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Thin film sensor arrays on ICs are studied as an example of 3-D integration.

Various thin film sensor arrays are studied, with emphasis on systems integratable

on silicon. 3-D integration offers the chance to have all the data from the sensors

in the sensor arrays available to the processing layer at once. The data from the

sensors is read vertically directly into the processing layer. With the motivation to

identify the needs of various thin film sensors and to exploit the available parallelism

in data, thin film sensors are categorized into two - those with similar sensors in the

arrays or those with different sensors in the sensor array. A common architecture

to address both the categories is proposed, designed and implemented. Such a

generic processing layer design also helps independant development of sensor arrays

(of either categories) and finally deposited on such a generic processing layer.

Also any commercial off the shelf generic microprocessor can not be used

for such a project. The reasons being that the generic microprocessors were not

designed keeping in mind the vertical integration and hence parallelism in data.



Nor are they designed to handle the specific needs of sensor arrays. The modSIMD

processor (proposed and implemented in this thesis) exploits the 3-D integration

aspects and the needs of sensor arrays. modSIMD stands for a modified SIMD

(Single Instruction Multiple Data) architecture. In the common addressing mode,

it behaves like a SIMD processor and works on various data elements parallely. In

the specific addressing mode, it behaves like a SISD (Single Instruction Single Data)

processor.

First the advantages of 3-D integration are studied. The 3-D system architec-

ture is compared to a 2-D system architecture with similar processing architecture.

The 3-D architecture is seen to dissipate more power but is more efficient in area

and speed. Then the processing architecture is put to test with applications from

both the categories. It outperforms an ARM microprocessor in SIMD applications,

thus exploiting the parallelism in data. modSIMD also works on applications from

both the categories, thus developing such a common architecture is made possible.
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Chapter 1

Introduction

Integrated circuits came into being in the late 1960’s. Microprocessors built of ICs

became popular from the 1980’s. With huge leaps in technology and following the

Moore’s Law, transistor count on an IC has been doubling with more and more

powerful processors being built. With limits in technology - both going close to the

physical limits as well as memory access issues and heat dissipation problems, the

industry is looking at various fields for growth. Research is going on a variety of

processes, the leader of them being nanotechnology.

The silicon industry, meanwhile is studying approaches to best use their exist-

ing technology in silicon engineering for growth. This has led to a lot of investment

into the multi-core technologies. Though the core might clock at a lower frequency

than a single core, the actual gains could be about 30-50% (for a dual core processor)

compared to the single core. This does require specialized programming to exploit

the dual cores or the multi-cores.

Some research groups are also investigating the use of 3-D technology to en-

hance technology. The circuitry in the processors is all two dimensional. The depth
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of a transistor is a few microns, on a substrate of silicon which is possibly a cou-

ple of hundreds of microns thick. With the device dimensions reaching nanoscale

and thereby reaching the physical limits in increasing the speed of the devices, re-

searchers have started exploring materials in various forms. One of such interesting

avenues is 3-D processors or processors which exploit the third dimension.

Memory access has always been a problem for processors. The development of

the hard disks has been slower than the development in processors. Thus computer

architects had come up with a variety of schemes to overcome these issues, some

of which include a bigger on-chip cache, reliable branch prediction and various bus

protocols to transfer the required data faster to the core for processing. 3-D inte-

gration also promises to provide faster data access to the processing core through

vertical interconnects.

1.1 3-Dimensional Processors

A 3-Dimensional processor can be achieved in a couple of ways. One way is to stack

up various blocks of a processor, one over the other. Another way, and reported in

literature for photosensors is to use a thin film layer on an ASIC [8]. Sensors for

various types are available on thin films compatible with silicon. A simple 3-D thin

film sensor array on an IC is depicted in Figure 1.1.

In the following few sections, a few important developments in related fields

is briefly presented. The core idea of the thesis is developed and presented towards

the end of this chapter.
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Figure 1.1: A 3-D Thin Film Sensor Arrays on IC

1.2 Multi-processing, multi-core chips?

Architectural improvements in single-core microprocessors that take advantage of

continually increasing transistor budgets, such as superscalar execution and deeper

pipelines, have improved performance tremendously over the years. However these

techniques have seen diminishing returns recently. As a result, server manufacturers

are now using their additional transistors to produce multi-core chip multiprocessors

(CMPs), that sidestep these diminishing returns by executing the many threads

typically available in server tasks in parallel across the cores of a CMP.

Traditionally multi-processors have been used for high end servers, doing spe-

cialized tasks. With imporvements in silicon technology, a shift to chip multi-

processing has been seen.

1.3 Sensors

Parallely sensors in silicon have gained a lot because of this development in technol-

ogy. A variety of sensors for images/video, pressure, chemical and magnetic sensors

have been developed in silicon and devices have been miniaturized [1]. Sensors of

3



various types mentioned have been built adjoining to processing circuitry. A struc-

ture as depicted in Figure 1.2 for gas sensors is apt for various other sensors too.

Thin film sensors have been researched with great interest. Silicon thin films,

circuits on SOI substrates or thin films on silicon compatible systems are of par-

ticular interest, as systems which exploit the investments already made by a huge

number of firms in silicon can be used to build these sensor systems [13][11][17].

1.4 Thin Film Sensor Arrays (TFSAs) on CMOS circuits a solution?

Traditionally data from the sensors is fed into a processor and then processed. This

transfer of data is also a bottleneck. Architecturaly this has been approached with

on-chip cache and deep pipelines.

A parallel sensor array can feed a lot of data into a processor. Pre-processing

the data just to transfer the necessary items requires a lot of processing power. For

example to process and get a color image for a 640*480 pixel array takes about 300

Million Operations Per Second (MOPS). Since the pixel array (on a thin film) can

feed the data to the processing layer directly underneath it, parallely, one can build

a multi-processing processing layer to process color images. This is just one example

as shown in Fig 1.1.
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The applications of TFSA on silicon circuits are many. They can be broadly

categorized into two, depending on the sensors in the sensor arrays. The crux of the

thesis is to identify the commonalities in these structures and develop a common,

generic processing layer to process data from the TFSAs.

1.4.1 Similar sensors in the TFSA

All TFSAs which have similar sensors in the sensor array (Figure 1.3) - tactile

sensors or photosensors or thermal sensors. Applications of such an array would

be live finger print scanning (tactile sensors), images (photosensors and thermal

sensors).

Figure 1.2: Similar sensors in TFSA

1.4.2 Differnt sensors in the TFSA

An array of sensors, each sensor different from another can also be created, tech-

nology permitting on top of a silicon processing layer (as visulaized in Figure 1.4).

Gas/chemical sensors are dissimilar sensors, which compare the results of all the
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sensors to identify a particular chemical or gas.

Figure 1.3: Different sensors in TFSA

Also, for deep space exploration (either Mars reconnaissance orbiter or Pluto

reconnaissance orbiter) or battlefield reconnaissance - one can build a sensor system

with a variety of sensors (tactile - to measure pressure, gas/chemical - to check for

chemicals, photo and thermal - for images, etc) on top of a single processing layer.

Such a sensory system would not only provide information about the surroundings

but also be light and extremely compact.

1.5 Thesis overview

The purpose of the thesis is to find and present various technologies that can be

part of the two layers as depicted in Figure 1.1. The processing layer should be able

to work on both categories of applications as described in the earlier section.

• Identify the processing needs of various thin film sensor arrays (TFSAs)on

silicon
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• Identify, design and implement an architecture for the processing layer, that

can work with many of the thin film sensor arrays

The contributions of this thesis can be enumerated as follows:

1. Established that a common processor can be used for various Thin Film Sensor

Arrays (TFSA)

2. Proposed and implemented a generic processor architecture for processing in-

formation from many different TFSAs: for both, arrays with same sensor

elements, or arrays with different sensor elements

The remainder of the report is organized as follows

1. In chapter 2, sensors are defined and various sensors for different physical and

chemical properties are identified. TFSAs which can be integrated with silicon

processes, alongwith their processing needs are identified.

2. In chapter 3, multiprocesser taxonomy is discussed and an architecture for the

processing layer is proposed.

3. Chapter 4 details the implementation of the processing layer - the design

methodology, the design and the results.

4. Chapter 5 discusses the applications put to test on the architecture. A sum-

mary of the findings is included in this chapter.
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Chapter 2

Thin Film Sensor Arrays on Silicon

A variety of sensors can be integrated with the CMOS processes. Photosensors,

UV detectors, near infra red and infra red detectors, magnetic detectors, pressure

sensors (piezoelectric), and chemical sensors can be made on silicon. Some have

a direct effect on silicon, others can be used with materials which can be easily

integrated with silicon processes have an effect.[1]

With advancement in technology, most of the sensors (as sensor arrays) can

be put on a single chip and processing can be done next to the sensors. A variety

of thin film sensors are now available.

2.1 Signals and Sensors

A wide variety of systems like computers, oscilloscopes, door locks, clinical ther-

mometers, satellites, word processors, etc - can be termed together as ”‘informaion

processing systems”’. Any system which processes information is termed as an in-

formation processing system.
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A sensor is a device that receives a signal or stimulus (as heat or pressure

or light or motion etc.) and responds to it in a distinctive manner. Or a sensor

can be defined as an electronic device used to measure a physical quantity (such as

temperature, pressure or loudness) and convert it into an electronic signal of some

kind. Since a signal is a form of energy, sensors can be classified according to the

type of energy they detect.

The various forms of energy are: Electromagnetic radiant energy, Gravitational

energy, Mechanical energy, Thermal energy, Electrostatic and Electromagnetic en-

ergy, Molecular energy, Atomic energy, Nuclear energy and Mass energy.

