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This thesis presents methods for efficiently evaluating structural queries over

tree-structured data streams. A data stream usually consists of a sequence of items

that arrive in an order determined by the source. An application that uses such data

cannot revisit an earlier item in the stream unless it buffers the item itself. Naive

buffering methods are not practical due to the high throughput and indefinite length

of data streams. Compared with the flat, relational-like data model for data streams

that has received recent attention, processing a tree-structured XML data stream

poses additional challenges, since a data item cannot, in general, be interpreted

without taking structural information into account.

In this thesis, we focus on the evaluation of XPath queries on streaming XML.

As a W3C standard, XPath has become a core XML technology not only as a

standalone query language but also as the foundation of XQuery and XSLT. Features

such as subqueries and reverse axes make XPath a powerful query language but

they also complicate XPath query processing. We present our work on XSQ, a

streaming XPath query engine. Our methods are based on a novel segment-based



evaluation scheme. XSQ uses very little memory and is able to process unbounded

and unsegmented streaming data because it does not build a DOM tree in memory.

It also provides high throughput by only processing the relevant portions of the data

and low response time by returning results as early as possible. XSQ is the first

streaming system to support complex XPath features such as multiple predicates,

closure axes, aggregations, reverse axes, and subqueries.

We also describe our work on XPaSS, an XPath-based publish-subscribe sys-

tem that simultaneously evaluates a large number of XPath queries over XML

streams. Unlike other similar systems that filter pre-segmented documents as results,

XPaSS returns only the precisely delineated data specified by a user query. It uses

a segment-sharing scheme instead of prefix- and suffix-sharing that are commonly

used. In our experiments, XPaSS supports up to one million XPath subscriptions

using a modest PC-class server, with a throughput comparable to that of the simpler

filtering systems.
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Chapter 1

Introduction

This thesis presents our work on XPath evaluation in streaming XML data. We

begin this chapter by describing the characteristics and sources of streaming XML

data. The XPath query language is then briefly introduced using a simple example.

After presenting the challenges faced by an XPath query engine that operates in a

streaming environment, we outline the main contributions of our work. The chapter

ends with a map of the rest of the thesis.

1.1 Streaming XML

The Extensible Markup Language (XML) has become a well-established data

format and an increasing amount of information is becoming available in XML form

[71]. An example XML document that describes the information of two books is

illustrated in Figure 1.1. An element in an XML document is enclosed by its start-

tag and end-tag, e.g., <pub> and </pub> for the pub element. The content of the

element, listed between the start- and end-tag, may contain other nested elements

or plain texts.

The term streaming data is used to describe data items that are available for

reading only once and that are provided in a fixed order determined by the data

source. Applications that use such data cannot seek forward or backward in the

1



stream and cannot revisit a data item seen earlier unless they buffer it on their

own. Examples of data that occur naturally in streaming form include real-time

news feeds, stock market data, surveillance feeds, and data from network monitor-

ing equipments. One reason for some data being available in only streaming form is

that the data may have a limited lifetime of interest to most consumers. For example,

articles on a topical news feed are not likely to retain their value for very long. An-

other reason for such data is that the source of data may lack the resources required

for providing non-streaming access to data. For example, a network router that

provides real-time packet counts, error reports, and security violations is typically

unable to fulfill the processing or storage requirements of providing non-streaming

(so-called random) access to such data. Similar concerns may lead servers hosting

large files to offer only streaming network access to data even though the data is

available internally in non-streaming form. Finally, since sequential access to data

is typically orders of magnitude faster than random access, it is often beneficial to

use methods for streaming data on non-streaming data as well. In what follows, we

focus on streaming data that is in XML form and use the term streaming XML

to refer to XML data in all of the above scenarios.

Before further discussion, we briefly introduce the data model of XML here.

More details can be found in Chapter 3.

XML data is usually modeled as an edge-labeled or node-labeled tree [1]. In the

commonly used Document Object Model (DOM) [39], an XML document is modeled

as a node-labeled tree. Figure 1.3 depicts the DOM tree of the XML document in

Figure 1.1.
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1.<!– begin document –>

2. <pub>

3. <book id=”1”>

4. <price> 12.00 </price>

5. <title> First </title>

6. <author>A </author>

7. <price type=”discount”> 10.00 </price>

8. </book>

9. <book id=”2”>

10. <price> 14.00 </price>

11. <title> Second </title>

12. <author> A </author>

13. <author> B </author>

14. <price type=”discount”> 12.00 </price>

15. </book>

16. <year> 2002 </year>

17. </pub>

18.<!– end document –>

Figure 1.1: Example XML data

type name attributes

begin DOC

begin pub

begin book (id, ”1”)

begin price

text price (TEXT, ”12”)

end price

begin title

text title (TEXT, ”First”)

end title

begin author

text author (TEXT, ”A”)

end author

begin price (type, ”discount”)

text price (TEXT, ”10.00”)

end price

end book

begin book

. . . . . . . . .

Figure 1.2: Sequence of SAX events
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For streaming XML data, building a DOM tree in memory is not usually

desirable because the data may be unbounded. Further, we may not need all of the

DOM tree to process the given query. Therefore, streaming XML data are better

modeled using the SAX (Simple API of XML) model [53]. For each start- and end-

tag of an element, a SAX-conformant parser generates, respectively, a begin event

and an end event. The begin event of an element comes with an attribute list

that encodes the names and values of attributes associated with the element. Each

chunk of text content enclosed by the start- and end-tag results in the SAX parser

generating a text event.

Essentially, the sequence of the SAX events corresponds to a pre-order traversal

of the DOM tree of the data in which the attribute nodes are combined with their

parents. The SAX events generated by a SAX parser given the data of Figure 1.1

as input are shown in Figure 1.2.

1.2 Streaming XPath Evaluation

There have been a number of recent proposals on query languages for XML

and XML-like data models [2, 27, 13, 22, 21, 10]. Of these proposals, XPath [21]

and XQuery [10] have emerged as the standard recommendations that are likely to

receive broad support. In this thesis, we focus on XPath. However, since XPath

forms an important core of XQuery, the methods we describe are useful not only for

XPath engines, but also for XQuery engines.

An XPath query consists a sequence of location steps, also called a loca-
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type

discount

10.00

titleid price pricetitle author price author authorid price

pub

book book year

2002

1 12.00 First A 2 14.00 Second A B type

discount

12.00

root

Figure 1.3: The DOM tree for the data in Figure 1.1

tion path, and an output expression. For example, the location path of the query

//pub[year > 2000]/book[price < 10]/title/text() consists of three location

steps: //pub[year>2000], /book[price<10], and /title. Each step contains an

axis, a node test, and an optional predicate. For example, in the first step, “//” is

the axis that denotes descendant-or-self relation, pub is the node test, and [year

> 2000] is the predicate. This location path matches the title of a book if it is

published later than year 2000 and its price is less than 10. The output expression,

text(), indicates that the result consists of the text contents of titles matching the

location path. Further details on XPath appear in Section 3.3.

We may think of the location steps as nested selection operators and the output

expression as a projection operator. Each location step selects a set of XML elements

out of the set selected by its previous step, according to the relation specified by the

axis, the element name specified by the node test, and the conditions specified by the
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predicates. The output expression then determines the parts, or functions, of those

elements that are selected by the last step. While the projection operator in XPath

is simple, the selection operators are fairly complex because they can be connected

by complex navigations in the document tree and permit complex predicates on all

elements that are selected by every step. For example, Figure 1.5 illustrates an

XPath query that uses reverse axes, which allows backward navigation in the DOM

tree, and boolean operators, which allows nested composition of predicates.

XPath is a succinct yet powerful path language that can be used to address

parts of the XML documents. Given the hierarchical nature of XML data, XPath is

the most natural method to retrieve desired data from XML documents. In many

database systems that support XML, XPath is supported either as a standalone

query language such as in the native XML databases [70, 40], or used together with

SQL such as in the XML-extended relational databases [57, 41]. Moreover, it is a

key component of other higher level XML query or transformation languages such as

XQuery and XSLT [44]. These languages usually use XPath to select a subset from

the document tree and apply higher level operations, such as transformation rules

and joins, on the selected subset. As XPath being such an important component of

these database systems and languages, efficient evaluation method of XPath queries

will benefit their performance.
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1.2.1 Join- and Navigation-based XPath Evaluation

Generally speaking, evaluation methods of XPath queries can be categorized

into two main flavors: join-based and navigation-based. The prior usually evaluates

all the steps separately and join the intermediate results later. It can make use

of the index of data, which could be created on th fly or offline, to speed up the

evaluation. The latter usually needs to parse the data, build the document tree,

and navigate through the document tree every time it evaluates a path query. The

navigation could be step-based, in which a location step is always evaluated on the

result set of previous location step, or pattern-based, in which the pattern specified

by the query is matched dynamically during the traversal of the document tree.

The traversal could be mixed as well: pattern-based traversal is used for simpler

pattern or sub-pattern, while complex patterns involves backward traversal usually

need to be evaluated step by step. (We propose a new method in Chapter 7 that

can perform pattern-based traversal even there are reverse axes specified in the path

expression.)

Although join-based methods could be efficient of disk-residing data, it cannot

fit in many scenarios, of which streaming data is an example, since it is expensive

to perform join operations or build index for streaming data on-the-fly. The step-

based navigation method is not suitable for streaming data either since we are only

allowed to traverse the document tree in pre-order only once. In the sequel, we call

the streaming evaluation as the evaluation diagram that has following features:

• Only one sequential pass of the data is required and no seeking-back in the

7



stream is allowed.

• No DOM tree is built in the main memory so that it can process possible

infinite stream.

• The result should be available for the user as early as possible.

• Only the least amount of data are buffered, i.e., the potential results and data

that are required to determine future results.

The first two features are usually mandate because of the nature of the stream-

ing data. The last two features are performance-oriented and may be optional in

cases where latency or memory footprint is not the main consideration.

1.2.2 Streaming Evaluation Scenarios

In may applications that process network-bound XML data, streaming evalua-

tion of XPath queries is required, either because the data are in streaming form in na-

ture, or because of performance considerations. Besides the widely used subscriber-

publisher applications, we describe the applications of streaming XPath evaluation

in the following three scenarios.

Scenario I:Personalized Web Content Delivery

An information broker accepts users’ profiles specified in XPath queries and

retrieves the target data for every user from heterogeneous data sources, such as

news feeds, stock updates, Web pages, or differenced Web pages. Using XPath
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<rss version="2.0" xmlns:dc="http://purl.org/dc/elements/1.1/">

<channel>

<title>XML.com</title>

<link>http://www.xml.com/</link>

<description>

XML.com features a rich mix of information and services for

the XML community.

</description>

<language>en-us</language>

<item>

<title>Normalizing XML, Part 2</title>

<link>http://www.xml.com/pub/a/2002/12/04/normalizing.html</link>

<description>

Will Provost discusses when not to normalize, the scope of

uniqueness and the fourth and fifth normal forms.

</description>

<dc:creator>Will Provost</dc:creator>

<dc:date>2002-12-04</dc:date>

</item>

</channel>

</rss>

Figure 1.4: An example of an RSS2.0 feed
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expressions to specify the profile instead of key words criteria has the benefit of

being able to specify structural queries such as ”only prices for the stocks, not the

merchandises”. Moreover, we can use an XPath query with a predicate to select

”stocks whose price is less than yesterday’s”. Most news feeds used today are in

RSS [62] format and each item inside an RSS feed (an XML document) represents a

news item. An example new feed is shown in Figure 1.2.2. Usually user asks for the

news that are related to certain topics, where we have to retrieve the single item out

of the document, or even only the description element from that news item. For

web pages written in XML (displayed using CSS or XSLT), it is also possible that

user asks only for a part of the page. Since we can retrieve all the wanted nuts and

bolts from the data sources, the broker can synthesize a personalized data digest for

every user, even in a streaming form.

Scenario II:Web Service Requests

In Web service applications, a service request is embedded in a SOAP (Simple

Object Access Protocol) [12] message, which is an ordinary XML document con-

taining the information needed for the call of the requested service such as service

name and parameters. Such information is retrieved from the SOAP message and

used to invoke the requested service. In a server that needs to handle hundreds of

thousands (or even more) of such service requests simultaneously, it is inefficient

to start the service until the whole SOAP message (which could be as large as a

few megabytes) has been received in full and loaded into main memory. If we can
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use a streaming XPath engine to retrieve the parameters from the SOAP message

while it is streaming in, we can start the service as soon as we get the initialization

parameters the service needs. Moreover, those parts are discarded right away, and

no main memory is needed to hold them. It is obvious that such an approach will

lead to smaller response time and lighter service overhead.

Scenario III: Asynchronous JavaScript and XML

In Web applications such as online 3D geographical information systems that

may require large amount data from the server yet small response time, the AJAX

(Asynchronous JavaScript and XML) architecture is often used to provide fast re-

sponse time and flexible user interface. For example, a GIS system that displays

a 10-by-10 map may prefetch the data for a 12-by-12 map with the current focus

region in the center. When the user wants to browse nearby region outside the

current focus, those data are already in the local memory and the user interface

can be updated almost in real-time. In the meanwhile, background script loads new

surrounding data from the server.

An important component in the architecture is the DOM-based XPath eval-

uation subsystem. It allows the application selects from the data prefetched from

the server in XML format. Currently AJAX implementations need to build the

DOM-tree in the main memory and then fetch the desired data. Given a streaming

XPath engine, those data can be read right away when they reach the local machine

even the surrounding data is still in transfer. One of the benefits is shorter start-up
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time for the application. Another benefit is a much smaller memory footprint since

no DOM tree is built.

1.3 Challenges

Although its form looks like the regular expression, XPath is more powerful

than the regular language since it can use arbitrary XPath queries in the predicate

and boolean operators to connect those subqueries. Moreover, XPath provides a set

of thirteen axes that allows the query specify very complex pattern to be matched

with the document tree. Figure 1.5 shows a pattern specified by an XPath query,

which uses the ancestor axis and therefore specifies a DAG (Directed Acyclic Graph)

pattern. Since the predicates could be themselves complex patterns, traditional

pattern matching algorithms can hardly be applied in XPath evaluation. Only

recently did a polynomial algorithm for main-memory XPath evaluation is proposed

in [32].

1.3.1 Querying Instead of Filtering

When the data are presented in streaming form, XPath queries are more diffi-

cult to evaluate. The intrinsic difficulty in streaming evaluation is that the potential

result items may come before the data that are required to determine their member-

ships in the result. Therefore, we have to buffer the potential result items and keep

track of different partial results for different buffer items. Given the complex pattern

used in the predicate and potential multiple matchings between the elements and
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book

price author

root

pub 

yeartitle

text()<11 text()=2002

//

//

text()="A"

Query: //book[not(price<11) and author[text()="A"]

/ancestor::pub[year=2002]]]

/title

Note: 1. Boolean operators are not shown in the pattern.

2. The node with a box denotes the output node whose contents consist the result.

Figure 1.5: The DAG pattern specified by an XPath query

the query (as shown in Section 4.1), efficient management of these information is a

challenge task.

Much of the previous work on processing streaming XML data focuses on

filtering streaming XML documents using restricted XPath expressions [3, 25, 15,

35]. A filtering system returns a document identifier as the result of a query if one

match of the query is found in the document.

There are several important difference between a filtering system and a query-

ing system.

• A filtering system usually needs to assume that the streaming data are seg-

mented into a collection of XML documents since they only return document

identifiers as results. A querying system, in the contrary, may process unbound

13



and unsegmented streams and does not have this assumption.

• A filtering system needs to find one match for each query, and thus does

not need to buffer the potential result whose membership in the final result

cannot be decided according to the current available data. Consider the query

in Figure 1.5, the filtering system needs only to find one such title element

that satisfies the query, while a querying system needs to retrieve all the title

elements that satisfy the query.

• A filtering system does not need to consider the complexities caused by mul-

tiple matchings between an element and the query. (The problem of multiple

matchings is explained in detail in Section 4.1.)

1.3.2 Recursive Subqueries

Recursive subqueries being used as predicates, which means we can use several

XPath queries connected by boolean operators as the predicate, further increases

the complexities of the streaming XPath evaluation. Subqueries in predicates have

different semantics than when it is used as a stand-alone query, since one instance

that satisfy the subquery would evaluate the subquery to true while we have to

return all the instances that match the stand-alone query. Only recently are the fil-

tering systems able to process predicates in the queries [35, 25], even if the subquery

can be treated the same as the stand-alone queries in the filtering setting (since both

are essentially boolean queries).

Besides the different semantics, the not() function that can be used in the
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predicates allows user to express universal quantification semantics in the predi-

cate, while the predicate is usually using existential quantification semantics. In

query used in Figure 1.5, if one of the book’s price is less than 11, the predicate

not(price<11) evaluates to false, i.e., if and only all the price children are larger

than or equal to 11 does this predicate evaluate to true. Such universal semantics

are more difficult to evaluate in streaming environment since we may need to test

all the elements in an element set.

To address the complexities caused by the subqueries, we introduce in Chap-

ter 6 a new method that marks the useful elements in the incoming streaming XML

data with partial evaluation results. The process is guided by the pattern tree of the

XPath query, and the potential result items and their partial predicate results are

efficiently maintained. Unlike the alternating automata used in [35], which always

wait until the end of an element to determine the result of its predicate, our method

always keeps the most current predicate result for every buffer item, which means

that the result can be sent to the user as early as they are available and there is not

redundant content in the buffer at any time.

1.3.3 Reverse Axes

Reverse axes, such as parent and ancestor, also pose difficulties in streaming

XPath evaluation since they are in nature requiring backward traverse in the docu-

ment tree. Without reverse axes, an XPath query essentially specifies a tree pattern;

with reverse axes in the query, an XPath query could specify a DAG pattern as we
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show in Figure 1.5, which is more difficult to match in the document tree in the

streaming evaluation.

To the best of our knowledge, the only streaming system that allows use reverse

axes is XAOS [7], which essentially filters out the related elements in the stream

that might be used in the evaluation and postpones the evaluation until the end of

the document. Nonetheless, it does not handle the not() functions, and therefore

does not need to handle the universal semantics.

We propose in Chapter 7 a new method that supports the reverse axes in

the query by introducing a dynamic dependency graph, which keeps track of the

relation between the potential result items and the undecided predicates. Whenever

a pending result is evaluated, the dependency graph is updated and the new result

items, if available, are sent to output.

To the best of our knowledge, XSQ is the first system that allows reverse

axes in the query and evaluates the query in a true streaming manner, i.e., the

evaluation is not postponed to the end of the stream, the result is always returned

to the user as early as possible, and only least amount of data is buffered. As the

experimental study in Section 7.4 shows, XSQ’s performance is not only superior

to most of currently publicly available XPath processor, but also not affected by

the number of reverse axes in the query as the other systems since they may need

multiple passes of the data for queries with reverse axes.
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1.3.4 Multiple Query Evaluation

To the best of our knowledge, filtering systems today always assume that the

streaming data are segmented into chunks beforehand. In order to query multiple

queries over unlimited stream instead of filtering the pre-segmented documents,

more complex mechanisms are required other than those used in filtering systems.

Consider a simple XPath query //A[B]//C. When it is used in a filtering

system, the engine tests for every document the existence of one C element as a

descendant of an A element who has a B child. While in a querying system, the

engine returns for this query all such C elements. In the case some C descendants of

an A element arrives earlier than the first B child of A, we need to buffer all those

C descendants. Previous work has explored similar challenges in evaluating single

XPath queries at a time.

The need to evaluate a large number of queries simultaneously makes for an

even more challenging task. First, we need to identify the common features among

all the queries that can be executed together and share those results for different

queries. Previous work on filtering system addresses this problem by sharing com-

mon prefixed or suffixes among filters. However, when XPath expressions are used

as queries, the same prefix of suffix may stand for different semantics. For exam-

ple, in a filtering system, XPath expression //A//B[//C] and //A[//B//C] always

return the same set of documents and share the prefix //A//B//C. However, in a

querying system, the first query returns a set of B elements while the second re-

turns a set of A elements. Therefore, extra mechanisms are required to handle these
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differences. Second, we need new mechanisms to address the buffer operations for

multiple queries, which are not at all required in filtering systems but essentially for

querying systems. It is obvious that creating a single buffer for every query will not

scale.

1.3.5 More Challenges

We have developed the XSQ system, which has been the first streaming system

that supports the above features in XPath queries, and the XPaSS system, which

supports a large number of XPath queries simultaneously, there are still challenging

tasks in streaming XPath evaluation. For example, a schema-aware runtime opti-

mizer may further improve the performance of the systems. It is also important and

challenging to support more complex query languages such as XQuery.

1.4 Contributions

In Chapter 4, 5, 6, and 7, we present our methods that evaluates single queries

over XML streams. Figure 1.6 shows the screenshot of the XSQ system that is

displaying the structure of the runtime engine. In Chapter 8, we present our XPath

publisher-subscriber system that returns the results instead of document IDs. As

the performance study in Section 4.4, 6.5, 7.4, and 8.4 shows, the new evaluation

diagram is efficient in both CPU and memory usage. Moreover, they are the first set

of methods that addresses the buffering problem in streaming XPath evaluation (not

filtering) and supports the closures, multiple predicates, aggregations, subqueries,

18



Figure 1.6: Screenshot of XSQ displaying a HPDT

reverse axes for XPath queries.

The major contributions of the XSQ and XPaSS systems may be summarized

as follows:

• To the best of our knowledge, our method for evaluating XPath queries over

streaming data is the first one that handles closures, aggregations, multiple

predicates, subqueries, and reverse axes (together). These features, especially

in conjunction, pose significant implementation challenges.

• Our methods have a very clean design. The system is easy to understand, im-

plement, and expand to more complex queries. Further, the methods provide

a clean separation between high level design and lower-level implementation
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techniques.

• To the best of our knowledge, the XPaSS system is the first pub-sub system

that supports XPath queries instead of filters. It shares the common segments

among queries instead of the prefixes or suffixes, which are used by current

filtering systems. The experiments show that the system has small processing

time, uses only moderate amount of memory, and scales well to a million

subscriptions.

• Our methods only buffer the least amount of the data that has to be buffered

by any streaming system. They also guarantee that the results are returned to

the user as early as possible. These features are important in a lot of streaming

system since they usually lead to smaller response time and system overhead.

• We present a detailed experimental study of XSQ, XPaSS, and almost all the

related systems that are publicly available in Section 4.4, 6.5, 7.4, and 8.4. In

addition to providing a comprehensive evaluation of the methods we propose,

our study also illustrates the costs and benefits of different XPath features and

implementation trade-offs as embodied by different systems.

• All the methods described in this proposal are fully implemented in the XSQ

system and the XPaSS system, which has been publicly released under the

GNU GPL license [59, 31]. The Java-based implementation should work on

any platform for which a Java virtual machine is available. In addition to

serving as a testbed for further work on this topic, our system should be useful
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to anyone building systems for languages that include XPath (e.g., XQuery,

XSLT).

The rest of the thesis is organized as follows. Chapter 2 provides a compre-

hensive overview of the recent research work in related fields. Chapter 3 explains

the XML data models and more details about XPath. In Chapter 4, we present

the first version of XSQ system that handles closures, predicates, and aggregations.

In Chapter 5, we describe a segment-based streaming evaluation scheme, which is

used in the later chapters. In Chapter 6, we introduce the methods that handle

complex subqueries. Chapter 7 introduces the methods that handle reverse axes.

The XPaSS system is introduced in Chapter 8. We then propose some future work

in the area of streaming XML processing in Chapter 9. We conclude the work in

Chapter 10.
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Chapter 2

Related Work

The research of streaming XPath evaluation is connected with many related

research areas. In this chapter, we first introduce a very similar topic of XPath

filtering, in which we treat XPath queries as filters and use them to filter out the

documents (instead of elements) that match the query from the stream. We then

describe other available querying systems for XML streams, which are similar to

ours, but use different query languages or pose different restrictions on the query

language. We also compare our systems with them experimentally in Section 4.4,

6.5, 7.4, and 8.4. Other related work are then described: general XML query and

transformation, theoretical results on XML query languages, and pattern matching.

They are not in a streaming setting but should be able to provide some insights.

Last, we introduce several general streaming management systems and streaming

algorithms. Although not designed for XML data, some ideas in those areas should

be useful in XML streaming processing as well.

2.1 XPath filtering

Many recent research on streaming XPath processing focus on filtering ap-

plications [3, 33, 25, 23, 47, 15, 35]. This problem has been referred to variously

as selective dissemination of information (SDI), publisher-subscriber (pub-sub), and
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query labeling. These filtering systems use XPath expressions as filters and focus

on grouping large number of XPath filters to share the computation on common

prefixes or suffixes. Unlike our querying system, the filtering systems do not have

to handle the buffering problems since one item in the final result set satisfies the

filter expression and the whole document (usually as a unique document identifier)

is returned to the user.

Briefly, filtering systems assume that the input is a stream of segmented doc-

uments that are to be matched with a given set of queries. A query is said to match

a document if evaluating the query on the document returns a non-empty result

set. Since there is no output other than the identifiers of the documents matching

each query, methods for filtering are simpler than those needed for querying. We

may think of methods for filtering as starting points for the exploration of more

general methods for querying. Filtering systems typically focus on supporting high

throughput for a large number of queries using only a moderate amount of main

memory.

The XFilter system [3] focuses on the problem of evaluating a large number of

XPath filter expressions over every document in a stream of documents. Since the

filter expressions are likely to have many common components, the automata are

combined and indexed to yield an efficient filtering method. The YFilter system [25,

23] addresses a similar problem and uses a combined single automaton to evaluate

all submitted filter expressions. It uses a run-time stack to track all the possible

states for all the queries. Instead of the index used by XFilter, YFilter uses query

identifiers in the states to denote the queries corresponding to the results. The
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method described in [15] uses a data structure called XTrie instead of a flat table

to index XPath queries based on common substrings among them.

Automaton-based methods spend a significant amount of time matching tran-

sitions to incoming events; as a result, deterministic automata typically yield higher

throughput than their nondeterministic counterparts. However, as usual, the de-

terministic version of an automaton may require a large amount of memory. This

problem is addressed in [33] by using a lazy deterministic finite state automaton.

The main idea is to first build a naive finite-state automaton directly from the XPath

expression. At run-time, the system adds new states as needed on the fly. Since it

does not need to use a stack to keep track of all possible states, its throughput is

improved. Although the deterministic automaton requires more memory than its

nondeterministic counterparts, an upper bound on the size of DFA is provided.

The problem of query labeling is studied in [47]. The authors propose a re-

quirements index as a dual to the traditional data index. A framework is provided

to organize the index efficiently and to label the nodes in streaming XML documents

with all the matched requirements in the index. The problem of validating XML

streams using pushdown automata has been studied in [64]. Briefly, an XML docu-

ment is said to be valid with respect to a given Document Type Definition (DTD)

[71] if the document structure obeys the grammar specified in the DTD. This prob-

lem can also be considered as a filtering problem because the pushdown automaton

can filter the documents that satisfy the DTD.

A filtering system based on alternating automata is proposed in [35]. It takes

a bottom-up tree pattern matching algorithm to match the patterns specified by
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XPath queries with the XML streams, which is efficient in the filtering systems, but

not easy to be applied in the querying system that needs to return the required

portion of the document. For example, XPush machine always matches an element

with the node test in the last location step if its tag matches the node test, even if

it does not match the pattern specified by the query.

The above filtering methods group queries using either common prefixes or

common suffixes. In contrast, our method groups queries using common XPath

segments (defined in Chapter 3), allowing us to better exploit common subexpres-

sions across queries. (Our method always takes advantage of common prefixes and

suffixes.) Further, in a filtering system, an XPath query is always boolean, meaning

filter A[B]/C returns the same set of documents as filter A[B and C]. We only need

to find one A element with a C child and a B child. In contrast, in a querying system

that evaluates the first query, we need to, for the first query, keep all the C children

of an A element before we see a B child of A and, for the second query, keep all the A

elements until either we see its end tag or we see a B child and a C child. When the

XPath query contains many predicates and closures axes, the evaluation requires

even more book-keeping.

2.2 Streaming XML Queries

A transducer-based approach to evaluating XQuery queries on streaming data

is presented in [51]. An XQuery query is decomposed into subexpressions and each

subexpression is mapped to an XML Stream Machine (XSM). An XSM consumes
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the content of its input buffer and writes output to its output buffer, which may be

the input buffer of another machine. This producer-consumer relationship of XSMs

through their buffers results in a network of XSMs. This network is merged into a

single XSM that can be optimized if the DTD for the input data is available. (In [55],

a similar approach is used to evaluate regular path expressions with qualifiers over

well-formed XML streams. It proposes a transducer network model called SPEX, in

which each transducer is generated from a regular path expression construct. The

output tape of one transducer forms the input tape of another.) The key differences

between XSQ and XSM are as follows: First, XSQ supports XPath features such as

aggregations, closures, and multiple predicates that are not supported by XSM. As

described in earlier sections, these features, especially in combination, complicate

query processing. Second, XSM supports constructors in XQuery expressions while

XSQ supports only XPath (no constructors). XSQ uses this simplification to work

with a simpler model of buffer interactions. Third, the combined, optimized XSM

is quite complicated, making it difficult to group similar queries. In contrast, the

method used in XSQ can be extended to support multiple queries, as illustrated in

our XPaSS systems. At the time of writing, the XSM system was not available for

testing and it is therefore omitted from our study. However, we believe that XSQ

and XSM are practical demonstrations of the trade-offs between query language

expressiveness and system simplicity and efficiency (XPath vs. full XQuery).

In [7], the authors propose an XAOS system that handles reverse axes in XPath

expressions in streaming environment. The XAOS system uses two data structures

called X-tree and X-dag to filter out the irrelevant nodes in the document and

26



store only the relevant nodes in a matching structure. At the end of the document,

the XAOS system traverses the matching structure and output the results. As far

as we know, XAOS is the first streaming XPath evaluation system that handles

the reverse axes. It also allows subqueries (without value comparisons and not()

functions) in the predicate. Our approach differs from the XAOS system since we

focus on buffering least amount of data with small overhead. First, buffering least

amount of data implies that an element is sent to output as soon as its membership

in the result set is determined. Second, if we allow comparisons in the predicate,

since we only need the result of the predicate, the XAOS approach that stores

all the relevant elements becomes not suitable. Third, in evaluation of subqueries

with boolean operators, we always shortcut the evaluation based on the boolean

operator and the current results. Moreover, if the not() function is allowed in the

predicate, the relevant element used inside the not() function may actually falsify

the predicate, which means store the relevant elements may not be a good choice.

The TurboXPath system [42] is a streaming XPath engine that supports FLWR

expression introduced in XPath 2.0. An FLWR expression can specify multiple

related path expressions and a RETURN phrase that constructs the result from

the matched contents. TurboXPath builds a single query tree with multiple output

nodes for all the specified patterns. Every output node in the query tree is associated

with a buffer of potential result items. Every predicate node has a buffer of elements

that are used to evaluate itself. A global working array stores the matched elements

and maintains all the matching information. These data structures are updated

when new data is streaming in.
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A streaming XQuery query engine from BEA Systems [29] uses an iterator-

based model for streaming evaluation. Every XPath expression in a query is decom-

posed into a sequence of XPath steps. The steps are evaluated against the stream

based on the axis (/ or //) used in the step. Optimizations based on type inference

and schema information are applied in the evaluation. One of the optimizations,

using the memoization technique [24], exploits the possibility of sharing common

subqueries within and among XQuery queries. Currently, the system is not publicly

available.

2.3 XML Querying and Transformation

Several systems provide methods for querying non-streaming XML data. Galax

[28] is a full-fledged XQuery query engine. It implements almost all of the XML

Query Data Model along with the type system and dynamic semantics of the XML

Query Algebra. XQEngine [43] is a full-text search engine for XML documents that

uses XQuery and XPath as its query language. XPath expressions and boolean

combinations of keywords are used to query collections of XML documents. The

engine creates a full-text index for every document before the document can be

queried. It is difficult to adapt these systems for streaming data. Nevertheless, we

use them in our experimental study for comparison purposes.

A topic closely related to XPath query processing is XML transformation.

XSLT is a standard template-based language for transforming XML [44]. Since

XSLT uses XPath to specify patterns in its rules, XSQ and other methods for
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XPath processing have applications in XSLT processors. The popular implementa-

tion of XSLT in Saxon [45] is based on an in-memory materialization of the entire

XML document and is therefore limited in the size of documents it can efficiently

transform. By using a streaming XPath processor such as XSQ, we can design an

XML transformation system that buffers only limited amount amounts of data.

The STX system takes a different, more procedural, approach to transform-

ing streaming XML [9]. It uses templates to specify the operations that should be

performed when data matching the template pattern is encountered. We may think

of STX as a general-purpose event-driven programming environment that is not tai-

lored to a specific query language. However, it may be used for XPath processing if

we design a method for generating efficient STX templates from XPath queries. For

example, if there are two predicates in an XPath query, we may create two variables

in the program to store the current results of the predicates. When a predicate is

evaluated, the corresponding variable is set to the result of the evaluation. We also

need to specify explicitly when to reset the variables. We may then choose the right

operation based on the current values of the variables. However, in this scheme,

the positions of the elements have to satisfy the requirement that the predicate is

evaluated before the target items. In general, it is not obvious how to generate

STX templates equivalent to an XPath query in a systematic manner. However,

this approach is an alternative to our automaton-based approach and would benefit

from further attention.
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2.4 Theoretical Researches on XPath

The streaming XPath evaluation problem we are considering in this proposal

is essentially a tree pattern matching problem that is restricted to a single preorder

traversal of the data tree (due to the streaming nature of the data). The pattern

may include both parent-child edges and ancestor-descendant edges. The embedding

of the pattern in the data tree does not need to preserve the ancestor-descendant

relations in the data tree, which means two pattern nodes in different branches in

the pattern tree may map to two nodes that one of them is an ancestor of the other

one in the data.

