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The complex and unstructured nature of many types of data, such as mul-

timedia objects, text documents, protein sequences, requires the use of similarity

search techniques for retrieval of information from databases. One popular approach

for similarity searching is mapping database objects into feature vectors, which in-

troduces an undesirable element of indirection into the process. A more direct

approach is to define a distance function directly between objects. Typically such a

function is taken from a metric space, which satisfies a number of properties, such

as the triangle inequality. Index structures that can work for metric spaces have

been shown to provide satisfactory performance, and were reported to outperform

vector-based counterparts in many applications. Metric spaces also provide a more

general framework, and for some domains defining a distance between objects can

be accomplished more intuitively than mapping objects to feature vectors.

In this thesis we will investigate new efficient methods for similarity searching

in metric spaces. We will first show that current solutions to indexing in metric



spaces have several drawbacks. Tree-based solutions do not provide the best trade-

offs between construction time and query performance. Tree structures are also

difficult to make dynamic without further degrading their performance. There is

also a family of flat structures that address some of the deficiencies of tree-based in-

dices, but they introduce their own unique problems in terms of higher construction

cost, higher space usage, and extra CPU overhead.

In this thesis a new family of flat structures will be introduced, which are very

flexible and simple. We will show that dynamic operations can easily be performed,

and that they can be customized to work under different performance requirements.

They also address many of the general drawbacks of flat structures as outlined above.

A new framework, composite metrics will also be introduced, which provides a

more flexible similarity searching process by allowing several metrics to be combined

in one search structure. Two indexing structures will be introduced that can handle

similarity queries in this setting, and it will be shown that they provide competitive

query performance with respect to data structures for standard metrics.
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Chapter 1

Introduction

Computers excel at storing vast amounts of information. Many applications in

computer science depend on efficient storage and retrieval of data. As the cardinality

of data sets increases, it is important to be able to retrieve data based on certain

criteria. One important example of this is similarity search, where a query object

is given, and similar objects are retrieved by the system. Two important queries

used in similarity matching are range queries and k-nearest neighbor queries. A

range query is given a query object q and a number r, and returns all the objects

that are within distance r of q. A k-nearest neighbor query returns the k closest

objects to a given query object, for some given positive integer k. A few applications

of the similarity search include: audio and image databases [20], video, text files,

fingerprints [31], face recognition [30], and protein sequences [15].

Although they support essentially the same interface, similarity search sys-

tems differ dramatically in how they model objects and how distances are defined.

In particular, most of the research to date has focused on objects represented as co-

ordinate vectors. In these systems, it is assumed that the objects can be decomposed

into or represented as vectors over some multi-dimensional space, and distances are

measured using geometric distance functions like standard Euclidean distance. A

large number of index structures have been created based on this framework. The
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coordinate vector approach is too restrictive for many classes of objects. An alter-

native direction for research had been similarity search in the more general setting

of metric spaces. A metric space is defined to be a set of objects X together with a

distance function d on pairs of objects that satisfies the following properties for all

a, b ∈ X

• Positivity: d(a, b) ≥ 0.

• Symmetry: d(a, b) = d(b, a).

• Triangle Inequality: d(a, b) + d(b, c) ≥ d(a, c).

The metric space model has the capability of capturing a large variety of

similarity search applications. In many cases, it is the most natural manner in

which to approach a problem. For example, the distance between two character

strings may easily be determined by the edit distance, which is a metric [28].

Metric-based methods have the simplicity of not needing to make any as-

sumptions about the internal structure of the objects. All they require is a distance

function that can be invoked on any pair of objects. This high level of abstraction,

however, limits the flexibility of index structures. For example, vector-based meth-

ods can enhance efficiency by processing the dimensions of the vector one at a time.

An example of this is incremental distance computation [4], where the distance of

the query object to a bounding box is computed one dimension at a time. Another

example is the TV-tree [29]. In the TV-tree, new dimensions are introduced only as

they are needed.
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The triangle inequality dictates that the distance between two objects is closely

related to their distances to a third object. Metric-space indexing structures exploit

this fact by appointing a small set of objects to represent the whole population.

These objects are called pivots or vantage points. The distances between the pivots

and a set of database objects are pre-computed and stored in the index structure.

At query time, the distance between some of the pivots and the query object is

computed. Using the triangle inequality, the distance between a regular database

object and the query object can be bounded by their distances to the pivots. If

the lower bound of the distance between a database object and the query object is

greater than the query radius, it follows that the object is outside the query range,

and the object can be eliminated from consideration. In a similar fashion, if the

upper bound of the distance is less than the query radius, it follows that the object

lies within the range. We call this operation pivoting. Objects that have been

classified in this manner are said to be eliminated. Database objects that are not

eliminated must have their distances to the query object computed explicitly. The

efficiency of an index structure is directly related to the fraction of database objects

that can be eliminated through pivoting.

Almost all existing index structures for metric similarity search are built

around the concept of pivoting. They differ in the way they select pivots, decide

which objects should be represented by each pivot, and how the pivot distances will

be organized. These differences also affect how the querying process will be carried

out.

In this thesis we will focus on cases where the distance computation is relatively
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expensive and dominates the overall cost of a query. Although we will also address

other issues like space and additional query time overhead, we will use the number

of distance computations as our primary measure of the cost of answering a query.

We will use the terms CPU overhead and computational overhead when referring to

other organizational and bookkeeping operations performed by the index.

Throughout the thesis will focus primarily on distributions that we charac-

terize as being difficult. Informally, a distribution is difficult if it does not allow a

pivot to eliminate many objects. This occurs when distances tend to be concentrated

around a small number of values. When this happens a large number of objects of

the database are at roughly the same distance to a typical pivot. As a result the

process of elimination through pivoting is least efficient. The phenomenon of dis-

tance concentration is known to occur for uniformly distributed point sets in vector

spaces of high dimension. Although there is not a widely agreed upon definition of

dimension for metric spaces, we will sometimes refer to such difficult distributions

informally as being “high-dimensional”. We also characterize a query as being dif-

ficult if many database objects are at a distance from the query object that is close

to the range’s radius. Again, this definition is operational because it represents a

situation where pivoting will be least efficient in eliminating objects.

Before discussing the contributions of this thesis, let us briefly review some of

the existing work in this area. (A more detailed review can be found in Chapter

2.) Much of the previous work in similarity search in metric spaces has focused

on structures residing in main memory. They usually depend on a hierarchical

organization of the pivots and objects. Among these, the vp-tree [42] stands out
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as one requiring only a small amount of memory and being able to be constructed

efficiently. However it is inferior to others in terms of query performance, including

methods like the mvp-tree [8], and GNAT [9], both of which improve performance

at the cost of greater space and construction time.

The M-tree [17] and Slim-tree [23] are disk-based structures, and support dy-

namic manipulations on the index while maintaining the balance of the tree. In

order to be able to efficiently handle split and merge operations, however, they keep

less precise data than the comparable GNAT structure. This results in poorer query

performance.

Tree structures typically only allow an object to have as many pivots as the

height of the tree. This may not be satisfactory for difficult distributions and queries.

For this reason tree-based structures are not flexible enough to provide greater

elimination power when needed. In contrast, vantage point structures like LAESA

[34], Spaghettis [12] and FQA [13] represent another family of solutions. They use

more space and construction time, but provide greater efficiency at query time.

Although other tree structures also have some parameters that can be adjusted,

their improvements are not as pervasive or as dramatic. The shortcomings of vantage

points-based methods are the extra computational overhead that they incur, higher

construction costs, and higher space usage. If they are allowed to use a sufficient

number of pivots, these methods have been shown to outperform other methods in

terms of the number of distance computations performed. Some of the structures

in this family offer some improvements to the common problems of high space and

construction time. The Spaghettis structure reduces computational overhead but

5



uses more space than the common approach. The FQA also reduces overhead,

but it uses less precision in the distance information it stores, resulting in reduced

performance in terms of the number of distance computations.

In this thesis, we study a number of practical improvements to data structures

and algorithms for similarity searching in metric spaces. Because of our interest in

practical performance, our analysis will be primarily empirical in nature. A recurring

theme in our methods will be the observation that some distance information is more

important than others. More specifically, we will show that a pivot is most effective

for objects that are either very close or distant to it.

We will first introduce a method called prioritized vantage points, which re-

duces the computational overhead of vantage point-based methods. The basic idea

is to only process pivots that are either close to or far from the query object. Unlike

similar solutions proposed before, this method does not compromise on the quality

of the distance information. (This is one of the principal weakness of the FQA

structure). Also, our method does not introduce extra space overhead (as does the

Spaghettis structure).

In the following chapters we will introduce a series of index structures that

provide successive improvements to each other, in the sense that each structure will

accumulate all the benefits of the previous ones and make additional enhancements.

The first is the Kvp structure. This structure is unique since it improves both the

storage and computational overhead of the classical vantage-points approach. The

Kvp structure offers a number of benefits:
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• It is a simple data structure and can be implemented relatively easily.

• It can support dynamic operations like insertion and deletion.

• It is easily adapted for use as a disk-based structure and its access patterns

minimize the number of disk-seek operations.

• Queries may be executed in parallel.

We will show that tree-based structures like the vp-tree may offer suboptimal

performance, even when the given distribution and query are not particularly dif-

ficult (for example, when the distribution is of low dimension and when the query

radius is small). Vantage point structures suffer even more in this respect, since

the number of pivots is not bounded by the height of the tree. We introduce a new

structure, called HKvp, which overcomes these shortcomings since it does not nec-

essarily compute the distance of the query object to all the pivots, that is, it allows

the elimination of less promising ones. Even though this feature was implemented

by some of the earliest structures, they lacked the capability of limiting space and

computational overheads. We will show that HKvp works more efficiently than its

counterparts, while offering all the benefits of the Kvp structure.

Next we introduce a structure, called EcKvp, which addresses one of the major

weaknesses of global pivot-based structures, namely construction complexity. Since

the pivots are global, we need to compute their distances to all the objects in the

database. Most of this distance information is relatively useless. On the other hand,

tree structures attempt to cluster relevant objects together, and therefore a selected

pivot will be representing similar objects. This will help the pivot compute its
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distance against these similar objects. The EcKvp structure also avoids computing

distances to all of the objects. We will show that it does a better job of finding similar

objects to a given pivot. This allows EcKvp to be constructed more efficiently, but

with a negligible performance penalty.

Finally, we propose a new framework for similarity searching in metrics spaces,

called composite metrics. A composite metric is a way of incorporating several met-

rics into the process of distance computation. We present examples that motivate

this concept in two different ways: when there are alternative definitions of distance,

and when the distance is dependent on several unrelated criteria. The queries in

this framework can specify relative weights for each of these metrics, which makes

querying more flexible. We will introduce two new index structures that are specif-

ically designed for composite metrics: the c-tree and the c-forest. We will show

that they perform very competitively compared to similar structures that work on

standard metric spaces. The c-tree uses only one of the metrics per node, and incor-

porates others at different levels of the tree. The c-forest is a composition of c-tree

structures. It operates by executing the query independently in each of the c-trees.

These c-tree structures are used for eliminating objects that do not lie within the

query range. The c-forest only computes the distances to the objects that were not

eliminated by any of the c-tree structures. We will present experiments that show

that c-trees and c-forests provide an efficient solution to similarity searches over

composite metrics.

The organization of the rest of this thesis is as follows. In Chapter 2, we will

present a brief survey of the existing work, followed by a discussion of general issues
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in metric space indexing in Chapter 3. In Chapters 4, 5, and 6 we will present the

Kvp, HKvp and EcKvp structures, respectively. In Chapter 7 we will introduce

the composite metrics framework along with the c-tree and the c-forest structures.

Finally, in Chapter 8 we will offer concluding remarks.
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Chapter 2

Related Work

There has been considerable work on similarity searching in metric spaces from

different disciplines, sometimes unaware of each other. Two very good surveys can

be found at [15] and [21].

For index structures that reside in main memory, query performance is based

on two principal components: the time spent on computing distances between ob-

jects and any additional time needed to process, evaluate, and combine the results

of these distance computations. Henceforth, we will refer to the latter as CPU

overhead or computational overhead.

We will classify approaches into three broad categories: Clustering-based meth-

ods, local pivot-based methods, and vantage points-based methods.

2.1 Clustering-Based Methods

The basic theme behind clustering-based methods is the use of a hierarchical,

tree-based decomposition of the space, where the subtrees are designed to group

close objects together. We also observe that each subtree is represented by a single

object from the database that is ideally located near the center of the group of

objects stored in this subtree.

J. Uhlmann [42] defined the gh-tree, short for generalized hyperplane tree, as
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one of the first examples in this category. The idea is to pick two objects from the

current subset as representatives, and partition the rest of the set into two classes,

depending on which representative is closer.

The GNAT tree, presented by S. Brin [9] is a generalization of the gh-tree,

where there are more than two representatives. A simple algorithm is given to pick

the representatives. According to the algorithm, if we are to select k representatives,

we first pick 3 · k points randomly. Then, starting with an initial set consisting of

one random representative, we incrementally grow the set by adding the point that

maximizes the minimum distance to the other representatives.

In addition to its representatives, each node can also maintain the radius

of the associated region, that is, the maximum distance of the objects inside a

representative’s region. This method was used in the M-tree (described below).

Another enhancement would be to include the distances between the representatives

as well. An even more precise way is used in the GNAT tree. Every representative

stores the minimum and maximum distances to the objects in every other subset.

The performance of GNAT was compared to another structure, the vp-tree,

which will be introduced later. In the best case, the GNAT has been reported to

make more than a factor of 6 fewer distance computations than the vp-tree, while

requiring about a factor of 14 more in distance computations in its construction.

However, it was reported to be worse than the vp-tree in some cases. The original

study [9] also showed that GNAT was outperformed by a variant of the vantage

points structure, although no data was given about the parameters used in the

construction of this structure. Recent experiments presented by [15, 13] show indeed
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that GNAT performs consistently worse than variants of vantage points structures

in terms of number of distance computations, while it consumes less space and has

less computational overhead.

The M-tree [17] is designed to be a dynamic structure, with emphasis being

paid to the structure’s ability to perform queries efficiently and to optimize I/O

performance after a sequence of data insertions. Similar to SS-tree [46], it keeps

the distance to the farthest object in a sub-tree. Maintaining the radius of the

representative objects allows it to easily reorganize disk blocks. Splitting a node

involves selecting two new representatives and redistributing objects associated with

this node among these two new nodes. The M-tree considers all possibilities for a

split and chooses the one with tightest covering radius.

The Slim-tree [23] employs a more efficient splitting method. The minimum

spanning tree of the objects is generated and the longest arcs of the spanning tree

is removed partition the set of objects into two subsets.

2.2 Local Pivot-Based Methods

The structures in this category are also tree-based, however, the partitions are

based on the distances of objects to either one or two selected objects called pivots.

Objects that have similar distances to the pivots are put inside the same subtree,

but that does not necessarily mean they are in close proximity of each other. The

pivots are only used within their subset, and this is why we call them local pivots.

W. Burkhard and R. Keller [10] suggested selecting a random object in the data
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set and partitioning the rest such that every object having the same distance to the

pre-selected object is placed in the same subset. The tree construction continues

recursively on the subset of points at the same distance. Since their application

domain produced discrete distance values, it was possible for many points to be at

the same distance.

