
Software Fault Isolation:
a first step towards Microreboot in legacy C applications

University of Maryland Institute for Advanced Computer Studies
Technical Report 2006-31

Timothy Fraser (tfraser@umiacs.umd.edu)

20 May 2005

Abstract

Microreboot is an attractive technique for recovering an
application after a non-malicious failure or deliberate in-
tegrity breach even in cases where the precise cause of the
failure or breach are not known. Unfortunately, Microre-
boot functionality has so far been demonstrated only with
Java applications meeting a set of peculiar Crash-only ar-
chitectural requirements. This report describes a method
of using Software Fault Isolation techniques to meet some
of these architectural requirements in C programs, thereby
taking a first step towards making Microreboot available
for retrofit in legacy C applications.

1 Introduction

Candea and others have developed the notion of
Microreboot—a technique for restoring failed applica-
tions to a working state [4]. Microreboot works by restor-
ing part of a failed application to its initial state while
keeping the balance of the state as it was before the fail-
ure. If failures persist after an initial Microreboot, the
technique can be applied repeatedly, resetting more and
more applications state each time, until the application re-
sumes healthy operation. This technique has a number
of admirable features: it presents the possibility of losing
less valuable state than full reboots, and like full reboots
it does not require knowledge of what actually caused the
failure.

Unfortunately, Candea’s original notion of Microre-
boot can be applied only to applications based on an
unusual ”crash-only” architecture [3]. Such software is
made up of many small well-isolated components that
store their important state in external stable repositories
such as transaction-oriented databases, communicate us-
ing retryable requests, and manage resources sharing with
expirable leases. Although Candea’s experiments with a
specially-constructed Java-based crash-only e-commerce
test application showed good results, the architecture of

this application is so unusual it is difficult to imagine how
Microreboot might be applied to many existing real-world
applications. These unusual architectural requirements
are inconvenient, as Microreboot could otherwise be used
to help recover the world’s many legacy C applications
from from non-malicious failures and deliberate compro-
mises.

The Rio File Cache work of Chen and others provides
a hint as to how at least one of the odd requirements
of crash-only software might be achieved via retrofit in
legacy C applications [5]—specifically, the requirement
that critical application state be stored in a manner that en-
ables it to survive application restarts. In Crash-only ap-
plications, this requirement is met by storing critical state
in external transactional databases.

Using Software Fault Isolation (SFI) techniques [22],
Chen retrofitted a legacy Digital Unix kernel with the abil-
ity to maintain the contents of its file cache across warm
reboots across warm reboots. What Candea achieved by
forcing crash-only applications to keep their state in ex-
ternal transactional databases, Chen achieved (mainly) by
using SFI to avoid the erasure or unintentional modifica-
tion of the file cache, even as the operating system was in
its death throes.

This report describes the results of a small effort to in-
vestigate the use of Rio-File-Cache-like SFI retrofit tech-
niques in legacy C applications in order to maintain the
contents of critical in-memory application data structures
across software restarts. A software restart is the applica-
tion equivalent of an operating system warm reboot: the
failed application’s process does not terminate upon re-
ceiving a failure signal (SIGSEGV, SIGBUS, and so on).
Instead it catches the signal, unwinds its stack and jumps
back to the beginning of the program.

The core of this effort is the experimental implemen-
tation of the Rio File Cache SFI technique in a small C
application. The primary result of this experiment is evi-
dence indicating that the Rio File Cache SFI technique can
indeed be used to provide state preservation functionality
equivalent to the Crash-only architecture’s use of exter-

1

nal transactional databases, but only when coupled with
additional functionality to ensure the consistency of the
preserved state in the presence of restarts that unexpect-
edly catch the application in mid-update. In the course of
the experimental implementation, dealing with this con-
sistency issue was at least an interesting as implementing
SFI. Doing so lead to a secondary result: potential insights
into the nature of “semantic integrity”—a topic of practi-
cal interest to the implementors of run-time integrity mon-
itors such as Copilot [20], Backdoors [1], and VMI [11].

The remainder of this report is organized as follows:
section 2 describes the Crash-only architectural require-
ments required to support Microreboot functionality in
greater detail, and states precisely which of these require-
ments the experimental use of SFI is meant to meet in
legacy C applications. Section 3 briefly summarizes the
Rio File Cache approach used as the basis for this ex-
periment. Section 4 describes the experimental imple-
mentation of SFI in a simple C application. Section 5
explains how this experimental implementation made the
need for an consistency-assuring mechanism in addition
to SFI clear, and describes how a suitable solution was
ultimately chosen from a set of alternatives. Section 6 de-
scribes work related to this effort. Section 7 presents con-
clusions. Section 8 describes the potential insights into
semantic integrity resulting from dealing with state con-
sistency issues in the experimental implementation and
outlines some avenues for future work.

2 Microreboot

The Microreboot work of Candea and others [4] demon-
strates a method of restoring individual unhealthy compo-
nents of a system to a known good state without causing
conflicts with the remainder of the system. Like tradi-
tional reboots, this technique is appealing because it can
conceivably restore an application to health after a non-
malicious failure or deliberate compromise, even in cases
where the precise cause of the failure or compromise are
not understood. A recovery sequence might begin by
restoring only a few components to a healthy state, and
move on my restoring more and more components until
the overall application can once again operate normally.
In the worst case in which all components must be re-
set, Microreboot is essentially equivalent to traditionalre-
boot. However, in cases where Microreboot overcomes
a failure by resetting only some of an application’s com-
ponents, Microreboot preserves the state of the balance of
the components—state which would have been needlessly
discarded in a traditional reboot.

