; CPU off-accomodate TRF6901 timing
 BIC.B #tx,&P2OUT
 BIC.B #stdb_trf6901,&P3OUT ; clear STDBY(P3.5), TRF6901 standby
mode
end_send_RF
 BIC #0x0012,&TBCTL ; stop and disable TIMERB
 BIC #0x0010,&TBCCTL0 ; disable TBCCR0 Interrupt
 BIC.B #URXIFG0,&IFG1 ; Clear Receive Interrupt Flag
 BIS.B #URXIE0,&IE1 ; RE-Enable USART1 Receive Interrupt
skip_send_RF

 RET

;********************************* receive_RF
**

 90

; main routine for code reception
;***

receive_RF
//test

 MOV #0x024E,R14
 MOV R12,R6 ;number of word
 MOV R14,R7 ;points to the receive buffer
 ADD R7,R6

 BIT #rF_REC_FULL,&opstate ; is the reception buffer full?
 JNZ end_receive_RF ; yes the data has to be send to desktop first
 CLR data_r ; reset data_r
 CLR wake_up_counter ; reset wake_up_counter
 CLR RSTAT ; reset receive status register,
RSTAT = 0,
 ; detecting the Trainingssequence

 BIC.B #tx,&P2OUT ; TXDATA(P1.4) is reset -> new for 6901

 BIS.B #l_h, &P3OUT ; set LEARN =HIGH, new for 6901
 BIS.B #mode,&P3OUT ; Mode =1 -> receive FSK in learn
mode
 BIS.B #stdb_trf6901,&P3OUT ; TRF6900 active, STANDBY(P2.5) is high
 CALL #wait_lockdet
 BIS.B #01h,&IE1 ; enable Watchdog Timer interrupt for
training sequence
 CLR R13
 MOV #TACLR+CONTUP+MCLK,&TACTL ; interrupt enable, clear Timer_A,
 MOV #CCIE+CAP+CMANY+SCS,&CCTL2 ; interrupt enable, capture mode,
both edges

loop_receive_training_seq

check_wake_up_counter
 CMP #10h,wake_up_counter ; 16 equal pulses in succession
 JL loop_receive_training_seq ;
;;;***********************************
receive1
 BIC #022h,&TACTL ; stop Timer_A and disable
interrupt
 BIC #CCIE,&CCTL2 ; disable interrupt
 INCD R8 ; RSTAT = 4

start_bit_reception ; waiting for the start_bit

 ;BIC.B #l_h,&P3OUT ;Go into hold mode New for 6901

start1? MOV #TAIE+TACLR+CONTUP+MCLK,&TACTL ; interrupt enable, clear
Timer_A, continious
 ; up mode, MCLK as clock source

 91

 MOV #SCS+CCIE+CAP+CMANY,&CCTL2 ; interrupt enable, capture mode, both
edges
 CLR R13

loop_start_bit
 CMP #04h,R8 ; has the start bit been detected?
 JEQ loop_start_bit ; wait for the start bit
 JN end_receive_RF ; the received sequence is invalid

 ; TEST
 BIC.B #l_h,&P3OUT

;----------------------------- start bit detected --
init_data_reception ; RSTAT = 6, Start Bit detected, Data Reception

send_rx_pause_dly

 BIC #CCIE,&CCTL2 ; disable CCR2 interrupt
 BIC #022h,&TACTL ; stop Timer_A and disable interrupt
 BIC.B #URXIE0,&IE1 ; Disable USART1 Receive Interrupt

 ;This is where clock recovery happens--DCLK has to be connected to the P2.1/TB0 pin
 ; MOV #0x4910,&TBCCTL0 ; enable TBCCR0 Interrupt, Capture on Positive Edge of
DCLK
 MOV #0x8910,&TBCCTL0 ;capture on negative edge
 MOV #0x0224,&TBCTL ; enable TIMERB and start in Continous mode

init_rx_bit_counter
 CLR bits_r

word_reception_loop
 BIS #CPUOFF+GIE,SR ; go to sleep!
 BIT.B #rx,&P2IN ; is RXDATA high or
low?

read_data
 RLC data_r ; push carry into the data register
 INC bits_r
 CMP #010h,bits_r ; receive 16 bits in row
 JNE word_reception_loop ; haven't received 8bits yet

store_data
 ; INV data_r ; the received data is inverted!
 MOV data_r,0(R7) ; store received data to RAM
 INCD R7
 CMP R6,R7
 JNE init_rx_bit_counter ; receive the next
word
ready_to_end
 NOP

 92

 BIS #rF_REC_FULL,&opstate ; RF data received, has to be send to desktop via
RS232
 BIS #rF_ACK_SEND,&opstate ; initialize the acknowledge state
 BIS #RCVD,&opstate

end_receive_RF
 BIC #0x0010,&TBCCTL0 ; disable TBCCR0 Interrupt
 BIC #012h,&TBCTL ; stop Timer_B and disable interrupt
 BIC.B #URXIFG0,&IFG1 ; Clear Receive Interrupt Flag
 BIS.B #URXIE0,&IE1 ; Re-able USART1 Receive Interrupt
 BIC.B #stdb_trf6901,&P3OUT ; clear STDBY(P2.5), TRF6900 in standby
mode
 RET

;************************************* rs232_link_send **********************
; purpose: the transmission of the received data from TRF6901 to the PC via RS232-Port
;**
rs232_link_send
 BIT #rF_REC_FULL,&opstate ; Is there any data in the reception buffer?
 JZ end_rs232_link_send ; Yes, the reception buffer needs to be sent to PC
 MOV R12,R10
 MOV R12,R6
 MOV R14,R10
rs232_apply?
 BIT.B #020h,&IFG2
 JZ rs232_apply?

 MOV.B 0(R10),U0TXBUF ; move the first received word into the output

 MOV #01000h,wait_r
pause_dly
 DEC wait_r
 JNZ pause_dly

 CLR.B 0(R10)
 INC R10
 DEC R6
 JNZ rs232_apply?
 BIC #rF_REC_FULL,&opstate ; the buffer is ready to receive from TRF6901
 BIC #rF_ACK_SEND,&opstate
 BIC #RCVD,&opstate ; the next data
end_rs232_link_send
 RET

;************************************ wait for lockdetect
**
; just wait miminum 1 ms for the IC to settle down
;***

 93

wait_lockdet
 MOV #01000,wait_r ;retry about 10 times

not_yet
 DEC wait_r ;tried enough?
 JNZ not_yet ;if not try again,this calls for diagnostic
 NOP
 RET

 COMMON INTVEC
; DS 10
 DS 2 ;lowest, nothing assigned
; DW PORT2_INT
 DS 8
 DW Timer_A1
; DW Timer_A0
 DS 6

 DS 4
; DW Uart0TX
; DW Uart0RX
; DW WDT
 DS 4 ;Comparator vector
; DW TImerB1 ;timer B1 handled
 DW TimerB0
; DS NMI_VECTOR
; DS RESET_VECTOR
 END

 94

APPENDIX B: TRANSMISION

What follows is the code necessary for the transmitting microcontroller, the files included are:

6. Transmitter.c
7. Program_Reg.c
8. SetDCO.s43
9. trf6903_Registers.s43
10. WirelessUART_RF.s43

Of these programs, we edited trf6903_WirelessUART.c written by Harsha Rao of TI and made it
Transmitter.c, the other files are completely written by Harsha Rao as a part of the “Single-Channel
Firmware” which can be found at [33].

 95

//Transmitter.c

/** include files **/
#include "msp430x44x.h"
#include "in430.h"
#include "stdio.h"
#include "rf_reg.h"
#include "Ctype.h"
#include "intrinsics.h"

#define GIE (0x0008)
#define CPUOFF (0x0010)

/** local definitions **/
//TRF6903 control signals
#define TRF_STROBE 0x2
#define TRF_DATA 1
#define TRF_MODE 0x80
#define TRF_CLK 0x40
#define TRF_STANDBY 0x20
#define TRF_LH 0x10
#define tx 0x4 //; P2.2 TXDATA transmit data to the TRF6901
#define rx 0x8 //; P1.3 RXDATA receive data from the TRF6901
#define TRF_LOCKDET 0x40 // P2.6 USED FOR LOCK DET
#define TRF_DCLK 0x2 // P2.1 USED FOR DCLK
#define TRF_RXFLAG 0x8 // P2.3 USED FOR RXFLAG
#define LEDALL 0xf0

// Port definitions of Freq Select pins according

#define FSEL4 0x8
#define FSEL3 0x4
#define FSEL2 0x2
#define FSEL1 0x1

#define MAXWORD 17 //size in word
#define MAXBYTE 32 //size in byte
#define ACK_CODE 0x6F6B // OK in ascii
#define SAMPLEPERIOD 0x7800;
#define XTAL_OFFSET 0

#define rF_REC_FULL 0x0001 /* RF RX buffer is full - send data to PC */
#define rS232_FULL 0x0002 /* RS232 Buf is full - read for TRF6901 to send */
#define rF_ACK_SEND 0x0004 /* RF Acknowledge is to be sent */
#define rF_ACK_WAIT 0x0008 /* RF Acknowledge is to be received */
#define RCVD 0x0010

#define RX_DLY_CNT 0x0020 // Defines the Delay from Start Bit to Data @01010h
#define TS_PULSES 0x0028 // Number of pulses in the training sequence @01014h

/** external functions **/

 96

extern void Set_Clk(void);
extern void Set_DCO(int);
extern void program_TRF69(unsigned int, unsigned int); //trf6903.s43
extern void receive_RF(unsigned char, unsigned int *);
extern void send_RF(unsigned int,unsigned int*);
extern void rs232_link_send(unsigned int,unsigned int*);
extern void finish(void);
extern void configure_trf6903(void);
extern void InitTRF6903(void);
extern void wait_lockdet(void);
/** external data **/

extern struct TRF_REG trf6903;
extern int PreAmbleSize;

/** internal functions **/

/** public data **/
int f_sel;
int opstate;
unsigned int DR_DLY_CNT = 0x003F;
unsigned int DR_DLY_CNT2;
unsigned int DR_DLY_CNT3;
unsigned int PULSE_WIDTH_TOL;
unsigned int START_WIDTH_TOL;

/* k1, m1 and j1 are global variables used in UART RX ISR*/
int k1=1;
int m1=0;
unsigned int j1=MAXBYTE;

/** private data **/

/** public functions **/
void InitIo(void);
int GetFsel(void);
void program_TRF6903_word(unsigned long);
void ChecksumGenTX(unsigned char num);
void TBIntEnable(int);
void rs232_report(void);

/** private functions **/

struct RF_XMIT_PACKET {
 int packetsize;
 unsigned int xmit[MAXWORD];
 unsigned int rcv[MAXWORD];
 unsigned int rs232buf[MAXWORD];
 unsigned int chk[1]; // stores checksum generated at the receiver for the received data
}buf;

unsigned int Btime;
unsigned int Btime1_5;
void main(void)
{

 97

 DR_DLY_CNT2 = DR_DLY_CNT -12 ;
 DR_DLY_CNT3 = DR_DLY_CNT2 * 3 ;
 PULSE_WIDTH_TOL = 0x18;
 START_WIDTH_TOL = PULSE_WIDTH_TOL * 3;

 WDTCTL = WDTPW+WDTHOLD;// Stop watchdog timer
 InitIo();
 InitTRF6903();
 Btime=64;
 Btime1_5=60;
 f_sel = GetFsel();
 configure_trf6903();
 buf.packetsize = 34;

 P6OUT &=~16;
 P4OUT &=~4;

 while(1){
 receive_RF(buf.packetsize,buf.rcv);
 TBIntEnable(0x0C00); // delay
 finish();
 } // end of while (1)

 } // end of main

void InitIo(void)
{
 int i;
 opstate|=0x00; // initilalize opstate

 P3OUT|=TRF_MODE; // MODE is set to output Direction
 P3OUT|=TRF_LH; // LEARN/HOLD is set to output Direction

 P1DIR|= LEDALL;
 P1OUT&= ~LEDALL;
 P1IES |= 0xf; // all int on high to low trans

 P2DIR|= tx; // TXDATA is set to output Direction
 P2SEL=0x33; //select UART functions for P2.4 and P2.5, select TimerA,TimerB capture for RXDATA
and DCLK

 P3DIR|= TRF_CLK + TRF_STANDBY + TRF_MODE + TRF_LH; //P3 OUTPUT * Rest of the ports
in Port 3 are Input direction (Fsel1 to Fsel4)*