An adaptation of the same basic idea to continuous distance values is the

vp-tree, which was introduced by J. Uhlmann [42]. Such a tree is defined by a

branching factor. In order to construct a vp-tree with a given branching factor k, at

a given node, one of the objects is selected as the vantage point, and the distances

from the other objects to this vantage point are calculated. Then these objects are

partitioned into k groups of roughly equal size based on these distances. In this way

a node can have k branches with each subtree having roughly m/k objects, where

m denotes the number of objects for that node. The only information that needs

to be stored is the vantage point itself, and the k − 1 distance values, denoted as

cutoff [1..k], defining the ranges of distances for each subtree.

A range query of radius r centered at a query point q is answered as follows: at

any given node, the distance d between q and the node’s vantage point is calculated.

If d is smaller than r, the vantage point is added into the result set. For every

subset i of the node defined by the cutoff values, if the interval of the subset,

[cutoff [i− 1], cutoff [i]] intersects the interval [d− r, d + r], then subset i is searched

recursively.

A nice feature of the vp-tree is that it is possible to divide the space into many

divisions through a single distance calculation. As a result, when doing a search, we
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need only perform one distance calculation per node. However, as the dimensionality

of the data distribution grows, it is well known that for many distributions, the

objects tend to cluster around a single distance value [7]. As a result, almost all

of the objects are at the same distance to the vantage point. Thus, the distance

to the vantage point loses its discriminating power with respect to the objects.

Another common way to describe the situation is to visualize the situation in a

3 dimensional space, where the median spheres dividing the branches have very

similar radii, subdividing space into thin spherical shells. As a result, objects that

are grouped under same subtree tend to be spread around the space rather being

close to one another.

The mvp-tree [8] uses two vantage points per node. After partitioning the

points with one primary vantage point, the partitions are further divided by using

the second vantage point. This way, if we divide the space into m different regions by

first vantage point, we will have a total of up to m2 subsets. It should be noted that

the second vantage point uses different cutoff values for each partition of the first

vantage point. This allows the tree to maintain balance by assigning approximately

the same number of points to each subset. This occurs at the cost of more space

consumption per node. The value of this partitioning approach is that, instead of

dividing the space into very thin shells, it strives to produce more tightly clustered

subsets, while still achieving the same fanout. Figure 2.1 illustrates the contrast

between the space decompositions of the vp-tree and Mvp-tree.

The mvp-tree stores distances to two vantage points at the leaf nodes, making

it a hybrid of the vantage-point structures. It is reported to perform up to 80% fewer
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Figure 2.1: Space decomposition by the vp-tree (left) and the mvp-tree (right)

distance calculations compared to the vp-tree. Experiments in [15, 13] show that

the non-hybrid version of Mvp-tree is consistently outperformed by vantage-point

variants in terms of the number of distance computations.

2.3 Vantage-Point Methods

In vantage-point methods the pivots are used to control processing for the

entire set of objects instead of having local scope as they do in the previously

described methods. A subset of the objects are selected as vantage points. The

distance between the pivots and the rest of the objects are computed at initialization

time and stored in the database. At query time these precomputed distances are

used to eliminate candidates in a way that is similar to local methods. If there are

k vantage points, then the basic method performs k · n distance computations at

construction and keeps k · n distance values in the index structure. A range query

accesses these distance values to determine which objects can be eliminated based on

their distances to vantage points. Finally, a pass through all objects not eliminated

by use of pivots is performed.

Note that vantage-point methods require extra processing compared to local
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methods, where determination of the partition at a node is done only for the ob-

jects covered by the node. Local methods require storage that is only linear in the

database size, whereas vantage-point methods require O(k · n) storage.

A powerful aspect of these methods is that it is possible to use as many pivots

as desired at the cost of construction time, which results in higher storage require-

ments and extra preprocessing time. Nonetheless, this additional effort and space

can yield progressively better query performance in terms of the number of distance

computations.

To the best of our knowledge, the first vantage-point structure that appeared

in literature was LAESA [34], as a special case of AESA [43]. There have been some

improvements over the basic LAESA algorithm, such as keeping distances to the

vantage points sorted and doing binary searches to identify which objects can be

eliminated from consideration [36].

The TLAESA structure [33] was proposed as a hybrid method between the

LAESA and the gh-tree. The pivots are organized as in a gh-tree, but a distance

matrix is also used to provide lower bounds for the distance of the query object

to the node representatives. Their experiments were performed in low dimensions,

and although were superior to LAESA in terms of total CPU cost, it was inferior in

terms of the number of distance computations.

The Spaghettis structure [12] was introduced as a method designed to further

decrease computational overhead. Here the distances are sorted in a similar fashion.

In addition, every distance has a pointer for the same object’s distance in the next

array of distances. As done in the case of sorted distances, the feasible ranges are
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computed for each array using binary search. For each point, its path starting from

first array is traced using the pointers. Once the object falls out of range in any of

the arrays, we may infer that the object cannot lie within the query region.

The Fixed Queries Array (FQA) [13] is one of the recent global pivot-based

methods. It sorts the points according to their distances to the first vantage point,

then on the second, and so on. It decreases the precision with which distances are

measured, for otherwise the points effectively would be sorted only in their distance

to the first pivot. Using this sorted structure, the query algorithm performs binary

searches within each distance range. The first pivot is processed as in the sorted-

array approach, after that, for each range of objects that has the same discretized

distance to the first vantage point, we perform a binary search to find the range

that is valid for the second pivot. The search continues in this fashion performing

binary searches within ranges.

FQA is unique among vantage-point methods that are designed to reduce

computational overhead in that it does not require any additional storage. However

it does not work very well if too many bits are used for the distance values, since

this would require that the structure be sorted only by the first pivot. This creates

an additional trade-off between the number of bits used for distance storage and

extra CPU processing time needed. This comes in addition to the trade-off between

number of bits and query performance in terms of distance computations. Their

experiments show great improvements in low dimensions, but for 20 dimensional

data for a database of one million objects, they estimate FQA would take only

37.6% less time than a naive approach.

17



Chapter 3

Issues in Metric Space Indexing

In this chapter, we will mention about some of the factors that influence in-

dexing in metric spaces. Specifically, we will analyze the pivoting operation in more

detail, list some of the criteria we may use to evaluate different indexing methods,

briefly summarize some of the previous work to model query cost, and present the

datasets we will use in later chapters.

3.1 Pivoting Operation

Recall that metric space indexing methods commonly use the pivoting opera-

tion to eliminate objects without having to compute their real distance to the query

object. Given a pivot object p and any database object o, where the distance be-

tween p and o, dpo, is pre-computed, we first compute the distance between p and

the query object q. Based on this distance dpq, we can deduce that the distance

between q and o has to be in the range: [|dpo − dpq|, dpo + dpq]. Figure 3.1 depicts

this situation in a 2-dimensional setting.

Sometimes the pivoting operation is performed on a subset of objects. In

this case, the pivot usually maintains the minimum and maximum distances to the

subset. This approach is used, for example, in the vp-tree and the GNAT structures.

Alternatively, just the maximum of the distance is stored, as done in the M-tree and
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Figure 3.1: A general case and two extreme examples of distance relations between

3 objects.

the slim-tree. Of course, unless the subset of objects is very tightly clustered, upper

and lower bounds for a subset will be weaker than bounds computed for an individual

object.

For a given database object, there will be a number of pivots that can be

processed. The overall lower bound of the distance between the object and the

query object is the maximum of the lower bounds acquired from all the pivots.

Similarly, the overall upper bound will be the minimum of upper bounds acquired

from all the pivots. In order to avoid computing the actual distance of an object

to the query object, either the object’s overall lower bound should be greater than

the query radius, or the upper bound should be less than the query radius. In other

words, for a given pivot p, we want the quantity |dpo−dpq| to be as large as possible.

Recall that for difficult distributions and high-dimensional spaces, distances tend

to cluster, and so objects tend to be at about the same distance from each other.

Assuming that the query object follows this expected pattern, in order for pivoting
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to be effective we need to either have a high or low value of dpo. This observation

will be supported by experimental results later.

Tree structures attempt to cluster relevant objects together, so that dpo is

minimized. When we have a symmetrical distance distribution, we will show that

high values of dpo are as important for object pruning as low values. The new

structures that we will introduce will utilize this observation.

3.2 Evaluating Indexing Methods

The performance characteristics of similarity searching in metric spaces are

affected by a number of factors. It is almost always possible to contrive a situation

that favors any one index structure over another. The first question that needs to

be asked is whether it is worth using an indexing structure at all. In the paper

“When is “Nearest Neighbor” Meaningful?” [7], the authors rightly argued that, in

high dimensions, many of the published index structures actually perform worse than

brute-force sequential scan. They give the example of relational database optimizers

that refuse to use an index unless it can filter out at least 90% of the records. This

is based on the fact that seek operations on disk are much more expensive than

sequential reads. Although metric structures are usually meant to handle large and

complex objects, the point is still valid to a degree given the extra cost of using an

index structure.

There are a number of factors that can affect how well a particular scheme may

perform. The distributions of objects, the range of query, and the computational
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cost of distance computations can all have different effects on various methods. Some

of them can handle objects in low dimensions better, and some may work better

for small ranges. The computational overhead (elements of the search other than

distance computations) of an algorithm becomes less important as the computational

cost of distance computations increases. Factors that determine the efficiency of

a structure include construction time complexity, storage requirements, and how

costly it is to process dynamic manipulations.

3.3 Modeling Query Cost

Here we will offer a theoretical analysis of the query performance of global

vantage points-based methods. Our analysis assumes that the distance distribution

is known. The actual distance distribution can be approximated by taking a sample

of object distances.

Given a database object o, pivot p, and query radius r, we define the function

PF (o, p, r) to be the probability that p fails to eliminate object o for a query of

radius r. Let f() denote the distance probability distribution and let F () denote

the cumulative distribution function. the distance between o and p as dop, and

assuming that all objects conform reasonably with the distribution function, we can

approximate this failure probability as the ratio of objects that are expected to have

distances between dop − r and dop + r to p, that is

PF (o, p, r) =

dop+r
∫

dop−r

f(x)dx = F (dop + r)− F (dop − r) (3.1)
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In order to generalize Equation (3.1) to any object and any pivot, we assume

that pivots and objects are distributed independently, which is the case for the

classic vantage points approach. Under this assumption, the expected probability

of the failure of the elimination of an object, EPF (r), is as follows.

EPF (r) =

∞
∫

−∞

f(x) · (F (x + r)− F (x− r))dx (3.2)

If a vantage points approach uses k pivots, then the total cost of a query,

qcost(r), involves computing the distance of the query object to the pivots and then

computing distances to the objects that have not been eliminated by the pivots.

Thus we have

qcost(r) = k + n · (EPF (r))k (3.3)

The M-tree structure has a cost model that also depends on the distribution

function [16]. There also has been some work to approximate distance distributions.

It was argued that most of the real data follows an exponent rule [22] where the

number of objects that are within a distance of r can be approximated by r raised

to a constant. However, this assumption may be too general, especially for clustered

datasets. Another approximation of the distance function was performed based on

the mean and standard deviation of the distance distribution. This approach is

also insufficient where the distribution has several peaks or when the peaks are not

symmetrical.

To the best of our knowledge, Equation (3.2) has not been used for query cost
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estimation before. Equation (3.3) have been used [14] to successfully predict the

query cost of global vantage points-based methods that have a suitable distribution

for their model.

3.4 Experiment Data

In this section we will introduce the different types of real and synthetic data

distributions we have used for our experiments. The primary means of understand-

ing this data will be through their distance distributions.

The majority of our experiments were performed on uniformly distributed

vector spaces. Each of the dimensions had values between 0 and 1, so different

dimensions had different distance ranges. Figure 3.2 shows the distance distribution

in two different ways. In the regular version, we see that the mean distance value

increases as dimension increases. When the distance values are normalized to the

range [0, 1], the mean of the distributions is exactly the mid point, and the distance

values are scattered into narrower ranges as we increase dimensionality.

Other types of vector dataset we used are as follows.

Uniform(s, e) coordinates are uniform over the range [s, e].

Gaussian coordinates are drawn from a Gaussian distribution of zero mean and unit

variance.

Laplace coordinates are drawn from a Laplacian distribution of zero mean and unit

variance.
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Figure 3.2: Distance distribution in unit hyper-cube for 5,10 and 20 dimensions

(left) and distances normalized to 1.0 (right) using a bucket width of 0.1

Clust Gauss(nclust , cdev) coordinates are partitioned into nclust number of clusters

whose centers are distributed uniformly in a unit hypercube, and within each

cluster the coordinates are drawn from a Gaussian distribution having the

cluster center as mean and a standard deviation of cdev .

Figure 3.3 shows the histogram of distances for these distributions. Note that

the clustered Gaussian distribution has two separate peaks; the smaller and closer

one representing the distances within the cluster, the other one representing the

distances between clusters.

Figure 3.4 provides more configurations for clustered data. We see that as we

increase the number of clusters, the number of objects per cluster drops, and the

peak that represents the objects in the same cluster becomes smaller.

We also experimented with real metric data sets. One dataset we employed

involved a set of about 20,000 English words collected from the Unix operating

system. We used the edit distance as our metric. The distribution is shown in
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Figure 3.3: Distribution of various types of vector data for a bucket width of 0.1 in

20 dimensions.
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Figure 3.4: Distribution of various types of clustered vector data in 20 dimensions

for a bucket width of 0.1.
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Figure 3.5: Distance distribution of English words under edit distance.

Figure 3.5. Even though words of similar spellings would be expected to demonstrate

some clustering properties, the clusters are too small to be evident in the graph. The

distribution looks very much like our synthetic vector data, having a fairly symmetric

form.

Another dataset we used was a set of 1800 images having a resolution of

128 by 96 pixels taken from the Corel collection [1]. For each image there is a

64-dimensional color histogram and a 62-dimensional feature vector generated by

Gabor texture filters [32]. Figure 3.6 illustrates the distance distribution of these

images. We again note that these distributions are very much like others we have

presented earlier.

Finally, we considered a document data set consisting of a set of web pages

obtained through Google Inc. [2]. The web pages were converted into term vectors,

and cosine distance [38, 27] was used as a metric. We see in Figure 3.7 that this

distribution is very difficult in the sense described in Chapter 1 because of the high

concentration of distances near the maximum value.

26



 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  0.1  0.2  0.3  0.4

fr
eq

ue
nc

y 
(%

)

distance

color
texture

Figure 3.6: Distance distribution of image data under two separate metrics.
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Figure 3.7: The density function (a) and cumulative density function (b) of web

page data under cosine distance using a bucket width of 0.005
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Chapter 4

Pivot Prioritization Schemes

In this chapter, we introduce a new approach to improve the performance of

pivot-based methods, which we call prioritized vantage points. Recall that query

processing in similarity search is in essence a process of identifying which database

objects lie within the query range and which do not. Pivot-based methods operate by

using precomputed distances from database objects to a collection of distinguished

objects called pivots. A database object is said to be eliminated by a pivot if

this object can be classified as lying inside or outside the query range based solely

on its distance to one or more pivots, without explicitly computing its distance

to the query object. The effectiveness of a pivot is defined to be the expected

ratio of database objects this pivot succeeds in eliminating. We will show that

pivots have varying degrees of effectiveness in eliminating objects depending on

their distance to the query object. Based on this observation, prioritized vantage

points structure only processes a subset of the pivots that look promising. This

results in a reduction in CPU overhead at the cost of making (ideally relatively few)

more distance computations.