Candea formulated his notion of Microreboot in the
context of “Crash-only” Java applications [3]—that is
software whose architecture meets the following peculiar

write

write

jumps

only
good

cache data

cache code

other data

other code

Figure 1: Rio File Cache fault domains

requirements:

1. Applications must be composed of many small co-
processes.

2. Co-processes must communicate only through well-
defined message-passing interfaces.

3. All request messages must be retryable.

4. All leases must be expirable.

5. All critical state must be stored in an external trans-
actional database.

Given an application whose architecture meets these
Crash-only requirements, one can apply Microreboot by
resetting individual co-processes to their initial state.The
above Crash-only requirements are designed to ensure
that co-processes can survive the temporary loss of their
peers and can resume cooperating with peers that have
been reset. For example, since all leases are expirable,
individual co-processes that fail to release locks due to
resets will not permanently upset the system, since their
lease will expire and the lock will be taken from them au-
tomatically.

It would be useful to apply Microreboot to legacy C
applications, if a means of retrofitting an existing appli-
cation to meet Crash-only requirements could be found.
This report presents the results of an experiment to use
SFI techniques in the manner of the Rio File Cache to
provide guarantees equivalent to the above external trans-
actional database requirement without actually relying on
an external database. The Rio File Cache and its use of
SFI is described in the next section.

3 The Rio File Cache

Chen and others [5] demonstrated the Rio File Cache in a
modified Digital UNIX kernel on the Digital Alpha plat-
form. In a traditional Digital UNIX system, the contents

2

of the operating system’s buffer cache can be arbitrarily
modified (and consequently rendered useless) by a kernel
that has experienced a failure and misbehaves in an un-
expected way while crashing. The Rio File Cache uses
Software Fault Isolation [22] (SFI) to ensure that kernel
code outside of the buffer cache’s proper access functions
cannot modify the contents of the buffer cache, thereby
preserving the buffer cache’s contents during a crash. Fig-
ure 1 contains a highly-simplified diagram of the modified
Digital UNIX kernel. The modified kernel is split into two
SFI “fault domains”: one containing the buffer cache, its
metadata, and its access functions (shaded) and the other
containing the remainder of the kernel’s code and data
(unshaded). The authors used SFI and static analysis to
argue that only cache code can write to cache data, and
the non-cache code can call cache accessor functions only
in cases deemed proper by the authors.

Because the Digital UNIX buffer cache is never paged
and always resides in the same region of physical RAM,
it is possible for a new instance of the kernel to re-use the
contents of the buffer cache left by the previous instance
after reboot, provided that the contents were not ruined
during a crash, and that there is some means of making the
kernel’s state stored outside of the buffer cache consistent
with the buffer cache’s contents. The authors use SFI to
ensure the integrity of the buffer cache itself, and store
additional metadata along with the buffer cache to enable
the new kernel instance to “synchronize” its state with the
buffer cache’s contents.

As described in section 2, this report describes the re-
sults of an effort to use SFI in the manner of the Rio File
Cache to preserve critical state that in a Crash-only ap-
plication would be stored in an external database. The
experimental SFI implementation is described in the next
section.

4 Experimental implementation

This section describes the implementation of a experimen-
tal C application that uses a simple but non-trivial data
structure, and the application of Rio File Cache-style SFI
to it in order to preserve both the data structure’s data and
metadata across software restart. Software restart refers
to returning a program to some prior healthy state without
actually terminating its process, perhaps by a combinator
of setjmp andlongjmp calls in C. The primary goal
of this implementation is to provide a simple kind of exis-
tence proof—one simple example of a C application that
uses Rio File Cache-style SFI to preserve its critical state
in the same way the use of a transactional database does
in Crash-only software (Crash-only requirement 5 from
section 2).

A:
Linked allocator (section 2.2.3 formulas 5 and 6)
top = NIL
avail = 0

pool[] =

[0] [1] [2] [3]

321

B:
Stack (section 2.2.3 formulas 8 and 9)
top = 1
avail = 2

pool[] =

[0] [1] [2] [3]

0 3

Figure 2: Knuth linked allocator and stack

4.1 The experimental application

The experimental application implements the linked stack
algorithm from Knuth [15], chosen as the first algorithm
in Knuth that required the preservation of data at two lev-
els of abstraction (in order to parallel the preservation of
both data and metadata in the Rio File Cache.) This algo-
rithm includes two parts: first, a linked allocator (Knuth
section 2.2.3 formulas 5 and 6) and second, an application
stack that uses this linked allocator for dynamic memory
allocation (Knuth section 2.2.3 formulas 8 and 9). These
data structures are diagrammed in figure 2.

The linked allocator is shown in figure 2A. The linked
allocator is a heap management scheme similar to the C
library’s malloc function, with the exception that allo-
cated regions of memory are always the same size. To
implement thismalloc-like functionality, the linked al-
locator uses a large array of constant-sized cells, labeled
pool[] in the diagram. Each cell has two parts divided
by a dashed vertical line in the diagram. The left part
of each cell holds application data. The right part con-
tains either the index of another node in the array or the
distinguished value NIL (called Delta in Knuth). At pro-
gram start, all pool cells are linked into a singly-linked
list called the “available list”. A variable avail holds the
index of the first cell in the available list. The linked
allocator has two accessor functions:allocate and
delete which allocated cells for application use by re-
moving them from the available list and return them to the
available list for later reuse, respectively.

