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A theoretical analysis has shown that under a set of assumptions, the distri-

bution of path duration can be well approximated by an exponential distribution

when the path hop count is sufficiently large. The goal of this thesis is two folds:

Using NS-2 simulations to (i) Investigate how fast the path distributional conver-

gence takes place, and how quickly the inverse of the expected duration of a path

converges to the sum of the inverses of the expected durations of the links along the

path, and (ii) Validate the conditions under which the distributional convergence is

established.

Simulations are run under four different mobility models and two different on-

demand routing protocols. Simulation results show that the path duration distri-

bution can be accurately approximated by an exponential distribution for path hop

count larger than 5 or 6 with fitting error less than 0.05 using Kolmogorov-Smirnov

test (K-S test) for all considered scenarios. However, the ratio of the inverse of the

expected path duration to the sum of the inverses of the expected link durations

along the path does not get close to one for path hop count less than 12 in the cases



of all considered scenarios.

We validate two mixing conditions for all considered scenarios. Specifically, a

sufficient condition for one mixing condition is validated. Simulation results show

that the probability of one link excess life less than a positive number conditioned on

the excess life of another link in the same path less than the same number behaves

similarly as the CDF of the link excess life as the number decreases to 0. Based

on the observation that the correlation coefficients of link excess lives decrease with

increasing hop distance, instead of directly validating the second mixing condition,

we validate a condition that suggests that indeed the second mixing condition is

likely to hold in a large scale network. Simulation results show that the difference

between the joint CDF of two link excess lives and the product of their marginal

CDFs decreases as the hop distance between the two links increases.
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Chapter 1

Introduction

Multi-hop wireless ad hoc networks have been an active research area in re-

cent years. In mobile ad hoc networks, nodes can be connected dynamically in an

arbitrary manner. There is no stationary infrastructure of the network. Each node

behaves as a router and participate in discovery and maintenance of routes to other

nodes in the network. Ad hoc networks have many applications. For example, a

rescue team communicate with each other in a disaster recovery scene using mobile

devices. Another example is that a military group coordinate in a battlefield where

there is no existing communication network available.

In general, a multi-hop wireless ad hoc network can be viewed as a collection

of mobile nodes with communication and networking capability. These nodes can

establish and maintain a network without intervention or an infrastructure. As

nodes move around, they establish and tear down links between them. This implies

that the connectivity between nodes in the network changes more frequently and

dynamically than in a wired network. As a result, network topology varies with time.

The routing protocols designed for wired networks (e.g., the Internet) generally use

either distance vector or link state routing algorithms. In distance vector routing,

each router periodically broadcasts to its neighbor routers its view of the distance

to all hosts. In link state routing, each router instead periodically broadcasts to all
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other routers in the network its view of the status of its adjacent network links. Due

to the frequent changes of link status and network topology, these routing protocols

will incur high overhead to update and maintain the route information between

any pair of nodes in a mobile ad hoc network (MANET). Therefore, the routing

protocols used in wired networks are rather inefficient if used in MANETs.

Over the past years, many new routing protocols have been proposed for

MANETs to handle such frequent network topology changes [2], [3], [4], [5], [6].

Routing protocols for wireless ad hoc networks are largely classified as being either

table-driven (proactive) or on-demand (reactive). In table-driven protocols, the

routing table at each node is periodically exchanged and updated. Each node main-

tains the route information to all known destinations at all times. In on-demand

protocols, a route discovery procedure is triggered only when there is no path avail-

able to use between a source and a destination. Moreover, nodes are not required

to maintain the route to every known destination in the network.

When one or more of the links along a path break down (called a path failure),

the data packets that uses the failed path cannot be delivered until an alternative

path is established through a route discovery procedure. Hence, a path failure will

not only disrupt the ongoing services associated with the data packets, but also

incur additional overheads. Thus, a good routing protocol should attempt to select

a path with longer duration to reduce the frequency of path failures when more than

one path are discovered.

The performance of a routing protocol is likely to be shaped by the statis-

tical properties of link and path durations. Intuitively, a path duration is closely

2



determined by the link durations along the path and their dependence structure.

Therefore, the statistical properties of link and path durations and their relation

are of interest. In particular, understanding the characteristics of link and path du-

rations can help not only network engineers to design better routing protocols that

provide reliable services at reduced overhead, but also better evaluate the perfor-

mance of on-demand routing protocols, without running time-consuming detailed

simulations.

In [37], Sadagopan et al. first presented a simulation study of the multi-hop

path duration distributions under four mobility models. Their simulation results

show that the path duration distribution can be accurately approximated by an

exponential distribution when the path hop count is larger than 3 or 4 for all mobility

models considered. However, there is no explanation offered for the emergence of an

exponential distribution, and the relation between link and path durations was not

studied. Besides, it is not mentioned in the paper if the minimum speed of nodes

is larger than 0 which is critical for Random Waypoint (RWP) mobility model. In

RWP model, the average speed of nodes decreases to 0 over time if the minimum

speed of nodes is set to 0 [29]. Such speed decay can have a dramatic influence on

time-averaged metrics. For example, average link duration obtained over an earlier

time period may be quite different from that obtained over a later time period.

Han et al. [18] developed an approximate framework for studying the distri-

bution properties of link and path durations. They assume that the link excess

lives are mutually independent. The link excess life is defined as the interval of

time from the moment a path is established to the moment one of its links breaks

3



down. Then by applying Palms Theorem [21, Thm. 5-14, p. 157], they showed

that, under a certain set of conditions, the path duration distribution converges to

an exponential distribution under appropriate scaling when the path hop count is

sufficiently large. This result is consistent with the simulation results provided in

[37]. In addition, they also explored the relation between the expected path dura-

tion and the expected link durations. The analysis revealed that the inverse of the

expected path duration is approximately given by the sum of the inverses of the

expected link durations along the path. However, it is generally not true that the

link excess lives are mutually independent. For instance, consider two adjacent links

along a path. Since they have a common node, the common node’s mobility affects

the excess lives of both links. This suggests that the link excess lives are dependent.

Although the simulation results showed the correlation between the excess lives of

the links is weak in the case of RWP model, this may not be the case for other

mobility models.

In [20], Han et al. relaxed the independence assumption on the reachability

processes imposed in [18]. Instead, they assume that the dependence of link ex-

cess lives goes away asymptotically as the hop distance between the links in a path

increases. This assumption is stated using a mixing condition. A second mixing

condition is also introduced for establishing the similar distributional convergence

of path duration with dependent link excess lives. They demonstrated that under

a set of mild conditions, the same distributional convergence to an exponential dis-

tribution shown in [18] holds. Furthermore, they showed that the same relation

between the expected path duration and the expected link durations in [18] still

4



holds. This means that the parameter of emerging exponential distribution does

not depend on the dependence of the link excess lives under the given conditions.

Simulations were run in a relatively large scale network with 200 nodes and a strictly

positive minimum speed of nodes under RWP and Manhattan (MH) mobility mod-

els. However, they did not validate two mixing conditions, and no simulation study

was carried out for the relation between the expected path duration and the expected

link durations along the path.

In this thesis, we carry out simulation studies of the link and path duration

distributions and their relation in a multi-hop wireless ad hoc network using network

simulator (NS-2 [24]). We run extensive simulations under a total of eight differ-

ent scenarios by using four different mobility models and two different on-demand

routing protocols. Our goal is two folds: (1) Investigate how fast the distributional

convergence occurs, and how quickly the inverse of the expected duration of a path

converges to the sum of the inverses of the expected durations of the links along the

path, and (2) Validate the conditions in [20] under which the path distributional

convergence is established.

The rest of thesis is organized as follows. Chapter 2 describes the previous

related work on the link and path duration distributions and the motivation for

our work. Chapter 3 presents an overview of a set of routing protocols proposed for

MANETs. Chapter 4 gives an overview of four different mobility models proposed for

MANETs and used in our simulations. Chapter 5 describes the simulation settings

in detail. In particular, it explains (1) how we generate nodes movement and traffic

connections in the network with selected parameters, (2) how we record the links
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and paths information through the routing protocols during the simulations, and

(3) how we compute the distributions of link and path durations, link excess life,

etc. In Chapter 6, detailed simulation results are provided for eight scenarios. We

give the simulation numbers, plot the distributions of link and path durations as

well as link excess life. We perform exponential fitting and compute the fitting

errors between the empirical distributions and the fitting curves of path duration

distributions. We also compute the correlation coefficients of the link excess lives

for studying the dependence level of link excess lives as a function of hop distance

between the links, and validate two mixing conditions. Finally, Chapter 7 concludes

with a discussion on future work that may help to further understand the link and

path duration distributions.
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Chapter 2

Background and Motivation

In this chapter, we first describe the related work in [18] and [20]. Then,we

state the motivation of our work.

2.1 Related Work

In this section, we summarize the results reported in [18] and [20]. Section

2.1.1 describes a model for studying the path duration. It describes the setup and

teardown of a link and a path. It also gives the definition of link duration, path

duration, link excess life and their corresponding mathematical expressions. Section

2.1.2 introduces a parametric scenario used to study the statistical properties of path

durations with large path hop counts. Section 2.1.3 presents the distributional con-

vergence of path duration with increasing path hop count.We use the same notation

as in [20].

2.1.1 Basic Framework

We consider a MANET with N nodes. These nodes move across a domain D

of IR2 or IR3 according to some mobility model [20]. An on-demand routing protocol

is assumed to be used.

Since nodes can move in an unpredictable manner, links between nodes are
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set up and torn down dynamically. A link is established between two nodes once

they become aware of each other. For example, a link is established between two

nodes when the two nodes move within the transmission range of each other, or

when the signal-to-interference-noise-ratio (SINR) at the receiving node exceeds

certain threshold, and packets can be reliably decoded at the receiving node. A link

duration is defined to be the amount of time that passes from the moment the link is

established to the moment the link breaks down. Communication links are assumed

bidirectional to ensure reliable communication between two nodes.