Research to date on pivot-based methods has focused on structures that reside

in main memory. This has limited the number of pivots used in experiments. The

FQA structure [13] overcomes this by using fewer bits to encode distance informa-
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tion per pivot per database object, but using fewer bits also reduces the accuracy of

pivots. Rather than uniformly reducing the number of bits of precision, we introduce

a new approach, called Kvp, which intuitively seeks to keep the most effective dis-

tance information. The Kvp structure is designed to prioritize pivot distance data

to reduce space requirements. The Kvp structure is an enhancement of prioritized

vantage points. In addition to saving space, we will see that it also provides savings

in CPU overhead.

4.1 Prioritized Vantage Points

The usual vantage points-based method, which we will call vps for short, stores

k ·n pieces of information, where k is the number of pivots and n is the database size.

As mentioned above, we present ways to prioritize or ignore some of this data to

improve space or CPU overhead at the cost of relatively small number of additional

distance computations.

As mentioned above, a pivot’s effectiveness in eliminating database objects

depends on its distance to the query object. Figure 4.1 shows the number of objects

eliminated as a function the pivot’s distance to query object. The data set consists

of 100,000 uniformly distributed points in 20-dimensional space for a query radius

of 0.6. Observe that the pivot is most effective when it is either close to or far from

the query object.

Figure 4.2 illustrates the intuition behind this observation. Here we have range

queries of radius 1 on a database of English words. As the query object is closer to
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Figure 4.1: Distribution of the number of objects eliminated by pivots based on

object’s distances to the pivots for a query radius of 0.6 on a database of 100,000

objects uniformly distributed in 20 dimensions.

the bulk of the population, the area under the curve grows larger, therefore more

database objects are saved from elimination.

In the basic vantage points approach, the distance between a query object and

all of the pivots are computed, and all of these pivots are processed in an arbitrary

order. Instead of processing all of the pivots, we prioritize their use based on their

distances to the query object, such that close or far pivots are processed earlier than

others. Note that this does not add any extra distance computations to the process.

Figure 4.3 illustrates the resulting reduction in the size of the (unpruned)

search space. Here, the y-axis shows the number of objects not eliminated from the

candidate list. As more pivots are processed, this number decreases.

We see that it is possible to eliminate database objects much more quickly

with priority vantage-points. We can use a large number of pivots for our structure,

but only use a portion of them at query time depending on the query object. Like
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Figure 4.2: Query objects Q1 and Q2 have distances of 8 and 14 to the pivot. The

areas represent the set of objects that cannot be eliminated by this pivot.

the FQA structure, this scheme does not need any additional structures other than

the k · n distance values to the pivots. Unlike FQA, in order to achieve its CPU

efficiency it does not need to reduce the number of bits of precision for the distance

values, and so it is possible to use as much precision as desired.

4.2 The Kvp Structure

In this section we introduce the Kvp structure. As mentioned above, it is

desirable to use pivots that are particularly close to the query object. In a similar

fashion, we can expect a pivot to be more effective for objects that are close to or

distant from it. At index creation time, we can find such pivots, and choose to keep

only the distances to these promising pivots. We will call the result a Kvp structure.

With priority vantage-points, we do not know where the query object will be in

advance, and so we have to keep all pivot distances. However, with Kvp the distance

relations between the pivots and database elements are computed beforehand at

construction time. In addition to reducing CPU overhead by first processing the
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Figure 4.3: The comparison of the rate of the object elimination by the regular

and prioritized vantage points approach for a query radius of 0.4 on a database of

100,000 objects uniformly distributed in 20 dimensions.

most promising pivots, we can eliminate distance computations to the less promising

pivots, thus decreasing the space requirements. There are two ways this can be

implemented. One way would involve the usual layout, where every pivot stores

an array of distances to all the database objects. The object distances can be

sorted so that binary search can be used to quickly determine set of objects that

are eliminated. Another way to implement the basic idea is to have a collection of

object entries, where each object entry stores the distances to its selected pivots.

The benefit of this latter approach is that it is very easy to insert or delete objects

from the database, since there is no global data structure that keeps information

about the objects. We preferred to implement Kvp using the second approach.

Figure 4.4 shows an example.

Other than the fact that Kvp only stores a subset of pivot distances, the way

it processes queries is identical to the classical global pivot-based method. For each
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Figure 4.4: A sample database of 9 vectors in 2-dimensional space, and an example

of the Kvp structure on this database that keeps 2 distance values per database

object. (a) The location of objects. Boxes represent objects that have been selected

as pivots. (b) The distance matrix between pivots and regular database objects. For

each object, the 2 most promising pivot distances are selected to be stored in Kvp

(indicated by using gray background color). (c) The first three object entries in the

Kvp. Each object entry keeps the id of the object, and an array of pivot distances.
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database object it maintains a lower and upper bound for the distance to the query

object. Each pivot is used to attempt to tighten these bounds. After processing

all possible pivot distances, if the bounds are good enough to either discard the

object as out of the query range, or prove that it is within the query range, we avoid

computing the actual distance between the object and the query object. Otherwise

we compute this distance. Figure 4.5 shows the query performance of Kvp as a

function of the number of pivots stored for a query radius of 0.4 in 20 dimensions.

The results that are labeled as “random” choose the next pivot to be used randomly,

simulating a classic vantage-points structure. Kvp methods first process close and

distant vantage points. For example, assume we have a Kvp structure that has a

pool of 50 prioritized vantage points, which we refer to as Kvp 50. In the sorted

array of pivot distances 0 through 49, the processing proceeds in the order: 0, 49,

1, 48, 2, and so on. As the number of pivots in the pool is increased, the chances of

finding a better suited pivot also increases. Varying the number of pivots provides

flexibility to improve query performance by spending more time at construction time

without increasing space and CPU overhead.

We can see from the graphs that Kvp, like priority vantage-points, can elim-

inate database objects much faster than the classic approach. Even though it uses

less space than priority vantage-points, it produces similar query results. The re-

ductions in CPU overhead and space are very closely related. For example, if we

were to store and process two pivots instead of ten, we would be saving a factor

of 5 in both storage and computational overhead. In the case of radius 0.4 for 20

dimensions, we observed the same query performance in terms of the number of
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Figure 4.5: Query performance of the Kvp structure, for vectors uniformly dis-

tributed in 20 dimensions.

distance computations.

4.3 Secondary Storage

Access patterns of pivot-based structures are targeted toward minimizing CPU

time, but they are not always suitable to be stored on disk. For example, performing

binary search in secondary storage is expensive as it involves many seek operations.

Disks are much better at performing sequential scans. The Kvp structure is quite

amenable for data that are stored on disk. It only requires a sequential scan of

distance values. It does not involve a heavy processing burden, so processing time

does not dominate over I/O time. It requires relatively little memory, since only the

vantage objects, the query object, and the distance vector of the processed object

is needed.
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4.4 Memory Usage

To the best of our knowledge, Kvp and its variants HKvp and EcKvp which will

be introduced in later chapters are the only structures to store fewer distance values

than the classic vantage-point methods. As with FQA, another way of storing less

information is by discretization, so that fewer bits are used for the distance values.

Consider its simplest form where the intervals have equal width, using b bits in a

metric space where the maximum distance is Dmax. This will map distances into

buckets of width Dw where

Dw =
Dmax

2b

Since all the distances in the same bucket will be assigned the same distance

value, we will have a maximum error of Dw per distance value. Assuming query

objects are distributed uniformly, we can approximate the error to Dw/2. Therefore,

if a pivoting operation with radius r extends its range of objects that cannot be

eliminated into r + Dw

2
, we will be able to simulate a query process where only b

bits of distance information are available.

Experiments were performed where the number of bits used per distance value

varied, and the number of pivots per object was adjusted accordingly to keep the

total size fixed. In the following figures, a label 〈r, b,Vps〉 stands for classical

vantage-points algorithm using b bits per database object for a query radius of

r, and 〈r, b,Kvp k〉 stands for Kvp with k pivots.

We can see from Figure 4.6 that using more bits is more effective than using

more pivots for values below 7 bits. Also observe that using more bits is almost as

36



 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500

 4  6  8  10  12  14  16

qu
er

y 
co

st
number of bits per distance

0.5, 200 Vps
0.5, 200 Kvp 150

Figure 4.6: Query performance in terms of distance computations when the total

memory usage is kept at a constant and the number of bits per distance value and

the number of pivots stored is varied. The database has 10000 uniformly distributed

vectors in 20 dimensions.

important as using more pivots even after that point.

One of the results that emerged from these experiments is that, ignoring con-

struction cost, for a given Kvp structure and a metric space, there is an optimal

number of bits. This is due to the trade-off between the number of pivots and the

number of bits. Another important result is, using a precision that is less than a

critical value (such as 6 in this case) results in very high performance penalties.

There is a sharp decline in query costs as we increase the number of bits. This

explains why a structure like the vp-tree, which effectively uses very few bits of pre-

cision by not actually storing the distances but a limited number of distance ranges,

is significantly inferior in performance. As we increase number of bits above this

critical value and decrease number of pivots we see that the performance degrades,

but not as dramatically.
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Radius #Bits Cost Ratio (Vps/Kvp)

0.7 200 2.56

0.5 100 5.22

0.5 200 3.53

0.5 400 1.73

0.4 200 1.84

Table 4.1: A sample of improvements Kvp provides over Vps

Typical tree-based structures rely on the partition information implicit in each

internal node to prune out subtrees from search. Since nodes are divided into lim-

ited number of subtrees, this amounts to using insufficient information for pruning.

Although vantage-point algorithms are very simple in structure, it is their ability

to use a large number of bits of distance information that gives them such good

performance.

Figure 4.7 compares two methods under varying radii and memory parameters.

Observe that the Kvp structure performs consistently better than Vps. Table 4.1

summarizes the speedups that Kvp provides over Vps in terms of the number of

distance computations.

In general, vantage-point structures need more space and construction time

than the relative lightweight vp-tree. The Kvp structure adds flexibility that allows

the index structure to better fit a given domain. In contrast the vp-tree does not

have this flexibility to tradeoff space for better query time. We ran some experiments
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Figure 4.7: Effects of changing search radius and amount of total memory on per-

formance. The database has 10000 uniformly distributed vectors in 20 dimensions.

to see how this space-query time tradeoff works for the Kvp structure. We assume

a balanced tree is stored in the typical “heap layout” in an array, such that a node

at index i has its subtrees at index 2i and 2i + 1 [26]. Therefore each internal

node does not require any pointers, and only needs to store a distance value using

64 bits. Since the leaves of the tree do not need to store anything other than the

object itself, this would amount to using 32 bits per object. Given a database of size

10,000, the vp-tree performs approximately log2 10, 000 ≈ 13 distance computations

per database object at construction time.

To produce a fair comparison, we created Kvp structures that use various

multiples of 13 pivots and 32 bits of distance information. The construction cost

and space are the independent variables. The construction cost dictated how many

pivots the Kvp structure could use, and for a given number of pivots, the space

dictated how many bits we could use per database object, which should be less than

bits per distance value times the number of pivot distances stored per object. For a

given space limitation of B bits per object, we varied the number of bits per pivot

39



distance, b, and calculated the corresponding number of pivot distances to store as

⌈B/b⌉.

Figures 4.8 and 4.9 summarize the experiment results. The x-axis, construction

cost, is measured as the ratio of the construction cost used by Kvp to a construction

cost of 13 pivots per database object. The y-axis, space, indicates the multiple of

32 bits that was used per database object. The z-axis, query improvement, is the

ratio of vp-tree query cost to the particular Kvp query cost in terms of distance

computations.

Figure 4.8 shows a query improvement of more than 70-fold in Kvp over the

vp-tree using 8 times the storage of the vp-tree and 2 times the construction cost of

vp-tree for vectors in 20 dimensions, whereas we have an almost 50-fold improvement

for English words. When we use approximately the same resources as the vp-tree,

we obtain query cost improvements up to a factor of 2.59 for vectors and 6.97 for

English words.

Note that Figures 4.8 and 4.9 do not show optimal results, since we see some

performance decrease even as we increase construction cost. Using more pivots does

not help if we do not have the space to store them. Since Kvp computes distances

to all the pivots, we have a problem when optimal number of distance computations

is below the number of pivots used by Kvp. For a given space bound, there is an

optimal construction cost that Kvp should use, and this trade-off obviously is not

reflected on our graphs. In the next chapter, we will introduce a new structure,

called the HKvp, that can overcome this problem.
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Figure 4.8: Comparison of Kvp and the vp-tree in 20 dimensional vector space for

query radius of 0.3 (left) and 0.4.
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metric space of English words for query radii 1 (left) and 2.
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4.5 Comparison of Kvp and Tree-Based Structures

Using a Kvp structure, one can easily vary a number of parameters, including

the construction cost, the number of pivots used per object, the number of pivots

stored per object, the number of pivots processed at query time per object, and the

number of bits used per distance value. It is possible to observe how these changes

affect performance.

In a sense, it is possible to view most of the existing structures as variants of

the vantage point-based methods. For example in a vp-tree with a branching factor

of k, there is one pivot per node, all the objects in subtrees can be eliminated with

their distances to this pivot, and number of branches have an affect similar to the

number of bits used. For a database object, there are approximately as many pivots

as the height of the tree. This view explains why changing k in the vp-tree has little

affect on query performance, since as k increases and pivots become more precise

(which is similar to using more bits), the height of the tree becomes shorter and

there are fewer pivots per database object. A major problem with the vp-tree is

that the only data that is used are the cutoff values. The individual distances of

objects to the pivots are computed but then discarded.

From the perspective of vantage points, it is also easier to see why GNAT

with branching factor k improves on the vp-tree. In GNAT, there are k pivots per

node, and the distance ranges of k subtree to these pivots are stored. One slight

disadvantage of GNAT is that ranges of distances to a pivot can overlap. However,

instead of having just one pivot per one, objects in GNAT make use of k pivots.

42



Tree-based methods have two advantages over the classical vantage points

methods. Whereas a pivoting operation involves one object in Vps, it usually in-

volves groups of objects in tree-based structures. As explained before, this is some-

thing that only improves on the CPU overhead, and has a negative impact on the

number of distance computations. Secondly, tree-based methods attempt to divide

the space into clusters in order to benefit from the locality of pivots. This is similar

to what priority vantage points and Kvp try to accomplish. While tree structures

have varying degrees of success in clustering similar objects together, Kvp takes a

direct approach and precisely computes the closest pivots. In addition, Kvp properly

makes use of far pivots as well.

4.6 Conclusions

In this chapter we presented two new structures, the Priority Vantage Points

and the Kvp. We showed that pivots are more effective if they are close to or distant

from the query object. The Priority Vantage Points structure utilizes this fact to

only process promising pivots to save from the CPU overhead. Kvp takes this idea

further, by only storing and processing relevant distances between database objects

and the pivots. We showed that there is a performance penalty involved in terms

of number of distance computations when we ignore some of the distances, but it

is not significant thanks to our prioritization schemes that process more promising

pivots earlier.

We also showed that the Kvp structure can support dynamic insertions and
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deletions. It can also be stored on secondary memory very easily and only requires

sequential scans.
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Chapter 5

The HKvp Structure

One of the ways to evaluate metric space indexing methods is to compare

their query performance in terms of the number of distance computations versus

their construction costs, ignoring the space consumption. We shall see that, while

some index structures can take advantage of added preprocessing to improve query

time, others either cannot or produce only minor improvements. We will show that

global pivot-based methods like LAESA, Spaghettis, FQA, Omni Sequential and

Kvp take advantage of their preprocessing time more effectively than tree-based

structures. Although LAESA is one of the earliest pivot-based methods, it remains

as the best performer by this criteria. In part this is because more recent methods

have focused on reducing the relatively high space and extra processing times that

arise with global pivot-based methods.

