Software Fault Isolation:
a first step towards Microreboot in legacy C applications

University of Maryland Institute for Advanced Computer &ies
Technical Report 2006-31
Timothy Frasertfraser@umiacs.umd.ejlu

20 May 2005

Abstract this application is so unusual it is difficult to imagine how
Microreboot might be applied to many existing real-world
Microreboot is an attractive technique for recovering applications. These unusual architectural requirements
application after a non-malicious failure or deliberate irare inconvenient, as Microreboot could otherwise be used
tegrity breach even in cases where the precise cause oftthielp recover the world’s many legacy C applications
failure or breach are not known. Unfortunately, Microréfom from non-malicious failures and deliberate compro-
boot functionality has so far been demonstrated only withises.
Java applications meeting a set of peculiar Crash-only arThe Rio File Cache work of Chen and others provides
chitectural requirements. This report describes a methwdhint as to how at least one of the odd requirements
of using Software Fault Isolation techniques to meet sormkcrash-only software might be achieved via retrofit in
of these architectural requirements in C programs, therébyacy C applications [5]—specifically, the requirement
taking a first step towards making Microreboot availabthat critical application state be stored in a manner that en
for retrofit in legacy C applications. ables it to survive application restarts. In Crash-only ap-
plications, this requirement is met by storing criticatsta
. in external transactional databases.
1 Introduction Using Software Fault Isolation (SFI) techniques [22],
Chen retrofitted a legacy Digital Unix kernel with the abil-
Candea and others have developed the notion igfto maintain the contents of its file cache across warm
Microreboot—a technique for restoring failed applicaeboots across warm reboots. What Candea achieved by
tions to a working state [4]. Microreboot works by restofercing crash-only applications to keep their state in ex-
ing part of a failed application to its initial state whilgernal transactional databases, Chen achieved (mainly) by
keeping the balance of the state as it was before the faising SFI to avoid the erasure or unintentional modifica-
ure. If failures persist after an initial Microreboot, théion of the file cache, even as the operating system was in
technigue can be applied repeatedly, resetting more dsdleath throes.
more applications state each time, until the applicatien re This report describes the results of a small effort to in-
sumes healthy operation. This technique has a numbestigate the use of Rio-File-Cache-like SFI retrofit tech-
of admirable features: it presents the possibility of Igsimiques in legacy C applications in order to maintain the
less valuable state than full reboots, and like full reboatentents of critical in-memory application data structure
it does not require knowledge of what actually caused theross software restarts. A software restart is the applica
failure. tion equivalent of an operating system warm reboot: the
Unfortunately, Candea’s original notion of Microrefailed application’s process does not terminate upon re-
boot can be applied only to applications based on eeiving a failure signal (SIGSEGV, SIGBUS, and so on).
unusual "crash-only” architecture [3]. Such software Igstead it catches the signal, unwinds its stack and jumps
made up of many small well-isolated components thiadick to the beginning of the program.
store their important state in external stable reposisorie The core of this effort is the experimental implemen-
such as transaction-oriented databases, communicateatsn of the Rio File Cache SFI technique in a small C
ing retryable requests, and manage resources sharing wjiplication. The primary result of this experiment is evi-
expirable leases. Although Candea’s experiments witld@ance indicating that the Rio File Cache SFI technique can
specially-constructed Java-based crash-only e-commenztieed be used to provide state preservation functionality
test application showed good results, the architectureegfuivalent to the Crash-only architecture’s use of exter-

nal transactional databases, but only when coupled with
additional functionality to ensure the consistency of the — ‘| other code : -1
preserved state in the presence of restarts that unexpect- : | write
edly catch the application in mid-update. In the course of ggg’d other data -
the experimental implementation, dealing with this con- jumps| -
sistency issue was at least an interesting as implementing L ;

SFI. Doing so lead to a secondary result: potential insights | cache code| | it
into the nature of “semantic integrity”—a topic of practi- : <WJ” €
cal interest to the implementors of run-time integrity mon- | cache dat ;

itors such as Copilot [20], Backdoors [1], and VMI [11].
The remainder of this report is organized as follows:) o)

section 2 describes the Crash-only architectural require- Figure 1: Rio File Cache fault domains

ments required to support Microreboot functionality in

greater detail, and states precisely which of these require

ments the experimental use of SFI is meant to meet &yuirements:

legacy C applications. Section 3 briefly summarizes the

Rio File Cache approach used as the basis for this ext. Applications must be composed of many small co-

periment. Section 4 describes the experimental imple- processes.

mentation of SFI in a simple C application. Section 5)

explains how this experimental implementation made the- CO-processes must communicate only through well-

need for an consistency-assuring mechanism in addition defined message-passing interfaces.

to SFI clear, and describes how a suitable solution wa

ultimately chosen from a set of alternatives. Section 6 de-"

scribes work related to this effort. Section 7 presents con4, All leases must be expirable.

clusions. Section 8 describes the potential insights into

semantic integrity resulting from dealing with state con-5. All _critical state must be stored in an external trans-

sistency issues in the experimental implementation and actional database.

outlines some avenues for future work.

All request messages must be retryable.