 P3SEL|= 0x0; // P3 Input Output Mode

 P4DIR|= TRF_STROBE + TRF_DATA; //P4.0, P4.1 are output
 P4SEL|= 0x0; // P4 Input Output Mode

 P5DIR|= 0x0; // Port 5 is not used
 P5OUT|= 0x0;
 P5SEL|= 0x0;

 98

 P6OUT|=0xf; //All RSSI led off
 P6DIR|=0x1f; //RSSI LED driver configured as ouput
 P6SEL|=0x80; //RSSI is AD function

 TBCCR0|=DR_DLY_CNT; //load TBCCR0 for tx and rx data pulse width

 Set_DCO(30000); //set dco for 32Khz external watch * 75 = 2.4576 MHz=DCO Freq
 // After a PUC both SMCLK and MCLK are sourced by DCO freq at 2.4576 MHz

 //initialize UART port. Default Baud =38.4K
 UTCTL0=0x20; // Select SMCLk as the source for UART clock
 URCTL0=0x8;
 UBR00=0; // Baud Rate = 9600bps
 UBR10=0x01;

 UMCTL0=0x0; // No modulation . Since fractional divider is not used
 UMCTL0=0;
 UCTL0=0x11; // USART - UART Mode
 UCTL0&=0xfe; // Disable the UART initially
 ME1|=URXE0+UTXE0; //enable Transmitter + receiver
 IE1|=URXIE0; // Enable USART0 Receive Interrupt

 //blink All RSSI LED and Button LED to indicate power up condition
 for(i=0;i<30000;i++)
 {
 P1OUT|=LEDALL;
 P6OUT&=0xf0;
 }
 P1OUT&=~(LEDALL);

 for(i=0;i<30000;i++); //arbitrary wait

 P6OUT|=0xf; // RSSI LED Off

}

int GetFsel(void)
{
 int in0, in1;
 in0 = P3IN&FSEL1;
 in0<<=3;
 in1 = P3IN & FSEL2; // Get remaining select
 in0|=(in1<<1); // align FSEL3 and FSEL2
 in1 = P3IN & FSEL3; // align FSEL1
 in0 |= in1>>1;
 in1=P3IN &FSEL4;
 in0|=in1>>3;
 in0=~in0; //reverse polarity
 in0=in0 & 0xf;
 return in0;
}

 99

/* Used For RS232 Reception - USART 0 */

#pragma vector=USART0RX_VECTOR
__interrupt void Usart0RxInt(void)

{
 int cnt2;
 TACTL&=0x22; // Stop Timer A and Disable Interrupt
 CCTL2&=CCIE; // Disable Timer_A CCR2 interrupt
 cnt2 = U0RXBUF;
 P5DIR = 0;
 P4DIR &=~4;
 P4OUT &=~4;

 if ((opstate&rS232_FULL) == 0)
 {
 k1 = 0;

 for(m1 = 1; m1 < MAXWORD; m1++)
 {
 for(j1 = 0; j1 < 100; j1++);
 cnt2 = P5IN;
 buf.xmit[m1] = cnt2;

 if(k1 ==1)
 k1 = 0;
 else
 k1 = 1;

 P6OUT = 16*k1;
 for(j1 = 0; j1 < 100; j1++);
 cnt2 = P5IN;
 buf.xmit[m1] |= (cnt2 << 8);

 if(k1 ==1)
 k1 = 0;
 else
 k1 = 1;

 P6OUT = 16*k1;
 }
 for(j1 = 0; j1< 100; j1++);
 P6OUT|=0xf; // RSSI LED Off

 //Implement Redundancy
 for(j1 = 5; j1<MAXWORD; j1++)
 buf.xmit[j1] = buf.xmit[1];

 asm(" BIC #00010h,2(SP)"); // wake up from sleep mode
 asm ("BIS #00008h,2(SP)"); // restore GIE

 100

 j1=32; // Initialize Receieve Counter
 k1=1;
 m1=0;
 opstate|=0x00;

 opstate|=rS232_FULL;

 asm("MOV #receive_RF,12(SP)"); // return in receive_RF routine
 asm("BIC #00018h,0(SP)"); // Wake from sleep mode
 ChecksumGenTX(16);
 send_RF(buf.packetsize,buf.xmit);
 rs232_report();

 }

 } // end of Interrupt Service Routine

/***
 TimerB clock = 2.4576Mhz
**/

void TBIntEnable(int time)
{
 if((TBCTL&0x30)==0){ //if the counter is halted
 TBCTL=0x204; //stop counter- timer running at SMCLK/1 = 2.4576 MHz
 TBR=0; //clear counter
 TBCTL=0x220; //continuous up
 }
 //ms100_cnt=10;
 TBCCR1=(TBR + time) & 0xffff; //turn on the interrupt - Compare Mode
 TBCCTL1 =0x0010; //turn on the interrupt
 return;
}

// Timer B Interrupt Service Routine.
// The ISR does nothing. It just returns control to the TBIntEnable function
// after the specified time interval is completed

#pragma vector=TIMERB1_VECTOR
__interrupt void Timer_B(void)
{
 if (TBIV == 2)
{ TBCCTL1&=0xffed; }
}

/*********************Checksum_gen**
;for sending data through RF channel only

 101

;The calling function must load counter with the data packet size in bytes
;**/

void ChecksumGenTX(unsigned char num)
{
 unsigned int sum,k;
 sum=0;
 for (k=1;k<=num;k++)
 {
 sum+=buf.xmit[k];
 }
 buf.xmit[0]=sum;
 return;
}

//Fills the RS232BUF with the Values to Display
//RS232 rate is 9600bps
void rs232_report(void)
{
 int sum;
 int u;
 int next;
 int first_digit;
 int second_digit;
 IFG1 = 0;
 // Comments will Indicate what is being printed

 buf.rs232buf[0] = 36; //'$'
 next = 70; //'F'
 buf.rs232buf[0] |= (next << 8);

 buf.rs232buf[1] = 77; //'M'
 next = 66; //'B'
 buf.rs232buf[1] |= (next << 8);

 //Display the Board Number, as an example we display 23
 buf.rs232buf[2] = 50; //'2'
 next = 51; //'3'
 buf.rs232buf[2] |= (next << 8);

 buf.rs232buf[3] = 44; //','
 next = 0; // NULL
 buf.rs232buf[3] |= (next << 8);

 // Display length, for now just use sensor number as length since
 // we do not have calibration data.

 buf.rs232buf[4] = (buf.xmit[1] / 1000)+ 48; // The thousands digit of the length
 next = ((buf.xmit[1] - (1000*(buf.xmit[1] / 1000))) / 100)+ 48; // Hundreds digit of the length
 buf.rs232buf[4] |= (next << 8);

buf.rs232buf[5] = ((buf.xmit[1] -(1000*(buf.xmit[1] / 1000))-(100*(buf.xmit[1] / 100))) / 10)+48;
// Tens digit of Length

 102

next = ((buf.xmit[1] -(1000*(buf.xmit[1] / 1000)))-(100*(buf.xmit[1] / 100)) - (10*(buf.xmit[1] / 10)))+
48;

// Ones digit of Length
 buf.rs232buf[5] |= (next << 8);

 buf.rs232buf[6] = 44; //','
 next = 0; // NULL
 buf.rs232buf[6] |= (next << 8);

 //Display Units either inches or mm

 if(buf.xmit[3] == 1) // mm case
 {
 buf.rs232buf[7] = 109; //'m'
 next = 109; //'m'
 buf.rs232buf[7] |= (next << 8);
 }

 if(buf.xmit[3] == 2) // inches case
 {
 buf.rs232buf[7] = 73; //'I'
 next = 78; //'N'
 buf.rs232buf[7] |= (next << 8);
 }

 buf.rs232buf[8] = 44;
 next = 0;
 buf.rs232buf[8] |= (next << 8);

 // Display Supply Voltage

 buf.rs232buf[9] = (buf.xmit[4] / 100)+ 48; //First Digit Display
 first_digit = (buf.xmit[4] / 100);
 next = 46; //'.'
 buf.rs232buf[9] |= (next << 8);

 buf.rs232buf[10] = ((buf.xmit[4] - (100*(buf.xmit[4] / 100))) / 10)+ 48; // Second Digit Display
 second_digit = ((buf.xmit[4] - (100*(buf.xmit[4] / 100))) / 10);
 next = (buf.xmit[4] - first_digit*100 - second_digit*10) +48; //Third Digit Display
 buf.rs232buf[10] |= (next << 8);

 buf.rs232buf[11] = 86; //'V'
 next = 44;//','
 buf.rs232buf[11] |= (next << 8);

 //Netwok Status Determined by Checksum
 sum = 0;
 for(u = 1; u < MAXWORD; u++)
 {
 sum+=buf.xmit[u];
 }

 if(sum == buf.xmit[0])
 {
 buf.rs232buf[12] = 49;
 next = 44;

 103

 buf.rs232buf[12] |= (next << 8);
 }
 else
 {
 buf.rs232buf[12] = 48;
 next = 44;
 buf.rs232buf[12] |= (next << 8);
 }
 // Print the Status of the Sensors

 //Sensors are 'Good'
 if(buf.xmit[2] == 1)
 {
 buf.rs232buf[13] = 71;
 next = 111;
 buf.rs232buf[13] |= (next << 8);

 buf.rs232buf[14] = 111;
 next = 100;
 buf.rs232buf[14] |= (next << 8);
 }

 //Sensors are 'Fair'
 if(buf.xmit[2] == 2)
 {
 buf.rs232buf[13] = 70;
 next = 97;
 buf.rs232buf[13] |= (next << 8);

 buf.rs232buf[14] = 105;
 next = 114;
 buf.rs232buf[14] |= (next << 8);
 }

 //Sensors are 'Fail'
 if(buf.xmit[2] == 3)
 {
 buf.rs232buf[13] = 70;
 next = 97;
 buf.rs232buf[13] |= (next << 8);

 buf.rs232buf[14] = 105;
 next = 108;
 buf.rs232buf[14] |= (next << 8);
 }

 buf.rs232buf[15] = 13; // Carriage Return
 next = 10; // Line Feed
 buf.rs232buf[15] |= (next << 8);

 for(u = 16; u<MAXWORD; u++)
 {
 buf.rs232buf[u] = 0;
 }
 opstate|=rF_REC_FULL;
 rs232_link_send(32, buf.rs232buf);

 104

 opstate&=~rF_REC_FULL;

}

 105

// Program_REG.c

/***
*
 RF_reg.c
 AUTHOR: Harsha Rao
**
*/
/**************************** Programming the TRF6903
**

 TX = Mode_0: A Word is programmed for FSK transmission (Mode bit =1)
 RX = Mode_1: B Word is programmed for FSK receive (Mode bit =0)
;***
******************/

#include "rf_reg.h"
#include "msp430x44x.h"
#include "in430.h"
#include "stdio.h"
#include "f_6903.h"
#define ENABLE_DCLK 1

extern int f_sel,fsel_update;
extern unsigned int DR_DLY_CNT;

struct TRF_REG trf6903;

extern void program_TRF69(unsigned int, unsigned int); //trf6903.s43

void program_TRF6903_word(unsigned long);
void configure_trf6903(void);
void InitTRF6903(void);

int PreAmbleSize;

void InitTRF6903(void)
{

 trf6903.a.bit.BND = 2; //select 900Mhz
 trf6903.a.bit.CP_Acc=0;
 trf6903.a.bit.PI = 0;
 trf6903.a.bit.TX_RX0 = 1; //low on mode means transmit
 trf6903.a.bit.PA0=0;
 trf6903.a.bit.B_DIV_M0 = 68; //set to 902
 trf6903.a.bit.A_DIV_M0 = 27 ;
 trf6903.a.bit.ADDR =0; //0x2854A2

 trf6903.b.bit.DET_EN = 1; //start off disabled
 trf6903.b.bit.DET_THRESH = 0; //2.2V
 trf6903.b.bit.PARXED = 1;
 trf6903.b.bit.FSK_OOK=1;
 trf6903.b.bit.TX_RX1=0; //receive when mode input =high
 trf6903.b.bit.PA1=0;
 trf6903.b.bit.B_DIV_M1 = 68;
 trf6903.b.bit.A_DIV_M1 = 1;