In this chapter we introduce a new index structure, called HKvp. We will show

that this structure can reduce the query times by up to 49% compared to LAESA.

HKvp is based on the Kvp structure so it also has the ability to decrease both the

space usage and the extra processing time, which LAESA lacks.
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5.1 Tradeoffs for Existing Index Structures

Before introducing the HKvp structure, we will take a closer look at the re-

lationship between the construction cost and query performance for three different

structures, which represent the three different families of metric space index struc-

tures as described in Chapter 2. GNAT was chosen as standard example of cluster-

ing methods since others in the same family sacrifice the pivot precision for allowing

dynamic operations. We chose Kvp as the representative for global pivot-based

methods. The various methods within this class that we have introduced usually

have identical query performance in terms of the number of distance computations;

they only differ in their space and computational overheads. For local pivot-based

solutions, there were only two alternatives for continuous distance values, the vp-

tree and the mvp-tree. The vp-tree was chosen over the Mvp-tree because of its

simplicity and the fact that a majority of other algorithms use it as a benchmark

for comparison. Also, the mvp-tree puts some distance information in leaf nodes,

making it a hybrid between the vp-tree and global pivot-based methods [15].

The basic assumptions underlying the working principles of global pivot-based

methods are that we have a very large database with a high intrinsic dimension and

a very expensive distance function. Therefore, it is assumed that the number of

pivots is quite limited compared to the database size. There are cases when this

assumption does not hold, however, for example when the database size is limited or

the application requires a high number of pivots to meet a given set of performance

requirements. In other words, the ratio of the number of pivots to the database size
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is not always as low as assumed.

Given a query object q, a typical pivot-based structure begins the search pro-

cess by computing the distances between all k pivots and the query object q. Assume

that the average probability of a pivot not eliminating an object for a given radius

is f . In this case, after processing k pivots, there would still be fk objects that

remain not eliminated. Therefore the total cost of the query would be:

Cost(q, r) = k + n · fk

It can be argued that this function has an optimal k value for a given query object

and radius. This observation is supported in Figure 5.1. The cost of a query

using k pivots is at least k, if there is a solution that would require fewer distance

computations, typical pivot-based structures will fail to find it. Figure 5.1 also

shows that after the optimal number of pivots is reached, the cost is dominated by

the number of pivots.

In the vp-tree, the vantage points in the nodes govern only the associated

subtree. The out-degree of the nodes of the tree determines its height and therefore

determines the total number of pivots. The higher the tree, the more internal

nodes will be produced, resulting in more pivots, more efficient query processing,

but higher construction costs. On the other hand, increasing the branching factor

results in narrower distance ranges, increasing the effectiveness of the pivots as

discussed earlier. Figure 5.2 shows the query performance of the vp-tree based on

the construction cost for different branching factors. We see that there is a strong

correlation between the construction cost and query performance. Similar to Kvp,
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Figure 5.1: Query performance of Kvp in terms of the number of distance computa-

tions for varying numbers of pivots. We see that there is an optimal setting for the

number of pivots when either the query is relatively easy (left) or when the number

of pivots is high (right). For both figures, the database is composed of 10,000 vectors

uniformly distributed in 40-dimensional Euclidean space.

there is an improvement on query cost as we increase the construction cost. The

reason there is not much difference between different configurations is probably

because the precision loss we encounter for low branching factor values, as discussed

before. Observe that as construction time increases, the vp-tree does not improve

query times as effectively as Kvp does. Otherwise, the two graphs are quite similar.

In GNAT, increasing the branching factor of the tree decreases the height in a

similar fashion as the vp-tree. The difference is that the number of pivots per level

also increases in direct proportion to the branching factor. As a result, increasing the

branching factor of GNAT results in much higher construction times than the vp-

tree. Figure 5.2 also offers a review of GNAT for different branching factors. We can

see that the construction cost can grow as high as 50 million distance computations,

compared to about 100 thousand for the vp-tree.
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Figure 5.2: Query performance of vp-tree (left) and GNAT (right) in terms of the

number of distance computations versus the construction cost for a query radius

of 0.44. The database is composed of 10,000 vectors uniformly distributed in 40

dimensions.

Figure 5.3 summarizes the overall picture. In order to make the data pre-

sentable, we only showed a limited number of GNAT configurations. We can see

that GNAT has very high construction times, and yields worse performance than

the vp-tree in some cases even when given more construction time. Due to the na-

ture of the vp-tree, it is not possible to freely increase the construction cost, since

it achieves its maximum when the branching factor is 2. The reason GNAT out-

performs the vp-tree is that it can use more pivots, thus can store more distance

information. We also see that the Kvp yields much better results when using same

amount of setup time as other tree methods.

As Figure 5.1 reveals, however, Kvp is not perfect in its utilization of con-

struction time. We see that it may perform worse when allowed more pivots. To

solve this problem, we need a way of eliminating pivots as well as ordinary database

objects, which would result in the possibility of processing a subset of the avail-
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Figure 5.3: Performance comparison of three structures by their construction costs

for a query radius of 0.44. The database is composed of 10,000 vectors uniformly

distributed in 40 dimensions.

able pivot set. AESA is a pivot-based structure where all the database objects are

selected as pivots [43]. All the distances between objects are computed, and all

this information is used to successively process pivots and eliminate other pivots.

LAESA is a modification of this approach in which only a subset of the database are

used as pivots [35]. The basic algorithm used by LAESA, adapted to a range search

for a query object q of radius r over set of objects O is presented in Algorithm 1.

The algorithm maintains a global array for objects to hold the lower bounds

for the distances to q. An object can be eliminated if its lower bound is greater than

r. The lower bounds are also used to choose the next most promising pivot from

the unprocessed list. It was reported [35] that choosing the pivot with the least

lower bound gives the best results. The criterion for eliminating pivots is based on

a pre-determined ratio. LAESA is one of the earliest index structures, and so has

been surpassed with the introduction of more recent pivot-based structures that use
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space and processing time in a more efficient manner.

Algorithm 1 Range Query for LAESA. Note that all the distances between pivots
are pre-computed.

Input Query object q, radius r, set of database objects O, set of pivots P .

Output resultSet, set of objects that qualify for the query.

toProcess← O
choose an arbitrary object s ∈ P
while toProcess 6= {}

compute Dsq = d(s, q)
toProcess← toProcess− {s}
if Dsq <= r

resultSet← resultSet
⋃

{s}
for all u ∈ toProcess

if s ∈ P
update u’s approximate distance to q

if u can be eliminated from search
if u ∈ P and pivot elimination criteria holds

toProcess = toProcess− {u}
else if u is an ordinary object

toProcess = toProcess− {u}
set s to be the next most promising object from toProcess

5.2 The HKvp Structure

We introduce a new structure, called HKvp, which stands for “High perfor-

mance Kvp”. HKvp maintains the complete set of distances between pivots, and

eliminates pivots as well as ordinary database objects like AESA. Moreover, HKvp

is an extension of Kvp, therefore it exploits Kvp’s capability to reduce space and

processing times. Applying other well-known CPU or space reduction methods on

LAESA is not straightforward. An example HKvp is shown in Figure 5.4.
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Figure 5.4: A sample database of 9 vectors in 2-dimensional space, and an example
of the HKvp structure on this database that keeps 2 distance values per database
object. (a) The location of objects. Boxes represent objects that have been selected
as pivots. (b) The distance matrix between pivots and regular database objects.
For each object, the 2 most promising pivot distances are selected to be stored in
HKvp (indicated by using gray background color). (c) The HKvp consists of the
distances between pivots and the object entries. Each object entry keeps the id of
the object, and an array of pivot distances.
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LAESA only makes use of lower bounds for pivot and object elimination.

HKvp also makes use of upper bounds for object elimination and choosing the next

pivot to process. Another improvement of HKvp is the maintenance of distance

bounds for pivots. Rather than eliminating a pivot right away, it waits until all

pivots are known to be inside or outside the query range, when we have the greatest

information about the bounds of a pivot, and then it chooses which pivots to explore

further and calculates their exact distances to the query object. Instead of discarding

those pivot bounds that are only approximate, it uses them for elimination as well.

The first phase for HKvp involves computing the distance bounds for pivots.

Some of these distances to query objects are computed exactly, and the rest are

only approximations based on distance relations to other pivots. In the second

phase, the objects are visited and the pivot bounds are used to eliminate them. The

corresponding algorithm is presented in Algorithm 2. An illustration of the first

phase of the HKvp is given in Figure 5.5.

5.2.1 Pivot Selection Policy

We have seen that HKvp progressively computes distances to pivots that are

expected to be promising. In this section, we explain how we determine how valuable

a pivot is expected to be. Note that this discussion is not about the selection of

which subset of the objects to use as pivots at the construction time.

Previous experiments have shown that the best way to select the next pivot

to process is to choose the one with the lowest lower bound for the distance to the
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toProcess : {o0, o3, o4, o6}

pivotBounds
o0 o3 o4 o6

lower bound 0 0 0 0
upper bound ∞ ∞ ∞ ∞

o4 selected, d(o4, q) = 0.88

toProcess : {o0}

pivotBounds
o0 o3 o6

lower bound 0.16 0.38 0.29
upper bound 1.59 1.37 2.05

o3, o6 eliminated

finalBounds: {{o4, 0.88}}

o0 selected, d(o0, q) = 0.16

toProcess : {}

pivotBounds
o3 o6

lower bound 0.65 0.45
upper bound 0.99 0.79

finalBounds: {{o4, 0.88}, {o0, 0.16}}

Figure 5.5: A sample run of the first phase of the HKvp range query algorithm on
the database given in Figure 5.4. The query object is the vector (0.73, 0.07), and
the query radius is 0.2. First, the pivot o4 is selected for being processed. Based
on their distances to o4, the other pivots improve their bounds on the distance to
q. After this step, o3 and o6 are eliminated and removed from the processing queue.
This leaves only o0 to process. o3 and o6 improve their bounds even more based
on their distance to o0, since this may improve the likelihood of the elimination of
regular database objects later on. After processing o0 the range query may proceed
to processing the regular database objects based on the pivot distance information
compiled in pivotBounds and finalBounds.
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Algorithm 2 Range Query for HKvp. Note that all the distances between pivots
are pre-computed.

Input Query object q, radius r, set of database objects O, set of pivots P .

Output resultSet, set of objects that qualify for the query.

initialize all pivot’s bounds as [−∞, +∞] in pivotBounds
toProcess← P
finalBounds← {}
while toProcess 6= {}

get the most promising pivot p based on pivotBounds
compute Dpq = d(p, q)
if Dpq <= r

resultSet← resultSet
⋃

{p}
toProcess← toProcess− {p}
remove the bounds of p from pivotBounds and put into finalBounds
for all bounds [Sv, Ev] ∈ pivotBounds

update [Sv, Ev] based on Dpq and d(v, p)
if Ev <= r

resultSet← resultSet
⋃

{v}
toProcess← toProcess− {v}

else if Sv > r
toProcess = toProcess− {v}

ncompute← (1− pivotDropRate) · |pivotBounds|
for ncompute times do

get the most promising pivot p based on pivotBounds
compute Dpq = d(p, q)
if Dpq <= r

resultSet← resultSet
⋃

{p}
toProcess← toProcess− {p}
remove the bounds of p from pivotBounds and put into finalBounds
update bounds of other pivots

put the rest of the elements in pivotBounds to finalBounds
process the regular database objects like Kvp by using finalBounds
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query object [40, 35]. This chosen pivot is then compared against the query object,

and based on this distance, the bounds for other pivots are updated.

We explore two new approaches for selecting the next pivot: the pivot with

the highest upper bound, and the pivot with the greatest difference between its

lower and upper bounds. We also consider a combination of these policies. The

idea is that using several policies at the same time will improve the evaluation of

the pivots that have different strengths over each other. In order to control the

relative degree of importance of these policies in more detail, we make use of two

parameters. FarToCloseRatio dictates the ratio between “presumed” far pivots

to close pivots. Likewise, WideToCloseRatio is used to control the proportion of

“wide” candidates. In the following figures, a ratio a :: b denotes a FarToCloseRatio

of a and WideToCloseRatio of b. Using 1::1 makes use of three policies in equal

amounts, whereas 0::0 only uses the close pivots, inf::0 uses only far pivots, and

0::inf uses only wide pivots. Active pivots are stored in a processing queue. As each

pivot is processed, it eliminates some other pivots from the processing queue. In

the following figures we plot the number of pivots remaining to be processed as a

function of the number of pivots already processed.

Figure 5.6 shows results for 500 pivots chosen from a uniform distribution in

20-dimensional space. We get the worst results from processing far pivots, whereas

wide pivots provide a slight improvement. The best of the pure policies is using close

pivots, which is supported by prior research [35]. There is still room for improvement

however, as shown by the equal combination policy denoted by 1::1. When we mix

the policies more proportional to their individual performances, such as 0.7::0.9, we
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Figure 5.6: Pivot reduction in dimension 20 for a query radius of 0.9 and 500 pivots

obtained and improvement of up to 10% over the original idea.

Our results suggest that, especially in relatively high dimensions, selecting the

next pivot based on a combination of factors gives the best results. These ratios

can be tuned further for a given radius, dimension and pivot number, but we do

not explore the matter in further detail here, given that using an equal combination

policy seems to provide acceptable improvements.

5.2.2 Drop Rate

In the first phase, pivots are processed until everything is known about their

inclusion or exclusion in the query range. If all the objects were also pivots as in

AESA, this step would be sufficient to complete the query processing. However,

there are some ordinary database objects that still need to be explored. At one

extreme we have Kvp, which computes all the distances to pivots first. At the other

extreme we can process the ordinary objects using only what we know about pivots

from the first phase. This decision is controlled by a parameter called the drop rate.
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Figure 5.7: Query Costs for Varying Drop Rate values for a query radius of 0.9 in

10 dimensions

When the first phase is executed, we have a set of pivots PP that have their exact

distance to query object calculated, and the rest of the pivots PR know their bounds

with sufficient accuracy to be excluded or included in the query range. We continue

processing the set PR to obtain better bounds for pivots, but this time we restrict

this to a ratio of the cardinality of set PR. We drop a portion of PR and process

the rest of the pivots in PR.

Earlier experiments showed that for a fixed number of database objects, as the

number of pivots is increased, more of them should be dropped for better perfor-

mance. The probability that a pivot will be useful for elimination of ordinary objects

increases as there are more objects per pivot. Figure 5.7 compares the query per-

formance of HKvp in 10 dimensions for a radius of 0.9 for drop rates 1.0, 0.9, and

0.8. Other settings yielded similar results, and are not presented here.

As we see, as the ratio of pivots decreases we need to make use of more pivots.

The point where the performance of the drop rate value of 1.0 equals to that of
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Figure 5.8: The crossing point between drop rates of 1.0 and 0.9 in 10 dimensions

for various database sizes (left) and query radius values (right).

0.9 is particularly interesting, since this is when there is a substantial need to start

adjusting the drop-rate parameter to use more pivots. We ran some experiments to

see how the size of the database and query radius affects this critical point. Figure

5.8 summarizes our results. As expected, we see that larger databases need to start

dropping pivots later than smaller ones. We also see that as we increase the search

radius and therefore make the query more difficult, we need more pivots to process,

therefore the point where we should stop eliminating all pivots goes toward that

direction.

5.2.3 Indirect Elimination

One of the improvements of HKvp over its predecessors is that it uses pivots

without a direct distance to the query object for elimination of ordinary database

objects. Recall that after the pivot elimination step, we will have lower and upper

bounds for distances of some pivots. We make use of these bounds to deduce distance
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The number of approximate and direct pivots for HKvp (right). For both graphs,

the database consists of 2000 points uniformly distributed in 10 dimensions.

bounds from the ordinary objects to the query object.

