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Abstract

Clustering is a standard approach for achieving efficient and scalable performance

in wireless sensor networks. Clustering algorithms are mostly heuristic in nature and

aim at generating the minimum number of disjoint clusters. In this report, we formu-

late the overlapping multi-hop clustering problem as an extension to the k-dominating

set problem. Then we propose a fast, randomized, distributed multi-hop clustering

algorithm (OK) for organizing the sensors in a wireless sensor network into over-

lapping clusters with the goal of minimizing the overall communication overhead,

and processing complexity. OK assumes a quasi-stationary network where nodes are

location-unaware and have equal significance. No synchronization is needed between

nodes. OK is scalable; the clustering formation terminates in a constant time regard-

less of the network topology or size. The protocol incurs low overhead in terms of

processing cycles and messages exchanged. We analyze the effect of different param-

eters (e.g. node density, network connectivity) on the performance of the clustering

algorithm in terms of communication overhead, node coverage, and average cluster

size. The results show that although we have overlapped clusters, the OK clustering

algorithm still produces approximately equal-sized clusters.

Keywords: multi-hop clustering, k-dominating set, weakly connected dominating set,

scalability, ad-hoc networks, wireless sensor networks, algorithms.

1 Introduction

In recent years, wireless ad-hoc sensor networks have attracted much interest in the wire-

less research community as a fundamentally new tool for a wide range of monitoring and

data-gathering applications. In general sensor networks classify as ad-hoc networks, how-

ever, sensor networks have their own unique features. Sensor networks typically consist of

hundreds to thousands of unattended sensor nodes randomly spread over the area that is to

be probed. In a typical architecture of a sensor network, the data collected by each sen-

sor is communicated through the network, using a radio, to a single processing command

center that uses all reported data to determine characteristics of the environment or detect

4



an event. Sensor nodes are significantly constrained in the amount of available resources

such as energy, storage and computational capacity. Due to energy constraints, a sensor can

communicate directly only with other sensors that are within a small distance. To enable

communication between sensors not within each other’s communication range, the sensors

form a multi-hop communication network. Sensor nodes are usually assumed to be static.

These constraints make the design and operation of sensor networks considerably different

from contemporary ad-hoc networks.

Clustering is a standard approach for achieving efficient and scalable performance

in wireless sensor networks. Clustering facilitates the distribution of control over the net-

work and, hence, enables locality of communication. Clustering nodes into groups saves

energy and reduces network contention because nodes communicate their data over shorter

distances to their respective clusterheads. The clusterheads forward the aggregated infor-

mation to the base station. Only the clusterheads need to communicate far distances to

the base station; this burden can be alleviated further by hierarchical clustering, i.e., by

applying clustering recursively over the clusterheads of a lower level.

Many clustering protocols have been investigated as either standalone protocols [6,

33, 8, 10, 31, 49, 9, 21, 4, 26, 47, 7, 5, 60, 39, 32] or as a side effect of other protocol

operations, e.g., in the context of routing protocols [44, 48, 39], or in topology management

protocols [58, 22, 18]. The majority of those protocols construct clusters where every node

in the network is no more than 1 hop away from a cluster head [6, 33, 10, 8, 31, 60, 32, 39].

We call these single hop (1-hop) clusters. In large networks this approach may generate

a large number of cluster heads and eventually lead to the same problem as if there is no

clustering. Few papers have addressed the problem of multi-hop (k-hop) clustering [5, 7].

These algorithms are mostly heuristic in nature and aim at generating the minimum number

of disjoint clusters such that any node in any cluster is at most k hops away from only one

cluster head. The proposed OK clustering algorithm belongs to the multi-hop category.

In the last few years, there have been few clustering algorithms designed for sensor

networks [60, 7, 39, 32, 37, 35]. Most of those algorithms aim at generating the minimum

number of disjoint clusters that maximize the network lifetime. The algorithms discussed

in [39, 60, 7] are randomized where the sensors elect themselves as cluster heads with some
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probability p and broadcast their decisions to neighbor nodes. The remaining sensors join

the cluster of the cluster head that requires minimum communication energy. The proposed

OK clustering protocol belongs to the class of randomized algorithms. Both the HEED

algorithm [60] and LEACH algorithm [39] form single-hop non-overlapping clusters with

the objective of prolonging network lifetime. In [7], the authors proposed a LEACH-like

randomized multi-hop clustering algorithm for organizing the sensors in a hierarchy of

clusters with an objective of minimizing the energy spent in communicating the information

to the processing center. None of the above algorithms construct overlapping clusters.