In brief, the electromagnetic radiant energy is related to electromagnetic ra-

diowaves, microwaves, infrared, unltraviolet, visible light, x-rays and gamma rays.

The gravitational energy concerns with the gravitational attraction between a mass

and earth or other bodies. Mechanical energy pertains to displacements, flows of

materials where as the thermal energy concerns the kinetic energy of atoms and

molecules. The electrostatic and eletromagnetic energies relate to the electric and

magnetic fields, the currents and the voltages. Molecular energy is the energy re-

lated to the bonds which hold the atoms together in a molecule where as the atomic

energy pertains to the energy between the nucleus and the eletrons in an atom.

Nuclear energy is the energy which keeps the nuclei together and the mass energy

is as described by Einstein.

For either sensing or processing information, practically the energy groups can

be classified into six different ’main’ energy domains. The most important physical

properties of the six signal domains are mentioned in the Table 2.1. Gravitational
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and mechanical energy have been clubbed under mechanical signal domain, eletr-

magnetic waves are considered under radiant signal domain. Molecular and atomic

energy are brought together under the chemical signal domain. Nuclear and mass

energy have been left out of consideration.

Signal domain Physical Properties
Radiant signals Light intensity, wavelength, polarization,

phase, reflectance, transmittance
Mechanical signals Force, pressure, torque, vacuum, flow,

volume, thickness, mass, level,
position, displacement, velocity,
acceleration, tilt, roughness,
acoustic wavelength and amplitude

Thermal signals Temperature, heat, specific heat, entropy, heat flow
Electrical signals Voltage, current, charge, resistance,

inductance, capacitence, dielectric constant,
electric polarization, frequency, pulse duration

Magnetic signals Field intensity, flux density,
moment, magnetization, permeability

Chemical signals Composition, concentration, reaction rate,
toxicity, oxidation-reduction potential, pH

Table 2.1: The six signal domains

Specifically in this report, devices which can be integrated into complex silicon

processes and if possible identify any thin film sensors built using the aforementioned

physical properties in Table 2.1 are studied. In order to improve the characteristics of

a sensor, a signal processing circuit maybe combined with a sensor and such devices

are refered to as smart sensors. Compatible technologies with silicon processes like

polymer films for gas sensors or ZnO films for pressure sensors are also considered.

The physical and chemical effects in silicon for the non-electrical signal do-

mains are presented in Table 2.2. The following sections, the study of the various

signal domains and sensors in thin films if available will be presented.
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Signal Domain Self-generting effect Modulating effect
Radiant Photovaltaic effect Photoconductivity, Photoelectric effect

Mechanical Acoustoelectric effect Piezoresistivity, Lateral photovaltaic effect
Thermal Seebeck effect, Nernst effect Thermoresistive effect
Magnetic Hall effect, Magnetoresisance, Suhl effect
Chemical Galvano effect Electrolytic conduction

Table 2.2: Physical and Chemical effects in Silicon

2.2 Mechanical Signal Domain

Mechanical signals can be directly converted into electrical energy using mecahnical

sensors. Sensor for mechanical signals are used to measure (a) motion relatd mea-

surands - position, displacement, velocity, flow, speed of rotation, etc and (b) force

related measurands - weight, pressure, acceleration, torque, strain, vibration, etc.

2.2.1 Mechanical sensors as arrays

Capacitive tactile sensor arrays have been reported in literature, which are used for

robotic applications.[13] Structural information about an object, such as orientation,

size and required force pattern can be obtained by such sensor arrays. Tactile sensor

arrays have also been reported for live finger print scanning tools.[10]

2.3 Thermal Signal Domain

Most applications of conventional electronic circuits, the temperature sensitivity of

silicon devices is undersiable. Hence a lot of research has gone into understanding

the temperature sensitivity of silicon devices. This knowledge can be used to design

silicon-based temperature sensors.

Silicon and silicon devices can be used to measure a host of thermal effects like
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the Seebeck effect, the Thompson effect, etc. Also flow sensors and vacuum sensors

can be built using silicon temperature sensors. In this section, the discussion will

be focused on thermal infra-red sensors.

In thermal infra-red detectors, the radiation is absorbed by the material, which

generates phonons and causes the lattice to heat up; this change in the lattice

temperature is converted into a change in the electronic properties of the substrate.

Although thermal infrared sensors are slower than their photon detectors, since

thermal infrared sensors allow a wider spectral range, they have been shown to be

very suitable for passive intrusion alarms. Also arrays of thermal infrared sensors

can be used for the construction of infrared spectrometers.

Silicon thermocouples can be structured to make efficient thermal infrared

detectors. Either a suitable material can be deposited on silicon substrate for the

thermocouple or silicon could be used as one material in the thermocouple. An

example for the former type is discussed [11]. A thin membrane of SiN is PECVD

(Plasma Enhanced Chemical Vapor Deposition) on silicon substrate. A platinum

thin film is used as the thermodetector. Detailed analysis of such a device is available

[11].

2.4 Magnetic Signal Domain

Many materials show a change in their resistivity on the application of a magnetic

field. This is called the magnetoresistance effect. Silicon smart sensors built in the

magnetic signal domain exploit this effect. Arrays of very small magnetic sensors
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on a single chip can be used to detect very small magnetic fields with very high spa-

tial resolution. These sensors can be deposited on active silicon substrates thereby

facilitating on-chip signal processing and multiplexing. GMR sensor arrays with fre-

quency independent sensitivity offers improvements in speed, depth, and resolution

in eddy-current testing. [12]

2.5 Chemical Signal Domain

Chemical sensors detect the presence of specific chemicals or classes of chemicals

depending on how a specific chemical reacts. Silicon technology for chemical sensors

has been widely researched because it permits mass production and makes low-cost

devices possible. A definite subset of the chemical sensors are the bio-chemical

sensors (which detect biological macromolecules).

A disadvantage of chemical sensors and also biochemical sensors is that they

are not only sensitive to one chemical measurand but usually respond to many, thus

leading to the creation of sensor arrays to identify specific measurands. Though a

disadvantage, this provides an interesting challenge to our project.

A variety of cross-reactive chemical and biochemical sensors are available. The

measurands include gases to biological macromolecules [19].

Miniature polymer-based chemical gas sensor array on silicon using micro-

machining technology, (sensors are polymer-carbon black composite films) swell re-

versibly and cause a resistance change upon exposure to a wide variety of gases.

Since the composite film sensors are not specific to any one gas, an array of these
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sensors, each with a different sensing film, is used to identify gases and gas mixtures

through the pattern response of the array. The polymer composite film is not spe-

cific to any one particular gas, as compared to conventional chemical sensors which

work for only one analyte. Used in an array, with each sensor containing a different

polymer composite film, gases and gas mixtures can be identified by the pattern

response of the array. This allows a much more general-purpose chemical gas sen-

sor capable of broadly detecting and identifying various constituents. Each of the

polymer sensor films responds differently to each of the gas vapors. By integrating

the responses from the sensor array, a unique pattern or signature is produced for

each chemical gas vapor. An example of such a sensor array is described in [17].

Pattern recognition techniques such as data clustering, least-squares fit, etc

can be used to identify individual gases [18]. Applicationss of such sensor arrays

include environmental monitoring (such as detecting the presence and concentration

of toxic or otherwise dangerous gases that may come from spills and leaks), quality

control and industrial monitoring, particularly in such industries as food processing,

perfume, beverage and other chemical products.

The response of the polymer-carbon black sensors is shown to increase pro-

portionally as the concentration of the gas vapor increases [17], thus it is not only

possible to identify the gases but also the concentration of the gases. Also the chara-

teristic resistance change of the film was not affected by the reduction in sensor area,

thus opening up the door for miniaturization.
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2.6 Radiant Signal Domain

Photosensors are used in digital cameras, head mounted kits, etc for taking pictures

and analyzing the pictures. Once the picture is taken, various techniques are used

for either object recognition or motion detection.

Photodiodes or photogate sensor arrays operating in the visible and near infra

red region can be used for image detection such as pattern recognition, position

sensing and for image tracking and in many other applications.

The basic physics of either CMOS sensors or the thin film sensors is the same.

Incident photons on a silicon surface generates an electron-hole pair. It is the photo-

electric effect in action. The energy of a photon is directrly related to its frequency

and inversely proportional to its wavelength.

2.6.1 CMOS Cameras

The CMOS imager takes advantage of the mature CMOS technology, which can be

very cheap with volume production and the accumulated experience on processing,

reliability, yield etc. Each pixel can be addressed randomly through the column and

row decoder or multiplexer. This readout method enables the electronic windowing,

pan, zoom and sleeping mode operation for multimedia application.

Two types of CMOS sensors are passive pixel sensors and active pixel sensors.

1. Passive Pixel Sensors (PPS) were the first image-sensor devices used in the

1960s. In passive-pixel CMOS sensors, a photosite converts photons into an

electrical charge. This charge is then carried off the sensor and amplified.
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These sensors are small-just large enough for the photosites and their connec-

tions. The problem with these sensors is noise that appears as a background

pattern in the image. To cancel out this noise, sensors often use additional

processing steps.

2. Active-pixel sensors (APS) reduce the noise associated with passive-pixel sen-

sors. Circuitry at each pixel determines what its noise level is and cancels it

out. It is this active circuitry that gives the active-pixel device its name. The

performance of this technology is comparable to many charge-coupled devices

(CCDs) and also allows for a larger image array and higher resolution.