XPath evaluation is a complex problem in its own right. Only recently a poly-

nomial main memory algorithm to evaluate XPath queries is proposed in [32]. In

[54], the authors point that XPath evaluation is essentially a different problem than

the classical tree pattern matching [38] and unordered tree inclusion [46] problems.

Most algorithms provided in these literatures are bottom-up algorithms which re-

quires postorder traversal of the data tree. A top-down algorithm is provided in

[38] for the classical tree pattern matching problem. The algorithm needs only pre-

order traversal of the data tree. However, since it allows only parent-child edges

in the pattern and preserve the order of siblings in the pattern, the algorithm can-

not be applied to the patterns that contain ancestor-descendant edges and do not

imply orders between siblings in the patterns. The query complexity of XPath is

addressed by [32], which provides a main-memory algorithm for evaluating XPath

on non-streaming data that is polynomial in the size of the query (and data). The
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method is based on reducing every axis to two primitive axes: first-child and next-

sibling. The algorithm traverses the XPath parse tree in a bottom-up manner. The

subexpressions in the lowest level are evaluated by scanning the data. The results of

these subexpressions are then used in the evaluation of their parent subexpressions,

recursively. The paper also provides a refined top-down algorithm and suggest a core

subset of XPath that can be evaluated in linear time. Since these methods require

multiple passes of the data, it is not easy to adapt them methods for a streaming

environment. However, it should be interesting to investigate the issues raised by

this paper in a streaming environment.

Prior work [54] has noted that there are important differences between XPath

evaluation and the classical problems of tree pattern matching [38, 18] and unordered

tree inclusion [46]. In particular, the problem of unordered tree inclusion is NP-hard

(by direct reduction from SAT), while XPath queries can be answered in polynomial

time [32]. Intuitively, the reason the inclusion problem is harder than the XPath

problem is that the former does not permit multiple nodes in the pattern tree to be

mapped to the same node in the data tree.

Most of the algorithms for these problems require a postorder (bottom-up)

traversal of the data trees and are thus unsuitable for streaming data that is provided

in preorder. As an exception, an algorithm described for the classical tree pattern

matching problem [38] needs only a preorder traversal of the data tree. However, it

allows only parent-child (not descendant) edges in patterns and finds only matches

for which the order of siblings in the data matches the their order in the pattern. In

contrast, tree patterns corresponding to XPath queries include ancestor-descendant
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edges (for the closure axis) and XPath semantics require that the sibling order in

the pattern (order of nodes mentioned in predicates) be ignored.

2.5 Data Streams Management Systems

The Aurora system [14, 19, 72] is a data stream management system for moni-

toring applications, in which typical tasks include tracking the abnormalities among

multiple streams, filtering specific target data for the user, and executing queries

involving aggregations and joins. The Aurora system processes data streams using

a large trigger network. The trigger, which is essentially a data-flow graph, is gener-

ated from the persistent queries provided by applications. The tuples in the results

of these queries are created from the incoming streams and fed into the original

application also in streaming form. The Aurora system provides a set of operators

for an application to specify the persistent query and quality of service (QoS) re-

quirements. At runtime, the Aurora system is optimized by using techniques such

as load shedding (discarding data that requires a long time to process) and real-time

scheduling.

The Fjords architecture [52] has been developed for managing multiple queries

over the numerous data streams generated from sensors. Sensor data is generated

in streaming form and the data rate is typically high and variable. The Fjords

architecture is designed to maintain a high throughput for queries even when the

data rate is unpredictable. It provides an efficient and adaptive infrastructure for

more sophisticated query applications. The main components of the architecture
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are the queuing system and the sensor proxies. The queues can function in either

pull or push mode. They are the basic functional structures to route data between

the operators in a query plan. Query operators may be adaptive, such as Eddies

[5]. Each sensor has a sensor proxy that accepts queries and tries to simplify the

queries for the sensor’s processor. The proxy adjusts the sample rate of the sensor

based on the queries and permits different users share data from the sensor. Such

optimizations result in higher throughput and longer sensor battery life, since energy

is conserved by avoiding unnecessary sampling.

The NiagaraCQ system is designed to efficiently support a large number of

subscription queries expressed in XML-QL over distributed XML datasets [17]. It

groups queries based on their signatures. Essentially, queries that have similar query

structure by different constants are grouped and share the results of the subqueries

representing the overlap among the queries. NiagaraCQ and XSQ work at different

granularities of data. Although NiagaraCQ handles both change-based and timer-

based continuous queries, the events it handles (such as changed remote XML file

and activated timer) are at a high level. Therefore, it can use materialized data

that is managed by a cache manager. In contrast, systems such as XSQ and XFilter

respond to every event generated by a SAX-like parser. XSQ evaluates queries on

streaming data, and the result is also in streaming form. These two granularities

are complementary: One can combine the methods of NiagaraCQ for the larger

granularity with the methods of XSQ for the finer granularity.

A related system, WebCQ, implements server-based Web page monitoring

[50, 49]. Users use WebCQ’s own query language to specify a sentinel, which is
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essentially a request for monitoring the specified Web objects. The sentinel sup-

ports different kinds of objects, such as images and links in Web pages, different

time intervals for change detection, and different kinds of notification mechanisms.

Although both WebCQ and XSQ are event-driven systems, the events in WebCQ

systems are specified by the user and are mostly timer-based. When a timer is

activated, WebCQ visits the specified Web resource and pulls the content that will

be compared with its stored version in the cache. XSQ, in contrast, is more like a

push-based system that receives the data passively and returns the results continu-

ously. Further, like NiagaraCQ, WebCQ also operates at a larger granularity than

does XSQ.

Another system for processing data streams is dQUOB [61, 60]. It views the

data streams as a relational database. Each event in the stream maps to a tuple in a

relation that characterizes the stream. It uses SQL extended with create-if-then rules

from Starburst ’s active database query language [66]. The create clause specifies the

name of the rule and the data source, the if clause contains a SQL query, and the

then clause specifies an optional function that accepts the result of the SQL query for

further processing (including serving as the input of another query). The dQUOB

system can generate optimized query plans for the continuous queries presented in

the system based on the relational model and allows user-specified adaptation for

changes in data streams.

These system architectures are designed to be working with operators in query

plans. Instead of letting the operator retrieves data from the stream directly, they

provide mechanisms (such as the trigger network in Aurora and the queuing system
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in Fjords) to handle the stream in an aggregated manner and provide those operators

with the data they need (usually in streaming form as well). Such mechanisms

are the key to support large number of queries simultaneously while keeping high

throughput. These architectures are easier to be applied on iterator-based XML

query processor. It is an interesting problem to study whether we can use the

automaton-based approach in these architectures to process XML streams.

2.6 Streaming Algorithms

Besides the new system architectures designed for streaming data manage-

ment, current researches also address the requirement of developing more capable

and efficient There algorithms for streaming data. Since it is usually not appli-

cable to answer complex queries over streaming data precisely, techniques such as

sampling and histograms are widely used [26, 30, 34].

The technique of sampling is widely used to solve problems such as online

aggregation [37]. The purpose of online aggregation is to provide enough accurate

result for aggregate queries where the precision is specified by the end users. The

results are shown in a progressive manner along with the confidence interval of the

changing result. A different and important performance metric of such algorithm

is minimum time to accuracy since the user usually wants the result as accurate

as specified in least amount of time. In [36], the authors extend the traditional

blocking nested-loops and hash joins to a set of non-blocking ripple join algorithms,

in which random tuples are fetched from both tables in the join and the inner and
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outer relations in the join algorithm are interchanged continually. The technique of

sampling is also studied in [16]. The approximation of the query result is considered

as the stratified sampling optimization problem, in which the optimization goal is

to select the samples to minimize the error for a given workload. Therefore, the

known results and techniques for the stratified sampling problem can be utilized

for query answer approximation. The methods proposed in [37, 36, 16], however,

cannot be applied to streaming data directly since they need random access of the

data. But we can see that the essence of the idea of sampling may lead to efficient

online aggregation algorithms for streaming data.

Another approximation technique, the histograms, are also used in problems

such computing correlated aggregation [30]. A correlated aggregation is an aggre-

gation query that requires the result of another aggregation query. For example,

query count(price>avg(price)) asks for the number of price that is lower than

the average price. It is clear that this category of query is difficult to evaluate over

streams since the average of the price cannot be decided until all the data are

processed. The authors classify the correlated aggregation based on the feature of

the independent aggregate (i.e., the inner aggregate) and the semantics of the online

aggregation (such as landmark window or sliding window)). The approach in [30]

is based on histograms that can adapt to the interest of the query and variation of

the statistics of the data.

The methods of using histograms to approximate streaming data for querying

are further studied in [34], in which the authors provide an streaming algorithm

that constructs histograms that support incremental maintenance and satisfy the
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user-specified accuracy. In [69], the position histograms are used to estimate the size

of the XML queries.

Most work on streaming data, including XSQ, assumes that the input consists

of only the raw data. In this environment, certain limitations are unavoidable.

For example, it is easy to devise XPath queries and sample inputs for which an

unbounded amount of buffering is required for any XPath processor that produces

exact results. An interesting alternative to this environment is one in which the

input provides some assistance to the query processor by specifying constraints

on forthcoming data or some other similar hints. For example, [65] describes a

method for embedding punctuations in streaming data, facilitating the streaming

evaluation of queries that include blocking operators such as group by. It should be

interesting to use similar ideas for streaming XML to support XPath queries that

include traversal axes such as following.
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Chapter 3

Preliminaries

In this chapter, we provide brief descriptions of the DOM and SAX models

for parsed XML, and of XPath. We focus on the features that are essential for

understanding our methods presented in subsequent chapters and do not provide

comprehensive descriptions, which may be found elsewhere [71, 39, 53, 21].

3.1 Data Model for XML

A static XML document is usually modeled as an edge-labeled or node-labeled

tree [1]. In the commonly used Document Object Model (DOM) [39], an XML

document is modeled as a node-labeled tree. Each element in the document is

mapped to a subtree in the tree, whose root node is labeled with the tag of the

element. Although an element E is mapped to a subtree of the DOM tree, it is

convenient to refer to the root of this subtree as node E. The children of an element

E are mapped to children of the node E that have node type of element. The

attributes and text contents of element E are also mapped to children of node E,

but with node types Attribute and Text, respectively. Figure 3.2 depicts the DOM

tree of the XML document in Figure 3.1. In the figure, the nodes with dotted boxes

are Attribute nodes and the nodes without boxes are Text nodes.
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1. <!-- begin document -->

2. <pub>
3. <book id="1">

4. <price> 12.00 </price>
5. <name> First </name>
6. <author>A </author>

7. <price type="discount"> 10.00 </price>
8. </book>

9. <book id="2">
10. <price> 14.00 </price>
11. <name> Second </name>

12. <author> A </author>
13. <author> B </author>

14. <price type="discount"> 12.00 </price>
15. </book>
16. <year> 2002 </year>

17. </pub>
18. <!-- end document -->

Figure 3.1: Sample XML Stream

3.2 Data Model for XML Streams

For streaming data, building a DOM tree in memory is not usually desirable

because the data may be unbounded. Further, we may not need all of the DOM

tree to process the given query. Therefore, we model the input XML stream as a

sequence of events, modeled after SAX [53] events.

In our event-based model, each event e is a quadruple of the form (n, al , t, d):

(1) The string n is the name of the element that generates the SAX event. (2) The

list al contains pairs of the form (a, v), indicating that the element has attribute

a with value v. Since elements are not permitted to have multiple attributes with

the same name, the attribute name a uniquely identifies a pair in the list. We use

the notation e.a to refer to the value of the a attribute of element e; if e does not

have an attribute a, e.a is null. (3) The type t is B for a begin event, E for an

end event, and T for a text event. Events of type E have an empty attribute list,

while events of type T have an attribute list containing the single pair (text(), v),
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type

discount

10.00

titleid price pricetitle author price author authorid price

pub

book book year

2002

1 12.00 First A 2 14.00 Second A B type

discount

12.00

root

Figure 3.2: The DOM tree for the data in Figure 3.1

indicating that v is the text content of the element. (4) Finally, the integer d is the

depth of the element in the document tree. The root of the document tree, also

called document root, has depth 0. The attr and text nodes have the same depth

as their parent nodes. Strictly speaking, SAX events do not include this depth

component. Instead, this information is added by XSQ by wrapping SAX events

and maintaining a depth counter internally.

A SAX parser generates a start-document event (s-doc) when it begins parsing

an XML document and an end-document event (e-doc) when it finishes parsing the

document. It is convenient to regard the s-doc and e-doc events as the begin and

end events, respectively, of the document root.

Example 1 Using the notation described above, we list below the first ten events

generated by a SAX parser given the input of Figure 3.1.
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1. (root , φ, B, 0): the begin event of root element.

2. (pub, φ, B, 1): the begin event of pub element.

3. (name, {(is, ”1”)}, B, 2): the begin event of book element. The name-value list

{(id,”1”)} is associated with the event.

4. (price, φ, B, 3): the begin event of price element.

5. (price, {(text , ”12.00”)}, T, 3): text event of price element. The text ”12.00”

is associated with the event.

6. (price, φ, E, 3): the end event of price element.

7. (name, φ, B, 3): the begin event of name element.

8. (name, {(text , ”First”)}, T, 3): the text event of name element. The text ”First”

is associated with the event.

9. (name, φ, E, 3): the end event of name element.

10. (author , φ, B, 3): the begin event of author element.

3.3 XPath

An XPath query is an expression of the form of N1N2 . . . Nk[/O], which consists

of a location path, N1N2 . . . Nk, and an optional output function O. Each

location step Ni is of the form /ai::ni[pi] where ai is an axis, ni is a node test

that specifies the name of elements Ni can match, and pi is an optional predicate

that is specified syntactically using square brackets.
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3.3.1 XPath Semantics

In general, an XPath query is interpreted as follows: Each location step selects

a set of nodes in the document tree. For every node x selected by Ni−1, Ni selects a

set of nodes using x as the context node. The set of nodes selected by the last location

step consists of the result set of the query. There is an implicit zeroth location step

N0 that always selects the document root. Thus, N1 is always evaluated using the

document root as the context node.

We now explain how a node y is selected by a location step Ni=/ai::ni[pi] from

a context node x, which is selected by the location step Ni−1 (i > 0).

Node test First, the tag of y has to match the node test ni. A node test is

either a string that specifies a matching element tag or a wildcard, denoted as *,

that indicates any tag may match this node test.

Axis Next, the axis ai specifies the relation between y and the context node x. In

a simplified form, / is shorthand for the /child:: axis, which specifies that y must

be x’s child. Similarly, // is shorthand for the /descendant-or-self::node()/

axis, which specifies that y must be a descendant of x (not necessarily a proper

descendant). If no axis is specified, the default axis is the child axis. However, if

the axis before the first location step is omitted, the default axis is //, not the child

axis. For example, expression title/text() returns the text content of all title

descendants of the document root.

We process queries with the parent axis and the ancestor axis in Chapter 7.

These axes are called reverse axes since they allow upward traverse in the docu-
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ment tree.

Predicate If y satisfies the previous two conditions, y is selected by Ni if the

predicates pi evaluates to true in the context of y. In other words, if we treat y as

the root, the XPath query pi should evaluates to a non-empty result set. In many

cases, the predicates are in simple forms such as book[price<11] and book[@id].

In the first query, the predicate [price<11] is true for a book element if it has a

price child whose value is less than 11. In the second query, the predicate [@id]

is true for a book element if it has an id attribute (the ’@’ symbol indicates that

the following string specifies an attribute). We explain the form of the predicates

in more detail in Section 3.3.2.

Output After the last location step Nk is evaluated, the output function O is

applied to every node in the result set to produce the final output. The output

function may specify an attribute or the text value of an element. It may also

use an aggregation function such as sum() or count(). If no output expression is

specified in the query, the elements in the result set are returned as the query result.

Here are some examples:

• title/text() returns all the text nodes of the title elements.

• book/@id returns the id attribute of the book elements.

• author/count() returns the number of author elements.
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3.3.2 Predicates in XPath

Each predicate P is also an XPath query, called a subquery. P is satisfied

by an element e iff the subquery evaluates to a non-empty result set in the context

of e, in which case we also say P returns true for e.

We can use boolean operators AND and OR to connect subqueries. The

NOT() function can also be applied on a subquery. We can also nested subqueries,

i.e. a predicate may itself contains predicates.

A top-level XPath query is evaluated in the context of the document root. A

nested subquery, however, is evaluated in the context of the elements matched in

the outer query, be it another subquery or the top-level query. Moreover, the result

of a top-level query is a set of document nodes that match the last location step,

while the result of a subquery is a boolean value that indicates whether its result

set is empty.

If a predicate contains no value comparison, it tests the existence of speci-

fied object. For example, book[price] tests whether a book element has a price

child. Predicates with value comparisons are evaluated as follows. First, when

an element’s attribute value or the text content a is compared with a literal v,

XPath semantics specify that, if v is a number, a must be coerced to a numeric

type. The comparison then proceeds with the usual numeric semantics. If the co-

ercion fails, the predicate returns false. Second, a predicate such as [price=10]

is interpreted as [price/string()=10], where price/string() returns the aggre-

gation of the text content within the price element. For ease of presentation, we
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assume in this thesis that string() function be replaced by the text() function

and that there is at most one text event for any element. (The text() function re-

turns the set of text children of a node. For example, string() on a price element

<price>10<note>sale</note><price> returns 10 sale, while text() returns 10.)

However, our method easily supports string() and multiple text events within an

event by buffering all the text events and delaying predicate-processing for an event

to its end, after all text events have been encountered.

3.3.3 XPath Examples

The following queries, evaluated on the data of Figure 3.1, illustrate some of

the key features of XPath.

• //author/count(): This query returns the number of author elements in the

document. The first location step is //author, which consists of the closure

axis //, and the node test author; it does not include a predicate. This

location step matches all descendants of the document root that have tag

author. The output expression, count() is applied to all qualifying elements

to produce the query result. The result is 3 for the data of Figure 3.1. We note

that this query may also be expressed as author/count() because a missing

axis in the first location step defaults to closure.

• //pub[book]//year: This query returns the year elements that have pub

ancestors that have at least one book subelement each. Here, the predicate of

the first location step requires the existence of a book subelement. We note
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that both location steps in this query use the closure axis. Further, there is no

explicit output function, implying that the elements that match the location

path constitute the query result. The result for the data of Figure 3.1 is

<year>2002</year>.

• //pub/book[@id > 1]/price[@type = "discount"]/text(): This query re-

turns the text contents of the price elements that have a type attribute with

value discount. The price element must have a book parent, which in turn

has a pub parent. The id attribute of the book element must be greater than

1. The result for the data of Figure 3.1 is 12.00. Though the id attribute

and the discount attribute are displayed both as strings in the document,

the id attribute is compared using its numerical value since it is compared

to a numerical value. If the value of an attribute cannot be converted to a

number successfully, the operation returns false. (Such implicit type coercion

semantics provide intuitive results on semistructured data and have been used

in other languages, such as Lorel [2].)
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Chapter 4

XPath Queries with Closures, Predicates, and Aggregations

In this chapter, we describe the first version of XSQ system, which is the first

system that can evaluate XPath queries with closures, predicates, and aggregations

(as a whole) over streaming XML data. Our implementation is based on using

a hierarchical arrangement of pushdown transducers augmented with buffers. A

notable feature of XSQ is that it buffers data for only as long as it must be buffered

by any streaming XPath query engine. We present a detailed experimental study

that characterizes the performance of XSQ and related systems, and illustrates the

performance implications of XPath features such as closures.

4.1 Introduction

We focus in this chapter on XPath queries with (multiple) predicates, closures,

and aggregations. The subset is described in Figure 4.2. We note that these XPath

features are important usability advantages, especially if the data is semistructured

or has a structure unknown to the query formulator. Closures, in particular, are in-

dispensable in queries on data whose structure is partly unknown. For example, the

query //book[author = "Adams"]//price returns the prices of books by Adams

in a variety of likely structuring of bibliographic data, regardless of whether book

occurs at the top level in the document or several levels deep and, similarly, regard-
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1. <!-- begin document -->

2. <pub>
3. <book>

4. <name> X </name>
5. <author> A </author>
6. </book>

7. <book>
8. <name> Y </name>

9. <pub>
10. <book>
11. <name> Z </name>

12. <author> B </author>
13. </book>

14. <year> 1999 </year>
15. </pub>
16. </book>

17. <year> 2002 </year>
18. </pub>

19. <!-- end document -->

Figure 4.1: Input Fragment 2

less of whether the price element is a child of the book element or a descendant

separated by intervening bookstore elements. Similarly, predicates permit a more

accurate delineation of the data of interest, leading to smaller, and more usable,

results. The challenges posed by these features are exacerbated by data that has a

recursive structure, as explained below. (A recent survey of 60 real datasets found

35 to be recursive [20].)

We then use some motivating examples to illustrate the complexities caused

by closure axes and predicates in the streaming evaluation.

Example 2 Consider the following query on the input fragment depicted in Fig-

ure 3.1: /pub[year > 2000]/book[price < 11]/author. Intuitively, it returns

the authors of the books that have been published after year 2000 and that have a

price less than 11.

When we encounter the first author element on line 6 in the stream, it

48



Q ::= N+[/O]

N ::= {/|//}nodetest [P]

P ::= [ F[OP constant]]

F ::= @attribute | nodetest[@attribute]| text()

O ::= @attribute | text()|count()|sum()

OP ::= > | ≥ | = | < | ≥ |! =

Figure 4.2: EBNF for an XPath Subset

is easy to deduce that the sequence of its ancestor elements matches the pattern

/pub/book/author (since the pub and book elements have been encountered earlier

and are still open). The predicate [year > 2000] is not satisfied by the pub ele-

ment (line 2) because we have not encountered any year child elements. However,

qualifying child elements may occur later in the stream. Therefore, we cannot yet

conclude that the predicate is false. For the book element on line 3, we have encoun-

tered the first price element (line 4), which does not satisfy the predicate [price <

11]. Again, we cannot yet conclude that the predicate is false for this book element

because it may have additional price child elements later in the stream. Thus, at

line 6 in the stream, we cannot determine whether the author element belongs to

the result. The element must therefore be buffered.

When we encounter the price element on line 7, we can check that it satis-

fies the predicate for its parent book element. However, we still cannot determine
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whether the pub element on line 2 satisfies the predicate [year > 2000]. Con-

sequently it is still unknown whether the author element on line 6 belongs to the

result. Therefore, we must continue to buffer the author element and record the fact

that the second predicate has been satisfied but not the first one. Similarly, the two

author elements on lines 12 and 13, which belong to the second book element, have

to be buffered as well. At this point in the stream (line 13) there are three author

elements in the buffer: two with value A and one with value B.

When we encounter the price element on line 14, we note that it does not

satisfy [price < 11]. Since its parent book element is still open, we cannot yet

conclude that the book element fails to satisfy the predicate. That conclusion can

only be made when we encounter </book> on line 15. At this point in the stream

(line 15), the two author child elements of this book element should be removed

from the buffer. The other author element (with value A) remains in the buffer

because its first predicate may be satisfied by data encountered later in the stream.

When we encounter the year element on line 16, we may determine that the

pub element on line 2 satisfies the predicate [year > 2000]. Recalling that this pub

element is the ancestor of the author element remaining in the buffer, which has

already satisfied the other predicate, we determine that this author should be sent

to the output.

The above example, although quite simple, illustrates some of the intricacies

that we must handle. First, we may encounter items that are potentially in the

result before we encounter the items required to evaluate their predicates. We need
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to buffer such potential result items. Second, buffered items have to be distinguished

so that, after the evaluation of a predicate, only the items that are affected by that

predicate are processed. Third, in order to buffer items for the least amount of

time possible, we need to check whether pending buffer items can be output as soon

as some predicate is satisfied. Finally, predicates access different portions of the

data. Some should be evaluated when the start-tag is encountered, while others

may only be evaluated upon encountering the text content. (There are other forms

of predicates, discussed later.)

Example 3 Consider the query //pub[year>2000]//book[author]//name for the

input fragment depicted in Figure 4.1. This example introduces some problems not

seen in Example 2. Since the closure axis // is used in this query, an element and

its descendants may match the same location step. For instance, the pub elements

in lines 1 and 9 match the node test in the first location step. There are three ways

in which the name in line 11 matches the pattern of the query (ignoring predicates).

Each matching yields a different result for the predicates, as summarized in the

following table.

pub book [year > 2000] [author] name

line 2 line 7 true false line 11

line 2 line 10 true true line 11

line 9 line 10 false true line 11

As indicated by the table, only the matching of the second row satisfies both pred-

icates. However, the predicate results of these different matchings may arrive in

different orders and need further consideration.
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When we encounter </pub> on line 15, we know that this pub element (of

line 9) fails the predicate [year > 2000]. However, we cannot remove the name

element on line 11 from the buffer because it is still possible that this item satisfies

the query due to a subsequent year child of the other pub element on line 2. A

similar situation occurs when we encounter </book> on line 16. Only when all the

possible matchings have failed to satisfy the predicates can we remove the item from

the buffer.

When multiple matchings evaluate all predicates to true, we must remove du-

plicate results. For example, if there were an additional author element between

lines 8 and 9, the matching indicated by the first row of the above table would also

satisfy both predicates. The name element, however, should be outputted only once.

The XSQ system uses an automaton-based method to evaluate XPath queries

over XML streams. The automaton, called an HPDT (Section 4.2.1), is a finite state

automaton augmented with a buffer. For every input XPath query, we construct an

HPDT hierarchically using a template-based method. Using the HPDT as a guide,

a runtime engine (Section 4.3) responds to the incoming stream and emits the query

result. The multiple matching problem (Example 3) is solved by associating with

every buffer item its matching with the query and a flag the indicates the current

predicate results. We note that the HPDT is used simply as convenient conceptual

machinery to describe our methods. The expressiveness and theoretical complexity
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of the automata are not our focus in this chapter.1

Organization: The rest of this chapter is organized as follows. Section 4.2 intro-

duces how we compile an XPath query into an HPDT. In Section 4.3, we describe

how the runtime engine processes the incoming stream using the HPDT as a guide.

We also discuss the correctness and complexity of the method, along with a few key

implementation details. Section 4.4 presents our experimental study of XSQ and

related systems.

4.2 Compiling XPath Queries

In XSQ, an XPath query is first compiled into an HPDT, which is used by the

runtime engine (Section 4.3) to evaluate the query on a streaming XML input. The

HPDT is built in a layered manner with overlapping groups of states called BPDT s.

We begin by describing HPDTs in Section 4.2.1. In Section 4.2.2, we describe the

BPDT templates that form the basis of our method for building HPDTs. This

method is described in detail in Section 4.2.3. Finally, Section 4.2.4 describes how

aggregation functions are implemented in XSQ.

4.2.1 HPDT

The HPDT is a non-deterministic finite-state automaton augmented with a

buffer. Its transitions are optionally associated with predicates and buffer opera-

1A brief description of our methods and the results of a preliminary experimental study of XSQ

appear in [58].
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tions. A transition is taken only if its predicate, if any, is satisfied. The buffer

operation, if any, on a transition is executed when that transition is taken.

Transitions: The input to an HPDT is a sequence of SAX events, each of which

takes the form (n, al , t, d), where n is the name, al is the attribute list, t is the type,

and d is the depth. On transition arcs, we specify events as (n, t), where n specifies

an element name and t specifies a SAX event type. Besides the three types (B, E,

and T ) introduced in Section 3.2, t can also be ∗̄, a catchall type that matches all

three types of events. A transition x with symbol (n, t) matches an input event e

if n matches e.n and t matches e.t. The attribute list al and depth d of an event are

used in predicate evaluation and output composition, as described later. When a

transition x emerging from a state matches the current event e in the input stream,

we say this state accepts e. However, if x has a predicate then x is taken only if e

satisfies the predicate, as described in Section 3.3. In the figures that depict state

transition diagrams, we use an XML-like notation: <n> for (n, B), </n> for (n, E),

and <n.text()> for (n, T ). In our description, we use Element(e) to denote the

XML element that generates event e. We use (ei, B) to denote the begin event of

element ei, (ei, E) to denote its end event, and (ei, T ) to denote its text event.

After an HPDT takes a transition x, the set of active states is determined

not only by x’s target state, but also by the type of x. There are four types of

transitions: (1) self-closure transitions, identified in state transition diagrams

using the symbol // next to arrows; (2) closure transitions, identified using =

or || on arrows; (3) catchall transitions, identified using ∗̄; and (4) regular
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transitions, identified by the absence of special markings. These transitions differ

in their effects on the runtime engine, as described in Section 4.3.

BPDT: The states in an HPDT are organized in overlapping groups, each of

which is called a BPDT. In each BPDT, we specify a start state, a true state,

an optional na state, and an optional false state. Intuitively, a BPDT contains a

group of states that evaluate a location step of the XPath query. The start state is

the entry point into the BPDT. The true (false) state indicates the predicate of

this location step has evaluated to true (respectively, false). The na (not available)

state indicates that the data required to determine the truth value of a predicate has

not yet been encountered in the stream. The BPDTs are connected by overlapping

the start state of one BPDT with the true or na state of another. The true,

na, and false states are called p-value states (because they indicate the result of

predicate evaluations). The other states, excluding start, are called p-eval states

(because they are used to evaluate a predicate).

Buffer: The buffer of an HPDT is used to hold potential result items. We asso-

ciate with each buffer item a (k + 1)-bit flag, where k is the query length (number

of location steps). The ith bit of the flag (counting from the left, starting with 0)

denotes the current state of the predicate (perhaps trivial) of the ith location step:

1 for true and 0 for pending. Recall the zeroth location step always matches the

document root and has no predicate. Thus, the zeroth bit of the flag is always 1

(We use (k+1)-bit flags instead of k-bit flags for better correspondence with BPDT

identifiers, described in Section 4.2.3.) We use fi to denote the ith bit of a flag f .
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$3

$4

$7$8

$5$6

b (0,0)

b (3,7) b (3,6)

b (2,3)

b (1,1)

TRUE

TRUE NA

</book> remove(2)
</book>

</author>

$2

$1

TRUE

E−DOCS−DOC

START BPDT
root

<book>

set(2)
<author>

</price> <price> </price> <price>

TRUE TRUE

<pub></pub>

<price.text()>
add(1101,text())add(1111,text())

<price.text()>

Note: HPDT for query /pub/book[author]/price/text()

Figure 4.3: A Sample HPDT

If all bits in a flag are 1, we say the flag is a true flag.

An HPDT uses buffer operations set, remove, and add. We describe these

operations only informally here, deferring the details to our discussion of the run-

time engine in Section 4.3. In that section, we also describe how the runtime en-

gine applies set and remove operations selectively to only a subset of buffer items.

However, for ease of presentation in the rest of this section, we assume that these

operations apply to all items in the buffer. The set(i) operation sets (to 1) fi for

every buffer item. The remove(i) operation removes all buffer items having fi = 0.

The add(f,a) operation creates a buffer item with flag f using the feature a of the

event e. The feature a may be an attribute name (including “text()”), in which
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case e.a is added. It may also be the catchall symbol ∗̄, in which case the serialized

(string) representation of e is appended, including all its attributes. For example,

for the begin event (book, {(id,"1")},B,1), the operation add(∗̄, f) creates a buffer

item that contains the string <book id="1"> and has flag f . We do not use an

explicit output operation. Rather, when the flag of a buffer item becomes a true

flag (all 1s), the item is ready for output. The document order among the output

items is preserved (as required by XPath) by using a global queue, as described in

Section 4.3.4.

The following example illustrates how an HPDT can be used to evaluate an

XPath query. A special BPDT, called the root BPDT, is used in the HPDT to

process the start-document (s-doc) and end-document (e-doc) events, which are

generated for the document root.

Example 4 We can use the HPDT H depicted in Figure 4.3 to evaluate the query:

/pub/book[author]/price/text(). We use rounded boxes to enclose the BPDTs,

which are numbered using the scheme described in Section 4.2.3. All the transitions

in H are regular transitions. Note that the start states of BPDTs b(2, 3), b(3, 6),

and b(3, 7) are true or na states of other BPDTs (true state of b(1, 1), na state of

b(2, 3), and true state of b(2, 3), respectively). Such a shared state belongs to both

the BPDT suggested by its enclosing box and the BPDT below it. Let us consider

the first a few actions of H on the input fragment of Figure 3.1. After processing

the begin event of the price element on line 4, state $7 is active. The transition

on the text event adds the text content, 12.00, of this price element to the buffer,
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Figure 4.4: Template BPDT for: /n[@a = v]
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< n.text() >
[text()! = v]

remove(l)

< n.text() >
[text() = v]

set(l)

</
n>

START

NATRUE

Figure 4.5: Template BPDT for: /n[text() = v]

with flag 1101. When H encounters the begin event of the author element on line

6, it sets f2 to 1 for the buffer items and transits to state $5 (and state $6 at the

end event of this author element). Since the buffer item with value 12.00 now has

its flag set to all 1’s, it is emitted as output. When H encounters the next price

element (line 7 of Figure 3.1), it transits to state $8. The transition from $8 on

the text event results in the addition of 10.00 to the buffer, with flag 1111, which in

turn causes 10.00 to be sent immediately to the output. (Since this price element’s

book parent has already satisfied the predicate [author], it should be immediately

output.)
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Figure 4.6: Template BPDT for: /n[c@a = v]

4.2.2 Templates for BPDT

We generalize the BPDT b(2, 3) of Example 4 to the template depicted in

Figure 4.7. We instantiate BPDTs from this template to evaluate location steps of

the form of /n[c]. In general, we classify location steps into five categories for the

purpose of template-based generation of BPDTs. In the following descriptions, we

consider only the / axis. The modifications needed for the // axis are made sepa-

rately after the templates are instantiated. During the instantiation of a template

for a location step Ni, the parameter l used by the buffer operations in the template

is replaced by i. The instantiation procedure is described further in Section 4.2.3.