In this report, we propose a fast, randomized, distributed multi-hop clustering algo-

rithm (OK) for organizing the sensors in a wireless sensor network in overlapping clusters.

After the termination of the clustering process, each node is either a cluster head or within

k hops from at least one cluster head, where k (cluster radius) is a parameter in the al-

gorithm. To the best of our knowledge, this is the first paper to discuss the problem of

overlapping multi-hop clustering. OK operates in quasi-stationary networks where nodes

are location-unaware and have equal significance. The protocol incurs low overhead in

terms of processing cycles and messages exchanged. OK was designed with the following

goals:

1. Is completely distributed (i.e. each node independently makes its decisions based on

local information and without any centralized control).

2. Is scalable in terms of processing time (i.e. the clustering process terminates in a

constant time independent of network size) and in terms of communication overhead

(the number of control messages transmitted by node is independent of network size).

3. Does not make any assumptions about the location of the nodes.

4. Is asynchronous (Due to the large number of nodes involved, it is desirable to let the

nodes operate asynchronously. OK does not assume any kind of clock synchroniza-

tion between nodes, hence, The clock synchronization overhead is avoided, providing

additional processing savings).
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5. Is energy efficient in terms of processing complexity and message exchange (control

overhead is linear in the number of nodes).

6. Is efficient in terms of memory used by the data structures required to implement the

algorithm.

7. Chooses cluster heads that are well distributed over the sensor field.

8. Allows multi-hop clusters to be formed.

9. Ensures overlapped clusters with some average overlapping degree.

To the best of our knowledge, the proposed algorithm is the first algorithm to address

the above goals in an integrated manner. We formulate the overlapping k-hop clustering

problem as an extension to the k-dominating set problem [38]. Then we propose OK, a

randomized multi-hop distributed algorithm to solve the problem. The nodes randomly

elect themselves as cluster heads with some probability p. The cluster head probability (p)

is another parameter in the algorithm that can be tuned to control the number of overlapping

clusters in the network. The clustering process terminates in O(1) iterations, independent

of the network diameter. It does not depend on the network topology or size. We also

analyze the effect of different parameters (e.g. node density, network connectivity) on

the performance of the clustering algorithm in terms of communication overhead, node

coverage, and average cluster size. The results show that although we have overlapped

clusters, the OK clustering algorithm still produces approximately equal-sized clusters,

which is a desirable property because it enables an even distribution of control between

cluster head nodes.

The paper is organized as follows. In the remainder of this section we go through

some of the applications of the proposed algorithm. Section II describes the network model

and states the problem that we address in this work. Section III presents the OK protocol

architecture and proves that it satisfies its design goals. Section IV shows the performance

of OK via simulations and in section V, we provide analytical models for the results. We

study the complexity and correctness of the proposed protocol in section VI. Then, sec-
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tion VII briefly surveys related work. Finally, Section VIII gives concluding remarks and

suggestions for future work.

1.1 Applications of the OK Clustering Algorithm

Most of clustering algorithms have a primary goal of producing approximately equal-sized

non-overlapping clusters. Equal-sized clusters is a desirable property because it enables an

even distribution of control (e.g., data processing, aggregation, storage load) over cluster

heads; no cluster head is overburdened or under-utilized. However, having overlapping

clusters with some degree is desirable and beneficial in some applications (e.g. node local-

ization [62, 61, 53, 43], routing [45], TDMA-based MAC [57]). The nodes that belong to

two or more clusters can serve as gateways for inter-cluster head communication when the

cluster heads do not have long range communication capabilities.