 106

 trf6903.b.bit.ADDR=1; //0x685599

 trf6903.c.bit.reserved = 0; //start off disabled
 trf6903.c.bit.REF_DIV_COEF = 48;
 trf6903.c.bit.ADDR = 2;

 trf6903.d.bit.reserved1 = 0; //start off disabled
 trf6903.d.bit.OOKXS = 0; //2.2V
 trf6903.d.bit.DEM_TUNE = 7; //6
 trf6903.d.bit.PFD_reset=1;
 trf6903.d.bit.XTAL_Tune=6; //receive when mode input =high
 trf6903.d.bit.RXS=1;
 trf6903.d.bit.reserved2 = 0;
 trf6903.d.bit.ADDR = 3; //0XC0E000

 trf6903.e.bit.reserved1 = 1; //
 trf6903.e.bit.PAI = 2; //Nominal
 trf6903.e.bit.TCOUNT = 5; //Minimum training = 4 times the value
 //trf6903.e.bit.TCOUNT =30 ; //Minimum training = 4 times the value

 trf6903.e.bit.TWO=0; //receive when mode input =high
 //#ifdef ENABLE_DCLK
 trf6903.e.bit.TXM = 1; //use DCLK to send data
 //#else
 // trf6903.e.bit.TXM = 0; //use RAW
 //#endif
 trf6903.e.bit.RXM = 3;

 if (DR_DLY_CNT == 0x007F)
 { trf6903.e.bit.D3 = 0 ;
 trf6903.e.bit.D2 = 3 ; // 19.2 k
 trf6903.e.bit.D1 = 3 ;}

 if (DR_DLY_CNT == 0x003F)
{ trf6903.e.bit.D3 = 0 ;
 trf6903.e.bit.D2 = 2 ; // 38.4 k
 trf6903.e.bit.D1 = 3 ;}

 if (DR_DLY_CNT == 0x002F)
 { trf6903.e.bit.D3 = 0 ;
 trf6903.e.bit.D2 = 2 ; // 51.2 k
 trf6903.e.bit.D1 = 2 ;}

 trf6903.e.bit.ADDR = 2;
 PreAmbleSize = trf6903.e.bit.TCOUNT;
 PreAmbleSize =(PreAmbleSize*4) + 100;
}

void configure_trf6903(void)
{
 int pointer;
 P4OUT&=0xfe; //start with 0 on data

 107

 pointer=(int)f_sel;

 trf6903.a.bit.B_DIV_M0=MAIN_B_T[pointer];
 trf6903.a.bit.A_DIV_M0=MAIN_A_T[pointer];
 program_TRF6903_word(trf6903.a.all);

 trf6903.b.bit.B_DIV_M1=MAIN_B_R[pointer];
 trf6903.b.bit.A_DIV_M1=MAIN_A_R[pointer];
 program_TRF6903_word(trf6903.b.all);

 program_TRF6903_word(trf6903.c.all);

 trf6903.d.bit.XTAL_Tune = XTAL_OFFSET;
 program_TRF6903_word(trf6903.d.all);

 program_TRF6903_word(trf6903.e.all);

}

void program_TRF6903_word(unsigned long control)
{
 unsigned int high,low;
 high = (unsigned int)(control>>16);
 low =(unsigned int)control;
 program_TRF69(high,low);

}

 108

; set_dco.s43

;This module sets the clock.

;==
====
#include "msp430x44x.h"
#define Count1 R8
#define Count2 R9
 MODULE Set_DCO
 PUBLIC Set_DCO
 RSEG CODE

;Adjust DCO Routine

Set_DCO
 MOV.B #(75-1),&SCFQCTL_
 MOV.B #FN_3,&SCFI0_
 ;MOV.B #030h,&FLL_CTL0_ ;10pf load
 MOV.B #010h,&FLL_CTL0_ ;6pf load

Set_DCO1
 BIC.B #OFIFG,&IFG1_

NOT_COOKED MOV R12,Count1 ;20 is the wait time
WAIT? DEC Count1
 JNZ WAIT?
 BIT.B #OFIFG, &IFG1_ ;test oscillator fault flag
 JNZ Set_DCO ; Repeat until test flag remains reset

 MOV #WDTPW+WDTHOLD,&WDTCTL ; if start detected, WDT
set to timeout every 52uS
 RET

 ENDMOD

 MODULE ReStart
 PUBLIC ReStart
 RSEG CODE
ReStart
 MOV #0fffeh,R5
 BR @R5
 RET
 ENDMOD
; END

// The Set_Clk routine is never called since XT2 OSC is not used on the demo board

 MODULE Set_Clk
 PUBLIC Set_Clk
 RSEG CODE

 109

Set_Clk
 BIC.B #XT2OFF, &FLL_CTL1_ ; Turn on the High XT2 Xtal

TST_OF
 BIC.B #OFIFG,&IFG1_
 MOV #20,Count1 ;20 is the wait time
LOOP
 DEC Count1
 JNZ LOOP
 BIT.B #OFIFG, &IFG1_ ;test oscillator fault flag
 JNZ TST_OF ; Repeat until test flag remains reset
 MOV.B #SELM_XT2+SELS,&FLL_CTL1_ ; select the proper clock
 RET
 ENDMOD
 END

 110

;trf6903_Registers.s43

/**************************** program_TRF69
**
; purpose:
; programs a word to A, B, C or D word register of the TRF6901
; gets the settings from the calling routine in R6 and R7
;
;***
******************/
#include "msp430x44x.h"
#include "std_f43x.asm"

#define Count1 R8
#define Count2 R9
#define counter R10 ; universal counter
 NAME TRF6901
 RSEG CODE(1)
 PUBLIC program_TRF69
 EXTERN ?CL430_1_23_L08
 RSEG CODE

program_TRF69

init_high_byte
 DINT

 PUSH R10
 PUSH R9
 PUSH R8
 PUSH R7
 PUSH R6
 PUSH R5
 PUSH R4
 MOV R12,word_h ;mov data to appropriate register
 MOV R14,word_l
 BIC.B #strobe,&P4OUT
 ; reset Strobe port
 BIS.B #strobe,&P4DIR
 ; switch Strobe to output direction
 MOV #02h,counter
 ; initialize the counter for high and low byte
 MOV #08h,bits_r
 ; initialize bitcounter
; MOV word_h,word_trf
 MOV R6,R4
 SWPB word_trf

; push the low byte to the high byte, only the

; data in the low byte is relevant
 JMP program_word

 111

init_low_byte
 MOV #010h,bits_r
 ; initialize bitcounter
; MOV word_l,word_trf ; push
the low byte to the programming buffer
 MOV R7,R4

program_word
 RLC word_trf
 ; push the msb of the programming buffer to carry
 JNC program_low

program_high
 BIS.B #data,&P4OUT
 ; set data(P1.7)

program_clock
 BIS.B #clk,&P3OUT
 ; generate a pulse on the clock line
 BIC.B #clk,&P3OUT

program_next_bit
 DEC bits_r
 ; decrement bit counter
 JNZ program_word
 ; have already all bits been sent?
 DEC counter
 ; decrement counter for low byte recognition
 JNZ init_low_byte
 ; low byte is to be programmed

generate_strobe
 BIC.B #data,&P4OUT
 ; reset data
 BIS.B #strobe,&P4OUT
 ; set strobe(P1.5)
 BIC.B #strobe,&P4OUT
 ; clear strobe(P1.5)
 BIC.B #strobe,&P4DIR
 ; set strobe(P1.5) to input direction
 POP R4
 POP R5
 POP R6
 POP R7
 POP R8
 POP R9
 POP R10
 EINT

 RET
 ; back to calling routine

program_low
 BIC.B #data,&P4OUT
 ; clear data(P1.7)
 JMP program_clock

 112

end_program_TRF69
 END

 113

;WirelessUART_RF.s43

;/**
; Author - Harsha Rao
;Interrupt subroutines and send and receive RF drivers
;**/
#include "msp430x44x.h"
#include "std_f43x.asm"

#define rF_REC_FULL 0x0001 /* RF RX buffer is full - send data to PC */
#define rS232_FULL 0x0002 /* RS232 Buf is full - read for TRF6901 to send */
#define rF_ACK_SEND 0x0004 /* RF Acknowledge is to be sent */
#define rF_ACK_WAIT 0x0008 /* RF Acknowledge is to be received */
#define RCVD 0x0010

#define RSTAT R8 ; status of the reception
#define wait_r R9 ; counter register for all waiting loops

#define counter R10 ; universal counter

#define RX_DLY_CNT 0x0028 // Not Used in the Firmware
#define TS_PULSES 0x0080 // Number of pulses in the training sequence @01014h*/

 NAME radio(16)
 RSEG CODE(1)
 COMMON INTVEC(1)

 EXTERN time_out_count
 EXTERN opstate
 EXTERN DR_DLY_CNT
 EXTERN DR_DLY_CNT2
 EXTERN DR_DLY_CNT3
 EXTERN PULSE_WIDTH_TOL
 EXTERN START_WIDTH_TOL
 EXTERN k1
 EXTERN m1
 EXTERN j1
 EXTERN Set_DCO
 EXTERN Btime
 EXTERN Btime1_5
 PUBLIC Timer_A1
 PUBLIC receive_RF
 PUBLIC send_RF
 PUBLIC rs232_link_send
 PUBLIC wait_lockdet
 PUBLIC finish

 EXTERN ?CL430_1_23_L08
 RSEG CODE

 MOV #09F0h,SP

 114

Timer_A1:
 ADD &TAIV,PC

 RETI
 RETI
 JMP CC2_INT ; RF reception -> every edge of
 ; the rx-signal
 RETI
 RETI
?back RETI

;************************************* Timer_B Interrupt routine ***********
; purpose: handle the Timer_B interrupts, and decide which dedicated routine
; should be addressed. (TB_CCR0 / RF reception and transmission)
;**
TimerB0
 BIC #CPUOFF,0(SP) ; reactivate CPU
end_TB_CCR0
 RETI

;****************************** Capture Compare 2 Register

; used for RF-Reception
;***

CC2_INT
 ; used by biph_rx

 MOV RRFTAB(R8),PC ; conditional jump depends on
RSTAT
 ; RSTAT = 0, detecting the
Trianingsequence
 ; RSTAT = 1, Trainingsquence detected,
waiting
 ; for the Start Bit
 ; RSTAT = 2, Start Bit detected, Data
Reception
RRFTAB DW RSTAT00
 DW RSTAT01
 DW RSTAT10
 DW RSTAT11

RSTAT00
 MOV &CCR2,R14 ; save Reference Capture value
 MOV R14,R15 ; copy Timer_A value
 SUB R13,R15 ; subtract the current Timer_A value from
the

 ; old one -> Bitwidth in cycles in res_r
 MOV R14,R13 ; current value now -> old value later

 115

test_res_r00
 SUB DR_DLY_CNT2,R15
 CMP PULSE_WIDTH_TOL,R15 ;4/18 is the detected signal 20-34uS
long?
 JHS no_valid_pulse
 INCD R8 ; first valid pulse detected
 INC wake_up_counter ; count this valid pulse
 BIS #CCIE,&CCTL2 ; re-enable CCR2 interrupt
 JMP go_back

no_valid_pulse
 CLR R8 ; no the signal doesn't fit the wakeup
sequence
 CLR wake_up_counter ; reset the wake_up_counter, received an
 ; invalid pulse
 JMP go_back

/***
***/

RSTAT01
 MOV &CCR2,R14 ; save Reference Capture value
 MOV R14,R15 ; copy Timer_A value
 SUB R13,R15 ; subtract the current Timer_A
value from the
 ; old one -> Bitwidth in cycles in res_r
 MOV R14,R13 ; current value now -> old value
later

test_res_r01

 SUB DR_DLY_CNT2,R15
 CMP PULSE_WIDTH_TOL,R15 ;4/18 is the detected signal 20-
34uS long?
 JHS no_valid_pulse
 INC wake_up_counter ; next valid pulse
 JMP go_back

/***
**/
RSTAT10
 MOV &CCR2,R14 ; save Reference Capture value
 MOV R14,R15 ; copy Timer_A value
 SUB R13,R15 ; subtract the current Timer_A
value from
 ; the old one -> Bitwidth in cycles
in res_r
 MOV R14,R13 ; current value now -> old value
later

 116

test_res_r10

 SUB DR_DLY_CNT3,R15

 ;CMP #038,R15 ; is the detected signal x cycles long? This is
for asymmetric stuff
 CMP START_WIDTH_TOL,R15
 JGE invalid_bit ; restart detection, this is not a valid
sequence
 JHS no_start_int_enable
 INCD R8 ; go to RSTATE 2, Data Reception,
Start Bit
 ; detected
 BIC #CCIE,&CCTL2 ; disable CCR2 interrupt
 BIC #022h,&TACTL ; stop Timer_A and
disable interrupt

no_start_bit
 INC wake_up_counter ; count the pulses of the trainings
sequence,
 CMP #TS_PULSES,wake_up_counter ; compare the value of the counter
with the
 JGE invalid_bit ;
 JMP go_back ;get ready for data collection

no_start_int_enable
 JMP no_start_bit

invalid_bit
 CLR R8 ; restart the detection, this is not a
valid
 CLR wake_up_counter ; initialize the wake_up_counter

go_back
 BIC #CPUOFF,0(SP) ; wake up!
 RETI

/***
***/
/* Not Used in this version of Firmware*/
/***
**/
RSTAT11
 BIT #CAP,&CCTL2 ; if in capture mode, just
found start bit
 JNZ R_start_edge_detected ; due to negative edge