The design of these templates is guided by the existential semantics of XPath pred-

icates. Once a predicate’s result has been determined as true or false, the automata

transit to states in which further data that could be used to evaluate the predicate

is skipped. Buffered items are always processed, using the set or remove operations,

at the earliest time that a predicate’s result can be determined.

Template 1 Location steps of the form /n, /n[@a], and /n[@a op v], where n is an

element name, a is an attribute name, op is one of the comparison operators
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Figure 4.7: Template BPDT for: /n[c]

(Figure 4.2), and v is a literal: Figure 4.4 illustrates the template for /n[@a

= v]. For /n[@a], the test of the attribute value is replaced by a test for the

existence of the attribute. For /n, state $3 and the transitions connected to

it are not used and there is no test for the attribute. This template does not

include an na state because the result of the predicate is always known for

each element as it is encountered. If the result is false, the BPDT enters state

$3 that accepts nothing but the end event of the same element. Otherwise,

the BPDT enters the true state $2, which indicates that the predicate has

been satisfied.

Template 2 Location steps of form /n[text() op v], which include a predicate

on the text content of matching elements: Figure 4.5 illustrates the template

for /n[text() = v]. Since we assume that there is only one text event in

each element, we compare the text event with the literal v only once. If the

element n has no text contents (which can be determined only at the end

of the element), the BPDT returns to the start state removing the buffer

items that are waiting for this predicate. If the element n contains some text
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content, the BPDT transits from state $2 to $4 if the content satisfies the

condition, otherwise it transits from state $2 to $3. Once state $3 is active, it

remains active until the end of this n element. State $2 is the na state since

the predicate is pending when it is active.

Template 3 Location steps of form /n[c], which test the existence of c-children:

Figure 4.7 illustrates the template for /n[c]. The template encodes the exis-

tential semantics of XPath predicates: After one c-child element of n satisfies

the predicate, state $4 becomes active and no other c-child is tested. Only

when the end of n is encountered and no c-child is encountered do we conclude

that the predicate is false.

Template 4 Location steps of the form /n[c@a] and /n[c@a op v], which include

predicates that reference attributes of children. Figure 4.6 illustrates the tem-

plate for /n[c@a = v]. For /n[c@a], the test of the attribute value is replaced

by a test for the existence of that attribute: This template encodes the exis-

tential semantics of predicates in a manner similar to that of the template for

/n[c]. However, here a c-child may not satisfy the predicate, in which case

state $3 becomes active and this c-child is ignored.

Template 5 Location steps of the form /n[c op v], which include predicates that

test the values of the child elements. Figure 4.8 illustrates the template for

/n[c = v]. Recall, from Section 3.3, that the predicate [c op v] is inter-

preted as [c/text() op v]: This template is similar to that in Figure 4.7,

but includes transitions to process the text events of c-children.
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Figure 4.8: Template BPDT for: /n[c=v]

4.2.3 Building HPDTs from XPath Queries

Consider a query Q = N1N2 . . . Nk, where Ni = /ai :: ni[pi]. The HPDT H for

Q is is generated in a layered manner. Every BPDT is assigned a two-dimensional

identifier (l, m) and is denoted as b(l, m), where l is the layer and m is its position

in the lth layer. We use the notation b(x, y).start to denote the start state of

BPDT b(x, y) (and similarly for the true and na states). We first create the root

BPDT b(0, 0) (Figure 4.9) as the only BPDT in the zeroth layer. This BPDT does

not depend on the XPath query and corresponds to the implicit zeroth location step

of a query, which matches the document root. Its start state, denoted as s0, is

also the start state of the HPDT. Layer l, for l ∈ [1, k] is generated as follows: For

every BPDT b(l−1, m) in the (l−1)th layer, we create a child BPDT b(l, 2m+1),

by instantiating the BPDT template that matches Nl. The true state of b(l−1, m)

is merged with the start state of b(l, 2m + 1). If b(l − 1, m) has an na state, we

create another child BPDT, b(l, 2m), by instantiating the template for Nl (again).

The start state of b(l, 2m) is merged with the na state of b(l − 1, m). When

instantiating a template, we set the parameter of the set and remove operations to
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Figure 4.9: An HPDT Example

the layer number, l.

We summarize in Listing 1 the above procedure for creating an HPDT. The

AddBPDT(b,N,s) procedure instantiates a BPDT using the template that matches

location step N and sets the s state (either start or na) of b as the start state

of the new BPDT. After BPDT b(l, m) is created, the PostProcess procedure is

applied to it to perform the following three modifications. First, if al (the axis of lo-

cation step Nl) is //, the procedure adds a self-closure transition from b(l, m).start

to itself, labeled //. We then use the LocateTrans function to locate all the tran-

sitions that emerge from the start state and match the begin event with name nl
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Algorithm 1: GenerateHPDT(Q)

/* Build an HPDT from Q = N1N2 . . . Nk/O, where Ni = /ai :: ni[pi]. */

b(0, 0) = CreateRootBPDT();1

for l← 1 to k do2

for m← 0 to 2l−1 − 1 do3

b← b(l − 1,m);4

if b 6= null then5

b(l, 2m + 1)← AddBPDT(b,Nl,true);6

PostProcess(b(l, 2m + 1), Q);7

if b.na 6= null then8

b(l, 2m)← AddBPDT(b,Nl,na);9

PostProcess(b(l, 2m), Q );10

(the node test of Nl). We mark them as closure transitions. (As discussed in Sec-

tion 4.3, these newly marked transitions cause the HPDT to remain in b(l, m).start

in order to accept any descendants that also match Nl.)

Second, when al+1 is // and pl (the predicate of Nl) tests a child element,

an extra set operation is added in b(l, m) by the AddExtraSet procedure. This

extra set operation is used to process descendants that are nested inside the child

elements tested by pl. This modification is needed only for BPDTs generated using

the templates in the following Figures (with the affected transitions in parentheses):

Figure 4.6 ($4 → $5), Figure 4.7 ($3 → $4), and Figure 4.8 ($5 → $6).

Third, for every BPDT b(k, m) in the last (k’th) layer, the AddOutput(b, m)

procedure translates the output function O into operations in BPDT b(k, m). This

procedure is summarized in Listing 3, in which the NewTrans(s1, s2, e, n, o, t)

function is used to create a new transition of type t, from state s1 to state s2, on

event e of element n, with buffer operation o.
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Algorithm 2: PostProcess(BPDT b, Query Q)

/*Modify b according to Q = N1N2 . . . Nk/O, where Ni = /ai :: ni[pi] .*/

l← b.layer;1

if al = // then2

NewTrans(b.start, b.start, ”B”, //,null, self-closure);3

X ← LocateTrans(b.start, ”B”, nl);4

foreach x ∈ X do x.type← closure ;5

/* Add an extra set operation if needed. */

if al+1 = // then AddExtraSet(b);6

/* Add output to the lowest layer BPDTs. */ ;

if l = k then AddOutput(b,Nk, O);7

If the query’s output function O specifies outputting an attribute of the ele-

ment that matches Nl, an add operation is added to every transition emerging from

the start state that processes the begin event of that element. If O specifies out-

putting the text content of the element, a self-transition with an add operation is

added to the true state (and na state if there is any) in b. If O specifies outputting

the whole element, we add a catchall transition labeled with ∗̄ from the true state

(and na state if there is any) to itself together with the add operation. These two

transitions match the descendant elements and text contents of the current element.

The operation add is also added to both the transition that emerges from the start

state that processes the begin event of the element and the transition from the true

state to the start state that processes the end event of the element.

The initial flag of the add operation in b(k, m) is determined as follows. If pk,

the predicate of the n’th step Nk, is empty or pk tests an attribute, the initial flag

is always 2m + 1. If pk tests a child element or the text content then the initial flag

is 2m+1 if the operation is on a transition whose source or target state is the true

state, and 2m otherwise. We see in Section 4.3.3 that such an initial flag correctly
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Algorithm 3: AddOutput(BPDT b, Location Step Nk, Output Function O)

/*Translate O to operations in BPDT b created from Nk = /ak :: nk[pk].*/

m← b.position;1

switch O.feature do2

case attribute:3

X ← LocateTrans(b.start, ’B’, nk);4

if pk = null then5

foreach x ∈ X do AddOp(x, add(2m, @attrname)) ;6

else foreach x ∈ X do AddOp(x, add(2m + 1, @attrname));7

case text:8

/* Add self-transitions to na and true states for text events of nk. */

if pk = null then9

NewTrans(b.na, b.na, ’T’, nk, add(2m, text()),regular);10

NewTrans(b.true, b.true, ’T’, nk, add(2m + 1, text()),regular);11

case catchall:12

X ← LocateTrans(b.start, ’B’, nk);13

if pk = null then14

foreach x ∈ X do AddOp(x, add(2m, ∗̄));15

else foreach x ∈ X do AddOp(x, add(2m + 1, ∗̄));16

if b.na 6= null then17

NewTrans(b.na, b.na, ’∗̄’, ’∗̄’, add(2m, ∗̄),catchall);18

NewTrans(b.true, b.true, ’∗̄’, ’∗̄’, add(2m + 1, ∗̄),catchall);19

X ← LocateTrans(b.true, ’E’, nk);20

foreach x ∈ X do AddOp(t, add(2m + 1, ∗̄));21

/* add extra flush operations in the BPDT if needed*/

AddExtraSet(b);22

encodes the current state of every predicate for the matching between the current

element and the query.

4.2.4 Aggregations

In order to support aggregates in XPath queries, XSQ uses a statistics buffer

called stat. This buffer is organized as a map and contains one entry for each

aggregation function. The entry’s key is the name of the aggregation function
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and its initial value is null. There are two operations on this buffer: The first,

update(aggr), updates the entry for aggregation function aggr in stat . For ex-

ample, update(COUNT) counts the number of buffer items with true flags and adds

that number to stat entry for count ; update(SUM) adds the numerical value of

every buffer item with a true flag to the entry for sum. The second operation,

print(aggr), outputs the value of the stat entry for aggr .

For example, consider the following query, which differs from the query of

Example 3 only in its use of output function count():

//pub[year > 2000]//book[author]//name/count()

To evaluate this query, we use an HPDT that is almost identical to the one depicted

in Figure 4.9. We replace all occurrences of set(l) with update(COUNT). The

add(f, a) operation performs the update operation automatically if f is a true flag.

We also place a print(COUNT) operation on the transition from $2 to $1 in the root

BPDT.

We may also modify the semantics of the update() operation so that it emits

a new value whenever the number in the buffer is updated. This change makes

preliminary results of aggregation queries available in an online manner. This feature

is especially useful when we process aggregation queries over unbounded streams.

4.3 Runtime Engine

The runtime engine maintains a set of matching records, which are described in

Section 4.3.1 below. These records encode matching information and predicate re-
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Algorithm 4: EventHandler(Event e, Matching Record Set R)

/* R is the set of matching records, each of the form (s, M).*/

for r ∈ R do1

T ← LocateTrans(r.s, e.t, e.n);2

for x ∈ T do3

M ′ ← MatchDepth(r.M, e, x);4

if M ′ 6= null∧ Evaluate(x.predicate, e) = true then5

R← R + {(x.target,M ′)};6

if x.type = regular then R← R− {r} ;7

if x.op 6= null then Execute(x.op, e, r.M) ;8

sults for buffered items. Using the HPDT as a guide, the runtime engine responds to

every input SAX event, updates the set of matching records, and executes the buffer

operations. Buffer operations are described in Section 4.3.2. We discuss correctness

in Section 4.3.3. We describe some implementation techniques in Section 4.3.4 and

analyze our method’s complexity in Section 4.3.5.

4.3.1 Matching Records

The runtime engine for HPDT H maintains a set R of matching records.

Each matching record has the form (s, M), where s is a state identifier from H and

M is a matching between an element and a location step. Listing 4 summarizes the

method for updating R in response to an event e in the input. Initially, R contains a

single matching record with the start state of H and an empty matching. For every

incoming event e the engine performs the following operations on every matching

record r = (s, M).

First, the engine uses the LocateTrans function to locate the set of transitions

that emerge from state s and match event e. The engine performs no further op-
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Algorithm 5: MatchDepth(Matching M , Event e, Transition x)

/* Returns the matching sequence M ′ of the target state. */

M ′ ← null;1

switch x.type do2

case self-closure: if e.t = B ∧ e.d > last(M).d then M ′ ←M ;3

case closure:4

if e.t = B ∧ e.d > last(M).d then M ′ ← append(M,Element(e));5

case catchall:6

if e.d > last(M).d then M ′ ←M ;7

if e.t = T ∧ e.d = last(M).d then M ′ ←M ;8

case regular:9

switch e.t do10

case B: if e.d = last(M).d + 1 then M ′ ← append(M,Element(e));11

case E: if e.d = last(M).d then M ′ ← removelast(M);12

case T : if e.d = last(M).d then M ′ ←M ;13

return M ′;14

eration for r if no such transitions exist. Next, for every matched transition x, the

engine compares e with r.M based on the type of the transition, x.type. The rules

of the comparison are summarized in Listing 5. The MatchDepth function returns a

new matching M ′. If M ′ is empty, no further operation is performed for this transi-

tion, otherwise, the engine uses e to evaluate the predicate, if any, on transition x.

If the predicate evaluates to false, no further operation is performed for x. Finally,

a new matching record r′ = (s′, M ′) is added to R, where s′ is x’s target state. If x

is a regular transition, r is removed from R. If there is a buffer operation associated

with transion x, it is executed as described in Section 4.3.2.

In the above scenario, when r′ is added to R, we say that r takes the transition

x on event e and activates r′. We also say that event e triggers the transition x

and the runtime engine reaches state s′. We call a matching M viable if there is no
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element ei in M such that pi is false before the (ei,B) event. The method described

in EventHandler and MatchDepth is motivated by the following two properties,

which establish the relationship between matching records and matchings.

Property 1 If an element ei has a viable matching M = (e0, e1, . . . , ei) with the

ith location step Ni then, immediately after the runtime engine has processed the

begin event of ei, R contains a matching record r = (s, M), where s is the na or

true state of a BPDT in the ith layer. 2

Consider the event sequence Se = (e0,B), (e1,B), . . . , (ei,B). For every j ∈

[0, i], (ej,B) triggers a transition that goes down to a na or true state in a

lower-layer BPDT. When that transition occurs, ej is appended to the matching

by MatchDepth. Let (s′, M ′) be the matching that is activated when (ej−1,B) is

processed. Consider a begin event that occur between (ej−1,B) and (ej,B). If its

matching end event also occurs before (ej,B) then this pair of events either leads

back to s′ or, if s′s is an na state of BPDT b, leads from s′ to the true state of b.

Thus every element appended to M ′ between (ej−1,B) and (ej,B) by such begin

events is removed from M ′ by its matching end event. If there are unmatched begin

events between (ej−1,B) and (ej,B) then the query must specify ej to be ej−1’s de-

scendant. In this case, every unmatched begin event is processed by the self-closure

transition on s′. Such a transition always leads back to s′ and appends nothing to

the matching. (Recall that if the jth axis is // then the start state of every jth

layer BPDT has a self-closure transition.)

Property 2 For every r = (s, M) in R with M = (e0, e1, . . . , ei) (i > 0), either
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(1) s is a p-value state of a BPDT in the ith layer and M is a matching between

ei and Ni or (2) s is a p-eval state of a BPDT in the (i − 1)th layer and M is a

matching between ei and pi−1. 2

Suppose s is a p-value state. If s is the start state of a BPDT b, s must also

be a p-value state in b’s parent b′. Suppose the start state of b′ is s′. Consider

the transition sequence from s′ to s. According to the templates, there is a unique

transition in the sequence that accepts an unmatched begin event: the one going

out from s′. Since ei must be appended when that transition is taken, the matching

record that accepts (ei,B) must be r′ = (s′, M ′), where M ′ = (e0, e1, . . . , ei−1). If

i = 1, the property holds since s must be the true state of the root BPDT and

M contains the document root (e0) that matches the implicit N0. If i > 1, using

induction we can assume that M ′ is a matching between ei−1 and Ni−1 and s′ is a

p-value state in the (i− 1)the layer. Since s′ is also the start state of b′, b′ is in

the ith layer and thus s is a p-value state in the ith layer. Moreover, since b′ is

instantiated from Ni, the transition going out from s′ accepts only the begin events

of elements matching Ni. Since (ei,B) is accepted by that transition, ei must match

Ni. Therefore, the property holds for r as well.

Now suppose s is a p-eval state. We can trace back from r to the matching

record whose state is a p-value state of the same BPDT. For example, if s is

instantiated from state $3 in Template 5, we can infer that it must be r′ = (s′, M ′)

that activates r, where s′ is instantiated from $1 in Template 5. Moreover, M ′ must

be (e0, e1, . . . , ei−1) and ei must be a child of ei−1 that evaluates pi−1. If Property 2

holds for r′ then it must also hold for r.
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4.3.2 Buffer Operations

Recall that an element may have multiple matchings with a query; the element

belongs to the result if at least one matching satisfies all predicates. When the

runtime engine buffers an element (or its text content or attributes, as indicated by

the query’s output function), it stores one copy of the element for each matching.

Each copy is associated with a (matching, flag) pair.

We now describe in more detail the buffer operations introduced in Section 4.2.1.

Consider a buffer operation that is invoked when matching record r = (s, M) acti-

vates matching record r′ = (s′, M ′) on event e. Let max(M, M ′) denote the longer

one of M and M ′. As before, the last(M) operation returns the last element in a

matching M , while the removelast(M) function returns a new matching containing

all but the last element of M .

• Operation add(f,a) creates a new buffer item whose content is the feature a of

event e. The matching-flag pair associated with this item is (max(M, M ′), f).

• Operation set(i) sets fi (the ith bit of the flag) for every buffer item whose

matching contains the target element ex. If s is an na state, ex is last(M);

otherwise, ex is last(removelast(M)).

• Operation remove(i) removes all buffer items with fi = 0 and a matching

that contains the target element last(M).

The target element is determined by using Property 1 and considering all transitions

on which the operation could reside. We use the set(i) operation as an example.
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Suppose the set(i) operation is executed when r = (s, M) activates r ′ = (s′, M ′) on

event e. According to BuildHPDT, every set(i) operation is on a transition x in the

ith layer. According to the templates, the source state of x, s, could be the na state.

Too, s could be a p-eval state that is reached from the na state via the begin (and

optionally an additional text) event of the child c. In the first case, according to

Property 2, M must be a matching between last(M) and Ni. Since the transition

x can only accept the begin event of a child of last(M), it must be last(M)

that satisfies pi on this event e. Therefore, we should operate on last(M). In the

second case, according to Property 2, M must be a matching between last(M)

and pi. Since last(M) can only evaluate the predicate pi for its parent, we should

operate on the parent of last(M), which is last(removelast(M)). Thus, the

target element ex for an operation set(i) is the element that has just safisfied its

predicate.

Another important feature of the buffer operations is that the flags are always

set at the earliest possible moment. First, from the templates we can see that the

remove operation is always invoked when a predicate evaluates to false. Next, a

set(i) operation is always invoked when an element ei satisfies its predicate if ei

has a matching with Ni. Let us consider the event e that evaluates the predicate to

true for ei. This event e could be (ei, B), (ei, T), (ci, B), or (ci, T), where ci

is the child of ei that satisfies its predicate. According to property 1, (ei, B) must

be processed by the engine. In all four cases, since there are no unmatched begin

events between (ei, B) and e, e must be processed as well and thus the set(i)

operation is executed.
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Example 5 Consider the runtime engine, with the HPDT in Figure 4.9 for the

query //pub[year > 2000]//book[author]//name/text(), operating on the stream

of Figure 4.1. When the begin event of the name element on line 11 is encountered,

there are three matching records with the state $8, which accepts this begin event,

and different matchings:

M1: document root, pub on line 2, book on line 7

M2: document root, pub on line 2, book on line 10

M3: document root, pub on line 9, book on line 10

We use M−
i to denote the prefix of Mi without the last book element and M+

i to

denote the longer matching obtained by appending to Mi the name element on line 11.

When the text content of the name element is buffered, three copies of it are created

with three different matching-flag pairs: (M+
1 ,1001), (M+

2 ,1001), and (M+
3 ,1001),

which are also used below to refer to the buffer items.

On encountering the begin event of the author element on line 12, both match-

ing records ($8, M2) and ($8, M3) process this event and execute the set(2) opera-

tion on the copy whose matching contains the book element on line 10 (the tail ele-

ment of M2 and M3) . Therefore, the three copies are now (M+
1 ,1001), (M+

2 ,1011),

and (M+
3 ,1011). Two new matching record, ($10, M2) and ($10, M3) are activated

after the end event of the author element is processed.

On encountering the end event of the book element on line 13, ($10, M2) and

($10, M3) both take the transition from $10 to $3. The two matching records ($3,

M−
2 ) and ($3, M−

3 ) are already in R, since they activated ($8, M2) and ($8, M3)
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at the begin event of the book element on line 10. They stayed in R because of the

self-closure transition on $3.

On encountering the end event of the pub element on line 15, only matching

record ($3, M−
3 ) takes the transition from $3 to $2 and the remove(1) operation is

executed. Since the buffer item (M+
3 ,1011)’s matching contains the pub element on

line 9 (the tail element of M−
3 ) and its f1 is 0, it is removed from the buffer. The

other two copies stay in the buffer.

On encountering the end event of the book element on line 16, only matching

record ($8, M1) takes the transition from $8 to $3 and the remove(2) operation is

executed. Since the buffer item (M+
1 ,1001)’s matching contains the book element

on line 10 (the tail element of M1) and its f2 is 0, it is removed from the buffer.

However, the buffer item (M+
2 ,1011) is not removed since neither does its matching

contain the book element on line 10 nor is f2 0. The item is updated to (M+
2 ,1111)

on encountering the text event of the year element on line 17 and consequently sent

to output.

4.3.3 Correctness

We now outline the correctness of the above method. To simplify the descrip-

tion, we assume the buffer items are created for whole elements instead of their

features (such as attributes). We wish to show that an element ek has a matching

M that satisfies all the predicates if and only if there exists a buffer item that is

created for ek and is associated with the pair (M, 1∗) (where 1∗ denotes the true
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flag). The following property is useful for this purpose.

Property 3 Suppose element ek has a matching M = (e0, e1, . . . , ek) with Nk. A

matching record (b(k, m).start, f) is active upon encountering (ek,B) if and only

if ei has satisfied pi for all i ∈ [0, k − 1] such that mi = 1. 2

Consider a BPDT b(i, j) in the ith layer. Its position, j, has i bits since

j ∈ [0, 2i−1]. Consider now the two child BPDTs b(i+1, 2j) and b(i+1, 2j+1). The

first i bits of their positions are copied from j and the last bits are determined by the

state by which they overlap with b(i, j). (If j = (j0j1 . . . ji−1)2, 2j = (j0j1 . . . ji−10)2

and 2j + 1 = (j0j1 . . . ji−11)2.) It is easy to see that b(k, m) copies the ith bit in

its position (m) from the ancestor b in the (i + 1)th layer: If b.start is its parent’s

true state, mi = 1; otherwise mi = 0. In other words, mi = 1 if and only if a true

state in the ith layer is reached during the transition sequence from the start state

of the HPDT to the start state of b(k, m). Therefore, when the b(k, m).start is

reached and associated with a matching M ′ = (e0, e1, . . . , ek−1), we know that, for

every mi = 1, a true state in the ith layer has been reached. Moreover, since only

the elements in M ′ and their children (used for predicate evaluation) may trigger

the transitions, we know mi = 1 only if ei has satisfied pi.

Suppose ei satisfies pi before (ek,B). Let e be the event that satisfies pi for

ei. An examination of the templates reveals that if the transition that accepts e is

not connected directly to the true state in the BPDT the the true state must be

reached later. Thus, for every ei that satisfies pi before (ek,B), a true state in the

ith layer must be reached before (ek,B). Therefore, upon encountering (ek,B), the
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engine reaches the state b(k, m).start, where mi = 1 if ei has satisfied pi.

Output ⇒ Result Suppose a buffered element ek is associated with a true flag

and a matching M = (e0, e1, . . . , ek). We wish to show that (1) M is a matching

between ek and Nk and (2) ei (i ∈ [0, k]) satisfies pi, the predicate of Ni. Result (1)

follows directly from Property 2 and an enumeration of the possible output functions

and the corresponding translated operations. If the ith bit of the flag of ek, fi, is

1, either the ith bit of initial flag of the buffer item is already 1 or fi is set by a

set(i) operation. We have shown in Section 4.3.2 that set(i) set fi for ek (with

matching M) only if M contains ex and ex has just satisfied pi. Therefore, we only

need to show that the ith bit of the initial flag for ek (with matching M) is 1 only

if ei satisfies pi. According to the definition of add operation, in BPDT b(k, m), the

initial flag is 2m + 1 if the transition on which the operation reside is connected to

a true state, or 2m otherwise. For the kth bit of the initial flag, it is 1 only if pk

evaluates to true for last(M) (otherwise the true state would not be reached).

For any other bit fi, it is 1 if only if mi = 1. According to Property 3, since the

start state of b(k, m) has been reached, mi is 1 only if ei satisfies pi.

Result⇒ Output Suppose an element ek has a matching M = (e0, e1, . . . , ek), ei

(i ∈ [0, k]) that satisfies pi. We wish to show that there exists a buffer item created

form ek with matching M and a true flag. By Property 1, ek is processed by the

engine using (the transitions in) a kth layer BPDT and be added to the buffer. Let

us consider the event e that evaluates pi to true for ei. If ek is buffered before e, fi

for e will be set for ek when e is processed. If ek is buffered after e, there are two
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cases. First, ek is buffered before the true state in the ith layer is reached (but ei

has satisfied pi). This case could happen only if ek is a descendant that is nested

in ci. The fi is set for ek by the extra set operation added by the AddExtraSet

procedure. Second, ek is buffered after the true state in the ith layer is reached.

By Property 3, upon encountering (ek,B), the engine has a matching record with

the start state of a BPDT b(k, m), where mi = 1. Therefore, eK must be buffered

by an add operation with an initial flag 2m or 2m + 1, both of which have fi = 1.

4.3.4 Implementation

Depth stack Instead of storing a matching as a sequence of the elements, we

use a depth stack : a stack consisting of the depths of the matching’s elements. In

Listing 5, when an element is to be appended to the matching, we push its depth

onto the depth stack. When the rightmost element of a matching is to be removed,

we pop the top item off the stack. In MatchDepth(), we only need to compare the

depth of the rightmost element in a matching with the depth of the current event.

Thus, using a depth stack is equivalent to using a matching for this function. Recall

that when the engine executes a buffer operation set(i) or remove(i), it operates

only on the buffer items whose matchings have a specified element ei that matches

Ni. Every element after ei in the matching must be closed because no event from

ei’s descendant can invoke set(i). Further ei is always the element that is being

processed so that every element before ei in the matching is currently open. Since

no two open elements can have the same depth, the depth stack uniquely specifies
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the useful prefix of the matching. Thus, all the necessary operations on matchings

can be performed on their depth-stack representations instead.

Depth stacks are stored as integers and operations on the depth stacks are

implemented as bitwise operations on the integer representations. For example, if

the depth stack is (0, 1, 2, 5), the integer representation is 111001. That is, the i’th

(i >= 0) bit is set if and only if the depth stack contains i. This representation is

unambiguous because the depth stack consists of monotonically strictly increasing

numbers (reading the stack bottom to top). Thus, the depth stacks use very little

memory and operations on them incur very little overhead. We use long integers

(64 bits) for this purpose. In order to support data with depth greater than 64, we

can switch to using a pair of long integers.

Global Queue XSQ maintains a global queue that contains a single copy of each

buffered data item, irrespective of the number of times the item has been buffered.

Recall that an item may be buffered multiple times, with different (matching,flag)

pairs. In such buffer entries, XSQ stores a pointer to the corresponding items in

the global queue. When the flag of any such buffer entry becomes a true flag, the

corresponding data item in the global queue is marked for output and no further

operations are performed on it. The document order of result items is preserved (as

required by XPath) by outputting data items only when they are at the head of the

global queue. That is, even if an item is marked for output, it is not emitted as

output until the items ahead of it in the global queue are either removed or emitted.

Buffer Segmentation Consider buffer item b1 with matching (e0, e1, . . . , ei,
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ei+1, . . . , ek) and flag f = (f0f1 . . . fifi+1 . . . fk)2 and, similarly, b2 with match-

ing (e0, e1, . . . , ei, e
′
i+1, . . . , e

′
k) and flag f = (f0f1 . . . fif

′
i+1 . . . f ′

k)2. If fi = 0 and

fj = f ′
j = 1 for j > i then any future set(x) or remove(x) operations will be

always applied to b1 and b2 at the same time. To take advantage of this feature,

we group buffer items (pointers) based on the longest prefixes of their matchings

that have the last element’s predicate pending. Since we store depth stacks instead

of matchings, we use function remain(ds , f) to return the prefix of ds of length

i + 1 where i is the largest value such that fi = 0. If a pointer is associated with

the pair (ds, f), the pointer belongs to a group with key remain(ds , f). The group

is also associated with a single flag f , called the group flag. When a buffer item

is first created with depth stack ds and initial flag f , it is added to a group with

the key remain(ds , f). When a set(i) operation is executed on the buffer items

whose matchings have an element ei that, in turn, has a matching ds with Ni, we

simply set fi for the group flag f of the groups with ds. Since the result flag f ′ has

a new right-most zero-bit, the whole group is appended to anther group with key

remain(ds , f ′). For a remove(i) operation, we simply delete the group with key

ds. In our implementation, all the groups are organized as a hash table. The key

is the depth stack and the pointers in the group is organized as linked list. All the

marking operations are executed on groups of pointers.
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4.3.5 Complexity

A detailed experimental study of the time and space efficiency of XSQ appears

in Section 4.4. Below, we provide a very simple analysis of the construction-time

and runtime complexity. For the construction-time complexity, we assume that the

input query is in a parsed form and that string operations take unit time. The

dominant factor in the construction is the number of BPDTs in the HPDT. For

the runtime complexity, we assume that each depth-stack operation takes unit time.

(See Section 4.3.4.) The function remain(ds, f) can be computed in constant time

as follows. Since the right-most non-zero bit of every flag f can be computed in

advance, given the depth stack ds stored as an integer, the remain(ds, f) function

is a simple bitwise operation. Target groups in the buffer can be located using the

hash table in constant expected time. Thus buffer operations, such as appending an

item, deleting a group, and appending a group to another group, can be performed in

constant expected time. Strictly speaking, some depth-stack operations, which are

implemented using bitwise operations, and some buffer operations, which operate

on only pointers in groups, may require non-constant time given arbitrary inputs.

(For example, XSQ’s implementation of depth stacks using constant-size integers

does not work if the input XML has truly unbounded depth.)

Construction-Time Recall the construction of HPDTs summarized in Listing 1.

The worst case occurs when every location step has a predicate. In this case, the

construction creates 2k−1 BPDTs for an XPath query with k location steps. Creating

a BPDT requires constant time for the tasks of finding the matching template,
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initializing a constant number of states and transitions, and adding and changing a

constant number of operations. (The number of templates, states, transitions, and

the number of items to check for template matching, are all bounded by a small

constant.) Therefore, the space and time cost of construction is bounded by O(2k).

Although the exponential dependence on query length may seem problematic at

first, the space cost of the HPDT is typically completely dwarfed by the space cost

of buffering data at runtime.

Runtime Recall the runtime actions summarized in Listing 4. First, by examin-

ing the templates, we note that given a source state and an event, the LocateTrans

function returns at most two transitions. Listing 5 suggests that the MatchDepth

function also requires only constant time. The main determinant of the complexity

is the number of matching records that need to be processed in the outer for-loop

of Listing 4. If the query contains no // axis, the HPDT is free of closure and

self-closure transitions. In this case, there is only one matching between a loca-

tion path and an element. There can be only one or two (in the case of catchall

transitions) matching records at any time. Therefore, each event can be processed

in constant time. If the query contains // axes, there will be multiple matching

records because of the closure and self-closure transitions. Since there are at most

2i−1 BPDTs generated to process the ith location step Ni, we have at most 2i states

(2 states in each BPDT) associated with a matching of length i + 1. The number

of ways that an element at depth d can match Ni is bounded by
(

d
i

)

. Therefore, the

number of matching records (and thus the processing time per event) is bounded by
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∑k
i=1 2i

(

d
i

)

, where k is the query length and d is the maximum depth of an element.

However, typical query-data combinations do not permit all the combinations for

matchings assumed by the above calculation; thus the bound is not likely to be

reached in practice. (See Section 4.4.)