Overlapped clusters can boost the network robustness against node failure or compro-

mise. Given the resource constraints, sensor nodes become dysfunctional rather fast when

they deplete all their on-board energy supply. In addition, sensors are often deployed in

harsh environments and thus exposed to damage. Moreover, sensor networks usually oper-

ate unattended making the nodes an easy target for capture by an adversary. While the loss

of a sensor node can be tolerated given the large node population, recovering from the fail-

ure or the compromise of a cluster-head is a challenge. Pursuing contemporary clustering

schemes often requires provisioning for recovery through the deployment/designation of a

spare cluster-head, which causes resource underutilization, or through performing network

re-initialization to form new clusters, which is a slow and disruptive process. Establishing

overlapped clusters would facilitate and expedite the recovery process since nodes can join

others alternate clusters.

Another application for overlapping clusters is anchor-free localization. Recently,

there has been a great interest in anchor-free (GPS-free) node localization especially in the

context of sensor networks [62, 61, 17, 54, 53, 43]. Anchor-free localization algorithms try

to compute nodes’ positions without the use of anchor nodes (i.e. nodes that know their

positions usually using GPS). In this case, instead of computing absolute node positions,
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the algorithm estimates relative positioning, in which the coordinate system is established

by a reference group of nodes [62, 17, 54, 53]. The network is divided into small clusters of

nodes where each cluster has its own coordinate system. Then the cluster heads communi-

cate with each other in order to calculate the global network topology by transforming from

one coordinate system to another. In order for two cluster heads to perform this transfor-

mation, there must be at least three boundary nodes1 (i.e. the two clusters are overlapping

with degree at least 3). The proposed OK algorithm can be used in this case to guarantee

with high probability that the clusters have an overlapping degree of at least three.

Overlapping clusters can also be used in case of cluster-based routing protocols [20,

45, 30]. For example, the authors in [45] developed a routing protocol that uses a single

boundary node in order to route between overlapping clusters (in this case the overlapping

degree is 1). Although they used only one boundary node to simplify the clustering algo-

rithm, they recommended using multiple boundary nodes. Using multiple boundary nodes

will be more robust and also distribute packet-forwarding load between clusters. Their

algorithms can be extended easily to benefit from overlapping clusters as generated by OK.

2 Problem Formulation

An ad-hoc network can be modeled as a graph G = (V,E), where two nodes are connected

by an edge if they can communicate with each other. If all nodes are located in the plane

and have the same transmission range (Tr), then G is called a unit disk graph. We will start

by describing the considered system model. Then, we will review a number of definitions

from graph theory that will be used in the problem formulation. Finally, we will formulate

the overlapping k-hop clustering problem as an extension to the k-dominating set problem.

2.1 System Model

We consider a wireless sensor network where all nodes are alike and each node has a

unique id. The nodes are location-unaware, i.e. not equipped with GPS. There are neither

base stations nor infrastructure support to coordinate the activities of subsets of nodes.
1A boundary node is a node that belongs to more than one cluster.
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Therefore, all the nodes have to collectively make decisions. We assume that the nodes

are static. This assumption about node mobility is typical for sensor networks. All sensors

transmit at the same power level and hence have the same transmission range (Tr). Each

sensor uses 1 unit of energy to transmit or receive 1 unit of data. We also assume that nodes

have timers, but we do not require time synchronization across the nodes. Timers are used

for tasks such as timing out of a node when waiting on a condition.

All communication is over a single shared wireless channel. A wireless link can be

established between a pair of nodes only if they are within wireless range of each other. The

OK algorithm only considers bidirectional links. It is assumed the MAC layer will mask

unidirectional links and pass bidirectional links to OK. Two nodes that have a wireless

link will, henceforth, be said to be 1-hop away from each other. They are also said to be

immediate neighbors. Nodes can identify neighbors using beacons.

2.2 Definitions

Let n denote the number of vertices (nodes) and e denote the number of edges. That is,

n = |V | and e = |E|. Let S be a subset of nodes. We shall use 〈S〉 to denote the subgraph

induced by the set S.

• Open Neighbor Set, N(u) = {v|(u, v) ∈ E}, is the set of vertices that are neighbors

of u. For a set of nodes S, N(S) =
⋃

u∈S N(u).

• Closed Neighbor Set, N [u] = N(u) ∪ {u}, is the set of neighbors of u and u itself.

For a set of nodes S, N [S] =
⋃

u∈S N [u] = N(S) ∪ S.

• Node Degree, deg(u) = |N(u)|.

