
Indexing Cached Multidimensional Objects
in Large Main Memory Systems

�

Beomseok Nam and Alan Sussman
UMIACS and Dept. of Computer Science

University of Maryland
College Park, MD 20742�

bsnam,als � @cs.umd.edu

Abstract

Semantic caches allow queries into large datasets to
leverage cached results either directly or through transfor-
mations, using semantic information about the data objects
in the cache. As the price of main memory continues to drop
and its size increases, the size of semantic caches grows
proportionately, and it is becoming expensive to compare
the semantic information for each data object in the cache
against a query predicate. Instead, we propose to create
an index for cached objects. Unlike straightforward lin-
ear scanning, indexing cached objects creates additional
overhead for cache replacement. Since the contents of a
semantic cache may change dynamically at a high rate, the
cache index must support fast inserts and deletes as well as
fast search. In this paper, we show that multidimensional
indexing helps navigate efficiently through a large seman-
tic cache in spite of the additional overhead and overall
is considerably less expensive than linear scanning. Little
emphasis has been laid upon the performance of multidi-
mensional index inserts and deletes, as opposed to search
performance. We compare the performance of a few widely
used multidimensional indexing structures with our SH-
tree, looking at insert, delete, and search operations, and
show that SH-trees overall perform better for large seman-
tic caches than the widely used indexing techniques.

1 Introduction

Multiple query optimization has been extensively stud-
ied in various contexts, including relational databases and
data analysis applications [7, 8, 11, 17, 18]. The objec-
tive is to exploit subexpression commonality across multi-
ple queries on a set of concurrently executing queries to re-

�
This research was supported by the National Science Foundation un-

der Grant #EIA-0121161 and NASA under Grant #NAG512652.

duce execution time by reusing cached output data objects.
Finding a globally optimal query plan has been shown to be
an NP-complete problem [17], so a good solution can only
be achieved using heuristics or probabilistic techniques, but
multiple query optimization has still been shown to be use-
ful in the context of scientific data analysis applications.
Over the last few years, we have developed a distributed
multiple query optimization framework (MQO) for scien-
tific data analysis applications [1, 2]. MQO stores query
results in distributed semantic caches in order to reuse them
for the incoming queries. In order to find out which inter-
mediate results can be reused for a new incoming query,
the MQO framework scans the semantic information for all
the cached results, which is inefficient when the cache has
a large number of results. As the price of main memory
drops, it is not uncommon to find machines with many gi-
gabytes of memory that can hold a large number of cached
objects. Scanning all the objects in such a large main mem-
ory cache is an expensive operation, thus it is imperative to
provide a faster cache look-up mechanism.

Since many scientific datasets are multidimensional (i.e.
in space and time), they can be indexed using multidimen-
sional spatial tree structures in order to avoid linear scan-
ning. We refer to the multidimensional index for a main
memory semantic cache as the cache index. The cache in-
dex should make semantic cache look-up operations faster,
at the cost of making index updates (insertion and deletion
of objects) more expensive, because of the overhead for up-
dating the index. Whenever a data object is stored or re-
placed in the cache, the index needs to be updated to reflect
the change. If the index maintenance overhead for updates
negates the benefits of the index compared to linear scan-
ning, cache indexing would be of no use. Hence fast index
update is as important as fast index search, when cache re-
placement occurs frequently as in semantic caches.

In the past two decades, a large amount of research
has been done to create efficient multidimensional index-

ing data structures, including R-trees [9], R*-trees [3], and
Hybrid-trees [5]. However, most of that work has focused
on search performance for multidimensional indexing struc-
tures, while index update performance has been neglected
and sacrificed for better search performance. In this paper,
we compare the performance of a few widely used multi-
dimensional indexing structures with our SH-trees, looking
at inserts, deletes, and searches in the context of the cache
index. To the best of our knowledge, this is the first study
that proposes using a multidimensional index to speed up
semantic cache look-up performance.

The rest of this paper is organized as follows. In Sec-
tion 2 we briefly discuss the MQO semantic cache model.
In Section 3 we discuss SH-trees, which support both fast
index updates and searches. In Section 4 we present perfor-
mance results for SH-trees, R-trees, and R*-trees, measur-
ing insertion, deletion, and search performance for various
experimental parameters. We conclude in Section 5.

2 Multiple Query Processing Middleware

The Multi-Query Optimization framework (MQO) is a
distributed query processing middleware that we have de-
signed and built to support large scale data analysis ap-
plications [1, 2]. MQO provides an environment based
on C++ abstract operators that are customized when new
applications are developed and implemented, or when
existing applications are ported. MQO targets several
types of computational platforms, transparently employ-
ing platform-specific optimizations. From large SMP ma-
chines, to clusters of homogeneous nodes, to a distributed
heterogeneous Grid environment, MQO is able to use the
application-customized operators for efficient query plan-
ning and scheduling. MQO offers three main features to im-
prove query processing performance: load balancing, par-
allel sub-query execution, and semantic caching. In this
section, we focus on MQO’s semantic cache infrastructure.
Figure 1 shows a simplified view of the overall architecture
of MQO.