4.4 Experimental Evaluation

The goals of this experimental study include validating the XSQ implemen-

tation, characterizing its features and performance, and providing an exploratory

description of the features and performance of systems that are related to XSQ. We

stress that our experiments are not designed for a head-to-head micro-benchmark-

style comparison of the systems we study. Given the diversity of the systems in

goals, supported query languages and features, implementation language and envi-

ronment, state of development, etc., such a comparison would not be easy. Rather,

we wish to gain some qualitative insights into the cost of supporting certain XPath

features such as closures and to study which systems and features are best suited

to a given environment.

We begin by describing our experimental setup in Section 4.4.1. We describe

results on throughput in Section 4.4.2, latency in Section 4.4.3, and memory usage

in Section 4.4.4. Section 4.4.5 presents a broader study of a set of query engines

aimed at characterizing their features and performance. Section 4.4.6 presents an

experimental characterization of XSQ.
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Figure 4.10: System Features

4.4.1 Experimental Setup

In order to facilitate our experimental evaluation of the effects of different

XPath features, we have implemented two versions of XSQ: XSQ-NC supports

multiple predicates and aggregations, but not closures; XSQ-F supports closures

in addition to multiple predicates and aggregations. The former implementation

uses a deterministic automaton leading to performance benefits. We conducted our

experiments on a PC-class machine with an Intel Pentium III 900 MHz processor

with 1 GB of main memory running the Redhat 7.2 distribution of GNU/Linux

(kernel 2.4.9). To ensure the evaluation is performed only in the main memory, the

maximum amount of memory the Java Virtual Machine (JVM) could use was set to

512 MB. For the purpose of comparison, we selected a set of systems that process

XPath or XPath-like queries. These systems are outlined in Figure 4.10. As the

figure suggests, these systems vary considerably in their design goals and features.

Many do not support streaming evaluation, and many are main memory systems

that evaluate the query on the document tree of the data built in memory. We have
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Name Size Text Num. of Depth Avg. Parsing Parsing

(MB) size elements avg max tag Time(s) Time(s)

(MB) (K) length Xerces Expat

SHAKE 8 5 180 5.77 7 5.03 1.42 0.43

NASA 25 15 477 5.58 8 6.31 4.35 1.50

DBLP 119 56 2,990 2.90 6 5.81 27.60 7.53

PSD 716 286 21,300 5.57 7 6.33 170.00 66.40

RECURS 10 9 96 22.30 26 5.31 1.65 0.43

RECURB 121 105 963 26.00 30 5.31 13.00 4.82

Figure 4.11: Dataset Descriptions

discussed XQEngine [43] (version 0.56) and XMLTK [4] (version 0.9) in Section 2.1.

An implementation of STX, Joost [8] (version 20020828), and an implementation

of XSLT, Saxon [45] (version 6.5.2), are also studied here. Some systems use query

languages that are supersets or variations of XPath. For such systems, we issued

queries that are equivalent to the XPath queries in our experiments. In many cases,

the results are enclosed by different container elements but the contents are the

same.

In our experiments, we use both real and synthetic datasets that differ in size

and characteristics. We use four real datasets [4]: an XML-ized version of Shake-

speare’s plays (SHAKE); the NASA ADC XML dataset (NASA) [11], bibliographic

records from the DBLP site (DBLP) [48], and the PIR-International Protein Se-

quence Database (PSD) [67]. Since these datasets have relatively shallow structures,

we generated two synthetic datasets, RECURS and RECURB, using IBM’s XML
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Generator with deeper document structure to explore features related to such data.

Some characteristics of these datasets are listed in Figure 4.11. In Section 4.4.5, We

also use Toxgene [6] to generate synthetic datasets that contain specified number of

designated elements.

To the best of our knowledge, there are no standard or widely used benchmarks

for XPath queries. Therefore, following other work on this topic (e.g., [51, 7]), we

conduct our experimental study using queries that vary in a variety of features

that are likely to influence performance, such as query length, number of predicates,

and types of axes. The queries used for each experiment are listed near the figures

summarizing the results.

For a text-based data format such as XML, parsing the input typically ac-

counts for a substantial fraction of the running time. The last two columns of

Figure 4.11 list the parsing times for our sample datasets. We also note that pars-

ing times vary widely across systems, depending on the parser and programming

environment. In order to prevent these differences from masking the effects of query

processing, we normalize the running time of each system using its parsing time.

In our experiments, we executed each query on a dataset 30 times to get the

mean value of the result we need. We also computed the 95% confidence intervals

of the values to make sure our comparisons are statistically significant. We found

that in all cases the 95% confidence interval is of width less than 1% of the mean

value being measured (throughput, memory usage, etc.). Since it is difficult to

display such tight confidence intervals graphically, the conventional error-bars are

omitted in the graphical results that follow.
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Figure 4.13: Relative throughputs for different queries on the DBLP dataset

4.4.2 Throughput

We measure throughput as the rate at which a streaming query engine con-

sumes input data (megabytes per second). Since this rate may vary over time (per-

haps depending on the structure of the data, or as a result of periodic reorganization

of data structures in a streaming system), we measure the average throughput as

the size of the input divided by the time required to process it. (For infinite streams,

the average throughput at a point in the stream is obtained by dividing the amount
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Figure 4.14: Relative throughputs for different queries on the NASA dataset

of data processed up to that point by the amount of processing time expended up

to that point.)

As noted earlier, parsing often accounts for a significant fraction of the process-

ing time and may mask the differences due to query processing proper. Therefore,

we define relative throughput of a system to be its throughput divided by the

throughput of the parser used by that system.

Figures 4.12, 4.13, 4.14, 4.15, 4.16, and 4.17 summarize our experiments com-

paring the relative throughputs of the systems over different datasets and queries.

Results for several combinations of queries and datasets are missing for one or more

systems because either the system does not support queries with certain features

(e.g., closures, predicates) or the dataset is too large for the implementation.

We observe that, in general, XMLTK and XSQ-NC are the two fastest systems

when we use simple queries that they support. XMLTK supports only predicates

that can be evaluated at the time a potential result element is encountered, such

as a predicate on that element’s attribute. Therefore, XMLTK can always output
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Figure 4.15: Relative throughputs for different queries on the PSD dataset

a result item at the time it appears in the stream. The HPDT used in XSQ-NC is

deterministic, which means there is only one active matching record and at most one

matching transition for the incoming event. It is one reason that XSQ-NC is faster

than XSQ-F since XSQ-F may have multiple active matching records and multiple

matching transitions for an incoming event.

However, even for the same query without closure, XSQ-NC is faster than

XSQ-F although XSQ-F also has only one active matching record in this case. One

reason is that XSQ-NC does not need mechanisms such as depth stacks to keep

track of possible multiple matchings. Moreover, XSQ-F always buffers a potential

result item b first even if b is known to be in the result when it comes in. XSQ-F

then marks b as output, checks the queue, and outputs b if b is at the head of the

queue. This mechanism is used only in XSQ-F since, due to the existence of closure

axes, there may be other undecided items in the buffer before the current buffer

item. Without closure axes, if we can determine b is in the result, we can always

output b right away. In this case, we conclude that every b’s ancestor matches a
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Figure 4.16: Relative throughputs for different queries on the RECURS dataset

location step in the query and satisfies the predicate. Therefore, there cannot be any

undecided buffered items, since a buffered item can only wait for an open element

whose predicate is pending. We study these issues further in Section 4.4.5.

Figures 4.12, 4.14, and 4.16 suggest that Saxon is faster than XSQ-F when

they process XML data that can fit into main memory. Saxon loads all the data

into the memory to build the DOM-tree before it evaluates the query. After parsing

the data, Saxon performs all the processing in main memory. Such in-memory

processing is efficient and can support more complex features such as the whole set

of XPath axes. However, the main memory approach is not suitable for streaming

data in general.

4.4.3 Latency

Output latency is an important property of streaming systems, and we measure

it as follows. We let every system output the result to standard output. For a query

that returns an element with name N, we monitor the standard output to detect
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Figure 4.17: Relative throughputs for different queries on the RECURB dataset
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Figure 4.18: Latency on the SHAKE dataset
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Figure 4.19: Latency on the SHAKE dataset
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Figure 4.20: Latency on the NASA dataset

the start-tag <N> and record the elapsed time when we receive each such tag. (The

clock is started at the time the system begins evaluation.) For each result item, we

refer to this time as its latency and define the latency of the query result to be the

average latency for all items in the result.

Figure 4.18, 4.19, 4.20, and 4.21 summarize our results on the output latency.

In the first three figures, the left parts illustrate the time when the first result

elements are returned. The right parts of the figures illustrate the average output

latency of result elements. We note from Figure 4.18 that the streaming systems

usually output the first result item earlier than the non-streaming systems. (XSQ-

NC and XMLTK returned the first element immediately after the systems were

invoked.) This result is as expected since the non-streaming systems need to load

all the data and build the document tree in memory before actual query evaluation

begins. The average latency for the non-streaming system Saxon is very close to its

latencies for the first returned element. The reason is that it always evaluates the

whole query first and then returns the result when the whole result set is available.

Since the XQEngine version we tested cannot handle documents with more than
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Figure 4.21: Latency on the NASA dataset

32,767 elements, we divided datasets into a sequence of smaller documents as needed

to satisfy this constraint. Therefore, XQEngine returned the first result item after

it finished processing the first small document. Also, we note that the bar depicting

average latency for XQEngine has been scaled down 10-fold in order to fit in the

chart.

In Figure 4.19, we used a query that contains a predicate testing whether

the text content contains a string. Besides results similar to those in Figure 4.18,

we notice that XQEngine returns the first result very quickly and that its average

latency is also lower than that in Figure 4.18. This result is explained by recalling

that XQEngine builds a full-text index for the XML document, and can therefore

efficiently evaluate queries that require string lookups of this kind.

We used the NASA dataset for the next set of experiments. Figure 4.20 illus-

trates that for this larger (23MB) dataset, the latencies of the first result items in

the streaming systems are much smaller than those in the non-streaming systems.

This result is as expected since the non-streaming systems now need to load a larger
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Figure 4.22: Preprocessing time, query processing time, and total querying time

dataset before they output the first result item. We also observe that the average

latencies of XSQ and XMLTK are much smaller than those of the non-streaming

systems, while the average latency of Joost is still almost the same as that of Saxon.

After examining the result, we discovered that Joost uses buffered output. Since

the result size of this query is twice the buffer size, the result items are emitted in

two groups.

We note that the non-streaming systems may return results faster. In Fig-

ure 4.21, we used a query that returns a single element. By selecting the element

at different positions in the stream, we observe that the latency for XSQ is almost

proportional to the size of data before the result element. In contrast, Saxon’s la-

tency is almost constant since the position of the element is not important for its

main-memory query evaluation.

Figure 4.22 illustrates the result of measuring the components of the overall

query-processing time. Although the figure depicts the result for one query, the
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results are similar for other queries we used. The dark bar represents the query

compilation time, which usually includes parsing the query and building the data

structures used by the runtime query engine. The gray bar represents the pre-

processing time. For example, the preprocessing stage of Saxon loads all the data

into memory to build the DOM-tree before it can evaluate the queries. Similarly,

XQEngine preprocesses data by building a full-text index on the data before evalu-

ating any queries.

In general, one benefit of the non-streaming systems is that, as long as the

preprocessed data in these systems remains in memory, subsequent queries can be

evaluated very efficiently by reusing the preprocessed data.

4.4.4 Memory Usage

The main memory required by a streaming query engine is an important metric

and often determines its feasibility for an application. Figures 4.23, 4.24, 4.25, 4.26,

4.27, and 4.28 summarize the results of our experiments comparing the memory

usage. We observe that, as expected, the streaming systems typically use much less

memory than the non-streaming systems. We also note that, for different datasets,

the streaming systems use almost the same amount of memory. This fact suggests

that the amount of memory used by the streaming systems is only weakly dependent

on the size of the datasets. For systems such as XMLTK and Joost, this observation

is always true since no data is buffered during the evaluation. However, systems

that support predicates, such as XSQ-NC and XSQ-F must buffer data and the
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Figure 4.24: Memory usage for synthetic datasets of different sizes

amount of buffered data may be large, depending on the dataset and query. Further

experiments studying this aspect of XSQ are described in Section 4.4.6.

We also used the XML Generator program to generate datasets of varying

size and recursiveness. For example, for the dataset of size 13 MB, the nested level

parameter of the XML Generator program is set to 15 and the maximum repeats

parameter is set to 20. From Figure 4.24 we note that even with highly recursive

data and queries with closures, the memory used by XSQ-F is almost constant. Since

all the items in the buffers can be determined when we encounter the end event of

the element matching the first location step, the maximum amount of memory that
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Figure 4.27: Memory usage for different queries on the RECURS dataset
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Figure 4.28: Memory for different queries on the RECURB dataset

<A id="1">
<prior> 1 </prior>
<foo> 1 </foo>
<!--- up to 10,000 foo elements --->
<foo> 1 </foo>
<posterior> 1 </posterior>

</A>

Figure 4.29: Toxgene template

XSQ needs does not exceed the size of the largest element in the stream.

4.4.5 Characterizing the XPath Processors

Since streaming query engines need to buffer potential results items, the rel-

ative ordering of XML elements in a dataset may influence the amount of buffer

space needed. To study the effect of element order, we generated a 10 MB dataset

using Toxgene, by applying the template of Figure 4.29 repeatedly to generate new

elements with successive id attributes. The result dataset contains 128 A elements,

each of which has a non-zero id attribute, a prior child with value 1, a posterior

Q1: /A[prior=0]
Q2: /A[posterior=0]
Q3: /A[@id=0]

Figure 4.30: Synthetic queries
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Figure 4.31: Effect of data ordering on throughput

child with value 1, and up to 10,000 foo children. There are 700,771 foo elements

in total. We used the three queries in Figure 4.30. All three produce empty results

on the dataset. However, the data items that are used to evaluate the predicates

come from different locations in the element.

Figure 4.31 summarizes the results of running XSQ-NC, XSQ-F, and Saxon

on these queries. Saxon’s throughput is essentially the same for all three queries

since it always builds the whole DOM tree before the evaluation. When it traverses

the DOM tree to evaluate the query, the document order of the elements is not

important. However, the throughput of XSQ-NC is about 30% higher for Q3 than

for Q1 and Q2. For Q3, XSQ-NC can determine at the beginning of an A element

that all the contents in it should be ignored. For Q1 and Q2, on the other hand, the

content of every A element must be buffered because the prior and posterior child

elements may occur anywhere before the </A> tag. We also observe that XSQ-F

is not as sensitive as XSQ-NC to the element order. Even if XSQ-F determines

that an incoming item is in the result set, XSQ-F cannot output it right away since

there may exist undecided queue items. Thus, XSQ-F must first mark the item as

“output” and then check the queue, which reduces its sensitivity to the order of the
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Figure 4.32: Effect of the result size on throughput

elements.

We also studied the sensitivity of throughput to the result size, which varies

across the systems. For example, XQEngine is slower than the other systems in

Figure 4.22 where the query returns a large portion of the dataset. However, if a

node test in the query is not in the data, XQEngine returns the empty result set very

quickly because it builds an inverted-file index on all the strings in the data. The

other systems, lacking such an index, spend similar amount of time on the query

irrespective of whether the node tests in the query appear in the data.

We used Toxgene to generate a 10 MB dataset consisting of a mix of three

types of elements (besides a few top level elements): 10% of the elements have

name red, 30% green, and 60% blue. The content of each such element is a

single character. We used this dataset with three queries: /a/red, /a/green, and

/a/blue, generating query results that are roughly 1 MB, 3 MB, and 6 MB in size,

respectively. Figure 4.32 illustrates the relative throughputs of the systems on these

queries. (XQEngine is not tested for the same reason as described in the previous

experiment.)

We observe that XSQ-NC is quite sensitive to the result size. The different
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performance is due to the different handling of data items based on whether they

are in the result. Items that are not in the result can be ignored by XSQ-NC. If

there are more items in the result set, XSQ-NC performs more matching record

activations and output operations, which constitute a large portion of the running

time of XSQ-NC. We also note that XSQ-F is not as sensitive as XSQ-NC. XSQ-F

always keeps the item first since there may be multiple transitions that process the

item. Even if the item is not in the result, only when all the transitions finish can we

throw it away. The difference between the treatment of elements in and not in the

result is therefore not as large as the difference in XSQ-NC. Saxon’s throughput is

not very sensitive to the result size because, after it loads all data into main memory,

all query evaluation is performed in main memory except for the output process,

which constitutes only a small amount of the total execution time. Similarly, the

low sensitivity of XMLTK’s throughput to the result size is because the difference is

only in the time required to output the result. However, it is not clear why Joost’s

throughput is not sensitive to the result size.

4.4.6 Characterizing XSQ-F

In this section, we study the effect of different query features on the perfor-

mance of XSQ-F. In particular, we study the effect of the number of closure axes in

the query, the number of predicates in the query, and the query length (number of

location steps).

In the first experiment, we executed a set of queries that return the same
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Figure 4.34: Effect of closure axes in the queries on NASA dataset
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Figure 4.35: Experiment of Figure 4.34 using a modified NASA dataset

result set but have different number of closure axes. In Figure 4.34, QS, where

S ⊆ {1, 2, 3, 4, 5}, is the query in which the ith location step has a closure axis for all

i ∈ S. For example, the query Q123 has closure axes in the 1st, 2nd, and 3rd location

steps. (The remaining location steps have the child axis.) The memory usage of

XSQ-F when evaluating these queries is summarized in Figure 4.36. The HPDT

generated for the query /dataset/reference/source/other/name is depicted in

Figure 4.33. The HPDTs for other queries have a similar structure, with self-closure

transitions and closure transitions in the appropriate places, following the scheme

of Section 4.2.1.

Figure 4.36 indicates that the memory used for the different queries does not

vary much. This insensitivity is due to the fact that the memory used for storing

the HPDT and matching records is only a very small amount in the total memory

used by the system. The buffers are responsible for most of the memory usage.

Therefore, although different number and position of closure axes lead to different

number of matching records at runtime, the difference in overall memory usage is

very small.
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Figure 4.36: Memory usage of queries with closure axes on NASA dataset

Figure 4.34 summarizes the throughput on the above queries. We observe that

the throughput is lower for queries with a starting closure axis than for queries with

a starting child axis. The DTD of the dataset [11] suggests that all the top level

element are dataset elements. (The datasets element in the DTD is treated as

the document root.) qIf the first location step has a closure axis, after the runtime

engine (Figure 4.33) makes the transition from state $1 (with depth stacks omitted

here) to $2, $1 keeps active. Then, the engine needs to check for every incoming

element whether it is a dataset element, which involves string comparisons. In

contrast, if the first location step uses a child axis, $1 does not remain active after

the transition. Therefore, only for all the child elements of the dataset elements

does the engine check their names. Any element that is not a descendant of both

dataset and reference is ignored after the engine checks its depth, which is much

faster than string comparison.

It is not the position of the closure axes in the query alone that determines

the throughput. On examining the dataset closely, we note that the evaluation time

is significantly affected by the selectivities of each location step. Let S be the set of
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Figure 4.37: Effect of predicates in the queries on NASA dataset

elements that match the (i− 1)th location step and S ′ the set of children of nodes

in S. We define the selectivity of the ith location step (for a given dataset) to be

the fraction of the nodes in S ′ that match the ith location step. If the ith location

step uses the closure axis, we use descendants instead of children in identifying S ′

. For the query and dataset of this experiment, each dataset element contains one

reference child, which corresponds to 10%–20% of the total number of events for

one dataset element.

We also ran these queries on a dataset obtained by removing all child elements

of dataset elements other than reference (which means the selectivity of the

second location step changed from around 20% to 100%). The result is summarized

in Figure 4.35. We observe that the closure axis in the first location step no longer
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has a significant impact on the throughput. (The throughput of query Q1 is not

significantly smaller than throughputs of queries Q2, Q2, Q3, and Q5, all of which

contain one closure axes but in different location steps.) The reason is that the extra

work done for Q1 (checking descendants of child elements other than reference)

on the original dataset no longer exists since the dataset elements in the new

dataset have only reference child elements. In general, when the selectivity of

a location step is small, closure axes preceding this step result in a performance

penalty because the descendants that are not in the result set cannot be eliminated

by depth comparisons and incur the cost of more expensive string comparisons.

In the previous experiment, we used queries with only closure axes but without

predicates. In the next experiment, we used queries on the NASA dataset with

predicates of different types and in different positions in the query. The results are

summarized in Figure 4.37. We abbreviate the node test dataset as d in the queries.

Similarly, we abbreviate other node tests by their first letter. The first eight queries

have the same result although they have different types and numbers of predicates.

The last three queries have empty results. We note that the throughputs for the first

eight queries are similar because the number of comparisons needed to determine

the results of their predicates does not vary much across these queries. For example,

although the dataset elements typically have several altname child elements, the

first altname child element usually has the attribute type that has value ADC.

Therefore, the queries Q3 and Q4 both check the first altname child element and

ignore the remaining altname elements. However, for query Q10, although the result

set is empty, resulting in less time spent on output operations, all the altname child
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elements of dataset elements must be checked. Therefore, its throughput is lower

than those of queries Q3 and Q4. We also observe that the query Q9 has the largest

throughput among all the queries used in the experiment. The reason is that the

predicate in this query [@subject=test] can be evaluated to false at the beginning

of the dataset elements. Thus, all the descendants of the dataset elements can be

ignored. This experiment demonstrates that XSQ is able to save on comparisons

for predicates that have already been evaluated.
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Chapter 5

Segment-based Streaming XPath Evaluation

We introduce in Chapter 4 how we evaluate XPath queries with closures,

multiple locations, and aggregations. In this chapter, we introduce our general

methodology for streaming XPath evaluation, the segment-based evaluation. Its

applications are illustrated in Chapter 6, Chapter 7, and Chapter 8.

As we describe in Section 3.3, in a streaming environment where no DOM tree

[39] is built, we cannot use the traditional step-by-step evaluation method. In this

chapter, we describe an equivalent interpretation of the XPath queries based on the

SAX model [53]. First we describe a new concept of segments in Section 5.1. The

model of the XPath queries we use is described in Section 5.2. In Section 5.3, we

define how an element matches a query tree node in a streaming environment. All

the example queries in this chapter are evaluated on the sample input stream listed

in Figure 5.1. At the right-most end of each line, we number the elements according

to the order in which they are encountered in the stream.

5.1 Segments

We use the term segment to refer to a pair of consecutive node tests along

with the connecting axis. In the following query:

//store[name=’BN’]//book[//price=10]//title
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1. <store> e1

2. <location>NY</location> e2

3. <book> e3

4. <title>XML</title> e4

5. <price>10</price> e5

6. <author>Mike</author> e6

7. </book> e3

8. <name>BN</name> e7

9. <book> e8

10. <title>Java</title> e9

11. <price>15</price> e10

12. <author>John</author> e11

13. </book> e8

14. </store> e1

Figure 5.1: Sample XML stream

the store node test participates in the following two segments: store/name and

store//book. It also participates in a hidden segment ROOT//store, where ROOT is

the hidden zeroth step that alway matches the document root (please see page 42).

In general, a segment has the form M/a::N, where M is the parent node test, a is the

axis, and N is the child node test.

Recall from Section 3.3 that we evaluate a location step in a context, which is

a set of nodes in the DOM tree selected by its previous location step. For example,
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for query /store/book/name, we first select all store children of the document

root; for every store selected, we select all its book children; then for every book

selected, we select all its name children, which consist the result set of the query.

We can also evaluate an XPath queries by evaluating its segments. For exam-

ple, for the above query, we can first evaluate segment store/book, whose result

consists of the set of book elements with a store parent, and segment book/name,

whose result consists of the set of name elements with a book parent. The two result

sets are combined (like a join operation) to get the final result set: the book parent

of the name elements must appear in the result set of the first segment.

A segment is in general easier to evaluate than a location step, especially in

streaming environment, since it has no recursive structure such as nested subqueries.

Moreover, even if the axis in the segment is a reverse axes, the segment is still

easy to evaluate: since we are essentially only finding pairs of elements matching

certain relations (parent/child or ancestor/descendant), a stack is enough to hold

the information we need. In the contrary, the evaluation of a location step may be

as complex as that of a full XPath query.

To evaluate XPath queries using segments, the important tasks are to orga-

nize results of the segment evaluation and to compute the final result using those

intermediate results. The following Example 6 illustrates the basic idea of the

segment-based evaluation.

Example 6 In Figure 5.1, element e4 on line 4 has two ancestors besides the docu-

ment root: element e1 on line 1 and element e3 on line 3. The ancestor-descendant
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pair (e1, e3) matches segment store//book, (e3,e4) matches book//title, and

(e1,e4) matches store//title. Therefore, we can conclude from the above facts

that e3 is the result of query store//book[//title] and also the result of query

store[//title]//book. Meanwhile, e4 is the result of store//book//title and

of store[//book]//title. Note that an ancestor-descendant pair may match more

than one segments: (e1, e3) also matches store/book.

We call such an evaluation scheme a segment-based evaluation. In Chap-

ter 6 and 7, we illustrate how the segment-based evaluation efficiently processes

XPath queries with subqueries and reverse axes.

The above example also suggests that evaluation of segments can be shared

among queries. In Chapter 8, we use this feature in our XPaSS system to im-

prove the evaluation performance when we need to evaluate multiple XPath queries

simultaneously over XML streams. We describe the basic idea of segment-based

evaluation in this chapter and details in the remaining chapters of this thesis.

5.2 XPath Query Tree

We model an XPath query as an XPath query-tree (XQT). An example XPath

query and its XQT are illustrated in Figure 5.2. An XQT is a node- and edge-labeled

tree. Simply put, each XQT node corresponds to a node test in the query and the

label of an edge is the axis that connects the two node test. A node may also be

associated with a validation expression that corresponds to the predicate of the

node test.
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Figure 5.2: DOM-tree and Query-Tree

The XQT is created from the query as follows. For every node test N in the

query, we create an XQT node (node for short) with label N . For the first location

step A1::N1[P1], the node created for N1 is connected via an edge with label A1 to

a special root node n0, who always matches the document root e0. For every segment

M/a::N in the query, we make the node created for N the child of the node created

for M; the edge between them is labeled a. In the query and its XQT depicted in

Figure 5.2, we assign each node a unique name and show it under the corresponding

node test in the query. In the figures, the output node is identified by a surrounding

box.

Validation expression An XQT node may be associated with a validation ex-

pression. The validation expression of node n, denoted by V (n), is a boolean ex-

pression obtained from n’s predicate by retaining only node tests that are directly
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Syntax Tree: and

not

//B

C

or

F

and

predicate: [not[//B/C] and (D[//E and G] or F)]

//E G

D

validation expression:      not(//B) and (D or F)

Figure 5.3: Syntax Tree and Validation Expression

related to n. In more detail, we map the syntax tree of n’s predicate to the syntax

tree of n’s validation expression by removing all the nodes that has a non-operator

ancestor. For example, the syntax tree of predicate [not[//B/C] and (D[//E and

G] or F)] is illustrated in Figure 5.3 and the validation expression is [not(//B)

and (D or F)].

Trunk and Branch We refer to the path from the XQT root to the output node

as the trunk of the XQT. Nodes in the trunk are called trunk nodes. Paths from

trunk nodes to non-trunk leaf nodes, which does not include other trunk nodes, are

called branches. The branch root is the trunk node from which the branch starts.

Nodes in a branch, except the branch root, are called branch nodes. In Figure 5.2(2),

nodes n0, n1, n3, and n5 are trunk nodes and the rest nodes are branch nodes.

We distinguish the trunk nodes from branch nodes since subqueries are evalu-

ated differently then the original query. For a trunk node, we may need find all the

elements that match it. Meanwhile, for a branch node, we may only need find one

element that matches it to conclude that it satisfies a predicate for its ancestors.
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5.3 Matchings

We evaluate an XPath query by matching the elements in the documents with

XQT nodes. Intuitively, an element e matches an XQT node n if e satisfies both the

pattern specified by n and the predicate of n. We define the concept of matching in

more detail in this section.

We define that an element e matches an XQT node n iff there exists a sequence

of (element, node) pair ((e0, n0), . . . , (ek, nk)), where ek = e and nk = n such that the

following three conditions hold. In our discussion, e0 always denotes the document

root and always matches n0, the XQT root.

1. ∀i ∈ [1, k], the tag of ei matches the label of ni: The tag and the label are

identical strings or the label is *;

2. ∀i ∈ [1, k], ei matches the pattern of ni: The relation between ei−1 and ei

matches the axis labeled on the edge between ni−1 and ni.

3. e satisfies the predicates of n: Either n has no validation expression or its

validation expression V (n) evaluates to true given the following assignment:

the variable x in V (n) is assigned true iff there exists an element e′ such that

e′ matches x and the relation between e and e′ matches the axis labeled on

the edge between n and x.

Note that the definition is recursive since in the third condition we need to

determine whether the element e′ matches x. In other words, we need to compute

elements that match the leaf XQT nodes first since their validation expressions either
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are empty or can be computed instantly (e.g., testing the text value).

A sequence ((e0, n0), . . . , (ek, nk)) is called a matching between element e = ek

and node n = nk if it satisfies the first two conditions. If ∀i ∈ [1, k], ei matches ni,

we call it a full-matching. Iff there exists a total-matching between e and n do we

say that e fully-matches n. The result set of query Q over document D consists of

all element e in D that fully-matches the output node of Q.

For example, element e4 on line 4 in Figure 5.1 is the result of the query in

Figure 5.2 because of there exists a full-matching ((e0,n0), (e1,n1), (e3,n3), (e4,n5))

between e4 and the output node n5: e0 always fully-matches n0 by definition;

e1 matches the label of node n1 and satisfies the predicates [name=’BN’] and

[location=’NY’]; e3 matches the label of n3 and satisfies the predicate [//price=10];

and e4 matches the label of n5, which has no predicate.

Equivalence to XPath semantics It is easy to prove that the result set defined

by the matching is the same as the result set selected by the traditional step-by-

step XPath semantics. First, if there exists a full-matching ((e0, n0), . . . , (ek, nk))

between an element e and the output node O, by mathematical induction we know

that every ei is selected when we evaluate the ith location step. On the other hand,

if e is selected after the last location is evaluated, by tracing back the evaluation

process we can easily construct a full-matching.

Evaluation by matching has several important features. First, instead of the

step-by-step evaluation that requires DOM tree in the main memory, we can evaluate

the segments simultaneously when the data streams in as long as we can combine
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the results of the segments dynamically and efficiently. Second, the result of a

segment can be shared among different matchings, which provides the opportunity

to efficiently evaluate groups of queries, as we illustrate in Chapter 8. Moreover,

note that the definition of matchings does not exclude any specific axes. Reverse

axes, such as “parent” and “ancestor”, as well as “following” and “previous”, can

be used in the definition. Therefore, it is possible to extend the methods to support

those axes, as we illustrate in Chapter 7.

Matching in streams In streaming evaluation where only a portion of the data

is available, the above definition cannot be used to evaluating the query directly.

The existence of a matching can be verified since we maintain a stack of currently

open elements. However, it is not straightforward to verify a full-matching since

some predicates that are not satisfied by the current data may be satisfied by future

data. For example, when we encounter element e4 on line 4, we only know that

there exists a matching ((e0,n0), (e1,n1), (e3,n3), (e4,n5)). However, whether it is

a full-matching depends on whether e1 and e3 satisfy the corresponding predicates,

which may be satisfied by future data in the stream. In this case, we say that these

elements are still pending on their predicates.

In the following chapters, we are going to illustrate how we organize the partial

predicate results and potential result items (candidates). In Chapter 4, we use the

states in HPDT to encode the predicate results and the hierarchical structured

buffers to store the candidates. We extend those ideas and support queries with

more complex features such as subqueries and reverse axes.
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Chapter 6

XPath Query with Subqueries

In this chapter, we describe a method for streaming evaluation of XPath

queries whose predicates may contain subqueries. Our method marks elements in

the stream with partial evaluation results. The marking process is guided by the

query tree of the XPath query. Meanwhile, the potential result items and their par-

tial predicate results are also efficiently maintained. To the best of our knowledge,

this method is the first to support XPath subqueries in a streaming environment.

It also provides features such as optimal buffering, minimum-latency output, and

optimal predicate evaluation. The method has been fully implemented and publicly

released in the XSQ system. We present an experimental study of XSQ and related

systems on both real-life and synthetic datasets, and investigate how subqueries and

other features affect the performance of these systems.

6.1 Introduction

In this chapter, we focus on XPath queries with subqueries in their predicates.

Since each subquery may itself be a complex XPath expression, stream processing of

such XPath queries poses significant additional challenges. First, it becomes more

difficult to keep track of the relations between the buffer items and their pending

predicates since components of the subqueries may be evaluated upon different por-
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1. <store>

2. <name>Amazon</name>
3. <book>

4. <price type="sale">15</price>
5. <title>XML</title>
6. </book>

7. <book>
8. <title>Java</title>

9. <author>John</author>
10. <price>10</price>
11. <related>

12. <store>
13. <name>BN</name>

14. <book>
15. <quantity>1</quantity>
16. <author>Mike</author>

17. <author>John</author>
18. <title>JDBC</title>

19. <price>15</price>
20. </book>
21. </store>

22. </related>
23. <price type=’sale’>8</price>

24. <quantity>2</quantity>
25. </book>
26. </store>

Figure 6.1: Example XML Data

tions of the stream. Second, since the boolean operators AND, OR, and NOT are

permitted in the subqueries, we not only need to keep track of different portions of

the subqueries and the relations between them, but also need to process the new

universal semantics of the predicates when the not() function is present. Moreover,

since the subqueries have different semantics than the original query, we have to

use this fact to evaluate the subqueries efficiently. We need also to differently ad-

dress problems such as multiple matchings in subqueries. We illustrate some of the

difficulties in Section 6.2.