In order to see the extent to which indirect elimination contributes to query

performance, we ran some experiments where we counted the number of indirect cuts

compared to regular cuts. Figure 5.9(a) summarizes the results for a 10-dimensional

database with 2,000 objects. We see that approximate cuts provide a fair amount

of object elimination. As the number of pivots grows, we see that approximate cuts

are of greater value. Figure 5.9(b) provides an explanation. Here we plot the size of

PP versus the size of PR. We see that the former number grows much slower, and

the ratio of approximate pivots increases as we increase the total number of pivots.

Figure 5.10 compares indirect versus direct cuts for varying radius values us-

ing 500 pivots. We see that direct cuts are dominant for difficult queries since

they provide greater certainty; however, as the queries become easier, approximate

elimination becomes quite important.
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objects.

5.2.4 Pivot Limit

The pivot limit is a parameter of Kvp that indicates the number of pivot

distances stored and used per database object. As an extension of Kvp, HKvp

can also adjust this parameter. Rather than storing the distances to all pivots,

keeping only the most relevant pivots reduces both storage and processing times

simultaneously. Figure 5.11(a) shows the result of adjusting the pivot limit on

query times for a database of size 4,000 in 10 dimensions for different radius values.

A standard drop rate of 1.0 was used in these experiments, which means that only

the necessary pivots were computed against the query object. The total number

of pivots was 500. We see that the pivot limit parameter is more helpful for lower

radius values. For radii of 0.5 and 0.6, storing only 300 pivots produced results very

close to that of using full 500 pivots.

Although the results look similar to typical Kvp experiments, there is one slight
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Figure 5.11: (a) Using different Pivot Limit parameters (left). (b) Optimizing the

drop rate for better pivot limit utilization (right). The database size is 4000, The

objects are uniformly distributed in 10 dimensions.

difference: the pivot limit does not necessarily reflect the actual number of pivots

used per database object. Some of the pivots are not usable since they have been

eliminated in the first phase of HKvp. By adjusting the drop-rate parameter, we

can increase the number of pivots that are actually used, and the optimal drop-rate

parameter will be different for different pivot-limit values.

Figure 5.11(b) explores the affect of the drop-rate parameter on the pivot-limit

parameter. Varying drop rates with increments of 0.1 were applied and the best one

was taken as the optimized result. We see that with a good choice of drop rate,

we can decrease the performance penalty that results from limiting the number of

pivots.
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Figure 5.12: Ratio of the costs of vp-tree to Kvp (left) and vp-tree to HKvp (right)

for various construction cost ratios on a database of 10,000 uniformly distributed

random vectors in 40 dimensions.

5.3 Query Performance of HKvp

We mentioned earlier that the number of pivots in a pivot-based structure

has an optimal value. Figure 5.12 compares the Kvp with the vp-tree for three

different query radius values. We see that Kvp can perform up to 120 times better

using 3 times the construction cost of the vp-tree on a database of 40-dimensional

uniformly distributed vectors. Even though the improvement we obtain in terms

of performance by increasing the construction cost is impressive, we see that the

performance of Kvp begins to decline once the optimal number of pivots is reached.

The optimal number of pivots increases as the query radius increases, because more

pivots are needed for queries that are more difficult.

We compared the performance of HKvp versus Kvp to determine the perfor-

mance gain due to its better use of pivots. Figure 5.13 summarizes our results on a
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Figure 5.13: Comparison of HKvp with Kvp on a database of 1000 vectors.

database of 1,000 vectors using varying number of pivots. We see that HKvp with

a drop-rate parameter of 1.0 improves on Kvp when the number of pivots is high,

but it produces poorer results otherwise. The reason is that the pivot elimination

process is targeted at minimizing the number of pivots being processed, but the

unprocessed pivots decrease the likelihood of the elimination of ordinary objects.

This shortcoming can be rectified by adjusting the drop-rate parameter according

to the ratio of pivots to the database size. The figure also shows the result of HKvp

where the drop-rate parameter is optimized. In this case it outperforms the two

extreme cases in all our tests.

Figure 5.12 also shows a comparison of HKvp with the vp-tree. In this fig-

ure, Kvp was seen to perform worse as more pivots were used. We see that this

shortcoming is eliminated in HKvp.

Our experiments that compared HKvp to LAESA showed that it performs up

to 49% fewer distance computations. Some of our results are summarized in Figure

5.14. In all experiments, the same greedy algorithm was used to determine the
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Figure 5.14: Hkvp compared to LAESA for various settings. The drop parameters

were optimized for both structures.

optimal value for the drop-rate parameter for both structures. In order to obtain a

better understanding of the query cost improvements, Figure 5.15 presents two of

the settings in Figure 5.14 in terms of the ratio of the query costs. Observe that

when the number of pivots is low, both structures work very similar to Kvp and use

all the pivots available. This explains why HKvp does not provide improvements

over LAESA for very low pivot number settings. Otherwise, we see that there is a

consistent improvement over LAESA for cases the HKvp was designed for.

We chose a pivot selection policy of 1::1 for the experiments which yielded

query costs that are up to 43% less than LAESA. Optimizing this policy provided

up to 6% further improvements on the query cost.
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of 4,000 uniformly distributed random vectors.

5.4 Summary

The efficiency of a metric space indexing algorithm may be measured by a

number of factors including space usage, construction cost, processing time and the

number of distance computations to process a query. In this chapter, we focused

our attention on the effect of construction cost and the number of distance compu-

tations. We evaluated three major structures from this point of view, and showed

that the performance of these structures is highly correlated with their construction

times. Our experiments clearly show that global pivot-based methods offer a better

performance to construction cost ratio.

We also showed that the optimal number of pivots varies with the choice

of method and query radius. Easier queries, that is, queries executed on databases

having lower dimensions or queries having small query radius values, tend to require

fewer pivots than more difficulty queries. A pivot-based method may perform worse

even when given more setup time because it has more pivots to process than needed.
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Although it lacks some of the features of its modern descendants, LAESA has the

ability to eliminate pivots as well as ordinary database objects, and produces better

results when the ratio of pivots to the number of ordinary database objects is high.

We also introduced a new structure, called HKvp, which performs significantly

better than LAESA while providing greater flexibility. HKvp achieves this flexibility

by trading off query performance (in terms of distance computations) against lower

overheads in space and processing times.

The major drawback of HKvp is the need to adjust the drop-rate parameter

to produce the best results. A possible solution is to modify the HKvp search to try

different drop-rate values and train itself on which drop rates work best for different

query radius values. This is purely a query-time adjustment and varying the drop

rate would not result in any structural changes on HKvp.
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Chapter 6

The EcKvp Structure

In this chapter we introduce a new structure, called EcKvp, which is based on

the Kvp structure. It shares with Kvp the advantages of low space and query time,

but with only a small performance penalty, it offers significantly lower preprocessing

time. It achieves lower construction costs by storing the pivots in an index structure,

and retrieving distance values between objects and pivots by querying into this

structure rather than computing all the distances between them.

6.1 Introduction

In order to better understand how EcKvp works, let us consider a typical

global pivot-based structure. Given a set of objects O, we first choose P as global

pivots. For each object o, we compute the distances to all the pivots in P and create

a pivot distance vector PDo containing these distances. Thus, the index structure

is basically a distance matrix between P and O− P . Let us consider a range query

centered about a query object q with radius r. Recall that our basic strategy is

to eliminate database objects from consideration without explicitly computing the

distance between the database object and the query object. We first compute the

distances between q and all the pivots in P . For each object o, we use the information

in PDo to attempt to avoid computing the actual distance between o and q. Let E
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denote the set of such eliminated objects. Given that PDop contains the distance

between each pivot p and each non-pivot o, it follows from the triangle inequality

that o can be eliminated if its distance to p is less than d(q, p)− r or if its distance

to p is greater than d(q, p) + r. That is,

o ∈ E ⇔ ∃p ∈ P ((PDop < d(q, p)− r) ∨ (PDop > d(q, p) + r)) (6.1)

Observe that this test does not require that any distances be computed at

query time other than between pivots p and thee query object q. Only when we

fail to eliminate an object based on all the stored pivot distances in PDo will we

compute the actual distance between o and q to determine whether d(q, o) < r.

Thus, the total cost of the query in terms of the number of distance computations

performed is |O − E|.

Variants of this basic idea differ in the way they store the distance informa-

tion and the way they process that information to eliminate objects. For instance,

Kvp purges the less effective distances in PDo to avoid storing and processing the

complete distance matrix.

The EcKvp structure introduces a new method for creating the pivot distance

vector. It makes use of an internal index containing only pivots to acquire this

information. We call this structure the pivot index or the inner index. The pivots

of the global structure will be regarded as ordinary database objects inside the inner

index. The database objects of the global structure will be used as query objects at

construction time. By running a query on the inner index we will discover distance
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relationships between pivots and regular objects. We call this an inner query.

The structure to use as the inner index and the type of the inner query to be

executed inside the inner index are the parameters of the EcKvp structure. Because

of the special needs of the EcKvp construction process, it is important to augment

the information returned by similarity search queries applied to the inner index.

Typical similarity search queries, such as range and k-nearest neighbor queries only

identify which database objects meet the search criteria; it is not a requirement to

return actual distances to the query object. But this distance information will be

of value to the EcKvp search algorithm. Also, in the process of answering the sim-

ilarity queries we may discover useful information about the distance relationships

for objects that are not in the result set. This information is discarded when the

search is completed, but may be of value to the EcKvp search.

Let us consider how to augment information returned from a query for the

purposes of building the EcKvp structure. Assume that database object o is being

inserted into an EcKvp structure, and as a part of the insertion, we run a query on

the inner index to determine PDo. Let us assume that the inner index is a global

pivot-based structure. When answering the query on o, the search algorithm seeks

to eliminate objects of the inner index. Let us say that in the middle of the query

algorithm, we are processing the pivot pi of the inner index on the object p to decide

whether p should be in the result set. Recall that p can be an ordinary object in the

context of the inner structure, but it is one of the pivots of the EcKvp structure.

Let Do denote the distance between pi and o, Dp denote the distance between pi

and p, and r denote the query radius. Letting Dop denote the distance between p
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and o, we can conclude that:

|Do −Dp| < Dop < Do + Dp (6.2)

In this way, we can determine upper and lower bounds for the value of Dop.

We call this the pivot bound of object o to pivot p, or PBop, and the set of all pivot

bounds for object o are denoted by PBo. Thus, Equation (6.1), which describes the

cases when an object can be eliminated, can be expressed as:

o ∈ E ⇔ (PBop.upperBound < d(q, p)−r)∨(PBop.lowerBound > d(q, p)+r) (6.3)

If the pivot bound PBop is strong enough to prove that o is either inside the

query range or outside the query range, we stop the processing of o, and otherwise we

move on to process other pivots. Each pivot we process will tend to improve PBop,

and if none of the pivots are strong enough to eliminate o, we compute the actual

distance between o and p. Thus, although this process is oriented towards answering

the range search with as few distance computations as possible, it produces some

very useful information in the form of PBo as a byproduct.

Recall that the typical range query discards information about objects that

lie outside of the query radius. Our special query returns all the pivot bounds

produced. Another modification we make is to let the query process look at all the

pivots of the inner index, even if the object can be proven to be inside or outside

of the result set. This way we can further strengthen the pivot bounds without

incurring additional distance computation costs during preprocessing.
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The query radius used for the pivot index, which we will call inner query

radius, is a parameter. Selecting a small inner query radius value will result in low

cost query executions, but the distance information it provides will also be limited.

Therefore, there is a trade-off to consider in the choice of the radius parameter,

which we will explore later in the chapter.

In summary, the EcKvp structure consists of an internal pivot index and PB,

the set of all pivot bounds for all the objects in the database. The construction

algorithm is given in Algorithm 1.The algorithm for range search is very similar to

that of Kvp. The only difference is we need to take into account that we may not

have exact distance of objects to pivots. The algorithm is given in Algorithm 2.

The algorithm for producing PBo is independent of the EcKvp structure.

Algorithm 3 presents the algorithm for a global pivot-based inner index PI using a

modification of the range search.

6.2 The Pivot Index

The performance of the pivot index is crucial for the efficiency of the EcKvp

construction. If EcKvp were to use sequential scan for the inner queries, effectively

computing the distances between each database object and all pivots, it would

perform exactly the same amount of work as the Kvp structure. Therefore, any index

structure that works better than sequential scan will provide us with improvements

on the overall construction cost. The exact amount of improvement can be quantified

as follows. Given a query range, define its cost ratio to be the ratio of the average
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Algorithm 1 EcKvp Construction

Input O, set of database objects

Output PB, the pivot bounds that make up the index.

PB ← {}

select P ⊂ O as pivots.

construct the inner structure PI as the pivot index consisting of objects in P

for all o ∈ O − P do

execute a query on PI using o as the query object and produce PBo

remove the unpromising entries in PBo

sort PBo so that entries that are more promising appear in front

PB ← PB ∪ PBo
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Algorithm 2 EcKvp Query

Input EcKvp structure E, query object q, query radius r.

Output RS, the set of objects within query radius.

RS ← {}

for all pivots p ∈ E do

Compute d(p, q)

for all objects o ∈ E do

for all PBop ∈ PBo do

if r > d(p, q) + PBop.upperBound

RS ← RS ∪ o

move on to the next object

if [d(p, q)− r, d(p, q) + r] and PBop does not intersect

move on to the next object

Compute Doq as d(o, q)

if Doq < r

RS ← RS ∪ o
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Algorithm 3 Algorithm for constructing PBo

Input Owner of the entry o, pivot index PI

Output PBo

PBo ← {}

for each p ∈ PI do

PBop ←< −∞, +∞ >

for each pivot pi ∈ PI do

if |d(pi, o)− d(pi, p)| > PBop.lowerBound

PBop.lowerBound ← |d(pi, o)− d(pi, p)|

if d(pi, o) + d(pi, p) < PBop.upperBound

PBop.upperBound ← d(pi, o) + d(pi, p)

PBo ← PBo ∪ PBop
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query cost in terms of the number of distance computations for this range to the

size of the index.

In this chapter, we will make the reasonable assumption that the number

of pivots is significantly smaller than the size of the database, and therefore the

construction cost of the pivot index will be a negligible component of the overall

preprocessing costs. This means the inner index will consist of a small database of

objects, and so we are willing to spend a significant amount of time in constructing

the inner index in order to speed up query processing. Given these requirements,

we will show that the HKvp structure is an excellent choice for the pivot index. The

experiments we will perform on HKvp will be based on uniformly distributed vector

spaces.

6.2.1 The HKvp Index Structure

As introduced in Chapter 5, HKvp is a variant of the Kvp structure that has

the advantage of eliminating pivots as well as database objects during a search. In

this way, HKvp can avoid computing the distances to all the pivots. In order to

eliminate pivots based on the distance of the query to another pivot, HKvp stores

the distances between pivots. Therefore, the construction cost and space of the

HKvp structure grows quadratically with the number of pivots.

Recall that the HKvp query processing starts with the processing of the pivots.

First, it computes the distance of the query object to some of the pivots, and based

on these distances, it computes bounds on the distances to the rest of the pivots.
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The important thing here is, at the end of this phase, the bounds of a pivot are good

enough to infer whether it is inside or outside the search radius. In the second phase

it processes the non-pivot database objects based on the pivot bounds computed in

the first phase.