If there is a sequence of links available at the same time connecting a source and

a destination, a path can be established from the source to the destination. A path

duration is the amount of time that elapses from the moment a path is established

until the moment one of the links along the path breaks down. For simplicity, path

setup delays are assumed negligible. A link excess life or time-to-live is the amount

of time that elapses from path setup time to the moment one or more of its link

break down.

Now, we describe the model for studying the path duration. We define a

time-varying graph with nodes as vertices and available links as edges of the graph:

Let V = {1, . . . , N} denote the set of N nodes. For two distinct nodes i and

j in V , a {0, 1}-valued reachability process {ξij(t), t ≥ 0} is used to describe a

link status – “up” or “down”. When ξij(t) = 1 (resp. ξij(t) = 0), the link be-

tween nodes i and j is up (resp. down) at time t ≥ 0. And, ξij(t) = ξji(t) holds

because links are assumed bidirectional. The process {ξij(t), t ≥ 0} is an alter-

nating on-off process. The successive up and down time durations are described
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by two sequences of rvs {Uij(k), k = 1, 2, . . .} and {Dij(k), k = 1, 2, . . .}, respec-

tively [20]. There are many ways to define the reachability process. One example

(used in this analysis) is that two nodes can communicate with (‘or ‘reach”) each

other if they are within some fixed transmission range. Let rmin > 0 be some fixed

transmission range and X i(t) denote the position of node i at time t ≥ 0. Then

ξij(t) := 1 [||X i(t) − Xj(t)|| ≤ rmin] , t ≥ 0 (known as protocol model [16], [32]).

A time-varying graph (V,E(t)) is defined with E(t) := {(i, j) ∈ V ×V : ξij(t) =

1}, t ≥ 0 where by convention, ξii(t) = 0 for each i in V and all t ≥ 0. If node d

is reachable from node s by a set of edges in the undirected graph derived from the

directed graph (V,E(t)), a path can be established between nodes s and d at time

t ≥ 0. Let Psd(t) denote the set of paths from node s to node d. When non-empty,

there may be more than one path in the set Psd(t) [20]. Then the routing protocol

selects one of them. Let Lsd(t) denote the set of links in the selected path.

For each link ℓ ∈ Lsd(t), let Tℓ(t) denote the time-to-live (or excess life) of link

ℓ after time t. Let Zsd(t) denote the duration of the established path from node s

to node d using the links in Lsd(t). Based on the definition of path duration stated

earlier in this section, the path duration can be written as [20]

Zsd(t) := min (Tℓ(t) : ℓ ∈ Lsd(t)) , t ≥ 0 (2.1)

2.1.2 Set-up

Because we are interested in studying the path duration distribution with

large path hop counts, we introduce the following parametric scenario. For each
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n = 1, 2, . . ., let V (n) = {1, . . . , N (n)} and D
(n) denote the set of mobile nodes and

the domain across which the nodes move, respectively. A superscript (n) is used to

denote the dependence on n.

Before we present the path duration in this model, the following assumptions

are introduced.

1. The stochastic process that governs the arrival of path requests is assumed to

be independent of the nodes trajectory processes.

2. Scaling – The situation of interest is the one where N (n) ∼ nN (1) and Area(D(n))

∼ n·Area(D(1)) as n → ∞. It is customary to reparameterize so that N (n) = n,

i.e., n is the total number of nodes in a network.

3. Stationarity – As the system is expected to run for a long time, we can as-

sume that steady state has been reached. This can be modeled by taking the

N(n)×(N(n)−1)
2

reachability processes {ξ
(n)
ij (t), t ≥ 0} to be jointly stationary.

For distinct nodes i < j in V (n), let the sequence of rvs {(U
(n)
ij (k), D

(n)
ij (k)), k =

2, 3, . . .} denote the sequence of up and down times for the reachability process

{ξ
(n)
ij (t), t ≥ 0}, the sequence {(U

(n)
ij (k), D

(n)
ij (k)), k = 2, 3, . . .} is required to

be a stationary sequence. Let (U
(n)
ij , D

(n)
ij ) denote the generic marginals of the

sequence {(U
(n)
ij (k), D

(n)
ij (k)), k = 2, 3, . . .}, and let G

(n)
ij denote the cumula-

tive distribution function (CDF) of U
(n)
ij , i.e., G

(n)
ij is the CDF of duration of

link (i, j) [20].

Under such a setup, well-known results for renewal processes [21, Sections 5-6]

can be generalized as follows: With ℓ = (i, j) and the notation introduced in Section
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2.1.1, P [T
(n)
ℓ (0) ≤ x

∣

∣

∣
ξ

(n)
ij (0) = 1] = F

(n)
ℓ (x), x ∈ R

1, where F
(n)
ℓ is given by

F
(n)
ℓ (x) =















1

m(G
(n)
ℓ

)

∫ x

0
(1 − G

(n)
ℓ (y)) dy , if x > 0

0 , if x ≤ 0

(2.2)

for some link duration CDF G
(n)
ℓ . Equation (2.2) gives the relation between the

distribution of link duration and link excess life. The distribution F
(n)
ℓ is simply

the forward recurrence time distribution associated with U
(n)
ℓ . From (2.2) it is easy

to see that link excess life has a non-increasing probability density function (PDF).

This will be numerically validated in Chapter 6.

The set L
(n)
sd (0) of links is a random subset of E(0). It is assumed that a

pair of nodes s and d in V (n) can be selected such that limn→∞ |L
(n)
sd (0)| = ∞. For

convenience, the sequence {|L
(n)
sd (0)|, n = 1, 2, . . .} is assumed to be deterministic.

Let X
(n)
ℓ denote any R+-valued rv X

(n)
ℓ =st

[

T
(n)
ℓ (0) ≤ x

∣

∣

∣
ξ

(n)
ij (0) = 1

]

2,

i.e., X
(n)
ℓ is used to denote a link excess life. Then, the distribution of X

(n)
ℓ is

given by F
(n)
ℓ . The path duration Zsd(t) in (2.1) can now be viewed as the path

duration Z(n) (between nodes s and d, we remove subscript (sd) without causing

any confusion) defined by

Z(n) := min{X
(n)
ℓ : ℓ = 1, . . . , H(n)} (2.3)

where H(n) = |L
(n)
sd (0)| is the path hop count with limn→∞ H(n) = ∞.

1Due to the stationarity assumptions, it suffices to consider only the case t = 0.
2Two rvs X and Y with the same distribution are denoted by X =st Y .
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2.1.3 Convergence Results

Having described the model for studying the path duration, we present the re-

sults of path duration distribution under two situations in the next two subsections.

A. Independent Link Excess Lives

In [18], Han et al. assume that the reachability processes {ξ
(n)
ij (t), t ≥ 0} are

mutually independent, and so are the link excess lives {X
(n)
ℓ , ℓ = 1, . . . , H(n)}.

They introduce the following assumptions.

Assumption 1 (scaling) There exists λ > 0 such that

lim
n→∞

1

H(n)

H(n)
∑

ℓ=1

λ
(n)
ℓ = λ

where λ
(n)
ℓ =

(

m(G
(n)
ℓ )

)−1

, ℓ = 1, . . . , H(n), n = 1, 2, . . ..

Assumption 2 For every x ≥ 0,

lim
n→∞

(

max
ℓ=1,...,H(n)

G
(n)
ℓ (

x

H(n)
)

)

= 0 .

Assumption 2 can be restated as follows: For each x ≥ 0 and an arbitrarily

small ε > 0, there exists an integer n⋆ = n⋆(x; ε) such that

max
ℓ=1,...,H(n)

G
(n)
ℓ (

x

H(n)
) ≤ ε, for n ≥ n⋆

Theorem 1 Under Assumptions 1-2, the following holds

lim
n→∞

P
[

H(n) · Z(n) ≤ x
]

=















1 − e−λx if x > 0

0 if x ≤ 0

. (2.4)
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Theorem 1 states that when the number of hops along the path is large enough,

the path duration distribution can be accurately approximated by an exponential

distribution under Assumptions 1-2. Furthermore, it also suggests that the inverse

of the mean path duration is approximately given by the sum of the inverses of the

mean link durations along the path, i.e., (E[Z(n)])−1 ≃
∑H(n)

l=1 (m(G
(n)
l ))−1, when

path hop count is large enough.

In general, however, the reachability processes {ξ
(n)
ij (t), t ≥ 0} (i < j in V (n))

are not mutually independent, and the link excess lives X
(n)
ℓ , ℓ = 1, . . . , H(n) are

not independent either. This is discussed in the following subsections.

B. Dependent Link Excess Lives

In a more general case that Han et al. considered in [20], they only assume

that the dependence of link excess lives goes away asymptotically with increasing

hop distance between links. The hop distance is defined as the number of hops

between two links. For example, hop distance one means there is only one hop

between two links, i.e., neighboring links. This assumption is stated using a mixing

condition. Also, a second mixing condition is introduced for establishing a similar

distributional convergence of path duration with dependent link excess lives.

Let W := {W
(n)
i , n = 1, 2, . . . ; i = 1, 2, . . . , h(n)} be an array of R-valued

rvs, where {h(n), n ≥ 1} is a set of positive integers with limn→∞ h(n) = ∞ and

{un, n = 1, 2, . . .} be a sequence of (positive) real numbers. Denote the joint CDFs

of rvs {W
(n)
i1

, . . . ,W
(n)
in

} by Ji1···in(·). For notational brevity, we write Ji1···in(u) for

Ji1···in(u, . . . , u).
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In order to prove the distributional convergence, the following two mixing

conditions are introduced in [20].