Given an application whose architecture meets these
Crash-only requirements, one can apply Microreboot by
resetting individual co-processes to their initial statee
above Crash-only requirements are designed to ensure
that co-processes can survive the temporary loss of their

The Microreboot work of Candea and others [4] OlemoB'eers and can resume cooperating with peers that have

strates a method of restoring individual unhealthy COMPQzan reset. For example, since all leases are expirable,

2 Microreboot

, since their

tional reboots, this technique is appealing because it G88se will expire and the lock will be taken from them au-

conceivably restore an application to health after a n%’matically

malicious failur_e or deliberate compromise, even in_caseqt would be useful to apply Microreboot to legacy C
where the precise cause of the failure or compromise % lications, if a means of retrofitting an existing appli-
not understood. A recovery sequence might begin tion to meet Crash-only requirements could be found.
restoring only a fevy components to a healthy state, aPflis report presents the results of an experiment to use
move on my re_stor!ng more and more components u IIl:I techniques in the manner of the Rio File Cache to
the overall apphcat_lon can once again operate normajyy,.iqe guarantees equivalent to the above external trans-
In the worst case in which all components must be rgz o, database requirement without actually relying on

set, Microreboot IS essentially equw_alentto traditioreal an external database. The Rio File Cache and its use of
boot. However, in cases where Microreboot OVercomes, is described in the next section

a failure by resetting only some of an application’s com-
ponents, Microreboot preserves the state of the balance of
the components—state which would have been needlegly The Rio File Cache
discarded in a traditional reboot.

Candea formulated his notion of Microreboot in th€hen and others [5] demonstrated the Rio File Cache in a
context of “Crash-only” Java applications [3]—that isnodified Digital UNIX kernel on the Digital Alpha plat-
software whose architecture meets the following peculif@arm. In a traditional Digital UNIX system, the contents

of the operating system’s buffer cache can be arbitrarily A:

modified (and consequently rendered useless) by a kernel Linked allocator (section 2.2.3 formulas 5 and 6)
that has experienced a failure and misbehaves in an un-top = NIL

expected way while crashing. The Rio File Cache uses avail=0

Software Fault Isolation [22] (SFI) to ensure that kernel pool[] = ' ' 9 '3 !
code outside of the buffer cache’s proper access functions

cannot modify the contents of the buffer cache, thereby [01 11 [21 [31
preserving the buffer cache’s contents during a crash. Fig-

ure 1 contains a highly-simplified diagram of the modified B:

Digital UNIX kernel. The modified kernelis splitintotwo Stack (section 2.2.3 formulas 8 and 9)
SFI “fault domains”: one containing the buffer cache, its top=1

metadata, and its access functions (shaded) and the otheravail = 2

containing the remainder of the kernel's code and data pool[] = | 0 3 |
(unshaded). The authors used SFI and static analysis to . ' ' '
argue that only cache code can write to cache data, and 101 11 121 [31

the non-cache code can call cache accessor functions only

in cases deemed proper by the authors. Figure 2: Knuth linked allocator and stack

Because the Digital UNIX buffer cache is never paged
and always resides in the same region of physical RAM,
itis possible for a new instance of the kernel to re-use the] The experimental application
contents of the buffer cache left by the previous instance
after reboot, provided that the contents were not ruing@tie experimental application implements the linked stack
during a crash, and that there is some means of makingafgorithm from Knuth [15], chosen as the first algorithm
kernel's state stored outside of the buffer cache congistenKnuth that required the preservation of data at two lev-
with the buffer cache’s contents. The authors use SFlefs of abstraction (in order to parallel the preservation of
ensure the integrity of the buffer cache itself, and stobeth data and metadata in the Rio File Cache.) This algo-
additional metadata along with the buffer cache to enabighm includes two parts: first, a linked allocator (Knuth
the new kernel instance to “synchronize” its state with tisection 2.2.3 formulas 5 and 6) and second, an application
buffer cache’s contents. stack that uses this linked allocator for dynamic memory
As described in section 2, this report describes the @dlocation (Knuth section 2.2.3 formulas 8 and 9). These
sults of an effort to use SFI in the manner of the Rio Fifata structures are diagrammed in figure 2.
Cache to preserve critical state that in a Crash-only ap-The linked allocator is shown in figure 2A. The linked
plication would be stored in an external database. Takocator is a heap management scheme similar to the C
experimental SFI implementation is described in the ndrary’s mal | oc function, with the exception that allo-
section. cated regions of memory are always the same size. To
implement thismal | oc-like functionality, the linked al-
locator uses a large array of constant-sized cells, labeled
))) pool [] in the diagram. Each cell has two parts divided
4 Experimental implementation by a dashed vertical line in the diagram. The left part
of each cell holds application data. The right part con-
This section describes the implementation of a experiméains either the index of another node in the array or the
tal C application that uses a simple but non-trivial dathstinguished value NIL (called Delta in Knuth). At pro-
structure, and the application of Rio File Cache-style Sgtam start, all pool cells are linked into a singly-linked
to it in order to preserve both the data structure’s data digil called the “available list”. A variable avail holds the
metadata across software restart. Software restart refegex of the first cell in the available list. The linked
to returning a program to some prior healthy state withoalocator has two accessor functional | ocat e and
actually terminating its process, perhaps by a combina€@! et e which allocated cells for application use by re-
of set j np andl ongj np calls in C. The primary goal moving them from the available list and return them to the
of this implementation is to provide a simple kind of exisavailable list for later reuse, respectively.
tence proof—one simple example of a C application thatThe stack is shown in the diagram in figure 2B. The
uses Rio File Cache-style SFI to preserve its critical statiack is implemented as a linked list that is similar to the
in the same way the use of a transactional database dm&slable list. The index of the cell at the top of the stack
in Crash-only software (Crash-only requirement 5 frois stored in the variableop, each cell contains the index
section 2). of the cell beneath it in the stack, or in the case of the

unmapped dyn link code SFI'd code allocator, stack

0x0000 0x1000 0x2000 0x3000

Figure 3: Experimental fault domains

cell at the bottom of the stack, NIL. The stack has the tvio@low.
traditional accessor functionsysh andpop that use the

linked allocator'sal | ocat e anddel et e functions to gp| initialization Table 1 shows the assembly code
manage memory. The diagram shows a stack with tW@qeq 1o the beginning of the experimental application’s
cells allocated, 1 on top and 0 on bottom. Two pool cell,ain function to set the reserved mask registet 7