The first phase works in an incremental fashion. At each step we find the

most promising pivot based on some policy, compute the distance from this pivot to

the query object, and update the bounds of other unprocessed pivots based on this

new information. The process continues until all the pivot bounds are sufficient as

described above.

6.2.2 Cost of the Inner Queries

The number of the pivots, which determines the size of the pivot index, and

the inner query radius, are both parameters used in the construction of the EcKvp

structure that will influence the cost of the inner queries. Let n be the size of the

database and p be the number of pivots selected out of these n objects. As mentioned

earlier, we assume that p is significantly smaller than n. Since our inner index is

an HKvp structure in which all objects are pivots, the construction of the pivot

index will involve O(p2) distance computations. On the other hand, assuming that

HKvp provides sub-linear query performance, the cost ratio of HKvp will improve

as we increase p. Figure 6.1(a) supports this observation, showing that the cost

ratio sharply improves as the size of pivot index grows.

Keeping in mind that the improvement in preprocessing time for EcKvp over
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Figure 6.1: Cost ratio for various settings in 10 dimensions. (a) cost ratio by

database size for a fixed query radius of 0.5. (b) various database sizes by the query

ratio.

Kvp is related to the cost ratio, for the setting in Figure 6.1 we see that an im-

provement of 80% is possible with as few as 200 pivots. The improvements are more

dramatic at the lower portion of the graph, and for this particular setting, a pivot

pool size of 1000 to 1500 seems to offer a good compromise. Figure 6.1 (b) shows

that the results are consistent under different inner query radius values.

6.2.3 Information Received from the Inner Queries

We have seen that increasing the size of the inner index tends to improve the

cost ratio, while increasing the query radius tends to make the cost ratio worse.

Although our results show that improvements in query times are possible, they

do not provide a clear picture of how query performance depends on the partial

information obtained from the inner queries. Query performance will depend on the

quantity and quality of the information received from the inner queries.

One way to measure the quantity of information received from the inner queries
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Figure 6.2: Number of exact distances by inner query radius for a pivot pool of size

1500 uniformly distributed in 15-dimensional space

is to consider the number of exact bounds, where the lower and upper bounds are

equal to each other, and hence they provide the exact distance between the object

and the pivot. For any index structure, this is also equal to the cost of the query in

terms of the number of distance computations. Therefore, while it is true that the

cost of the query is expected to grow sub-linearly with the size of the inner index,

the amount of exact information also follows the same pattern.

Figure 6.2 shows the amount of the information viewed from this respect. We

see that the amount of information grows rapidly as we increase the inner query

radius, and that it is possible to pick a radius value to yield any desired inner query

cost.

The number of exact distances is related to only the quantity of the informa-

tion, but not the “quality” of this information. This is because pivots have varying

degrees of success in their ability to prune database objects from consideration.

Specifically, we know that pivots are most valuable when they are either close to or

far from the query object [11]. To investigate this issue, we have run experiments
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Figure 6.3: Distribution of the distance information for various inner query radii.

(right) disribution weighted by the size of population

to analyze the distribution of exact distances between query objects and pivots for

various inner query radius values. Figure 6.3 summarizes our results. We see that

smaller radius values produce higher quality distance information, since the pivot

distances are closer to the object. This behavior is symmetric, which means that as

the inner query radius values approach the other end of distance spectrum we see

that more restrictive queries produce information with more favorable distributions.

The discussion about the set of pivots for which we have discovered the exact

distances is not sufficient to give us the whole picture. We need to somehow incor-

porate the rest of the pivot bounds that are not exact. We define the efficiency of

a pivot bound PBop with respect to a query radius r to be:

Ef(PBop, r) = probability that o will be eliminated by p for a radius of r.

Given F(), the cumulative probability distribution function, we can approxi-

mate the efficiency using the following equation.

Ef(PBop, r) ≈ F (PBop.lowerBound − r) + (1− F (PBop.lowerBound + r)) (6.4)
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Figure 6.4: (a)Total efficiency versus the inner query radius. (b) Cost per efficiency

versus the inner query radius

Note that Equation (6.4) is directly derived from Equation (6.3), and corre-

sponds to the area which represents objects that can be eliminated by p.

When we run a query for object o on the inner index, we will get a set of pivot

bounds, PBo. We define the total efficiency of PBo with respect to a query radius

r to be:

Ef(PBo, r)=
∑

PBop∈PBo

Ef(PBop, r) (6.5)

Figure 6.4 (a) shows the total efficiency values achieved through different inner

query radius values. We see that the total efficiency values show similar trends for

different difficulty levels. This shows that the choice of the EcKvp parameters does

not depend on the query radius, which may vary and is only available at query time.

At this point, it is natural to ask how the cost per efficiency changes as a

function of the inner query radius. Figure 6.4 (b) shows that there is an optimal

radius value from this respect. Figure 6.4 presents evidence as to why EcKvp has
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Figure 6.5: Cost per unit efficiency for various query radius values by the inner

index size for an inner query radius of 0.3 in 10 dimensions.

a great potential for improving the preprocessing costs. The inner query radius

value where information is most expensive is also the point where the query is most

difficult. This is exactly the path taken by other global pivot-based methods. In

contrast, EcKvp can generate information with significantly lower computational

cost.

We know that the cost for generating exact pivot distances for varying inner

index sizes is constant; each distance computation produces one exact distance. We

performed experiments to determine how the total efficiency output is affected by

the inner index size. Figure 6.5 shows this relationship for a constant inner query

radius value of 0.2.

We see that larger index sizes produce information more efficiently than smaller

ones. The more difficult the queries, the wider the gap between performance of

different inner index sizes.

82



6.2.4 HKvp Parameters

The HKvp structure has a number of parameters whose values can be chosen to

optimize performance for the pivot index. The pivot limit parameter controls how

many pivot distances per object are stored in the database. In our experiments,

we stored all possible distances, but the pivot limit value can be used to reduce

space and CPU requirements of our pivot index. Another parameter is the pivot

selection policy, which determines the order in which pivots are processed. Although

several alternatives exist, we have not pursued optimizing this parameter in our

experiments. As the default ratio, we used 1::1 as explained in Chapter 5.

Yet another parameter is the number of pivots to use. Even though the EcKvp

parent structure may have specified the number of pivots to keep in the pivot index,

the HKvp does not have to appoint all of them as pivots in its own scope. Figure

6.6 shows query results for various choices of the number of pivots. The database

size was 2500 and the number of pivots was varied, so that if we have k pivots we

would have 2500 - k ordinary database objects. We see that in this example the

performance tend to level off after assigning 1500 pivots. Using fewer pivots for our

pivot index improves the construction cost of the pivot index considerably, but at

the price of slightly poorer query performance.

6.3 Performance of EcKvp

In this section, we compare the performance of EcKvp against the HKvp

structure. To simplify the presentation, in our comparisons we will ignore the space
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sions for a query radius of 0.5.

usage and focus instead on construction costs. As we have mentioned, EcKvp uses

the same space-saving techniques as Kvp.

We first compare HKvp with two well-known methods from the other two

families of solutions as outlined in Chapter 2. We chose GNAT from the clustering

methods family since it is a well known structure with established performance. We

chose the vp-tree from the local pivot-base methods family because of its simplicity.

The best performer here, the mvp-tree, was reported to make up to 80% fewer

distance computations, using twice the construction cost of vp-tree. However, it is

a hybrid structure since it keeps some extra distance information at the leaves. We

generated several instances of vp-trees and GNAT trees by varying their branching

factors. Figure 6.7 summarizes our results for one particular setting. We observe

that global pivot-based methods, represented by Kvp, are far superior to others.
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Figure 6.7: Comparison of query performances of Kvp, vp-tree and GNAT versus

their construction costs in 40 dimensions for a database of size 10000.

6.3.1 The Construction Cost Ratio

Here we outline how we compare the construction costs of the EcKvp and

HKvp. The preprocessing performance of EcKvp is sensitive to the size of the

database. We will attempt to quantify performance through a statistic called the

construction cost ratio, which is independent of the database size. Given a database

of n objects, and choosing p of the objects as pivots, the total construction cost of

EcKvp using an inner query radius of r to construct an inner index PI is as follows.

QC(PI, r) · (n− p) +
p2

2

where QC(PI, r) is the average cost of queries run against PI using radius r. The

total construction cost of Kvp is given by:

p · n−
p2

2

The ratio between these two costs is:
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p

2n− p
+

QC(PI, r)

p

Assuming n is far larger than p, the first term of the above sum is negligible

relative to the second term. The second term is equal to what we have defined

earlier as cost ratio. In the context of EcKvp, we will also call this the construction

cost ratio to be more specific. From now on, we will use this term to compare the

construction times for EcKvp to HKvp.

Figure 6.8 provides some justification for our decision to use the construction

cost ratio as the main criterion of the evaluation of the preprocessing performance of

EcKvp. We see that as the database size grows, the actual ratio of the construction

costs of EcKvp and HKvp quickly decreases to a value that is comparable to the

construction cost ratio. As expected, the construction cost ratio remains around the

same value for different database sizes. This allows us to run our experiments for

modest database sizes, yet accurately predict the cost ratios for significantly large
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databases.

6.3.2 The Construction Cost and Performance Trade-off

We have mentioned that executing expensive inner queries provides us with

more distance data, thus improving the query performance of the EcKvp. On the

other hand, expensive inner queries increase the construction cost of EcKvp. In this

subsection we will show examples of various settings where we explore the trade-off

between query performance and construction cost. Throughout we compare the

query performance of these two structures as the ratio of the query times of EcKvp

to HKvp, called the query performance ratio. In theory, the HKvp structure should

never perform worse than EcKvp, implying that this ratio should never be smaller

than 1, but due to minor variations in the order in which pivots are processed, we

sometimes observed ratios that are slightly smaller than 1.

One way to generate EcKvp structures with various construction cost ratios

is to vary the inner query radius values. We ran experiments to see how varying

the inner query radius influences the construction cost ratio and query performance.

Figure 6.9 offers a summary for a particular setting for two different dimensions.

One point worth mentioning here is that for a given dimension, there seems to

be actually two performance trends. The slightly worse trend is produced by using

high inner query radius values. Figure 6.4 suggests that high radius values produce

less efficient pivot bounds. Given that increasing the inner query radius rapidly

increases the inner query costs, one idea that we experimented with was to run two
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Figure 6.9: EcKvp performance for varying inner query radius values using a pivot

pool of 1500.

queries, one close and one far, and then combine their outcomes. Figure 6.3 suggests

that the distribution of these two inner queries are expected to be very different, so

that the pivot information we obtain from these two separate relatively inexpensive

queries should have very little in common, so that the extra query provides some

new distance information. Unfortunately, our experiments with this approach did

not yield a significant improvement.

In practice, determining a suitable inner query radius is not a trivial design

issue. Because of this we implemented a revised version of the EcKvp structure that

is given a target construction cost ratio, and it dynamically changes the inner query

radius in order to reach this target value. Figure 6.10 shows the query performance

of this implementation for various settings.

So far, all of our experiments have involved uniformly distributed data sets.

Next, we performed a series of experiments to investigate how EcKvp performs for

clustered data sets. We generated synthetic data by partitioning vectors into clusters
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Figure 6.10: The construction cost and query performance ratios of EcKvp to HKvp

in terms of the construction cost ratio and query performance ratio for different

values of (a) dimensionality, (b) query radius, (c) number of pivots, (d) database

size. In the experiments, unless specified otherwise, the database size is 3000, the

objects are uniformly distributed random vectors in 15 dimensions, the query radius

is 0.5, and the number of pivots is 1500.
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Figure 6.11: Comparison of EcKvp to HKvp for varying number of clusters for

a database of 3000 vectors uniformly distributed in 15 dimensions for a cluster

standard deviation of (a) 0.1 and (b) 0.2.

whose centers are distributed uniformly within a unit hypercube, and within each

cluster the coordinates are drawn from a Gaussian distribution having the cluster

center as mean and using a specified standard deviation. Our results are summarized

in Figure 6.11. We see that as the cost ratio increases the performance of the EcKvp

structure approaches the performance of HKvp, but with a construction cost of only

6% that of HKvp. In comparing Figures 6.11(a) and 6.11(b) we see that as the cluster

standard deviations decrease, and the number of clusters increase, higher cost ratios

are needed to match HKvp’s performance. One explanation is that with clustered

data finding a pivot within the same cluster as the query object provides a pivot

that is very close to the query point, and by the observations made earlier about

close pivots, such a pivot will have very strong discrimination power. By using all

the pivots available, HKvp is more likely to find such powerful pivots.
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6.3.3 Comparing EcKvp with HKvp for Similar Construction Costs

Up to this point we have viewed EcKvp as a way of achieving lower construc-

tion cost to provide comparable query performance as HKvp. Another way to look

at EcKvp is that it should provide better query performance when given the same

construction cost as HKvp. We ran a number of experiments to investigate this

point of view. We created an EcKvp structure with a particular construction cost

ratio, and then compared it with an HKvp structure that uses the same number of

distance computations per regular database object. That is, given an EcKvp with

p pivots and using a construction cost ratio of cr , the HKvp structure with which

we compared it would use p · cr pivots. Note that this may not be a fair comparison

when the database size is very small; the query performance will be dominated by

the elimination of pivots, which in general is handled more efficiently than regular

objects. Because of this, we ran our experiments for increasing values of the number

of database objects to maintain control of this side effect. Figure 6.12 summarizes

our results. We see that EcKvp can reduce query times by up to 70% compared to

HKvp.

An important parameter of EcKvp is the number of pivots. We argued before

that, in general, having a greater pool of pivots increases the efficiency of inner

queries. We also ignored the construction cost of the pivot index, since the number

of pivots is typically much smaller than the database size. If this cost is incorporated

into the total construction cost, then the greater the pivot pool size is, the less we

will be able to spend for inner queries. We ran experiments where we fixed the total
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Figure 6.12: Comparison of EcKvp with an HKvp structure that uses the same

construction cost ratio (cr). The pivot pool size is 2000, the query radius is 0.8,

and objects are drawn from a uniform distribution in 20-dimensional space.

construction cost, including the inner index construction, and varied the number of

pivots. We also compared our results with that of an HKvp structure that has the

same construction cost. Let the total construction cost permitted be denoted by

ccost, the database size be n, and the number of pivots be p. We can compute the

number of pivots needed to achieve this construction cost by solving the quadratic

equation:

ccost =
p2

2
+ (n− p) · p

Our results are presented in Figure 6.13. We see that EcKvp can provide up

to 60% improvement over HKvp in the query performance.

So far we have used only synthetically generated pseudo-random data to test

our structures. In order to validate our results on real metric data, we have obtained

a set of web-page data obtained through google [2]. We employed cosine distance [38]
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Figure 6.13: Comparison of EcKvp with an HKvp that uses the same total con-

struction cost. The database size is 100,000, the query radius is 0.8, and objects are

drawn from a uniform distribution in 20-dimensional space.

to the term vectors to carry out our range queries. Figure 3.6 shows the distribution

of this data.

In a similar fashion to the way we generated Figure 6.7, we generated several

different configurations of the GNAT tree and the Vp-tree by varying their branching

factors. We also varied the total construction cost of HKvp and EcKvp for the same

reason. Our results are summarized in Figure 6.14. We see that the results are

similar to our earlier experiments. EcKvp provides performance improvement of up

to 42% compared to HKvp.