Figure 6.1 depicts an example XML file that is used through out this chapter.
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store book title

ln //name=”BN” ln not(author!=”John”) //quantity=1 //price=10 ln

1 true 7 NA NA true 18

1 true 14 false true NA 18

12 true 14 false true NA 18

Figure 6.2: Combination of predicate results

6.2 Motivating Examples

The following examples highlight some of the difficulties of supporting sub-

queries in streaming evaluation. Example 7 illustrates why multiple matchings are

difficult to handle in streaming evaluation.

Example 7 [Multiple Matchings] When we encounter the title element in

line 18 it has three matchings with the query, as shown in Figure 6.2. Multiple

matchings require no extra handling in the DOM-based evaluation as illustrated in

Section 6.3.1, since each step is always evaluated after the previous step is evaluated.

In the streaming environment, upon encountering this title element, we need

to keep all the information in Figure 6.2 in order to determine in the future the

membership of the title element in the result set. Moreover, since subqueries such

as //quantity=1 may be replaced by more complex XPath queries, such a table

could expand to a fair complex degree. It is obvious that we cannot treat the multiple

matchings in this straightforward manner.
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We also have to know the correct scope of a element e that evaluates a subquery

to true or false. The scope of e is the set of elements to which the evaluation result

is applied. We also say that these elements in the scope are affected by e. If we limit

the predicate to use a single descendant, the scope of a matched element is either

its ancestors or its descendants. With the presence of subqueries, it is not easy to

determine the scopes of an element, especially during run-time. Following example

illustrates some of the difficulties.

Example 8 [Scopes of Elements] Consider the query used in Example 7. When

we encounter the name element in line 13, we have to know that the predicate

[//name="BN"] of both store elements in line 1 and 12 evaluates to true. Ac-

cordingly, we have to know the scopes of these two store elements. At this time,

there are two items in the buffer: the title elements in line 5 and 8. These two

elements are both in the scope of the first store element. However, only the first

title should be sent to output at the time since the book element (in line 3) in

the matching has satisfied the predicate. The second title will remain in the buffer

since the book element (in line 7) in the matching still has the first part of the query

[not(author!="John")] pending.

Not only is it inefficient to maintain the states separately for every candidate,

it is also difficult to do so in the presence of subqueries. Essentially, for predicate p

of an element e, there may be multiple partial results of p at a certain moment in

stream. The following example illustrates the complexities.

Example 9 [Complex Subqueries as Predicates] We modify Q1 to use the
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book element in the predicate of the store element:

//store[//name="BN" and

//book[not(author!="John") and (//quantity=1 or //price=10)]]

//title

For the store element in line 1, it has two book descendants that match the

second subquery in its predicate. When we encounter the book element in line 14,

another book element in line 7 also matches the second subquery and has not been

determined yet. To denote this fact, we cannot simply record that this store element

may satisfy its subquery. We have to record the fact that it has two book descendants

that may satisfy this subquery. Otherwise when one of them fails the subquery, we

will erroneously determine that the store element fails the predicate. Essentially,

even for a single element, its partial predicate results have to be organized as a tree

to incorporate all the open and undecided elements used in the evaluation of the

subqueries.

6.3 Evaluation Algorithm

We first describe a main-memory evaluation method. The method matches

the patterns specified by the query top-down in the query tree while the predicates

are evaluated bottom-up. Although the method evaluates the XPath query by

traversing the DOM-tree, it does not specify the order of the traversal and the

number of times it visits each node. We later adapt the method to limit it to a

single preorder traversal of the DOM tree and thus can be applied in the streaming
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Figure 6.3: The Query Tree of Q1

environment.

6.3.1 A Main-memory Method

Query Tree To evaluate an XPath query q = A1N1[P1]. . .AkNk[Pk]O, we first

transform q into a query tree P (please see Section 5.2) that represents all and only

the patterns in q. We briefly restate the concept of query tree here. For every

node test X in q, we create a node in P with label X. For each segment X/a::Y (or

X[a::Y]) in q, we create an parent-child edge with label “a” from X to Y in P . The

root node of the query tree always fully-matches the document root. It always is

labeled “root” and connects to node created for N1 via an edge with label A1. The

leaf node Nk is called the output node, denoted by OP . The query tree of Q1 is

depicted in Figure 6.3. Unlabeled edges in the tree represent the child axis, which

is the default. In a query tree, the trunk nodes are generated from node tests in

the main trunk. The other nodes are called branch nodes.

The main-memory XPath evaluation algorithm described here matches the

patterns specified in the XPath query with the document tree using a top-down
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Figure 6.4: The Syntax Tree of Q1

matching method; for every node matched in the document tree, its predicate is

evaluated bottom-up.

Algorithm The main-memory algorithm is described in Listing 6, where PD(e)

denotes the path from the root of the document tree to element e and PP (p) denotes

the path from the root of the query tree to node p.

In this algorithm, for every element e, we first determine whether its name

matches a query tree node p using the LocatePatternNode function. If there is no

such p, we conclude that the element is not used in the evaluation and can be ignored.

Otherwise, we use PP (p) as a regular expression obtained by concatenating node

labels along the path and inserting Kleene stars where // axes are used. The function

MatchPath(PD(e), PP (p)) returns true iff the string obtained by concatenating

element names in PD(e) matches the regular expression specified by PP (p). If the

string matches the pattern, we mark e with p; otherwise no operation is performed.

After all the elements are marked, we evaluate the predicates for each of them.

The function Evaluate(e, p) described in Listing 7 evaluates the validation expres-
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Algorithm 6: Main-memory Evaluation
Input: an XPath query q, an XML document d

Build the query tree P for q;1

Build the DOM tree D for d;2

for ∀e ∈ D do3

p← LocatePatternNode(e);4

if p 6= null then5

if MatchPath(PD(e), PP (p)) then6

mark e with p;7

for ∀e ∈ D do8

if e is marked with p then9

Evaluate(e, p);10

/*OP is the output node of P*/

for ∀e ∈ D marked with OP + do11

if ExistTruePath(e) = false then12

unmark e;13

return all nodes marked as OP +;14

sion E(p) of pattern node p for element e. If E(p) is empty, the function always

returns true. For non-empty E(p), each variable in the expression is assigned values

as follows: A variable x is set to true if there is a descendant (child if x needs to be a

child of e) of e that has mark x+; otherwise x is set to false. The boolean expression

E(p) is then evaluated. If the result is true, e is marked with p+ to denote that the

predicate of p evaluates to true if we use a e as the context node. If the result is

false, we unmark e since it has failed the predicate.

The Evaluate(e,p) function is recursive since it calls itself for e’s descendants

to determine the assignment of the variables in p. The recursive call terminates when

the descendant is a leaf node in the query tree, which has no predicate and therefore

has an empty validation expression. Essentially, the evaluation is performed from
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Algorithm 7: Function Evaluate(e, p)

parameter: an element e, its mark p

if E(p) = null then1

mark e with p+;2

return;3

for ∀x used in E(p) do4

for ∀e′ that is e’s descendant and marked with x do5

Evaluate(e′, x);6

if ∃e′ that is e’s descendant and marked with x+ then7

x← true;8

else

x← false;9

evaluate E(p) using the assignment;10

if result is true then11

mark e with p+;12

else

unmark e;13

bottom-up: the predicates for the leaf nodes are evaluated first and the results are

then propagated to their ancestors.

After the predicates for all elements are evaluated, we locate the elements that

are marked with OP+, i.e., the target result elements. For each element e located,

the ExistTruePath function tests whether there exists a matching between PD(e)

and PP (OP ) such that every element in the matching is marked with “+”. (Recall

from Section 3.3 that a matching between a sequence of elements and a sequence

of node tests is a subsequence of elements that matches the node tests in order.)

When there are multiple such matchings, e is included in the result only once.

Example 10 [Evaluation by marking] The process of applying the algorithm

to evaluate Q1 over the stream in Figure 6.1 is illustrated in Figure 6.5. Matching
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Figure 6.5: Main Memory Evaluation of Q1

the query patterns with the paths in the document tree is straightforward and the

marks are omitted in the figures. In Figure (1), every element marked with a leaf

node in the query tree has its predicate evaluated. If the result is true, the element

is marked with a + sign. In Figure (2), the validation expression of each element

marked with a non-leaf query tree node is evaluated. For example, for B2, not(A)

and (P or Q) evaluates to true since it has no child A with +, a child P with +,

and a descendant Q with +. We do not consider the A2 descendant of B2 since the

query tree specifies that A must be a child of B. After all the elements are marked,

we can see that ExistTruePath returns true for both T2 and T3 and therefore they

are returned as the results.
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Algorithm 8: Begin Event Handler
Parameter: the begin event of element e

Push(e,S);1

p← LocatePatternNode(e);2

if p = null then return;3

p′ ← p’s parent node;4

if ∃e′ ∈ S → (e′ is marked with p′) ∧IsNecessary(e′, p) then5

Evaluate(e, p);6

if e is marked with p+ then7

ProcessTrueNode(e, p);8

else

if p = OP then Enqueue(e);9

Algorithm 9: End Event Handler
Parameter: the end event of element e

Pop(S);1

p← e’s current mark;2

if p 6= null then3

Evaluate(e, p);4

if e is marked with p+ then5

ProcessTrueNode(e, p);6

else

unmark e;7

if p is a trunk node then Clear(e);8

6.3.2 Streaming Evaluation Algorithm

We now modify the main memory algorithm into a streaming algorithm that

limits to one preorder traversal of the tree.

Data Storage In streaming evaluation, we use only a stack and a queue as the

data storage. The stack, denoted as S in the pseudocodes, stores the currently open

elements (whose start tags, but not end tags, have been encountered) by pushing

and popping elements in response to their start and end tags, respectively. The

queue stores the potential result items for which some predicates are still pending,

127



Algorithm 10: ProcessTrueNode(e,p)

Parameter: an element e marked with p+

if p is a trunk node then1

if ExistTruePath(e) then2

Output(e);3

else

Upload(e);4

else

CheckAncestor(e);5

i.e., all the candidates. When we encounter an element that has been justified to be

in the result, if the queue is not empty, we enqueue the element in order to maintain

the document order in the output. A one-bit label is attached to every queue item

to distinguish the justified result items and the candidates.

If stack item e matches a trunk node p and has its predicate pending, we attach

a buffer with it. The buffer of e is the set of pointers to the candidates in the queue

that are e’s descendants. Since e’s predicate is currently pending, these candidates

should be notified when e’s predicate is determined. Although each candidate may

have several predicates pending, as we describe later, its pointer is always stored

with the nearest ancestor whose predicate is pending. We may think of the buffers

as a method to group candidates based on the predicates they are pending on.

Partial predicate result In streaming evaluation, not all the predicate results

are available at the same time. Therefore, to adapt the previous main-memory

method into a streaming environment, we need to main the partial predicate result

for every element.

First, due to the existential semantics of the XPath predicates, we do not need
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to locate all elements that justify the same subquery for the same element. For an

element e, when we see a descendant that satisfies a subquery in its predicate, we

can simply associate a flag with e to denote that this subquery has been satisfied.

For an element e in the stack that matches pattern node p, we mark e with p

and associate a k-bit flag with e in which the ith bit denotes the current value of

the kth variables in p’s validation expression E(p). If E(p) is empty, i.e., e has no

predicate, a 1-bit true flag is associated with e to denote that e satisfies its (null)

predicate. If E(p) is not empty, when we see a descendant e′ of e in the stream that

matches a child node p′ of p and is marked with p′+, we set the corresponding bit,

also referred to as bit p′ in the flag.

Predicate evaluation Based on the flag associated with e, the function Eval-

uate(e,p) evaluates E(p) in two manners. The first is called tvl-evaluation (three-

valued-logic evaluation), which is used whenever a subquery is satisfied. Variable x

in E(p) is assigned to true if bit x is set and na otherwise. E(p) is then evaluated

using the usual three-valued logic. If the result is true, mark e with p+; if the

result is false, unmark e; otherwise e is still marked with p.

We use boolean-evaluation upon encountering the end tag of the element. Vari-

able x is assigned to true if bit x is set and false otherwise. Since we allow only

descendant be used in the predicates, pending subqueries can not be satisfied after

the end tag of the element is encountered. If the evaluation result is true, mark e

with p+, otherwise unmark e.

Event Handlers The algorithm is presented in the form of event handlers in
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Listing 8 and Listing 10. It depicts how each incoming event is processed.

Upon the begin event of an element e, the LocatepatternNode function first

checks whether its name matches any pattern node. If it matches a pattern node

p, we then check whether the path PD(e) matches PP (p). Since all the elements

in PD(e) is in the stack, the matching can be performed using only the stack. If

there exists such a matching, the validation expression E(p) for e is then evaluated.

However, unless E(p) is empty or tests e’s attributes, E(p) usually is pending at

e’s begin event and e is marked with p. In the case where E(p) evaluates to true,

the ProcessTrueNode procedure is executed, which is described later. If p is the

output node OP , the contents of e specified by the output function is enqueued in

the queue and the pointers to them are put into the buffer associated with e.

At the end of element e with mark p, function Evaluate(e,p) returns either

true or false since every variable in E(p) can be now assigned to either true or

false. If Evaluate(e,p) returns false, we can unmark e to denote that it fails the

predicate. Otherwise, e is marked with p+, and the function ProcessTrueNode is

called.

ProcessTrueNode If p is a branch node, e must be used by at least one of

its ancestors for predicate evaluation. The CheckAncestor function (described in

Listing 11) applies this result to ancestors that are marked with the parent node

of p, i.e., who use e in their predicate evaluation. In the CheckAncestor function,

we set bit p in the flag of the ancestor element e′ and then evaluate the predicate

of e′. If the result is true, e′ is marked with “+” and the CheckAncestor function
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is called recursively until a predicate evaluates to na or no ancestor is available to

mark. If the result is false, we unmark e′, but no further operation is needed. If the

result is na, no operation is performed.

If the element e is marked with OP+ (recall that OP is the output node of

the query tree), the ExistTruePath function is called to check whether e has been

justified to be in the result. If ExistTruePath returns true, we output e’s contents

right away (either emit e if it is at the head of the queue or label it as output

otherwise). If ExistTruePath returns false, for every matching between e and OP+,

there exists some ancestors in the matching that have their predicates pending. In

this case, for every matching m, Upload function puts e’s contents (whose pointers

are stored in e’s buffer) to the nearest ancestor of e in m that is not marked with

+. By uploading we move the pointers to the queue items from the current buffer

to the buffer of the ancestor.

Note that, to solve the problem of multiple matchings, of the pointer to a queue

item may be duplicated during uploading. A reference count is created for the queue

item to keep track of the number of copies created. Essentially every copy of the

pointer corresponds to a matching between the candidate and the output node.

As soon as the queue item is labeled as output, no further operation (following

other copies of the pointer) can alter the fact. If a queue item is not marked as

output, it is removed from the queue when the reference count is decreased to zero.

Therefore, a candidate is determined to be in the result if one matching satisfies all

the predicates, i.e., a full-matching exists; it is removed from the queue if and only

if all the matchings have failed their predicates, which implies that we only delete a
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queue item when the reference is decreased to zero.

If element e is marked with p+, where p is a trunk node other than the output

node, the operation for the end event of e is similar to the operation described for

the case where p is OP . The only difference is that we do not enqueue anything in

this case. In both cases, we clear the buffer if e is unmarked.

One feature of the method is that we only evaluate subqueries that is currently

necessary. A necessary subquery is a pending subquery whose result may change

the result of the predicate. For example, in predicate [A or B], if subquery A has

evaluated to true, B is not necessary even it is pending. Since subqueries are denoted

as subtrees in the query tree, we discuss the necessities of subqueries in terms of

necessities of variables in the validation expressions.

If element e is current marked with pattern node p, the function IsNecessary(e,

X), where pattern node X is a child of p, returns true if and only if X is a trunk

node or variable X is necessary to evaluate E(p) for e.

If X is a trunk node, p must be a trunk node as well. In this case, since e is

still pending, any node with mark X may contain potential results and thus needs

to be processed.

If X is a branch node and a variable in E(p), only if bit X is current pending in

e’s flag and a value change of X may change the result of E(p) for e, X is necessary.

We use an IsNecessary function to determine the necessity and describe it in

Section .

We now describe two mechanisms used in the XSQ system that supports the

three features very efficiently. First, we make the stack linked by threads to facilitate
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Algorithm 11: Function CheckAncestor
Parameter: element e marked with “p+”

p′ ← p’s parent node;1

for ∀e′ ∈ S marked with p′ do2

Set bit p in the flag of e′;3

Evaluate(e′, p′);4

if e′ is marked with p+ then5

ProcessTrueNode( e′, p′ );6

else

if e′ is unmarked then7

if p′ is a trunk node then8

Clear(e);9

the pattern matching task and the Upload, ExistTruePath and CheckAncestor

functions. Second, instead of using one flag and evaluate the expression each time

a bit is set, we introduce a two-flag marking scheme such that the current predicate

result and the result of IsNecessary function can be obtained directly from the

flags.

6.3.3 A Threaded Stack

An element e in the stack with mark p (or p+) is threaded (linked) to its

ancestor e′ that is marked as the parent of p, p′. Since there may be multiple

ancestors that match p′, e may have multiple outgoing threads.

We keep a set of active elements in the stack. An element e is active iff it is

marked with a pattern node p (or p+) and either e is the top element in the stack or

pattern node p has a outgoing edge with label “//”. Intuitively, the active elements

serve similar purposes as the active states in an automaton.

For every incoming element e matching the name of a pattern node p, we first
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check for every active element e′ (with mark p′ or p′+) whether p′ is the parent of

p and p′ is necessary for e′. If yes, e is marked with p and set as active. A thread is

created from e to e′. Note that e′ becomes inactive if e′ is previously the top element

and all outgoing edges from p′ are labeled with child axes. It is easy to prove by

induction that an element e is marked with p iff the path PD(e) matches the pattern

specified by PP (p).

CheckAncestor Consider an element e that matches a non-trunk node p. When

the predicate of e evaluates to true, we follow the outgoing threads from e to check

ancestors that is marked with p’s parent p′ . Therefore, in the pseudocode of the

CheckAncestor function, instead of recursively scanning the stack for ancestors

marked with p′, we can now only check the actual ancestors through the links.

It is true that using the threaded stack does not reduce the asymptotic time

complexity of the CheckAncestor function, which is O(ld) where l is the depth

of the stack and d is depth of the pattern node p. However, the amortized time

complexity is reduced to O(l) since every node in the stack can be updated at most

once.

ExistTruePath Another benefit of the threaded stack is that, each matching

between a candidate and the output node is represented by a threaded path from

the document root to the candidate (we can get every such path by following the

threads going out from the candidate). Although it seems that the ExistTruePath

function may need to check the whole stack following the threads whether such a

path exists, it can be implemented as a single-step operation.
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We associate a true-path flag to every element that is marked with a trunk

node. The flag denotes the current result of the ExistTruePath function. When

the ExistTruePath function is called for element e, we just check all ancestors that

are directly linked by e. If any of them has the true-path flag with value true, the

function returns true and the true-path flag of e is set to true.

Upload Recall that, for every element e in the stack with mark p that is a trunk

node, we associate with e a buffer that contains pointers to all the queue items are

pending on e. The Upload function is used to move the pointers in e’s buffer when

we encounter e’s end tag and e’s predicate evaluates to true. For every matching

m between PD(e) and PP (p), those pointers are moved to the buffer of e’s nearest

pending ancestor in m. Note that if every ancestor in m satisfies its predicate,

every candidate in e’s buffer are justified to be in the result, and therefore should

be processed by Output function instead of upload. Given the threaded stack, the

Upload function just follows the threaded paths and move the pointers into the

buffer of the first element in every path that is not marked with +.

6.3.4 A Two-Flag marking Scheme

Keeping track of partial predicate result for every element is another important

operation in the evaluation. As described in Section 6.3.2, we use a bitmap flag that

records the current variable values in the validation expression.

Such a single-bit marking scheme, however, has two problems. First, since

we allow not() function in the subquery, a variable in the validation expression
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may be assigned to one of these three values: true, false, and na. When not()

function is not allowed, a subquery can be falsified only at the end of an element.

Therefore, a single-flag scheme will do: a set bit stands for true; an unset bit

stands for na before and false at the end event of the element. Second, to support

optimal predicate evaluation, very often we need to determine whether a variable in

a validation expression is necessary for a given element. If the validation expression

has a complex structure, we have to use its syntax tree every time to determine

whether a variable is necessary.

Example 11 Why not single flag? Consider a predicate with two simple subqueries

in the query //X[A and B]. We associate a two-bit flag with every X element and

initially set the flag to 00. When the pattern //X/A (//X/B) is matched, we set the

first (second) bit of the flag of the element X matched. It is easy to see that the

predicate of the X element evaluates to true if and only if both bits of its true flag

are set.

However, a single-flag scheme is not enough when there are not() functions

in the predicate. Consider the query //X[A and not(B)]. When the pattern //X/B

is matched in the stream, we should mark the X element to denote that it is not

in the result. Since all possible values of the flag have already been used to denote

variable values, e.g., 00 denotes both subqueries are pending, we cannot denote such

fact using only one flag.

We can associate a three-valued bit for each variable. However, it is slower to

compute than a boolean bit flag. More importantly, it also has the same drawback
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as a boolean bit flag, i.e., the relations among the subqueries are lost. For example,

for query [((A and B) or C) and ( D or E )], we cannot determine whether

the subqueries are necessary based solely on the flag, and thus a syntax tree of the

predicate has to be maintained to determine the necessity.

Therefore, we introduce a two-flag marking scheme in our method. For

every stack item, we associate it with two flags (as bitmaps): a true-flag that

records which clauses in the disjunctive normal form (DNF) of its validation expres-

sion have been evaluated to true, and a false-flag that records which clauses in the

conjunctive normal form (CNF) of the validation expression have been evaluated

false.

To operate these two flags, every branch node p in the query tree is associated

with a true-map that indicates which clauses it appears in the DNF of its parent’s

validation expression and a false-map that indicates which clauses it appears in

the CNF. Example 12 illustrates the basic ideas.

Example 12 Two-flag Marking Scheme Consider a predicate

[((A and B) or C) and ( D or E )]:

Its CNF is:

(A and B and D ) or (A and B and E) or (C and D) or (C and E)

and its DNF is:

(A or C ) and (B or C) and ( D or E )

Therefore, the maps for each of the subqueries in the predicate are:
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true map false map

A 100 1100

B 010 1100

C 110 0011

D 001 1010

E 001 0101

If we want to evaluate subquery C for an element e, we first check the current

flags of e. If the true-flag’s first two bits are 1’s, there are only two possible cases:

(1) both A and B have been satisfied; (2) C has been satisfied. In neither case is C

necessary. If the false-flag’s last two bits are 1’s, there are also only two possible

cases: (1) C has been failed; (2) both D and E have been failed. Again, in neither

case is C necessary.

We now describe the marking process in more detail. When an element e is

newly marked with p+ where p is a branch node, following the thread going out of

e, we locate all the stack items that is marked with p′, where p′ is p’s parent. For

the true-flag of every located element e′, we perform a boolean “or” operation with

the true-map of p. The result true-flag of e′ denotes that every clauses in the

DNF of E(p′) that p appears in have been satisfied. If there is a NOT operator before

p in the normal forms, we perform a boolean “or” operation on p’s false-map and

e′’s false-flag in order to denote that those clauses in the CNF of E(p′) have been

failed.
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At the end event of an element e with mark p, if variable x in E(p) is still

na, x is assigned false. Accordingly, we set all the set bits in x’s false-map in e’s

false-flag. For a stack item without a predicate, its true-flag is always all set and

the false-flag is always all zeros.

Given the above method of marking the two flags, the predicate of element e

with mark p evaluates to true iff all the bits in e’s true-flag are set and false iff

all the bits in e’s false-flag are set.

In the IsNecessary(e, x) function, we can determine whether variable x is

necessary for e by checking the two flags: for e’s true-flag, we check whether all bits

in x’s true-map are set; for e’s false-flag, we check whether all bits in x’s false-

map are set. The result of checking are obtained by performing “xor” operations on

the two bitmaps. If either test returns true, the IsNecessary(e, x) returns false,

otherwise returns true.

Therefore, given the above marking scheme, both the IsNecessary function

and Evaluate function can be implemented efficiently using bitmap operations.

6.4 A Comprehensive Example

In this section, we apply the technique described in the previous sections to

evaluate Q1 over the XML stream depicted in Figure 6.1. Some highlights of the

evaluation process are depicted in Figure 6.6. In each stack item, instead of the

name of the element, we display the DOM node numbered as in Figure 6.5, with the

true- and false-flags shown to the right. The active elements are enclosed in bold
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Figure 6.6: Streaming Evaluation of Q1

boxes. Since the threads between stack items are easy to derive from the figure, we

do not show them explicitly. The queue is shown below the stack and the pointers

to queue items are depicted using arrows. The start and end tags are not shown in

the queue.

In step (1), when we encounter the T1 element in line 8, the begin event handler

is called. Since there is no predicate for the title node test, the ProcessTrueNode

function is called. The ExistTruePath returns false and the Upload function is

called. In this case, the pointer to the begin tag “¡title¿” is put directly to the

buffer of the parent node B2. This pointer is not shown in the figure, but we can

140



see the following text event will put the pointer to the text direct to the buffer of

B2. (Recall that we may consider the text event as the begin event of a text child.)

In step (2), we encounter the A1 element in line 9. At the begin event, A1 is

marked with author (not author+), i.e., the flags are (0,0). At the text event, the

predicate [string()!="John"] evaluates to false and no operation is performed.

(Strictly speaking, the string() function returns the aggregation of all the text con-

tents of the author element. This predicate can be evaluated only at the end of the

element. We simplify the case here by treating the string() function as the text()

function since there is only one text event in the element.)

In step (3), the P1 element in line 10 evaluates the subquery [//price=10]

to true. Since the true-map for the price in the predicate of the book is 01 (i.e.,

it appears in the second phrase of the CNF of the predicate), we set the second bit

true-flag of B2.

In step (4), the N2 element in line 13 evaluates the predicate //name="BN"

to true. Note that at this time, both S1 and S2 are active and accept this name

descendant. Therefore, there are threads from the stack item N2 to both and S1

and S2. When the predicate evaluates to true, the true-flags of both S1 and S2 are

updated. (They are both marked with store+ now.)

In step (5), the Q1 element in line 15 evaluates the subquery //quantity=1

to true. However, since IsNecessary function only returns true for B3, only B3

accepts this Q1 descendant and has its true-flag updated. For B2, IsNecessary

function returns false since the true-map of the quantity node is 01, which is

already set in the true-flag of B2.
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In step (6), the A2 element in line 16 evaluates the subquery author!="John"

to true. However, since there is a not operator between the author node and

the book node in the syntax tree, we update the false-flag of B3 element using

author’s false-map. Since the DNF of the predicate is [(not(A) and //P) or

(not(A) and //Q], the false-map is 11. The false-flag of B3 is updated to 11,

which means B3 fails its predicate and therefore is being unmarked. Note that only

B3 is updated since the author element is specified to be the child of the book and

thus no thread is created between B2 and A2.

In step (7), when we encounter the T3 element in line 18, B3 is no longer

active. However, since the title element is specified to the descendant of the book

element, B2 accepts T3 and the content of T3 is only uploaded to B2.

In step (8), when we encounter the end event of B2 in line 25, since the

subquery [author!="John"] is still na, it now evaluates to false. Since there

is the not operator, we update the true-flag of B2 using author’s true-map,

which is 10. We can see that the true-flag of B2 is now 11, which mean B2 is

marked with book+ now. The ProcessTrueNode function is then called. Since the

ExistTruePath function returns true, the contents in the buffer are sent to output.

In conclusion, we can see from the process that: the method only buffers the

potential result items that cannot be determined; only subqueries that may change

the result of the predicate are evaluated; the result items are sent to output at the

earliest moment that their membership in the result set can be determined.
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Name Version Environment Query Subquery Method Parser

XSQ 2.0 streaming XPath yes navigation Xerces

XMLTK 1.01 streaming XPath no navigation xparse

Joost 20030914 streaming STX manually navigation Xerces

Saxon 6.5.2 main memory XSLT yes navigation Xerces

XALAN 2.4.0 main memory XSLT yes N/A Xerces

XXTF 2003-01-30 main memory XPath yes join Expat

Figure 6.7: Systems

6.5 Performance Evaluation

6.5.1 Experimental Setup

We have implemented the methods presented in earlier sections in the XSQ

system using Java (SDK 1.4.0 01) and the Xerces2 parser (2.4.0). We refer to this

implementation as XSQ-S. We have released our system under the GNU GPL license

at http://www.cs.umd.edu/projects/xsq/. We conducted our experiments on a

PC-class machine with an Intel PIII 900MHz processor and 1GB of RAM running

the Redhat 7.2 distribution of GNU/Linux (kernel 2.4.9). The memory limit for the

Java virtual machine was set to 750MB.

Systems We compared XSQ-S with the five other systems listed in Figure 6.7.

For each system, we used the latest version available at the time of experimentation.

(At that time, we were unable to obtain the XAOS and BEA systems, discussed

in Section 2.2.) Here, we highlight only the features relevant to streaming XPath
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Name Size Text Elements Elements Avg Max Throughput (MB/s)

(MB) (MB) (K) per MB depth depth Xerces Expat xparse

NASA 25 15 477 19,028 5.58 8 5.59 16.8 21.5

DBLP 119 56 2,990 25,032 2.90 6 4.44 15.9 18.8

PSD 716 286 21,300 29,757 5.57 7 4.83 14.4 16.5

XMark-s 29 20 417 14,276 5.55 12 6.52 20.6 27.0

XMark-m 117 81 1,666 14,242 5.55 12 8.47 20.6 26.7

XMark-l 1172 811 16,703 14,251 5.19 12 9.23 20.3 26.2

Figure 6.8: Datasets

processing. XML toolkit (XMLTK) [4] is a set of XML tools developed at the

University of Washington. The xrun program in this toolkit evaluates an XPath

query using a DFA generated from the query. Joost is an implementation of the

streaming XML transformation language STX [9], which uses XSLT-like stylesheets.

XMLTK and Joost do not support queries that need buffering. XMLTK does not

accept queries whose semantics may require buffering at runtime (e.g., a predicate

that tests the existence of a child element). In Joost, we have to manually program

the stylesheet to evaluate predicates that require buffering, which we do not use in

the experiments. Saxon and Xalan are two widely used high-performance XSLT

processors. XPATH from XMLTaskForce (XXTF) is an implementation of the

algorithms of Gottlob, Koch, and Pichler [32]. These systems (Saxon, Xalan, and

XXTF) are non-streaming systems that need to build a DOM tree in main memory

before query evaluation commences.

Datasets Some properties of the principal datasets used in our experiments are
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summarized in Figure 6.8. We used three real datasets that vary in size and other

characteristics: (1) the ADC astronomy research dataset from NASA [11], (2) the

DBLP bibliographic dataset [48], and PIR-International Protein Sequence Database

(PSD) [67]. We also used three synthetic datasets, generated using the XMark

benchmark [63]. The small (Xmark-s), medium (Xmark-m), and large (Xmark-

l) datasets were generated using XMark scale factors of 0.25, 1, and 5, respectively.

Metrics

We measure the normalized throughput of a system as the ratio of its raw

throughput (rate of input consumption) to the raw throughput of its parser. We use

normalized throughput instead of raw throughput in order to factor out the effect

of varying parser efficiency, which is not the focus of our study.

We also measure the memory footprint of each system using the ps program.

The maximum amount of memory that each system allocated during the streaming

evaluation of the entire dataset is recorded. For Java-based systems, this footprint

includes the memory used by the Java virtual machine.

We also measure the output latency of each system, defined as the time elapsed

after the system starts query evaluation and before it returns the result. We mea-

sure both response time, which is the elapsed time before first result element is

produced, and average latency, which is the average of the latency of each element

in the result.

Queries We used a large set of test queries in our experiments. Since the perfor-

mance of the systems depends on the query, the dataset, and the relation between

145



SAXON
XSQ

XXTF
XALAN

1

0.8

0.6

0.4

0.2

0 20100 30 40

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Size of Datasets (in MB)
50 60

Q1: //regions/samerica[//payment and //mailbox[//from]]

//item [quantity>=2 or shipping]/name

Figure 6.9: Throughput of Query on XMark Datasets

them, the same system may report substantially different performance on the same

dataset on different queries (as illustrated by our results described later). There-

fore, instead of using a random set of queries in the experiments and reporting the

average performance, we varied the features of the tested queries for every system

on every dataset and analyzed the results case by case.

Two important features we studied are the query’s element-selectivity and

event-selectivity. The element-selectivity stands for the number of elements that

are used in the evaluation of a query. The event-selectivity stands for the number

of SAX events that the query engine has to response to evaluate the query. For

example, consider the query /sites for the XMark dataset, in which the sites

element is the only top-level element. Its element-selectivity is 1 since it selects only

one element. However, its event-selectivity is the number of SAX events generated

from the dataset since a query engine has to respond to every event to construct

the result.
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Figure 6.12: Complex Queries on NASA Dataset
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6.5.2 Evaluating Subqueries

We first compare the performance of the systems when they evaluate XPath

queries with subqueries. We do not include XMLTK and Joost in this set of ex-

periments since the former does not support subqueries and the latter requires pro-

gramming to support subqueries.