Definition 1 (D(un) condition [22], [23]) The array W is said to satisfy the con-

dition D(un) if for any integers

1 < i1 < · · · < ip < j1 < · · · < jq ≤ h(n) with j1 − ip > m

we have

∣

∣

∣
J

(n)
i1...ipj1...jq

(un) − J
(n)
i1...ip

(un)J
(n)
j1...jq

(un)
∣

∣

∣
≤ αn,m , (2.5)

where lim
n→∞

αn,m(n) = 0 for some sequence {m(n), n = 1, 2, . . .} that satisfies (i)

limn→∞ m(n) = ∞ and (ii) m(n) = o(h(n)), i.e., limn→∞
m(n)
h(n)

= 0.

The condition D(un) imposes a form of “dependency decay” as the distance

(j1 − ip) of two sets of rvs {W
(n)
i1

, . . . ,W
(n)
ip

} and {W
(n)
j1

, . . . ,W
(n)
jq

} increases. In

Section 6.5.1, instead of directly validating the condition D(un), we validate a con-

dition that suggests that indeed the condition D(un) is likely to hold in a large scale

network.

Any finite set E of consecutive positive integers {j1, . . . , j2} is referred as an

“interval” with length j2 − j1 + 1. Let k be a fixed positive integer, and {m(n), n =

1, 2, . . .} denote a sequence of positive integers such that k < m(n) < n′ = ⌊h(n)/k⌋

3 for all sufficiently large n.

3⌊h(n)/k⌋ denotes the integer part of h(n)/k.

14



Definition 2 The array W is said to satisfy the condition D′(un) if

lim
n→∞

(

∑

i,i′∈I
(n)
k,j

:i<i′

P
[

W
(n)
i > un,W

(n)
i′ > un

] )

= o

(

1

k

)

for all j = 1, . . . , k . (2.6)

where I
(n)
k,j = {(j − 1) · n′ + 1, . . . , j · n′} for j = 1, . . . , k.

A sufficient condition for condition D′(un) to hold is that

lim
n→∞

⌊

H(n)

k

⌋2

· sup
i,i′∈I

(n)
k,j

:i<i′

P
[

W
(n)
i > un,W

(n)
i′ > un

]

= o

(

1

k

)

(2.7)

for all j = 1, . . . , k. We validate a sufficient condition for (2.7) in Section 6.5.2.

The following assumptions are introduced to prove the distributional conver-

gence.

Assumption 3 For any sequence of intervals Î(n) ⊂ {1, . . . , H(n)}, n ≥ 1,

1

H(n)

∑

i∈Î(n)

λ
(n)
l = O

(

|Î(n)|

H(n)

)

.

A sufficient condition for Assumption 3 is that there exists some arbitrar-

ily small positive constant ε such that m(G
(n)
ℓ ) ≥ ε for all n = 1, 2, . . . and

ℓ = 1, . . . , H(n).

Assumption 4 Let W := {(X
(n)
ℓ )−1, n = 1, 2, . . . ; ℓ = 1, , . . . , H(n)}. The array

W satisfies the mixing conditions D(un) and D′(un) with sequence un = H(n)
x

for

any x ∈ (0,∞).

If we take the sequence un = H(n)/x, then the condition D′(un) implies that

rare events {X
(n)
i < x

H(n)
} are not strongly correlated in its neighborhood as n → ∞

(hence H(n) → ∞).
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Theorem 2 Suppose that Assumptions 1 - 4 hold. Then, we have

lim
n→∞

P
[

H(n) · Z(n) ≤ x
]

=















1 − e−λx , if x > 0

0 , if x ≤ 0

. (2.8)

Theorem 2 states that the same path distribution convergence to an expo-

nential distribution shown in (2.4) holds. This suggests that the distributional

convergence does not depend on the dependence of link excess lives under the given

assumptions. It also tells us that the expected duration of a path is approximately

given by E[Z(n)] ≃ 1
∑H(n)

ℓ=1 (m(G
(n)
ℓ

))−1
for sufficiently large path hop count. This im-

plies that the parameter of the emerging exponential distribution is not affected by

the dependence of link excess lives under the given assumptions.

2.2 Motivation

The results presented in [37], [18], and [20] suggest that the path duration

distribution can be well approximated by an exponential distribution under a set of

conditions when the path hop count is sufficiently large. The work in [18] and [20]

also reveals the relation between the expected path duration and the expected link

durations along a path.

The goal of this thesis is two folds: (1) Investigate how fast the distributional

convergence occurs, and how quickly the inverse of the expected duration of a path

converges to the sum of the inverses of the expected durations of the links along the

path, and (2) Validate the conditions D(un) and D′(un) introduced in [20] under

which the path distributional convergence is established.
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The finding on the convergence of an expected path duration can be used

to provide a guidance for a new path selection scheme proposed in [20]. In that

scheme, an expected path duration is estimated using the sum of the inverses of the

estimated expected durations of the links along the path. Therefore, this finding

can tell when such an estimate is accurate.
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Chapter 3

Ad Hoc Routing Protocols

An ad hoc wireless network has unique characteristics or limitations. First,

mobile nodes in an ad hoc network are allowed to move in an uncontrolled or un-

predictable manner. This implies frequent and unpredictable link and path set-ups

and tear-downs between the nodes in the network. Routing protocols must accom-

modate such dynamic changes. Second, the underlying wireless channel provides

much lower and more variable bandwidth than a wired network. The sharing of

wireless channel reduces the available bandwidth to each node. Thus, routing pro-

tocols should be bandwidth efficient by introducing a minimal amount of routing

overhead. Third, since many of mobile nodes are expected to run on batteries, it

is desirable to have an energy efficient routing protocol as well. This also demands

low overhead.

Routing protocols developed for wired networks require routers to periodically

broadcast routing information between each other. Due to the frequent changes of

link status and network topology, these routing protocols will incur high overhead to

update and maintain the route information between any pair of nodes in MANET.

Therefore, the routing protocols used in wired networks are rather inefficient if

used in MANETs. Since the 1970s, many routing protocols have been developed

for mobile ad hoc networks [2] [3] [4] [5] [6] [10]. These protocols are generally
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categorized as table-driven (proactive), on-demand (reactive) and hybrid. Table-

driven routing protocols attempt to maintain a path between any two nodes at all

times, whereas on-demand routing protocols establish a path between two nodes

only upon request.

The rest of this chapter is organized as follows: Section 3.1 provides an

overview of available table-driven routing protocols in ad hoc wireless networks.

Section 3.2 gives an overview of available on-demand routing protocols. Section 3.3

describes hybrid routing protocols. Section 3.4 makes a simple comparison between

table-driven and on-demand routing protocols.

3.1 Table-Driven Routing Protocols

Table-driven routing protocols attempt to maintain consistent, up-to-date

routing information for every pair of nodes. Each node maintains one or more

routing tables to store routing information. When a change of network connectivity

occurs, this information will propagate throughout the network to keep the consis-

tency of routing information at each node. The protocols differ in the number of

routing tables and the methods of route update propagation. Table-driven proto-

cols incur low overhead and performs well when routing information updates take

place infrequently. However, when network topology changes frequently, they lead

to large overhead and poor performance.
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3.1.1 Destination Sequenced Distance Vector (DSDV)

The DSDV routing protocol is based on the idea of the classical distributed

Bellman-Ford routing algorithm with certain improvement [4]. Each mobile node

maintains a routing table that lists all available destinations, the hop count to reach

each of them and the sequence number assigned by the destination node. The

sequence number is used to distinguish stale routes from new ones and thus avoid

the formation of routing loops. The newer route has higher sequence number. A

path with minimal hop count is chosen when there are more than one path with

same sequence number available. Each node periodically sends its routing table

to its immediate neighbors. When a significant change has occurred in a node’s

table since the last update, it also sends its routing table to its adjacent neighbors.

Therefore the update is both time-driven and event-driven.

There are two ways to update a routing table: a “full dump” or an “incremental

update”. A full dump means the full routing table is sent to the neighbors and could

span many packets. An incremental update only involves those entries in the routing

table that have changed since the last update, and the update information must

fit into one packet. Therefore, when the network is relatively stable, incremental

updates are used to avoid extra traffic and full dumps are relatively infrequent. In

a fast-changing network, incremental packets can grow large and full dump will be

more frequent, rendering an inefficient utilization of network resources.
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3.1.2 Wireless Routing Protocol (WRP)

In WRP protocol [7] [8], nodes send the distance and second-to-last hop in-

formation for each destination in the network. Each node is forced to verify the

consistency of second-to-last hop information reported by all its neighbors to over-

come the count-to-infinity problem and provide faster route convergence. Each node

must maintain four tables: (a) distance table, (b) routing table, (c) link-cost table,

and (d) message retransmission list (MRL) table. The distance table contains the

hop count between a node and its destination. The routing table contains the next

hop node. The link-cost table reflects the delay associated with a particular link.

The MRL table records which updates in an update message need to be retrans-

mitted and which neighbors should acknowledge the retransmission. Each node

maintains its neighbors list by either receiving a HELLO message or packets from

them. Update messages are periodically sent to nodes’ neighbors to ensure the ac-

curate up-to-date routing information. A path with minimum delay (shortest-path)

will be used.

3.1.3 Cluster Switch Gateway Routing (CSGR)

The CSGR protocol uses DSDV as the underlying routing scheme. However,

it adopts a hierarchical cluster-head-to-gateway routing approach to route traffic

from a source to a destination [9]: Mobile nodes are grouped into clusters and

each cluster has a cluster head which is responsible for relaying the traffic within

the cluster through the gateway. Gateway nodes are nodes that are within the
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transmission range of two or more cluster heads. Each node maintains two tables:

cluster member table and routing table. A cluster member table stores the cluster

head information of the destinations and is updated periodically using the DSDV

protocol. A routing table contains the next hop to the destination. On receiving

a packet, a node will check its cluster member table to find out the nearest cluster

head and then look up its routing table to get the next hop node to reach that

cluster head. The packet is first routed to a gateway, and then to another cluster

head. This repeats until the packet reaches the cluster head of the destination. The

packet is then routed to the destination at the end.