 BIC.B #rx,&P2SEL ;make it into GPIO
 BIT.B #rx,&P2IN ;read IObit
 RLC data_r ; push carry into the data register
 BIS.B #rx,&P2SEL ;go back to module

 ADD &Btime,&CCR2
 INC bits_r

 117

 CMP #010h,bits_r ; receive 16 bits in row
 JNE end_RSTAT11_INT ;get all bits
 BIC #CCIE,&CCTL2 ;no more int
 JMP end_RSTAT11_INT

R_start_edge_detected
 BIC #CAP,&CCTL2 ;go to compare mode
 ADD &Btime1_5,&CCR2 ;get ready to receive data
 CLR bits_r

end_RSTAT11_INT
 ; before the interrupt
request, but start
 BIC #CPUOFF,0(SP) ; wake up!
 ; subroutine
 RETI
kill_receive
 BIC #CCIE,&CCTL2 ; disable CCR2
interrupt
 BIC #022h,&TACTL ; stop Timer_A and
disable interrupt
 BIC #CPUOFF,0(SP) ; wake up!
 RETI

;*********************************** send_RF

; purpose: sends data through RF channel
;***

send_RF
 BIC.B #URXIFG0,&IFG1 ; Clear Receive Interrupt Flag
 BIC.B #URXIE0,&IE1 ; Disable USART1 Receive Interrupt
send_RF_acknowledge?
 BIT #rF_ACK_SEND,&opstate ; has an acknowledge to be send?
 JNZ send_RF_init
data_to_transmit?
 BIT #rS232_FULL,&opstate ; Is there any data to send via TRF6901?
 JZ end_send_RF ; No, nothing to send
send_RF_init
 DINT
 MOV R12,R10
 MOV R12,R6
 ADD R14,R10
 BIC.B #mode,&P3OUT ; Mode=0 -> Send mode
 BIC.B #tx,&P2OUT ; TXDATA(P2.2) is reset
 BIS.B #stdb_trf6901,&P3OUT ; TRF6900 active, STANDBY(P3.5) is
high
 DECD R10
 MOV 0(R10),data_r ; first word to the send register

 118

 ;This is where clock recovery happens--DCLK has to be connected to
the P2.1/TB0 pin
 MOV #0x4910,&TBCCTL0 ; enable TBCCR0 Interrupt, Capture on Positive Edge
of DCLK
 ; MOV #0x8910,&TBCCTL0 ;capture on negative edge
 MOV #0x0224,&TBCTL ; enable TIMERB and start in Continous mode

 EINT

send_RF_training_sequence ; the entire length ca. 4ms, 154 pulses

 MOV #TS_PULSES, tr_counter ; initialize the training sequence counter

send1_RF_toggle
 BIS #CPUOFF+GIE,SR ; CPU off
;------------------ Start of the trainings sequence --
 XOR.B #tx,&P2OUT ; toggle TXDATA(P2.2)
 DEC tr_counter ; decrement counter for the training
sequence
 JNZ send1_RF_toggle
 ; JMP send1_RF_toggle

 ; ADD TRIGGER HERE
 BIC.B #l_h,&P3OUT
 ; END TRIGGER

send_RF_long_bit
 BIS #CPUOFF+GIE,SR ; CPU off
;------------------ Start of the start bit ---
 BIS.B #tx,&P2OUT ; start of the long start-bit 78,12�ec
 BIS #CPUOFF+GIE,SR ; CPU off
 BIC #rS232_FULL,&opstate ; the RS232 buffer is ready for reception
 BIS #CPUOFF+GIE,SR ; CPU off
 BIS #CPUOFF+GIE,SR ; CPU off
;----------------- End of the start bit --
start_bit_low
 BIC.B #tx,&P2OUT ; reset TXDATA(P2.2)
 MOV DR_DLY_CNT,wait_r
 INC wait_r
 RRA wait_r ; used for DIV by 2

send_pause_dly
 DEC wait_r
 JNZ send_pause_dly

send_RF_data
 MOV #010h,bits_r ; init bitcounter, transmit first 16 bits

send_RF_bit_test
 RLC data_r ; push the next data bit to carry

 119

 JC send_RF_high

send_RF_low
 BIC.B #tx,&P2OUT ; reset TXDATA(P2.2)
 BIS #CPUOFF+GIE,SR ; CPU off
;-------------------------------- Start of the Databit ---

send_RF_next_word?
 DEC bits_r ; decrement bit counter
 JNZ send_RF_bit_test
 DECD R10 ; decrement word counter
 DECD R6
 JZ send_RF_complete
 JN send_RF_reset_ackn ; all data has been transmitted
 MOV 0(R10),data_r
 JMP send_RF_data ; get next word by sending active low
start bit first

send_RF_high
 BIS.B #tx,&P2OUT ; set TXDATA(P2.2)
 BIS #CPUOFF+GIE,SR ; CPU off
;-------------------------------- Start of the Databit ---
 JMP send_RF_next_word?

send_RF_reset_ackn
 BIC #rF_ACK_SEND,&opstate ; reset acknowledge state

send_RF_complete

 BIS.B #0xF0,&P1OUT
 MOV #01000,wait_r ;retry about 10 times

noyet
 DEC wait_r ;tried enough?
 JNZ noyet
 BIC.B #0xF0,&P1OUT

 BIS #CPUOFF+GIE,SR ; CPU off-accomodate TRF6901 timing
 BIC.B #tx,&P2OUT
// BIC.B #stdb_trf6901,&P3OUT ; clear STDBY(P3.5), TRF6901 standby
mode
end_send_RF
 BIC #0x0012,&TBCTL ; stop and disable TIMERB
 BIC #0x0010,&TBCCTL0 ; disable TBCCR0 Interrupt
 BIC.B #URXIFG0,&IFG1 ; Clear Receive Interrupt Flag
 BIS.B #URXIE0,&IE1 ; RE-Enable USART1 Receive Interrupt
skip_send_RF

 RET

;********************************* receive_RF
**
; main routine for code reception

 120

;***

receive_RF
//test

 MOV #0x024E,R14
 MOV R12,R6 ;number of word
 MOV R14,R7 ;points to the receive buffer
 ADD R7,R6

 BIT #rF_REC_FULL,&opstate ; is the reception buffer full?
 JNZ end_receive_RF ; yes the data has to be send to desktop first
 CLR data_r ; reset data_r
 CLR wake_up_counter ; reset wake_up_counter
 CLR RSTAT ; reset receive status register,
RSTAT = 0,
 ; detecting the Trainingssequence

 BIC.B #tx,&P2OUT ; TXDATA(P1.4) is reset -> new for 6901

 BIS.B #l_h, &P3OUT ; set LEARN =HIGH, new for 6901
 BIS.B #mode,&P3OUT ; Mode =1 -> receive FSK in learn
mode
 BIS.B #stdb_trf6901,&P3OUT ; TRF6900 active, STANDBY(P2.5) is high
 CALL #wait_lockdet
 BIS.B #01h,&IE1 ; enable Watchdog Timer interrupt for
training sequence
 CLR R13
 MOV #TACLR+CONTUP+MCLK,&TACTL ; interrupt enable, clear Timer_A,
 MOV #CCIE+CAP+CMANY+SCS,&CCTL2 ; interrupt enable, capture mode,
both edges

loop_receive_training_seq

check_wake_up_counter
 CMP #10h,wake_up_counter ; 16 equal pulses in succession
 JL loop_receive_training_seq ;
;;;***********************************
receive1
 BIC #022h,&TACTL ; stop Timer_A and disable
interrupt
 BIC #CCIE,&CCTL2 ; disable interrupt
 INCD R8 ; RSTAT = 4

start_bit_reception ; waiting for the start_bit

 ;BIC.B #l_h,&P3OUT ;Go into hold mode New for 6901

start1? MOV #TAIE+TACLR+CONTUP+MCLK,&TACTL ; interrupt enable, clear
Timer_A, continious
 ; up mode, MCLK as clock source

 121

 MOV #SCS+CCIE+CAP+CMANY,&CCTL2 ; interrupt enable, capture mode, both
edges
 CLR R13

loop_start_bit
 CMP #04h,R8 ; has the start bit been detected?
 JEQ loop_start_bit ; wait for the start bit
 JN end_receive_RF ; the received sequence is invalid

 ; TEST
 BIC.B #l_h,&P3OUT

;----------------------------- start bit detected --
init_data_reception ; RSTAT = 6, Start Bit detected, Data Reception

send_rx_pause_dly

 BIC #CCIE,&CCTL2 ; disable CCR2 interrupt
 BIC #022h,&TACTL ; stop Timer_A and disable interrupt
 BIC.B #URXIE0,&IE1 ; Disable USART1 Receive Interrupt

 ;This is where clock recovery happens--DCLK has to be connected to the P2.1/TB0 pin
 ; MOV #0x4910,&TBCCTL0 ; enable TBCCR0 Interrupt, Capture on Positive Edge of
DCLK
 MOV #0x8910,&TBCCTL0 ;capture on negative edge
 MOV #0x0224,&TBCTL ; enable TIMERB and start in Continous mode

init_rx_bit_counter
 CLR bits_r

word_reception_loop
 BIS #CPUOFF+GIE,SR ; go to sleep!
 BIT.B #rx,&P2IN ; is RXDATA high or
low?

read_data
 RLC data_r ; push carry into the data register
 INC bits_r
 CMP #010h,bits_r ; receive 16 bits in row
 JNE word_reception_loop ; haven't received 8bits yet

store_data
 ; INV data_r ; the received data is inverted!
 MOV data_r,0(R7) ; store received data to RAM
 INCD R7
 CMP R6,R7
 JNE init_rx_bit_counter ; receive the next
word
ready_to_end
 NOP

 122

 BIS #rF_REC_FULL,&opstate ; RF data received, has to be send to desktop via
RS232
 BIS #rF_ACK_SEND,&opstate ; initialize the acknowledge state
 BIS #RCVD,&opstate

end_receive_RF
 BIC #0x0010,&TBCCTL0 ; disable TBCCR0 Interrupt
 BIC #012h,&TBCTL ; stop Timer_B and disable interrupt
 BIC.B #URXIFG0,&IFG1 ; Clear Receive Interrupt Flag
 BIS.B #URXIE0,&IE1 ; Re-able USART1 Receive Interrupt
 BIC.B #stdb_trf6901,&P3OUT ; clear STDBY(P2.5), TRF6900 in standby
mode
 RET

;************************************* rs232_link_send **********************
; purpose: the transmission of the received data from TRF6901 to the PC via RS232-Port
;**
rs232_link_send
 BIT #rF_REC_FULL,&opstate ; Is there any data in the reception buffer?
 JZ end_rs232_link_send ; Yes, the reception buffer needs to be sent to PC
 MOV R12,R10
 MOV R12,R6
 MOV R14,R10
rs232_apply?
 BIT.B #020h,&IFG2
 JZ rs232_apply?

 MOV.B 0(R10),U0TXBUF ; move the first received word into the output

 MOV #01000h,wait_r
pause_dly
 DEC wait_r
 JNZ pause_dly

 CLR.B 0(R10)
 INC R10
 DEC R6
 JNZ rs232_apply?
 BIC #rF_REC_FULL,&opstate ; the buffer is ready to receive from TRF6901
 BIC #rF_ACK_SEND,&opstate
 BIC #RCVD,&opstate ; the next data
end_rs232_link_send
 RET

finish
 BIT #rF_REC_FULL,&opstate ; Is there any data in the reception buffer?
 JZ end_rs232_link_send ; Yes, the reception buffer needs to be sent to PC
 /*MOV R12,R10
 MOV R12,R6
 MOV R14,R10
rs232_apply?
 BIT.B #020h,&IFG2

 123

 JZ rs232_apply?