• Graph Distance, dG(u, v), the distance between two vertices u and v is the minimum

number of edges in a u − v path.

• Graph Power, the kth power of a graph G (Gk) is a graph with the same set of vertices

as G and an edge between two vertices iff there is a path of length at most k between

them [55]. Given G = (V,E) then Gk = (V,Ek) where Ek = {(u, v)| u, v ∈
V and dG(u, v) ≤ k.
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• Independent Set, is a subset of V such that no two vertices within the set are adjacent

in V .

• Maximal Independent Set (MIS), is an independent set such that adding any vertex

not in the set breaks the independence property of the set. Thus, any vertex outside

of the maximal independent set must be adjacent to some vertex in the set. Finding

the MIS is NP-Hard [34].

• Dominating Set, S, is defined as a subset of V such that each vertex in V − S is

adjacent to at least one vertex in S. Thus, every MIS is a dominating set. However,

since vertices in a dominating set may be adjacent to each other, not every dominating

set is an MIS. Finding a minimum-sized dominating set or MDS is NP-Hard [34].

• Minimum Dominating Set (MDS) is the dominating set with minimum cardinality.

Each MIS is also an MDS. Finding the MDS is also NP-Hard [34].

• Connected Dominating Set (CDS), S, is a dominating set of G that induces a con-

nected subgraph of G (i.e. 〈S〉 is connected). One approach to constructing a CDS is

to find an MIS, and then add additional vertices as needed to connect the vertices in

the MIS.

• Minimum Connected Dominating Set (MCDS) is a CDS with minimum cardinality.

Finding the MCDS is also NP-Hard [34].

• Weakly Connected Dominated Set (WCDS), S, is a dominating set such that N [S]

induces a connected subgraph of G (i.e. 〈N [S]〉 is connected). Given a connected

graph G, all of the dominating sets of G are weakly connected. Computing a mini-

mum WCDS is NP-Hard [34].

• Total Dominating Set, S, is a total dominating set if every vertex u ∈ V is adjacent

to a vertex in S. In this context a vertex does not dominate itself. Equivalently,
⋃

s∈S N(s) = V .

The above definitions can be generalized for the multi-hop (k-hop) case as follows:
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• k-Connected Set, S, a set S is said to be k connected if each vertex in S is within

distance k from at least one other vertex in S, where k ≥ 1 is an integer.

• Open k-Neighbor Set, Nk(u) = {v|dG(u, v) ≤ k}, is the set of vertices, differ-

ent from u, that are at distance at most k from u. For a set of nodes S, Nk(S) =
⋃

u∈S Nk(u).

• Closed k-Neighbor Set, Nk[u] = Nk(u) ∪ {u}, is the set of k-neighbors of u and u

itself. If u is a cluster head, then Nk[u] is the set of all vertices in the cluster and

|Nk[u]| is the cluster size. For a set of nodes S, Nk[S] =
⋃

u∈S Nk[u] = Nk(S) ∪ S.

• Node k-Degree, degk(u) = |Nk(u)|.

• k-Independent Set (KIS), S, is a subset of V such that for any two vertices u, v ∈ S,

dG(u, v) > k.

• k-Dominating Set (KDS) OR Distance Domination, S, is defined as a subset of V

such that each vertex in V − S is within distance k from at least one vertex in S,

where k > 1 is an integer. That is Nk[S] = V .

• k-Connected Dominating Set (KCDS), S, is a k-dominating set of G that induces a

connected subgraph of G (i.e. 〈S〉 is connected).

• k-Weakly Connected Dominating Set (KWCDS), S, is a k-dominating set of G and

S is a 2k connected set (i.e. each vertex in S is within distance 2k from at least one

other vertex in S, where k > 1 is an integer).

• Total k-Dominating Set OR Total Distance Domination, Let k > 1 be an integer, a

set S is a total k-dominating set if every vertex u ∈ V is within distance k from at

least one vertex in S other than itself (i.e. a vertex does not k-dominate itself).

• k-Independent Dominating Set (KIDS), is a subset of V that is both k-independent

and k-dominating.