2.6.2 Thin film phototransistors

Image sensors in TFA technology employ thin-film detectors based on multilayer

structures of hydrogenated amorphous silicon (a-Si:H) and its alloys. The thin-film

system of a TFA sensor is deposited onto the completed ASIC wafer in a Plasma En-

hanced Chemical Vapor Deposition (PECVD) cluster system. The PECVD process

is based on the decomposition of a gaseous compound near the substrate surface.

Amorphous silicon layers are fabricated using the process gas silane (SiH4) at sub-

strate temperatures between 150 C and 200 C, which inherently leads to the forma-

tion of a silicon-hydrogen alloy. The hydrogen atoms in a-Si:H prevent the formation

of dangling bonds, therefore the mid-gap defect density is decreased. The a-Si:H

material properties are considerably better than those of pure amorphous silicon

(a-Si), which is indeed useless for electronics because of its extremely low carrier
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mobility.

Due to its higher absorption coefficient in the relevant spectral range and

its maximum spectral response for green light, amorphous silicon is more qualified

for visible light detection than crystalline silicon. Moreover, the a-Si:H deposition

sequence is adaptable to the specific requirements of an application. With a suitable

layer sequence it is possible to distinguish three or more colors within the same pixel

[16][8].

2.7 Processing needs of Thin Film Sensor Arrays (TFSAs)

1. Photodetectors, thermal sensor arrays, tactile (pressure) sensor arrays and

magnetic sensor arrays output an image. Image processing algorithms like

edge detection, thresholding, etc are done on the data to get the information

(Table 2.3).

Sensor array Algorithms for processing data Applications
Photodetector edge detection, motion detection, etc cameras
Tactile edge detection, thresholding live finger print scans
Thermal edge detection, thresholding staring arrays
Magnetic edge detection eddy current testing

Table 2.3: TFSAs, Algorithms and Applications

2. Chemical and gas sensor arrays output data, which needs to be individually

compared to each other.

Thus, the processing layer should be able to exploit 3-D integration, specifically

the availability of the data from all the sensor elements at once and exploit the

parallelism in data processing. The processing layer should be able to implement
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image processing algorithms as well as work be able to work on each sensor output

independantly as required.
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Chapter 3

Survey of various architectures

A study of the various processing architectures that can be used for the different

silicon sensors in use is presented in this chapter. Computer architecture broadly

covers three aspects of computer design - the instruction set architechture, organi-

zation and the hardware [2]. Combining the silicon sensors identified in Chapter

2 with silicon processors would give a system which can be entirely manufactured

in the present fabs. In this chapter, multiprocessor taxonomy is explored and an

architecture for the processing layer is presented.

3.1 Flynn’s taxonomy of multi-processors

To start with a taxonomy for multi-processors is presented here. Flynn’s taxonomy,

the most popular in multi-processors is presented here. The taxonomy as presented

here can also be found in detail in [2].

• SISD: Single instruction stream, single data stream This is a uniprocessor.Conventional

single processor computers are classified as SISD systems. Each arithmetic in-
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struction initiates an operation on a data item taken from a single stream of

data elements.

• SIMD: Single instruction stream, multiple data stream A single instruction is

executed on multiple data sets at the same clock cycle. SIMD machines have

one instruction processing unit, sometimes called a controller and indicated by

a K in the PMS notation, and several data processing units, generally called

D-units or processing elements (PEs)

• MISD: Multiple instruction stream, single data stream No such machine has

been built yet.

• MIMD: Multiple instruction stream, multiple data stream Multiple instruc-

tions are executed on different streams of data (on different processors), mak-

ing this a generic multiprocessor. The category of MIMD machines is the most

diverse of the four classifications in Flynn’s taxonomy. It includes machines

with processors and memory units specifically designed to be components of

a parallel architecture, large scale parallel machines built from “off the shelf”

microprocessors, small scale multiprocessors made by connecting four vector

processors together, and a wide variety of other designs. With the contin-

ued improvement in network communication and the development of software

packages that allow programs running on one machine to communicate with

programs on other machines, users are even starting to use local networks of

workstations as MIMD systems.
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3.2 Memory organization of Multi-processors

Memory organization plays a big role in multi-processing as it defines how memory

is addressed and accessed by each processor. No matter how fast one makes the

processing unit, if the memory cannot keep up and provide instructions and data at

a sufficient rate there will be no improvement in performance. The main problem

that needs to be overcome in matching memory response to processor speed is the

memory cycle time, the time between two successive memory operations.

Processor cycle times are typically much shorter than memory cycle times.

When a processor initiates a memory transfer at time t0, the memory will be ’busy’

until t0 + tm, where tm is the memory cycle time. During this period no other device

- I/O controller, other processors, or even the processor that makes the request -

can use the memory since it will be busy responding to the request.

Solutions to the memory access problem have led to broadly two kinds of par-

allel systems. In one type of system, known as a shared memory system, there is

one large virtual memory, and all processors have equal access to data and instruc-

tions in this memory. The other type of system is a distributed memory, in which

each processor has a local memory that is not accessible from any other proces-

sor. Cache coherence becomes an essential part for the memory organization in a

multi-processor.
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3.2.1 Shared memory systems

Shared memory refers to a (typically) large block of RAM that can be accessed by

several different central processing units (CPUs) in a multiple-processor computer

system.

The problem with shared memory systems is that the many CPUs need fast

access to memory and will likely cache memory. Whenever one cache is updated

with information that may be used by other processors, it needs to immediately

update the shared memory, otherwise the different processors will be working with

different data. Thus a cache coherence protocol has to be used.

3.2.2 Distributed memory systems

Distributed memory means that in a multi-processor system each processor has

its own memory. This requires that computional tasks have to be distributed on

the different processors for processing. After the processing the data has to be

reassembled.

3.2.3 Distributed Shared memory systems

Distributed Shared Memory (DSM) refers to hardware implementations, in which

each node of a cluster has access to a large shared memory in addition to each node’s

limited non-shared private memory. As in the case with shared memory systems,

a distributed shared memory system also needs to have a cache coherence protocol

implemented.
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3.3 The Instruction Set Architecture

An Instruction Set Architecture (ISA) is a specification of the set of all binary

codes (opcodes) that are the native form of commands implemented by a particular

CPU design. The set of opcodes for a particular ISA is also known as the machine

language for the ISA. It describes the aspects of a computer architecture visible

to a programmer, including the native datatypes, instructions, registers, addressing

modes, memory architecture, interrupt and exception handling, and external I/O.

Some of the categories of ISA of interest are discussed in the following subsec-

tions.

3.3.1 The Reduced Instruction Set Computing (RISC) architecture

The RISC architecture favors a smaller and simpler set of instructions that all take

about the same amount of time to execute. The RISC philosophy is to make smaller

instructions, implying fewer of them, and thus the name ”reduced instruction set”.

Code is implemented as a series of these simple instructions, instead of a single

complex instruction that has the same result.

Some examples of the RISC architecture processors are the DEC Alpha, Freescale

and IBM’s PowerPC, ARM processors, MIPS processors, Sun SPARC and ULTRA-

Sparc’s.
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3.3.2 The Complex Instruction Set Computing (CISC) architecture

In the CISC architecture each instruction can indicate several low-level operations,

such as a load from memory, an arithmetic operation, and a memory store, all in a

single instruction. The instruction set is designed to support high-level languages by

providing ”high-level” instructions such as procedure call and return, loop instruc-

tions such as ”decrement and branch if non-zero” and complex addressing modes to

allow data structure and array accesses to be combined into single instructions. Gen-

erally, the more complex the instruction set, the greater the overhead of decoding

any given instruction, both in execution time and silicon area.

Examples of the CISC architecture machines include Intel’s Pentium processor,

AMD’s x86 based architecture. x86 is a CISC architecture instruction set.

The continuous evolution of both CISC and RISC designs and implementations

have rendered the definitions less meaningful. Nevertheless the above are a broad

categorization of the instruction set architectures. To develop an instruction set

for the desired application (as discussed in earlier chapters), it is also important

to understand a couple of instruction set architectures, which may or may not be

completely categorized as RISC or CISC.

3.3.3 Digital Signal Processor (DSP)

A DSP is a specialized processor to process digital singals mostly in real time.

DSPs usually have an instruction set optimized for rapid signal processing. Some

characteristics of the instruction set of DSPs include, multiply-accumlate operations,
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modulo addressing and bit-reversed addressing. Floating point DSPs are used for

scientific computing.

3.4 Designing an Architecture for processing data from a sensor array

For most of the TFSAs identified in Chapter 2, the basic processing of the data

involves image processing algorithms. For chemical and gas sensors, the processing

needs to take place on one sensor data at a time. Exploiting the advantages of 3-D

integration, by which the data is available for all the sensors in the sensor array

at once, a parallel processing architecture can be developed for image processing

algorithms. This has to be suitably modified for chemical and gas sensor arrays.

3.4.1 Identifying a processor architecture and a memory system

The parallel data from the sensors is intended to be processed independantly for

each sensor. There might be at most nearest neighbor communication. A SIMD

machine is the preferred solution. The control unit is responsible for fetching and

interpreting instructions. When it encounters an arithmetic or other data processing

instruction, it broadcasts the instruction to all PEs, which then perform the same

operation.

One of the advantages of this style of parallel machine organization is a sav-

ings in the amount of logic. Anywhere from 20% to 50% of the logic on a typical

processor chip is devoted to control, namely to fetching, decoding, and scheduling

instructions. The remainder is used for on-chip storage (registers and cache) and
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the logic required to implement the data processing (adders, multipliers, etc.). In

an SIMD machine, only one control unit fetches and processes instructions, so more

logic can be dedicated to arithmetic circuits and registers.