6.4 Conclusions

In this chapter we have introduced a new data structure for similarity search-

ing, called EcKvp, which retains all the positive features of the Kvp and HKvp

structures but with significantly lower preprocessing times. We have shown that
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Figure 6.14: Comparison of the index structures using the web page data of size

1000.

EcKvp can also perform better than HKvp for same construction cost because it

will be able to use more pivots.

EcKvp has a number of weaknesses. Although we are advised to use as many

pivots as possible, when the size of the database is low, the optimal pivot pool size

will be smaller than expected. We have shown that there seems to be an optimal

inner query radius from the cost per efficiency point of view. This might mean

that sometimes when the number of pivots is increased, the EcKvp structure might

perform worse since it uses a suboptimal inner query radius. In our experiments

this has not been an issue, but dealing with this issue in a more rigorous way is an

interesting problem for future research.

In an attempt to better understand the EcKvp structure, one can draw paral-

lels to tree structures. From many respects, Kvp can be considered as a bottom-up

version of a tree-like structure. Tree structures require less space than do flat global

pivot-based structures because pivots have local scope, and they only carry infor-

mation about the objects within their own subtree. The Kvp structure eliminates
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useless pivot bounds, and so in a way, a given pivot has a sort of “local scope” on

objects that have found it to be useful. Tree-based structures attempt to cluster

relevant objects together, so that pivots are used for similar objects. The objects

that are in the same subtree as a given pivot have landed there based on a number

of comparisons to other pivots starting from the root of the tree. The objects and

the pivot must have compared similarly to the upper-level pivots, increasing the

likelihood that they are in close proximity. This is one factor that the current global

pivot-based methods are missing; they blindly compute distances between all pivots

and all objects. EcKvp improves the process by explicitly performing a query on

the pool of pivots. Tree structures use the same weak channels to organize both

the pivots and objects, even though pivots are much more important. In contrast,

EcKvp organizes the pivots in an expensive but powerful structure. As an exam-

ple, if EcKvp used a vp-tree as the inner structure, and used an approximate greedy

nearest neighbor search process (without the usual back-tracking) as the inner query,

then it would have the same information as a vp-tree, even though organized in a

different way. Instead, EcKvp is free to use a better pivot organization and a more

involved inner query.
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Chapter 7

Composite Metrics

In this chapter, we define a new framework called composite metrics for simi-

larity matching. A composite metric is a weighted sum of a set of metrics. A range

query in composite metrics not only specifies a query object and a radius value, but

also the relative weights to be used for each metric. This enables users to adjust the

definition of the distance at the query time according to their needs. This approach

can be very useful when the definition of similarity is affected by a number of in-

dependent factors, or when there are multiple alternative distance functions that

complement each other. To provide some concrete motivation for our framework,

we cite several examples from pattern recognition and machine learning. Finally,

we introduce two new structures, the c-tree and c-forest, for indexing in compos-

ite metrics. Our experiments show that it is possible to provide competitive query

performance while providing this extra flexibility.

7.1 Introduction

Recall from Chapter 1 that a metric space is a set of objects O and a distance

function between database objects that obeys the properties of positivity, symme-

try, and triangle inequality [24]. Given such a distance function d, a range query

Range(q, r, O) is defined as:
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Range(q, r, O) = {o ∈ O|d(q, o) ≤ r} (7.1)

Given a set of metrics, {d1, d2, ..., dc} and associated weights {w1, w2, ..., wc}, we

define a composite metric to be a linear combination of these distance metrics.

That is:

d(a, b) =
∑c

i=1
wi · di(a, b) (7.2)

where a and b are two objects from the database. It is straightforward to show

that if each of these distance functions is a metric, their linear combination is also

a metric.

Note that a family of non-linear combinations can also be made to work in

this framework. For example, given a distance function

d(a, b) = p

√

∑c

i=1
(wi · di(a, b))p

the query range Range(q, r, O) in this setting can be transformed into Range(q, rp, O)

using the composite distance function

d′(a, b) =
c

∑

i=1

w′

i · d
′

i(a, b)

where d′

i(a, b) = (di(a, b))p and w′

i = wp
i .

Range searches in composite metrics can be applied to provide flexibility in

the choice of the overall distance function. In addition to having a query object

and a radius as input, the search can also specify custom weights to be used in the

distance function. For example, we can define a generalized weighted range query :
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Range(q, r,W,O) = {o ∈ O|
∑

wi · di(q, o) ≤ r}

where a vector of constants, W = w1, w2, . . . , wc is used to assign custom weights

to each individual metric. This provides the flexibility at query time to adjust the

relative importance of the various components of the distance metric.

7.2 Motivation for Composite Metrics

Metric spaces are based on a distance function that is typically presented as a

black box. In contrast, in vector spaces the individual components of the distance

computation, the coordinates that is, are all visible. One of the motivations for

composite metrics is that by having more information about the inner workings of

the distance function, we can improve our index structures. For this point of view

to be valid however, one would need to know the weights of individual metrics at

preprocessing time.

Our goal here is to provide greater flexibility. We want to improve the usability

of the index structure by allowing the user to customize the weights of individual

metrics at query time. This can be very useful when the user wishes to inject an

element of feedback into the search process, or when there is an underlying system

that learns weights based on some pre-established success rate.It is understood that

the price of this added flexibility will be some loss in the overall performance, but

our goal will be to minimize this performance loss.

There are a number of reasons for considering the combination of a number of
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metrics. In many applications, the measure of similarity is a function of a number

of independent factors, where each of these factors is itself a similarity measure.

For example, the similarity of two persons could be measured as a combination

of their similarity of age, location of residence, gender, profession, interests, and

so on. Another case is when there are a number of different methods to define

similarity between objects. For example, image similarity can be performed by

color histograms, texture, and many other different methods that provide varying

degrees success depending on the specific application.

Another application where composite metrics are useful arises in machine

learning. Machine learning algorithms provide a mapping from objects with a set of

attributes or features to either class labels or real values. They are typically given

a set of training data with known mappings, and based on these past experiences,

estimate the outcome of a new instance. Instance-based learning algorithms [3] base

their results on experiences that are similar to the new instance. A distance func-

tion can be used to measure the similarity between objects. A detailed discussion

of distance functions is presented in [47]. In order to compute the distance between

two objects, distances between each feature are combined through a set of weights

[5]. When the feature weights are fixed, a typical metric space index structure can

be used to speed up the retrieval of relevant training data. G. Atkeson et al. [5]

cites some examples of systems that use the k-d tree [6] for retrieval, however k-d

trees only work in vector spaces.

Some algorithms modify feature weights to improve the quality of the learner

at run-time [45, 44, 39]. These dynamic cases cannot be handled by a traditional
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metric space index structure without rebuilding the entire index as the weights are

changed. Index structures for composite metrics, however, would be flexible enough

to be used in such situations.

Multi-classifier systems in machine learning combine the results of a number

of different methods [47, 18]. This was shown to produce better results than the

individual learning methods. One of the reasons is that different classifiers have dif-

ferent regions where they perform better, and a composite approach can maximize

the influence of the most effective classifiers [18]. In the literature of multi-classifier

systems, using classifiers based on different feature sets is called parallel combin-

ing, whereas using different classifiers based on same feature set is called stacked

combining [19].

In some applications, such as face recognition and fingerprint matching, each

training instance is a class of its own, namely the owner of the face or fingerprint. In

these applications, an approximation of the output probability distribution can be

constructed directly by the distance of the instance that is being matched to each

of the training instances in the database. If the combination strategy is based on

summing the individual parts then this process can be completely captured within

the framework of composite metrics. It has been shown that this method performs

better than other methods [25]. X. Lu et al. [30] have used this approach to

sum matching scores from three different methods to produce an overall matching

score, and their results outperformed individual classifiers. Similarly A. Ross et al.

[37] combined two methods using different weights for fingerprint matching. Some

multiclassifier systems maintain a set of weights that are updated dynamically [41].
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This is another example that motivates the custom weighted querying framework in

composite metric spaces.

7.3 The C-Tree and C-Forest Structures

To the best of our knowledge, no structure exists in the literature that can an-

swer dynamically weighted queries in the composite metrics framework. A straight-

forward approach to index composite metrics would be to treat the metric space

as having just one composed distance function, and to apply one of the existing

methods. This has the disadvantage, however, that one must fix the weights before

constructing the structure. Therefore, it does not allow one to query with weights

that have been chosen at query time.

In this section we introduce the c-tree structure for answering queries over

composite metrics. It can be classified classified as a combination of the k-d tree [6]

and the vp-tree [42]. We first start with a brief discussion of these two structures.

The k-d tree [6] is a method for indexing vector spaces, it uses one dimension

per node to partition the objects and rotates the choice of partitioning plane among

the various dimensions with each level of descent in the tree. The median of the

coordinate values of the selected dimension is used to partition the current subset

in two subsets that are associated with the left child and right child of the node.

In contrast, the vp-tree works in metric spaces. As described in Chapter 2,

the construction of a vp-tree with a branching factor of k proceeds in a recursive

manner, partitioning the nodes that represent a particular subset of the data. At
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each node, one of the objects is selected as the vantage point, and the distances

from the other objects to this vantage point are calculated. Then these objects are

partitioned into k groups of roughly equal size, based on these distances. In this

way, a node can have k branches with each subtree having n/k objects, n being the

number of objects for that node. The only information that needs to be kept is the

vantage point itself, and k − 1 distance values, denoted as cutoff [1..k], defining the

ranges of distances for each subtree. A range query of radius r centered at a point q

is performed as follows: at any given node, the distance d between q and the node’s

vantage point is calculated. If d is smaller than r, the vantage point is added into

the result set. For every subset j of the node defined by the cutoff values, if the

interval of the subset, [cutoff [j − 1], cutoff [j]] intersects the interval [d − r, d + r],

then subset j is searched recursively.

The c-tree is also a tree-based structure. It uses one vantage point per node,

like the vp-tree, and partitions the objects depending on their distances using only

one of the metrics. Therefore, each internal node contains a pivot, a set of ranges of

distances for a given metric, and child node pointers associated with each of these

ranges. Recall that c denotes the number of metrics in the composition. While

traversing the tree in order to process a query, it maintains two c-element vectors

to represent the set of objects rooted at the given node, denoted min and max, to

help decide whether the current node can be eliminated from the search or not. The

value mini contains the minimum possible distance between the region represented

by the current subtree and query object in terms of metric di, and maxi contains the

maximum distance. We also maintain scalars Min and Max to hold the weighted
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sum of min and max vectors respectively. That is,

Min =
∑c

i=1
wi ·mini and Max =

∑c

i=1
wi ·maxi

We can eliminate a subtree from the range search if Min is greater than the query

radius. If Max is less than the radius, this means the entire subtree is inside the

query range and no further processing is necessary, other than collecting the list of

objects in the subtree.

Suppose that, during the traversal of the tree, we are examining a node p

having vectors minp, maxp and the vantage point vp that partitions the objects

based on metric i. A child node u, that lies between distances s and e of metric

di to vp, will have minu and maxu vectors that have the same values as minp and

maxp for each component except i, where:

minu
i = max(minp

i , [s, e]− di(vp, q))

and

maxu
i = min(maxp

i , e + di(vp, q))

The distance between a range and a distance value is defined as follows:

[s, e]− di(vp, q) =







































di(vp, q)− e if di(vp, q) > e

s− di(vp, q) if di(vp, q) < s

0 otherwise

One thing to note about this structure is that it makes it possible to defer

defining the metric weights until query time. The structure only depends on indi-

vidual metrics for organization. It is when we actually perform the query that we

determine the distance between a given region and the query object.
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The determination of which metrics to choose as representatives of the nodes

is a parameter of the structure. Our current implementation permutes the metrics

randomly and rotates among them in this order with each level of descent in the

tree.

Unfortunately, the vp-tree is not considered to be one of the best performing

index structures. For difficult queries where the dimensionality is high or the query

radius is high, it does not carry sufficient information to eliminate a large fraction of

objects from consideration. In order to address this deficiency, we also introduce the

c-forest structure, which maintains a collection of c-tree structures and combines

their results to process a query. These c-tree structures will have different sets of

pivots which increases the likelihood that an object will be eliminated during search.

In order to accomplish this, we implemented a special type of query on the c-tree,

which, upon reaching a leaf node, does not compute the actual distance but flags the

object associated with the node as uneliminated. The only distance computations

performed are the ones made in internal nodes to navigate through the tree. After

repeating this process for all trees, we compute the intersection of the sets of all

uneliminated objects. As a final step, we compute the distances between query

object and each element in this common intersection to determine whether they

should be included in the final result set.

To avoid repeated computations of distances, the c-forest caches the distances

computed during the processing of query to be used across the trees. This same

optimization can also be applied for the construction of the trees, but our current

implementation does not have this feature, and so the construction cost of c-forest
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grows linearly with the number of trees.

7.4 Performance

Because we know of no other index structures for handling composite metrics,

the only basis for comparison for the c-tree and c-forest structures is sequential

scan. We use the term cost ratio to denote the ratio of the total number of distance

computations of our structures to sequential scan, that is, the size of the database.

Beyer et al. [7] point out that, due to the nature of modern storage systems, an

index structure is considered to be effective if it reduces the number of candidates

by at least 90%, which corresponds to a a cost ratio of 0.1. We expect objects in

our domain to be larger than records in a traditional relational database, so the

ratio of disk seek time to the total time should be lower than for typical database

applications. Thus, cost ratio values that are higher than 0.1 could still be considered

efficient depending on the size of the objects. Of course, seek times are only an issue

for disk-based implementations. If the database resides in main memory, it is much

easier to demonstrate improvements over linear scan.

Even though traditional index structures are not designed to work in the com-

posite setting, we have chosen to include two well known metric space indexing

methods, the vp-tree and GNAT in some of our experiments. Our approach is to

let the traditional methods work with fixed weights for both the construction and

query phases. Note that this is not a fair comparison for both sides, since on one

hand, the c-tree and c-forest provide greater flexibility, and have to handle weights
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that are not given until query time, whereas the vp-tree and GNAT have to compute

the full composite distance on the whole object and cannot execute partial distance

computations on the parts of the objects. Nevertheless, we would like to investigate

the performance cost incurred by the additional flexibility of allowing weights to be

given at query time.

7.4.1 Data Sets

We ran experiments on two types of data sets, one representing images and

the other consisting of synthetically generated vectors. The images present us with

the case where the metrics are defined to produce similar results, and vectors were

used to model cases where the components are independent.

Our image database consists of 1800 images. For each image there is a 64-

dimensional color histogram and a 62-dimensional feature vector generated by Gabor

texture filters [32]. This provides us with a setting where there are two complemen-

tary metrics. Figure 3.5 presented in Chapter 3 shows the distance distribution of

the images based on these two distance metrics.

The majority of our experiments were performed using random vectors. Each

object had a collection of vectors sampled from the unit hypercube that were gen-

erated independently of each other. We used Euclidean distance between vectors,

where distances were normalized to the range [0,1].

In order to simulate a setting where components might have varying degrees

of complexity, we used distributions that we label as v(d0, d1, k) where each object
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is represented as a collection of uniformly distributed random vectors having dimen-

sions between d0 and d1, and there are k instances of each vector. In other words,

there are a total of k · (d1 − d0 + 1) vectors having dimensions d0, d0 + 1, ..., d1. The

normalization of the distances ensures that only the query weights determine the

relative importance of components, not their dimensionality.

We examined various different distributions of vectors. For this reason, we

created multiples , a set of datasets labeled as m(distr , dim,mult) where mult many

of vectors were sampled from a certain distribution distr in dimension dim . We

used various distributions for the vectors as described in Chapter 3. Figure 3.2

shows the histogram of distances for these distributions.