We first tested the scalability of the systems when applied to different sizes

of datasets given enough main memory. We used XMark to generate 10 datasets

with the scale factor set from 0.05 to 0.5 stepping 0.05 (sizes from 5.7MB to 58MB).

Figure 6.9 depicts the normalized throughput of the systems when querying the

datasets, and Figure 6.10 depicts the maximum memory usage during the evalua-

tion. The normalized throughputs of Saxon, XSQ, and XXTF are almost constants,

while Xalan’s performance degrades when the size of the dataset increases. The

linear memory usage for the three main-memory systems, who need to load all the

data into main memory, is as expected. It is not clear why Saxon uses almost the

same amount of memory for datasets from 29MB to 47MB, and then uses around

150MB more memory for 5MB size increase from 47MB to 52MB. Since XSQ-S does

not need store all the data in main memory, its memory usage is almost constant.

We also tested (not included here) larger XMark datasets generated using

larger scale factors. Xalan fails to evaluate the query in our experiments when the

factor becomes larger than 0.9. For dataset with scale factor 0.8, it evaluated the

query in around 65 seconds; with factor 0.9, it ran for more than three hours and we

terminated the process. The reason why Xalan did not scale up in our experiment is
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Figure 6.13: Complex Queries on XMark-m Dataset
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Figure 6.14: Memory Usage for Experiments in Figure 6.12

not clear, but should not be insufficient memory since the memory usage was stable

at around 360MB during the three hours’ running.

We also tested other complex queries on the XMark datasets. For the same

set of queries, Figure 6.11 and Figure 6.13 depict the throughputs of the systems

on XMark-s(29MB) and XMark-m(117MB) datasets. We chose the queries so that

Q1 contains only child axes in the main trunk while Q2 replaces all the child axes

with descendant-or-self axes. Q3 has similar structure as Q2 but has two value

comparisons in two of the subqueries. Q4 is transformed from Q3 by moving two

subqueries from the second location step to the third location step. The two moved

subqueries in Q4 need to be evaluated for every item elements insides the samerica

element. In contrast, they need to be evaluated once in Q3 for the only samerica
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element in the document. All the predicates evaluate to true for these queries, and

the result sets are the same. The normalized throughput of XSQ and Saxon are

almost the same for both datasets. XSQ has almost the same throughput for all the

four queries since they involve almost the same set of elements. As a support for

our previous speculation, Xalan can answer the queries over the XMark-s dataset

but not over the XMark-m dataset.

Performance of navigation-based systems is not affected by the value compar-

isons required for predicate evaluations as much as the join-based systems. Since

navigation-based systems compare the values during the traversal of the data (ei-

ther in main memory or streaming form), usually the intermediate result set is small.

Figure 6.14 depicts the memory usage for the queries in Figure 6.12. XXTF is

slower and uses more memory in query Q1 and Q3 than in Q2 and Q4 since evaluating

Q1 and Q3 involves value comparisons. Moreover, evaluating Q1 requires less mem-

ory and is faster than Q3. In the NASA dataset, there are 14,512 initial elements

whose value are tested by Q3, while there are only 5,935 year elements whose value

is tested by Q1.

We also tested complex queries on the DBLP dataset. The results are il-

lustrated in Figure 6.15. The previous conclusions are supported by this set of

experiments as well.

We also tested XSQ for complex queries on large datasets. Since the systems

that support such queries (XXTF, Saxon, and Xalan) need to build the entire DOM

tree in the main memory, we cannot test them using our current setting. Therefore,

we only used the XSQ system to test complex queries over the PSD dataset (716MB)
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Figure 6.15: Complex Queries on DBLP Dataset
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Figure 6.16: Complex Queries on XMark-l Dataset
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Figure 6.17: Complex Queries on PSD Dataset

and the XMark-l dataset(1172MB). The results are illustrated in Figure 6.16 and

Figure 6.17.

For queries on the XMark-l dataset, we used several queries different than the

queries in Figure 6.11 and 6.13. Those queries lead to similar results as illustrated

in those two figures. In this experiment we varied the structure of the queries, e.g.,

Q1 and Q3 have four location steps and three of them have predicates, two predicates

in Q2 use all the boolean operators and the first predicate is deeply nested, and Q4

has only two location steps and the first location step has a very complex predicate.

For all these complex queries, XSQ achieves consistent high throughput.

XSQ’s performance is affected by event-selectivity of the query, i.e., how many

SAX events XSQ has to response in order to evaluate the query. For example, in the

PSD dataset, each of the first three queries selects only a small amount of elements

as the result. The last three queries have similar structures as the previous three
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but with much larger result set, since they do not specify value comparisons in the

predicates in the subqueries. The result sizes (in bytes) are listed below.

Q1: 98,229 Q4: 161,058,001

Q2: 37 Q5: 12,936,858

Q3: 44 Q6: 16,106,474

As Figure 6.17 illustrates, the throughput of XSQ is not affected by the result size

as much as one may expected. One reason is that the first three queries need to test

the value comparisons against the incoming data, while the last three do not need

to perform such value comparisons. When evaluating Q2 and Q3, since XSQ has to

perform string comparison for all the ProteinEntry elements, the throughputs are

even slightly slower than those of Q5 and Q6 who have larger result set.

The performance of XSQ is affected by the selectively of the query, not the

result size. XSQ is significantly slower when evaluating Q1 and Q4 than the other

queries because there are 314,763 reference element and 5,983,050 author subele-

ments in the dataset. In contrast, there are only 262,525 ProteinEntry elements

and each of them has only one name and at most one genetics subelement.

6.5.3 Simple Queries on Main-memory Datasets

For simple queries without predicates, the performance of different system is

influenced by the features of the query differently. Streaming systems get lower

throughput for queries with higher selectivities. Saxon gets lower throughput for

queries with closure axes on location steps that are matched with large number of

elements. Surprisingly, the join-based XXTF is not affected significantly by the
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Figure 6.18: Simple Queries on XMark-s Datasets

number of location steps and the number of closure axes.

We first tested a set of queries with different number of location steps on

XMark-s. The results are depicted in Figure 6.18. In general, the streaming

systems are not affected much by the number of location steps. Their performance,

however, is affected by the event-selectivity of the query. Main-memory systems

are not sensitive to the event-selectivity of the query. Since they load the whole

document tree into the main memory, the difference between the evaluation cost of

a processed element and the cost of an unprocessed element is not as significant as

in the streaming system. In this set of experiments, Xalan and XXTF’s throughputs

are similar for all the five queries. Saxon’s performance, however, degrades when

the query contains closures axes in the location steps of large element-selectivity.

For example, it performs better in query Q1 and Q5 than the other three queries

since there are only a few regions elements but thousands of name elements in the

dataset.
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Figure 6.19: Simple Queries on XMark-m Datasets
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Figure 6.20: Simple Queries on NASA Datasets

We tested the same queries in Figure 6.18 on the XMark-m dataset. The results

are illustrated in Figure 6.19, which are similar to those illustrated in Figure 6.18.

We note that since the dataset is 117MB, Xalan fails to evaluate the query Q2 and

Q3. However, it can evaluate query Q1, Q4, and Q5, who either has no closure axes

or has only one location step. If we compare the queries used in Figure 6.19 with

the queries in Figure 6.13 and Figure 6.15, it seems that Xalan’s method to handle

multiple closure axes cannot scale up to large datasets.
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Figure 6.21: Simple Queries on DBLP Dataset

Simple queries with different number of location steps and closure axes are

also tested in the NASA dataset and DBLP dataset. The results are depicted in

Figure 6.20 and Figure 6.21. Our previous conclusions, e.g., XXTF and the

streaming systems are not sensitive to the number of location steps, are supported

in these Figures.

We note here that the throughputs of the streaming systems on the NASA

dataset and DBLP dataset are smaller than the throughputs on the XMark datasets.

As we illustrated in Figure 6.8, the NASA data and DBLP dataset have more

elements per megabytes of data than the XMark dataset, i.e., the datasets are

denser. Denser datasets generate more SAX events and lead to longer parsing time

for the SAX parsers, as illustrated in Figure 6.8. Therefore, streaming systems need

to process more events in a denser dataset, and the throughput is in general smaller

in the denser datasets than in the XMark datasets.
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Figure 6.22: Simple Queries on XMark-l Datasets
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Figure 6.23: Simple Queries for PSD Dataset

6.5.4 Simple Queries on Large Datasets

We also tested simple queries for the XMark-l and the PSD dataset. Since the

main-memory systems cannot process these large datasets due to the memory limit,

we only tested the streaming systems on these datasets.

For the same set of queries in Figure 6.18, we apply them on the XMark-

l dataset of size 1,172MB, which is generated using XMark with scale factor set

to 10. The results, which are depicted in Figure 6.22, illustrate similar pattern

as Figure 6.18 and Figure 6.19. For example, XMLTK performs best for queries
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without closure axes.

We also varied the number of location steps and number of closure axes for

queries over the PSD dataset. The result are depicted in Figure 6.23. It also

illustrates that these streaming systems are not sensitive to the number of location

steps and closure axes. Moreover, since PSD is the densest dataset among the

datasets we used (its number of elements per megabytes is almost twice as many

as the number for the XMark datasets), the throughput of the streaming systems

are smaller than the throughputs for other datasets for the queries have similar

structures.

6.5.5 Processing Boolean Operators

We use the next set of experiments to explore how boolean operators affect the

performance of the systems. This set of queries is executed on the NASA dataset,

which is small (25MB), so that the main-memory system can evaluate most queries

over it. It is also denser than the XMark-s dataset so that XSQ is not benefited

from less SAX events.

Figure 6.24 illustrates the normalized throughputs of the systems when they

evaluate queries with AND operators. All the subqueries evaluate to true except

//related//related in Q6. Navigation-based systems seem to be insensitive to

the number of subqueries in the predicate, since they need to traverse the document

tree once no matter the predicate contains how many subqueries. For example, XSQ

performs almost the same for the Q1 and Q6 although Q6 has two more subqueries.
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Figure 6.24: Queries with AND Operators

However, XSQ’s performance degrades in Q5 since the not(//related//related)

subquery can evaluate to true only at the end of every reference element. There-

fore, XSQ has to buffer every name element and output them at that time, which

is the worst-case scenario for a streaming system that buffers the candidates. It is

expected that the main-memory systems should not be sensitive to the number of

queries connected by the and operators. Saxon performs better in the other queries

than in Q2 since there are 9,788 name elements in the single datasets element. with

total size 1,349KB (while there are 2,667 name elements in the reference element

with total size 98KB). However, it is not clear why Xalan’s performance degrades

significantly for Q5 and Q6.

XXTF, a join-based system, is sensitive to the number of subqueries, since it

needs to generate more intermediate results. However, for subqueries that does not
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Figure 6.25: Queries with NOT Functions

involves value comparisons, the intermediate result set is small (and does not affect

the performance as much as the subqueries that generates larger intermediate result

set), since we only need to record the existence of the tested element. For example,

although Q4 and Q5 contain more subqueries than Q1, XXTF’s throughputs for them

is similar to the throughput for Q1. However, XXTF performs better in Q1 than in

Q2 and Q3 since the latter two contain value comparisons. (XXTF reports runtime

error for Q6.)

Figure 6.25 illustrates the throughput of the systems when they evaluate

queries with NOT operators. Since predicates with the NOT operator can be fal-

sified before the end of the elements, we expected that some predicates that can

be decided earlier affects the performance. In the test queries, since the datasets

element has only dataset children, the subquery not(dataset) should be falsified

very early. Navigation-based system can take advantage of shortcutting the eval-

uation while the join-based system seems cannot. For example, the throughput of

Saxon in Q2 is very small (as explained in the results of Figure 6.24), but its through-

put increases significantly in Q3 where the additional subquery not(dataset) can
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Figure 6.26: Queries with OR Operators

be falsified early in the traversal of the document tree. XSQ and Xalan also take

this shortcut and evaluate Q3 faster than Q2. XXTF, however, does not benefit from

this fact and performs almost the same for Q2 and Q3.

The next set of queries are used to illustrate the performance of the systems

when they evaluate queries with OR operators. The results are depicted in Fig-

ure 6.26. In the queries, all the subqueries evaluate to true except for dummy in Q4,

which is a node test that never appears in the dataset, and //related//related in

Q5. XSQ performs almost the same for all five queries, which are as expected, since

XSQ stops evaluating these predicate as soon as one of the subqueries is true. It

is not clear why XALAN performs the same for the first four while degrades signif-

icantly for Q5, which is unusual since the subquery source//publisher should be

evaluated to true very early. It is also not clear why Saxon performs better in Q1,

Q4, and Q5 than in Q2 and Q3. Although XXTF also performs better in Q1, Q4, and

Q5, we believe the value comparisons in Q2 and Q3 degrades the performance of the
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Figure 6.27: Output Latency

system.

In general, shortcutting in predicate evaluation can improve the performance

of the system. However, it is not straightforward in XPath evaluation due to the

hierarchical structure of the XPath queries. It is clear that not all systems are taking

it into account.

6.5.6 Output Latency

We also tested the output latency for the systems on the NASA dataset. The

results are illustrated in Figure 6.27 and Figure 6.28. The left part of each

figure illustrates the time every system returns the first result item, and the right

part illustrates the average time every system uses to return a result element. (The

time to load the JVM is included in both metrics for the Java-based systems.) The

query used in Figure 6.27 has no predicate. The query used in Figure 6.28 has

two predicates, and we did not test the XMLTK and Joost systems in the second

experiments.

As we would expect, streaming systems usually have smaller response time
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and average output latency than the main-memory systems. Note that in extreme

cases (e.g., set a predicate that cannot be evaluated until the end of the data), the

streaming system, like XSQ, has to wait until the end to output result. For main-

memory systems, the response time is usually close to the average latency since they

usually output all the result at the same time after the evaluation is finished.
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Chapter 7

XPath Queries with Reverse Axes

We describe in this chapter our method to evaluate XPath queries with reverse

axes. Rewriting any XPath query into an equivalent single-step form and encoding

the pending predicates in a dependency graph, the new method is efficient for both

queries with and without reverse axes. Moreover, it needs only one pass of the data,

even if there are arbitrary number of reverse axes in the query. Another desirable

feature of the method is that the results are emitted as soon as they are available.

We give a detailed performance evaluation of our implementation of the method in

the XSQ system and other XPath processors.

7.1 Introduction

Current navigation-based evaluation methods are very inefficient when eval-

uating queries with reverse axes such as parent and ancestor, as we illustrate in

the experimental results. The fundamental difficulty caused by the reverse axes is

that they incur bottom-up traversal in the document tree while the tree is usually

traversed in pre-order. In streaming environment, since seeking-back in the stream

is usually not allowed or very expensive, this difference seems to be irreconcilable.

Nevertheless, reverse axes are important for the users. Firstly, it empower the

user to specify more complex patterns. Without reverse axes, XPath queries can
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only specify tree patterns, while with reverse axes the pattern could be a graph

instead of a tree. The details are explained further in this chapter and a simple

example heres shows the difference.

Example 13 Some queries cannot be easily specified without reverse axes. Suppose

we have a book dataset in which books are grouped by the publishers, which means

that the book elements are children of the publisher elements. If we want to find a

book that is either about XML or is published by O’Reilly, we have to use the parent

axis:

//book[subject="XML" or parent::publisher="O’Reilly"].

For such queries that the ancestor is optional, reverse axes are needed.

The reverse axes are also very convenient for user to specify queries that can

fit data of various DTDs or schema. For example, in the scenario of information

dissemination, it is very likely a query issued by the user will be applied to hetero-

geneous data sources.

Example 14 It is very likely that different book datasets organize the books in dif-

ferent ways. Suppose we want to find books that are written by W3C and pub-

lished by O’Reilly. However, the books may be grouped by the publisher, by the

author, by both (in either order), or not grouped at all (e.g., the author and the

publisher are children of the book instead of ancestors). With reverse axes, we

can issue this query as: //book[publisher="O’Reilly" or author="W3C" or

ancestor::publisher="O’Reilly" or ancestor::author="W3C"].

Moreover, some queries are more naturally composed using reverse axes. Since
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the last location step always specifies the elements desired by the user, it is sometime

more natural to think the ancestors as the prerequisites of the desired elements,

which can be specified as a predicate instead of in the location path.

Example 15 In natural language processing, it is usually more straightforward to

specify a child element in a parse tree of a sentence and refer to its ancestors. For

example, the following query asks for the noun phrase that has a noun ”book” and

appears in a top level verb phrase (i.e., its parent roots the parse tree) and contains

a verb ”read” (N is for noun, NP for noun phrase, and etc.):

//NP[ancestor::VP[parent::root and //V=read] and //N=book]]

This query can be written without reverse axes, but its semantics are retained more

explicitly using this form.

If the users cannot use reverse axes directly in the XPath query, they have

to either specify equivalent queries without these features or program on some

intermediate result to get the final result. These approaches usually cause more

management overhead and hard to maintain afterward. There are also methods

proposed [56] to rewrite the XPath queries with reverse axes into equivalent queries

without reverse queries. However, the method either generates equivalent queries

with join operations, which are expensive and difficult to evaluate (especially in

streaming environment), or generates exponential number of queries (connected by

disjunctions) with respect to the size of the query.

To process the reverse axes in streams, one solution is to buffer all the data

needed to evaluate the query and postpone the evaluation, which is used in the
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XAOS system [7]. There are three main limitations of this approach. First, in the

case of infinite stream, the evaluation may be unnecessarily postponed infinitely.

Second, even if the predicate for an element could be evaluated, the method still

unnecessarily buffers the contents used to evaluate that predicate. Third, even if the

results can be determined based on currently available data, the correct result is not

sent to output and the once potential results (that can be proved not in the result)

are still buffered. Because of these limitations, this type of solution is inefficient

and not viable for environments that need to process infinite streams or desire lower

output latency.

We introduce our method to process XPath queries with reverse axes in this

chapter. In Section 7.2, we introduce the method to rewrite every XPath query

into an equivalent query that has only one location step. In Section 7.3, we build an

XPath query tree from the rewritten query and process the pending predicates using

a hierarchical index. Section 7.4 gives the performance study of our implementation

and other popular XPath processors.

7.2 Single-step Normal Form

We first rewrite any XPath query into an equivalent single step normal form in

which the query and all the subqueries have only one location step. The single-step

normal form works as an internal universal representation of the query. There-

fore, our algorithms process a standard query format while can handle queries with

complex structures.
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The rewriting method is based on two facts that follow the XPath semantics:

• Query A/B is equivalent to query B[parent::A].

• Query A[B/C] is equivalent to query A[B[C]].

Two queries are equivalent if and only if they have the same result on any given

data.

In general, we apply the following two rules repetitively to the query until the

rules are not applicable. In the first rule, ai, ni, and pi is the axis, node test, and

predicate for the ith location step, respectively. ar
i is the reverse counterpart of axis

ai, e.g., descendant r is ancestor . The ROOT stands for the document root of the

XML data.

a1::n1[p1]/a2::n2[p2]

⇐⇒ n2[p2 and ar
2::n1[p1 and ar

1::ROOT]]

It is obvious that the two queries return the same set of nodes. We can apply the

above rule repetitively on the left-most two location steps of the XPath query until

there is only one location step left.

In the second rule, we rewrite every subquery in the predicates into a single

location step expression. Since a predicate may contain several subqueries that are

connected by boolean operators, e.g., A[Q1 and Q2], we apply this rule to every

subquery separately.

n0[a1::n1[p1]/a2::n2[p2]/...]

⇐⇒ n0[a1::n1[p1 and a2::n2[p2]/...]]
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/A[a:B[C]//D]/a:E[//F]

⇐⇒ //E[//F and //A[a:B[C]//D and p:ROOT]]

←→ //E[//F and //A[a:B[C and //D] and p:ROOT]]

Figure 7.1: An Example of the Rewriting Process

We can apply this rule on every subquery recursively so that every subquery con-

nected by the boolean operators has only one location step.

After the above rewriting processes, the XPath expression is transformed into

the single-step normal form a::n[p]. The predicate p is also composed by only

single-step subqueries that are connected using boolean operators and parentheses.

Figure 7.2 illustrates an example of the rewriting process. The first rule is used

in the first step and the second rule is used in the second step. In the example

and future discussion, for the clarity of the presentation, we do not distinguish “de-

scendant::” from “//”, which is the abbreviation of “/descendant-or-self::node()/”.

Similarly, we consider the reverse axes of “//” as “/ancestor::” but not “/ancestor-

or-self::node()/”. Moreover, we abbreviate “parent::” as “p:” and “ancestor::” as

“a:”.

Absolute subqueries The subquery used in the predicate of an XPath expres-

sion may be an absolute subquery, whose evaluation uses the document root as the

context rather than the element selected by the node test of the expression. For

example, query A[/descendant::B] returns all the A element if the document root

has a B descendant. For absolute subqueries such as A[/p], we rewrite it into the
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form A[root::ROOT/p] so that above rewriting process can be applied. The root

axis is a special reverse axis that always return the document root, which always

has the name ROOT. The reverse of the root axis is the descendant axis. (We may

name the reverse as root-descendant axis so that the (ar)r == a relation holds.)

7.3 Streaming Evaluation Algorithm

After an XPath query is rewritten into a single-step normal form, we then

create the XPath Query Tree (XQT) for the query, as described in Section 5.2.

The child of the ROOT node is always the output node since we create the tree from

a single-step normal form, i.e. there is only one trunk node.

The main-memory evaluation algorithm described in Section 6.3.1 can be re-

vised to process queries with reverse axes. First, in the Evaluate(e,p) function

that evaluates the predicate p for element e (please see Algorithm 7), we need to

check ancestors as well instead of only descendants. Second, the MatchPath and

ExistTruePath functions need to consider the cases where the path may contain

backward segments. These revisions are easy to make when the DOM tree is built in

the main memory. In this section, we focus on how to evaluate queries with reverse

axes over streams.

7.3.1 Dependency Between Elements

Similar to the method used in Chapter 6, we evaluate the queries by marking

the elements with the XQT nodes that they may match. However, since we allow

170



reverse axes in the query, the method used in Chapter 6 cannot be applied here

directly. The reason is that, without reverse axes, the predicate of an element

can always be determined when the end tag of the element is encountered. This

condition does not hold with reverse axes in the predicates. The following example

illustrates the difference.

Example 16 Consider query A[//B[a:C[//D]]], when can we determine an ele-

ment A in the stream does not match the XQT node A? We want to determine that

there cannot be any B descendant of this A element that can match the B node. There

may be following possible situations:

• At the end of A, we have not seen any B descendant.

• We have seen some B descendants, but none of them has a C ancestor.

• There are some B descendants whose C ancestor is also an ancestor of the A

element. We have not seen any D descendant of that C ancestor yet.

For the first two cases, we can determine that there cannot be such B elements at

the end event of the A element. For the third case, the decision can be made only at

the end of the C ancestor.

With reverse axes in the query, to evaluate the validation expressions in the

streaming environment, we firstly define the notion of dependency between the

elements.

An element e depends on element e′ if and only if e is marked with XQT node

n and e′ is marked with the child of n, n′ (i.e., e′ is used to evaluate the predicate
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of e). Recall that e being marked with n implies that e satisfies the pattern of

n but have not satisfied the predicate of n yet (please see Section 6.3.2). In the

above example, in the third situation, the A element depends on the B descendants,

which in turn depends on the C ancestor. The C element will not depend on its D

descendants: as soon as we encounter a D descendant in the stream, the C element

can be marked with a “+”, i.e., matches with the C XQT node.

7.3.2 Hierarchical Index

We now introduce a hierarchical index (HIndex) to store the dependencies

among the elements and to facilitate the evaluation process. Without reverse axes in

the query, the predicate of an element can always be determined when the element

ends. Therefore, a stack that holds only the open elements suffices to keep the

undecided elements. With reverse axes in queries, we use the HIndex to hold those

undecided elements, i.e., those with a mark but no “+” sign.

The HIndex is essentially a directed dependency graph. The nodes in the

graph are the undecided elements. An element e depends on another element e′

if and only if e′ is a parent of e in the dependency graph. A naive solution is to

create a node in the graph for every element in the document. However, due to the

existential semantics of XPath predicates, we can design a more efficient index.

Consider the query //A[//B[a:C[//D] and a:E]]. An element A depends on

all its B descendants, which in turn depend on their C ancestors. Note that the B

elements does not depend on their E ancestors since whether they have an E ancestor
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Figure 7.3: The dependency graph

can be determined at the time we encounter them. Figure 7.2 illustrates the DOM

tree of an example document. The streaming form of this document is essentially

a preorder traversal of its DOM tree. We distinguish elements with same name by

subscriptions. The dependency graph when we process the begin event of the B5

element is shown in Figure 7.3.

We modify the above dependency graph into a more compact and efficient

HIndex as follows. Firstly, for every element e with mark n, we create a socket for

C 1 C 2

A 1 A 2

B B

A

C3

3

5

true true

Figure 7.4: The HIndex after the B nodes are combined
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Figure 7.5: The final HIndex

e in the index for every variable ai :: ni in the the validation expression of n. The

socket i is labeled with the current value of ai::ni and contains all the edges between

e and element e′ with mark ni. We group these edges using the socket so that when

one element connected from these edges is marked ni+, we label this socket with

true and remove all the edges from this socket. The socket i of element e created for

ai::ni is labeled false in the following cases:

• If ai is a reverse axis, socket i is labeled as false after the begin event of e when

it is empty and the current value is na.

• If ai is the attribute axis, socket i is labeled as false after the begin event of e

when the predicate involves the attribute evaluates to false.

• If ai is a forward axis, socket i is labeled as false after the end event of e when

it is empty and the current value is na.

It is easy to see that socketi labeled with true do not need accept new edges

because of the existential semantics of XPath predicates. If socketi is labeled with

false, it cannot accept new edges as well since it is labeled as false if and only if the

corresponding query has already been falsified.

Two index nodes can be combined when their corresponding sockets either
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have the same label or contain the edges from the same set of parents, which implies

that they depend on the same set of elements. The following example shows how

this combination shrinks the index drastically.

Example 17 We have seen the dependency graph for the following query:

//A[//B[ancestor::C[//D] and ancestor::E]]

When we evaluate it over the document shown in Figure 7.2. The corresponding

HIndex, which is shown in Figure 7.5, is much smaller than the dependency graph.

Firstly, since the first four B nodes depend on the same C ancestors, they can

be combined together. The result is shown in Figure 7.4. Since then the first two A

nodes are now depending on the same node, they are combined as well. The final

HIndex is shown in Figure 7.5.

The sockets of each index node are also shown in Figure 7.4 and Figure 7.5

using the symbol t. Edges are grouped by sockets. The socket labeled with true is

created for the ancestor::E item in the validation expression of the B nodes. Since

we have seen an E ancestor when we encounter the B elements, these sockets are

labeled with true when we create them.

After the combination, the propagation of the result is very efficient. When

we encounter the D2 child of the C1 ancestor that the combined B node depend on,

the C1 node is marked true and the corresponding socket of the combined B node is

labeled true. Since the other socket of the B node has already been labeled true, the

validation expression of the B node now evaluates to true. The only socket of the

combined A node will then be labeled true and the contents will be sent to output.
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Similar process also happens earlier when we encounter the D1 child of C3

element and the A3 node is marked true. However, since there are potential results

that cannot be determined before this A3 element, we have to wait until later and

output the three A elements together.

Note that we cannot simply connect those C ancestors to the combined A node

although essentially the A elements are now depending on those C ancestors. Since

the predicate may be in the form of B[not(ancetor::C//D] and ancestor::E],

the evaluation of the validation expressions at node B cannot be omitted. Optimiza-

tions can be done here if there is no NOT operators in the predicate.

The combining process shown in above example is not the actual process during

runtime. We do not combine the index node after we have created all of them. When

we want create a new index node, if we find that there is an index node that depends

on the same sets of parent and has the same label for the empty sockets, we do not

create the new index node but use the existing index nodes instead.

7.3.3 Create HIndex Dynamically

We create the HIndex dynamically during runtime. There are three operations

on the HIndex: create, update, and remove.

The create operation creates a new node in the HIndex. When we mark an

element e with node n in the XQT, a new index node for e is created in the HIndex.

If e depends on an ancestor element e′, since e′ must be already in the HIndex, we

connect e′ to e’s corresponding socket (and e′ becomes a parent of e in the index).
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If e depends on its descendants, which is currently not in the HIndex, we just label

the corresponding sockets as na (and no edge is created).

If n is a branch node, e may also be depended on by other nodes. If the edge

between n and its parent in the XQT is a reverse axis, no edge is created since e

may be depended on only by its descendants. Those edges are created when we

create the index nodes for the descendants. If the edge is a forward axis, which

means one of e’s ancestors depends on e, we connect e to e′’s corresponding socket.

Therefore e becomes a parent of e′ in the HIndex (note that e′ is an ancestor of e

in the document).

The matching process using XQT is modified accordingly so that if the socket

of node e that corresponds to ai::ni is labeled true or false, we no longer match

elements with tag ni for element e.

The update operation updates the marks of the HIndex nodes and propagate

the update as needed. When a HIndex node e is being marked with n+ or being

unmarked, for all the HIndex children of e, the socket of all the children that connects

e is labeled true or false accordingly and all the edges in that socket is removed.

The validation expression of those children is then evaluated. If the result of the

re-evaluation is either true or false, the child is marked with the new value and its

children is updated accordingly.

The remove operation is executed when any node is marked false after an

update operation. (Recall from Section 7.3.2 that an index node is marked false in

three cases.)
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Figure 7.6: Throughput of the pure parsers

7.4 Performance Evaluation

We present in this section the results of the performance study we conducted

for the algorithm described in this chapter. The study is based on our implemen-

tation of the algorithm using Java SDK 1.4.0 01. As part of the XSQ project [59],

the new system is named as XSQ-R.

7.4.1 Experiment Setup

Our goal of the performance study is to examine that whether XSQ-R has high

throughput and low memory footprint for data and queries of different sizes. We

also study the relation between the throughput of the system and the characteristics

of the queries.

We also compare the performance of XSQ-R with other systems that can pro-

cess XPath queries: Saxon (http://saxon.sourceforge.net/), Xalan (http://

xml.apache.org/xalan-j), XPATH from XMLTaskForce (http://www.xmltaskforce.

com), and XMLTK [4]. XMLTK (version 1.01) is a set of XML tools developed at
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University of Washington. The xrun program in the toolkit can evaluate XPath

queries on large XML datasets. It uses a DFA generated from the XPath query

that takes the SAX events as input and return the results of the query. Since it

does not support XPath queries that need buffering, we use it only in experiments

using queries without predicates and reverse axes. Saxon (version 6.5.2) and Xalan

(version 2.4.0) are two broadly used high performance XSLT processor. XPATH is

the implementation from XMLTaskForce of the polynomial algorithms introduced

in [32]. All three systems are main memory systems that need to build the DOM

tree in the main memory before evaluation.

The main metric we use is the normalized throughput of the systems, which is

the raw throughput of the system normalized by the throughput of the corresponding

pure parser that parses the data but does nothing else. We wrote a pure parser in

Java using Xerces2 Java Parser 2.4.0 Release, which is used as the XML parser for

XSQ-R, Saxon, and Xalan in the experiments. We also wrote another pure parser in

C using Expat parser, which is used by the XPATH program. XMLTK 1.01 provides
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a parser program named XParse that parses the document and count the number of

elements in the document. Since the counting process only needs one statement at

the begin event of every element, which should be very fast operation compared to

the parsing process, we use the XParse program as the pure parser of the XMLTK

system.

The throughput of the pure parsers are shown in Figure 7.6. We can see

that the throughput of the C parsers are roughly constants while the throughput of

Xerces has a converging process. Since the preprocessing time of the Xerces parser,

including Java Virtual Machine (JVM) loading and system initialization, becomes

less significant as the size of the data increases and the parsing time becomes the

dominant factor in the throughput. In the contrast, the running time of the C

parsers are always dominated by the parsing time, which is proportional to the size

of the data.

We generate ten datasets using XMark benchmark program with the scale

factor set to 0.5 to 5, step by 0.5. The sizes of result dataset range from 5.7MB to

58MB. For most queries, we show the normalized throughput for all the datasets. We

use the dataset of size 58MB (of scale factor 5) when we compare the throughputs

of different queries on the same dataset.

We ran all the experiments in a PIII 900MHz PC with 1GB of main memory

running Redhat 7.2 distribution of GNU/Linux (kernel 2.4.9-34). The maximum

memory the Java virtual machine can use was set to 512MB. The running time is

obtained using the GNU TIME(1) tool. Every data point presented is obtained

from the average of the results of ten runs.
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7.4.2 Simple Queries

In this chapter, we claimed that although we rewrite the query into a single-

step normal form, the performance of the queries that have simple structures are not

compromised. The first set of experiments proves this claim using simple queries

without predicates and reverse axes. Such queries are essentially regular expressions,

which can be evaluated most efficiently using automaton-based approaches.

The query /site returns all the items in an XMARK dataset. The normalized

throughputs are shown in Figure 7.7. We can see that XSQ-R is very efficient when

handling this simple query that is requires a large mount of disk IO.

The systems using the Xerces as the parser show similar converge curves, while

the normalized throughput of the systems written in C are almost constant. As we

show in Figure 7.6, the throughput of the C parsers are almost constant, which

implies that the XPATH and XMLTK also have constant throughput for this query.