3.2 On-Demand Routing Protocols

On-demand routing protocols establish a path between a source and a destina-

tion only when desired by the source node. A path discovery procedure is triggered

when there is no valid path available between the source and the destination in

the routing table at the source. A route maintenance procedure is used to deal

with the link status changes. Unlike table-driven protocols, nodes do not need to

maintain the up-to-date routing information for each destination at all times. This

kind of protocols are desirable when the network topology changes frequently; the

overhead increases only with the arrival rate of route requests and the additional

control overhead due to topology change.
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3.2.1 Ad Hoc On-Demand Distance Vector (AODV)

The AODV protocol is built on the DSDV algorithm. It uses a sequence

number and a route table to prevent routing loops and maintain route information.

There are two phases in the AODV protocol: route discovery and route main-

tenance. A route discovery procedure is initiated by a source broadcasting a route

request (RREQ) message to its neighbors. Once an intermediate node with a valid

route or the destination node receives the RREQ message, it unicasts a route reply

(RREP) message to its neighbor from which it first received the RREQ message.

If an intermediate node does not have a route to the destination , it forwards the

RREQ message to its neighbors. This repeats until the RREQ message reaches the

destination node or an intermediate node with a valid route. A broadcast ID, source

node IP address and its sequence number are used to uniquely identify an RREQ

packet. During the process of forwarding the RREQ, intermediate nodes record in

their route tables the address of neighbors from which the first copy of the broad-

cast packet was received, thereby establishing a reverse path. Additional copies of

the same RREQ are discarded silently. The first discovered route is selected by the

source node. Each node only needs to know the next hop to the destination but

not the full hop-by-hop path. As the RREP is routed back along the reverse path,

nodes along this path set up forward route entries in their route tables that point

to the node from which the RREP came. These forward route entries indicate the

active forward route. Each route entry also has a timer to reflect the freshness of

the route entry.

23



Nodes broadcast a HELLO message periodically to maintain local connectivity

information. When there is a link failure along a route due to a node’s movement,

if the break point is close to the destination node, the upstream node of the broken

link will perform a local repair by initiating a route discovery and forward the new

RREP to the source node through its upstream nodes along the route. If not,

this node propagates a route error (RERR) message to each of its active upstream

neighbors. These nodes in turn propagate the RERR message to their upstream

neighbors until the source node is reached. The source node may initiate another

route discovery if desired.

3.2.2 Dynamic Source Routing (DSR)

The DSR protocol is based on the concept of source routing [3]. Unlike the

AODV protocol, the source knows the complete hop-by-hop route to the destination.

Thereby it is guaranteed to be loop-free. The route information is stored in a route

cache and data packets carry the source route in the packet header. Entries in the

route cache are continually updated as new routes are learned.

Similar to AODV, DSR consists of two phases: route discovery and route

maintenance. When a node has packets to send, it will first look up its route

cache to determine if there is a route ready for use. If it has one valid route to

the destination, it will go ahead and use this route. Otherwise, it will broadcast

a RREQ packet. Each node receiving a RREQ packet checks if it has a route to

the destination. If not, it adds its own address into the route record of the packet
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and rebroadcasts it to its neighbors only when the request has not yet been seen

before and the node’s own address does not already appear in the route record. A

RREP packet is generated when either the destination receives the RREQ packet

or an intermediate node with a valid route in its route cache receives the packet.

In both cases, the route record will be updated to contain the full path information

and put into the RREP packet. Then the RREP packet is sent back to the source

via either the reverse path or a path in the route cache. In contrast to AODV, DSR

uses route cache to store complete route information, and there are multiple routes

available in the route cache for each source destination pair. A path with minimum

hop count is selected when several paths are available.

Route maintenance is accomplished through the use of RERR packets and

acknowledgments. When a link is detected broken, a RERR packet is broadcast, all

nodes that receive the packet will update their route caches by deleting the hop in

error and truncating the routes that contain the hop at that point.

3.2.3 Temporally Ordered Routing Algorithm (TORA)

The TORA protocol is a highly adaptive, loop-free, distributed routing algo-

rithm based on the concept of link reversal. It is proposed to operate in a highly

dynamic mobile networking environment [6]. It provides multiple routes for any

source destination pair. The key feature of TORA is that the control messages are

localized to a very small set of nodes near the occurrence of a topological change.

The TORA protocol performs three basic functions: route creation, route
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maintenance and route erasure. During the route creation and route maintenance,

nodes use a “height” metric to establish a directed acyclic graph (DAG) rooted at

the destination. Each link is assigned a direction (upstream or downstream) based

on the relative height metric of two end nodes. A downstream link is established

from a node with a higher reference level to a node with a lower reference level.

When there is a link failure, nodes generate a new reference level accordingly

and propagates to their neighbors so that all involved nodes change their reference

levels accordingly. Links are reversed to reflect the change and a new DAG is

reestablished rooted at the destination. Timing is an important factor for TORA

because the “height” metric is dependent on the temporal order of the topological

changes. Therefore, in order to implement TORA in a real ad hoc network, all

nodes require to be synchronized by accessing to an external time source such as

the Global Positioning System (GPS). Route erasure essentially involves flooding a

“clear packet” throughout the network to erase invalid routes.

3.2.4 Associativity-Based Routing (ABR)

The ABR protocol attempts to provide a path that is likely to be more stable

than other available paths by introducing a new metric in path selection step dur-

ing the route discovery and route reconstruction phase. This new metric is called

associativity which is a measure of the level of spatial, temporal, and connection

stability of a link [38] [39]. Each node constantly monitors the beacons transmitted

from its neighbors and records the number of beacons it receives. This number is
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called its associativity with a particular neighbor. The higher value of the number

means less mobility of the node , while the low value of the number indicates high

mobility of the node. Hence the path should be established using stable links (high

associativity) for long path duration. Each node maintains a separate associativity

for each of its neighbors.

When a source needs to establish a route, it broadcasts a query message.

Each intermediate node puts its address into the packet header and rebroadcasts

the query until it reaches the destination. The associativities with its neighbors are

also be appended to the packet header. However, an intermediate node will erase its

upstream neighbor’s associativities and keep only those concerned with itself and its

upstream neighbor. When a destination receives a broadcast query from multiple

paths, it chooses the path that has the maximum average associativity (i.e., the

aggregated associativity divided by the hop count) and uses the hop count to break

a tie. The destination then sends a reply packet along the selected path to the

source. The other discovered routes are then deleted.

When a link on a route breaks down due to node mobility, local reconstruction

of the route is attempted first before the source rebroadcasts another route query.

The upstream node of the broken link broadcasts a query to discover an alternative

route. The destination also performs the path selection when receives this query.
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3.3 Hybrid Routing Protocols

A hybrid protocol combines the merits of table-driven and on-demand routing

protocols. An example is Zone Routing Protocol (ZRP) [10]. Each node specifies

a quantity called zone radius measured in number of hops. A node’s routing zone

is defined as a collection of nodes whose minimum hop distance from the node in

question is less than its zone radius. The ZRP protocol uses a table-driven routing

algorithm for intra-zone communication and an on-demand routing algorithm for

inter-zone communication. Each zone has some border nodes for intra-zone com-

munication. This kind of protocols are attractive due to lower overhead compared

with purely table-driven routing protocols. However, because a route may involve

different independent routing protocols for different parts of the route, it might be

very difficult to assure the route stability.

There are also other types of routing protocols such as signal stability routing

(SSR) protocol, location-aware routing (LAR) protocol and power-aware routing

(PAR) protocol [11] [12].

3.4 Comparison

Table-driven routing protocols require each nodes to maintain the up-to-date

routing information for any other nodes in the network. In order to accomplish it,

routing information update must be broadcast in the network whenever there is a

topology change. It is apparent that when the network topology changes rapidly

the system will use most bandwidth and power to perform the routing information
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update even though some routing information may not be used. Therefore the

network performance will be poor. On the other hand, on-demand routing protocols

initiate a path discovery process only upon request. The routing overhead scales

with the arrival rate of the source requests. It may introduce a delay when there is

no route available for a packet delivery. But the overall performance will be better

than the table-driven routing protocols when the source requests rate is lower than

the frequency of network topology changes. In [13], Johansson et al. compared

the performance of three routing protocols under three simulation scenarios with

different nodes speed range. The results showed that AODV and DSR have much

better performance than DSDV in terms of packet delivery ratio, throughput and

overhead under the scenarios with the rapid movement of the nodes. In this thesis,

we use AODV and DSR in our simulations.
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Chapter 4

Mobility Models

In MANETs, mobility models play an important role on the performance of

routing protocols [26]. A mobility model is designed to describe the movement

pattern of mobile nodes such as how their speeds and positions update over time. A

mobility model should attempt to mimic the real movements of real mobile nodes.

Currently there are two ways to generate the mobility models: trace method and

synthetic method. The trace method uses the real life mobile nodes’ traces to get

accurate movement information. However, it is not easy to get real traces due to

the lack of deployment of ad hoc mobile networks. Hence, synthetic method is used

in most of current research.

There are different ways to categorize the synthetic mobility models. Camp

et al. in [26] separate the mobility models into entity models and group models. The

entity models simulate the movement of independent mobile nodes in the network,

i.e., there is no correlation between the movement of any two mobile nodes. The

group models on the other hand simulate the movement of nodes which is correlated

with the movement of other nodes. In [35], various mobility models are categorized

into several classes in terms of their specific mobility characteristics such as total

randomness, spatial dependency, temporal dependency and geographic restriction.

In this chapter, we describe four different mobility models proposed in the past
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and also used in our simulations: Random Waypoint (RWP) model, Manhattan

(MH) model, Freeway (FW) model and Reference Point Group Mobility (RPGM)

model.