2 and 3, remain unallocated. on line 11) and the reserved segment registdi8) on
line 12). TheOxOf f f mask is set to mask out the seg-
4.2 Fault domains ment number residing in the 4th byte of the addresses

shown in figure 2. The segment is setG®2000—the
Figure 3 contains a diagram of the fault domains chosenly proper segment number for branch and store instruc-
for SFI sandboxing in the experimental application. Th®ons residing in fault domain 2.
experimental application is a demand-paged MAC OS XThese registers are “reserved” only in the sense that
10.3 application and is three 4KB pages long. The dianly the sandboxing SFI uses them, as required by the
gram shows the three pages plus an additional “zero” palyahbe technique. However, the compiler was not in-
along with the lower two bytes of their addresses. Pageucted to avoid using them in application code. In-
0x0000 is left unmapped by the linker/loader so thattead, the application used so few of the architecture’s 32
dereferences of NUL pointers will, upon reaching this uigeneral-purpose registers that it was a simple matter to ex-
mapped page, fault. Pag&000 contains dynamic linker amine a disassembly of the experimental application and
code added by the compiler. Pa@e3000 contains the choose registers for the SFI code that the compiler had
linked allocator and stack portion of the application—th@mply not chosen to use for the application code.
portion to be protected from accidental modification dur-

ing Microreboot. Pag@x2000 (shaded in the diagram)g anch sandboxing Table 2 shows the assembly code

contains the remainder of the experimental applicatiggeq to sandbox branch instructions at the end of func-
code—the code which must be controlled with SFI. Thg,s in segment 2 code. The goal of this sandboxing is
SFlimplementation uses the 4th byte of the page addrgssnsyre that no code in segment 2 can branch to an-
(0,1,2,3) to identify fault domains. To maintain ConSigsiher fault domain. The assembly code accomplishes this
tency with the original Wahbe SFI terminology, the folseyention by taking the return address from the special
lowing description of the actual SFI implementation refeF_%gisterI r and placing it inr 16, the register reserved
to these numbers as “segment numbers” and fault domaifSsandhox calculations (line 22). The table code’s com-
as “segments”. Segment 2 is the segment to which $fknts describe an example where the return address in
will be applied, as described in the next subsection. | 15 is 0x00002294—an address that is legal but will
nevertheless be sandboxed. The assembly code proceeds
4.3 SFlimplementation Fo mask out the segment number on line 23, aqd replace
it with the segment number for segment 2 on line 24—
This subsection describes the application of Wahbéfgee same value that was there before, since the example
“sandboxing” SFI to segment 2 of the experimental apgescribes a well-behaved branch.
plication. Sandboxing SFI required the addition of three At this point the assembly code must deviate from
kinds of PowerPC assembly code to the existing appiite Wahbe technique by returning the sandboxed address
cation code: the initialization of reserved registers at thhack to the specidlr “link” register (line 25) and then
beginning of the main program, the sandboxing of branbhanches to the address lim (line 26). According to
(jump) statements to addresses stored in registers whtten Wahbe technique, the assembly code should have
returning from functions, and the sandboxing of storésanched to the address contained 6, allowing one
to addresses stored in registers. All assembly code wasnake the argument that all sandboxed branches use
added manually to the C source files using the inline ast6—a register used only by SFI code. However, al-
sembly support provided by the Mac OS X version of thtough the Alpha instruction set used by Wahbe appar-
GNU C compiler. Each of the three cases are describaatly contained an instruction causing a branch through

10
11
12

20
21
22
23
24
25
26

30
31
32
33
34
35
36
37

01
02
03
04
05
06
07
08
09
10
11
12
13

/* from main: dedicated sandboxing registers
r17, OxOfff /* r17 is mask register
rl8, 0x2000 /* r18 is segnent register

Table 1: Initializing sandbox registers

/* perform sandboxi ng SFI on return branch
/* r16, wahbe dedicated reg = return addr
nf spr rieé, Ir /* r16 = 0x00002294
and ri6, r16, rl7 /* rl6 = 0x00000294
or ri6é, r16, r18 /* rl16 = 0x00002294
nt spr lr, rl6 [* Ir =116
blr /* “*branch to Ir’’
Table 2: Sandboxing function return branch
li ri15, 0x42 /[* put "B into ril5
/* performwahbe sandboxi ng SFI on store
/* rl16, wahbe dedicated reg = store addr
/* r0 = store addr = 0x0000302b
and rié, r0, r17 /* rl16 = 0x0000002b
or ri6é, r16, r18 /* rl16 = 0x0000202b
stb ri5, 0x0(r 16) /* store to FD2 text
Table 3: Sandboxing stores through registers
Pool index: O 1 2 3 4 5 6 7
Avail able -> Z->7Z->7->7
or phans:
A< A< A< A <-

a) push data onto stack

b) pop data off of stack

c) munge stack, no SFI

d) munge stack, with SFI

e) reboot with good integrity

f) reboot with half push (stack |ink)

g) reboot with half push (avail I|ink)
h) reboot with half pop (stack Iink)
i) reboot with half pop (avail 1ink)