 MOV.B 0(R10),U0TXBUF ; move the first received word into the output

 MOV #01000h,wait_r
pause_dly
 DEC wait_r
 JNZ pause_dly

 CLR.B 0(R10)
 INC R10
 DEC R6
 JNZ rs232_apply? */
 BIC #rF_REC_FULL,&opstate ; the buffer is ready to receive from TRF6901
 BIC #rF_ACK_SEND,&opstate
 BIC #RCVD,&opstate ; the next data
//end_rs232_link_send
 RET

;************************************ wait for lockdetect
**
; just wait miminum 1 ms for the IC to settle down
;***

wait_lockdet
 MOV #01000,wait_r ;retry about 10 times

not_yet
 DEC wait_r ;tried enough?
 JNZ not_yet ;if not try again,this calls for diagnostic
 NOP
 RET

 COMMON INTVEC
; DS 10
 DS 2 ;lowest, nothing assigned
; DW PORT2_INT
 DS 8
 DW Timer_A1
; DW Timer_A0
 DS 6

 DS 4
; DW Uart0TX
; DW Uart0RX
; DW WDT
 DS 4 ;Comparator vector

 124

; DW TImerB1 ;timer B1 handled
 DW TimerB0
; DS NMI_VECTOR
; DS RESET_VECTOR
 END

 125

APPENDIX C: RECEPTION

What follows is the code necessary for the receiving microcontroller, the files included are:

11. Receiver.c
12. Program_Reg.c
13. SetDCO.s43
14. trf6903_Registers.s43
15. WirelessUART_RF.s43

Of these programs, we edited trf6903_WirelessUART.c written by Harsha Rao of TI and made it
Transmitter.c, the other files are completely written by Harsha Rao as a part of the “Single-Channel
Firmware” which can be found at [33]. Slight edits are made to WirelessUART_RF.s43.

 126

// receiver.c

/** include files **/
#include "msp430x44x.h"
#include "in430.h"
#include "stdio.h"
#include "rf_reg.h"
#include "Ctype.h"
#include "intrinsics.h"

#define GIE (0x0008)
#define CPUOFF (0x0010)

/** local definitions **/
//TRF6903 control signals
#define TRF_STROBE 0x2
#define TRF_DATA 1
#define TRF_MODE 0x80
#define TRF_CLK 0x40
#define TRF_STANDBY 0x20
#define TRF_LH 0x10
#define tx 0x4 //; P2.2 TXDATA transmit data to the TRF6901
#define rx 0x8 //; P1.3 RXDATA receive data from the TRF6901
#define TRF_LOCKDET 0x40 // P2.6 USED FOR LOCK DET
#define TRF_DCLK 0x2 // P2.1 USED FOR DCLK
#define TRF_RXFLAG 0x8 // P2.3 USED FOR RXFLAG
#define LEDALL 0xf0

// Port definitions of Freq Select pins according

#define FSEL4 0x8
#define FSEL3 0x4
#define FSEL2 0x2
#define FSEL1 0x1

#define MAXWORD 17 //size in word
#define MAXBYTE 32 //size in byte
#define ACK_CODE 0x6F6B // OK in ascii
#define SAMPLEPERIOD 0x7800;
#define XTAL_OFFSET 0

#define rF_REC_FULL 0x0001 /* RF RX buffer is full - send data to PC */
#define rS232_FULL 0x0002 /* RS232 Buf is full - read for TRF6901 to send */
#define rF_ACK_SEND 0x0004 /* RF Acknowledge is to be sent */
#define rF_ACK_WAIT 0x0008 /* RF Acknowledge is to be received */
#define RCVD 0x0010

#define RX_DLY_CNT 0x0020 // Defines the Delay from Start Bit to Data @01010h
#define TS_PULSES 0x0028 // Number of pulses in the training sequence @01014h

/** external functions **/

extern void Set_Clk(void);

 127

extern void Set_DCO(int);
extern void program_TRF69(unsigned int, unsigned int); //trf6903.s43
extern void receive_RF(unsigned char, unsigned int *);
extern void send_RF(unsigned int,unsigned int*);
extern void rs232_link_send(unsigned int,unsigned int*);
extern void configure_trf6903(void);
extern void InitTRF6903(void);

/** external data **/

extern struct TRF_REG trf6903;
extern int PreAmbleSize;

/** internal functions **/

/** public data **/
int f_sel;
int opstate;
unsigned int DR_DLY_CNT = 0x003F;
unsigned int DR_DLY_CNT2;
unsigned int DR_DLY_CNT3;
unsigned int PULSE_WIDTH_TOL;
unsigned int START_WIDTH_TOL;

/* k1, m1 and j1 are global variables used in UART RX ISR*/
int k1=1;
int m1=0;
int j1=MAXBYTE;
struct majority{
 int length;
 int num_of_votes;
} decision;

unsigned int received[MAXWORD];

/** private data **/

/** public functions **/
void InitIo(void);
int GetFsel(void);
void program_TRF6903_word(unsigned long);
void checksum_r(void);
void ChecksumGenRX(unsigned char num);
void TBIntEnable(int);
void majority_vote();
void rs232_report(void);

/** private functions **/

struct RF_XMIT_PACKET {
 int packetsize;
 unsigned int xmit[MAXWORD];
 unsigned int rcv[MAXWORD];
 unsigned int rs232buf[MAXWORD];

 128

 unsigned int chk[1]; // stores checksum generated at the receiver for the received data
}buf;

unsigned int Btime;
unsigned int Btime1_5;
void main(void)
{
 DR_DLY_CNT2 = DR_DLY_CNT -12 ;
 DR_DLY_CNT3 = DR_DLY_CNT2 * 3 ;
 PULSE_WIDTH_TOL = 0x18;
 START_WIDTH_TOL = PULSE_WIDTH_TOL * 3;

 WDTCTL = WDTPW+WDTHOLD;// Stop watchdog timer
 InitIo();
 InitTRF6903();
 Btime=64;
 Btime1_5=60;
 f_sel = GetFsel();
 configure_trf6903();
 buf.packetsize = 34;
 decision.num_of_votes = 0;
 decision.length = 0;

 while(1){
 receive_RF(buf.packetsize,buf.rcv);
 checksum_r();
 rs232_report();
 TBIntEnable(0x0C00); // delay
 opstate = 0;
 } // end of while (1)

 } // end of main

/************************************* checksum_r ****************************
; purpose: the checksum of the received data package from RF,
; for reliable data transmission
;**/

 void checksum_r(void)
 {
 if((opstate&rF_ACK_WAIT)==0) // IF RX routine not expecting ack
 {
 //Generate checksum at the receiver - store the result(1 byte in an array buf.chk[0])
 ChecksumGenRX(16); // Generate chksum of the received data and store it in buf.chk
 return;
 }
 else
 {
 return;
 }
 }

// Initializes all I/O Ports
void InitIo(void)
{

 129

 int i;
 opstate|=0x00; // initilalize opstate

 P3OUT|=TRF_MODE; // MODE is set to output Direction
 P3OUT|=TRF_LH; // LEARN/HOLD is set to output Direction

 P1DIR|= LEDALL;
 P1OUT&= ~LEDALL;
 P1IES |= 0xf; // all int on high to low trans

 P2DIR|= tx; // TXDATA is set to output Direction
 P2SEL=0x33; //select UART functions for P2.4 and P2.5, select TimerA,TimerB capture for RXDATA
and DCLK

 P3DIR|= TRF_CLK + TRF_STANDBY + TRF_MODE + TRF_LH; //P3 OUTPUT * Rest of the ports
in Port 3 are Input direction (Fsel1 to Fsel4)*

 P3SEL|= 0x0; // P3 Input Output Mode

 P4DIR|= TRF_STROBE + TRF_DATA; //P4.0, P4.1 are output
 P4SEL|= 0x0; // P4 Input Output Mode

 P5DIR|= 0x0; // Port 5 is not used
 P5OUT|= 0x0;
 P5SEL|= 0x0;

 P6OUT|=0xf; //All RSSI led off
 P6DIR|=0xf; //RSSI LED driver configured as ouput
 P6SEL|=0x80; //RSSI is AD function

 TBCCR0|=DR_DLY_CNT; //load TBCCR0 for tx and rx data pulse width

 Set_DCO(30000); //set dco for 32Khz external watch * 75 = 2.4576 MHz=DCO Freq
 // After a PUC both SMCLK and MCLK are sourced by DCO freq at 2.4576 MHz

 //initialize UART port. Default Baud =38.4K
 UTCTL0=0x20; // Select SMCLk as the source for UART clock
 URCTL0=0x8;
 UBR00=0x40; // Baud rate = 2.4576 MHz/64 = 38.4kbps
// UBR00=0x80; // Baud rate = 2.4576 MHz/128 = 19.2kbps
 UBR10=0;

 /*Use the definitions below for different serial port rates.
 The GUI can be used to transfer data at the speified rate

 UBR00=0x80; // Baud rate = 2.4576 MHz/64 = 19.2kbps
 UBR00=0x10; // Baud rate = 2.4576 MHz/21 = 115.2kbps
 UBR00=0x80; // Baud rate = 2.4576 MHz/256 = 9.6kbps
 UBR10=0x80; // NOTE THAT BOTH UBR0 and UBR1 are used */

 UMCTL0=0x0; // No modulation . Since fractional divider is not used
 UMCTL0=0;

 130

 UCTL0=0x11; // USART - UART Mode
 UCTL0&=0xfe; // Disable the UART initially
 ME1|=URXE0+UTXE0; //enable Transmitter + receiver
 IE1|=URXIE0; // Enable USART0 Receive Interrupt

 //blink All RSSI LED and Button LED to indicate power up condition
 for(i=0;i<30000;i++)
 {
 P1OUT|=LEDALL;
 P6OUT&=0xf0;
 }
 P1OUT&=~(LEDALL);

 for(i=0;i<30000;i++); //arbitrary wait

 P6OUT|=0xf; // RSSI LED Off

}

int GetFsel(void)
{
 int in0, in1;
 in0 = P3IN&FSEL1;
 in0<<=3;
 in1 = P3IN & FSEL2; // Get remaining select
 in0|=(in1<<1); // align FSEL3 and FSEL2
 in1 = P3IN & FSEL3; // align FSEL1
 in0 |= in1>>1;
 in1=P3IN &FSEL4;
 in0|=in1>>3;
 in0=~in0; //reverse polarity
 in0=in0 & 0xf;
 return in0;
}

/***
 TimerB clock = 2.4576Mhz
**/

void TBIntEnable(int time)
{
 if((TBCTL&0x30)==0){ //if the counter is halted
 TBCTL=0x204; //stop counter- timer running at SMCLK/1 = 2.4576 MHz
 TBR=0; //clear counter
 TBCTL=0x220; //continuous up
 }
 //ms100_cnt=10;
 TBCCR1=(TBR + time) & 0xffff; //turn on the interrupt - Compare Mode
 TBCCTL1 =0x0010; //turn on the interrupt
 return;

 131

}

// Timer B Interrupt Service Routine.
// The ISR does nothing. It just returns control to the TBIntEnable function
// after the specified time interval is completed

#pragma vector=TIMERB1_VECTOR
__interrupt void Timer_B(void)
{
 if (TBIV == 2)
{ TBCCTL1&=0xffed; }
}

/*********************Checksum_gen**
;for sending data through RF channel only
;The calling function must load counter with the data packet size in bytes
;**/
void ChecksumGenRX(unsigned char num)
{
 unsigned int sum,k;
 sum=0;
 for (k=0;k<num;k++)
 {
 sum+=buf.rcv[k];
 }
 buf.chk[0]=sum;

 return;
}

void majority_vote(void)
{
 int n;
 int i;
 int next = 1;
 int length_value[13] = {0};
 int votes[13] = {0};
 int voted = 0;
 int max = 0;

 length_value[0] = buf.rcv[15];
 votes[0]++;

 for(n = 0; n<MAXWORD-5; n++)
 {
 for(i = 0; i<next;i++)
 {
 if(buf.rcv[n] == length_value[i])
 {
 votes[i]++;
 voted = 1;

 132

 break;
 }
 }

 if(voted == 0)
 {
 length_value[next] = buf.rcv[n];
 votes[next]++;
 next++;
 }
 voted = 0;

 }

 //Determine which entry has the highest Vote
 for(n = 0; n<MAXWORD - 5; n++)
 {
 if(max<votes[n])
 {
 decision.length = length_value[n];
 decision.num_of_votes = votes[n];
 max = votes[n];
 }
 }

}

//Fills the RS232BUF with the Values to Display
//RS232 rate is 9600bps
void rs232_report(void)
{
 int u;
 int next;
 int first_digit;
 int second_digit;
 IFG1 = 0;
 majority_vote();
 // Comments will Indicate what is being printed

 buf.rs232buf[0] = 36; //'$'
 next = 70; //'F'
 buf.rs232buf[0] |= (next << 8);

 buf.rs232buf[1] = 77; //'M'
 next = 66; //'B'
 buf.rs232buf[1] |= (next << 8);

 //Display the Board Number, as an example we display 23
 buf.rs232buf[2] = 50; //'2'
 next = 51; //'3'
 buf.rs232buf[2] |= (next << 8);

 buf.rs232buf[3] = 44; //','
 next = 0; // NULL
 buf.rs232buf[3] |= (next << 8);

 133

 // Display length, for now just use sensor number as length since
 // we do not have calibration data.