The frontend server interacts with clients to receive
queries and return query results. When a query is submit-
ted, the frontend instantiates the corresponding query object
and spawns a query thread to execute the query. The query
thread searches for cached results in the frontend server that
can be reused to either completely or partially answer a
query. If the frontend cache does not have complete inter-
mediate or final results for the query, the frontend generates
sub-queries for the partial region that was not in the cache,
as shown in Figure 2. The current version of MQO stores
a query result as a single entry, however this causes redun-
dant objects to be cached. Therefore, we plan to partition
the multidimensional space into small chunks as proposed
in [6] in order to avoid redundant cached results. Chunk-

Front-end
Server

Client

App
server

App
server

Storage

Storage

Query

App
server

Shared
Memory
Buffer
Cache

Memory
Buffer Cache

Storage
… …Cache index

Cache index

Global
Cache index

Sub-Query

Sub-Query

Sub-Query

Cached
Aggregates

Cached
Aggregates

If cache miss,
read raw data

Figure 1. Overview of MQO framework

A B C D E F G

1

2

3

4

5

6

7

New query

Cached queries

Figure 2. Sub-queries generated from reusing
cached results

based caching will allow for finer-grained caching, and also
helps avoids fragmentation problems due to storing large
numbers of very small different sized objects in the cache.

The sub-queries are processed by different application
servers in parallel. The application servers also have their
own semantic caches, hence partial intermediate results
from prior processing are stored in the caches along with
semantic information about those intermediate data struc-
tures. This makes it possible to use intermediate results
to answer queries submitted later. The current version of
MQO scans the semantic information for all cached data
objects to find out whether they overlap a submitted query.
As the size of the cache increases, the amount of semantic
information about the cached objects that has to be main-
tained increases so the time to scan such information also
increases. In order to avoid scanning all the semantic infor-
mation, multidimensional indexing structures can be used
to speed up cache look-ups.

Another important reason why MQO needs multidimen-

sional indexing structures is because it is possible to gen-
erate better query plans using distributed indexes. The se-
mantic caches in MQO are independent and evict content as
needed according to their local cache replacement policies
without any global coordination. Therefore, it is very ex-
pensive to keep track of the up-to-date contents of remote
semantic caches in distributed systems. However, we have
shown that a hierarchical distributed multidimensional in-
dexing scheme can help generate better query plans lever-
aging information about the contents of remote semantic
caches [13, 14]. In hierarchical distributed indexing, each
server has an independent multidimensional index for its
local semantic cache, and the frontend server maintains a
global index that stores minimum bounding boxes (MBRs)
for local indexes. Hierarchical distributed indexing helps
improve performance both for load-balancing and for clus-
tering similar queries near in time to obtain a higher cache
hit ratio. In the rest of this paper, we focus on the perfor-
mance of multidimensional indexing structures as the cache
index for a single semantic cache.

3 Multidimensional Indexing Trees

We discuss a few widely used multidimensional index-
ing tree structures, concentrating on issues related to perfor-
mance for indexing the semantic cache. Multidimensional
indexing structures can be classified into two categories.
One category is space partitioning methods, where internal
tree nodes are represented by a split dimension and one or
two split positions, partitioning the multidimensional space
from the root to the leaves of the tree, and putting objects
into the right partition in a top-down manner. The second
category is data partitioning methods, where internal tree
nodes are represented by a list of multidimensional bound-
ing rectangles (MBRs), building up the bounding rectangles
by grouping objects from the leaves of the tree in a bottom-
up manner.

3.1 Space partitioning methods

A KDB-tree is a balanced B-tree version of the binary
KD-tree [16]. The main problem with a KDB-tree is that
minimum utilization of nodes is not guaranteed because of
the downward cascading split problem. Moreover, KDB-
trees can only index point data as for most of other space
partitioning methods, while a cache index may need to store
rectangular range query results.

The Hybrid-tree solves the downward cascading split
problem by allowing overlap of the two sub-regions after a
node is split, as for data partitioning methods [5]. An inter-
nal node in a Hybrid-tree is a binary KD-tree, and a node
contains a splitting dimension and two splitting positions in

that dimension. By having two split positions, a Hybrid-
tree node can allow an overlapping area that is shared by
both child nodes.

3.2 Data partitioning methods

The R-tree and the R*-tree are the most well-known
disk-based data partitioning methods that can index non-
point data. Unlike space partitioning methods, an inter-
nal tree node for a data partitioning method contains a list
of minimum bounding rectangles (MBRs) that can over-
lap [3, 9]. In data partitioning methods, a large amount
of overlap between internal nodes leads to increased search
times. To reduce the amount of overlap, R*-trees performs
an expensive forced reinsertion operation. When a node
overflows during an insertion operation the R*-tree algo-
rithm reinserts a user-specified fraction of the child nodes
instead of splitting the node, which sacrifices insertion per-
formance for search performance.