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/

St ack

Table 4: Demo program output with 4 nodes allocated on stack

a general-purpose register suchrd$, the PowerPC in- There is also th&l GBUS option which tests the experi-
struction set does not have such an instruction. Insteadnintal application’s SFI sandboxing functionality that, a
has only thebl r instruction to branch to the address idescribed in the previous section, results in the receipt of
the special-purpoder register used on line 26. This nea SI GBUS signal. In addition, there is an explidibot
cessity complicates the sandboxing argument—one maption to cause a Microreboot. Both tig GBUS and
argue that although the application code also usekitheboot squares in the control flow diagram lead back via
register, the SFI code always sets it properly—the sartthshed lines to thgood square—these dashed lines trace
boxing is still effective. the control flow of Microreboot.

Figure 4 shows the screen output of the experimental

. . application. The experimental application’s linked alec
Store sandboxing The assembly code in table 3 show, ool has eight cells. Output lines 1—4 form a diagram

the instructions added to sandbox stores. The asse fﬁe pool's state at the time the output was produced.

code’s comments show an illegal attempt to modifyabyﬁne 1 shows the pool cell indices. Line 2 shows the
in segment 3—the application stack’s segment that my

ﬁked allocator’s available list containing cells 4 th
be protected. Specifically, it attempts to writé B to g ghu

. . 7, with the data portion of each cell set't@’ . Line 4
byte0x0000302b, as shown on line 30. As in the aboV%hows the remaining cells allocated for the stack, with

branch case, the original store address is loaded ib® cell 3 being the top. Each stack cell’'s data portion is set to

and the the original 4th byte that indicates the segmery, . The remaining lines 4-13 list the various interactive
number is masked out (line 34). Line 36 replaces t Smmands available to the user

original 3 with a 2, causing the store byte instruction on

line 37 to modify location0x0000202b in segment 2

rather thar0x0000302b in segment 3. The location in5.2 Consistency issues

segment 2 happens to be read-only program text, and the

sandboxed store causes the OS to trap a memory acdé¥sexperimental application uses sandboxing SFI to pro-
error and send a SIGBUS signal to the experimental 3f}de t.he isolation required to enqble its application stacl_<
plication. The experimental application catches and ha#d linked allocator data to persist unharmed across Mi-

dles the signal, and it's application stack data and link€fPreboots. It does so to provide isolation and persis-
allocator data remain unharmed. tence equivalent to that provided by the use of external

transaction-oriented databases in Crash-only software (r
quirement 5 in section 2). While section 4 describes its ef-

5 Microreboot and consistency fecti_/eness in this regard, isolatiqn is npt the only featur
provided by the external transaction-oriented databases.

This section describes the experimental application’s Mi—The oither c_r|t|caldft(-:‘jaturbe IS consstencg—ﬁ;e e'\>/<lt-ernal
croreboot behavior, the state consistency probIemstri"fns"’mt'on'Or'e_nte ata ases e_nsgret at_| a Microre-
ot occurs while the application is in the middle of up-

raises, and solution strategies for these consistency prob.” = o .
ating its critical data structures, the data structurds wi

lems. be left in a consistent state. Although the experimental
application’s use of sandboxing SFI provides isolation, it
5.1 Microreboot control flow does not provide such consistency guarantees.
To illustrate this lack of a consistency guarantee, fig-
Figure 4 contains a diagram of the experimental applire 5 contains a sequence of diagrams of the experimental
cation’s control flow. It begins with the square markegpplication’s linked allocator pool and application stack

i ni t, where all of the its data structures are initializecl'.he diagrams show the state Changes that occur during a
This is where the linked allocator’s “available” list is ini push operation.

tialized to include all of the cells in the pool, and the appli

cation stack is set to be empty. Once initialization is comyiagram 0 shows the state of the pool and application
plete, the experimental application moves to the shaded stack before th@ush operation begins. This state

square markedood. This square represents the healthy s consistent: the stack contains cells 1 and 0, and
state to which Microreboot returns the experimental ap- the linked allocator’s available list contains cells 2

plication after a failure. Because the earlier initialiaat and 3. Because the pool and application stack are
is not repeated, the linked allocator and application stack in a consistent state, a Microreboot at this point will
state survives Microreboot. cause no consistency problems.

After the reaching thgood state, the experimental ap-
plication moves onthe theser i nput square, whereit Diagram 1 shows the state that results just after the be-
loops indefinitely handling usgrush andpop requests. ginning of thepush. Thepush function has called

‘ boot

user | —* | push

init [— [good|—> input pop

| SIG
Sttt BUS

Figure 4: Experimental program control flow diagram

[0] [1] [2] [‘

top ¥ y avail
0 pool[] = -~ —
top ¥ y avail
1 pool[] = -~ —
top ¥ y avail
5 pool[] = - -
top ¥ y avail
3 pool[] = -~ -~

Figure 5: Intermediate pool and stack states during pustatipe

the linked allocator'sal | ocat e function to allo- determine exactly what consistent state is. This question
cate a new cell for the stack. This new cell is shadbears on the secondary results of this work as described in
in the diagram. Theal | ocat e function has re- section 8.