 //In thesis explain the /1000 and *1000, b/c it does the truncation for you!!!!!!!!!!!!!
 buf.rs232buf[4] = (decision.length / 1000)+ 48; // The thousands digit of the length
 next = ((decision.length - (1000*(decision.length / 1000))) / 100)+ 48; // Hundreds digit of the length
 buf.rs232buf[4] |= (next << 8);

 buf.rs232buf[5] = ((decision.length -(1000*(decision.length / 1000))-(100*(decision.length / 100))) /
10)+48; // Tens digit of Length
 next = ((decision.length -(1000*(decision.length / 1000)))-(100*(decision.length / 100)) -
(10*(decision.length / 10)))+ 48; // Ones digit of Length
 buf.rs232buf[5] |= (next << 8);

 buf.rs232buf[6] = 44; //','
 next = 0; // NULL
 buf.rs232buf[6] |= (next << 8);

 //Display Units either inches or mm

 if(buf.rcv[13] == 1) // mm case
 {
 buf.rs232buf[7] = 109; //'m'
 next = 109; //'m'
 buf.rs232buf[7] |= (next << 8);
 }

 if(buf.rcv[13] == 2) // inches case
 {
 buf.rs232buf[7] = 73; //'I'
 next = 78; //'N'
 buf.rs232buf[7] |= (next << 8);
 }

 buf.rs232buf[8] = 44;
 next = 0;
 buf.rs232buf[8] |= (next << 8);

 // Display Supply Voltage

 buf.rs232buf[9] = (buf.rcv[12] / 100)+ 48; //First Digit Display
 first_digit = (buf.rcv[12] / 100);
 next = 46; //'.'
 buf.rs232buf[9] |= (next << 8);

 buf.rs232buf[10] = ((buf.rcv[12] - (100*(buf.rcv[12] / 100))) / 10)+ 48; // Second Digit Display
 second_digit = ((buf.rcv[12] - (100*(buf.rcv[12] / 100))) / 10);
 next = (buf.rcv[12] - first_digit*100 - second_digit*10) +48; //Third Digit Display
 buf.rs232buf[10] |= (next << 8);

 buf.rs232buf[11] = 86; //'V'
 next = 44;//','
 buf.rs232buf[11] |= (next << 8);

 //Netwok Status Determined by Votes and Checksum

 134

 first_digit = decision.num_of_votes/10;
 buf.rs232buf[12] = 48+first_digit;
 next = 48+(decision.num_of_votes - first_digit*10);
 buf.rs232buf[12] |= (next << 8);

 buf.rs232buf[13] = 44;
 if ((buf.chk[0] == buf.rcv[16]))
 next = 49; // Display '1' if Checksum Correect
 else
 next = 48; // Display '0' if Checksum Incorrect
 buf.rs232buf[13] |= (next << 8);
 buf.rs232buf[14] = 44;

 for(u = 15; u<MAXWORD; u++)
 {
 buf.rs232buf[u] = 0;
 }

 opstate|=rF_REC_FULL;
 rs232_link_send(32, buf.rs232buf);
 opstate&=~rF_REC_FULL;

 // Print the Status of the Sensors in the next transmission

 //Sensors are 'Good'
 if(buf.rcv[14] == 1)
 {
 buf.rs232buf[0] = 71;
 next = 111;
 buf.rs232buf[0] |= (next << 8);

 buf.rs232buf[1] = 111;
 next = 100;
 buf.rs232buf[1] |= (next << 8);
 }

 //Sensors are 'Fair'
 if(buf.rcv[14] == 2)
 {
 buf.rs232buf[0] = 70;
 next = 97;
 buf.rs232buf[0] |= (next << 8);

 buf.rs232buf[1] = 105;
 next = 114;
 buf.rs232buf[1] |= (next << 8);
 }

 //Sensors are 'Fail'
 if(buf.rcv[14] == 3)
 {
 buf.rs232buf[0] = 70;
 next = 97;
 buf.rs232buf[0] |= (next << 8);

 buf.rs232buf[1] = 105;

 135

 next = 108;
 buf.rs232buf[1] |= (next << 8);
 }

 buf.rs232buf[2] = 13; // Carriage Return
 next = 10; // Line Feed
 buf.rs232buf[2] |= (next << 8);

 for(u = 3; u<MAXWORD; u++)
 {
 buf.rs232buf[u] = 0;
 }
 opstate|=rF_REC_FULL;
 rs232_link_send(32, buf.rs232buf);

 for(u = 0; u<MAXWORD;u++)
 {
 buf.rs232buf[u] = 0;
 }
 //opstate&=~rF_REC_FULL;

}

 136

//Program_Reg.c

/***
*
 RF_reg.c
 AUTHOR: Harsha Rao
**
*/
/**************************** Programming the TRF6903
**

 TX = Mode_0: A Word is programmed for FSK transmission (Mode bit =1)
 RX = Mode_1: B Word is programmed for FSK receive (Mode bit =0)
;***
******************/

#include "rf_reg.h"
#include "msp430x44x.h"
#include "in430.h"
#include "stdio.h"
#include "f_6903.h"
#define ENABLE_DCLK 1

extern int f_sel,fsel_update;
extern unsigned int DR_DLY_CNT;

struct TRF_REG trf6903;

extern void program_TRF69(unsigned int, unsigned int); //trf6903.s43

void program_TRF6903_word(unsigned long);
void configure_trf6903(void);
void InitTRF6903(void);

int PreAmbleSize;

void InitTRF6903(void)
{

 trf6903.a.bit.BND = 2; //select 900Mhz
 trf6903.a.bit.CP_Acc=0;
 trf6903.a.bit.PI = 0;
 trf6903.a.bit.TX_RX0 = 1; //low on mode means transmit
 trf6903.a.bit.PA0=0;
 trf6903.a.bit.B_DIV_M0 = 68; //set to 902
 trf6903.a.bit.A_DIV_M0 = 27 ;
 trf6903.a.bit.ADDR =0; //0x2854A2

 trf6903.b.bit.DET_EN = 1; //start off disabled
 trf6903.b.bit.DET_THRESH = 0; //2.2V
 trf6903.b.bit.PARXED = 1;
 trf6903.b.bit.FSK_OOK=1;
 trf6903.b.bit.TX_RX1=0; //receive when mode input =high
 trf6903.b.bit.PA1=0;
 trf6903.b.bit.B_DIV_M1 = 68;
 trf6903.b.bit.A_DIV_M1 = 1;

 137

 trf6903.b.bit.ADDR=1; //0x685599

 trf6903.c.bit.reserved = 0; //start off disabled
 trf6903.c.bit.REF_DIV_COEF = 48;
 trf6903.c.bit.ADDR = 2;

 trf6903.d.bit.reserved1 = 0; //start off disabled
 trf6903.d.bit.OOKXS = 0; //2.2V
 trf6903.d.bit.DEM_TUNE = 7; //6
 trf6903.d.bit.PFD_reset=1;
 trf6903.d.bit.XTAL_Tune=6; //receive when mode input =high
 trf6903.d.bit.RXS=1;
 trf6903.d.bit.reserved2 = 0;
 trf6903.d.bit.ADDR = 3; //0XC0E000

 trf6903.e.bit.reserved1 = 1; //
 trf6903.e.bit.PAI = 2; //Nominal
 trf6903.e.bit.TCOUNT = 5; //Minimum training = 4 times the value
 //trf6903.e.bit.TCOUNT =30 ; //Minimum training = 4 times the value

 trf6903.e.bit.TWO=0; //receive when mode input =high
 //#ifdef ENABLE_DCLK
 trf6903.e.bit.TXM = 1; //use DCLK to send data
 //#else
 // trf6903.e.bit.TXM = 0; //use RAW
 //#endif
 trf6903.e.bit.RXM = 3;

 if (DR_DLY_CNT == 0x007F)
 { trf6903.e.bit.D3 = 0 ;
 trf6903.e.bit.D2 = 3 ; // 19.2 k
 trf6903.e.bit.D1 = 3 ;}

 if (DR_DLY_CNT == 0x003F)
{ trf6903.e.bit.D3 = 0 ;
 trf6903.e.bit.D2 = 2 ; // 38.4 k
 trf6903.e.bit.D1 = 3 ;}

 if (DR_DLY_CNT == 0x002F)
 { trf6903.e.bit.D3 = 0 ;
 trf6903.e.bit.D2 = 2 ; // 51.2 k
 trf6903.e.bit.D1 = 2 ;}

 trf6903.e.bit.ADDR = 2;
 PreAmbleSize = trf6903.e.bit.TCOUNT;
 PreAmbleSize =(PreAmbleSize*4) + 100;
}

void configure_trf6903(void)
{
 int pointer;
 P4OUT&=0xfe; //start with 0 on data

 138

 pointer=(int)f_sel;

 trf6903.a.bit.B_DIV_M0=MAIN_B_T[pointer];
 trf6903.a.bit.A_DIV_M0=MAIN_A_T[pointer];
 program_TRF6903_word(trf6903.a.all);

 trf6903.b.bit.B_DIV_M1=MAIN_B_R[pointer];
 trf6903.b.bit.A_DIV_M1=MAIN_A_R[pointer];
 program_TRF6903_word(trf6903.b.all);

 program_TRF6903_word(trf6903.c.all);

 trf6903.d.bit.XTAL_Tune = XTAL_OFFSET;
 program_TRF6903_word(trf6903.d.all);

 program_TRF6903_word(trf6903.e.all);

}

void program_TRF6903_word(unsigned long control)
{
 unsigned int high,low;
 high = (unsigned int)(control>>16);
 low =(unsigned int)control;
 program_TRF69(high,low);

}

 139

; set_dco.s43

;This module sets the clock.

;==
====
#include "msp430x44x.h"
#define Count1 R8
#define Count2 R9
 MODULE Set_DCO
 PUBLIC Set_DCO
 RSEG CODE

;Adjust DCO Routine

Set_DCO
 MOV.B #(75-1),&SCFQCTL_
 MOV.B #FN_3,&SCFI0_
 ;MOV.B #030h,&FLL_CTL0_ ;10pf load
 MOV.B #010h,&FLL_CTL0_ ;6pf load

Set_DCO1
 BIC.B #OFIFG,&IFG1_

NOT_COOKED MOV R12,Count1 ;20 is the wait time
WAIT? DEC Count1
 JNZ WAIT?
 BIT.B #OFIFG, &IFG1_ ;test oscillator fault flag
 JNZ Set_DCO ; Repeat until test flag remains reset

 MOV #WDTPW+WDTHOLD,&WDTCTL ; if start detected, WDT
set to timeout every 52uS
 RET

 ENDMOD

 MODULE ReStart
 PUBLIC ReStart
 RSEG CODE
ReStart
 MOV #0fffeh,R5
 BR @R5
 RET
 ENDMOD
; END

// The Set_Clk routine is never called since XT2 OSC is not used on the demo board

 MODULE Set_Clk
 PUBLIC Set_Clk
 RSEG CODE

 140

Set_Clk
 BIC.B #XT2OFF, &FLL_CTL1_ ; Turn on the High XT2 Xtal

TST_OF
 BIC.B #OFIFG,&IFG1_
 MOV #20,Count1 ;20 is the wait time
LOOP
 DEC Count1
 JNZ LOOP
 BIT.B #OFIFG, &IFG1_ ;test oscillator fault flag
 JNZ TST_OF ; Repeat until test flag remains reset
 MOV.B #SELM_XT2+SELS,&FLL_CTL1_ ; select the proper clock
 RET
 ENDMOD
 END

 141

;trf6903_Registers.s43

/**************************** program_TRF69
**
; purpose:
; programs a word to A, B, C or D word register of the TRF6901
; gets the settings from the calling routine in R6 and R7
;
;***
******************/
#include "msp430x44x.h"
#include "std_f43x.asm"