3.3 Spatial Hybrid Tree

The Spatial Hybrid tree (SH-tree) is a disk-based space
partitioning indexing structure that supports efficient range
queries on non-point data objects, especially for high di-
mensional spaces [12]. The SH-tree combines the prop-
erties of the SKD-tree [15] and the Hybrid tree [5], both
of which are based on space partitioning methods, and al-
lows overlapping sub-regions by having two split positions.
The SKD-tree allows overlapping sub-regions when a mu-
tually disjoint partition is not possible due to the volumes
occupied by the data objects, whereas the Hybrid-tree al-
lows overlapping sub-regions when a downward cascading
split is unavoidable [5]. In other words, the Hybrid-tree may
create a new overlapping region when a node that overflows
must be split, while the SKD-tree adjusts overlapping re-
gions so that one region will fully contain a new object that
is to be inserted. The SH-tree employs the node splitting
algorithm of the Hybrid-tree and the insertion algorithm of
the SKD-tree. We now describe the node split and object
insertion and deletion algorithms in more detail.

3.3.1 Object Insertion

Figure 3 depicts an internal node of an SH-tree. An internal
node for a disk-based space partitioning method such as a
KDB-tree [4] is represented as a binary KD-tree, not a list of
bounding rectangles as for R-trees. In SH-trees, one split di-
mension and two split positions are required for each child
node in order to allow overlapping regions between child
nodes. One split position represents the minimum bound-
ary of the upper (right) region (� �����) and the other the
maximum boundary of the lower (left) region (���	��
) in
the split dimension.

Split S1
(dimension,
minU, maxL)

Split S2
(dimension,
minU, maxL) empty

S2 S3

empty

C1 C2

Live space bounding box of current node

S1

S2

S3

S1

S2 S3

C1
C3

C2 C4
C1 C2 C3 C4

Split S3
(dimension,
minU, maxL)

C3 C4

Figure 3. KD-tree representation of an internal node
of an SH-tree

When a new data object is inserted into a node in the
SH-tree, the insertion algorithm compares the MBR of the
object with the split information in the root node of the in-
ternal KD-tree. If the object is completely inside one of two
sub partitions in the root level, the algorithm repeats the
same comparison in the next lower level in the KD-tree of
the node until the object reaches a leaf node, which points to
a child node in the SH-tree. However if the object does not
fit completely inside either of the two sub-partitions, either
� ����� or � � ��
 for the node must be adjusted to include the
object. Which one is adjusted is determined based on which
sub-partition causes less enlargement of the region, to min-
imize the size of the overlapping region (� �	�
 � � �����).

One of the benefits of the KD-tree internal node repre-
sentation is reduced insertion algorithm complexity. R-tree
based indexing structures use a list of bounding rectangles
in an internal node. Therefore, in order to determine which
child node should be assigned a newly inserted object, the
R-tree insertion algorithm must compare the query with the
MBRs of all child nodes, which requires

��� � ��� ��� �
	 ����� �
comparisons of real numbers, where

�
is the node capacity

(number of children). On the other hand, the the SH-tree
insertion algorithm performs only
���� � comparisons when
the internal KD-tree is balanced, but

�
comparisons in the

worst case (when the tree is highly skewed), which is still
faster than R-tree insertion algorithm.

3.3.2 Node Split

The � � ��� and ���	��
 values, and the split dimension, are
locally optimized to reduce the overlap when a node that
overflows must be split. The goal of the node split algo-
rithm for SH-trees is to minimize the distance between the
two split positions � � �	�
 � � ������� . For an � -dimensional
dataset, only one of the dimensions is used as a split di-

mension. For each dimension, the bounding boxes of the
child sub-regions of the node to be split are sorted twice,
based on their lower and upper boundaries in the split di-
mension. The sub-region with the lowest upper bound
and the sub-region with the highest lower bound are se-
lected and put into the lower and upper resulting regions
respectively, until the minimum required node utilization is
reached. When the minimum required node utilization for
both regions is reached, it must be determined which region
will increase in size the least if each remaining sub-region
is inserted into that region. In this way, all the children
are placed into the two resulting regions to achieve min-
imal overlap in the split dimension. This process is per-
formed for each dimension, and the dimension that causes
the smallest overlapping region is chosen to be split. Af-
ter � � ��� and � �	�
 values and the split dimension are
chosen, the split information is stored in the parent node
of the node to be split. The complexity of the split algo-
rithm of SH-trees is proportional to the cost of the sorting
algorithm, ��� ��� � ��� ��� �
	 ����� �
���� ��� , where

�
is the node

capacity (maximum number of child nodes). The goal of
the R-tree node split algorithm is to minimize the volumes
of the resulting MBRs. While an exhaustive algorithm gen-
erates all possible splits, that is too expensive in general,
so most R-tree implementations employ one of two heuris-
tics. Quadratic split selects the next child entry to assign
to one of the two new nodes by selecting the child node
that requires the minimum expansion of a current new node
MBR, and linear split simply chooses the next child node in
the node list to place into one of the two new nodes. The
SH-tree node split algorithm has lower complexity than the
quadratic split policy used for R-trees (��� �����).