The stack is shown in the diagram in figure 2B. The
stack is implemented as a linked list that is similar to the
available list. The index of the cell at the top of the stack
is stored in the variabletop, each cell contains the index
of the cell beneath it in the stack, or in the case of the

3

SFI’d code allocator, stack

0x0000 0x1000 0x2000 0x3000

unmapped dyn link code

Figure 3: Experimental fault domains

cell at the bottom of the stack, NIL. The stack has the two
traditional accessor functions,push andpop that use the
linked allocator’sallocate anddelete functions to
manage memory. The diagram shows a stack with two
cells allocated, 1 on top and 0 on bottom. Two pool cells,
2 and 3, remain unallocated.

4.2 Fault domains

Figure 3 contains a diagram of the fault domains chosen
for SFI sandboxing in the experimental application. The
experimental application is a demand-paged MAC OS X
10.3 application and is three 4KB pages long. The dia-
gram shows the three pages plus an additional “zero” page
along with the lower two bytes of their addresses. Page
0x0000 is left unmapped by the linker/loader so that
dereferences of NUL pointers will, upon reaching this un-
mapped page, fault. Page01000 contains dynamic linker
code added by the compiler. Page0x3000 contains the
linked allocator and stack portion of the application—the
portion to be protected from accidental modification dur-
ing Microreboot. Page0x2000 (shaded in the diagram)
contains the remainder of the experimental application
code—the code which must be controlled with SFI. The
SFI implementation uses the 4th byte of the page address
(0,1,2,3) to identify fault domains. To maintain consis-
tency with the original Wahbe SFI terminology, the fol-
lowing description of the actual SFI implementation refers
to these numbers as “segment numbers” and fault domains
as “segments”. Segment 2 is the segment to which SFI
will be applied, as described in the next subsection.

4.3 SFI implementation

This subsection describes the application of Wahbe’s
“sandboxing” SFI to segment 2 of the experimental ap-
plication. Sandboxing SFI required the addition of three
kinds of PowerPC assembly code to the existing appli-
cation code: the initialization of reserved registers at the
beginning of the main program, the sandboxing of branch
(jump) statements to addresses stored in registers when
returning from functions, and the sandboxing of stores
to addresses stored in registers. All assembly code was
added manually to the C source files using the inline as-
sembly support provided by the Mac OS X version of the
GNU C compiler. Each of the three cases are described

below.

SFI initialization Table 1 shows the assembly code
added to the beginning of the experimental application’s
main function to set the reserved mask register (r17
on line 11) and the reserved segment register (r18) on
line 12). The0x0fff mask is set to mask out the seg-
ment number residing in the 4th byte of the addresses
shown in figure 2. The segment is set to0x2000—the
only proper segment number for branch and store instruc-
tions residing in fault domain 2.

These registers are “reserved” only in the sense that
only the sandboxing SFI uses them, as required by the
Wahbe technique. However, the compiler was not in-
structed to avoid using them in application code. In-
stead, the application used so few of the architecture’s 32
general-purpose registers that it was a simple matter to ex-
amine a disassembly of the experimental application and
choose registers for the SFI code that the compiler had
simply not chosen to use for the application code.

Branch sandboxing Table 2 shows the assembly code
added to sandbox branch instructions at the end of func-
tions in segment 2 code. The goal of this sandboxing is
to ensure that no code in segment 2 can branch to an-
other fault domain. The assembly code accomplishes this
prevention by taking the return address from the special
registerlr and placing it inr16, the register reserved
for sandbox calculations (line 22). The table code’s com-
ments describe an example where the return address in
r16 is 0x00002294—an address that is legal but will
nevertheless be sandboxed. The assembly code proceeds
to mask out the segment number on line 23, and replace
it with the segment number for segment 2 on line 24—
the same value that was there before, since the example
describes a well-behaved branch.

At this point the assembly code must deviate from
the Wahbe technique by returning the sandboxed address
back to the speciallr “link” register (line 25) and then
branches to the address inlr (line 26). According to
the Wahbe technique, the assembly code should have
branched to the address contained inr16, allowing one
to make the argument that all sandboxed branches use
r16—a register used only by SFI code. However, al-
though the Alpha instruction set used by Wahbe appar-
ently contained an instruction causing a branch through

4

10 /* from main: dedicated sandboxing registers */
11 li r17, 0x0fff /* r17 is mask register */
12 li r18, 0x2000 /* r18 is segment register */

Table 1: Initializing sandbox registers

20 /* perform sandboxing SFI on return branch */
21 /* r16, wahbe dedicated reg = return addr */
22 mfspr r16, lr /* r16 = 0x00002294 */
23 and r16, r16, r17 /* r16 = 0x00000294 */
24 or r16, r16, r18 /* r16 = 0x00002294 */
25 mtspr lr, r16 /* lr = r16 */
26 blr /* ‘‘branch to lr’’ */

Table 2: Sandboxing function return branch

30 li r15, 0x42 /* put ’B’ into r15 */
31
32 /* perform wahbe sandboxing SFI on store */
33 /* r16, wahbe dedicated reg = store addr */
34 /* r0 = store addr = 0x0000302b */
35 and r16, r0, r17 /* r16 = 0x0000002b */
36 or r16, r16, r18 /* r16 = 0x0000202b */
37 stb r15,0x0(r16) /* store to FD2 text */

Table 3: Sandboxing stores through registers

01 Pool index: 0 1 2 3 4 5 6 7
02 Available -> Z -> Z -> Z -> Z
03 orphans:
04 A <- A <- A <- A <- Stack
05 a) push data onto stack
06 b) pop data off of stack
07 c) munge stack, no SFI
08 d) munge stack, with SFI
09 e) reboot with good integrity
10 f) reboot with half push (stack link)
11 g) reboot with half push (avail link)
12 h) reboot with half pop (stack link)
13 i) reboot with half pop (avail link)

Table 4: Demo program output with 4 nodes allocated on stack

5

a general-purpose register such asr16, the PowerPC in-
struction set does not have such an instruction. Instead, it
has only theblr instruction to branch to the address in
the special-purposelr register used on line 26. This ne-
cessity complicates the sandboxing argument—one must
argue that although the application code also uses thelr
register, the SFI code always sets it properly—the sand-
boxing is still effective.