moved the new cell from its available list, but the Table 5 shows the output of the experimental applica-
push function has not yet begun to initialize the newion as a Microreboot is manually initiated while the ap-
cell. If a Microreboot occurs with the pool and application stack is in migaus h—specifically, in the state
plication stack in this state, the experimental applitescribed by diagram 2 in figure 5. Lines 20-23 shows
cation will recover to find its pool and applicatiorthe linked allocator pool and application stack in a consis-
stack in an inconsistent state. As the diagram showsnt state. Line 33 shows the user input that initiates the
the new (shaded) cell is “orphaned”—it is neither iMicroreboot. Lines 34—38 shows the state of the linked al-
the stack’s list or the linked allocator’s available listiocator pool and application stack on Microreboot. Note
at cell 4 is orphaned—it is on neither the stack or avail-

Diagram 2 shows the state that results near the end of tw e lists

push. Thepush function has set the new (shade . . .
cell's link to point to the old top of the stack, but has Lines 39-45 show the operation of the experimental

not yet set its top pointer to the new cell. Asin thgpp“ﬁ_?]t.'o? S fstpk—lllkedlntegrrl]ty cr:jeckl;\g anddrethalr ﬁ";
previous diagram, a Microreboot at this point wiI['On‘ IS function finds orphaned nodes andreurns them

also result in an orphaned new cell. o the available list. Just as a tran_sactiqna! database en-
sures that the results of a transaction will either be com-
Diagram 3 shows the consistent state that results whptetely committed or not committed at all, the fsck-like
the push is complete. A Microreboot at this pointroutine ensures that the results of a push or pop will either
will cause no consistency problems. be entirely complete or not apparent at all.

. L) The experimental application’s fsck-like routine’s al-
Figure 5's diagram shows two states that resultlnap(b(grithm was constructed by a human analyst after a

_ceII b_emg orphaned on Microreboot. Each orphaned cill 5 examination of the experimental application’s
|s.ne|ther allocated nor freg. Over the course of magy | 5. at e, del et e, push, andpop functions. The
Microreboots, the entire _avallaple pool may be Orphan‘?ﬂethod used was as follows. First, the analyst constructed
and no morepush operations will be possible. the code shown in table 6 by taking the application stack
_There are a variety of strategies for dealing with CORjtions and inlining the linked allocator functions. $hi
sistency problems after Microreboot in legacy C applic@smpined version of the experimental application’s code
tions. Some are described below: made it easier for the analyst to visualize the instruction

transactions: One might add code to the application t§tream as it occurs sequentially over time. In the table, the
make all accesses to critical data transactional. Apked allocator’s inlined statements are double-indénte
though this addition might be accomplished usirf’ Iines.65—66 and 89-91. The remaining statements are
interposition [12, 10] of some kind, it is not hard tgPPlication stack code.

imagine cases where this solution would be a com-The analyst then performed an informal abstract exe-
plex, invasive, and difficult process. cution of thepush andpop functions using pencil and

paper, methodically imagining the states that would re-

just wait: One might simply cause Microreboots only afylt if execution was stopped by a Microreboot between
points in the application’s control flow where its criteach line. The result was a set of diagrams similar to
ical data structures are in a consistent state (suchygé simplified examples shown in figure 5. The analyst
diagrams 0 and 3 in figure 5. Although this strategyRPHAN AVAI L and ORPHAN.TOP macros at strategic
has the benefit of simplicity, there may be no guagoints in the code. These macros allow the user to cause
antee that a given application will ever reach such\gicroreboots at these points in the control flow, causing
consistent state after a failure that demands Microighecific kinds of inconsistencies to test the fsck-like func
boot. tion, as shown in the output contained in table 5.

fsck: One might apply a filesystem check “fsck-like” Haying constructed a list o.f aII_ the possible inconsis-
consistency check and repair on Microreboot. Lel&t linked allocator and application stack states, the an-
invasive than the transaction strategy, without the (@St then relied on intuition to determine that the key
bounded waiting concerns of the waiting strateggf? detectingconsistency problems was to find orphaned

this is the strategy implemented in the experimentapdes—thatis, node that were neither in the linked allo-
application. cator’s available list nor the application stack’s list. eTh

analyst then noted that it was impossible to distinguish
Note that all of these strategies require some kind loétween a cell orphaned by an incompletesh and one
analysis and understanding of the application’s code dmphaned by an incompleteop. Both came in two fla-

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Pool i ndex:

0

Avai l able ->

or phans:

f

a)
b)
c)
d)
e)
f)
9)
h)
i)

A <-

A <- A <-

A <- Stack

push data onto stack
pop data off of stack
munge stack, no
munge stack, with SFI

r eboot
r eboot
r eboot
r eboot
r eboot

wi th good
with hal f
with hal f
with hal f
with hal f

State on nicroreboot:

Pool i ndex:

0

Avai l able ->

or phans:

A <-

Integrity check:
or phaned node 4..

Pool i ndex:

0

Avai |l able ->

or phans:

a)
b)
c)
d)
e)
f)
g9)
h)
i)

A <-

1 2

A <- A <-

1 2

A <- A <-

SFI
integrity
push (stack |ink)
push (avail 1ink)
pop (stack Iink)
pop (avail Iink)

A <- Stack
returned to avail abl e pool

3 4 5 6 7
A->2->27->7Z7

A <- Stack

push data onto stack
pop data of f of stack
munge stack, no
munge stack, with SFI

r eboot
r eboot
r eboot
r eboot
r eboot

wi t h good
with hal f
with hal f
with hal f
with hal f

SFI
integrity
push (stack 1ink)
push (avail 1ink)
pop (stack Iink)
pop (avail Iink)

Table 5: Demo program output after consistency check ararep

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

voi d
stack_push(info_t y) {

index_ t p; [/* tenp pointer to new stack node */

p = avail;
avail = LINK(avail);