3.3.3 Object Deletion: Live Space Bounding Box

In both SKD-trees and Hybrid-trees, deletion is a problem
because of the overlapping regions between nodes. When a
data object that caused the creation of an overlapping region
is deleted from the tree, and if the overlapping region is not
necessary for other data objects in a node, the overlapping
region should be removed in order to make index search
faster. However, no such mechanism exists for either SKD-
trees or Hybrid-trees. In SKD-trees, the overlapping regions
only grows, and in Hybrid-trees the overlapping regions do
not change once they are created, which is possible because
hybrid trees do not support non-point data. This unneces-
sary overlap problem is mainly because splitting positions
are shared by multiple child nodes. The shared split posi-
tions generate approximate (not tight) bounding boxes for
child nodes, and there is no way of knowing the precise oc-
cupied regions within child nodes unless all sub-trees are
searched. In R-trees, condensing bounding boxes is not a
problem, because the bounding box information in an inter-

S1

S2

S3

C1
C3

C2 C4

Live space bounding box of
current node

MBR inherited
from parent node

Dead Space S1

S2

S3

C1
C3

C2 C4

1111 1111 1111 1100

C1 C2 C3 C4

(b) Encoded live space (ELS)
for child nodes

MBR

(a)Live space bounding box
of current node

Figure 4. Dead space elimination: live space bound-
ing box vs. live space encoding

nal node is the precise information for all its sub-trees.
In order to solve this problem, SH-trees store the min-

imum bounding box information in the node itself instead
of in the parent, as shown in Figure 3. With this additional
bounding box information, which we refer to as a live space
bounding box, SH-trees can avoid searching all sub-trees in
order to condense overlapping regions. Instead, the deletion
algorithm needs to access a small number of child nodes to
determine the actual overlap. The live space bounding box
also solves the dead space problem of space partitioning
methods (i.e. the regions in the MBR of an internal node
where no actual data objects are located.).

There have been some previous efforts to solve the dead
space problem, such as the ELS (Encoding Live Space) data
structure used for Hybrid-trees. ELS divides the MBR of
a child node into a regular grid and encodes an occupancy
map using a small number of bits, as shown in Figure 4.
ELS helps improve search performance, but it is not suf-
ficient to condense overlapping regions. ELS gives an ap-
proximate hint for the bounding boxes of the child nodes.
Contrary to ELS, the algorithm using the live space bound-
ing box must access the child nodes to get precise bounding
box information so that it can condense the overlapping re-
gion appropriately. When precise bounding boxes for child
nodes are known, it is simple to remove unnecessary over-
lap. First start from the leaf node whose minimum bounding
box was condensed from deleting the object. The algorithm
proceeds to the parent node and compares the parent node
MBR with the split information in the parent node. In or-
der to check whether the split position can be shifted to re-
duce the overlap, the algorithm must visit the child nodes
of the parent that caused the overlap, in order to get live
space bounding boxes for those nodes. After accessing the
live space bounding boxes for the children, if the live space

bounding box of the parent node can be condensed, then
this process is performed recursively up the tree until the
root node is reached.

Although both the ELS and live space bounding box data
structures improve range query performance, they make the
number of fan-outs (number of child nodes) for a tree node
dependent on the number of dimensions of the data. Higher
fan-out is better because it makes the tree height smaller,
which makes the paths through the tree for search and in-
sertion shorter. The number of fan-outs for R-trees, Hybrid
trees with ELS, and SH-trees with the live space bounding
box are as follows: 1

1. R-trees: �
�������	��
����
 ������������������� ������� ��� ��!�"#��$%�
�&(' �)��$�*�*���!�"+��$,�
-&(&(' ����.0/1���

�
�����%2(��! &

2. Hybrid trees: �
�������	��
���)��3�45� &(' ���������76 &8' �)���9��:;4 &(' �)���<*�����2(=>��� &(' �)��.0/1���

�
�����%2(��! &

3. SH-trees:�
���-���7��
���? ��
 ���9��������������� ���)��� ��� ��!�"+��$%�
�&8' �)��$�*�*���!�"+��$,�
-&(&���������76 &8' �)���9��:;4 &(' �)���<*�����2(=>��� &(' �)��.0/1���

�
�����%2(��! &

For R-trees, the node fan-out is inversely proportional to
the number of dimensions, and similarly for Hybrid trees,
because the amount of space for ELS encoding is propor-
tional to the number of dimensions. For SH-trees with the
live space bounding box, the number of dimensions only de-
creases the numerator in the formula, so the number of fan-
outs for SH-trees decreases linearly with the number of di-
mensions. Hence, for high dimensional data SH-trees have
a larger number of child nodes for a given node compared
to R-tree based structures.