Store sandboxing The assembly code in table 3 shows
the instructions added to sandbox stores. The assembly
code’s comments show an illegal attempt to modify a byte
in segment 3—the application stack’s segment that must
be protected. Specifically, it attempts to write a’B’ to
byte0x0000302b, as shown on line 30. As in the above
branch case, the original store address is loaded intor16
and the the original 4th byte that indicates the segment
number is masked out (line 34). Line 36 replaces the
original 3 with a 2, causing the store byte instruction on
line 37 to modify location0x0000202b in segment 2
rather than0x0000302b in segment 3. The location in
segment 2 happens to be read-only program text, and the
sandboxed store causes the OS to trap a memory access
error and send a SIGBUS signal to the experimental ap-
plication. The experimental application catches and han-
dles the signal, and it’s application stack data and linked
allocator data remain unharmed.

5 Microreboot and consistency

This section describes the experimental application’s Mi-
croreboot behavior, the state consistency problems it
raises, and solution strategies for these consistency prob-
lems.

5.1 Microreboot control flow

Figure 4 contains a diagram of the experimental appli-
cation’s control flow. It begins with the square marked
init, where all of the its data structures are initialized.
This is where the linked allocator’s “available” list is ini-
tialized to include all of the cells in the pool, and the appli-
cation stack is set to be empty. Once initialization is com-
plete, the experimental application moves to the shaded
square markedgood. This square represents the healthy
state to which Microreboot returns the experimental ap-
plication after a failure. Because the earlier initialization
is not repeated, the linked allocator and application stack
state survives Microreboot.

After the reaching thegood state, the experimental ap-
plication moves on the theuser input square, where it
loops indefinitely handling userpush andpop requests.

There is also theSIGBUS option which tests the experi-
mental application’s SFI sandboxing functionality that, as
described in the previous section, results in the receipt of
a SIGBUS signal. In addition, there is an explicitboot
option to cause a Microreboot. Both theSIGBUS and
boot squares in the control flow diagram lead back via
dashed lines to thegood square—these dashed lines trace
the control flow of Microreboot.

Figure 4 shows the screen output of the experimental
application. The experimental application’s linked alloca-
tor pool has eight cells. Output lines 1–4 form a diagram
of the pool’s state at the time the output was produced.
Line 1 shows the pool cell indices. Line 2 shows the
linked allocator’s available list containing cells 4 through
7, with the data portion of each cell set to’Z’. Line 4
shows the remaining cells allocated for the stack, with
cell 3 being the top. Each stack cell’s data portion is set to
’A’. The remaining lines 4–13 list the various interactive
commands available to the user.

5.2 Consistency issues

The experimental application uses sandboxing SFI to pro-
vide the isolation required to enable its application stack
and linked allocator data to persist unharmed across Mi-
croreboots. It does so to provide isolation and persis-
tence equivalent to that provided by the use of external
transaction-oriented databases in Crash-only software (re-
quirement 5 in section 2). While section 4 describes its ef-
fectiveness in this regard, isolation is not the only feature
provided by the external transaction-oriented databases.

The other critical feature is consistency—the external
transaction-oriented databases ensure that if a Microre-
boot occurs while the application is in the middle of up-
dating its critical data structures, the data structures will
be left in a consistent state. Although the experimental
application’s use of sandboxing SFI provides isolation, it
does not provide such consistency guarantees.

To illustrate this lack of a consistency guarantee, fig-
ure 5 contains a sequence of diagrams of the experimental
application’s linked allocator pool and application stack.
The diagrams show the state changes that occur during a
push operation.

Diagram 0 shows the state of the pool and application
stack before thepush operation begins. This state
is consistent: the stack contains cells 1 and 0, and
the linked allocator’s available list contains cells 2
and 3. Because the pool and application stack are
in a consistent state, a Microreboot at this point will
cause no consistency problems.

Diagram 1 shows the state that results just after the be-
ginning of thepush. Thepush function has called

6

input
user push

pop

SIG
BUS

boot

init good

Figure 4: Experimental program control flow diagram

[0] [1] [2] [3]

0
pool[] =

top avail

1
pool[] =

top avail

2
pool[] =

top avail

3
pool[] =

availtop

Figure 5: Intermediate pool and stack states during push operation

7

the linked allocator’sallocate function to allo-
cate a new cell for the stack. This new cell is shaded
in the diagram. Theallocate function has re-
moved the new cell from its available list, but the
push function has not yet begun to initialize the new
cell. If a Microreboot occurs with the pool and ap-
plication stack in this state, the experimental appli-
cation will recover to find its pool and application
stack in an inconsistent state. As the diagram shows,
the new (shaded) cell is “orphaned”—it is neither in
the stack’s list or the linked allocator’s available list.

Diagram 2 shows the state that results near the end of the
push. Thepush function has set the new (shaded)
cell’s link to point to the old top of the stack, but has
not yet set its top pointer to the new cell. As in the
previous diagram, a Microreboot at this point will
also result in an orphaned new cell.