For the Xerces-based systems, we show the throughput in Figure 7.8 together with

the throughput of the pure parser using Xerces. If the actual throughput of the

query engine after preprocessing is T (MB/s), the preprocessing time is P (s), and
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Figure 7.10: Throughput of a query without reverse axes.

the size of the dataset is S (MB), the throughput we compute is S
P+T×S

, which

converges to the actual throughput as S increases. However, since the throughputs

converge at different pace and to different values, the normalized throughputs also

show similar converging curves. It is also the reason we use the throughput of the

largest when we compare different queries, since the normalized throughput has

almost converged at the point.

XSQ-R is very efficient when evaluating queries with very simple structures.

Figure 7.9 shows the performance of the systems for a simple query with five lo-
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Figure 7.11: Throughput of queries with closures of different length

cation steps without predicates and closure axes. Since the query can be pro-

cessed by a very simple Deterministic Finite Automata (DFA), we expect that

the automaton-based system (such as XMLTK) is most efficient for this query.

In our method, we rewrite this query into the form /descendant::name[parent::

item[parent::samerica[parent::regions[parent::site[ parent::root]]]], which

means that whenever we encounter a name element, we have to check the match-

ing stack of the HIndexNode that corresponds to item to see if it is empty. In an

automaton-based system, if this name does not match the pattern, it is ignored since

the state that accepts the start event of the name element is not the current state

of the DFA at the time. Nonetheless, as we can see in Figure 7.9, XSQ-R is still

very efficient when evaluating this query.

We then show closure axes are processed differently in different systems. We

show in Figure 7.11 several queries of different length on the XMark dataset of size

58 MB (scale factor 5.0). Although Q1 and Q2 has the same result set for this dataset,
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Figure 7.12: Throughput of a query with a reverse axis in the predicate

we can see that XMLTK, Xalan, and XPATH has significant performance difference

between these queries. XSQ-R and Saxon, in the contrast, are not very sensitive for

the closure axes. In the case of XSQ-R, more closure axes only means larger current

node set since a closure axes keeps the parent index node in the current node set

when a child node is added while the a non-closure axis removes the parent node

from the index. However, the size of the current node set makes almost no difference

in the performance since the current node set is organized as a hash table and the

only operation we have is hashed lookup.

7.4.3 Complex Queries

In this set of experiments, we show how XSQ-R is efficient when evaluating

queries of more complex structures and with reverse axes. Since XMLTK does not

support such queries, we do not include it in the experiments.

Figure 7.10 shows a query that has nine location steps in total from the query

and predicates and does not use reverse axes. Comparing to the previous queries
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Figure 7.13: Throughput of a complex query with two reverse axes in the predicate

with less location steps and simpler structures (cf. Figure 7.9), XPATH performance

worse since its approach generates more intermediate result and perform more join

operations. In the contrast, the number of location steps does not cause much

difference in the performance of the Xerces-based systems since they usually evaluate

the query by traversing the document tree. Since there is no reverse axes in the

query, which means the predicates and the query can be evaluated naturally in one

traversal of the document tree, the throughput of this query is similar to query Q1

which has a much simpler structure.

The next complex query has one reverse axes in the predicate. We can see

from Figure 7.12 that the Saxon’s performance degrades comparing the previous

query without reverse axes. XPATH perform OK since it treats reverse axes almost

the same as forward axes. However, it seems that Xalan has some optimization for

reverse axes so that its performance is almost the same as the previous query.

Next query with two reverse axes in the predicates proves our speculation.

Saxon seems to be evaluating the reverse axes in a very straightforward manner
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Figure 7.14: Maximum memory allocated for queries over the 58MB dataset

since more reverse axes incurs more traversal of the document tree. Xalan still

shows similar performance as the previous two queries. XPATH performance bad

here not because the reverse axes, but because the intermediate result generated

by the predicates (such as //listitem/ancestor::item) almost covers the whole

dataset. Figure 7.13 shows the maximum memory allocated by each system when

evaluating the three queries. The left most bar is the memory allocated when

evaluating query /site when no intermediated result should be generated. We can

see the more memory allocated by XPATH, the smaller the throughput of XPATH

is. XSQ-R uses more memory in Q8 to buffer some of the data since the predicate

ancestor::regions/samerica can be evaluated after around 50% of the dataset

has been processed (samerica is the sixth continent listed in the data).

7.4.4 Number of Reverse Axes

In this set of queries, we illustrate that different systems handle reverse axes

differently. Some systems ( XSQ-R and XPATH ) are more efficient when processing

queries with reverse axes.
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Figure 7.15: Throughput of a query with reverse axes in the predicate

Figure 7.15 illustrates the normalized throughput of the systems when they

evaluate a query with several parent axes in the predicate. We can see that all the

systems perform well for this query. Although Saxon performs worse in the previous

experiments when there are reverse axes in the predicate, it evaluates this query

faster since the evaluation of a parent axis for every name element in the document

tree requires exactly one visit to the parent node. As we can see in Figure 7.16,

which shows the throughput of the systems when evaluating the queries over the

58MB XMark dataset, when the reverse axes in the predicate are closure axes, the

performance of Saxon degrades a lot while the other systems are not affected as

much.

However, the situation is different when there are reverse axes in the location

steps of the query. Figure 7.17 shows the throughput of the systems when evaluating

the queries over the 5.7MB XMark dataset (scale factor 0.5). We did not use larger

dataset since Saxon went out of memory when evaluating Q14 and Q15 on this 5.7

MB dataset. The throughputs of both Saxon and Xalan also degrade drastically:

Saxon uses more than 130 seconds to evaluate query Q16 and Q17 and Xalan uses
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Figure 7.16: Throughput of queries having different reverse axes in the predicate

more than one hour to evaluate query Q16 and Q17. However, Xalan does not use

extra memory in these queries while Saxon seems to be generating large number of

intermediate results in the process, as illustrated in Figure 7.18.

We can see from the experiments that XSLT processors such as Saxon and

Xalan are not very efficient when processing the reverse axes. Although they are

designed mainly for processing stylesheets that usually have more complex semantics

and construction operations, it is obvious that our method could be used as the

XPath processing component to improve the performance. For example, instead of

traverse the whole document tree, the XSLT processor can receive the output of our

XPath processor as the input.
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Chapter 8

An XPath Subscription Server

We describe in this chapter the XPaSS system, which simultaneously evaluates

multiple XPath queries over possibly unbounded XML streams with arbitrary struc-

ture. Two distinguishing features of XPaSS are (1) the input is not assumed to be

segmented into documents or other predefined units and (2) subscriptions are based

on queries, not filters, permitting precise specification of desired results. XPaSS has

applications in selective dissemination of data from syndicated Web sites, meteoro-

logical measurements, and a growing number of XML data sources. Our methods

are based on grouping operations by XPath segments, permitting bitmapped imple-

mentations of key tasks that must be performed for each input item (SAX event).

Our experimental study indicates that XPaSS scales easily to a few hundred of

thousands queries with a good throughput and a small memory footprint.

8.1 Introduction

We may think of the XPaSS
1 system as one that generalizes the well-studied

subscriptions servers to an environment without segmented input data and that

permits queries, not just filters, as subscriptions. Alternately, we may think of

XPaSS as an XPath query engine that is optimized for simultaneous execution of

1Multiple XPath Query-engine
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a large number of XPath queries. In either case, the environment we study is the

same: Data arrives in the from of an XML stream. We do not make any assumptions

about the structure of the input (beyond well-formedness of XML). In particular, we

do not assume that the input is segmented into documents, nor do we assume that

there is a predefined set of element types that determine the type of subscription

results. Subscriptions consist of XPath queries. Query results are to be continually

evaluated on the input data and propagated to subscribers in a timely manner. The

key considerations are the throughput and memory footprint of the subscription

server.

As an example of the environment we study, consider the recent growth of Web

sites with syndicated XML content. Authors (human or automated) publish streams

of XML data. These streams are typically aggregated by content aggregators (e.g.,

http://www.syndic8.com/). It is natural to carry this development to the next

logical step: delivery of customized content to subscribers. As another example,

consider the dissemination of a large body of continually produced data (typically,

processed instrument data). For instance, the National Weather Service continually

produces data based on a large network of instruments. There is no particular

segmentation of this data into documents that is universally useful. (Although

the NWS structures this data into well-defined files, it is unlikely that a subscriber

would want to receive such files as subscription results.) In both these examples, the

number of subscribers is likely to be large enough to render naive implementations

based on evaluating subscriptions individually impracticable.

Subscription servers have been studied extensively. However, the methods are
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typically based on filtering, not querying, subscriptions, and their generalization to

our environment is not obvious. Further, except for some recent work, attention

has focused on a document-centric model with keyword-based subscriptions. There

has also been much recent work on XPath (and XQuery) query engines. Although

such work provides good methods for evaluating a single query (or a small number

of simultaneous queries), it does not generalize easily to subscription-server scales

(say, 105 subscriptions).

Filters vs. Queries As noted above, we distinguish between two kinds of sub-

scriptions that an information dissemination system may support. Filter sub-

scriptions are subscriptions that produce a boolean result on each segment of the

incoming data stream. These segments (or documents) are predefined by the server

and cannot be customized by subscribers. Query subscriptions are subscriptions

that do not assume any particular segmentation of the incoming data stream. In-

stead, these subscriptions precisely specify the portions of the input that are of

interest to the subscriber. Such flexibilities benefit both subscribers and publishers.

For subscribers, they are less likely to be overloaded with irrelevant and exces-

sive data. For example, consider a server that processes subscriptions over a data

stream consisting of business articles from a newswire agency. Different parts of

such documents (e.g., headline, author, company name, stock symbol, recent stock

price) are often tagged in a machine-readable manner. Such articles often also con-

tain a significant amount of background information based on company filings. A

subscriber may be interested in only the headlines and stock price data for com-
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panies classified as computer software companies. Using a query subscription, it is

possible to specify exactly such a profile. In contrast, filtering systems may narrow

down the documents in the stream to a manageable number, but they would still

return the remaining documents in their entirety, leaving the subscriber with the

task of distilling the interesting information from them.

For publishers, they do not spend time to categorize the data into prede-

fined categories to make suitable segmentations of the data. Categorizing is time-

consuming and predefined categories may have to be evolved as new concepts emerge.

Even these pre-processed data segments may not suit the users’ needs, as it is very

hard to predicate users’ interests before hand. For example, the XML feeds from

NWS2 are currently served in many categories, such as “Forecasts”, “Watch/warnings”,

and etc. In each category, single feeds are served for some geographical metrics, some

by states and some by larger regions. Given a query subscription engine like XPaSS,

all these pages can be combined into one single query interface in which users provide

their queries and get the feeds they want.

Challenges Although an information dissemination environment that uses query

subscriptions is attractive, it does complicate the data-processing task at the server.

Consider a simple XPath query //A[B]//C. When it is used a filter subscription

system, the engine tests for every document the existence of one C element inside,

i.e., being a descendant of, an A element who has a B child. While in a query

subscription system, the engine returns for this query all such C elements. In the

2http://www.weather.gov/xml/index.php

193



case some C descendants of an A element arrives earlier than the first B child of

A, we need to buffer all those C descendants. Previous work has explored similar

challenges in evaluating single XPath queries at a time.

The need to evaluate a large number of queries simultaneously makes for an

even more challenging task. First, we need to identify the common features among

all the queries that can be executed together and share those results for different

queries. Previous work on filtering system addresses this problem by sharing com-

mon prefixed or suffixes among filters. However, when XPath expressions are used

as queries, the same prefix of suffix may stand for different semantics. For exam-

ple, in a filtering system, XPath expression //A//B[//C] and //A[//B//C] always

return the same set of documents and share the prefix //A//B//C. However, in a

querying system, the first query returns a set of B elements while the second re-

turns a set of A elements. Therefore, extra mechanisms are required to handle these

differences. Second, we need new mechanisms to address the buffer operations for

multiple queries, which are not at all required in filtering systems but essentially for

querying systems. It is obvious that creating a single buffer for every query will not

scale.

Our solution to this problem is based on the idea of decomposing each XPath

query into segments, which may be intuitively thought of as triples comprised of a

pair of successive node labels in the query along with the connecting axis (/ or //).

(Details are in Section 5.1.) The number of possible distinct segments in a large

collection of XPath queries is relatively small, implying a high degree of expected

overlap. Our method uses this overlap, along with efficient bitmapped versions of
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the operations that must be performed in response to incoming data (SAX events).

We note here that we do not achieve any asymptotic algorithmic improvements in

this manner. However, the differences in the constants are significant, as illustrated

by our experimental study!

We may summarize the main contributions of this chapter as follows:

• We motivate and develop the problem of information dissemination using

XPath queries on streaming data of arbitrary structure. We discuss the re-

lation of this problem to prior work on information dissemination, streaming

query evaluation, and other areas and highlight the new challenges posed by

this problem.

• We present methods for implementing XPath query subscription servers based

on the idea of XPath query segments. These segments form a practical unit for

aggregating computation across queries. Although not experimentally studied

in this chapter, an interesting feature of our methods is that they permit

dynamic insertion and deletion of subscriptions at run time without the need

for expensive reorganizations.

• We have implemented all the methods described in this chapter in the XPaSS

system. We present an experimental study of XPaSS that indicates that the

current implementation scales well to a few hundred of thousands of queries

on modest hardware. We discuss the main factors affecting the performance

of XPaSS and highlight some promising areas for further research.

Outline This chapter is organized as follows: We first introduce a segment-based
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evaluation algorithm for single XPath queries in Section 8.2. The algorithm for

multiple queries is then described in Section 8.3. The experimental results are

presented in Section 8.4. We conclude in Section 8.5.

8.2 Segment-based Evaluation

In streaming XML processing, we store the currently open elements in a stack.

An incoming element e and each ancestor a in the stack form a pair (a, e), which

may match a segment M//N if a’s tag matches node test M and n’s tag matches

node test N . An XPath query can be evaluated by linking this segment matching

information. (For details of evaluating XPath using segments, please see Chapter 5.)

As we illustrate in Example 6 in Chapter 5, we can share the evaluation

of segments among queries. We use this sharing idea to improve the evaluation

performance when we need to evaluate multiple XPath queries simultaneously over

XML streams. Existing techniques for multiple-query evaluation, in the mean while,

share the evaluation effort among queries that have either common prefixes [3, 23, 15]

or common suffixes [35].

We describe the segment-sharing method in Section 8.3. In this section, we

describe the segment-based streaming evaluation for single queries as the first step.

Extending the segment-based semantics of XPath (defined in Section 5.3), we define

four types of matchings an element may have with a query node. The data structures

and streaming evaluation algorithm for single queries are presented in detail next.

We also discuss the correctness and complexities of the method.
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We discuss in this chapter queries without value comparisons. However, our

methods also apply to queries with such comparisons. For example, predicate

[name=’BN’] can be approximated as [name/child::text()=’BN’], since text()

is essentially a special node test that matches all document node of type text while

other regular node test (called name test) only matches document node of type

element. Therefore, we may create a special query-tree node for text()=’BN’, who

matches the text content of a name element with value ’BN’. We also only describe

the cases for // axes. Unless otherwise stated, these descriptions can be applied to

the cases for / axes if we replace the ancestors with parents.

8.2.1 Partial Information of Matching

During streaming evaluation, we organization of the partial matching informa-

tion as follows. Intuitively, we distinguish the partial information by which portion

of the data it can be verified on. For example, we use the data outside of element

e to determine whether there exists a matching between e and a query-tree node n,

while we only use data inside e to determine whether e satisfies the predicates of n.

We define the following four matching-sets for every element e:

• Out(e) contains XQT node n iff there exists a matching between e and n. We

also say e outer-matches n.

• In(e) contains XQT node n iff the tag of e matches the label of n and e satisfies

n’s predicates. We also say e inner-matches n.

• Part(e) contains XQT node n iff n is a trunk node, e has inner- and outer-
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matched n, and e has not matched n. In other word, whether e matches n

depends on whether every ancestor of e in the matching satisfies the corre-

sponding predicates. We also say e partial-matches n.

• Match(e) contains XQT node n iff either (1) n is a trunk node and e has

matched n or (2) n is branch node and e has inner- and outer-matched n. For

convenience, we also say e matches the branch node n in this case.

The difference of treatment to the branch nodes and trunk nodes in the

Match() set comes from the difference between top-level queries and subqueries.

The subquery rooted at a branch node n is evaluated in the context of every el-

ement e′ that outer-matches the parent node p(n) of n, be it a trunk node or a

branch node in a higher-level subquery. If a descendant e of e′ both outer- and

inner-matches p(n), evaluating the subquery rooted at n in the context of e′ returns

a non-empty result set. In other words, e makes e′ satisfy the predicate regardless

of the predicate evaluation results for the ancestors of e. For example, in Figure 5.1,

element e5 (the price element on line 5) matches branch node n5 in Figure 5.2(2),

since e5 can be used to satisfy the predicate [//price=10] of its parent e3.

8.2.2 Data Structures

We now describe the data structures that store necessary data for the evalua-

tion. We describe in Section 8.2.3 the algorithm that updates these data structures

dynamically upon incoming streaming data.

Stack We maintain a stack of open elements, which are elements whose start,
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but not end, tags have been encountered. The stack is maintained in the natural

manner: An element is pushed onto the stack upon its begin SAX event and it is

popped off the stack upon its end event. Note that we allow access to the whole

stack instead of only the top element.

Pending-set Suppose we have determined that element e has outer-matched a

query node n. To determine whether e inner-matches n, we associate with e a

pending-set, denoted as Pending(e,n), when e is put on the stack. Pending(e, n)

is initially set as C(n), the condition-set of n. A query node x is removed from

Pending(e, n) when a descendant of e matches x. When Pending(e, n) becomes

empty, e inner-matches n since all predicates of n have been satisfied by e.

Buffer If stack element e outer-matches a trunk node n, we associate with e a

buffer, denoted as buffer(e,n), to store the elements whose matchings with the

output node contain pair (e, n). In other words, whether e satisfies the predicates

of n determines whether the matching is full. Note that in the implementation, we

use a queue to store the elements in document order and store only pointers to the

queue items in the buffers. The details are described in Section 8.3.5.

8.2.3 Streaming Evaluation

Our streaming evaluation method maintains the matching-sets for every open

element e by responding to every incoming SAX events. Upon the start of the

stream, the element e0, corresponding to the document root and labeled as root, is

pushed onto the empty stack. Matching-sets Out(e0), In(e0), and Match(e0) are all
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singleton sets that contain n0, the root of the XQT; Part(e0) is empty.

When the begin event of element e arrives in stream, we initialize all its feature-

sets and pending-sets to empty. After its begin event, Out(e) contains all XQT nodes

that e outer-matches. For each node in Out(e), the pending-set is created, to record

which predicates it is still pending on.

Before the end event of an element e arrives in stream, some descendants of

e may satisfy some predicates for e. We remove those satisfied predicate from the

pending-sets of e. Some descendants may be potential results and depend on the

predicate evaluation result of e. These descendants are put in the buffer of e.

When the end event of element e arrives in stream, we first check the pending-

sets of e. If pending(e, n) is not empty, we know that e has failed some predicate

and therefore we clear buffer(e, n). Otherwise, e has inner-matched n. If e is a

trunk node, we should append buffer(e, n) to the buffer of an ancestor a that outer-

matches p(n), since whether e matches n depends on whether a matches p(n). If

n is a branch node, we know that e satisfies the subquery rooted at n for some

ancestors, we should remover n from the pending-sets of those ancestors.

Basically, we compute the Out() sets at the begin events, In(), Part(), and

Match() at the end events, when all the data needed to compute these sets are

guaranteed to be available. Note that the Match() sets for trunk nodes are computed

lazily at the end event of the element that outer-matches the child node of the XQT

root. Only at that moment can we determine if all the elements in a matching

have satisfied their predicates. The evaluation algorithm is presented in detail in

Listing 12 and Listing 13 as event handlers. The stack operations are omitted from
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Algorithm 12: Begin(Element e)

S ← {n|n.label matches e.tag};1

foreach n ∈ S do2

/* p(n) is the parent node of n */;

if ∃ ancestor a s.t. p(n) ∈ Out(a) then3

Out(e)← Out(e) ∪ {n};4

Pending(e, n)← C(n);5

the pseudocodes.

Begin Event Handler Upon the begin event of element e, for every XQT node

n whose label matches the tag of e, we scan the stack looking for an ancestor a

that outer-matches p(n), the parent of n. If a is found, e outer-matches n since

appending (e, n) to the matching between a and p(n) forms a matching between e

and n. To denote that e has to satisfy n’s predicates, we then set the Pending(e, n)

set as all branch children of n, i.e., the condition set C(n). Recall that we only

describe the process for // axes here. If the axis between n and p(n) is /, we only

check whether the top stack element outer-matches p(n).

End Event Handler On encountering the end event of e, we first split the set

Out(e) into two subsets (line 1 and 2): NewMatch(e) retains node n from Out(n)

if Pending(e, n) is now empty, i.e., all predicates of n have been satisfied. Therefore,

e has inner- and outer-matched every node in NewMatch(e). Fail(e) contains

node n if Pending(e, n) is not empty. Since e has ended, no pending predicate of n

could be satisfied by any descendant of e. Therefore, by checking the pending-sets

we evaluate the predicates of every element upon its end event. Since no ancestor of

e has encountered its end event and therefore satisfy its predicate, according to the
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<X1>
    <Y1>
       <Z1>
            <X2>
                 <Y2>
                     <Y3/>

                  </Y2>
             </X2>
        </Z1>
    </Y1>
</X1>

Stream:

Query: //X[//Y//Z]//Y[//Y][//Z]//Y
n1 n2 n3 n4 n5 n6 n7

n4

n6n5
n7

n0

n1

n2

n3
buffer(n4){Y3}

Query Tree:

Stack

Y3

Y2

X2

Z1

Y1

X1

root Match{n0}

Out{n1}

Out{n2,n4,n5,n7}

Out{n2,n4,n5,n7}

Out{n1}

Out{n3,n6}

Out{n2,n4}

After each begin event

Pending(n2){n5,n6}
Pending(n4){n3}

Pending(n2){n3}
Pending(n4){n5,n6}

Pending(n1){n2}

Pending(n4){n5,n6}
Pending(n2){n3}

Pending(n1){n2}

Match{n0}

Part{n1}

Part{n4}
Match{n2}

Match{n3,n6}

Fail{n1}

Part{n7}
Fail{n2,n4}

Part{n7}
Fail{n2,n4}

After each end event

buffer(n4){Y2,Y3}

buffer(n1){Y2,Y3}

buffer(n7){Y2}

Pending(n4){ }
Pending(n2){ }

Pending(n1){ }

Pending(n4){n6}
Match{n5}

Match{n5}
buffer(n7){Y3}

Figure 8.1: Evaluation of a single query

definition, Part(e) contains the nodes from NewMatch(e) that are trunk nodes,

while Match(e) contains the branch nodes.

Note that the pending-sets of e are updated when we process its descendants.

When we process e, we also update the pending-sets of its ancestors. For every

ancestor a in the stack, if a is pending on some node n that e matches, we remove

n from the corresponding pending-set, indicating that a has satisfied this predicate

(see line 8 and 9).

The buffer operations maintain the following invariant: Every buffer item in

buffer(e,n) has a matching with the output node that contains pair (e, n) and, for

any pair (e′, n′) after (e, n), e′ has satisfied the predicates of n′. This invariant holds

when an element is buffered (line 5 and 6) since e both inner- and outer-matches O.

Every time this buffer item is appended from a buffer buffer(e′,n′) to another buffer

buffer(e,n) iff n is the parent of n′, e is an ancestor of e′, and e partial-matches n
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(line 11 and 12). Thus the invariant holds.

Recall that the only non-empty Match() set of the stack elements is that of

the document root e0, which initially set to {n0}. Therefore, if p(n) ∈ Match(a), n

must be the child node of n0 and e must match n following the above invariant. In

this case, we emit the buffer items in buffer(e, n) as result (line 13).

Example 18 Figure 8.1 illustrates the evaluation process using a highly recursive

data snippet and a query with conjunctive subqueries and repeated labels, as described

in the left boxes of the figure. We use Xi to distinguish elements with the same tag X.

To the right of each stack item, we list all non-empty matching-sets and buffers after

processing the element’s begin event and end event. The element names are omitted

from the matching-sets and buffers. The crossed-out buffer items are cleared at the

event. The buffer items in the circle are sent to output at the event. We describe

the process of the begin and end event of the element Y3 as a highlight.

At the begin event of Y3, its tag matches XQT node n2, n4, n5, and n7. Scan-

ning the stack we find the parent node of each of them (n1, n1, n4, and n4, respec-

tively) is outer-matched by an ancestor of Y3. Therefore, Y3 outer-matches all four

nodes. We then create the pending-set for the two nodes that have branch children,

n2 and n4.

At the end event of Y3, since the pending-sets for n2 and n4 are non-empty,

they are put into the Fail set. Then, Part(Y3) now contains the trunk nodes left,

i.e., n7, and Match(Y3) the branch nodes, i.e., n5. Since the output node n7 is in

Part(Y3), we put this element into buffer(Y3, n7).
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Algorithm 13: End(Element e)

/* update the sets */;

Fail(e)← Out(e) ∩ {n|Pending(e, n) 6= φ};1

NewMatch(e)← Out(e)− Fail(e);2

Part(e)← NewMatch(e) ∩Trunk;3

Match(e)← NewMatch(e) ∩ Branch;4

/* O is the output node of the XQT */;

if O ∈ Part(e) then add(buffer(e,O), e);5

foreach n ∈ Fail(e) do clear(buffer(e, n));6

/* update the ancestors in the stack */;

foreach ancestor a do7

foreach pending-set Pending(a, x) do8

Pending(a, x)← Pending(a, x)−Match(e);9

foreach n ∈ Part(e) do10

if p(n) ∈ Out(a) then11

append(buffer(a, p(n)),buffer(e, n));12

else if p(n) ∈ Match(a) then emit(buffer(e, n));13

We then update the ancestors. First, we remove Match(Y3), i.e., n5, from the

pending-set of every ancestor, Y2 and Y1 in this example. Next, for n7 ∈ Match(Y3),

we append buffer(Y3, n7) to the buffer of every ancestor that outer-matches the parent

node n4. In this example, it is appended to buffer(Y2, n4) and buffer(Y1, n4).

Correctness Given the invariant held by the buffer operations in the end event

handler, it is easy to see that only correct result items are emitted by the method.

We then show that every result item is sent to output. If there exists a total-

matching M = ((e0, n0), . . . , (ek, nk)), ek = e and nk = O, between e and O, by

induction we know that after the begin event of ei, ni ∈ Out(ei). At the end event

of e (i.e. ek), since O (i.e. nk) is in Part(e), e is added to buffer buffer(e, O).

Then, when we update the ancestor ek−1, since nk−1 ∈ Out(ek−1), e is appended to
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buffer(ek−1, nk−1) (see line 11 in Listing 13). Using induction we can show that e

will be finally appended to the buffer buffer(e1, n1) and is sent to output.

Complexities We assume that looking up an item in a set takes unit time given

a good hash function. Therefore, removing an item from a set also takes unit time.

Computing the union or difference of two sets takes linear time in the size of the

sets.

Suppose the tag of an element may match the label of T different query nodes,

the stack’s depth is H, and there are R elements that outer-matches the output

node O. In the worst case, e.g., all node tests are wildcards, T could be the size of

the query and R could be the size of the data. However, in most real-life scenarios,

a tag may match the label of a small number of (usually one or two) query nodes.

Moreover, R is also usually much smaller than the size of the dataset especially for

queries of high selectivities.

The begin event handler uses O(TH) time: For every query node n whose label

matches the tag of e, we scan the stack for an ancestor that outer-matches p(n).

The end event handler uses O(TR + HT 2) time: O(TR) for the clear (line 6) and

emit (line 13) buffer operations; O(HT 2) for the loop that updates the ancestors in

the stack (lines 7, 8, and 9). The buffers of each stack element uses at most O(TR)

space, and therefore the total buffer space is at most O(THR). If we take into

account that T can be almost deemed as a constant and H is usually very small for

most streams (especially for document-centric datasets), the method is very efficient

in itself. We show in next section that the segment-based scheme can be applied to

205



support multiple queries.

8.3 Segment-based Grouping

We present in this section our query evaluation algorithm for multiple queries

that uses segment-based grouping. Our approach creates an index for the segments

in all the queries. The index, stored in a segment table, records for each segment the

queries in which it appears in and how the segments are connected in the queries. In

the single query evaluation method, a segment is detected in the stream by connect-

ing the incoming element and an ancestor in the stack. The runtime information,

i.e., the matching-sets and the buffer, associated with that ancestor are then up-

dated according to the segment. For multiple query evaluation, we follow the same

segment-based evaluation scheme, i.e., detecting segments and updating ancestors.

However, the matching-sets and buffers are now grouped by common segments to

efficiently support multiple queries.

8.3.1 Compile Time

We assign each query a unique integer query-id and use Qi to denote the query

with query-id i. We compile each query into a XQT and compute the following

feature-sets that consist of query-ids: The set N(X) contains query-id i iff label

X appears in Qi; Trunk(X) contains i iff X is a trunk node in Qi; Branch(X)

contains i iff X is a branch node in Qi; and Output(X) contains i iff X is a output

node in Qi.
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We assume each label only appear in a query at most once. If a label appear

in a query more than once, we apply a global renaming scheme such that the nth

appearances of the label in all queries have the same new label. The renaming

scheme is implemented in the XPaSS system and discussed in Section 8.3.5.

A mapping M(XY) contains query-id i iff Qi has a node with label X that

has a child with label Y , i.e. Qi contains segment X//Y .

We organize these information in a segment table, where the key is the label

X and the value is a data structure that contains all the feature-sets of X and a

subtable that contains the mappings. The key of the subtable is another label Y

and the value is the mapping M(XY ).

Example 19 Figure 8.2 illustrates the segment table for four example queries.

From the table, we know that store is a trunk node in Q1, Q3, and Q4. The

segment store//name is used in Q3 and Q4. Since name is a trunk node in Q3 and

a branch node in Q4, we know the segment is is used as store//name in Q3 and

store[//name] in Q4. The root label is a special label for the XQT root, n0.

8.3.2 Runtime

The algorithm to evaluate multiple queries follows the same scheme as the

one to evaluate single queries. When processing the begin event of an element e,

we compute its Out() set and the PENDING sets. Before the end event of e, the

PENDING sets and buffers are updated when we process descendants of e. Upon the

end event of e, we check the PENDING set of e, compute the remaining feature-sets,
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Label Feature-sets Mappings

X Y M(XY )

root Trunk: {1,2,3,4} Branch: {1,2,3,4} N: {1,2,3,4} store {1,3,4}

book {2}

store Trunk: {1,3,4} N:{1,3,4} location {1,4}

* {1,4}

book {3}

name {3,4}

location Branch: {1,4} N:{1,4}

* Trunk: {1,4} title {1,4}

title Trunk: {1,2,4} Branch: {3} N: {1,2,3,4} Output: {1,2,4}

book Trunk: {2} N:{2} price {2,3}

title {2,3}

price Branch: {1,2,3} N:{1,2,3}

name Trunk: {3} Branch: {4} N: {3,4} Output: {3}

Q1://store[//location]//*[price]//title

Q2://book[//price]//title

Q3://store[//book[//price][//title]]//name

Q4://store[//name][//location]//*//title

Figure 8.2: Segment Table
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Algorithm 14: Begin(Element e)

S1 ← {X|e.tag matches label X};1

foreach X ∈ S1 and label Z do2

PENDING(e,XZ)← PENDING(e,XZ) ∪ (Map(XZ)− Trunk(Z));3

foreach ancestor a in the stack do4

S2 ← {Y |a.tag matches label Y};5

foreach (Y,X) ∈ S2 × S1 do6

Out(e,X)← Out(e,X) ∪ (Map(Y X) ∩Out(a, Y ));7

and operate the buffer accordingly. The revised algorithm is described in Listing 14

and 15. The revisions are summarized below.

Grouping Query Nodes An important revision is to operate on groups of query

nodes sharing the same label instead of on single query nodes. Recall that in Sec-

tion 8.2 we use Out(e) to denote the set of query nodes that element e outer-matches.

We now partition this set on the label and use Out(e, X) to denote the partition

with label X, which contains the query nodes from all queries that have label X

are outer-matches of e. Other matching-sets are partitioned in the same manner.

Moreover, matching-sets now consist of query-ids instead of query nodes. Since we

assume each label appears in any query at most once, query-id i in Out(e, X) unam-

biguously specifies a query node with label X in Qi that e outer-matches. Therefore,

all runtime actions are performed using set operations and can be implemented with

efficient bit-wise operations. For example, line 7 in Listing 14 can be interpreted as:

If Y//X is a segment in Qi (i.e., i ∈ Map(Y X)) and ancestor a outer-matches query

node Qi.Y (i.e., i ∈ Out(a, Y )), then e outer-matches Qi.X (i.e., i ∈ Out(e, X)).