To clarify the above definitions, we will use the graph in Fig. 1 as an illustrative

example. For the graph shown, S1 = {A,G} is a 2-dominating set (2DS) and it is also
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Figure 1: Illustrative Example

a 2-independent set (2IS); hence; S1 is a 2-independent-dominating set (2IDS). The set

S2 = {C,D,E,G} a 2-connected-dominating set (2CDS). The set is S3 = {C,G} is a 2-

weakly-connected-dominating set (2WCDS). The set S4 = {C,E,H} a total 2-dominating

set.

2.3 The Overlapped K-hop (OK) Clustering Problem

Given an ad-hoc network that is modelled as a unit disk graph G = (V , E), the OK clustering

problem can be formulated as finding the set of nodes S such that:

1. Coverage Condition. S is a KDS. This means that each node is either a cluster head

or within k hops from a cluster head (i.e. Nk[S] = V ).

2. Overlapping Condition. For each node u ∈ S∃ at least one node v ∈ S such that

Nk[u] ∩ Nk[v] ≥ ω, where ω is a certain threshold. In other worlds, for each cluster,

there exists at least one other cluster that overlaps with it with overlapping degree

≥ ω.

3. Connectivity Condition. S is k-Weakly Connected Dominating Set (KWCDS). This

means that S is a 2k connected set (i.e. each node in S is within distance 2k from

at least one other node in S, where k > 1 is an integer). This condition guarantees

that the graph induced by the set of cluster heads is 2k connected which implies that

for each cluster head node u, there is at least one other cluster head node v such that

dG(u, v) ≤ 2k; hence; the two clusters are overlapped with degree ≥ 1.

Finding the minimum KDS (MKDS) is a nice design goal to achieve. Minimizing the car-

dinality of the computed KDS can help to decrease the control overhead since broadcasting
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for route discovery and topology update is restricted to a small subset of nodes. There-

fore the broadcast storm problem [59] inherent to global flooding can be greatly decreased.

However, from a computational point of view, the problem of finding the minimum KDS

(MKDS) is very difficult. In fact there is no known efficient centralized algorithm for solv-

ing this problem and a corresponding decision problem is NP-hard [38]. Even if the graph

G belongs to certain special classes of graphs (for example if G is bipartite or chordal

graph), the problem remains NP-hard [13]. The MKDS remains also NP-hard for unit-disk

graphs as the case in wireless ad-hoc networks. Further aspects of the commutability of

MKDS are discussed in [38, 19].

In [41], the authors described a centralized algorithm that finds a KDS of cardinality

at most n/(k+1). The algorithm firsts creates a rooted spanning tree from the original net-

work topology. Then, an iterative labeling strategy is used to classify the nodes in the tree

to be either dominator (cluster head) or dominated (non-cluster head). In [40], the authors

described another centralized algorithm for finding the total KDS such that the cardinal-

ity is bounded by 2n/(2k+1). Since both algorithms are centralized, the communication

overhead is high in case of large-scale networks like sensor networks. There is no known

efficient distributed algorithm for finding the MKDS with some performance bound. For

example, the MaxMin heuristic [5] finds a KDS, however, there is no reported performance

bound on the cardinality of the resulting KDS. Similarly, in [7] the objective is to find a

KDS that minimize energy consumption and maximize network lifetime.

A related problem that has been widely investigated in the context of wireless net-

works is the problem of finding the minimum connected dominating set (MCDS). The

MCDS problem can be viewed as a special case of MKDS problem when k =1. The

MCDS is NP-hard for general graphs and for unit-disk graphs in particular [28]. Although

there are many applications for CDS in wireless networks [12], the primary application

of CDS is the construction of virtual backbone (spine) in wireless ad hoc networks. In

the last decade, many CDS construction algorithms have been proposed in the context of

MANETs and sensor networks. These algorithms are either centralized [14, 15, 24, 36]

or distributed [3, 1, 2, 23, 25, 16, 56]. The centralized approaches seek a minimum con-

nected dominating set (MCDS) as their major design goal. Thus performance bounds are
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their primary design parameter. However, centralized algorithms have high communication

overhead and time complexity. On the other hand, distributed algorithms seek a connected

dominating set (not necessarily the minimum) that provides a good resource conservation

property. Thus performance bound is not their primary consideration. Instead, time com-

plexity (specially when nodes are mobile) and message complexity is taken into consider-

ation. Distributed algorithms have a time complexity of O(n) and a message complexity of

O(nlogn) [1, 25] or O(n) [2, 16]. This quicker execution time comes at a cost of a larger

CDS. A more detailed analysis of the performance of those algorithms is discussed at [12].