INFQ(p) =vy;
ORPHAN_AVAI L;
LINK(p) = top;
ORPHAN_TOP;

top = B;

} /* stack _push() */

info t
stack_pop(void) {

index_t p; /* tenp index of top stack node */
infot y; /* info (data) to return to caller */

LINK(p) = avail;

ORPHAN_AVAI L;

avail = p;
return vy;

} /* stack _pop() */

Table 6: Partial stack push and pop code with pool code idline

10

vors: one with a link to the available pool, and one withthe Crash-only requirements needed for Microreboot of
link to the stack. legacy C programs.
The analyst relied on his understanding of the applica-

_tion stack’s semantics to determine that the kesefmair- 6.2 Consistency specification

ing consistency problems was to return orphaned cells to

the available pool—essentially completing an incompleBeemsky and Rinard have developed a specification

pop, regardless of whether the interrupted operation wianguage for data structure definition and runtime con-

a push or pop. Mistaking an incompletpush for a straints, along with a program generator that outputs pro-

pop does lose thpush data, but it also returns the staclgrams containing extra code to automatically detect and

to the consistent state before thesh began. Mistak- repair their own data structures when they fail to meet the

ing an incomplet@op as apush, by comparison, would specified constraints [7]. This work places one level of

put the stack into a state that was never intended by #Higstraction on top of well-known historical work with the

application. 5ESS [14] and MVS [16] systems: in those systems, the

It would be desirable to automate the task of generatiimgonsistency detection and repair procedures were coded

fsck consistency problem detection and repair, if possibieanually. In this work, they are generated automatically

This issue is discussed in section 8. from manually-written specifications. In later work, Dem-
sky and Rinard explore static program analysis techniques
to determine whether or not a given set of consistency

6 Related Work constraints will result in a repair procedure that will al-
ways terminate [8].

Although the primary focus of this project was to demon-

strate the use of SFI to meet some of the Crash-only s@fentwich and others have also investigated techniques
ware requirements required to enable Microreboot, tBgnhilar to Demsky and Rinard [18]. They have devel-
consistency issues that arose arguably became the mgy€q xlinkit, a tool that detects inconsistencies between
interesting aspect of the work. These issues are descrigggriputed versions of collaboratively-developed docu-
in section 5. This section briefly summarizes some Wogkents structured in XML [2]. It does so based on consis-
related to the task of identifying and repairing consisfengency constraints written manually in a specification lan-
(integrity) problems in program state during runtime. g age based on first order logic and XPath [6] expres-
sions. These constraints deal with XML tags and val-
6.1 Recovery by restart ues, such as “every item in this container should h_ave a
unigue name value.” In later work [19], they describe a
Dunlap and others have demonstrated the use of virtool which analyzes these constraints and generates a set
tual machine monitors to recover compromised systewfgepair actions. Actions for the above example might in-
by “rolling programs back” to a previous healthy state [9¢lude deleting or renaming items with non-unique names.
In their “ReVirt” system, the virtual machine monitor proHuman intervention is required to prune dumb repair ac-
duces extensive logs of virtual host activity. It uses theens from the list, and to pick the most appropriate action
logs to analyze intrusions. It can also use these logsftom the list at repair time.
perform repair on individual processes by rolling back se-As explained in section 5, the consistency constraints
guences of events as a database might. ReVirt returnsaascribed in this report were derived manually (as in the
tire programs to a prior healthy state that actually existabove related work) but were not specified formally ex-
at some pointin history. Because the program had reacleegt through the entirely-manual coding of the fsck-like
that state before, one can argue that the state is necgssauiltine (in contrast to the above use of specification lan-
consistent. guages and program generators). In the future, it would
In contrast, Microreboot manufactures an artificidde helpful to have tools that automate at least part of the
healthy state in which some of a program’s state is reanstraint-derivation process, as described in section 8.
stored to a prior state and some is not. The consis-
tency problems in sectipn 5, fpr example, occur becaL@_es Runtime integrity monitors
the stack may be left in a mid-push state but the pro-
gram counter will be reset rather than restored to tMany authors have described external monitors that
corresponding midpoint of the push function. Consexamine the state of running programs for consistency
qguently, Microreboot can preserve more state, but mysbblems, including Livewire [11], Backdoors [21, 1],
deal with more consistency issues than ReVirt. ReVirt Gopilot [20], and the work of Grizzard and others on
directly applicable to systems running legacy C progranisshitehat rootkits” [13]. Some of these monitors are im-
while this report demonstrates how to meet only someglEmented as kernel processes, others in virtual machine

11

A: Healthy Linux or NT process table:

schedule: ()
list: ()

B: Linux or NT process table after DKOM attack:

schedule: ()

list: (N/)