#define Count1 R8
#define Count2 R9
#define counter R10 ; universal counter
 NAME TRF6901
 RSEG CODE(1)
 PUBLIC program_TRF69
 EXTERN ?CL430_1_23_L08
 RSEG CODE

program_TRF69

init_high_byte
 DINT

 PUSH R10
 PUSH R9
 PUSH R8
 PUSH R7
 PUSH R6
 PUSH R5
 PUSH R4
 MOV R12,word_h ;mov data to appropriate register
 MOV R14,word_l
 BIC.B #strobe,&P4OUT
 ; reset Strobe port
 BIS.B #strobe,&P4DIR
 ; switch Strobe to output direction
 MOV #02h,counter
 ; initialize the counter for high and low byte
 MOV #08h,bits_r
 ; initialize bitcounter
; MOV word_h,word_trf
 MOV R6,R4
 SWPB word_trf
 ; push the low byte to the high byte, only the

 ; data in the low byte is relevant
 JMP program_word

init_low_byte

 142

 MOV #010h,bits_r
 ; initialize bitcounter
; MOV word_l,word_trf ; push
the low byte to the programming buffer
 MOV R7,R4

program_word
 RLC word_trf
 ; push the msb of the programming buffer to carry
 JNC program_low

program_high
 BIS.B #data,&P4OUT
 ; set data(P1.7)

program_clock
 BIS.B #clk,&P3OUT
 ; generate a pulse on the clock line
 BIC.B #clk,&P3OUT

program_next_bit
 DEC bits_r
 ; decrement bit counter
 JNZ program_word
 ; have already all bits been sent?
 DEC counter
 ; decrement counter for low byte recognition
 JNZ init_low_byte
 ; low byte is to be programmed

generate_strobe
 BIC.B #data,&P4OUT
 ; reset data
 BIS.B #strobe,&P4OUT
 ; set strobe(P1.5)
 BIC.B #strobe,&P4OUT
 ; clear strobe(P1.5)
 BIC.B #strobe,&P4DIR
 ; set strobe(P1.5) to input direction
 POP R4
 POP R5
 POP R6
 POP R7
 POP R8
 POP R9
 POP R10
 EINT

 RET
 ; back to calling routine

program_low
 BIC.B #data,&P4OUT
 ; clear data(P1.7)
 JMP program_clock

 143

end_program_TRF69
 END

 144

;WirelessUART_RF.s43

;/**
; Author - Harsha Rao
;Interrupt subroutines and send and receive RF drivers
;**/
#include "msp430x44x.h"
#include "std_f43x.asm"

#define rF_REC_FULL 0x0001 /* RF RX buffer is full - send data to PC */
#define rS232_FULL 0x0002 /* RS232 Buf is full - read for TRF6901 to send */
#define rF_ACK_SEND 0x0004 /* RF Acknowledge is to be sent */
#define rF_ACK_WAIT 0x0008 /* RF Acknowledge is to be received */
#define RCVD 0x0010

#define RSTAT R8 ; status of the reception
#define wait_r R9 ; counter register for all waiting loops

#define counter R10 ; universal counter

#define RX_DLY_CNT 0x0028 // Not Used in the Firmware
#define TS_PULSES 0x0080 // Number of pulses in the training sequence @01014h*/

 NAME radio(16)
 RSEG CODE(1)
 COMMON INTVEC(1)

 EXTERN time_out_count
 EXTERN opstate
 EXTERN DR_DLY_CNT
 EXTERN DR_DLY_CNT2
 EXTERN DR_DLY_CNT3
 EXTERN PULSE_WIDTH_TOL
 EXTERN START_WIDTH_TOL
 EXTERN k1
 EXTERN m1
 EXTERN j1
 EXTERN Set_DCO
 EXTERN Btime
 EXTERN Btime1_5
 PUBLIC Timer_A1
 PUBLIC receive_RF
 PUBLIC send_RF
 PUBLIC rs232_link_send

 EXTERN ?CL430_1_23_L08
 RSEG CODE

 MOV #09F0h,SP

Timer_A1:

 145

 ADD &TAIV,PC

 RETI
 RETI
 JMP CC2_INT ; RF reception -> every edge of
 ; the rx-signal
 RETI
 RETI
?back RETI

;************************************* Timer_B Interrupt routine ***********
; purpose: handle the Timer_B interrupts, and decide which dedicated routine
; should be addressed. (TB_CCR0 / RF reception and transmission)
;**
TimerB0
 BIC #CPUOFF,0(SP) ; reactivate CPU
end_TB_CCR0
 RETI

;****************************** Capture Compare 2 Register

; used for RF-Reception
;***

CC2_INT
 ; used by biph_rx

 MOV RRFTAB(R8),PC ; conditional jump depends on
RSTAT
 ; RSTAT = 0, detecting the
Trianingsequence
 ; RSTAT = 1, Trainingsquence detected,
waiting
 ; for the Start Bit
 ; RSTAT = 2, Start Bit detected, Data
Reception
RRFTAB DW RSTAT00
 DW RSTAT01
 DW RSTAT10
 DW RSTAT11

RSTAT00
 MOV &CCR2,R14 ; save Reference Capture value
 MOV R14,R15 ; copy Timer_A value
 SUB R13,R15 ; subtract the current Timer_A value from
the

 ; old one -> Bitwidth in cycles in res_r
 MOV R14,R13 ; current value now -> old value later

 146

test_res_r00
 SUB DR_DLY_CNT2,R15
 CMP PULSE_WIDTH_TOL,R15 ;4/18 is the detected signal 20-34uS
long?
 JHS no_valid_pulse
 INCD R8 ; first valid pulse detected
 INC wake_up_counter ; count this valid pulse
 BIS #CCIE,&CCTL2 ; re-enable CCR2 interrupt
 JMP go_back

no_valid_pulse
 CLR R8 ; no the signal doesn't fit the wakeup
sequence
 CLR wake_up_counter ; reset the wake_up_counter, received an
 ; invalid pulse
 JMP go_back

/***
***/

RSTAT01
 MOV &CCR2,R14 ; save Reference Capture value
 MOV R14,R15 ; copy Timer_A value
 SUB R13,R15 ; subtract the current Timer_A
value from the
 ; old one -> Bitwidth in cycles in res_r
 MOV R14,R13 ; current value now -> old value
later

test_res_r01

 SUB DR_DLY_CNT2,R15
 CMP PULSE_WIDTH_TOL,R15 ;4/18 is the detected signal 20-
34uS long?
 JHS no_valid_pulse
 INC wake_up_counter ; next valid pulse
 JMP go_back

/***
**/
RSTAT10
 MOV &CCR2,R14 ; save Reference Capture value
 MOV R14,R15 ; copy Timer_A value
 SUB R13,R15 ; subtract the current Timer_A
value from
 ; the old one -> Bitwidth in cycles
in res_r
 MOV R14,R13 ; current value now -> old value
later

test_res_r10

 147

 SUB DR_DLY_CNT3,R15

 ;CMP #038,R15 ; is the detected signal x cycles long? This is
for asymmetric stuff
 CMP START_WIDTH_TOL,R15
 JGE invalid_bit ; restart detection, this is not a valid
sequence
 JHS no_start_int_enable
 INCD R8 ; go to RSTATE 2, Data Reception,
Start Bit
 ; detected
 BIC #CCIE,&CCTL2 ; disable CCR2 interrupt
 BIC #022h,&TACTL ; stop Timer_A and
disable interrupt

no_start_bit
 INC wake_up_counter ; count the pulses of the trainings
sequence,
 CMP #TS_PULSES,wake_up_counter ; compare the value of the counter
with the
 JGE invalid_bit ;
 JMP go_back ;get ready for data collection

no_start_int_enable
 JMP no_start_bit

invalid_bit
 CLR R8 ; restart the detection, this is not a
valid
 CLR wake_up_counter ; initialize the wake_up_counter

go_back
 BIC #CPUOFF,0(SP) ; wake up!
 RETI

/***
***/
/* Not Used in this version of Firmware*/
/***
**/
RSTAT11
 BIT #CAP,&CCTL2 ; if in capture mode, just
found start bit
 JNZ R_start_edge_detected ; due to negative edge

 BIC.B #rx,&P2SEL ;make it into GPIO
 BIT.B #rx,&P2IN ;read IObit
 RLC data_r ; push carry into the data register
 BIS.B #rx,&P2SEL ;go back to module

 ADD &Btime,&CCR2
 INC bits_r
 CMP #010h,bits_r ; receive 16 bits in row

 148

 JNE end_RSTAT11_INT ;get all bits
 BIC #CCIE,&CCTL2 ;no more int
 JMP end_RSTAT11_INT

R_start_edge_detected
 BIC #CAP,&CCTL2 ;go to compare mode
 ADD &Btime1_5,&CCR2 ;get ready to receive data
 CLR bits_r

end_RSTAT11_INT
 ; before the interrupt
request, but start
 BIC #CPUOFF,0(SP) ; wake up!
 ; subroutine
 RETI
kill_receive
 BIC #CCIE,&CCTL2 ; disable CCR2
interrupt
 BIC #022h,&TACTL ; stop Timer_A and
disable interrupt
 BIC #CPUOFF,0(SP) ; wake up!
 RETI

;*********************************** send_RF

; purpose: sends data through RF channel
;***

send_RF
 BIC.B #URXIFG0,&IFG1 ; Clear Receive Interrupt Flag
 BIC.B #URXIE0,&IE1 ; Disable USART1 Receive Interrupt
send_RF_acknowledge?
 BIT #rF_ACK_SEND,&opstate ; has an acknowledge to be send?
 JNZ send_RF_init
data_to_transmit?
 BIT #rS232_FULL,&opstate ; Is there any data to send via TRF6901?
 JZ end_send_RF ; No, nothing to send
send_RF_init
 DINT
 MOV R12,R10
 MOV R12,R6
 ADD R14,R10
 BIC.B #mode,&P3OUT ; Mode=0 -> Send mode
 BIC.B #tx,&P2OUT ; TXDATA(P2.2) is reset
 BIS.B #stdb_trf6901,&P3OUT ; TRF6900 active, STANDBY(P3.5) is
high
 DECD R10
 MOV 0(R10),data_r ; first word to the send register

 149

 ;This is where clock recovery happens--DCLK has to be connected to
the P2.1/TB0 pin
 MOV #0x4910,&TBCCTL0 ; enable TBCCR0 Interrupt, Capture on Positive Edge
of DCLK
 ; MOV #0x8910,&TBCCTL0 ;capture on negative edge
 MOV #0x0224,&TBCTL ; enable TIMERB and start in Continous mode

 EINT

send_RF_training_sequence ; the entire length ca. 4ms, 154 pulses

 MOV #TS_PULSES, tr_counter ; initialize the training sequence counter

send1_RF_toggle
 BIS #CPUOFF+GIE,SR ; CPU off
;------------------ Start of the trainings sequence --
 XOR.B #tx,&P2OUT ; toggle TXDATA(P2.2)
 DEC tr_counter ; decrement counter for the training
sequence
 JNZ send1_RF_toggle
 ; JMP send1_RF_toggle

 ; ADD TRIGGER HERE
 BIC.B #l_h,&P3OUT
 ; END TRIGGER

send_RF_long_bit
 BIS #CPUOFF+GIE,SR ; CPU off
;------------------ Start of the start bit ---
 BIS.B #tx,&P2OUT ; start of the long start-bit 78,12�ec
 BIS #CPUOFF+GIE,SR ; CPU off
 BIC #rS232_FULL,&opstate ; the RS232 buffer is ready for reception
 BIS #CPUOFF+GIE,SR ; CPU off
 BIS #CPUOFF+GIE,SR ; CPU off
;----------------- End of the start bit --
start_bit_low
 BIC.B #tx,&P2OUT ; reset TXDATA(P2.2)
 MOV DR_DLY_CNT,wait_r
 INC wait_r
 RRA wait_r ; used for DIV by 2

send_pause_dly
 DEC wait_r
 JNZ send_pause_dly

send_RF_data
 MOV #010h,bits_r ; init bitcounter, transmit first 16 bits

send_RF_bit_test
 RLC data_r ; push the next data bit to carry
 JC send_RF_high

 150

send_RF_low
 BIC.B #tx,&P2OUT ; reset TXDATA(P2.2)
 BIS #CPUOFF+GIE,SR ; CPU off
;-------------------------------- Start of the Databit ---

send_RF_next_word?
 DEC bits_r ; decrement bit counter
 JNZ send_RF_bit_test
 DECD R10 ; decrement word counter
 DECD R6
 JZ send_RF_complete
 JN send_RF_reset_ackn ; all data has been transmitted
 MOV 0(R10),data_r
 JMP send_RF_data ; get next word by sending active low
start bit first

send_RF_high
 BIS.B #tx,&P2OUT ; set TXDATA(P2.2)
 BIS #CPUOFF+GIE,SR ; CPU off
;-------------------------------- Start of the Databit ---
 JMP send_RF_next_word?