7.4.2 Experiment Setting

In all of our queries the custom query weights were randomly generated and

their sum was normalized to 1 in an effort to keep the difficulty of the queries

constant. In general, using high weights will have a similar effect to using low

radius values, thus making the query easier. For the vp-tree and GNAT, we made

all the weights equal so that their sum is 1.

The major parameter of c-tree, vp-tree, and GNAT that can be adjusted by

the user is the tree’s branching factor (that is, the out-degree of each node). Some

of our graphs are scatter plots that show these possible different settings of the same

structure. Usually, a branching factor that results in more construction cost stores

more distance information and yields relatively better performance. Our graphs
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show the trade-off between the construction cost and the cost ratio.

The c-forest structure can use as many c-trees as desired. These c-tree struc-

tures might have varying branching factors, but for our experiments we fixed the

branching factors of all the c-trees. A label “c-forest 〈m〉” in our graphs represents

the set of c-forests that use m as the branching factor of its internal trees. We

obtained different construction cost settings by varying the number of trees inside

the c-forest.

7.4.3 Experimental Results

In this section we outline the performance characteristics of our structures

under different conditions.

The difficulty of a composite metric query is determined both by the number

of components and their individual complexity. This is explored in Figure 7.1.

The cardinality of the database is another important parameter that determines

the query cost. When the cost of the query is sublinear, the cost ratio values are

expected to improve as the size of the database grows. Figure 7.2 summarizes our

results.

We see that the results show similar characteristics across different radius

values. The rest of our experiments assume a fixed query radius to emphasize other

factors. We have also seen that larger cardinalities provide more favorable results

in terms of the cost ratio, but in our following experiments we limit the database to

moderate sizes in order to present a more balanced view.
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Figure 7.1: Varying the number of components (left) and complexity of the compo-

nents (right) on the c-tree.
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109



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10  20  30  40  50

co
st

 r
at

io

branching factor

   0K

  20K

  40K

  60K

  80K

 100K

 120K

 140K

 10  20  30  40  50

co
ns

tr
uc

tio
n 

co
st

branching factor

Figure 7.3: Effects of varying fanout on query performance and setup cost for r =

0.04 in v(1, 5, 3) having 10000 objects

The branching factor of the c-tree is its most important parameter. Differ-

ent branching factors produce different possibilities for construction cost and query

performance. This is demonstrated in Figure 7.3. Higher branching factors produce

shallower trees, and therefore the total number of pivots decreases and so does the

construction cost.

The c-forest structure offers even more flexibility for trade-offs between con-

struction times and query performance. Here, the important parameters are the

number of c-tree structures used, as well as the fanout of these internal trees. Fig-

ure 7.4 summarizes our experiments for random vectors. We see that the c-forest

can provide better performance at the expense of greater construction costs. It also

appears that for our settings, a branching factor of 4 gave the best results.

Figure 7.5 shows the performance results of c-tree for the image data. Once

again we see that the c-tree provides improvements over sequential scan.

In our experiments, we observed that GNAT consumes too much construction

time as compared to its query performance. It eventually produces competitive
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Figure 7.6: Performance by construction cost in m(uniform, 10, 5) having 40K ob-

jects for query radius 0.08.

results, but at too great a cost. Figure 7.6 provides a typical comparison between

GNAT and the other structures.

Finally, we compared our structures with their natural non-composite coun-

terpart, the vp-tree. Figure 7.7 illustrates the relative cost ratios of these structures

using various distributions. The uniform distribution proves to be the most difficult

one as Figure 3.2 has already suggested. In this distribution only the c-forest pro-

vides adequate query performance. In the other distributions, we see that we can

go well beyond the cost ratio value of 0.1. As we move to less difficult distributions,

the extra power provided by the c-forest is less evident. In some cases we actually

observe poorer performance as we increase the number of inner c-trees. We also see

that, for our settings, the c-tree matches the query performance of the vp-tree with

lower construction costs and sometimes outperforms it. Given that the c-tree and

vp-tree are closely related in terms of their internal structures, this shows that com-
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Figure 7.7: Comparison of the structures in various distributions as defined in Chap-

ter 3 for m(∗, 5, 10). The database size is 40K, query range 0.08.

posite metrics point of view can indeed improve performance by avoiding computing

the full distance computation when possible.

We also see that the c-tree and c-forest are relatively less successful for the

given clustered distribution while vp-tree seems unaffected. Figure 7.8 presents the

comparison of the best settings of the structures for various query radius values.

For c-tree, we used branching factors between 2 and 50. As pointed out before, low

fanout values produced the best results. For the c-forest, the internal branching

factors were set to 4, and the number of internal c-tree structures varied between 1

and 10. For the vp-tree, we used branching factors up to 50 as we have done with

the c-tree structure.
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Figure 7.8: Comparison of the best settings of the structures for various query radius

values. The database size is 40K.

7.5 Summary and Conclusions

In this chapter we introduced a concept called composite metrics in which

a distance function is defined as a linear combination of several metrics. We also

defined a new type of range query where the weights of the metrics are given as

parameters to the query.

We presented examples from machine learning and multi-classifier systems

where composite metrics can be of significant value. In multi-classifier systems

classification is based on a number of factors that can be alternatives of each other

as in stacked combining of classifiers, or unrelated components of the object as in

parallel combining.

We introduced two structures, the c-tree and c-forest, both of which can per-

form queries in our framework. C-tree is a hierarchical organization of the objects

based on distances to local pivots similar to the vp-tree. It can be constructed with-
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out dealing with component weights since it handles the components one at a time.

C-forest is a collection of c-tree structures which are designed only for elimination

of the objects, and not for computing the actual query. The query is finalized by a

sweep of objects that are not eliminated by any of the c-tree structures.

We show that c-tree and c-forest can provide significant improvements over

sequential scan, and even over the well known vp-tree and GNAT structures.
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Chapter 8

Conclusions

In this thesis, we have presented a number of practical improvements to data

structures and algorithms for similarity searching in metric spaces, both in the

standard context and in a new context called composite metrics. We have evaluated

the efficiency of these data structures through a number of empirical analyses. A

recurring theme in our methods has been the idea of selecting the most effective

pivots, that is, the pivots that are either very close or distant to the query object.

We showed that there is a high correlation between the construction cost of a

structure and its query performance. The pivoting operation is the essential means

used in these structures for eliminating objects without explicitly computing the

distance between these objects and the query object. The greater the construction

cost, the more pivots a structure can store, and hence the fewer distance compu-

tations are needed at query time. Tree structures like vp-tree and M-tree variants,

where the number of pivots is dependent on the tree height are very restricted from

this point of view, that is, it is very difficult to invest more in the construction

phase to improve query times. In the GNAT structure, the representatives stored

in a node do not only store information about their own subtrees. As a result, it is

possible to increase the construction cost by increasing the branching factor of the

tree.
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For structures having the same construction cost, ignoring the computational

overhead, the success at query time depends on the efficient use of the pivots. Global

pivot-based structures use all the information available, they store the exact dis-

tances between the pivot and all of the objects. Other structures typically attempt

to group similar objects together and they store distance ranges to these objects.

Although this approach may reduce the computational overhead, since the elimina-

tion of a single subtree means the elimination of all the objects in it, it reduces the

power of the pivots. The likelihood that two distance ranges intersect is higher than

the likelihood that one single distance value is within a distance range. As the com-

plexity of data distribution increases, it becomes more difficult to cluster relevant

objects together, making the pivots even weaker. This observation is supported by

experimental evidence, which indicates that tree structures perform poorer when

using the same amount of construction cost.

Although vantage points-based methods make full use of the pivots, this also

means they use more space, more computational overhead, and greater construction

cost. The main flaw here is that a pivot governs the whole population. We have

shown that a pivot has varying degrees of effectiveness, and it is particularly effective

for objects that are either close to it or far from it. It may happen to help eliminate

other objects especially when the query object is close to the database object, but

these contributions of the pivot are negligible compared to more closely related cases.

One of our main contributions, the Kvp structure, uses this fact to eliminate

unpromising distance values from the structure. This means there is less informa-

tion to store, and less information to process at the query time. This also eliminates
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the need to use more complicated, global data structures in order to reduce com-

putational overhead. That is why we proposed a flat, unordered structure where

each object only stores its distances to relevant pivots. This organization makes it

straightforward to implement insertion and deletion operations. Unlike most of the

other methods, it requires just a sequential scan of the indexing data, which renders

it an excellent candidate to be stored on secondary memory.

We also introduced the EcKvp structure, which offers a solution to the con-

struction cost problem. Even though Kvp eventually discards less useful distance

information, it has to compute the distance between the object and the pivot before

it can decide that the distance value is unpromising. Many of these costly distance

computations are wasted. EcKvp avoids computing all the distances between a

pivot and the objects by organizing the pivots themselves in the HKvp structure.

At construction time, each object executes a range query on the pivots to retrieve

the distance values to a subset of them. Our experiments show that these queries

are successful in returning promising pivot distances.

We introduced a variant of the Kvp structure, called the HKvp structure.

It helps when there are more pivots than necessary to process a query. It offers

the flexibility of eliminating pivots as well as database objects. While eliminating

pivots, it uses a measure of importance of pivots. We have shown that the HKvp

can identify the promising pivots, and in addition it possesses the same space and

computational savings of the Kvp structure.

Finally, we defined the concept of composite metrics to provide a flexible set-

ting for similarity queries, where the distance is defined to be a weighted linear com-
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bination of a given set of metrics. The user can pose queries in which the weights

are given at query time. We introduced two index structures, the c-tree and c-forest,

for handling composite metric queries. We have demonstrated experimentally that

they can answer such queries efficiently.

8.1 Future Research

Overall we feel that these structures and concepts introduced in this thesis

provide a significant improvement to our understanding of efficient index structures

for similarity search in metric spaces. There are, however, a number of areas for

future research. The EcKvp structure, for example, has a number of shortcomings.

The drop rate parameter introduced with HKvp needs to be adjusted according to

the difficulty of the object distribution at hand. We mentioned that this parameter

is only used at query time, and therefore it is possible to install a simple learning

system that can use the optimal drop rate value based on the query radius. In

Chapter 3 we suggested possible approaches to assess the difficulty of a query and

calculate the optimal number of pivots to be used. This matter merits further

investigation to make our solutions more practical.

We showed that in general using more pivots is better for EcKvp inner queries,

but more pivots mean that the construction cost of the inner index grows quadrat-

ically, which increases preprocessing time considerably. This suggests that there is

an optimal value for the number of pivots where the benefit of using more pivots

is balanced against the construction cost. For high-dimensional synthetic data for
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which we have a well-defined distance distribution, this optimal value was very high,

and was not an issue. This may not be the case for other distributions, however.

Determining the best value is a challenging problem. One approach might be to

include an optimizer module that tries different variations of inner index size and

inner query radius in order to keep the total construction cost at a desired level.

Statistics like the optimal inner query radius to achieve the minimum cost per effi-

ciency can be used to improve the optimizer. This can be performed independently

without causing any structural changes in the index.

EcKvp uses a variation of the range query to discover relevant pivots, but

different approaches can be used to improve the inner query. Note that we have a

lot of flexibility here since we have no obligation of returning all the objects that

qualify for the query.

In this thesis, we only focused on the range queries. There are other types of

queries, most notably the k-nearest neighbor query, which we have not investigated.

One reason is these queries can be solved by using a series of range queries. However,

it is also possible to develop special algorithms to solve these problems directly.

The methods we analyzed and introduced all produce exact results, in other

words, they return all the objects that lie within the query range, and nothing else.

Another approach for improving efficiency is through approximation. In approxi-

mate range searching it is possible to incorrectly classify objects that lie sufficiently

close to the boundary of the query range. These algorithms are expected to run

faster in return for their imprecise results. Although some of these methods can be

applied to all of the structures in general, there may be ways of improving the query
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performance or success rates.
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Marroqúın. Searching in metric spaces. ACM Comput. Surv., 33(3):273–321,

2001.

[16] Paolo Ciaccia, A. Nanni, and Marco Patella. A query-sensitive cost model

for similarity queries with m-tree. In Australasian Database Conference, pages

65–76, 1999.

123



[17] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access

method for similarity search in metric spaces. In The VLDB Journal, pages

426–435, 1997.

[18] Thomas G. Dietterich. Ensemble methods in machine learning. Lecture Notes

in Computer Science, 1857:1–15, 2000.

[19] Robert P. W. Duin and David M. J. Tax. Experiments with classifier combining

rules. In MCS ’00: Proceedings of the First International Workshop on Multiple

Classifier Systems, pages 16–29, London, UK, 2000. Springer-Verlag.

[20] Christos Faloutsos, Ron Barber, Myron Flickner, Jim Hafner, Wayne Niblack,

Dragutin Petkovic, and William Equitz. Efficient and effective querying by

image content. J. Intell. Inf. Syst., 3(3/4):231–262, 1994.

[21] Gı́sli R. Hjaltason and Hanan Samet. Index-driven similarity search in metric

spaces. ACM Trans. Database Syst., 28(4):517–580, 2003.

[22] Caetano Traina Jr., Agma J. M. Traina, and Christos Faloutsos. Distance

exponent: A new concept for selectivity estimation in metric trees. In ICDE,

page 195, 2000.

[23] Caetano Traina Jr., Agma J. M. Traina, Bernhard Seeger, and Christos Falout-

sos. Slim-trees: High performance metric trees minimizing overlap between

nodes. In Advances in Database Technology - EDBT 2000, 7th International

Conference on Extending Database Technology, Konstanz, Germany, March

124



27-31, 2000, Proceedings, volume 1777 of Lecture Notes in Computer Science,

pages 51–65. Springer, 2000.

[24] J.L. Kelly. General Topology. D. Van Nostrand Company, New Jersey, 1955.

[25] Josef Kittler, Mohamad Hatef, Robert P. W. Duin, and Jiri Matas. On combin-

ing classifiers. IEEE Trans. Pattern Anal. Mach. Intell., 20(3):226–239, 1998.

[26] Donald E. Knuth. Fundamental Algorithms. The Art of Computer Program-

ming. Addison-Wesley, Reading, Massachusetts, 1973.

[27] Lillian Lee. Measures of distributional similarity. In 37th Annual Meeting of

the Association for Computational Linguistics, pages 25–32, 1999.

[28] V. Levenshtein. Binary codes capable of correcting deletions, insertions and

reversals. Soviet Physics Daklady, 10:707–710, 1966.

[29] King-Ip Lin, H. V. Jagadish, and Christos Faloutsos. The tv-tree: An index

structure for high-dimensional data. VLDB J., 3(4):517–542, 1994.

[30] Xiaoguang Lu, Yunhong Wang, and Anil K. Jain. Combining classifiers for face

recognition. volume 3, pages 13–16. ICME, 2003.

[31] D. Maio and D. Maltoni. A structural approach to fingerprint classification. In

ICPR ’96: Proceedings of the International Conference on Pattern Recognition

(ICPR ’96) Volume III-Volume 7276, page 578, Washington, DC, USA, 1996.

IEEE Computer Society.

125



[32] B. S. Manjunath and W. Y. Ma. Texture features for browsing and retrieval of

image data. IEEE Trans. Pattern Anal. Mach. Intell., 18(8):837–842, 1996.

[33] J.; Carrasco-Jimnez R.C. Mic-Andrs, M.L.; Oncina. A fast branch and bound

nearest neighbour classifier in metric spaces. 0167-8655 - Pattern Recognition

Letters, 17(7):731–739, 1996.
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