Any of the distributed heuristics for finding a CDS can be modified to find a KDS.

In this case, we need to construct a k-closure (a graph power of order k) on the original

connectivity network graph before running any of the heuristics. Recall from section 3.2

that the kth power of the graph yields a modified graph in which nodes A and B are 1-hop

neighbors if they were at most k-hops away in the actual topology graph. When any of the

distributed CDS heuristics are run on this modified graph, they form clusters where each

node is at most k wireless hops away from its cluster head. Constructing the kth power of

a graph is O(kn3), where n is the number of vertices in the graph [55]. Even if we used

Strassen’s algorithm for matrix multiplication [29], the best performance in terms of float-

ing point operations is O(kn2.807). For sensor networks, this is considered very expensive

not in terms of communication overhead only but also the Strassen’s algorithm is difficult

to implement efficiently because of the data structures required to maintain the array par-

titions [29, 42]. Moreover, we are still generating non-overlapping clusters! Modifying an

existing distributed CDS algorithm, to generate a KDS in a distributed randomized fashion,

is a challenging problem in itself. We leave this as a future work.

The problem of overlapping clusters is totally new. There was no formulation of the

problem in the literature. So there is no known algorithm that satisfies the two conditions

described at the beginning of this section. The proposed OK clustering algorithm is a

distributed simple randomized algorithm that meets the above two conditions with high

probability. The main design goal behind the proposed algorithm is not to find the minimum

KDS. Thus performance bound is not the primary consideration. Instead, we are more

concerned about time complexity, processing complexity, and message complexity. We
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will show that by tuning some of the protocol parameters (k, p, node density), we can

generate with high probability overlapping clusters with some average overlapping degree.

OK is scalable; the clustering formation terminates in a constant time O(k) regardless of

the network topology or size. The protocol incurs low overhead in terms of processing

cycles and messages exchanged. OK assumes a quasi-stationary networks where nodes

are location-unaware and have equal significance. No synchronization is needed between

nodes. In general, OK will produce a an overlapping KDS with the goal of minimizing the

overall communication overhead, and processing complexity. We will discuss in the results

section how we can tune the parameters of the algorithm to guarantee a weakly connected

KDS (KWCDS) with high probability.

3 The OK Protocol Architecture

In this section we describe the operations of the OK protocol in more detail. The essential

operation in any clustering protocol is to select a set of cluster heads among the nodes in the

network, and cluster the rest of the nodes with these heads. OK does this in a distributed

fashion, where nodes make autonomous decisions without any centralized control. The

algorithm initially assumes that each sensor in the network becomes a cluster head (CH)

with probability p. Each cluster head then advertises itself as a cluster head to the sensors

within its radio range. This advertisement is forwarded to all sensors that are no more

than k hops away from the CH. Any sensor that receives such advertisements joins the

cluster even if it already belongs to another cluster. Any sensor that is neither a CH nor

has joined any cluster itself becomes a CH. Since the advertisement forwarding is limited

to k hops, if a sensor does not receive a CH advertisement within time duration t1 (where

t1 units is a value greater than the time required for data to reach the cluster head from

any sensor k hops away), it can infer that it is not within k hops of any cluster head and

hence become a CH. We assume that each cluster has a unique identifier, which is the

node identifier of the cluster head. The flowchart of the OK algorithm is shown in Fig. 2.

Each node maintains a table that stores information about the clusters known to this node.

If the table contains more than one entry, this means that the node is a boundary node.
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Figure 2: Flowchart of the OK cluster formation algorithm
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Each cluster head maintains a list of all cluster members, a list of adjacent clusters, and

a list of boundary nodes to reach those clusters. There can be multiple boundary nodes

between overlapping clusters. Moreover, a node can be a boundary node for more than

two overlapping clusters. In the remainder of this section, we first discuss the necessary

data structures to be maintained at each node for the clustering protocol. We also discuss

the message formats and the timers maintained by each node. We then explain the cluster

formation protocol and give pseudo-code. Finally, we prove that the protocol meets its

design goals.