4.1 Random Waypoint Model

The RWP model is widely used in the MANET research community due to

its simple implementation and analysis [1] [27] [28]. In this model, each node is

assigned an initial position uniformly distributed within a region. Then, each node

chooses a destination uniformly inside the region, and selects a speed uniformly from

[minspeed, maxspeed ] independently of the chosen destination. The node then moves

toward the chosen destination with the selected speed along a straight line starting

from current waypoint. After reaching the destination, the node stops for a duration

called “pause time”, and then repeats the procedure. All nodes move independently

of each other at all times. Fig. 4.1 shows an example of moving pattern of a mobile

node using the RWP model starting at a randomly chosen position (20, 1230).

It has been shown that the average speed of nodes at steady-state in the RWP

model is S̄ = Smax−Smin

ln(Smax)−ln(Smin)
[29], where Smin and Smax are the minimum and max-

imum speed of nodes, respectively. The steady-state means that the distributions of

nodes’ speeds and locations are stationary. It is easily seen from the above equation

that S̄ decreases over time to zero if Smin = 0. A simple solution to overcome such

speed decay is to assign a positive Smin.

It is generally true that the distributions of nodes’ speeds and locations vary
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Figure 4.1: Moving pattern of a mobile node using the Random Waypoint Mobility Model.

continuously over time and converge to a steady-state distribution. The issue here is

how to deal with such transient period. One solution is to choose the nodes’ initial

locations and speeds according to the stationary distribution [27] [30] to avoid the

transient period from the beginning. Another one is to discard the initial time period

of simulation to reduce the effect of such transient period on simulation results.

4.2 Manhattan Model

The MH model is used to emulate the nodes movement on streets defined by

maps [36]. An example map is shown in Fig. 4.2. The application of the MH

model is modeling movement in an urban area where a pervasive computing service

between portable devices is provided.
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Figure 4.2: Map used in Manhattan Mobility Model.

The map is composed of a number of horizontal and vertical streets. Each

street has two lanes, one in each direction (North and South for vertical streets, and

East and West for horizontal ones). Each node is only allowed to move along the

grid of horizontal and vertical streets. At an intersection of horizontal and vertical

streets, a mobile node can turn left, or right, or go straight with probabilities 0.25,

0.25, and 0.5, respectively. The speed of a mobile node is temporarily dependent

on its previous speed. The speed of a node s(t) is updated according to: s(t +

1) = min(Smax, max(0, s(t) + a(t) · X)) where X ∼ Uniform[−1, 1], and a(t) is

Acceleration Speed.
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4.3 Freeway Model

The FW model is similar to the MH model in that it also needs a predefined

map [36]. But the map here can contain horizontal, vertical and diagonal freeways.

Fig. 4.3 shows an example map with only one freeway. This model can be useful in

tracking a vehicle on a freeway.

Figure 4.3: Map used in Freeway Mobility Model.

Each freeway has lanes in both directions (left to right and right to left, bottom

to top and top to bottom, bottom left to upper right and upper right to bottom left).

A node is restricted to its lane on the freeway. The speed of a node is temporally

dependent on its previous speed. And, the nodes on the same lane follow the rule

that the speed of a node cannot exceed the speed of the node ahead of it when they
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are within the Safety Distance (SD). The relationships can be written as:

a) s(t + 1) = min(Smax, max(0, s(t) + a(t) · X)), where X ∼ Uniform[−1, 1]

and a(t) is Acceleration Speed;

b) for any distinct nodes i and j, and t ≥ 0 , Dij(t) ≤ SD ⇒ si(t) ≤ sj(t)

if j is ahead of i in the same lane, where Dij(t) is the distance between

nodes i and j at time t.

4.4 Reference Point Group Mobility Model

The RPGM model may contain one or more logical groups. Each group has a

logical leader that determines the group’s motion behavior [34] [36]. The difference

between the RPGM model and the above three models is that nodes’ movements

are not totally independent but are dependent within a group. The RPGM model

can be applied in military battlefield communications where the commander and

soldiers form a logical group, or in a disaster recovery area where a rescue team and

a medical team form logical groups.

Initially, each member of a group is uniformly distributed in the neighborhood

of the group leader. At each time instant, each member is assigned a reference point

which follows the group leader’s movement. Then each member is randomly placed

in the neighborhood of its reference point. Members always move within some fixed

maximum distance from the group leader. Thus, a group trajectory is determined

by the path of the leader. Fig. 4.4 shows one example of the movement pattern of

a group containing 3 nodes.
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Figure 4.4: Moving pattern of a group of 3 nodes using the RPGM Mobility Model.
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Chapter 5

Simulation Set-up

In order to get the link and path duration distributions, we need to (1) gen-

erate different movement patterns and traffic pattern for the simulation program,

(2) extract nodes movement information and path setup information during the

simulation, and (3) compute the link duration, link excess life and path duration.

Moreover, we use the above information to compute other quantities of interest,

e.g., correlation coefficients of link excess lives, and to validate the conditions that

are introduced in [18] [20]. All simulations are carried out using network simulator

2 (NS-2) on a PC (Pentium 4, 3.0 GHz, 1 GB RAM) running Fedora Core 3. Fig.

5.1 shows a flow chart of simulation. In the rest of this chapter, we will describe

simulation setup in detail.

5.1 Simulation Environment

NS-2 is a discrete time event-driven network simulator developed at UC Berke-

ley and is now a part of Virtual InterNetwork Testbed (VINT) project [24]. It sim-

ulates various IP networks, including network protocols such as TCP (Transmission

Control Protocol) and UDP (User Datagram Protocol), traffic source behavior such

as CBR (Constant Bit Rate), router queue management mechanism such as Drop

Tail, RED (Random Early Detection), etc.
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Figure 5.1: Flow chart of simulation.

In a recent paper [28], the Monarch research group at Carnegie Mellon Uni-

versity developed support for simulating multi-hop wireless networks complete with

physical, data link, and medium access control (MAC) layer models on existing NS-2.

The radio propagation model includes Friis free space model, two ray ground reflec-

tion model at far distance or shadowing model. Each mobile node has an interface

queue maintained as a priority queue to hold the packets awaiting for transmission.

The Distributed Coordination Function (DCF) of IEEE 802.11 for wireless LANs

is used as the MAC layer protocol [25]. An unslotted carrier sense multiple access

scheme with collision avoidance (CSMA/CA) is used to transmit data packets.

NS-2 is an open source project and is continually evolving. In this thesis, we

use the version ns-2.28.

38



5.2 Movement Pattern

We use four mobility models − RWP, MH, FW, and RPGM to generate move-

ment patterns. For the RWP model, NS-2 has a program called “setdest” to generate

such a movement pattern with flexible model parameters. 1 For the MH and FW

models, we use the programs developed for IMPORTANT project at USC [36]. For

the RPGM model, we use the package tool called “BonnMotion” developed at Uni-

versity of Bonn. However, we modify the programs of MH and FW to handle the

boundary hitting situations: In MH, when a mobile node hits the boundary of the

domain, it makes a U-turn and moves in the opposite direction on the same street

(but on the opposite lane). Similarly, in FW, when a mobile node hits the boundary,

it makes a U-turn and moves in the opposite direction on the same freeway (but on

an opposite lane chosen uniformly from available lanes).

For all four models, the simulations are run on a rectangular region of 2 km ×

2 km. There are 200 nodes moving across this region, and the transmission range

of these nodes is fixed at 200 m. For RWP, MH, and FW models, the speed range

of nodes is [0.2, 6] m/s. For RPGM model, the speed of a node is chosen from [1,

10] m/s. The specific parameters associated with each model are listed below. Each

simulation period lasts for 1200 seconds. However, we discard the first 400 seconds

and only consider the last 800 seconds. In this way, we try to reduce the effect of

transient period on simulation results.

1In version ns-2.28, setdest already implements selecting the nodes’ speeds according to the

stationary distribution of speeds [30] [27] at the beginning of simulation.

39



• RWP

Initially, all nodes are uniformly distributed in the rectangular region. Then,

all nodes move continually according to the model without stop, i.e., the pause

time is 0. Based on the equation (2) in [29], the average speed of nodes at

steady state in this case is equal to 1.71 m/s.

• MH

There are a total of 32 streets - 19 horizontal streets and 13 vertical streets in

the rectangular region. Each street has two lanes, one in each direction (North

and South for vertical streets and East and West for horizontal streets). The

horizontal streets are separated by 100 m, and the vertical ones are separated

by 150 m. The distance between two neighboring lanes in opposite directions

on the same street is 5 m. The speed of a mobile node s(t) is updated every 1

second according to s(t + 1) = min(6; max(0; s(t) + 0.6 ·X)) m/s, where X ∼

Uniform[-1, 1]. At the beginning of the simulation, all nodes are uniformly

distributed on the streets, and the speeds of all nodes are uniformly distributed

between 0.2 and 6 m/s. Then, the nodes move along the lanes and update

their speeds and directions accordingly.

• FW

There is only one freeway with a total of 6 lanes in the rectangular region.

Each lane contains 3 segments (horizontal, diagonal and vertical) and has a

direction as shown in Fig. 4.3. The distance between two neighboring lanes

of a freeway is 5 m. The first (horizontal) segment of the bottom lane starts
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from the left boundary of the region with length 1200 m, and is 50 m away

from the bottom boundary of the region. The second (diagonal) segment has

angle 45◦ from the horizontal line. The third (vertical) segment is 50 m away

from the right boundary of the region. The speed of a mobile node s(t) is

updated every 1 second according to s(t + 1) = min(6; max(0; s(t) + 0.6 · X))

m/s, where X ∼ Uniform[-1, 1]. If node j and node i are in the same lane and

node j is ahead of node i, when they are within the safety distance (SD) 40

m, si(t) ≤ sj(t). Initially, all nodes are uniformly distributed on the freeway

(or lanes), and the speeds of the nodes are uniformly distributed in [0.2, 6]

m/s. Each node moves along the lanes and updates its speed and direction

accordingly.

• RPGM

First, 10 nodes are randomly chosen from all nodes and form one group. Then,

another 10 nodes are randomly chosen from the rest after the 1st selection

and form another group. This process repeats until each node is in one group.