3.3.4 Object Deletion: Merging

The deletion algorithm for SH-trees is similar to the one
for R-trees. When a node is underutilized, its child nodes
are reinserted from the root node. However, we expect
that reinsertion might be expensive for the cache index, al-
though it improves the tree structure for searches. Hence
we designed an alternative reinsertion strategy. Instead of
reinserting from the root node, the child nodes of the un-
derutilized node are reinserted from the parent node of the
underutilized node. This alternative reinsertion strategy is
similar to merging the underutilized node with its sibling
nodes. Figure 5 shows an example. Suppose C1 is to be
deleted since it does not have enough child nodes, denoted
by the gray boxes. Although C1 is deleted, its dangling
child nodes must be reinserted somewhere in the tree. Thus,
we need to determine which sibling node will contain each

1S() in the formulas denotes the number of bytes needed to represent
the value

S1

C1
C2

C3

C2

C3

S2 S2’

S1

S2C1

C2 C3

S2’

C2 C3

a) before removing C1 b) after moving children of C1
into C2 and C3

Figure 5. Merging an underutilized node

dangling node, and the split positions of the affected nodes
must change accordingly. However this merging process is
not as simple as it seems. If a sibling node is full, the merg-
ing process will make the sibling split, and the parent node
may also split recursively. If the parent node splits, there is
a problem: which parent should be used for the rest of the
dangling child nodes? Our answer to this question is that we
do not split the parent node. For each dangling node, if the
chosen sibling node is full, the algorithm puts the dangling
child node into a reinsertion queue. After all the dangling
child nodes are merged into the sibling nodes or put in the
reinsertion queue, the algorithm reinserts the child nodes in
the reinsertion queue from the root node, as for R-trees.

4 Experiments

4.1 Case Study Application - Kronos

Remote sensing has become a powerful tool for geo-
graphical, meteorological, and environmental studies. Sys-
tems processing remotely sensed data often provide on-
demand access to raw data and user-specified data product
generation. Kronos is an example of such a class of ap-
plications. It targets datasets composed of remotely sensed
AVHRR GAC level 1B (Advanced Very High Resolution
Radiometer - Global Area Coverage) orbit data. The raw
data is continuously collected by multiple satellites and the
volume of data for a single day is about 1 GB. Each sensor
reading is associated with a position (longitude and latitude)
and the time the reading was recorded.

4.2 Query Workload Generator

In order to generate query workloads, we employed a
variation of the Customer Behavior Model Graph (CBMG)

technique. CBMG has been utilized by researchers ana-
lyzing performance aspects of e-business applications and
website capacity planning [10]. A CBMG can be charac-
terized by a set of

� � �
matrix, ����� ���	�
�� , of transition

probabilities between the
�

states.
In our model, the first query in a batch specifies a geo-

graphical region and a set of temporal coordinates (a contin-
uous period of days). The subsequent queries in the batch
are generated based on the following operations: a new
point of interest, spatial movement, temporal movement,
resolution increase or decrease. In the batch query work-
load, there are 200 hot points of interest; for example, New
Orleans on 29 August 2005. In this way, subsequent queries
after the first one in the batch may either remain around that
point (moving around its neighborhood) or move on to a
different point. These transitions are controlled according
to the transition probabilities.

For the experiments, we generated 2,000 3-dimensional
queries (latitude, longitude, and time) with various differ-
ent probabilities, but we only show the results using one of
the transition probabilities due to space limitations. Results
for other transition probabilities that we experimented with
were similar to those shown. We also do not show perfor-
mance results for high dimensional datasets because scien-
tific datasets usually have four or fewer dimensions (i.e.,
space and time). Instead of running the real MQO mid-
dleware, we modeled the semantic cache behavior of MQO
and measured only the cache index performance, without
including the time to read the raw AVHRR data from disk.

We partitioned the AVHRR data for one year (365GB)
into approximately six million chunks. The size of each
chunk is 2 degrees in both latitude and longitude, and 24
hours in time (
����� ����� �� �������

). Since the size of the dataset
for one day is about 1 GB, the size of each chunk is about
61 KB. When the cache filled, we employed a least recently
used (LRU) cache replacement policy. When the cache size
is smaller than 1 GB, more than 1 million chunks are re-
placed. The overhead to update the cache index for such a
large number of chunks is significant. However the exper-
iments we present show that this high overhead is minimal
compared to the cost of linear scanning.

Chunk size is an important performance factor for the
cache index. For smaller chunk sizes, the overhead for
the index increases because more chunks are inserted and
deleted for a query. If chunk size is equal to or larger than
the query range size, the maximum number of cache re-
placements will be ����� ���! #"�$#�&%'"($, which is the number of
chunks that share a corner in the multidimensional space.
However if the chunk size is larger than the average query
range size, the overhead for a cache miss will be significant
and the cache hit ratio also decreases. If it is possible to
predict the average volume of query ranges (query selectiv-
ity), it would be best to make the chunk size the same as the

average query volume, to minimize index update overhead.
Since it is very difficult to predict average query volume,

for the rest of experiments, except for the ones shown in
Figure 7, based on our user model we set the query volume
to span about 30 chunks on average with a standard devia-
tion of about 33. Hence, cache replacement happens hun-
dred of times more frequently than search operations in the
cache. While fine-grained chunking increases the overhead
to update the cache index, it improves the overall system
performance by increasing the cache hit ratio. In this paper,
we show the results from the experiments with fine-grained
workloads that have large replacement overheads, and the
cache index still performs better overall than linear scan-
ning. Experiments with other workloads that have smaller
overheads, not shown in this paper, show that the cache in-
dex has much better performance than linear scanning in
those cases.