Diagram 3 shows the consistent state that results when
thepush is complete. A Microreboot at this point
will cause no consistency problems.

Figure 5’s diagram shows two states that result in a pool
cell being orphaned on Microreboot. Each orphaned cell
is neither allocated nor free. Over the course of many
Microreboots, the entire available pool may be orphaned,
and no morepush operations will be possible.

There are a variety of strategies for dealing with con-
sistency problems after Microreboot in legacy C applica-
tions. Some are described below:

transactions: One might add code to the application to
make all accesses to critical data transactional. Al-
though this addition might be accomplished using
interposition [12, 10] of some kind, it is not hard to
imagine cases where this solution would be a com-
plex, invasive, and difficult process.

just wait: One might simply cause Microreboots only at
points in the application’s control flow where its crit-
ical data structures are in a consistent state (such as
diagrams 0 and 3 in figure 5. Although this strategy
has the benefit of simplicity, there may be no guar-
antee that a given application will ever reach such a
consistent state after a failure that demands Microre-
boot.

fsck: One might apply a filesystem check “fsck-like”
consistency check and repair on Microreboot. Less
invasive than the transaction strategy, without the un-
bounded waiting concerns of the waiting strategy,
this is the strategy implemented in the experimental
application.

Note that all of these strategies require some kind of
analysis and understanding of the application’s code to

determine exactly what consistent state is. This question
bears on the secondary results of this work as described in
section 8.

Table 5 shows the output of the experimental applica-
tion as a Microreboot is manually initiated while the ap-
plication stack is in mid-push—specifically, in the state
described by diagram 2 in figure 5. Lines 20–23 shows
the linked allocator pool and application stack in a consis-
tent state. Line 33 shows the user input that initiates the
Microreboot. Lines 34–38 shows the state of the linked al-
locator pool and application stack on Microreboot. Note
that cell 4 is orphaned—it is on neither the stack or avail-
able lists.

Lines 39–45 show the operation of the experimental
application’s fsck-like integrity checking and repair func-
tion. This function finds orphaned nodes and returns them
to the available list. Just as a transactional database en-
sures that the results of a transaction will either be com-
pletely committed or not committed at all, the fsck-like
routine ensures that the results of a push or pop will either
be entirely complete or not apparent at all.

The experimental application’s fsck-like routine’s al-
gorithm was constructed by a human analyst after a
manual examination of the experimental application’s
allocate, delete, push, andpop functions. The
method used was as follows. First, the analyst constructed
the code shown in table 6 by taking the application stack
functions and inlining the linked allocator functions. This
combined version of the experimental application’s code
made it easier for the analyst to visualize the instruction
stream as it occurs sequentially over time. In the table, the
linked allocator’s inlined statements are double-indented
on lines 65–66 and 89–91. The remaining statements are
application stack code.

The analyst then performed an informal abstract exe-
cution of thepush andpop functions using pencil and
paper, methodically imagining the states that would re-
sult if execution was stopped by a Microreboot between
each line. The result was a set of diagrams similar to
the simplified examples shown in figure 5. The analyst
ORPHAN AVAIL andORPHAN TOP macros at strategic
points in the code. These macros allow the user to cause
Microreboots at these points in the control flow, causing
specific kinds of inconsistencies to test the fsck-like func-
tion, as shown in the output contained in table 5.

Having constructed a list of all the possible inconsis-
tent linked allocator and application stack states, the an-
alyst then relied on intuition to determine that the key
to detectingconsistency problems was to find orphaned
nodes—that is, node that were neither in the linked allo-
cator’s available list nor the application stack’s list. The
analyst then noted that it was impossible to distinguish
between a cell orphaned by an incompletepush and one
orphaned by an incompletepop. Both came in two fla-

8

20 Pool index: 0 1 2 3 4 5 6 7
21 Available -> Z -> Z -> Z -> Z
22 orphans:
23 A <- A <- A <- A <- Stack
24 a) push data onto stack
25 b) pop data off of stack
26 c) munge stack, no SFI
27 d) munge stack, with SFI
28 e) reboot with good integrity
29 f) reboot with half push (stack link)
30 g) reboot with half push (avail link)
31 h) reboot with half pop (stack link)
32 i) reboot with half pop (avail link)
33 f
34 State on microreboot:
35 Pool index: 0 1 2 3 4 5 6 7
36 Available -> Z -> Z -> Z
37 orphans: A:3
38 A <- A <- A <- A <- Stack
39 Integrity check:
40 orphaned node 4... returned to available pool.
41
42 Pool index: 0 1 2 3 4 5 6 7
43 Available -> A -> Z -> Z -> Z
44 orphans:
45 A <- A <- A <- A <- Stack
46 a) push data onto stack
47 b) pop data off of stack
48 c) munge stack, no SFI
49 d) munge stack, with SFI
50 e) reboot with good integrity
51 f) reboot with half push (stack link)
52 g) reboot with half push (avail link)
53 h) reboot with half pop (stack link)
54 i) reboot with half pop (avail link)

Table 5: Demo program output after consistency check and repair

9

60 void
61 stack_push(info_t y) {
62
63 index_t p; /* temp pointer to new stack node */
64
65 p = avail;
66 avail = LINK(avail);
67
68 INFO(p) = y;
69 ORPHAN_AVAIL;
70 LINK(p) = top;
71 ORPHAN_TOP;
72 top = p;
73
74 } /* stack_push() */
75
76
77
78 info_t
79 stack_pop(void) {
80
81 index_t p; /* temp index of top stack node */
82 info_t y; /* info (data) to return to caller */
83
84 p = top;
85 top = LINK(p);
86 y = INFO(p);
87 ORPHAN_TOP y;
88
89 LINK(p) = avail;
90 ORPHAN_AVAIL;
91 avail = p;
92
93 return y;
94
95 } /* stack_pop() */

Table 6: Partial stack push and pop code with pool code inlined

10

vors: one with a link to the available pool, and one with a
link to the stack.