PENDING-Set In the single-query method, a pending-set Pending(e, n) is cre-
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Algorithm 15: End(Element e)

S1 ← {X|e.tag matches label X};1

foreach X ∈ S1 do2

/* Update the sets */;

Fail(e,X)←
⋃

Z(PENDING(e,XZ));3

In(e,X)← N(X)− Fail(e,X);4

NewMatch(e,X)← Out(e,X) ∩ In(e,X);5

Part(e,X)← NewMatch(e,X) ∩ Trunk(X);6

Match(e,X)← NewMatch(e,X) ∩Branch(X);7

/* update the buffer*/ ;

add(BUFFER(e,X), e,Part(e,X) ∩Output(X));8

/* Update ancestors */

foreach ancestor a do9

S2 ← {Y |e.tag matches label Y};10

foreach (Y,X) ∈ S2 × S1 do11

PENDING(a, Y X)← PENDING(a, Y X)−Match(e,X);12

UpdateBuffers( );13

Procedure UpdateBuffers()14

U ← Out(a, Y ) ∩M(Y X) ∩ Part(e,X);15

if U 6= φ then16

foreach b ∈ BUFFER(e,X) do17

add(BUFFER(a, Y ), b, U ∩ b.candidate);18

R← Match(a, Y ) ∩M(Y X) ∩ Part(e,X);19

if R 6= φ then20

foreach b ∈ BUFFER(e,X) do21

emit(b,R ∩ b.candidate);22

ated for every query node n that e outer-matches. It records all predicates that e

is still pending on. When a descendant of e matches a node in Pending(e, n), we

remove that node from it. In the multiple-query version, if the tag of e matches label

X, we create a set PENDING(e, XZ) that contains query id i iff Qi has a node

X with a pending predicate rooted at a node Z. Initially i ∈ PENDING(e, XZ) iff

Z is a branch child of X in Qi, i.e., i ∈M(XZ)− Trunk(Z) (line 3 in Listing 14).
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Buffer Operations For a stack element e, we now create a buffer BUFFER(e, X)

for each label X that e outer-matches (i.e., Out(e, X) 6= φ) instead of for every query

node. Each buffer item b is associated with a candidate-set that contains all query

ids for which b is a potential result. The new add(BUFFER, e, s) operation (line

8 and 18 in Listing 15) adds element e to the buffer with candidate-set s. If e is

already in the buffer, s is added to the existing candidate set. The emit(b, s) op-

eration (line 22 in Listing 15) emits the buffer item b as the result of all queries in

s.

The buffer operations, in lines 8 and 13, ensure that the following invariant

hold for every buffer item b in Buffer(a, Y ): ∀i ∈ b.candidate, there exists a matching

M between b and Qi.O, which contains pair (a, Qi.Y ) and, for every pair (e, Qi.X)

that appears between (a, Qi.Y ) and (b, Qi.O) in M , e partial-matches Qi.X. This

invariant is essentially the same as its counterpart in the case of single queries. It

ensures that no false result is introduced into the buffer. The invariant holds trivially

when a buffer item b is first created (line 8 in Listing 15). Every time b is added from

buffer Buffer(e, X) to Buffer(a, Y ), we know that, for every i in the new candidate

set (computed in line 15 and 18): (1) e must partial-matches Qi.X (i ∈ Part(e, X));

(2) a outer-matches Qi.Y and Qi.Y is the parent node of Qi.X (i ∈ M(Y X)); and

(3) a outer-matches Qi.Y (i ∈ Out(a, Y )). Therefore, the invariant holds after every

buffer operation.
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Event Match Out In Part Fail PENDING BUFFER

<root> r{1,2,3,4} r{1,2,3,4} r{1,2,3,4}

<store> s{1,3,4} sl{1,4} sb{3} sn{4}

<location> l{1,4}

*{1,4} *p{1}

< /location> l{1,4} l{1,4}

*{1,4} *{4} *{4} *{1} *p{1}

(store) s{1,3,4} sl{} sb{3} sn{4}

<book> b{2,3} bp{2,3} bt{3}

*{1,4} *p{1}

<title> t{1,2,3,4}

*{1,4} *p{1}

< /title> t{3} t{1,2,3,4} t{1,2,4} t{1,3,4} t{XML124}

*{1,4} *{4} *{4} *{1} *p{1}

(book) b{2,3} bp{2,3} bt{} b{XML2}

*{1,4} *p{1} *{XML1,4}

<price> p{1,2,3}

*{1,4} *p{1}

< /price> p{12,3} p{1,2,3} p{1,2,3}

*{1,4} *{4} *{4} *{1} *p{1}

(book) b{2,3} bp{} bt{} b{XML2}

*{1,4} *p{} *{XML1,4}

<author> *{1,4} *p{1}

< /author> *{1,4} *{4} *{4} *{1} *p{1}

< /book> b{3} b{2,3} b{2,3} b{2} bp{}bt{} b{XML2}

*{1,4} *{1,4} *{1,4} *p{} *{XML1,4}

(store) s{1,3,4} sl{}sb{}sn{4} s{XML1,4}

<name> n{3,4}

*{1,4} *p{1}

< /name> n{4} n{34} n{34} n{3} n{BN3}

*{1,4} *{4} *{4} *{1} *p{1}

(store) s{1,3,4} sl{}sb{}sn{} s{XML1,4,BN3}

< /store> s{1,3,4} s{1,3,4} s{1,3,4} sl{}sb{}sn{} s{XML1,4,BN3}

Figure 8.3: Evaluation
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8.3.3 Complexities

We use T to denote the number of labels that a tag could match, H the depth

of the stack, and R the number of elements that may appear in a buffer. These

variables are similar to those used for the single query algorithm. We use Q to

denote the number of queries and C the number of labels.

We consider each set operation of complexity O(Q) as a unit operation. The

begin event uses O(TC + HT 2) time: O(TC) is used to compute the PENDING-

sets and O(HT 2) is used to scan the stack and update the Out(e) sets for every

segment. The end event uses O(TC + TR + HT 2R): Q(TC) is used to compute

the Fail set; O(TR) is used to update the current buffer; and O(HT 2R) is used to

update the ancestors. If we consider each set as a storage unit, the algorithm uses

O(C2) memory to store the segment table and O(THR) memory for buffer items.

It is easy to see that the dominate factor in both time and space complexities is the

number of queries. All the other factors usually do not increase when the number

of queries increases.

The revised algorithm does not improve on asymptotic complexities from a

naive method that evaluates every single query separately, as no method can: con-

sider a group of queries with no two queries have a common node test. Our main goal

is to implement the dominate factor efficiently: to group the query nodes such that

the sets can be represented by bitmaps and the set operations can be implemented

using bit-wise operations. Our experimental results illustrate that such strategy is

useful in practice.
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8.3.4 A Running Example

We use the method described above to evaluate the four queries in Figure 8.2

over the XML stream in Figure 5.1. The process is illustrated in Figure 8.3. We

omit the process for the second book element, which is similar to that of the first

book element. For each event, we show the sets associated with the corresponding

stack element. If the sets of some ancestor are updated during this event, we also

show the modified sets for the ancestor, which is shown in italic and parenthesized

in the event column.

Notations For each set S(e, X), we show S as the column title, show the first

letter of X to the left of the set, and show e in the left most column. For exam-

ple, Out(location, ∗ = {1, 4}) is denoted as ∗{1, 4} in the corresponding cell (row 4

column 3).

For every buffer item we show its text content. The candidate set is shown

as the superscript. The subscript of a buffer item is the set of query ids that it is

a result of. We only show the sets when they are created or updated. We use bold

fonts to denote the sets that have been updated during the processing. The buffer

items enclosed by a box are results for the queries.

Highlights We describe the process of two representative events here. First,

upon the end event of the title element, following line 3 to 7 in Listing 15, we

know that it matches the title query node in Q3 and it partial-matches the output

node in Q1, Q2 and Q4. The element is added to the buffer with candidate set

{1,2,4}. We then update the ancestors. Following line 12, we remove Q3 from
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the PEDNING-set of the book ancestor that is pending on the title predicate.

Following lines 15 to 18, we add the buffered title element to BUFFER(book, ∗)

with candidate set {1,4}, since the book ancestor outer-matches the * node in Q1, Q4

and segment *//title is used in Q1 and Q4. Similarly, we also add the buffer item

to BUFFER(book, book) since the append operation is performed for every label

that the ancestor outer-matches.

At the end event of the book element, the buffer items in BUFFER(book, book)

are sent to output with result set {2} when we check the root element in the stack.

Since the result of the computation from line 19 in Listing 15 is a non-empty set

{2}, the emit operation on line 22 is performed. In the mean while, the buffer items

in BUFFER(book, ∗) are added to the buffer of store ancestor by the operation on

line 18 when we update the store ancestor. The difference here is determined by

the segment table: The mapping M(root//∗) is empty while M(root//book) is not.

8.3.5 Implementation

Queue An element is put in a queue if it outer-matches some output nodes

upon its arrival. Instead of making multiple copies of the element, the buffers store

pointers to the queue item. We keep a reference count for each queue item. By

“adding an element to a buffer”, we essentially put a pointer to the queue item into

the buffer and increase the reference count. When we emit a buffer item as result of

query Qi, we indeed mark the queue item as result of Qi. When we remove a buffer

item from the buffer, we simply decrease the reference count of the queue item. The
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queue item is disposed iff its reference count becomes zero.

Global Renaming During the compilation, we use a global renaming scheme to

specify a label id to every XQT node such that: (1) No two query nodes in the

same XQT have the same id; (2)The ith appearances, in arbitrary order, of label

X in every XQT is assigned the same id. For example, consider two queries Q1:

//A[A]//B[A] and Q2://A[B]//A. The nodes with label A in Q1 may be ordered

from left to right and assigned with identifiers 1, 2, and 4. Then the two nodes with

label A in Q2 will have identifiers 1 and 2. Put it another way, we rename the labels

such that the two queries become //A[A’]//B[A"] and //A[B]//A’, but all labels

A, A’, and A" match the tag A.

With the renaming scheme, our method supports queries with multiple occur-

rences of the same label. We use the pair (query id, label id) to specify a unique

node in the whole query set. Recall that our method described earlier groups nodes

sharing same label under the assumption that no label appears in a query twice, i.e.,

the pair (query id, label) uniquely specify a node. Therefore, the same method are

implemented in XPaSS without that assumption and groups nodes with the same

node id.

Compressed Bitmap We implement the methods described in this chapter in

the XPaSS system using SUN Java SDK 1.5. A bitmap is used to represents a set of

query ids. The ith bit is 1 iff query-id i is in the set. Two bitmap implementations

are deployed in the system. The first one is the standard BitSet object delivered

with the Java SDK. We also implement a compressed Bitmap scheme following the
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basic idea of the word-aligned hybrid code [68]. The code separates the bitmap into

31-bit chunks. In the compressed bitmap, if the most significant bit of a 32-bit word

is 1, the value of the remaining 31-bit is the number of continuous empty chunks this

word represents, otherwise the remaining 31-bit is the actual bits from the original

bitmap. We present evaluation results using both implementations in Section 8.4.

Memoization We also deploy a technique similar to memoization, which has

been used in query evaluation in relation databases to store results for expensive

subqueries. Consider the running example illustrated in Figure 8.3. If we process

the second book element in the stream, the value the Out() set and PENDING sets

are the same as the first book element. Moreover, if the second book element has

the same types of descendants as the first one, the In(), Part(), and Fail sets will

also be the same upon its end event. Therefore, we create a table to record the

previous results such that they can be used later.

We define the prefix of element e as the tag list in the path from the document

root to e, including both ends. If two elements e1 and e2 have the same prefix,

Out(e1) and Out(e2) are always the same. Therefore, when we encounter another

element with the same prefix, we can reuse the previous result.

We define a subtree types as an integer value: Two elements e1 and e2 are

assigned the same subtree type iff the subtrees rooted at e1 and e2 are bisimulation

of each other. In other words, if two elements have the same subtree type, their

descendants satisfy the same set of predicates. Therefore, upon the end events of the

two elements, In(e1) equals In(e2). Recall that Part(e) and Match(e) are computed
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using Out(e) and In(e) together with the feature-sets. We can infer that, if two

elements have the same prefixes and subtree types, their Part() and Match() sets

will also be the same upon their end events.

Three hash tables hold the previous results: In the first table, the key is the

prefix and the value is the Out() and PENDING sets. In the second table, the

key is the subtree type and the value is the In() set. In the third table, the key is

the pair (prefix,subtree type) and the value is the Part(e) and Match(e) sets. In

the begin and end event handlers, the tables are queried first. The computation is

continued only if the key is not found in the table. The result of the computation

is then memorized in the table. Since the keys are easy to compute, the overhead

of the method is mainly the memory usage. As we show in Section 8.4, the memory

overhead is also moderate.

8.4 Performance Evaluation

8.4.1 Setup

All experiments are conducted on a PC-class machine with a 900 MHz Intel

Pentium III processor and 1 GB of main memory running the Redhat 7.2 distribution

of GNU/Linux (kernel 2.4.9). The memory limit for the Java Virtual Machine

(JVM) is set to 512 MB. The XPaSS system deploys two bitmap implementations:

One is the standard Java BitSet class3, and the other is our implementation of the

compressed bitmap scheme described in Section 8.3.5. We use XPaSS-c to denote

3http://java.sun.com/j2se/1.5.0/docs/api/java/util/BitSet.html

218



the version that uses the compressed bitmap scheme.

We compare XPaSS with YFilter in our experiments. (XPush was not publicly

available at the time we conducted these experiments.) For every query, YFilter can

output either matching document ids or every matching elements. We use YFilter-F

and YFilter-Q to refer to YFilter operating in these two modes, respectively. To

avoid the implications from the warmup process of the JVM, the test queries are

evaluated over a dummy XML file before every run for both XPaSS and YFilter.

We measure processing time as the total time spent on evaluating all queries

on the test data. This time does not include the query compilation time or the time

required to output results (which is independent of the query evaluation method).

We also measure the memory usage as the maximum memory allocated by the

systems during the evaluation, including memory used by the JVM. Every data

point reported is the mean value over 30 runs. The 5% confidence intervals are

usually less than 0.5% of the reported value and thus are omitted from the results.

The parsing time is included in the processing time, which is not the same

as the MQPT (Multiple-Query Processing Time) reported for the results of YFilter

[23]. To report the MQPT, YFilter preparses the documents, evaluates the queries

over the events generated from the in-memory parse tree, and reports the processing

time. Since YFilter can also evaluate over the events that are generated directly

from the parser, we evaluate YFilter using this non-preparsing method, which is

also used in XPaSS. YFilter uses MQPT as the main metric since parsing usually

is the dominate factor in the filtering scenario. However, it is not the case in the

querying setting. As we can see in the results, since we need to check all the queries
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Figure 8.4: Processing Time for Different Number of Queries

that an element may match, the query processing time is usually much larger than

the parsing time.

We use the query generator used by YFilter [25] to generate the test queries. In

these experiments, we set the possibility of value-based predicates to zero. We vary

the following parameters of the query generator and show them in the result figures

using these corresponding symbols: L: query length, []: number of nested

paths, *: probability of wildcards, and //: probability of // axes. We use

the XMark benchmark program and the IBM XML generator program to generate

synthetic datasets using dblp.dtd and auction.dtd from the XMARK project

[63]. We also use real data from the DBLP Bibliography4. The query sets used in the

experiments have sizes ranging from 10,000 to 100,000. The XML files used in the

experiments have sizes ranging from 100KB to 1MB.

220



XPASS−C
XPASS

YFQ
YFF

File size 570KB

L=5 *=0 //=0.5 []=2

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 10  20  30  40  50  60  70  80  90  100

M
em

or
y 

U
sa

ge
 (

M
B

)
Query Number (X1000)

Figure 8.5: Memory Usage for Different Number of Queries

8.4.2 Scalability

Number of Queries In this set of experiments, we evaluate different number

of queries, ranging from 10k to 100k and stepping by 10k, over a single document

of size 570k generated using XMark benchmark. The processing time and memory

usage are reported in Figure 8.4 and Figure 8.5 respectively.

In the querying scenario with a large number of subscriptions, book-keeping

for every element is a heavy task in terms of both CPU and memory usage. This fact

can be witnessed from the performance difference between YFilter-Q and YFilter-F,

who share the same path-matching engine. Recall that YFilter-F reports for every

document the matching query ids matches, while XPaSS and YFilter-Q report for

every element the matching query ids. Moreover, YFilter decomposes every nested

subquery into a single path. All the path-matching results are processed in a post-

processing phase when the whole document has been processed. Before that phase,

YFilter-Q needs to maintain the matching paths for every element, while YFilter-F

only needs to maintain the matching paths for every document.

4http://www.informatik.uni-trier.de/∼ley/db/
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As illustrated in Figure 8.4, although XPaSS needs to maintain the matching

information for every element, its processing time is very close to that of YFilter-Q.

With a fixed document, we may consider its depth (H) as a constant. Moreover,

the numbers of labels an element may match (T ) and use in its predicates (C) are

constant too. Therefore, XPaSS performs constant number of set operations for

every incoming element. Since the set operations are implemented using efficient

bitwise operations, the processing time of XPaSS, although proportional to the

number of queries, scales better than YFilter-Q as the number of queries increases.

Since bitmap is the main data structure used by XPaSS, the size of the bitmaps

dominates the memory usage of XPaSS. As we can see from Figure 8.5, XPaSS that

uses non-compressed bitmap doubles its memory consumption when the number of

queries doubles. However, when we deploy a simple compressed bitmap scheme, the

memory usage is much smaller and the growth rate is similar to that of YFilter-F.

Since the bitwise operations for compressed bitmaps are slower than uncompressed

bitmaps, we can determine which version to use according to actual application set-

tings, e.g., hardware availability, number of subscriptions, requirements for response

latencies, and etc.

Size of Dataset In this set of experiments, we use the XMark benchmark pro-

gram to generate the datasets using scale factors from 0.001 to 0.01 stepping by

0.001. The result datasets are from 100KB to 1MB, respectively. We run a query

set of size 50,000 over these datasets. The processing time and memory usage are

reported in Figure 8.6 and Figure 8.7.
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Figure 8.7: Memory Usage for 50,000 Queries

We can see from Figure 8.6 that XPaSS scales well when the document size

increases. Since the implementation of YFilter-Q is not documented in the report

[23], it is not clear why YFilter-Q illustrates quadratic-like behavior. Figure 8.6 also

illustrates that both XPaSS systems and YFilter-F use linear amount of processing

time w.r.t. the document size. For each SAX event, XPaSS and YFilter-F perform a

constant number of operations when other variables, such as queries and document

depth, are fixed. Therefore, the processing time is proportional to the number of

SAX events.

Figure 8.7 illustrates that all systems use linear amount of memory w.r.t. the

document size. For XPaSS and YFilter-Q, when the number of queries is fixed,

the memory they use is proportional to the number of elements in the document.
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Figure 8.8: Processing Time and Memory Usage for Different Datasets

For YFilter-F, the memory used should be dominated by the size of the automaton.

When the document becomes larger, the number of unique prefix may become larger

and therefore increases the size of the automaton.

An interesting observation is that in this set of experiments, the memory usages

for XPaSS-C and XPaSS does not depart from each other as they do in Figure 8.5.

In Figure 8.5, when the number of queries increases, the bitmaps tend to be more

sparse and leads to better compression rate. However, when the file size increases,

the load of the bitmap does not change much. Therefore, the compression ratio of

the bitmaps is almost the same for a small file and a large file.

8.4.3 Varying Dataset

In this set of experiments, we evaluate 50k queries generated from two different

DTDs over a document of size 1MB generated using the respective DTD. The results

are illustrated in Figure 8.8.

The performances of all systems are significantly different on the two datasets.

There are several reasons that the XMark dataset is more expensive to evaluate.
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First, the XMark dataset is more deeper than the DBLP dataset. The maximum

depth of XMark is 12 and the average depth is 5.6, while the maximum depth of

DBLP is 4 and the average is 2.9. Deeper document structure leads to more expen-

sive operations at runtime, such as traversing the stack (for XPaSS) and comparing

prefixes (for YFilter). Second, there are 77 element types (i.e., tags) in XMark

while there are only 39 in DBLP. More element types lead to larger segment table

for XPaSS and larger automaton for YFilter, which consume more memory. More

precisely, for XPaSS it is the number of unique label ids that affects the perfor-

mance directly. There are 318 unique label ids in XMark, while there are only 150

in DBLP.

We also note that, in the XMark dataset, 77 unique tags generate 318 unique

label identifiers, since the same tag string may appear in the same query multiple

times. For example, in the synthetic work load, the maximum repetition of a tag

string in one query is 13, i.e., the same tag string appears in one query for 13 times.

Such cases rarely happen in real-life queries. Since the performance of XPaSS is

largely affected by the number of unique label ids, we expect that XPaSS should

perform better on real-life queries.

8.4.4 Varying Query Features

In this set of experiments, we explore the relation between various query fea-

tures and the performance of the systems. We evaluate queries with different features

over a single document generated by XMark benchmark of size 571KB.
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Figure 8.9: Processing Time for Different Number of Wildcards
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Figure 8.10: Memory Usage for Different Number of wildcards

Query with Wildcards The result depicted in Figure 8.10 and Figure 8.9

illustrates how the wildcards affect the performance of the systems. The highest

tested probability of wildcards, which roughly equals to number of wildcards divided

by the total number of node tests, is 0.5.

More wildcards lead to higher selectivities of the queries. However, although

there is a leap from no-wildcard scenario to with-wildcard scenario, increasing num-

ber of wildcards seems has little influence on memory usage for XPaSS and YFilter

systems. Meanwhile, the memory usage of XPaSS-c, although the smallest, is al-

most linear w.r.t the number of wildcards. Note that the memory usage of the

systems are affected by the size of the internal data structures: segment-table for
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Figure 8.11: Processing Time for Different Length of Queries

XPaSS and automaton for YFilter. With no wildcard allowed in the query, there are

must less unique segments and prefixes and these systems use much less memory.

However, for XPaSS-c, higher selectivities of the queries lead to denser bitmaps and

smaller compress ratio. Therefore, its memory usage is almost proportional to the

number of wildcards. The performance of XPaSS-c is also affected by the number

of wildcards in a larger degree than XPaSS is affected, since denser bitmaps are also

more expensive to compute in compressed form.

Wildcards in XPath queries are generally expensive in streaming evaluation

since they increase the selectivity of the query and introduce nondeterminism. A

query starts with //* requires processing every begin event in the stream. However,

we do not think this problem is important in real-life queries since they usually have

few wildcards. Moreover, even if there exists many queries with many wildcards, we

may develop some optimization techniques, e.g., using DTD information to instan-

tiate the wildcards. Some results from the query containment research may also be

used. For example, //*//A is equivalent to //A.

Query of Different Length This set of experiments illustrates how the query
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Figure 8.12: Memory Usage for Different Length of Queries

length affects the performance of the systems. The processing time and memory

usage are illustrated in Figure 8.11 and 8.12. For XPaSS, longer queries imply

larger number of segments and denser segment table. For YFilter, longer queries

imply larger number of states. Therefore, the memory usages of all systems are

proportional to the query length. XPaSS-c uses less memory because that, as the

number of location step increases, many bitmaps become more sparse (considering

that the average depth of the XMark dataset is only 5.6). This effect is also proved

by the fact that the compress-ratio of the bitmaps increases when the length of the

query increases, i.e. the two curves of XPaSS and XPaSS-C are departing from each

other.

For the same reason, longer queries may actually be processed faster since

the result set is smaller, as illustrated in Figure 8.11 for the YFilter systems. The

processing time of XPaSS systems continues to increase when the query becomes

longer. This fact is caused by another overhead of the memoing method we deploy,

since the subtree types are computed even if the element does not outer-match any

query node. However, real-life queries usually are not very long. Moreover, the
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Figure 8.13: Processing Time for Different Number of Nested Paths
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Figure 8.14: Memory Usage for Different Number of Nested Paths

overhead is still moderate, as XPaSS is faster than YFilter in most cases.

Different Number of Nested Paths This set of experiments illustrates how

the number of nested paths affects the performance of the systems. The processing

time and memory usage are illustrated in Figure 8.13 and 8.14.

As reported in [23], the performance of YFilter-F degrades a fair amount when

number of nested queries increases from 0 to 1. However, adding extra nested path

both increases the size of the NFA and increases the selectivity of the queries. The

overall result is that the performance almost stays the same when extra nested

paths are added. YFilter-Q illustrates similar pattern in memory usage as YFilter-

F. However, since there is no documentation about how the querying component is
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Figure 8.15: Processing Time for Different Number of // Axes

implemented, it is not clear why the processing time of YFilter-Q is proportional

the number of nested paths.

For XPaSS, higher selectivity implies more sparse bitmap. As we can see from

Figure 8.13, the compress-ratio increases along with the number of nested path.

However, the processing time still increases moderately because of the overhead

that we need to compute the inner-matches regardless of the overall selectivity.

Different Number of // Axes This set of experiments illustrates how the

number of // axes affects the performance of the systems. The processing time and

memory usage are illustrated in Figure 8.15 and 8.16.

It is easy to see that the systems perform better when all the axes are child

axes. For YFilter, when all the axes are the same(/ or //), there are smaller number

of common prefixes. Therefore, the size of the NFA is smaller and thus leads to

less memory usage. Again, it is not clear why the processing time of YFilter-Q is

proportional to the number of // axes.

For XPaSS, if there are only / axes in the queries, only the top element in

the stack needs to be checked in the event handlers. Moreover, there are less items
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Figure 8.16: Memory Usage for Different Number of //Axes

in the segment table since each element can only form segments with its children.

Therefore, XPaSS performs better in this case. However, if the queries contain //

axes, the number of // axes does not make much difference in the performance.

8.5 Conclusion

This chapter studies a publish-subscribe environment with two twists. First,

the data consists of an XML stream that does not necessarily admit a natural

segmentation into documents or other units. Second, subscriptions are expressed as

queries on this stream instead of filters on documents. As a result, subscriptions

may be tailored more accurately to the needs of a user or agent.

We highlighted the challenges for efficient subscription-server implementations

in such environments, and described the methods used by our XPaSS system. These

methods are based on grouping operations by XPath query segments and efficient

bitmap-based operations. Our experimental results indicate that XPaSS can process

at least 105 queries while maintaining a good throughput and, more important, a

modest memory footprint. In continuing work, we are exploring extending XPaSS
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to a larger subset of XPath, conducting further experimental studies with a larger

numbers of queries, and building a user interface that facilitates the creation of

subscriptions.
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Chapter 9

Future Work

In this chapter we propose two possible extensions of our current work. The

first direction is to introduce a schema-aware runtime optimization technique, which

can use optional schema information of the data to further optimize the query engine.

Such optimization should be dynamic since there is no guarantee that the schema

information is available, or there may be different schema for different data sources

that may come in at the same time. We also investigate the possibility to extend the

system to support more features of XPath and more complex query languages such

as XQuery. Since XQuery is the de facto query language of XML and used in many

applications, supporting XQuery will further improve the usability of the system

and provide more insights in more general XML streaming processing problems.

We describe these possible extensions in more detail below.

9.1 Schema-based Runtime Optimization

The current XSQ system does not take into account the schema information

of the data. If the data source provides the schema of the data, either as DTD or

as XML Schema, the system should be able to use those information to guide the

evaluation to achieve better performance. The following example illustrates some

233



potential optimizations given the schema information.

[Example: Schema-based Optimization]

Suppose we want to evaluate the query: //pub[year=2002]//book. There are

several possible optimizations that can be applied if we have schema information.

• If we know from the schema that the pub element does not have a year child

or a book descendant, we can simply ignore the whole document.

• If we know that the pub element has only one year child, and we have en-

countered the first year child of the element whose value is not 2002, we can

simply ignore the whole pub element since it is impossible for this element

match the query. Without schema information, we need to buffer all the the

book elements inside the pub element, and remove them at the end of the pub

element.

• If we know that the book element can be only the child of the pub element,

we can ignore any other child elements in the pub element. If we do not have

the schema information, we have to process all descendants of the pub element

since it is always possible that there is a book element inside them, which is

the descendant of this pub element and therefore matches the query.

• If we know from the schema that the pub element is the child of the document

root and the book element is the child of the pub element, there is no need

to use the complex mechanisms, such as depth vectors and hierarchical index,

which are used to support multiple matchings between the query and the
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elements. Essentially we can use a DFA (deterministic finite state automaton)

to evaluate such queries with small modifications.

We need to address several interesting issues when we apply the dynamic

schema-based optimization. The optimization has to be dynamic and optional since

we want the system is schema-aware while still be able to process streaming data

from heterogeneous data sources that may not provide schema information. Another

problem arises when we have several data sources of which only some provide schema

information while others do not. If we want to evaluate a query on streams from

these datasets simultaneously, we have to assign different operations for data items

from different sources since the optimization should be different for different schema.

Moreover, it is difficult to obtain the optimization rules if the schema and the query

are complex. Even if we have all the rules from the schema and the query, it is still

an interesting problem that how we check the rules efficiently at runtime.

9.2 Streaming XQuery Evaluation

We also investigate to extend our current work to streaming XQuery evalua-

tion. Since XQuery uses XPath to address parts of the document, we can use the

result from XSQ as the input of upper layer XQuery engine that can construct the

results in a streaming manner. Since XQuery is a turning-complete language, it is

an interesting research problem to support streaming XQuery evaluation. The fol-

lowing example shows an XQuery query that returns all the books that is published

in year 2003 and is more expensive than the average price. The results are enclosed
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by a user defined new tag ”ExpensiveBooks”.

[Example:XQuery Query]

let $y := 2003

let $a := doc( "book.xml" )//pub

let $b := $a[year=$y]//book

let $c := price

return

<ExpensiveBooks>

<year>$y</year>

$b[$c > average($a//$c$)]

</ExpensiveBooks>

Evaluating XQuery queries over streaming data is a challenge task since it is

a superset of XPath (whose features are not all supported in the current streaming

systems) and provides a whole set of query mechanisms such as joins and aggrega-

tions. We list some of the interesting problems below.

• XQuery allows joins, which means we need to have several XPath engines

working in parallel and we also need some new mechanisms to join their results

dynamically. Since XSQ has the stream-in-stream-out feature, it is suitable to

be used as a sub-operator for a stream-join operator. The current streaming

systems only support one-side streaming for the join operation. It will be
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an interesting problem to allow both data source of the join operator to be

streaming.

• Blocking operations in XQuery, such as grouping and sorting, are difficult

to evaluate in streaming data. Although it is impossible to get the accurate

result of these blocking operations for streaming data, we can try to get some

approximation of the result, or get the up-to-date result. It is also interesting

to investigate the different result set under different streaming semantics such

as window-based semantics and internal-based. (Our current system, which

always return the exact result, uses the event-based semantics.)

• For XQuery queries that use variable bindings, i.e., assign the result of an

XPath expression to a variable as shown in the above example, we may combine

all the expressions used in an XQuery query and processed them in one single

engine. Since these expression are likely to be different, we need to devise

a new mechanism that transform multiple query into one automaton that

has multiple output channels. If two expressions are actually connected by

variables, we need to detect this fact to use it in the transformation. For

example, if variable $c is bound to expression price and it is connected to

both $b and $a as shown in the above example, we need to mechanism to share

the common subqueries inside one query.
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Chapter 10

Conclusion

As a W3C standard, XPath is arguably a cornerstone of the XML world since

it is widely used in almost every XML application to retrieve the data matching

with specified pattern. Evaluating XPath queries over streaming XML data is an

important and challenge task. In a streaming environment, traditional approach

is inapplicable since we cannot visit the data arbitrarily but in a single sequential

pass. Since potential result items may come before the data that are required to

determine their membership in the final result set, we have to buffer those items

together with the partial results for each of them. Moreover, it is also challenging

to match the complex pattern, with boolean operators connecting sub-patterns and

with both existential and universal quantification semantics, in only once pass of

the data, which is required for streaming evaluation.

We present in this thesis the XSQ system, which addresses the problem of

streaming evaluation of XPath queries. XSQ is the first system that handles complex

XPath features such as closure axes, multiple predicates, aggregations, subqueries,

and reverse axes. The segment-based evaluation method has been proved to be very

efficient and can be extended to support multiple queries. Besides being the first

system that handles these features in XPath in streaming evaluation, XSQ is also

released under GNU/GPL license as a tool for researchers and XPath users.
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We also did a very thorough performance study to compare the performance

of XSQ with other available XPath processors (such as XMLTK, Saxon, Xalan,

XQEngine, Joost, Galax, and XPATH-TF), for different synthetic (XMark, XML-

generator, and Toxgene) and real-life datasets (Shakespeare’s plays; the NASA

ADC XML dataset, bibliographic records from the DBLP site (DBLP), and the

PIR-International Protein Sequence Database (PSD)), for different features of the

datasets (shallow, recursive, document-oriented, data-oriented), and for different

features of the queries (number of location steps, number of closure axes, number

of reverse axes, different query structures).

The performance study shows that XSQ has very high throughput and use

small amount of memory. The normalized throughput of XSQ, which is the raw

throughput normalized by the throughput of a pure parser, is almost twice as much

as the popular and fastest XPath processors such as Saxon and Xalan (and even more

faster than other systems such as XQEngine, Galax, Joost, and XPATH-TH). XSQ

achieves almost the same normalized throughput of XMLTK while handles much

more complex queries, even if XMLTK supports only very simple XPath queries

that do not need buffering in streaming evaluation.

We also present in this thesis the XPaSS system, which is the first XPath-based

publisher/subscriber system that supports querying instead of filtering. Instead of

always return the whole document as the result, it returns the results of each query

to the users. Extended from the segment-based evaluation method, the XPaSS

system is very efficient in both throughput and memory usage. We compare our

XPaSS system with YFilter, which is a leading pub/sub system and the only one
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publicly available for testing. Our performance study shows that the throughput

of XPaSS is comparable to that of the YFilter system, although YFilter always

returns the whole document as the result. Meanwhile, using the compressed-bitmap

optimization, XPaSS also use less memory than YFilter despite the fact that YFilter

does not need to keep track of potential results for every single query.
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