Therefore, there is a total of 20 groups with 10 in each one. Each node is

marked with a distinct non-negative integer. The node with minimal number

in a group is the leader in that group. The maximum distance between the

leader and a group member is set to 100 m. Initially each group member is

uniformly distributed around the group leader inside a circle of radius 100 m,

and the node speed is uniformly distributed in [1, 10] m/s. All nodes move

without pause throughout the entire simulation period.
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5.3 Traffic Pattern

Here, the traffic pattern means how data packets arrive at the nodes in the

network. We use CBR traffic source. However, a source sends only one packet to a

destination. The reason is that sending one data packet is sufficient for a routing

protocol to discover a path from the source to the destination and record the path

setup information. We can use such information to compute the path duration

and link excess life offline with the link setup information. The source-destination

pairs are randomly chosen from all nodes. The packet interarrival time follows an

exponential distribution with average value 6 seconds. For the purpose of simplifying

extracting paths information, a large average interarrival time (6 seconds) is used.

The packet size is 64 bytes. The first traffic connection starts at t = 400 s since we

discard the data from first 400 seconds. Because one simulation period is only 1200

seconds which cannot hold enough number of traffic connections, each simulation

run consists of more than one simulation period. For each simulation period, a

different movement pattern and a different traffic pattern are used. For each scenario

considered, we generate more than 30,000 connections.

5.4 Routing Protocol

We run simulations using AODV and DSR routing protocols. But, we mod-

ify both protocols implemented in NS-2 to print out the path information during

the simulation which is used for computing the path durations, link excess lives,

etc. In AODV, when a destination receives the RREQ packet, it sends a RREP
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packet back to the source along the reverse path discovered during the route dis-

covery process. As an intermediate node along the path receives the RREP packet,

it extracts the node that sends the packet to it and prints out the node num-

ber as well as its own node number in the format “LINK Nodesend Noderecv”.

When the RREP packet reaches the source, the source first print outs the link infor-

mation in the same format as above. Then, the source extracts the destination from

the packet and prints out the path information with the path setup time in the for-

mat “SRCDST Nodesrc Nodedst at Tpath−setup”. From the printout, we extract

the hop-by-hop path information.

In DSR, when the source receives an RREP packet from either an intermediate node

or a destination, it extracts the complete hop-by-hop path information from the packet,

saves in its route cache, and prints out the path information with the path setup time in

the format “SRCDST − RR [hop − by − hop − path] at Tpath−setup”.

5.5 Metrics

For the purpose of measuring the link and path durations, the transmission range

of the mobile nodes is set to 200 m. It can be changed by varying the receiver power

threshold. Any two nodes separated by a distance less than or equal to the transmission

range has a communication link between them.

5.5.1 Link Duration

During the simulation period, we log the nodes’ movement information every 1

second in an output trace file. After the simulation, we extract the movement informa-

tion from the trace file, and thus get a snapshot of the network connectivity every 1
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second. Hence, we know exactly the link status between any pair of nodes throughout

the entire simulation period with time resolution of 1 second. Link durations are calcu-

lated offline. The output format of the link status information from the calculation is

“Nodei − Nodej Tlink−setup Tlink−breakdown”.

5.5.2 Path Duration

As described in Section 5.4, the hop-by-hop path information and its setup time is

recorded during the simulation. Once we know the path setup time and the link status

information, the path duration can be computed as follows: First, for each link along the

path we compute the time at which the link goes down for the first time after path setup.

Then, we find the link that goes down first. The time interval between the path setup

time and the link teardown time gives the path duration. The output format of the path

information is “[hop − by − hop − path] hop − count Tpath−setup PathDuration”.

5.5.3 Link Excess Life

The link excess life defined before can be computed in a straightforward manner

once the path setup time and the link status information is known.

5.5.4 PDF Estimation

After simulations, we use the relative frequency approach (from standard probability

theory) to calculate the empirical PDFs of link and path durations as well as that of link

excess life for each scenario. After computing the PDFs, we compute (i) the empirical

CDFs of link and path durations as well as that of link excess life, and (ii) the empirical

joint CDFs of link excess lives. For path durations, we calculate a separate CDF for each
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path hop count. The detailed simulation results and analysis are provided in next chapter.
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Chapter 6

Simulation Results and Analysis

In this chapter, we present the details of the simulation results from different sce-

narios. We run the simulations under eight different scenarios, each using one of four

mobility models and one of two routing protocols. Using collected data,

1. We plot the distributions of link duration and link excess life, and validate the PDF

of link excess life is non-increasing as implied by (2.2) (or (9) in [20]).

2. We find that the path duration distribution can be well approximated by an expo-

nential distribution with fitting error less than 0.05 using KS-test when the path

length is at least 6 or 7 hops for all scenarios. In addition, in the case of MH model,

the path duration distribution matches the exponential fitting curve well with fitting

error less than 0.05 even when the path length is as small as 2 hops.

3. We show that even for path hop count greater than 10, the parameter obtained

from exponential fitting is not very close to the sum of the inverses of the expected

link durations along a path. This suggests slow convergence of the parameter. The

maximum path hop count is limited to 12 hops due to limited domain size.

4. We study the level of local dependence in link excess lives by computing the corre-

lation coefficients of link excess lives under different scenarios. Simulation results

show weak dependence as hop distance between links increases. For RWP, MH, and

FW models, the dependence is fairly weak for non-neighboring links. For RPGM

model, the dependence is non-negligible if the hop distance is less than 5.
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5. We validate two mixing conditions defined in (2.5) and (2.6) (or in (14) and (16) in

[20]). Specifically, we validate a sufficient condition for the condition D′(un). Based

on the simulation results of the level of dependence in link excess lives, rather than

validate the condition D(un) directly, we validate a condition that suggests that

indeed the condition D(un) is likely to hold in a large scale network.

6.1 Link Duration and Link Excess Life PDFs

As stated in the previous chapter, we record the setup and breakdown times of

all links, hop-by-hop paths and their setup times during each simulation run. Then, we

compute empirical distributions of link duration, link excess life, and path duration. The

numbers of links and paths statistics collected for all eight scenarios are listed in Table

6.1 (with AODV) and 6.2 (with DSR). Here we only consider the links that are used to

provide a path during the simulation. Also, we only consider path hop counts with more

than 1,000 samples.
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Table 6.1: Simulation Statistics I – AODV

RWP with AODV MH with AODV FW with AODV RPGM with AODV

# of links 260,906 233,214 173,000 135,502

# of 1-hop paths 1,621 1,495 3,624 8,170

# of 2-hop paths 2,859 1,841 2,593 4,254

# of 3-hop paths 3,727 2,203 2,542 4,945

# of 4-hop paths 4,325 2,535 2,522 3,691

# of 5-hop paths 4,833 2,844 2,265 3,108

# of 6-hop paths 4,767 3,126 2,221 2,492

# of 7-hop paths 4,824 3,377 2,047 1,937

# of 8-hop paths 4,165 3,279 1,949 1,304

# of 9-hop paths 3,579 3,044 1,687 1,062

# of 10-hop paths 2,913 2,693 1,526 -

# of 11-hop paths 2,234 2,163 1,467 -

# of 12-hop paths 1,568 1,754 1,277 -

Table 6.2: Simulation Statistics II – DSR

RWP with DSR MH with DSR FW with DSR RPGM with DSR

# of links 235,217 205,212 16,346 126,957

# of 1-hop paths 1,085 1,005 1,391 4,167

# of 2-hop paths 1,847 1,100 2,338 4,350

# of 3-hop paths 2,666 1,364 2,210 3,830

# of 4-hop paths 3,291 1,626 2,332 3,822

# of 5-hop paths 3,673 2,026 2,384 3,106

# of 6-hop paths 4,034 2,293 2,368 2,742

# of 7-hop paths 4,281 2,628 2,273 2,276

# of 8-hop paths 3,840 2,802 2,270 1,862

# of 9-hop paths 3,452 2,963 2,145 1,220

# of 10-hop paths 2,926 2,557 2,018 -

# of 11-hop paths 2,248 1,937 1,874 -

# of 12-hop paths 1,722 1,543 1,762 -
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The empirical distributions of link duration and link excess life are plotted in Figs.

6.1 – 6.4. From the plots, we note that the PDF of link excess life is non-increasing under

all scenarios. This follows directly from (8) in [18] (or in (2.2)).
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Figure 6.1: PDF of link duration and link excess life for RWP
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Figure 6.2: PDF of link duration and link excess life for MH
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Figure 6.3: PDF of link duration and link excess life for FW

0 100 200 300 400 500 600 700 800
0

0.005

0.01

0.015

0.02

0.025

duration (seconds)

P
D

F

PDF of link duration and excess life

link duration
link excess life

(a) RPGM with AODV
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Figure 6.4: PDF of link duration and link excess life for RPGM
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6.2 Path Duration CDF and Exponential Fitting

A separate empirical path duration distribution is computed for each hop count.

We use the MATLAB expfit(·) function to exponentially fit the empirical path duration

CDF. Figs. 6.5 – 6.12 show that the empirical CDFs of path duration and the exponential

fitting curves with path hop count of 2 and 8. It can be seen that the fitting curves match

the empirical CDFs well for path hop count of 8. This validates Theorem 2 in [20] that

the path duration distribution can be well approximated by an exponential distribution

for all sufficiently large path hop counts.
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Figure 6.5: CDF of path duration and MLE exponential fitting for RWP with AODV
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Figure 6.6: CDF of path duration and MLE exponential fitting for RWP with DSR
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Figure 6.7: CDF of path duration and MLE exponential fitting for MH with AODV
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Figure 6.8: CDF of path duration and MLE exponential fitting for MH with DSR
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Figure 6.9: CDF of path duration and MLE exponential fitting for FW with AODV
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Figure 6.10: CDF of path duration and MLE exponential fitting for FW with DSR
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Figure 6.11: CDF of path duration and MLE exponential fitting for RPGM with AODV
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Figure 6.12: CDF of path duration and MLE exponential fitting for RPGM with DSR

In order to quantify the goodness of the exponential fitting, we compute the fitting

error between the empirical CDF and the exponential fitting curve, using Kolmogorov-

Smirnov goodness-of-fit test (K-S test) as follows: 1

supx≥0

∣

∣

∣
Femp(x) − Fmle(x)

∣

∣

∣
, (6.1)

where Femp is the empirical CDF of path duration and Fmle is the MLE exponential fitting.