In literature, a variety of SIMD processors have been designed and discussed

[9]. A SIMD architecture is a preferred solution for various image processing tasks.

Also if each PE has a local memory, the data can be sought from the sensor array,

for all the elements at once. The memory can also be extended to store the data

from the nearest neighbors. Thus, a distributed memory system is the choice.

3.4.2 A SIMD Architecture

SIMD stands for Single Instruction, Multiple Data streams. A SIMD processor has

one control unit, one program counter and multiple functional units or processing

elements (PE). The PEs execute the program, which is decoded by the control unit

on their respective data items. The data is understood to be in blocks, and the same

instruction to be executed on each and every data item. Executing the program on

all the data items parallely in different PEs, rather than processing them serially in

one PE speeds up the process considerably.

The SIMD architecture contains a single contol unit(CU) with multiple proces-

sor elements(PE) acting as arithmetic units. The arithmetic units (PEs) are slaves

to the control unit. They cannot fetch or interpret any instructions. They are

merely a unit which has capabilities of addition, subtraction, multiplication, and

division. Each PE has access only to its own memory. If a PE needs the informa-

tion contained in a different PE, it must put in a request to the CU and the CU

26



must manage the transferring of information. The applications of SIMD include

image processing, 3D rendering, video and sound applications, speech recognition,

networking, and DSP functions.

3.4.3 Modifications in SIMD architecture for processing needs of dissimilar sensors

in the sensor array

Example of dissimilar sensors in the TFSA are either chemical or gas sensors. Data

for all the sensors in a chemical or gas sensor array can be acquired at once. But

processing needs to take place, one at a time. A MIMD architecture would increase

the size of the processing layer by a lot. By uniquely and randomly being able to

identify each PE in a SIMD architecture, this bottleneck can be overcome. Also, data

needs to be shared across PEs and hence memory needs to be addressed uniquely

too.

Thus, a modified SIMD (modSIMD) architecture which in a common address-

ing mode, behaves like a SIMD architecture and in a specific addressnig mode,

behaves like a SISD processor suits all the TFSAs discussed in the thesis. The

proposed architecture is shown in Figure 3.1. PE ID is the processing element ID.

3.5 The modSIMD architecture

• A Programmable processor: 32 bit Instruction,16 bit data, non-pipelined

processor

• Processor architecture: One control unit, one program counter, multiple PEs
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Figure 3.1: Proposed Architecture

In common addressing mode, it is a Single Instruction Multiple Data parallel

processor, for processing data from all sensors at once. In specific addressing

mode, it is a Single Instruction Single Data processor, each processing element

(PE) identified by a PE ID. For processing data from each sensor separately

• Memory: Local to each PE, 64 addressable memory elements in each PE

• Bus: Data bus is 16 bit wide to communicate with other processing elements

and read out

3.6 Why modSIMD?

A generic commercial off the shelf processors might not be able to address all the

needs of thin film sensor arrays. These generic microprocessors are neither designed

to exploit 3-D integration nor are they designed to handle the needs of sensor arrays.

3-D integration provides the oppurtunity to drastically reduce the data bot-
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tlenecks in a microprocessor system, by making the data available through vertical

interconnects. Also, as noted in the earlier chapter, many TFSAs with similar sen-

sors in the array, do the same processing on all the sensory data. This can be

exploited by moving to a SIMD architecture.

The proposed modSIMD architecture exploits the parallelism in data. By

being able to address each of the PEs independantly, the modSIMD architecture can

also work with different sensors in the TFSAs. The sensor layer can be developed

and fabricated independantly and fit onto the modSIMD architecture, making this

a very versatile architecture to build a variety of 3-D integrated TFSAs.

3.7 TFSAs on a modSIMD processing layer

The envisioned TFSA on a modSIMD processing layer architecture is depicted in

Figure 3.2.

Figure 3.2: TFSA on modSIMD architecture
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The sensor outputs are directly connected to the memory in the PEs of the

modSIMD processor. Also the nearest neighbors’ (sensors) output is also stored

in the memory of each PE. Similar addressing schemes for the PE and TFSA can

be exploited to achieve this. Each PE in the modSIMD processor is hardcoded

with an individual address for individual sensor processing if necessary (specific

addressing mode). In the common addressing mode, all PEs also respond to a

particular common address for SIMD type operations on the data recieved from the

sensors.
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Chapter 4

Design and Implementation

A variety of thin film sensors on silicon can be used to build an equal variety of

smart silicon sensors as described in chapter 2. Chapter 3 described the proposed

modSIMD architecture. This chapter will detail the design methodology used and

the implementation of the modSIMD processor.

4.1 Design Methodology

A digital design is a top down approach. First, a behavioral model of the intended

chip is created. Then a behavioral model of each of the modules is created. A

hardware description language is used to describe each of the modules. In electronics,

a hardware description language or HDL is any language from a class of computer

languages for formal description of electronic circuits. It can describe the circuit’s

operation, its design, and tests to verify its operation by means of simulation. In

this case, verilog is the choice. All HDLs have object oriented programming support.

The design is divided into modules, whose instances behave like the chip.
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Figure 4.1: Digital Design Flow

Each module, is again sub-divided in a similar manner and all functions are

coded in HDL. But for the HDL to be converted into circuits, the code has to be

written into a register transfer level - RTL. The design flow is simplistically shown

in Figure 4.1

4.1.1 Validation

The design flow of a chip is described in Fig 4.1. VHDL/Verilog code is created

for the idea about a chip. Since both languages are modular, a chip can be sub-

divided into various modules (could be SRAM, buses, logic units, etc) and designed

separately. Tests in verilog or VHDL are written to simulate the behavior of the

various units and as a full chip itself. This is followed by synthesis, where the
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complier generates a gate level design for the chip. After synthesis the chip needs

to be validated according to the logic and timing constraints. Again this is done at

unit level as well as at the full chip level. If any of the tests fail here, because of

any bugs in the code, that particular unit is tested and code is re-written. If there

is a bug at the full chip level, the bug is isolated to a unit the unit is then further

tested, updated and put back into the full chip design. After validation, the chip

design proceeds to placement and routing. The chip is validated again. Finally a

gds map of the chip is generated and mask generation data is collected and the chip

is sent to the fab.

Validation is a necessary part in designing and fabricating a chip. Once the

RTL code for designing a chip is written, the code needs to be tested for various

errors, etc. Testbenches can be written in Verilog and VHDL, but one cannot test

different kinds of scenarios. To generate all kinds of scenarios in data to test the

chip extensively, other tools need to be used. Either the data can be generated

using script languages like perl or python or languages like VERA or e can be

used. The advantage of using these languages is to exploit the features since they

are specifically built for validation. They include random traffic generation on the

various buses in the design or random data in the various kinds of memory units in

the design, and so on and so forth.

To test a chip conclusively before it is released to the market is an impossible

task. But failing to do a basic minimum amount of testing before sending it for

fabrication might be costly. Non functional part can be spotted, errant buses or

the dont cares skipped during the design could be tested for any interference with
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the design documents. As the example quoted below shows, validation is also an

important part of engineering. In the challenger explosion, the O rings were never

tested at temperatures the launch had taken. It cost seven lives. Improper validation

or lack of led to the recall of the first Intel Pentium processor. Hence validation

comes off as a necessary step to check the chip design as thoroughly as possible and

to check that it adheres to the design document. Also it ensures that all the parts

are functional and perform as expected. Validation is also an important step in the

design process. To be able to validate a piece of code, one needs to understand the

various design requirements, the standards used, the protocols used in the design

(communication protocols) if need be.

4.1.2 Synthesis

Synthesis is the process of converting a digital design written in a hardware de-

scription language (HDL) into a low-level implementation consisting of primitive

logic gates. Synthesis tools optimize and compile the (RTL) design as per specified

constraints and map to target devices as per the design libraries.

4.2 The modSIMD processor

The processing layer underneath as discussed earlier is a modified SIMD architec-

ture. The input is stored in the memory of each ”processing elements” (PE)(described

later) directly. This is done when the global reset of the processing unit goes high.

The addressing is 4 bits to identify the processing unit and 6 bits to locate the
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particular location in the processing element (PE). Each processing element requires

data for 30 sensors. Each instruction fed is concurrently processed in ten PEs in the

system. Additional PEs can be added - the trade off being silicon real estate.

Detailed description of the various units follows in the rest of the chapter.

4.3 Instruction word

The processor takes a 32 bit instruction. The instruction word is structured as

follows. (Figure 4.2)

Figure 4.2: Instruction Word

Bits [31:30] and Bits [23:22] are decoded in the control unit. The control

unit determines if the instruction is an ALU operation or an immediate operation.

Bits [29:24] determine the ALU operation. These bits are directly passed to each

processing element which contains the ALU. The bits [21:18] contain the PE ID -

processing element ID. The addresses for the operands are contained in remainder

of the bits. Bits [17:12] contain address of Operand A, [11:6] contains the address

of output register (register C) and [5:0] determines the address of Operand B.

4.4 Processing Element (PE)

The processing unit is the work horse of the CPU system underneath.(Figure 4.3)Each

processing element has a ALU, a memory bank, a data-path controller and a couple
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of register files to work on the data. Adding as many processing units as required

helps work on various data items in parallel. Each PE can be addressed individually.

The PEs work in two modes, a common addressing mode and a specific address-

ing mode. The number of processing elements in the processor will determine the

parallelism the system as a whole will enjoy.

Each processing element also has an unique identifier to allow random access

to a particular element. This gives the user more control for any specific processing

element and use that processing element to run some specialized routines on that

particular set of data items.