The analyst relied on his understanding of the applica-
tion stack’s semantics to determine that the key torepair-
ing consistency problems was to return orphaned cells to
the available pool—essentially completing an incomplete
pop, regardless of whether the interrupted operation was
a push or pop. Mistaking an incompletepush for a
pop does lose thepush data, but it also returns the stack
to the consistent state before thepush began. Mistak-
ing an incompletepop as apush, by comparison, would
put the stack into a state that was never intended by the
application.

It would be desirable to automate the task of generating
fsck consistency problem detection and repair, if possible.
This issue is discussed in section 8.

6 Related Work

Although the primary focus of this project was to demon-
strate the use of SFI to meet some of the Crash-only soft-
ware requirements required to enable Microreboot, the
consistency issues that arose arguably became the more
interesting aspect of the work. These issues are described
in section 5. This section briefly summarizes some work
related to the task of identifying and repairing consistency
(integrity) problems in program state during runtime.

6.1 Recovery by restart

Dunlap and others have demonstrated the use of vir-
tual machine monitors to recover compromised systems
by “rolling programs back” to a previous healthy state [9].
In their “ReVirt” system, the virtual machine monitor pro-
duces extensive logs of virtual host activity. It uses these
logs to analyze intrusions. It can also use these logs to
perform repair on individual processes by rolling back se-
quences of events as a database might. ReVirt returns en-
tire programs to a prior healthy state that actually existed
at some point in history. Because the program had reached
that state before, one can argue that the state is necessarily
consistent.

In contrast, Microreboot manufactures an artificial
healthy state in which some of a program’s state is re-
stored to a prior state and some is not. The consis-
tency problems in section 5, for example, occur because
the stack may be left in a mid-push state but the pro-
gram counter will be reset rather than restored to the
corresponding midpoint of the push function. Conse-
quently, Microreboot can preserve more state, but must
deal with more consistency issues than ReVirt. ReVirt is
directly applicable to systems running legacy C programs,
while this report demonstrates how to meet only some of

the Crash-only requirements needed for Microreboot of
legacy C programs.

6.2 Consistency specification

Demsky and Rinard have developed a specification
language for data structure definition and runtime con-
straints, along with a program generator that outputs pro-
grams containing extra code to automatically detect and
repair their own data structures when they fail to meet the
specified constraints [7]. This work places one level of
abstraction on top of well-known historical work with the
5ESS [14] and MVS [16] systems: in those systems, the
inconsistency detection and repair procedures were coded
manually. In this work, they are generated automatically
from manually-written specifications. In later work, Dem-
sky and Rinard explore static program analysis techniques
to determine whether or not a given set of consistency
constraints will result in a repair procedure that will al-
ways terminate [8].

Nentwich and others have also investigated techniques
similar to Demsky and Rinard [18]. They have devel-
oped xlinkit, a tool that detects inconsistencies between
distributed versions of collaboratively-developed docu-
ments structured in XML [2]. It does so based on consis-
tency constraints written manually in a specification lan-
guage based on first order logic and XPath [6] expres-
sions. These constraints deal with XML tags and val-
ues, such as “every item in this container should have a
unique name value.” In later work [19], they describe a
tool which analyzes these constraints and generates a set
of repair actions. Actions for the above example might in-
clude deleting or renaming items with non-unique names.
Human intervention is required to prune dumb repair ac-
tions from the list, and to pick the most appropriate action
from the list at repair time.

As explained in section 5, the consistency constraints
described in this report were derived manually (as in the
above related work) but were not specified formally ex-
cept through the entirely-manual coding of the fsck-like
routine (in contrast to the above use of specification lan-
guages and program generators). In the future, it would
be helpful to have tools that automate at least part of the
constraint-derivation process, as described in section 8.

6.3 Runtime integrity monitors

Many authors have described external monitors that
examine the state of running programs for consistency
problems, including Livewire [11], Backdoors [21, 1],
Copilot [20], and the work of Grizzard and others on
“whitehat rootkits” [13]. Some of these monitors are im-
plemented as kernel processes, others in virtual machine

11

A: Healthy Linux or NT process table:

schedule:

list:

B: Linux or NT process table after DKOM attack:

schedule:

list:

Figure 6: Linux or NT process table before and after DKOM attack

monitors, and still others on PCI add-on cards intended to
be installed in the system to be monitored.

As a rule, these monitors are capable of monitoring and
perhaps even repairing the consistency of data structures
that are involved in known popular attack vectors, but
their coverage does not extend to all data structures of in-
terest. Tools to help automate the process of deriving con-
sistency constraints, such as those imagined in section 8,
would be of great help in expanding the coverage (and
consequently the effectiveness) of these runtime integrity
monitors.