4.3 Experimental Setup

We measured the performance of both index creation
and search using the SH-tree, R-tree, and R*-tree algo-
rithms. Since the insertion performance is an important per-
formance factor in our experiments, we looked at the linear
split and quadratic split heuristics for the R-tree node split
algorithm, since they are much faster than the exhaustive
split algorithm.

The experiments were run on a Linux machine with a
2.4GHz Intel Pentium 4 processor and 512 MB memory.
Although we simulate 12GB of memory for the experi-
ments, that much physical memory is not needed because
the experiments do not store the actual raw datasets in the
cache. We used open source R-tree and R*-tree implemen-
tations developed by Marios Hadjieleftheriou at the Univer-
sity of California at Riverside. We fixed the node utilization
factor (the minimum number of child nodes of a valid non-
root node divided by the node capacity) to 40% (which is a
common value used in many R-tree implementations), and
the page size to 1 KB, except for the experiments shown in
Figure 6 that vary the page size.

4.4 Experimental Results

Figure 6 illustrates how node fan-out for the cache in-
dex trees affects performance. While R-trees can hold 35
3-dimensional child pointers in an internal node for a page
size of 1 KB, SH-trees can hold 38 child pointers. Note
that the index tree node size does not have to be the same
as the disk page size since the cache index resides in main
memory. Thus we measured the performance of the cache
index as a function of tree node size. Contrary to search
performance, insertion and deletion time increases as node
size increases. For an 8 KB node size, each node has 291

child pointers for R-trees while an SH-tree node has 313
child pointers. With fewer child pointers, the insertion and
deletion algorithms require less computation time to split
and recalculate the bounding boxes for tree nodes. How-
ever, the longer search paths caused by smaller fan-out in-
crease search time, especially for SH-trees. Because the
internal tree nodes for SH-trees share split positions, reduc-
ing the node fan-out leads to larger overlapping regions for
SH-trees.

With all the disk-based balanced tree structures, the node
fan-out must be larger than 3, so that we can split the node
without violating the minimum node utilization constraint
(40% for these experiments). Thus we could not run the
experiments for node size smaller than 256 bytes. The to-
tal execution time slightly increases when the node size is
smaller than 512 bytes. The deletion time for R*-trees also
grows rapidly when the node size is smaller than 512 bytes.
Figure 6 shows that SH-trees with the merging optimiza-
tion shows the best performance in most cases. Also, most
indexing structures show good performance when the node
size is 512 or 1024 bytes. Thus, for the rest of our experi-
ments, we fixed node size to 1KB.

Figure 7 shows performance results with various chunk
sizes. The size of a chunk determines the number of cache
replacements. For smaller chunk sizes, more cache replace-
ments occur so the overhead for updating the cache index
increases. In order to reduce the cache index overhead, the
chunk size should be chosen as big as possible, but not so
big that it significantly decreases the cache hit ratio.

Figure 8(a) shows the wall clock time to insert metadata
for the new chunks into the cache index. We increased the
size of the cache from 1.2GB to 12GB. For smaller caches
more cache misses occur, so that more chunks are inserted
and deleted. For insertions, SH-trees show the best perfor-
mance and R-trees using the linear split algorithm show the
next best performance. Note that SH-trees with the merg-
ing deletion algorithm have no performance difference from
SH-trees with the reinsertion algorithm for insertions. R*-
trees shows the worst performance for insertions because of
forced reinsertion for nodes that overflow.

The deletion performance results are not much differ-
ent from insertion performance. R*-trees again suffer from
forced reinsertion. When a node is underutilized, its child
nodes must be reinserted from the root node, as for R-trees.
But the objects that are reinserted may cause other node
overflows, again causing the child nodes from those over-
flowing node to be reinserted from the root again. Note
that R-trees do not reinsert child nodes from an overflowing
node. Thus the forced reinsertion algorithm of R*-trees af-
fects insertion performance as well as deletion performance.
Thus, the overhead for deletion in R*-trees is much higher
than that of R-trees, although both trees perform reinsertion
operations for underutilized nodes.

 0

 500

 1000

 1500

 2000

 2500

8192409620481024512256

T
im

e
(s

ec
)

Page Size

Time to insert data into Cache index
SH-tree(reinsert)
SH-tree(merge)

R-tree (linear)
R-tree (quadratic)

R*-tree

(a) Insertion Time

 0

 2

 4

 6

 8

 10

8192409620481024512256

T
im

e
(s

ec
)

Page Size

Time to search data in Cache index
SH-tree(reinsert)
SH-tree(merge)

R-tree (linear)
R-tree (quadratic)

R*-tree

(b) Search Time

 0

 500

 1000

 1500

 2000

8192409620481024512256

T
im

e
(s

ec
)

Page Size

Time to delete data in Cache index
SH-tree(reinsert)
SH-tree(merge)

R-tree (linear)
R-tree (quadratic)