Figure 6: Linux or NT process table before and after DKOMdckta

monitors, and still others on PCI add-on cards intendedtton 2)—that is, that jumps can’t be made from one do-
be installed in the system to be monitored. main to an arbitrary instruction in another. The use full
As arule, these monitors are capable of monitoring ande of SFI demands that a static analysis be performed on
perhaps even repairing the consistency of data structutesapplication to determine which cross-domain branches
that are involved in known popular attack vectors, b(talls) are legal. The use of sandboxing described in sec-
their coverage does not extend to all data structures offion 4 merely handles the cases that would be difficult to
terest. Tools to help automate the process of deriving camalyze statically— the static analysis is what provides
sistency constraints, such as those imagined in sectioth® most meaningful guarantees. Presumably, this static
would be of great help in expanding the coverage (aadalysis would ensure that a legacy C application pro-
consequently the effectiveness) of these runtime integntded a guarantee equivalent to the Crash-only mandate
monitors. for strong interfaces. However, this argument is largely
conjecture as no complete static analysis of the experi-
) mental application was attempted.
7 Conclusions Second, as described in section 4, the lack of a “branch
.))]] _ toan address stored in a general-purpose register” instruc
The primary result of this work is a kind of simple exisgon in the PowerPC architecture requires some adjust-
tence proof: The experimental application represents fhgnt 1o the SFI technique described by Wahbe and others.
successful application of SFI [22] techniques to i30|ateA€|‘though the static analysis is complicated somewhat, the
critical data structure intended for persistence across 'Y@chnique remains effective.
croreboot in a fashion similar to the Rio File Cache [S]. Finally, it must be noted that although the success of
The goal of this exercise was to show that Rio Filge experimental application shows that progress is pos-
Cache-style SFI might be used to give legacy C applipje, it by no means should be taken as an indication
cations _functlpnallty equivalent to the use of externg|yq applying this technique to a large poorly-documented
transaction-oriented database_s mandated for Crgsh-q@@acy C application would be in any way easy or easily-
software [3] (Crash-only requirement 5 from section 23;1omated. The static analysis might be particularly diffi-
As described in section 5, this meeting this goal requirgit, as it requires first deciding how to partition the appli
more than just SFI-provided isolation. It also required aglation into fault domains, and then deciding which cross-
ditional consistency-preserving functionality to mathl t yomain calls are legal and which are not. Both of these
integrity-preserving transactional features of the dasab (55ks might require considerable understanding of how
Although the experimental application is quite simplgye application works; such understanding may be diffi-

it does involve the preservation of both the state of an aQjit to come by, particularly where “legacy” applications
plication data structures (the stack) and its metadata (§}8 concerned.

linked allocator state). This coverage provides some hope
that the technique might be applicable to larger C applica-
tions, as well. 8 Future Work

There are also a number of secondary results: First, the
use of SFI might also enabled a legacy C application &ction 6 briefly introduced the notion of a runtime in-
meet the Crash-only requirement that cross-domain caélgrity monitor—a program or device that examines the
be made through strong interfaces (requirement 2 in setate of a running application or operating system ker-

12

nel for consistency problems and, in some cases, rephieshelpful to have tools that could automatically derive
them. Arguably, these devices work best when monitoriegnsistency constraints, perhaps after being given some
data structures that should rarely or never change durhigts by a human analyst. Failing that, it might also be
runtime. Examples of these largely-static data structutespful to have tools which could confirm or deny an intu-
are numerous: in kernels they include jump tables suchitage guess at a constraint made by a human analyst work-
system call vectors and interrupt descriptor tables—batty in haste from an imperfect understanding of the ap-
historically popular targets for malicious tampering. plication in question. Although such tools may ultimately

However, recent more-sophisticated attacks have bed@unobtainable, these topics seem deserving of future ex-
to focus their tampering efforts on more-dynamic dagdoration.
structures which are arguably harder for runtime execu-This discussion leaves a number of open questions:
tion monitors to effectively examine and repair. Perhap®es the manual creation of the fsck routine for the ex-
the best example of these “Direct Kernel Object Manipperimental application described in subsection 5.2 pevid
lation” (DKOM) attacks concerns the process table. Figny insight into the problem of expressing consistency
ure 6A shows a conceptual diagram of the process tab@straints for constantly-changing data structuresi?els t
of a Linux or Windows (NT) kernel. As shown in the difsck routine itself akin to a formal description of such
agram, the table actually takes the form of a set of nodesonstraint? Are all in-memory data structures simple
tied together in two circular linked lists. One circulatt lisfilesystems in need of an fsck routine? Subsection 5.2's
is traversed by the scheduler while choosing processestanual constraint-discovery method involved imagining
run. The other circular list is traversed by the proceg$ie insertion of Microreboots between each step in the
listing code which produces output for the GNU/Linux peritical data structure’s access routines. This approach
command or the Windows Task List. seems similar to the more formal method of Myers and

Figure 6B shows one common tampering strategy udeilers [17] to reason about their notion of Robust Declas-
by attackers who wish to hide a process from legitimag#ication, where they modeled the ability of an attacker
administrators is to remove their process (shown shad&@irhange a running program’s state by allowing the in-
from the process-listing circular linked list while leagiit ~ sertion of arbitrary new program statements between the
in the scheduler’s circular linked list. Because the precegxisting ones. Can something like the Myers method be
remains in the scheduler’s circular linked list, the schedsed to formalize reasoning about consistency issues?
uler still allows it to run. But because it is no longer in the
process-listing circular linked list, it does not appear iﬁ{ f
process listing output visible to legitimate administrato ererences

After some manual examination of the diagrams in fig-
ure 6, one might reasonably and correctly conclude thclal:tL]
“each process’s entry must be included in both circular
linked lists” is a useful consistency constraint in this sit
uation. However, one must note that a run-time integrity
monitor may see only snapshots of the state of the process
table during run-time. Because the state of the process] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and
ble is changing continuously, such snapshots may portray E. Maler. Extensible Markup Language. Recom-
states that violate this consistency constraint for nomeas mendation REC-xml-20001006, World Wide Web
other than the kernel happened to be adding or removing Consortium, October 2000.

a process at the moment the snapshot was taken.