7 Conclusions

The primary result of this work is a kind of simple exis-
tence proof: The experimental application represents the
successful application of SFI [22] techniques to isolate a
critical data structure intended for persistence across Mi-
croreboot in a fashion similar to the Rio File Cache [5].
The goal of this exercise was to show that Rio File
Cache-style SFI might be used to give legacy C appli-
cations functionality equivalent to the use of external
transaction-oriented databases mandated for Crash-only
software [3] (Crash-only requirement 5 from section 2).
As described in section 5, this meeting this goal required
more than just SFI-provided isolation. It also required ad-
ditional consistency-preserving functionality to match the
integrity-preserving transactional features of the database.

Although the experimental application is quite simple,
it does involve the preservation of both the state of an ap-
plication data structures (the stack) and its metadata (the
linked allocator state). This coverage provides some hope
that the technique might be applicable to larger C applica-
tions, as well.

There are also a number of secondary results: First, the
use of SFI might also enabled a legacy C application to
meet the Crash-only requirement that cross-domain calls
be made through strong interfaces (requirement 2 in sec-

tion 2)—that is, that jumps can’t be made from one do-
main to an arbitrary instruction in another. The use full
use of SFI demands that a static analysis be performed on
the application to determine which cross-domain branches
(calls) are legal. The use of sandboxing described in sec-
tion 4 merely handles the cases that would be difficult to
analyze statically— the static analysis is what provides
the most meaningful guarantees. Presumably, this static
analysis would ensure that a legacy C application pro-
vided a guarantee equivalent to the Crash-only mandate
for strong interfaces. However, this argument is largely
conjecture as no complete static analysis of the experi-
mental application was attempted.

Second, as described in section 4, the lack of a “branch
to an address stored in a general-purpose register” instruc-
tion in the PowerPC architecture requires some adjust-
ment to the SFI technique described by Wahbe and others.
Although the static analysis is complicated somewhat, the
technique remains effective.

Finally, it must be noted that although the success of
the experimental application shows that progress is pos-
sible, it by no means should be taken as an indication
that applying this technique to a large poorly-documented
legacy C application would be in any way easy or easily-
automated. The static analysis might be particularly diffi-
cult, as it requires first deciding how to partition the appli-
cation into fault domains, and then deciding which cross-
domain calls are legal and which are not. Both of these
tasks might require considerable understanding of how
the application works; such understanding may be diffi-
cult to come by, particularly where “legacy” applications
are concerned.

8 Future Work

Section 6 briefly introduced the notion of a runtime in-
tegrity monitor—a program or device that examines the
state of a running application or operating system ker-

12

nel for consistency problems and, in some cases, repairs
them. Arguably, these devices work best when monitoring
data structures that should rarely or never change during
runtime. Examples of these largely-static data structures
are numerous: in kernels they include jump tables such as
system call vectors and interrupt descriptor tables—both
historically popular targets for malicious tampering.

However, recent more-sophisticated attacks have begun
to focus their tampering efforts on more-dynamic data
structures which are arguably harder for runtime execu-
tion monitors to effectively examine and repair. Perhaps
the best example of these “Direct Kernel Object Manipu-
lation” (DKOM) attacks concerns the process table. Fig-
ure 6A shows a conceptual diagram of the process table
of a Linux or Windows (NT) kernel. As shown in the di-
agram, the table actually takes the form of a set of nodes
tied together in two circular linked lists. One circular list
is traversed by the scheduler while choosing processes to
run. The other circular list is traversed by the process-
listing code which produces output for the GNU/Linux ps
command or the Windows Task List.

Figure 6B shows one common tampering strategy used
by attackers who wish to hide a process from legitimate
administrators is to remove their process (shown shaded)
from the process-listing circular linked list while leaving it
in the scheduler’s circular linked list. Because the process
remains in the scheduler’s circular linked list, the sched-
uler still allows it to run. But because it is no longer in the
process-listing circular linked list, it does not appear in
process listing output visible to legitimate administrators.

After some manual examination of the diagrams in fig-
ure 6, one might reasonably and correctly conclude that
“each process’s entry must be included in both circular
linked lists” is a useful consistency constraint in this sit-
uation. However, one must note that a run-time integrity
monitor may see only snapshots of the state of the process
table during run-time. Because the state of the process ta-
ble is changing continuously, such snapshots may portray
states that violate this consistency constraint for no reason
other than the kernel happened to be adding or removing
a process at the moment the snapshot was taken.

The fact that harmless but inconsistent states may be
visible to an external monitor raises some of the same con-
sistency issues discussed in section 5. Just as it would be
helpful to have a tool which helps to determine both the
consistent and all of the intermediate inconsistent states
of a given data structure for the sake of fsck-writing, it
would also be helpful to have such a tool for the sake of
writing monitoring code that can make sense of arbitrary
snapshots.

Section 6’s discussion of related work noted multiple
explorations of systems where human analyst manually
derive consistency constraints and then use automated
tools to generate fsck-like code from them. It would also

be helpful to have tools that could automatically derive
consistency constraints, perhaps after being given some
hints by a human analyst. Failing that, it might also be
helpful to have tools which could confirm or deny an intu-
itive guess at a constraint made by a human analyst work-
ing in haste from an imperfect understanding of the ap-
plication in question. Although such tools may ultimately
be unobtainable, these topics seem deserving of future ex-
ploration.

This discussion leaves a number of open questions:
Does the manual creation of the fsck routine for the ex-
perimental application described in subsection 5.2 provide
any insight into the problem of expressing consistency
constraints for constantly-changing data structures? Is the
fsck routine itself akin to a formal description of such
a constraint? Are all in-memory data structures simple
filesystems in need of an fsck routine? Subsection 5.2’s
manual constraint-discovery method involved imagining
the insertion of Microreboots between each step in the
critical data structure’s access routines. This approach
seems similar to the more formal method of Myers and
others [17] to reason about their notion of Robust Declas-
sification, where they modeled the ability of an attacker
to change a running program’s state by allowing the in-
sertion of arbitrary new program statements between the
existing ones. Can something like the Myers method be
used to formalize reasoning about consistency issues?