R*-tree

(c) Deletion Time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

8192409620481024512256

T
im

e
(s

ec
)

Size of Cache

Time to access Cache index
SH-tree(reinsert)
SH-tree(merge)

R-tree (linear)
R-tree (quadratic)

R*-tree

(d) Total Access Time

Figure 6. Total Cache Index Access Time for 2,000 Queries with Various Page Size

All the indexing structures have the same deletion algo-
rithm – reinsertion from underutilized nodes – except SH-
trees with the merging algorithm. Therefore, deletion per-
formance is dependent on the insertion algorithm, i.e. how
fast they can perform reinsertion. As shown in Figure 8(c),
the merging algorithm for SH-trees helps improve deletion
performance. The deletion performance of SH-trees with
the merging algorithm was up to 16% faster than that of the
SH-tree with reinsertion. This merging algorithm can be
applied to any other R-tree based indexing structure with-
out much difficulty, but it will hurt search performance by
increasing overlapping regions in child nodes. The search
time for SH-trees with the merging algorithm was about 8%
slower than that of SH-trees with the reinsertion algorithm.
Since the node fan-out is about the same for all the index-
ing algorithms when the number of dimensions is 3 as in
our experimental dataset, search performance for SH-trees
is not better than for the other indexing trees.

It is a surprising result that the search performance of
R*-trees is not better than that of R-trees. In experiments
not shown in the paper, the search performance of R*-trees
was shown to be several times slower than that of R-trees
in some cases. The main performance improvement for R*-
trees over R-trees is from restructuring the internal nodes

via forced reinsertion. However, in our experiments R-trees
also perform many reinsertions due to frequent deletions.
Thus the internal tree structure of R-trees becomes as good
as that of R*-trees due to the large number of reinsertions.
The idea of forced reinsertion in R*-trees first came from
the observation that R-tree search performance significantly
improves after many deletions.

SH-trees show better performance when counting tree
node accesses as well overall execution time for all opera-
tions (search, insert, and delete). SH-trees with the merging
algorithm access 8-10% fewer tree nodes than do R-trees
and 22-29% fewer than R*-trees. Although SH-trees do not
perform best for searching, search time does not take a big
portion of the overall execution time. Figure 8(d) shows to-
tal execution time, and shows that search time is less than
1% of the total execution time for all the index trees. In-
sertion time takes from 43-62% of the total execution time,
and deletion takes from 37-56%. Figure 8(d) also shows the
performance of linear scanning without a cache index. The
search performance of linear scan increases as the cache
size grows, because the large number of objects in the cache
makes linear scanning expensive. Linear scan does not have
the overhead of insertion or deletion, but scanning itself is
expensive enough that when the cache has more than 40,000

 0

 20

 40

 60

 80

 100

 120

30x3020x2010x109x98x87x76x65x54x4

T
im

e
(s

ec
)

Chunk Size

Time to insert data into Cache index
SH-tree(reinsert)
SH-tree(merge)

R-tree (linear)
R-tree (quadratic)

R*-tree

(a) Insertion Time

 0

 0.5

 1

 1.5

 2

30x3020x2010x109x98x87x76x65x54x4

T
im

e
(s

ec
)

Chunk Size

Time to search data in Cache index
SH-tree(reinsert)
SH-tree(merge)

R-tree (linear)
R-tree (quadratic)

R*-tree

(b) Search Time

 0

 10

 20

 30

 40

 50

 60

 70

 80

30x3020x2010x109x98x87x76x65x54x4

T
im

e
(s

ec
)

Chunk Size

Time to delete data in Cache index
SH-tree(reinsert)
SH-tree(merge)

R-tree (linear)
R-tree (quadratic)

R*-tree

(c) Deletion Time

 0

 50

 100

 150

 200

30x3020x2010x109x98x87x76x65x54x4

T
im

e
(s

ec
)

Chunk of Cache

Time to access Cache index
SH-tree(reinsert)
SH-tree(merge)

R-tree (linear)
R-tree (quadratic)

R*-tree

(d) Total Access Time

Figure 7. Total Cache Index Access Time for 2,000 Queries with Various Chunk Sizes

chunks linear scan performs worse than even R*-trees. Us-
ing various other workloads that we generated, not shown
in the paper due to space limitations, we observed that the
performance of linear scanning becomes worse than using
the indexes as the cache hit ratio increases, which reduces
the overhead of cache replacement. From these results, we
claim that cache indexing is worthwhile for caching objects
in large main memory systems.

5 Conclusion

In this paper, we have discussed how multidimensional
indexing structures can help search for cached objects in a
large semantic cache. Experimental results show that even
R*-trees, which do not perform particularly well, perform
better than linear scanning and the performance benefits
grow as the size of the semantic cache increases. Compared
to several widely used multidimensional indexing struc-
tures, we have shown that SH-trees perform best because
of more efficient insertion and deletion algorithms.

A future direction of this work is to integrate a cache
replacement policy with the cache index so that deletion
overhead can be avoided. We plan to evaluate the cache in-
dex with the real working multiple query optimization mid-

dleware (MQO), and to extend this work to additional data
analysis applications as well as different workload profiles.