3.1 Data Structures

Each node maintains the following variables:

• Node ID (NID): A unique ID assigned to each node before deploying the network.

• Status: {CH, NCH}. The status of the node. A node can be either a cluster head

(CH) or a non-CH (NCH). Initially all nodes are set to NCH.

• Node Degree (d): The number of 1-hop neighbors. Calculated after discovering the

number of neighbors.

• Reliable Ranges (RR): The number of reliable ranges known to the node. RR 6 d.

Initialized during range estimation phase.

• Local Cluster Graph (LCG): LCG = (V; E), a weighted undirected graph maintained

by CH nodes corresponding to the local cluster that belongs to this CH node. The

edge weight (wij) represents the range measurement between nodes i and j. Initially

LCG consists of the CH node and all one-hop neighbors that it hears from during

range estimation phase, i.e. |V | = d+1 and |E| = d, where d is the CH node degree.

• Adjacent Clusters Table (AC table): A table maintained by CH nodes to store infor-

mation about adjacent clusters. The table consists of tuples of the form (CHID, BN),

where CHID is the CH node ID, and BN is a list of boundary node Ids. Initially the

table is empty.
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• Cluster Heads Table (CH table): A table maintained by each node to store informa-

tion about the clusters known to this node. If the table contains more than one entry,

this means that the node is a boundary node. The table consists of tuples of the form

(CHID, HC, prev), where CHID is the CH node ID, HC is the number of hops leading

to this cluster head, and prev is the node ID of a 1-hop neighbor node that can lead

to the CH node of this cluster using minimum number of hops. The table acts as a

routing table where the CHID field uniquely identifies a route to a CH node. Initially

the table is empty.

3.2 Messages

There are two types of messages:

• CH advertisement (CH AD) message: This is the message broadcast by a CH node

to advertise its existence. It has the form (CH AD, SID, CHID, HC), where SID is

the sender node ID, CHID is cluster head ID, and HC is the number of hops leading

to the CH node. The SID field is used to update the CH table.prev field such that

each node knows a unique path to the cluster head. The HC field is used to limit the

flooding of the CH AD message to k hops. The CH AD message has a fixed size.

• Join request (JREQ) message: This is a message sent by a node when it knows about

the existence of a CH node and decides to join this cluster. To limit the flooding,

the message is unicasted using the field CH table.prev. The message contains in-

formation about the range measurements to neighbors along with the clusters that

this node can hear from. The message has the form (JREQ, RID, SID, CHID, d,

(NID, RSID,NID)1..nd, nc, (CHID)0..nc), where RID is the receiver ID2, SID is the ID

of the node that will join the cluster, CHID is the ID of the CH node responsible

for this cluster, d is the node degree, (NID, RSID,NID)1..nd are one or more cou-

ples containing information about the range measurements between this node and

its 1-hop neighbors, nc is the number of clusters that this node can hear from them

(=|AC table|), and (CHID)0..nc are 0 or more clusters that this node can hear from.

2This equals to CH table.prev corresponding to the CH table.CHID.
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Notice that the size of the JREQ message is variable and depends on the number of

clusters (nc) and the node degree (d).

3.3 Timers

Each node maintains the following timers3:

r <= p

status := NCH
set timer event for t1 units

Generate
a random
number

r

CH_AD waitJREQ wait

Terminate
clustering
formation

send JREQ to each CHID stored in
CH_table

status := CH
HC:=0
broadcast(CH_AD,NID,CHID,HC)
set timer event for t2 units

Timeout

add (CHID,NID) to AC_table
add (CHID,HC,SID) to CH_table
HC:=HC+1
if HC<k
   SID:=NID
   broadcast(CH_AD,NID,CHID,HC)

if CHID = NID
   add SID to LCG
   add (CHID,SID)0..nc to AC_table
else
   forward message to designated
   neighbor after chaning RID

   forward message to designated
   neighbor after chaning RID

add (CHID,HC,SID) to CH_table
HC:=HC+1
if HC < k
   broadcast(CH_AD,NID,CHID,HC)

Timeout && isNotEmpty(CH_table)

CH_AD Received &&
isNotInCH_table(CHID)