The exponential fitting parameters and errors computed by (6.1) are listed in Table 6.3

and 6.4, respectively, for different path hop counts under all eight scenarios. In each

column (except the leftmost column), the numbers in bold face are fitting parameters,

and the numbers inside parentheses are fitting errors.

1We compute the difference only at the time instant when we have data.
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Table 6.3: Exponential Fitting Parameter and Error I – AODV

hop count RWP with AODV MH with AODV FW with AODV RPGM with AODV

1 0.0095 (0.1160) 0.0155 (0.0503) 0.0071 (0.1552) 0.0056 (0.1592)

2 0.0211 (0.0976) 0.0384 (0.0366) 0.0171 (0.1301) 0.0390 (0.1272)

3 0.0352 (0.0785) 0.0654 (0.0338) 0.0341 (0.1194) 0.0712 (0.0992)

4 0.0508 (0.0783) 0.0915 (0.0316) 0.0457 (0.0721) 0.1178 (0.0894)

5 0.0714 (0.0517) 0.1129 (0.0311) 0.0539 (0.0543) 0.1665 (0.0707)

6 0.0879 (0.0505) 0.1349 (0.0296) 0.0694 (0.0474) 0.2279 (0.0561)

7 0.1048 (0.0433) 0.1608 (0.0289) 0.0861 (0.0391) 0.2964 (0.0392)

8 0.1156 (0.0354) 0.2029 (0.0266) 0.1019 (0.0302) 0.3263 (0.0360)

9 0.1362 (0.0312) 0.2329 (0.0263) 0.1093 (0.0294) 0.4011 (0.0351)

10 0.1485 (0.0295) 0.2375 (0.0226) 0.1311 (0.0277) -

11 0.1593 (0.0284) 0.2436 (0.0196) 0.1438 (0.0261) -

12 0.1833 (0.0278) 0.2685 (0.0190) 0.1542 (0.0252) -

Table 6.4: Exponential Fitting Parameter and Error II – DSR

hop count RWP with DSR MH with DSR FW with DSR RPGM with DSR

1 0.0101 (0.1051) 0.0177 (0.0503) 0.0078 (0.1548) 0.0068 (0.1981)

2 0.0214 (0.0865) 0.0371 (0.0452) 0.0182 (0.1416) 0.0541 (0.1226)

3 0.0355 (0.0772) 0.0682 (0.0357) 0.0337 (0.1199) 0.0668 (0.1121)

4 0.0484 (0.0708) 0.0874 (0.0343) 0.0541 (0.0929) 0.0986 (0.0935)

5 0.0681 (0.0633) 0.1113 (0.0329) 0.0638 (0.0574) 0.1445 (0.0792)

6 0.0840 (0.0527) 0.1330 (0.0327) 0.0715 (0.0466) 0.1978 (0.0641)

7 0.1031 (0.0471) 0.1535 (0.0298) 0.0844 (0.0418) 0.2483 (0.0473)

8 0.1159 (0.0422) 0.1906 (0.0279) 0.1008 (0.0405) 0.3089 (0.0423)

9 0.1309 (0.0393) 0.1989 (0.0278) 0.1135 (0.0388) 0.3327 (0.0379)

10 0.1465 (0.0353) 0.2204 (0.0238) 0.1234 (0.0379) -

11 0.1671 (0.0347) 0.2389 (0.0211) 0.1495 (0.0296) -

12 0.1710 (0.0294) 0.2496 (0.0197) 0.1646 (0.0263) -
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As one can see, the fitting accuracy improves with increasing path hop count. For

all four mobility models, the fitting error is less than 0.05 when path hop count is larger

than 6. Furthermore, the fitting error is the smallest under the MH model. In fact, the

fitting error is smaller than 0.05 for path hop count larger than 1 under MH.

6.3 Relationship between the Expected Path Duration and the Ex-

pected Link Durations

The theoretical analysis in [20] suggests that when the path hop count is large

enough, the inverse of the expected path duration is approximately given by the sum of

the inverses of the expected link durations along the path. In order to study how quickly

these parameters converge, we plot the ratio of the inverse of the expected path duration

to the sum of the inverses of the expected link durations along the path in Figs. 6.13 –

6.16. Clearly the ratio does not approach 1 even for path hop count of 12 for RW, MH

and FW or 9 for RPGM with both AODV and DSR. However, they show that the ratio

decreases after 9 hops for RWP and 5 hops for MH. For FW and RPGM, such a decrease

does not take place for path hop count up to 12. We also note that the ratio in all plots is

always larger than 1, i.e., the inverse of the expected path duration is always larger than

the sum of the inverses of the expected link durations along the path. This suggests that

we overestimate the expected path duration when the sum of inverses of the expected link

durations along a path is used to estimate the expected path duration.
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Figure 6.13: Ratio of inverse of average path duration to sum of inverse of average link

durations along the path for RWP

0 2 4 6 8 10 12
1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

hop count

ratio

(a) MH with AODV

0 2 4 6 8 10 12
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

hop count

ratio

(b) MH with DSR

Figure 6.14: Ratio of inverse of average path duration to sum of inverse of average link

durations along the path for MH
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Figure 6.15: Ratio of inverse of average path duration to sum of inverse of average link

durations along the path for FW
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Figure 6.16: Ratio of inverse of average path duration to sum of inverse of average link

durations along the path for RPGM
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6.4 Dependence of Link Excess Lives

We compute the correlation coefficients of link excess lives to quantify the depen-

dence level of link excess lives along a path. The correlation coefficients are computed for

each hop distance between the links. The results are plotted in Figs. 6.17 – 6.20. The

plots suggest there are some dependence in link excess lives for all scenarios. However,

the dependence is mostly limited to neighboring links for RWP, MH, and FW models, and

non-neighboring links exhibit very weak dependence. For RPGM, the dependence is non-

negligible for hop distance less than 5. This may be because of the correlation of speeds

and locations between the nodes in a group. However, the dependence does decrease as

hop distance increases 2. These suggest that the assumptions introduced in [20] are likely

to hold in practice and the distribution of path duration will be approximately given by

an exponential distribution if the path hop count is sufficiently large.
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Figure 6.17: Correlation coefficient as a function of hop distance for RWP

2For MH with DSR, Fig. 6.18(b) shows the correlation coefficients are small when the hop

distance is larger than 1. But there is no clearly decreasing trend with increasing hop distance.

This may be because of the noise in the measurement and the limited number of data collected.

60



1 2 3 4 5 6 7 8 9 10 11

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

hop distance

C
or

re
la

tio
n 

co
ef

fic
ie

nt
Plot of Correlation coefficient

(a) MH with AODV

1 2 3 4 5 6 7 8 9 10 11

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

hop distance

C
or

re
la

tio
n 

co
ef

fic
ie

nt

Plot of Correlation coefficient

(b) MH with DSR

Figure 6.18: Correlation coefficient as a function of hop distance for MH
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(a) FW with AODV
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Figure 6.19: Correlation coefficient as a function of hop distance for FW
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(a) RPGM with AODV
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Figure 6.20: Correlation coefficient as a function of hop distance for RPGM

6.5 Validation of Assumptions

6.5.1 Validation of the condition D(un)

The condition D(un) defined in (2.5) describes the manner in which the dependence

of link excess lives decays as the hop distance between links increases. Due to the limited

domain size, the maximum hop count obtained from the simulations is 12. Thus, we can

not fully validate the condition D(un). However, in the following, we argue (in a somewhat

imprecise manner) that the condition D(un) is likely to hold in large scale networks.

From the observation of the correlation coefficients plotted in Figs. 6.17 – 6.20, we

find that the dependence between link excess lives decreases quickly with hop distance.

Thus, the dependence is the strongest between the links that are closest (in terms of

hop distance) from the two sets of links, and one can argue that the level of dependence

between the two sets can be inferred (to some extent) from that between the excess lives

of the two closet links.

We show that indeed the dependence measured by the difference between joint
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CDF and the product of the marginal CDFs of two link excess lives decreases quickly with

hop distance. This seems to indicate that these two link excess lives become (almost)

independent with increasing hop distance, and thus suggests that the two sets of link

excess lives become independent as their hop distance increases, i.e., the condition D(un)

is likely to hold.

Here, we use the difference as follows:

|P [X
(n)
i ≤ x1, X

(n)
j ≤ x2] − P [X

(n)
i ≤ x1]P [X

(n)
j ≤ x2]| (6.2)

for any x1, x2 ≥ 0, where X
(n)
i and X

(n)
j are the excess lives of two links in a path with

1 ≤ i, j ≤ H(n).