The fact that harmless but inconsistent states may 8] G- Candea and A. Fox. Crash-only software. In
visible to an external monitor raises some of the same con- Proceedings of the 9th USENIX Workshop on Hot
sistency issues discussed in section 5. Just as it would be TOPiCs in Operating Systerrigay 2003.
helpful to have a tool which helps to determine both thiA']
consistent and all of the intermediate inconsistent states
of a given data structure for the sake of fsck-writing, it
would also be helpful to have such a tool for the sake of
writing monitoring code that can make sense of arbitrary
shapshots.

Section 6's discussion of related work noted multiplg5] Peter M. Chen, Wee Teck Ng, Subhachandra Chan-
explorations of systems where human analyst manually dra, Christopher Aycock, Gurushankar Rajamani,
derive consistency constraints and then use automated and David Lowell. The Rio File Cache: Surviving
tools to generate fsck-like code from them. It would also ~ Operating System Crashes.Rroceedings of the 7th

Aniruddha Bohra, lulian Neamtiu, Pascal Gallard,
Florin Sultan, and Liviu Iftode. Remote Repair of
Operating System State Using Backdoors.Pho-
ceedings of The International Conference on Auto-
nomic Computing (ICAC-04May 2004.

George Candea, Shinichi Kawamoto, Yuichi Fujiki,
Greg Friedman, and Armando Fox. Microreboot - A
Technique for Cheap Recovery. Rroceedings of
the 6th USENIX Symposium on Operating Systems
Design and Implementatippecember 2004.

13

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

ACM Conference on Architectural Support for Profl5]
gramming Languages and Operating Systems (ASP-
LOS VII), October 1996.

J. Clark and S. Derose. XML Path Languagg6]
(XPath) Version 1.0. Recommendation REC-xpath-
19991116, World Wide Web Consortium, November
1999.

B. Demsky and M. Rinard. Automatic Detection angf] 7]
Repair of Errors and Data StructureBroceedings

of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages,
and applications38(11), October 2003. 18
Brian Demsky and Martin Rinard. Static Speci[:
fication Analysis for Termination of Specification-
Based Data Structure Repair. Proceedings of the
14th International Symposium on Software Reliabil-
ity Engineering November 2003. [19]

George W. Dunlap, Samuel T. King, Sukru Cinar,
Murtaza A. Basrai, and Peter M. Chen. ReVirt: En-
abling Intrusion Analysis Through Virtual-Machine
Logging and Replay. IRroceedings of the 5th Sym{20]
posium on Operating Systems Design and Imple-
mentation December 2002.

Timothy Fraser, Lee Badger, and Mark Feldman.
Hardening COTS Software with Generic Software
Wrappers. IrProceedings of the 1999 IEEE Sympd21]
sium on Security and Privacpages 2—16, Berkeley,
California, May 1999.

Tal Garfinkel and Mendel Rosenblum. A Virtual
Machine Introspection Based Architecture for In-
trusion Detection. IrProceedings of the 10th An{22]
nual ISOC Network and Distributed System Security
SymposiunFebruary 2003.

Douglas P. Ghormley, David Petrou, Steven H. Ro-
drigues, and Thomas E. Anderson. SLIC: An Exten-
sibility System for Commodity Operating Systems.
In Proceedings of the USENIX 1998 Annual Techni-
cal ConferenceNew Orleans, Louisiana, June 1998.

Julian B. Grizzard, John G. Levine, and Henry L.
Owen. Re-establishing Trust in Compromised Sys-
tems: Recovering from Rootkits That Trojan the
System Call Table. IrProceedings of European
Symposium on Research in Computer Security (ES-
ORICS) pages 369-384, Sophia Antipolis, France,
September 2004.

G. Haugk, F. Lax, R. Royer, , and J. Williams. The
5ESS switching system: Maintenance capabilities.
AT&T Technical Journal64(6 part 2):1385 — 1416,
July-August 1985.

14

Donald E. Knuth. The Art of Computer
Programming—Volume 1/Fundamental Algorithms
Addison-Wesley, 1968.

Samiha Mourad and Dorothy Andrews. On the relia-
bility of the IBM MVS/XA operating systemIEEE
Transactions on Software Engineerjrig(10):1135

— 1139, October 1987.

Andrew C. Myers, Andrei Sabelfeld, and Steve
Zdancewic. Enforcing Robust Declassification. In
Proceedings of the 17th IEEE Computer Security
Foundations Workshqppages 172-186, June 2004.

C. Nentwich, L. Capra, W. Emmerich, and
A. Finkelstein. xlinkit: a Consistency Checking and
Smart Link Generation ServiclACM Transactions
on Internet Technology(2):151 — 185, May 2002.

C. Nentwich, W. Emmerich, and A. Finkelstein.
Consistency management with repair actions. In
Proceedings fo the 25th International Conference on
Software EngineeringMay 2003.

Nick L. Petroni Jr., Timothy Fraser, Jesus Molina,
and William A. Arbaugh. Copilot — a Coprocessor-
based Kernel Run-time Integrity Monitor. IRro-
ceedings of the 13th USENIX Security Symposium
August 2004.

F. Sultan, A. Bohra, P. Gallard, I. Neamtiu, S. Smal-
done, Y. Pan, and L. Iftode. Nonintrusive Remote
Healing Using Backdoors. IRroceedings of the 1st
Workshop on Algorithms and Architectures for Self-
Managing Systemsgune 2003.

Robert Wahbe, Steven Lucco, Thomas E. Anderson,
and Susan L. Graham. Efficient Software-Based
Fault Isolation. ACM SIGOPS Operating Systems
Review 27(5), December 1993.