The PE ID in the instruction determines which PE operates on the instruction.

In the common addressing mode, PE ID is set at ’1111’ - and all the PEs perform

the operation as shown in Figure 4.4. The instrcution for the same looks like follows

Instrn = 32’b0000000000111100000000010000000010

The instruction decodes to an addition of elements of Address A (000000) and

Address B (000010) and the result is put into Address C (010000). Since the PE ID

is 1111, all the processing elements perform the addition.

Each PE can also be individually addressed in the specific addressing mode as

shown in Figure 4.5. In this case, the addressed PE performs the operation, while

the rest of the PEs donot react. The instruction word for the example cited in

Figure 4.5 looks as follows

Instrn = 32’b0000000000000100000000010000000010
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Figure 4.3: Processing Element Schematic
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Figure 4.4: Common Addressing Mode

Figure 4.5: Specific Addressing Mode

The PE ID is identified as ’0001’ and only that PE performs the addition of

the operands as described earlier.
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4.4.1 The do process signal

The PE needs to communicate with its constituents (ALU, datapath, etc) once it

decodes whether a particular instruction has to be executed in that PE or not. This

is done with the do process signal as shown in Figure 4.6.

Figure 4.6: The do process signal in a PE

The do process signal high, indicates that the operation has to be executed

in the PE. This has also been verified by simulation with rtl as well as synthesized

code as shown in Figure 4.7.

In Figure 4.7, the instruction initially had the PE ID = ’1111’ for which, all

the PEs (A PE, B PE and H PE shown), have a do process signal high. After a few

clock cycles, the instruction was changed to PE ID = ’0001’, as seen, only do process

signal for A PE is high and the rest are all low.

The sub-units of the processing elements are discussed in the next few sections.
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Figure 4.7: The do process signal simulation

4.5 The ALU

Each processing element has a local ALU which performs the arthimetic and logical

operations on the operands. Apart from addition and substraction, the ALU also

performs some bit wise operations. The ALU operands are described in Appendix

A. The ALU decodes the signal, ALU OP, recieved from the datapath controller

and acts on the operands. The datawidth is 16 bits.

The basic change in the ALU design from a typical ALU is the signal ”‘do process”’.

As noted earlier in this section, the do process signal basically identifies the opera-

tion to be performed by a particular ALU. In case the do process signal is low, the

ALU latches to the previous results and doesnot act on the new operands. If the

do process signal is high, the ALU performs the operations on the operands and the

new result is latched.
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Figure 4.8: The ALU Simulation

Figure 4.8 shows the simulations of the ALU. A simple addition was performed

on the operands A and B. In the next step, the ”‘do process”’ signal was forced low,

the output can be seen to be latched to the previous result. Again, the ”‘do process”’

signal was changed to high, with the operands A and B changing. This leads to a

different result as shown in the waveform. The simulation was done on the rtl model

as well as the synthesized model. Same results were observed.

4.6 REG FILE - the register files

Each processing element has a register file unit, which stores the immediate values

of the operands and the data for the ALU. The do process command determines if

the register file will act on the rest of the commands or not, similar to as described

in the ALU. The inputs for the register file unit are Clk, Reset, Addr A, Addr B,

Addr C, Write RegC, RegPort C. The outputs are Reg PortA and Reg PortB. The

address of operand A and operand B are fed to the register file which fetches their

values from the memory bank and sends them to the ALU. The ALU also sends

in the data to be written into the Addr C which is used to store the result. The
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Figure 4.9: Data Acquisition

Write RegC command from the control unit, triggers this.

4.7 Data Acquisition and Memory

The memory is designed to be local to a processing element. Every memory item can

be individually addressed. The address of a particular memory element is simply

the PE ID, local memory address - hence a 10-bit address.

Exploiting the full advantage of 3-D integration, the data from the sensors

can be acquired through the vertical interconnects as shown in Figure 4.10. Each

memory element can be associated with a particular sensor in the sensor array for

data acquisition. Also during data acquisition, the data from the nearest neighbors

can be stored locally in the PE memory bank, thus eliminating much usage of the

data bus.

The read-out mechanism is serial. Since each memory element can be ad-

dresssed invidually, the memory unit puts the particular memory element on the

data bus on ”‘send data on bus”’ instruction from the control unit. The PE ID is
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verified and particular memory unit puts the data on the bus.

4.8 Control Logic

There is just one control unit for the whole chip. The control unit decodes the in-

structions and sets the necessary signals to the various processing units. Rd Oprnd A,

Rd Oprnd B and Write RegC are the flags set for ALU operations. The Use-

DataImm flags are set, if the data is to be used immediately. The control unit

also waits for the ”‘process done”’ flags from each of the PEs to be high, to go to

the next instruction. The control loop is shown in Figure 4.11.

Figure 4.10: The Control Loop

The schematic of the control unit is shown in Figure 4.12

43



Figure 4.11: The Control Unit Schematic
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4.9 Determining the number of PEs in a generic processor

The following designs were synthesized for the following cases to handle a 10X10

sensor network:

1. Just one processing element

2. 10 processing elements

3. 100 processing elements

All the three designs were synthesized using three different design libraries.

The three different technologies of the libraries were

• 0.6µm - Available from MOSIS and Michigan State University

• 0.25µm - Available from Virginia Tech

• 0.13µm - Available from University of Texas at Dallas

The number of processing elements is a key to the design of the processor

(Figure 4.13). Moreover, all the processing elements are individually addressable.

So, only one processor can be asked to perform a certain task.

4.9.1 One processing element

Designing a single processing element processor is similar to designing a regular

RISC processor. Care had to be taken to add more memory to read the data from

all the sensors at once. Though all the data is available at once, the processor would

act on one data item at a time. Thus to work on 100 data items (for a 10X10 array),
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Figure 4.12: modSIMD Processor

it would work the same piece of code 100 times. A schematic of the developed design

is shown in Figure 4.14.

4.9.2 100 processing elements

100 processing elements to process a 10X10 sensor array, with every processing

element working on the same bit of code on different data items. The memory re-

quirement in this case is for the local sensor data, and the data for nearest neighbors.

4.9.3 10 processing elements

10 processing elements can execute the same code, on ten different data items and

looped to do so ten times. This can be done easily as each processing element can

either be chosen to work on a row or a column of sensors from the sensor arrays.

Thus the memory requirement for such a task would increase to getting all the
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Figure 4.13: Single Processing Element

nearest neighbors, about 30 elements. Such a design is called the block parallel

design. [8]

4.10 Results

The area of the above designs are tabulated in Table 4.1 The designs were synthesized

in 0.6µm, 0.25µm and 0.13µm technology. The areas are as follows in millimeter

square:

All the designed processors had 16 bit data elements.
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Number of processors 0.60µm tech 0.25µm 0.13µm
1 processing element 0.37 0.18

10 processing elements 3.67 1.22 0.89
100 processing elements 38.28 12.54 8.94

Table 4.1: Areas of the synthesized designs

4.10.1 Discussion

The area increases directly with the number of processing elements, across technol-

ogy. The control block remains the same in all the designs. The memory needed

also changed from design to design and hence the area shows a near linear growth.
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Chapter 5

Results, applications and conclusions

The implementation of the modSIMD architecture and various modifications of it,

reported in this chapter, was done in verilog and synthesized using Synopsys Design

Analyzer [6] in 0.25µm process. The simulator used was Synopsys VCS verilog

simulator. The standard cell libraries for the 0.25µm process are available from

Virginia Tech University [21], [22]. The Design Analyzer tool has features to estimate

power, critical path and area based on the data from the standard cell library which

is given as an input. The critical path is defined as the longest electrical path in

the synthesized design. The maximum delay across such a path determines the

minimum time at which the system can be clocked. The voltage level is set as 3.3 V

and temperature is set as 25OC. Unless specified, all the implementations used the

above specifications.
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5.1 Results

The area, power and critical path estimates for the 10 PE implementation, 3-D

system are shown in Table 5.1. The sensor array on the sensor layer is assumed to

be the same area as the processing layer. Additionally 10 vertical interconnects were

assumed for which the area estimates are not available. But in a 3-D implementation,

it is assumed that the vertical interconnects occupy the same area on both the

processing layer and the sensing layer.

The Design Analyzer tool gave the following results for the 10 PE implemen-

tation with the above mentioned design files as inputs:

Area 1.22mm2

Power 190 mW
Critical Path (without ADC) 1.4 ns

Table 5.1: Results for modSIMD with 10PE

5.2 Comparisons

The lack of a generic processing layer architecture for such an application, makes it

difficult for a relevant comparison. Application Specific ICs (ASICs) are too specific

and modSIMD generic design is bound to have a larger area and power consumption

than any of the ASICs. Though the functionality of modSIMD indeed happens to

be better. Alternately, any off the shelf generic microprocessor might not be best

suited for these tasks for the reasons previously noted. Since it is more likely to pick

one of the generic microprocessor architectures while designing a generic processing
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layer as a starting point, comparisons with ARM processor have also been made.

Before proceeding to comparing the modSIMD 3-D system architecture with

a generic architecture, it has to be determined if a 2-D implementation is better or

a 3-D implementation is beter. Thus, the first comparisons are done between a 3-D

system implementation and a 2-D system implementation. Both the 2-D system

and the 3-D systems used the same modSIMD architecture to maintain similarity

in the processing architecture for the comparisons.

5.3 Comparison of 2-D vs 3-D modSIMD for image applications

Image applications as noted earlier in the thesis are the most common applications.