References

[1] H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Efficient exe-
cution of multiple query workloads in data analysis applica-
tions. In Proceedings of the ACM/IEEE SC1001 Conference,
Nov. 2001.

[2] H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Active Proxy-
G: Optimizing the query execution process in the Grid. In
Proceedings of the ACM/IEEE SC2002 Conference, Nov.
2002.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The �

�
-tree: An efficient and robust access method for

points and rectangles. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data
(SIGMOD90), pages 322–331, May 1990.

[4] J. L. Bentley. Multidimensional binary search trees used for
associative searching. In Communications of the ACM 18(9),
1975.

[5] K. Chakrabarti and S. Mehrotra. The Hybrid tree: An index
structure for high dimensional feature spaces. In Proceedings
of the 15th International Conference on Data Engineering
(ICDE99), pages 440–447, 1999.

[6] P. Deshpande, K. Ramasamy, A. Shukla, and J. F. Naughton:.
Caching multidimensional queries using chunks. In Proceed-

 0

 50

 100

 150

 200

 250

12G10.8G9.6G8.4G7.2G6G4.8G3.6G2.4G1.2G

T
im

e
(s

ec
)

Size of Cache

Time to insert data into Cache index
SH-tree(reinsert)
SH-tree(merge)

R-tree (linear)
R-tree (quadratic)

R*-tree

(a) Insertion Time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

12G10.8G9.6G8.4G7.2G6G4.8G3.6G2.4G1.2G

T
im

e
(s

ec
)

Size of Cache

Time to search data in Cache index
SH-tree(reinsert)
SH-tree(merge)

R-tree (linear)
R-tree (quadratic)

R*-tree

(b) Search Time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

12G10.8G9.6G8.4G7.2G6G4.8G3.6G2.4G1.2G

T
im

e
(s

ec
)

Size of Cache

Time to delete data in Cache index
SH-tree(reinsert)
SH-tree(merge)

R-tree (linear)
R-tree (quadratic)

R*-tree

(c) Deletion Time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

12G10.8G9.6G8.4G7.2G6G4.8G3.6G2.4G1.2G

T
im

e
(s

ec
)

Size of Cache

Time to access Cache index
SH-tree(reinsert)
SH-tree(merge)

R-tree (linear)
R-tree (quadratic)

R*-tree
Linear scan

(d) Total Access Time

Figure 8. Total Cache Index Access Time for 2,000 Kronos Queries

ings of the ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD98), 1998.

[7] B. Gedik and L. Liu. MobiEyes: Distributed processing of
continuously moving queries on moving objects in a mobile
system. In Proceedings of the 9th International Conference
on Extending Databases Technology (EDBT), 2004.

[8] P. Godfrey and J. Gryz. Answering queries by semantic
caches. In DEXA ’99: Proceedings of the 10th International
Conference on Database and Expert Systems Applications,
pages 485–498, 1999.

[9] A. Guttman. R-trees: A dynamic index structure for spa-
tial searching. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD84),
pages 47–57, 1984.

[10] D. Menasce and V. A. F. Almeida. Scaling for E-Business:
Technologies, Models, Performance, and Capacity Planning.
Prentice Hall PTR, 2000.

[11] M. F. Mokbel, X. Xiong, M. A. Hammad, and W. G.
Aref. Continuous query processing of spatio-temporal data
streams in PLACE. In Proceedings of the 2nd Workshop on
Spatio-temporal Databases Management (STDBM), 2004.

[12] B. Nam and A. Sussman. A comparative study of spatial
indexing techniques for multidimensional scientific datasets.
In Proceedings of 16th International Conference on Scien-
tific and Statistical Database Management (SSDBM), June
2004.

[13] B. Nam and A. Sussman. Spatial indexing of distributed
multidimensional datasets. In Proceedings of CCGrid2005:

IEEE/ACM International Symposium on Cluster Computing
and the Grid, May 2005.

[14] B. Nam and A. Sussman. DiST: Fully decentralized indexing
for querying distributed multidimensional datasets. In Pro-
ceedings of IPDPS2006: IEEE International Parallel and
Distributed Processing Symposium, 2006.

[15] B. C. Ooi, R. Sacks-Davis, and K. J. McDonell. Spatial k-d-
tree: An indexing mechanism for spatial databases. In IEEE
COMPSAC Conference, 1987.

[16] J. T. Robinson. The K-D-B tree: A search structure for large
multi-dimensional dynamic indexes. In Proceedings of the
ACM SIGMOD International Conference on Management of
Data (SIGMOD81), 1981.

[17] T. K. Sellis and S. Ghosh. On the multiple-query optimiza-
tion problem. IEEE Transactions on Knowledge and Data
Engineering, 2(2):262–266, 1990.

[18] X. Xiong, M. F. Mokbel, W. G. Aref, S. E. Hambrusch, and
S. Prabhakar. Scalable spatio-temporal continuous query
processing for location-aware services. In Proceedings of
the 15th International Conference on Scientific and Statisti-
cal Database Management (SSDBM), 2004.