send_RF_reset_ackn
 BIC #rF_ACK_SEND,&opstate ; reset acknowledge state

send_RF_complete

 BIS.B #0xF0,&P1OUT
 MOV #01000,wait_r ;retry about 10 times

noyet
 DEC wait_r ;tried enough?
 JNZ noyet
 BIC.B #0xF0,&P1OUT

 BIS #CPUOFF+GIE,SR ; CPU off-accomodate TRF6901 timing
 BIC.B #tx,&P2OUT
 BIC.B #stdb_trf6901,&P3OUT ; clear STDBY(P3.5), TRF6901 standby
mode
end_send_RF
 BIC #0x0012,&TBCTL ; stop and disable TIMERB
 BIC #0x0010,&TBCCTL0 ; disable TBCCR0 Interrupt
 BIC.B #URXIFG0,&IFG1 ; Clear Receive Interrupt Flag
 BIS.B #URXIE0,&IE1 ; RE-Enable USART1 Receive Interrupt
skip_send_RF

 RET

;********************************* receive_RF
**
; main routine for code reception
;***

 151

receive_RF
//test

 MOV #0x024C,R14
 MOV R12,R6 ;number of word
 MOV R14,R7 ;points to the receive buffer
 ADD R7,R6

 BIT #rF_REC_FULL,&opstate ; is the reception buffer full?
 JNZ end_receive_RF ; yes the data has to be send to desktop first
 CLR data_r ; reset data_r
 CLR wake_up_counter ; reset wake_up_counter
 CLR RSTAT ; reset receive status register,
RSTAT = 0,
 ; detecting the Trainingssequence

 BIC.B #tx,&P2OUT ; TXDATA(P1.4) is reset -> new for 6901

 BIS.B #l_h, &P3OUT ; set LEARN =HIGH, new for 6901
 BIS.B #mode,&P3OUT ; Mode =1 -> receive FSK in learn
mode
 BIS.B #stdb_trf6901,&P3OUT ; TRF6900 active, STANDBY(P2.5) is high
 CALL #wait_lockdet
 BIS.B #01h,&IE1 ; enable Watchdog Timer interrupt for
training sequence
 CLR R13
 MOV #TACLR+CONTUP+MCLK,&TACTL ; interrupt enable, clear Timer_A,
 MOV #CCIE+CAP+CMANY+SCS,&CCTL2 ; interrupt enable, capture mode,
both edges

loop_receive_training_seq

check_wake_up_counter
 CMP #10h,wake_up_counter ; 16 equal pulses in succession
 JL loop_receive_training_seq ;
;;;***********************************
receive1
 BIC #022h,&TACTL ; stop Timer_A and disable
interrupt
 BIC #CCIE,&CCTL2 ; disable interrupt
 INCD R8 ; RSTAT = 4

start_bit_reception ; waiting for the start_bit

 ;BIC.B #l_h,&P3OUT ;Go into hold mode New for 6901

start1? MOV #TAIE+TACLR+CONTUP+MCLK,&TACTL ; interrupt enable, clear
Timer_A, continious
 ; up mode, MCLK as clock source
 MOV #SCS+CCIE+CAP+CMANY,&CCTL2 ; interrupt enable, capture mode, both
edges
 CLR R13

 152

loop_start_bit
 CMP #04h,R8 ; has the start bit been detected?
 JEQ loop_start_bit ; wait for the start bit
 JN end_receive_RF ; the received sequence is invalid

 ; TEST
 BIC.B #l_h,&P3OUT

;----------------------------- start bit detected --
init_data_reception ; RSTAT = 6, Start Bit detected, Data Reception

send_rx_pause_dly

 BIC #CCIE,&CCTL2 ; disable CCR2 interrupt
 BIC #022h,&TACTL ; stop Timer_A and disable interrupt
 BIC.B #URXIE0,&IE1 ; Disable USART1 Receive Interrupt

 ;This is where clock recovery happens--DCLK has to be connected to the P2.1/TB0 pin
 ; MOV #0x4910,&TBCCTL0 ; enable TBCCR0 Interrupt, Capture on Positive Edge of
DCLK
 MOV #0x8910,&TBCCTL0 ;capture on negative edge
 MOV #0x0224,&TBCTL ; enable TIMERB and start in Continous mode

init_rx_bit_counter
 CLR bits_r

word_reception_loop
 BIS #CPUOFF+GIE,SR ; go to sleep!
 BIT.B #rx,&P2IN ; is RXDATA high or
low?

read_data
 RLC data_r ; push carry into the data register
 INC bits_r
 CMP #010h,bits_r ; receive 16 bits in row
 JNE word_reception_loop ; haven't received 8bits yet

store_data
 ; INV data_r ; the received data is inverted!
 MOV data_r,0(R7) ; store received data to RAM
 INCD R7
 CMP R6,R7
 JNE init_rx_bit_counter ; receive the next
word
ready_to_end
 NOP
 BIS #rF_REC_FULL,&opstate ; RF data received, has to be send to desktop via
RS232
 BIS #rF_ACK_SEND,&opstate ; initialize the acknowledge state

 153

 BIS #RCVD,&opstate

end_receive_RF
 BIC #0x0010,&TBCCTL0 ; disable TBCCR0 Interrupt
 BIC #012h,&TBCTL ; stop Timer_B and disable interrupt
 BIC.B #URXIFG0,&IFG1 ; Clear Receive Interrupt Flag
 BIS.B #URXIE0,&IE1 ; Re-able USART1 Receive Interrupt
 BIC.B #stdb_trf6901,&P3OUT ; clear STDBY(P2.5), TRF6900 in standby
mode
 RET

;************************************* rs232_link_send **********************
; purpose: the transmission of the received data from TRF6901 to the PC via RS232-Port
;**
rs232_link_send
 BIT #rF_REC_FULL,&opstate ; Is there any data in the reception buffer?
 JZ end_rs232_link_send ; Yes, the reception buffer needs to be sent to PC
 MOV R12,R10
 MOV R12,R6
 MOV R14,R10
rs232_apply?
 BIT.B #020h,&IFG2
 JZ rs232_apply?

 MOV.B 0(R10),U0TXBUF ; move the first received word into the output

 MOV #01000h,wait_r
pause_dly
 DEC wait_r
 JNZ pause_dly

 CLR.B 0(R10)
 INC R10
 DEC R6
 JNZ rs232_apply?
 BIC #rF_REC_FULL,&opstate ; the buffer is ready to receive from TRF6901
 BIC #rF_ACK_SEND,&opstate
 BIC #RCVD,&opstate ; the next data
end_rs232_link_send
 RET

;************************************ wait for lockdetect
**
; just wait miminum 1 ms for the IC to settle down
;***

wait_lockdet
 MOV #01000,wait_r ;retry about 10 times

 154

not_yet
 DEC wait_r ;tried enough?
 JNZ not_yet ;if not try again,this calls for diagnostic
 NOP
 RET

 COMMON INTVEC
; DS 10
 DS 2 ;lowest, nothing assigned
; DW PORT2_INT
 DS 8
 DW Timer_A1
; DW Timer_A0
 DS 6

 DS 4
; DW Uart0TX
; DW Uart0RX
; DW WDT
 DS 4 ;Comparator vector
; DW TImerB1 ;timer B1 handled
 DW TimerB0
; DS NMI_VECTOR
; DS RESET_VECTOR
 END

 155

REFERENCES

[1] WildCo, “Fish Measuring Board,” WildCo, [Online]. Available:
 http://www.wildco.com/vw_prdct_mdl.asp?prdct_mdl_cd=118. [Accessed:
 Mar. 21 2006].

[2] Limnoterra, “Electronic Fish Measuring Systems Design Specifications,”
 Limnoterra, [Online]. Available:
 http://www.limnoterragroup.com/fmb/design2.html.
 [Accessed: Mar. 21 2006].

[3] Scantrol, “Electronic Fish Sampling Board For Efficient Fish Sampling,”
 Scantrol, [Online]. Available: http://www.scantrol.net/FishMeter.htm.
 [Accessed: Mar. 21 2006].

[4] Juniper Systems, Inc., “Lat. 37 wFMB Wireless Fish Measuring Board,” Juniper
 Systems, Inc., [Online]. Avaliable:
 http://www.junipersys.com/files/wireless_fish_measuring_board.pdf [Accessed:
 Mar. 21 2006].

[5] SLAS344D MSP430x43x, MSP430x44x Datasheet Dallas, Tx: Texas
 Instruments, 2004.

[6] DS39609B PIC18F6520/8520/6620/8620/6720/8720 Datasheet Chandler, Az:
 Microchip Technology Inc., 2004.

[7] MC68HC16Y1TS/D Rev. 1 Technical Summary 16-Bit Modular
 Microcontroller MC68HC16Y1 Datasheet Phoenix, Az: Motorola Inc., 1996.

[8] SLAU056D MSP430x4xx Family. User’s Guide Dallas, Tx: Texas Instruments,
 2003.

[9] M. Mano, Computer System Architecture, Englewood Cliffs: Prentice Hall,
 1982.

[10] D. S. Nyce, Linear Position Sensors: Theory and Applications, Hoboken, NJ:
 John Wiley and Sons, 2004.

[11] Honeywell International Inc., “SS41,” January 2006,
 Available:http://catalog.sensing.honeywell.com/printfriendly.asp?
 FAM=solidstate&PN=SS41 [Accessed: Mar. 31 2006].

[12] Honeywell International Inc., “2SS52M,” January 2006, Available:
 http://catalog.sensing.honeywell.com/printfriendly.asp?FAM=solidstate&
 PN=2SS52M [Accessed: Mar. 31 2006].

 156

[13] Catalog No. 480-1999-ND, Honeywell International Inc., Digi-Key Corporation,
 Thief River Falls, MN.

[14] Catalog No. 480-1997-ND, Honeywell International Inc., Digi-Key Corporation,
 Thief River Falls, MN.

[15] J.R. Carstens, Electrical Sensors and Transducers, Englewood Cliffs: Prentice
 Hall, 1993.

[16] Honeywell, Hall-Effect Sensing and Application, Jan. 2004.

[17] Allegro A1321 Data Sheet, Allegro Microsystems Inc., Dec. 2005.

[18] Allegro Microsystems Inc., Appl. Note: 27701B, Sep. 1999.

[19] Allegro Microsystems Inc., Appl. Note: 27702A*, April 1999.

[20] D. Pozar, Microwave and RF Design of Wireless Systems, New York: John
 Wiley and Sons, 2001

[21] Smithson, G., "Introduction to digital modulation schemes," The Design of
 Digital Cellular Handsets (Ref. No. 1998/240), IEE Colloquium on , vol.,
 no.pp.2/1-2/9, 4 Mar 1998.

[22] H. Rao, “Implementing a Bidirectional Wireless UART Application With
 TRF6903 and MSP430,” Texas Instruments, 2004.

[23] Mitra, A., "Bit error analysis of new generation wireless transceivers,"
 Communication Systems, 2002. ICCS 2002. The 8th International Conference
 on, vol.2, no.pp. 636- 640 vol.2, 25-28 Nov. 2002.

[24] TRF6903 Data sheet, Texas Instruments, Mar. 2005.

[25] Chipcon CC1020 Data sheet, Chipcon Products from Texas Instruments, Feb.
 2006.

[26] ES Series RF Receiver Module Data Guide, Linx Technologies, Sept. 2005.

[27] ES Series RF Transmitter Module Data Guide, Linx Technologies, Nov. 2005.

[28] ADF7025 Data Sheet, Analog Devices Inc., Feb. 2006.

[29] K. Chang, RF and Mircrowave Wireless Systems, New York: John Wiley
 and Sons, 2000.

[30] M. Loy, “Understanding and Enhancing Sensitivity in Receivers for Wireless

 157

 Applications, Texas Instruments Application Note, SWRA030”, TX, US, 1999.

[31] R. E. Collin, Antennas and Radiowave Propagation, New York, NY: McGraw-
 Hill Book Company, 1985.

[32] Mobile Mark, “PSTN-900,” Mobile Mark, Nov. 2004.

[33] Texas Instruments, “ISM Band Application Notes Abstract from Texas
 Instruments,” Texas Instruments [Online]. Available: http://focus.ti.com/analog/
 docs/techdocsabstract.tsp?familyId=368&abstractName=swra039. [Accessed:
 April 13, 2006].