In this section, the advantages of 2-D implementation of an architecture to a 3-D

implementation of an architecture taking image applications (edge detection) as an

example is studied. The modSIMD architecture is used in two configurations - one

a 2-D implementation, where the photosensor array is assumed to be on the same

die, alongside with the processing architecture. And in the second configuration a

3-D system architecture is assumed.

Figure 5.1: modSIMD 2D System Architecture
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The 2-D structure is shown in Figure 5.1. The sensor array is connected to 10

processing units in the modSIMD architecture. The data is fed to the processing

elements with a bus - 26 bits wide, 10 bits for the address and 16 bits of data. An

ADC converts the signal from the sensor and digitizes it and feeds it to the processor.

Every processing element decodes the address and the identified processing element

picks up the data.

The 3-D structure as shown in Figure 5.2 reads data from all the sensors at

once in a block. Each processing element is also assumed to have an ADC.

Figure 5.2: modSIMD 3D System Architecture

An edge detection algorithm (Sobel edge detection) is discussed in section

5.6.1. This algorithm was simulated on the 2-D architecture and the 3-D architec-

ture. A flash ADC as discussed in [20] was assumed. It is easy to compare as the

technology in the processor design and the ADC is the same 0.25µm technology.

Each edge detection program needs 10 instructions per pixel of processing

(Section 5.6.1 and Appendix A). Each instruction works on 10 data items at a

time, hence each instruction performs 10 operations. For 100 pixels, the number

of operations is 1000. Also, the analog to digital conversion needs to be done only

once for 100 sensors in the array. Once the digital data is avaliable, it can be stored

and moved in the processing layer using other instructions if necessary. Thus the
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number of instructions required to process an edge detection program is 100.

Number of pixels in design: 10 X 10 = 100

Time for processing one sample in ADC:

tADC = 2.17 ns [20]

Area for each ADC:

AADC = 0.191 mm2 [20]

Number of samples to be processed by ADC:

stotal = 100

Design Analyzer Estimates:

Time for processing one instruction in a 3-D system:

t3−D = 1.4 ns

Area for the 3-D processing layer:

A3−D,proc = 1.22 mm2

Time for processing one instruction in a 2-D system:

t2−D = 1.57 ns

Area for the 2-D processing layer:

A2−D,proc = 2.213 mm2
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For a 3-D system, 10 ADCs covert the sensory information (from

100 sensors)

Number of read instructions:

nRead3−D = 10 (1 read operation per ADC)

Time for 10 ADC conversions:

tADC,3−D = tADC * nRead3−D = 21.7 ns. (10 ADCs, processing 10 samples)

Time for 100 instructions:

t3−D,100 = t3−D * 100 = 140 ns

(Since each instruction is excuted in 10 PEs at a time, the number of instructions

to be executed is only 100)

Time for one edge detected image in a 3-D system:

t3−D,total = tADC,3−D + t3−D,100 = 161.7 ns

Area for the 3-D system:

A3−D,system = A2−D,proc + (AADC * 10) = 3.132 mm2

Area of the sensing array: ASA = A3−D,system = 3.132 mm2

For a 2-D system, a single ADC converts all the sensory information

(from 100 sensors)

Number of read instructions:
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nRead2−D = 100

Time for 100 ADC conversions:

tADC,2−D = tADC * nRead2−D = 217 ns (single ADC)

Time for 100 instructions:

t2−D,100 = t2−D * 100 = 157 ns

Time for one edge detected image in a 2-D system:

t2−D,total = t2−D,ADC + t2−D,100 = 374 ns

Area for the 2-D system A2−D,system = Area of sensor array + Area of processing

layer + Area of an ADC

= ASA + A2−D,proc + AADC

= 3.132 mm2 + 2.213 mm2 + 0.191 mm2

A2−D,system = 5.536 mm2

Thus the area for a 2-D system comes to 5.536 mm2. The time for the read

operations is covered in the time to convert the analog signals to digital signals.

Table 5.2 provides the results comparing a 2-D system with a single ADC

and a 3-D system with ten ADCs. The area, time and power were estimated by the

Synopsys Design Analyzer tool. The systems were synthesized in 0.25µm technology.
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2-D system (single ADC) 3-D system
Area (mm2) 5.536 3.132
Power (mW) 202.1 270.9
Time taken for one edge detected image (ns) 374 161.7
Number of ADCs 1 10
Number of PEs 10 10

Table 5.2: Comparisons between 2-D architecture (single ADC) and 3-D architecture

5.3.1 Discussion on 2-D system architecture (single ADC) and 3-D system archi-

tecture

As the results shown in Table 5.2 indicate, there is an advantage of going to a 3-D

system. Though the power dissipation is higher than the 2-D architecture, the 3-D

system can exploit speed and parallelism. Also the fill factor, in this thesis defined

as the photosensor area plus the sensor circuitry area compared to the total area is

better for a 3-D system as the processing layer in a 3-D system is below the sensing

area. The fill factor as defined above for a 2-D system is 56%.

Fill factor = sensingarea

totalarea
* 100

= ASA

A2−D,system
* 100

Therefore, fill factor = 56%

The bottleneck in the 2-D system happens to be the ADC. A single ADC

converts the analog signals from each sensor and feeds the bus. To output an edge

detected image as a 3-D architecture (in 161.7 ns), the processing takes 157 ns, so

the ADC need to process 100 samples in 0.047 ns.

Time taken by a 3-D system = t3−D,total = 161.7 ns
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Time taken for 100 instructions in a 2-D system = t2−D,100 = 157 ns

Time left for analog to digital conversion of 100 samples: t(3−D)−(2−D) = 4.7 ns

Worst delay of the ADC required: tADCreqd =
t(3−D)−(2−D)

stotal
= 0.047 ns

Number of read instructions required in a 2-D system = nRead2−D =100

Time required for the read instructions: t2−D,read,100 = t2−D * nRead2−D = 157 ns

Minimum total time, in which such a 2-D system can do an edge detection: t2−D,min

= t2−D,read,100 + t2−D,100 = 314 ns

t2−D,min > t3−D,total. The 3-D system is better than a 2-D single ADC system.

The 3-D system implemented exploits the advantages of 3-D integration. The data

from 10 sensors can be read at one time, parallely. Each sensor data is then converted

in one ADC (10 ADCs in total) and then processed in 10 processing elements in

parallel. In the 2-D system with a single ADC, the time for the data to be read by

the processing elements is the bottleneck.

The following subsection covers another possible scenario - row parallel ADCs

for a 2-D structure and compares the simulation results with a 3-D system archic-

tecture as shown in Figure 5.2.

5.3.2 An ADC per row in 2-D system architecture

A column of ADCs converts analog signals row wise and feed the processing ele-

ments as shown in Figure 5.3 and the results are compared in Table 5.4

The calculations for the 3-D system remain the same as described earlier. This
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Figure 5.3: modSIMD 2D System Architecture with an ADC column

modified 2-D system architecture implementation, addresses the concern of the time

required to read the data (by the PEs). A row-wise ADCs are included. So for a 10

X 10 sensor array, a column of 10 ADCs is placed and they directly feed the data

into different processing elements as shown in Figure 5.3. The calculations for the

same are as follows:

For a modified 2-D system, an ADC per row converts the sensory

information (from a 10 X 10 sensor array).

Number of read instructions:

nRead2−D,10ADC = 10

Time for 100 ADC conversions:

t2D,10ADC = tADC * nRead2−D,10ADC = 21.7 ns (10 ADCs)

Time for 100 instructions:

t2−D,10ADC,proc = t2−D * 100 = 157 ns (for edge detection)

Time for one edge detected image in a 2-D system:

t2−D,10ADC,system = t2−D,10ADC + t2−D,10ADC,proc = 178.7 ns
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Area for the 2-D system:

A2−D,10ADC,system = Area of sensor array + Area of processing layer + Area of 10

ADCs

= ASA + A2−D + (AADC * 10) = 3.132 mm2+ 2.213 mm2 + 1.91 mm2

= 7.036 mm2

Thus the area for a 2-D system comes to 7.036 mm2

2-D system 3-D system
Area (mm2) 7.036 3.132
Power (mW) 274.1 270.9
Time taken for one edge detected image (ns) 178.7 161.7
Number of ADCs 10 10
Number of PEs 10 10

Table 5.3: Comparisons between modified 2-D architecture (an ADC per row) and
3-D architecture

As the results indicate, the performance of the modified 2-D system architec-

ture with an ADC is per row is closer to the 3-D architecture. The distinguishing

factor is the fill factor, which in the case of a modified 2-D architecture with a col-

umn of ADCs falls below 50%. The heat dissipated by such a system is closer to

the 3-D system. Based on the fill factor, 3-D architecture is better than the 2-D

architecture.

Fill factor = sensingarea

totalarea
* 100

= ASA

A2−D,10ADC,system
* 100
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Therefore, fill factor for a 2-D system with 10 ADCs = 44.51%

The fill factor for a 3-D system depends on the area occupied by the 10 vertical

interconnects. In the design implemented, only 10 vertical interconnects are needed

and the rest of the sensing area is used for the sensor arrays.

5.3.3 Conclusions from 2-D implementations and 3-D implementation

Two different 2-D system implementations were compared to the 3-D implementa-

tion. In both the cases, the 3-D system implementation is determined to be better

than any of the 2-D implementation. The 3-D system exploits the availability of

data at once and also utilizes the area of the top sensing layer for sensing. Thus the

fill factor in the 3-D system is greater than any of the 2-D systems discussed. In the

3-D system, only 10 vertical interconnects to transfer the data are required. The

analog to digital conversion and the processing happens in a layer below the sensing

layer. The power dissipation in a 3-D system, is more than a single ADC 2-D system

but is similar to 10 ADC 2-D system. The area in a 3-D system is optimally used

for processing needs as well as sensing needs. The 3-D system also happens to be

faster than any of the 2-D systems.