References

[1] Aniruddha Bohra, Iulian Neamtiu, Pascal Gallard,
Florin Sultan, and Liviu Iftode. Remote Repair of
Operating System State Using Backdoors. InPro-
ceedings of The International Conference on Auto-
nomic Computing (ICAC-04), May 2004.

[2] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and
E. Maler. Extensible Markup Language. Recom-
mendation REC-xml-20001006, World Wide Web
Consortium, October 2000.

[3] G. Candea and A. Fox. Crash-only software. In
Proceedings of the 9th USENIX Workshop on Hot
Topics in Operating Systems, May 2003.

[4] George Candea, Shinichi Kawamoto, Yuichi Fujiki,
Greg Friedman, and Armando Fox. Microreboot - A
Technique for Cheap Recovery. InProceedings of
the 6th USENIX Symposium on Operating Systems
Design and Implementation, December 2004.

[5] Peter M. Chen, Wee Teck Ng, Subhachandra Chan-
dra, Christopher Aycock, Gurushankar Rajamani,
and David Lowell. The Rio File Cache: Surviving
Operating System Crashes. InProceedings of the 7th

13

ACM Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASP-
LOS VII), October 1996.

[6] J. Clark and S. Derose. XML Path Language
(XPath) Version 1.0. Recommendation REC-xpath-
19991116, World Wide Web Consortium, November
1999.

[7] B. Demsky and M. Rinard. Automatic Detection and
Repair of Errors and Data Structures.Proceedings
of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages,
and applications, 38(11), October 2003.

[8] Brian Demsky and Martin Rinard. Static Speci-
fication Analysis for Termination of Specification-
Based Data Structure Repair. InProceedings of the
14th International Symposium on Software Reliabil-
ity Engineering, November 2003.

[9] George W. Dunlap, Samuel T. King, Sukru Cinar,
Murtaza A. Basrai, and Peter M. Chen. ReVirt: En-
abling Intrusion Analysis Through Virtual-Machine
Logging and Replay. InProceedings of the 5th Sym-
posium on Operating Systems Design and Imple-
mentation, December 2002.

[10] Timothy Fraser, Lee Badger, and Mark Feldman.
Hardening COTS Software with Generic Software
Wrappers. InProceedings of the 1999 IEEE Sympo-
sium on Security and Privacy, pages 2–16, Berkeley,
California, May 1999.

[11] Tal Garfinkel and Mendel Rosenblum. A Virtual
Machine Introspection Based Architecture for In-
trusion Detection. InProceedings of the 10th An-
nual ISOC Network and Distributed System Security
Symposium, February 2003.

[12] Douglas P. Ghormley, David Petrou, Steven H. Ro-
drigues, and Thomas E. Anderson. SLIC: An Exten-
sibility System for Commodity Operating Systems.
In Proceedings of the USENIX 1998 Annual Techni-
cal Conference, New Orleans, Louisiana, June 1998.

[13] Julian B. Grizzard, John G. Levine, and Henry L.
Owen. Re-establishing Trust in Compromised Sys-
tems: Recovering from Rootkits That Trojan the
System Call Table. InProceedings of European
Symposium on Research in Computer Security (ES-
ORICS), pages 369–384, Sophia Antipolis, France,
September 2004.

[14] G. Haugk, F. Lax, R. Royer, , and J. Williams. The
5ESS switching system: Maintenance capabilities.
AT&T Technical Journal, 64(6 part 2):1385 – 1416,
July-August 1985.

[15] Donald E. Knuth. The Art of Computer
Programming—Volume 1/Fundamental Algorithms.
Addison-Wesley, 1968.

[16] Samiha Mourad and Dorothy Andrews. On the relia-
bility of the IBM MVS/XA operating system.IEEE
Transactions on Software Engineering, 13(10):1135
– 1139, October 1987.

[17] Andrew C. Myers, Andrei Sabelfeld, and Steve
Zdancewic. Enforcing Robust Declassification. In
Proceedings of the 17th IEEE Computer Security
Foundations Workshop, pages 172–186, June 2004.

[18] C. Nentwich, L. Capra, W. Emmerich, and
A. Finkelstein. xlinkit: a Consistency Checking and
Smart Link Generation Service.ACM Transactions
on Internet Technology, 2(2):151 – 185, May 2002.

[19] C. Nentwich, W. Emmerich, and A. Finkelstein.
Consistency management with repair actions. In
Proceedings fo the 25th International Conference on
Software Engineering, May 2003.

[20] Nick L. Petroni Jr., Timothy Fraser, Jesus Molina,
and William A. Arbaugh. Copilot – a Coprocessor-
based Kernel Run-time Integrity Monitor. InPro-
ceedings of the 13th USENIX Security Symposium,
August 2004.

[21] F. Sultan, A. Bohra, P. Gallard, I. Neamtiu, S. Smal-
done, Y. Pan, and L. Iftode. Nonintrusive Remote
Healing Using Backdoors. InProceedings of the 1st
Workshop on Algorithms and Architectures for Self-
Managing Systems, June 2003.

[22] Robert Wahbe, Steven Lucco, Thomas E. Anderson,
and Susan L. Graham. Efficient Software-Based
Fault Isolation. ACM SIGOPS Operating Systems
Review, 27(5), December 1993.

14