Figs. 6.21 – 6.28 plot the difference

∣

∣P [Xℓ ≤ x1, Xℓ+k ≤ x2] − P [Xℓ ≤ x1]P [Xℓ+k ≤ x2]
∣

∣

(we remove superscript (n) here without causing any confusion) for hop distance k = 1,

3, 5, 7. It is clear that the difference in (6.2) decreases as the hop distance increases for

all scenarios. This suggests that two link excess lives become independent as their hop

distance increases. This suggests that the condition D(un) is likely to hold in large scale

networks.
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Figure 6.21: Plot of
∣

∣P [Xi ≤ x1, Xi+k ≤ x2] −P [Xi ≤ x1] P [Xi+k ≤ x2]
∣

∣ where k =

1, 3, 5, 7 for RWP with AODV
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Figure 6.22: Plot of
∣

∣P [Xi ≤ x1, Xi+k ≤ x2] −P [Xi ≤ x1] P [Xi+k ≤ x2]
∣

∣ where k =

1, 3, 5, 7 for RWP with DSR
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Figure 6.23: Plot of
∣

∣P [Xi ≤ x1, Xi+k ≤ x2] −P [Xi ≤ x1] P [Xi+k ≤ x2]
∣

∣ where k =

1, 3, 5, 7 for MH with AODV
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Figure 6.24: Plot of
∣

∣P [Xi ≤ x1, Xi+k ≤ x2] −P [Xi ≤ x1] P [Xi+k ≤ x2]
∣

∣ where k =

1, 3, 5, 7 for MH with DSR
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Figure 6.25: Plot of
∣

∣P [Xi ≤ x1, Xi+k ≤ x2] −P [Xi ≤ x1] P [Xi+k ≤ x2]
∣

∣ where k =

1, 3, 5, 7 for FW with AODV
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Figure 6.26: Plot of
∣

∣P [Xi ≤ x1, Xi+k ≤ x2] −P [Xi ≤ x1] P [Xi+k ≤ x2]
∣

∣ where k =

1, 3, 5, 7 for FW with DSR
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Figure 6.27: Plot of
∣

∣P [Xi ≤ x1, Xi+k ≤ x2] −P [Xi ≤ x1] P [Xi+k ≤ x2]
∣

∣ where k =

1, 3, 5, 7 for RPGM with AODV
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Figure 6.28: Plot of
∣

∣P [Xi ≤ x1, Xi+k ≤ x2] −P [Xi ≤ x1] P [Xi+k ≤ x2]
∣

∣ where k =

1, 3, 5, 7 for RPGM with DSR
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6.5.2 Validation of the condition D′(un)

A sufficient condition for the condition D′(un) with un = H(n)/x for any x ∈ (0,∞)

is given in (2.7). We can rewrite (2.7) as

lim
n→∞

(⌊

H(n)

k

⌋2

· sup
i,i′∈I

(n)
k,j

:i<i′

P [X
(n)
i <

x

H(n)
] · P [X

(n)
i′ <

x

H(n)

∣

∣X
(n)
i <

x

H(n)
]

)

= o

(

1

k

)

(6.3)

for all j = 1, . . . , k.

By replacing x with x/H(n) in the CDF of the link excess life given in (2.2), we

have

P [X
(n)
i <

x

H(n)
] =

1

m(G
(n)
ℓ )

∫ x
H(n)

0
(1 − G

(n)
ℓ (y)) dy (6.4)

As mentioned earlier, a sufficient condition for Assumption 3 introduced in Chapter

2 (or Assumption 5 in [20]) is that there exists some arbitrarily small positive constant ε

such that m(G
(n)
ℓ ) ≥ ε for all n = 1, 2, . . . and ℓ = 1, 2, . . . , H(n), i.e., m(G

(n)
ℓ ) is lower

bounded by a positive constant. Putting these together, we have

P [X
(n)
i <

x

H(n)
] =

c′

H(n)
+ o

(

1

H(n)

)

(6.5)

where c′ is some finite positive constant.

As n → ∞, H(n)/k → ∞. Hence, ⌊H(n)/k⌋ ≃ H(n)/k for large n, and we can

approximate ⌊H(n)/k⌋ by H(n)/k. Combining (6.3) and (6.5), we get

lim
n→∞

(

(c′ + o(1))
H(n)

k2
sup

i,i′∈I
(n)
k,j

:i<i′

P [X
(n)
i′ <

x

H(n)

∣

∣X
(n)
i <

x

H(n)
]

)

= o

(

1

k

)

(6.6)

A sufficient condition for (6.6) to hold is that

P [X
(n)
i′ <

x

H(n)

∣

∣X
(n)
i <

x

H(n)
] =

c′′ii′

H(n)
+ o

(

1

H(n)

)

(6.7)

for all i, i′ ∈ I
(n)
k,j such that i < i′, where c′′ii′ is a finite positive constant. Equation (6.7)

simply says that the probability P [X
(n)
i′ < x

H(n)

∣

∣X
(n)
i < x

H(n) ] behaves similarly as the
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marginal CDF P [X
(n)
i < x

H(n) ] as n → ∞ (x/H(n) → 0). In the following, we will show

that this is indeed the case.

Figs. 6.29(a) – 6.36(a) plot the empirical CDFs of link excess life (i.e., P [Xℓ ≤

c]) and the conditional probabilities P [Xℓ+1 ≤ c|Xℓ ≤ c] (we remove superscript (n)

here without causing any confusion). We also plot the same CDF and the conditional

probability P [Xℓ+k ≤ c|Xℓ ≤ c] for hop distance k = 2, 4 in Figs. 6.29(b) – 6.36(b). These

figures show that the conditional probabilities and the CDFs do not coincide but are

close, providing further evidence that the excess lives of two links are not independent but

are weakly dependent if separated by intermediate links. Also, in all cases the conditional

probability behaves similarly as CDFs as c decreases to 0. This suggests that the sufficient

condition (6.7) for (6.3) holds for all scenarios.
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Figure 6.29: Plot of the CDF and the conditional probabilities for RWP with AODV
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Figure 6.30: Plot of the CDF and the conditional probabilities for RWP with DSR

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c (seconds)

Plot of the CDF P[X
l
 < c] and the conditional probability P[X

l+1
 < c | X

l
 < c]

CDF
conditional probability

(a) P [Xℓ+1 ≤ c|Xℓ ≤ c]

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c (seconds)

Plot of the CDF P[X
l
 < c] and the conditional probabilities

CDF
P[X

l+2
 < c | X

l
 < c]

P[X
l+4

 < c | X
l
 < c]

(b) P [Xℓ+k ≤ c|Xℓ ≤ c], k = 2, 4

Figure 6.31: Plot of the CDF and the conditional probabilities for MH with AODV
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Figure 6.32: Plot of the CDF and the conditional probabilities for MH with DSR
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Figure 6.33: Plot of the CDF and the conditional probabilities for FW with AODV
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Figure 6.34: Plot of the CDF and the conditional probabilities for FW with DSR
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Figure 6.35: Plot of the CDF and the conditional probabilities for RPGM with AODV
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Figure 6.36: Plot of the CDF and the conditional probabilities for RPGM with DSR

6.6 Summary and Comparison

We studied the link and path duration distributions through extensive simulations.

There are two major findings: First, We find that the convergence of path duration distri-

bution takes place quickly. In other words, even for hop counts of 5 - 7, the distribution of

path duration can be well approximated by an exponential distribution. The two routing

protocols used in our simulations yield similar results. Second, the inverse of the expected

path duration cannot be well approximated by the sum of the inverses of the expected

link durations along a path even when path hop count is equal to 12 for the RWP, MH,

and FW models and 9 for the RPGM model. In fact, the expected path duration is over-

estimated by using the sum of the inverses of the expected link durations at least for path

hop count up to 12.

For the RWP, MH, and FW models, the dependence of link excess lives is weak

between non-neighboring links. For the RPGM model, the local dependence of link excess

lives is non-negligible for hop distance less than 5. A sufficient condition for mixing

condition D(un) is validated for all considered scenarios. And, based on the observation
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that the level of dependence of link excess lives decreases as hop distance increases, we

believe that the condition D′(Un) will hold in practice for large scale networks. Specifically,

simulation results show that the difference between the joint CDF of two link excess lives

and the product of their marginal CDFs decreases as the hop distance between the two

links increases.
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Chapter 7

Conclusions and Future Work

In this thesis, we carried out simulation studies of the link and path duration distri-

butions in a multi-hop wireless ad hoc networks. Through extensive simulations using four

different mobility models and two different on-demand routing protocols, we find when

the path hop count is larger than 5 or 6, the path duration can be well approximated by

an exponential distribution with the fitting error less than 0.05 using KS-test. Among the

four mobility models considered, the MH model gives the fastest decreasing rate of fitting

error. The other three models show similar results. The two routing protocols studied

here, namely AODV and DSR, do yield similar quantitative results. The inverse of the

expected path duration and the sum of the inverses of the expected link durations along

a path shows non-negligible difference for path hop count up to 12.

Through the computation of the correlation coefficients between link excess lives, we

find that the dependence of link excess lives is quite weak for non-neighboring links under

RWP, MH and FW models. For the RPGM model, the dependence is non-negligible for

hop distance less than 5. A sufficient condition for the condition D′(un) is validated for all

considered scenarios. Simulation results show that the probability of one link excess life

less than a positive number conditioned on the excess life of another link in the same path

less than the same number behaves similarly as the CDF of that link excess life as the

number decreases to 0. And, based on the observation of the level of dependence of link

excess lives decreasing with increasing hop distance, we validate a condition that suggests

that indeed the condition D(un) is likely to hold in a large scale network in the cases of
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all scenarios. Specifically, simulation results show that the difference between the joint

CDF of two link excess lives and the product of their marginal CDFs decreases as the hop

distance between the two links increases.

We plan to run simulations in a larger scale network to investigate when the in-

verse of an expected path duration can be accurately approximated by the sum of the

inverse of the expected link durations along a path. We will further investigate the same

issues under other various settings, e.g., different network size, node speed range, mobility

models (e.g., obstacle mobility models or those generated from real life systems), routing

protocols (e.g., TORA or ABR), etc. These will help us better understand the link and

path duration distributions in MANETs.

A new path selection scheme is proposed in [20]. In the scheme, a path with the

largest expected duration is selected by a source for packet transmission. An expected

path duration is estimated using the relationship between the expected path duration and

the expected durations of the links along the path. Our simulation results suggest that an

expected path duration is overestimated by using the sum of the inverses of the expected

durations of the links along the path at least for path hop count up to 12 under RWP,

MH, and FW models or 9 under RPGM model. Therefore, the new scheme may need to

compensate for the discrepancy for small path hop counts.
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