5.4 Comparison with LARS II

LARS II or Local autoadaptiver sensor is an imaging chip used in automotive ap-

plications. It has 368 X 256 pixels [14]. modSIMD architecture was scaled up to
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cover as many pixels and the following results were obtained (Fig 5.4). modSIMD

estimates from Design Analyzer and LARS II numbers from [14].

Figure 5.4: Comparing LARS II and modSIMD

From Figure 5.4, it is observed that the area of modSIMD is larger than LARS

II and the power consumption (of modSIMD) is much higher than LARS II, as was

expected. LARS II imagers compare the pixel values of the adjoining pixels and

adjust the value of the center pixel to obtain an image.

5.5 Comparison with ARM Processor

An ARM processor is a low end RISC microprocessor [23]. The RTL code for the

RISC processor was obtained from University of Texas at Austin. The ARM proces-

sor is a 32 bit instruction, 32 bit data pipelined RISC processor. The multiplier unit

in the ARM was disabled. Figure 5.5 shows the configuration in which the ARM

processor was simulated to obtain the results.
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Figure 5.5: ARM and Sensor Array

The ARM processor was also synthesized in the 0.25µm technology. The

comparison are made to a modSIMD(10) - the archtecture with 10 PEs.

modSIMD processor ARM processor system
Area (mm2) 1.22 2.02
Power (mW) 190 129
Time taken for 10 additions (ns) 3.35 11.7
Time taken for 10 comparisons (A¿B)(ns) 3.35 10.2

Table 5.4: Comparisons between modSIMD(10) and ARM processors

As shown in Table 5.4, the modSIMD processor dissipates 50% more heat than

an ARM processor. The modSIMD processor performs a single operation on 10 data

points as opposed to the ARM processor which operates only on one data point at

a time. This is seen clearly in the comparison to do 10 additions or 10 comparisons.

5.6 Application 1: Same sensor in TFSAs: Image convolutions and

the Sobel Edge Detector

Image processing algorithms are necessary not just for photosensors but also for

a variety of sensors associated with the various signal domains. Some examples

include

• Optical pressure sensor heads
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• Bacteriorhodopsin-Silicon Photosensor

• Infrared photodetectors

• Optical vapor sensing arrays (Polymer deposited)

One of the basic algorithms in image processing is edge detection. It showcases

how image algorithms work. Moreover many of the algorithms used to process data

from parallel sensors uses techniques like convolutions etc, Sobel Edge Detection

program makes it easy to see the parallels in various techniques.

Convolution is a simple mathematical operation which is fundamental to many

common image processing operators. Convolution provides a way of ‘multiplying

together’ two arrays of numbers, generally of different sizes, but of the same dimen-

sionality, to produce a third array of numbers of the same dimensionality. This can

be used in image processing to implement operators whose output pixel values are

simple linear combinations of certain input pixel values.

In an image processing context, one of the input arrays is normally just a

greylevel image. The second array is usually much smaller, and is also two dimen-

sional (although it may be just a single pixel thick), and is known as the kernel.

The convolution is performed by sliding the kernel over the image, generally

starting at the top left corner, so as to move the kernel through all the positions

where the kernel fits entirely within the boundaries of the image. Each kernel

position corresponds to a single output pixel, the value of which is calculated by

multiplying together the kernel value and the underlying image pixel value for each

of the cells in the kernel, and then adding all these numbers together. Convolution

63



can be used to implement many different operators, particularly spatial filters and

feature detectors.

5.6.1 Sobel Edge Detection

The Sobel operator performs a 2-D spatial gradient measurement on an image and

so emphasizes regions of high spatial gradient that correspond to edges. It consists

of two kernels as described below.

−1 0 +1
−2 0 +2
−1 0 +1

Table 5.5: Gx

+1 +2 +1
0 0 0
−1 −2 −1

Table 5.6: Gy

5.6.2 Psuedo code for Edge Detector

Case 1: 10 PEs modSIMD

For i = 1:10

GetData(adjoining elements);

DoEdgeDetection(i);

End //end for loop

The for loop goes from 1 to 10 for each processing element in the 10X10 pixel

array. The code for edge detection (the routine DoEdgeDetection) is provided in

Appendix A.
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Case 2: ARM Processor

For i = 1:100

GetData(adjoining elements);

DoEdgeDetection(i);

End //end for loop

The for loop has to go from element 1 to 100 for a 10X10 pixel array, for an

ARM processor. In a same sensors in the TFSA case, where the same operations are

executed on all the data points, the modSIMD processor exploits the SIMD mode

of operation, thus giving the necessary speed up.

5.7 Application 2: Different sensors in the sensor array: The chemi-

cal sensor array

As opposed to arrays of same detectors, chemical arrays of many detectors allow

us to do multiple checks on a given reading. It would be desirable to provide some

cross checking in the sensory array itself. This in itself represents a totally different

computational challenge. These hybrid arrays of sensors is not very uncommon.

A single processing element based design would be considerably slow. A 100

processing element processor, wouldnt necessarily be fast.

Also the processor needs to implement some sophisticated signal processing

tools available. Such tools include correlated sampling approaches, repeated tests

for a given analyte, cross checking, etc.

A simple example. Suppose Analyte A and Analyte B react similarly to sen-
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sor 1. And Analyte A reacts to sensor 2 in the sensor array but Analyte B doesnt

respond to sensor 2.

PE ID = 1111

GatherData();

PE ID = 0010;

ProcessData(address0);

StoreData(address1);

ProcessData(address2);

StoreData(address3);

CompareData(address1, address3);

End;

’PE ID 0001’(processing element attached to ’sensor 1’) narrows the chemi-

cals to either ’Analyte A’ or ’Analyte B’. ’PE ID 0010’ can now determine if the

measurand is ’Analyte A’ or ’Analyte B’. Thus, being able to randomly address the

processing elements, aids biochemical, chemical and gas sensor arrays.

Except for the GatherData part, both the ARM and the modSIMD(10) take

similar number of cycles to execute the rest of the code. Since the modSIMD(10)

acquires data for all the sensors at once and also since the PEs acquire data for their

nearest neighbors, it is faster than ARM processor.
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5.8 Drawbacks and Future Work

The proposed architecture dissipates 50% more heat than an ARM processor. The

speed of operations comes from exploiting the 3-D integration, all the data from sen-

sor arrays is available at once and performing operations in parallel on them, which

was intended to be exploited. Moreover 32-bit processing might not be required (in

the ARM case) and the savings in area could be utilized as shown in the modSIMD

architecture.

Pipelining can be added to the architecture. Data from 10 sensors is processed

in one PE, as the data is being read, the processor element can start processing the

data it has already recieved.

Read-out mechanism in the proposed architecture is serial. A column-wise or

row-wise or vertical read-out mechanism can be envisioned. For a column-wise or

row-wise read out, the PEs can be organized in an appropriate way. This leads to the

possibility of more number of pins on the chip. For a vertical read-out mechanism,

the biggest block could be the area required for the vertical interconnect.

A floating point unit can be added to the architecture, to make it a more

powerful processing tool.

5.8.1 Future Work - Heat Chip

The layout of a heat chip designed by Zeynep Dilli (graduate student, ECE Depart-

ment, University of Maryland, College Park) is shown in Figure 5.6. The chip was

manufactured in Mosis. Using an array of diodes (16 X 16 array of diodes) and
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resistors, various parts of the chip are heated in intervals of 100 ms. The diodes

carry different currents in the diode array and thus heat up the chip differently.

Figure 5.6: Layout of a Heat Chip, by Zeynep Dilli

The heating pattern can be seen in Figure 5.7.

modSIMD processor with heat sensors as the sensor array can be employed

to determine the heat arrays. modSIMD architecture with appropriate TFSA can

be used to sense appropriate microscopic or even smaller physical changes, thus

increasing the understanding of materials greatly. Applications of these include

not only heat changes but also microscopic pressure changes, microscopic structural

faults and in identifying very low concentration chemicals in a small area.
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Figure 5.7: Heating Pattern Across the Chip

5.9 Conclusions

As shown earlier, the 3-D architecture has more advantages than the 2-D architec-

ture. The 3-D architecture dissipates more power than a 2-D architecture, but is

faster and occupies lesser area. The 3-D architecture for thin film sensors can be

used for a variety of physical signals. Many sensor arrays use image processing tools

to process data into information as shown in Table 2.3. Thus a processing layer,

as proposed and implemented in this thesis, is a valuable addition. The modSIMD

architecture not only exploits the advantage of SIMD mode on sensor arrays which

can use SIMD type processing but it also works on dissimilar sensor arrays.

The processor for image processing or any other sensors on top can be designed
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independently in the architecture presented. The thin-films can be developed and

deposited on the proposed processor. From the case studies of edge detection and

chemical sensors, a 10 processing element processor turns out to be more versatile.

It is also a cost effective in silicon area.

Figure 5.8: 3-D TFSA on modSIMD

Figure 5.8 gives the future view of Thin Film Sensor Arrays on IC. The pro-

posed architecture can handle a variety of thin film sensor arrays on the same

processing layer. By appropriately addressing all the processing elements, a proces-

sor design to process many thin film layers photodetectors, magnetoresistance sen-

sors, biochemical sensors, gas sensors or thermal sensors a 3-D integrated thin film

sensor arrays on IC (processor) can be built. Such a device can find application in

wide ranging fields - be it astronomical exploration or war zone or in a wind tunnel.

3-D integration of devices provides an exciting new field of research as multi-

core architectures are explored and lesser power dissipation is sought. Off chip mem-

ories increase power dissipation and with multicore architectures, either in SIMD or

MIMD, there will be a lot of need for data, data caches, instructions to be fed to
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various cores. Thus future direction of reducing power dissipation may well might

be 3-D integration.
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Appendix A

ALU Operations and Code for Edge Detection

A.1 ALU Operations

The following is a list of ALU operations in the modSIMD processor.

‘OP ADD: Result = Oprnd A + Oprnd B;

Adds the operands A and B and stores in result.

‘OP A, ‘OP Ap, ‘OP App: Result = Oprnd A;

Copies operand A into the result.

‘OP SUB: Result = Oprnd A - Oprnd B; Subtracts operand B from operand

A and puts into result.

‘OP LEFT SHIFT: Result = Oprnd A << 1;

Bit wise left shifts operand A, useful in division by 2.

‘OP RIGHT SHIFT: Result = Oprnd A >> 1;

Bit wise right shifts operand A, useful for multiplication by 2.

‘OP ALL ZEROS: Result = 16’b0000000000000000;

Fills in the result with all zeros.
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‘OP A AND B: Result = Oprnd A & Oprnd B;

Bit wise ands operand A and operand B.

‘OP notA AND B: Result = Oprnd A & Oprnd B; And

‘OP B: Result = Oprnd B;

‘OP notA AND notB: Result = Oprnd A & Oprnd B;

‘OP A XNOR B: Result = (Oprnd A Ôprnd B); ‘OP notA: Result = Oprnd A;

‘OP notA OR B: Result = Oprnd A | Oprnd B;

‘OP A AND notB: Result = Oprnd A & Oprnd B;

‘OP A XOR B: Result = Oprnd A Ôprnd B;

‘OP A OR B: Result = Oprnd A | Oprnd B;

‘OP notB: Result = Oprnd B;

‘OP A OR notB: Result = Oprnd A | Oprnd B;

‘OP A NAND B: Result = (Oprnd A & Oprnd B);

‘OP ALL ONES: Result = 16’b1111111111111111; Fills in the result with all

ones.

A.2 Code for Edge Detection

The following routine is executed in parallel over different PEs.

The code should be read as:

Operation, A, C, B

Where operation is the ALU Operation, A is the address of operand A, C is

the destination address and B is the address of operand B.
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OP RIGHT SHIFT 000010, 100010

OP RIGHT SHIFT 000100, 100100

OP RIGHT SHIFT 001000, 101000

OP RIGHT SHIFT 000110, 100110

OP ADD 000001, 100001, 000011

OP ADD 100011, 100011, 100010

OP ADD 000111, 100111, 001001

OP ADD 100111, 101001, 101000

OP SUB 100010, 100101, 101000
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Appendix B

Other aspects of 3-D integrations

This appendix highlights the research directions in Analog to digital conversion

(ADC), vertical interconnects, etc aspects of 3-D integration. It is hoped that this

will complete the reference list for a 3-D integrated TFSA on silicon solution.

B.1 Analog to Digital Conversion

The electrical signals generated from conversion of the above signal domains to

electrical are processed digitaly. This requires building ADC circuitry. Almost all

the sensor arrays discussed above have used the Σ∆ modulator. An asynchronous

Σ∆ modulator is a better choice as the number of analog components that must be

matched for reducing fixed pattern noise is minimized [8].

B.2 Vertical integration of thin films on silicon

A variety of thin films can be deposited on silicon substrate. Vertical interconnects

will connect the processing core to the sensor arrays. Vertical integration has been
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reported in literature (Figure B.1).

Figure B.1: 3-dimensional photodetector

Figure B.2 shows vertical integration of a photosensing thin film over a process-

ing substrate. Electrical through-wafer interconnects (ETWI) connect devices be-

tween both sides of a substrate are critical components for microelectromechanical

systems (MEMS) and integrated circuits (IC), as they enable three-dimensional (3-

D)structures and permit new packaging and integration geometries. For the highest

interconnection density, area interconnections with electrical through-wafer inter-

connects (ETWI), as opposed to peripheral interconnects, are required. An example

of ETWI with piezoresistive cantilever beam arrays is discussed in [24].

Figure 5.2 shows an SEM image of the ETWI from [24].

B.3 Power Dissipation in 3-D processors

3-D via technology provides savings in power for same rates of data transfer (be-

tween sensors and processor(s)), higher data transfer rates than comparable 2-D

processing systems. Primarily, the 3-D vias have parasitic capacitences of the order

of femtofarads thus greatly reducing the power consumption. A 3-D imager and a
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Figure B.2: Through Wafer Interconnect

comparable 2-D imager system are compared in [8].

B.4 Data Transfer Strategies

Data transfer has been seen as the bottleneck for many applications. Data transfer

from memory to hard disk specifically. A variety of devices are available. A study

of Serial-ATA architecture is presented in Appendix C.
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Appendix C

The SATA architecture for Data Transfer

Data, digital music, video - all need storage devices. With digital photography, home

video making, digital music, live TV recording and other video games, storage of

data at home has come a long way. With the growing demands of data transfer

from the processor to the storage device, there is a need to understand and improve

the bus speeds and data bandwidth of these devices.

Some storage devices are directly attached to the motherboard of a computer

- hard disk in most computers. Some storage devices are on the network and not

necessarily directly attached to the motherboard of a computer. A variety of data

transfer protocols have been hence developed to transfer data to and from these

storage devices to the processor for processing. In this study, we will discuss the

serially attached ATA devices (SATA devices) as ATA devices are predominantly

used in home computing.

SATA devices are directly attached to the motherboard of a computer. In the

case above, for desktop computing - the devices predominantly in use are the SATA

devices. In the next few pages, we will discuss the working of a SATA device and
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contrast it with the parallel ATA controllers found in most of the desktops these

days.

C.1 SATA Devices

Serial ATA is an evolutionary replacement for the Parallel ATA physical storage

interface. Parallel ATA is the primary internal storage interconnect for the desk-

top, connecting the host system to peripherals such as hard drives, optical drives,

and removable magnetic media devices. Parallel ATA is an extension of the orig-

inal parallel ATA interface introduced in the mid 1980’s and maintains backward

compatibility with all previous versions of this technology. The latest revision of

the Parallel ATA specification supports up to 100Mbyte/sec data transfers. Further

update to the parallel bus architecture provides up to 133Mbytes/sec - was recently

finalized.

Serial ATA is the next generation storage interconnect, designed to replace

parallel ATA technology. Serial ATA is the proactive evolution of the ATA interface

from a parallel bus to a serial bus architecture. This architecture overcomes the elec-

trical constraints that are increasing the difficulty of continued speed enhancements

for the classic parallel ATA bus. Serial ATA will be introduced at 150Mbytes/sec.

Though Serial ATA will not be able to directly interface with legacy Ultra ATA

hardware, it is fully compliant with the ATA protocol and thus is software compat-

ible.
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C.2 Some of the advantages of Serial ATA versus Parallel ATA:

1. Bus design: Parallel ATA Bus Design: The bus design maintains a backward

compatibility with all previous ATA revisions, using the standard 16-bit wide

parallel data bus and 16 control signals across a 40-pin connector. Serial ATA

Bus Design: The bus has just 7 pins. SATA uses a single signal path to

transmit data serially (bit by bit) and a second serial path to return receipt

acknowledgement to the sender. Each of these signals is a 2-wire differen-

tial pair. Control information is transmitted either as short predefined bit

sequences that are distinguishable from data, in packet format, or out-of-band

signaling (control signals sent using on/off signal pulses).

2. Bandwidth Parallel ATA Bandwidth: 100Mbytes/sec Serial ATA Bandwidth:

1500Mbits/sec using 8b/10b encoding, thus effective bandwidth is 150 Mbytes/sec

3. Electronic Design Constraints Optimization of any high-speed digital bus de-

sign in fact requires careful consideration of analog design issues. Undesired

analog effects associated with parallel data busses such as crosstalk, ground

bounce, ringing, and clock skew have become major design constraints.

Parallel ATA: Crosstalk - parallel busses where multiple adjacent lines may

be switching in the same direction at the same time and inject a noise voltage

onto a victim signal. Ground bounce is most problematic when several signals

switch at the same time or when using high-speed drivers

Serial ATA: Serial ATA uses low voltage differential signaling. With this ap-
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proach, each data ”signal” is in fact transmitted over two lines which carry

equal and opposite versions of the signal. The receiver then decodes the signal

based on the differential voltage between these lines. The ”common-mode”

voltage, or the voltage the lines use as a DC reference plus any noise injected

equally into both lines, is rejected at the receiver. This common-mode voltage

may change over time, though the variations above a certain frequency may

be injected into the receiver as noise.

4. Clocking Parallel ATA: the clock or data strobe signal is generated at the

source and sent with the data - this is also referred to as non-interlocked

clocking Serial ATA: The clock is embedded in the data strobe itself.

C.3 Overview of Serial attached ATA devices

• 7-pin connector cable

• Control Registers on device as well as the host

• A copy of registers on host side

• Device is indirectly controlled over SATA bus

The host writes into the control registers and the data transfer begins. To maintain

software compatibility the device registers initiate the transfers. But unlike parallel

ATA devices, the SATA devices don’t have many control lines over which the device

can signal the host. Hence, a copy of the registers on the device is maintained on

the host side too which is updated periodically.
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A SATA controller also handles various functions like the Open Systems In-

terconnection model (for TCP/IP etc).
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