JREQ Received && NID=RID

r > p

JREQ Received

CH_AD Received && CHID != NID

status := CH
HC:=0
broadcast(CH_AD,NID,CHID,HC)
set timer event for t2 units

Timeout && isEmpty(CH_table)

Figure 3: Finite state machine of the OK protocol

• CH AD WAIT timer. This timer is set by a non-CH node. It represents the maximum

time that a node should wait for CH advertisement messages. It is equal to t(k) + δ,

where t(k) is the time needed for a message to travel k hops and δ is the maximum

time needed for any node to finish bootstrapping and start executing the OK proto-

col. In our simulator, we assume that all the CH nodes will finish bootstrapping and

start transmitting CH AD messages within t(k)/2 time units. Hence, we set δ to be

t(k)/2.

• JREQ WAIT timer. This timer is set by a CH node. It represents the maximum

time that a CH node should wait for JREQ messages. It is approximately equal to

2 ∗ t(k) + δ.
3We assume a timer that is set to a certain number of units and fires once.
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The events of the OK clustering algorithm are listed in table 1. A finite state machine

for the protocol is given in Fig. 3. The activities of the OK clustering algorithm are shown

in Fig. 4, using an event-based notation.

Event Name Description

Initialization() An event executed once to initialize the

status of the node.

CH AD Received (SID, CHID, HC) An event triggered when CH AD message

is received.

JREQ Received (RID, SID, CHID, nd, (NID,

RSID,NID)1..nd, nc, (CHID)0..nc)

An event triggered when JREQ message is

received.

ChangeStatus An event triggered when the

CH AD WAIT timer fires indicating

that an NCH node should either change its

status to CH node or join a cluster if any.

EndClusterFormationPhase An event triggered when the JREQ WAIT

timer fires indicating that a CH node

should terminate the clustering phase and

start the Local Location Discovery (LLD)

phase.

Table 1: Events summary of the OK clustering algorithm

4 Performance Evaluation

We have validated the OK clustering algorithm using simulation. The OK clustering algo-

rithm was implemented using MATLAB 6.1 release 12.1. Initially, each node is assigned a

unique node id. There are four parameters used in our simulation:
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Initialization() // executed once
1. ac:
2. r = generate random number from 0..1;
3. if r < p then
4. status := CH;
5. broadcast (CH AD, NID, NID, 1);
6. set JREQ WAIT timer;
7. else
8. status := NCH;
9. set CH AD WAIT timer;

CH AD Received (SID, CHID, HC)
10. ac: if status = NCH
11. if CHID is not in the CH table
12. Add (CHID, HC, SID) to CH table;
13. if HC < k
14. HC := HC + 1;
15. broadcast (CH AD, NID, CHID, HC);
16. // else HC ≥ k, do not forward the message more than k hops
17. // else you have already heard of this cluster, do nothing
18. else
19. // node is a CH node
20. if CHID = NID
21. discard the message; // This is an echo message
22. if CHID is not in the AC table
23. Add (CHID, NID) to AC table;
24. Add (CHID, HC, SID) to CH table;
25. if HC < k
26. HC := HC + 1;
27. broadcast (CH AD, NID, CHID, HC);
28. // else HC ≥ k, do not forward the message more than k hops
29. // else you have already heard of this cluster, do nothing

JREQ Received (RID, SID, CHID, nd, (NID, RSID, NID)1..nd, nc, (CHID)0..nc)
30. ac: if status = NCH
31. if RID = NID
32. RID := CH table[CHID].prev;
33. broadcast (JREQ, RID, SID, CHID, nd, (NID, RSID, NID)1..nd, nc, (CHID, cost)0..nc);
34. // else do nothing to limit the flooding of JREQ message
35. else
36. // node is a CH node
37. if CHID = NID
38. Add SID to the set of vertices in LCG;
39. Add (NID, RSID, NID)1..nd to the set of edges in LCG;
40. Add (CHID, cost, SID)0..nc to the AC table;
41. else
42. RID := CH table[CHID].prev;
43. broadcast (JREQ, RID, SID, CHID, nd, (NID, RSID, NID)1..nd, nc, (CHID, cost)0..nc);

EndClusterFormationPhase
44. ec: JREQ WAIT timer fires. // for CH node
45. ac: Start the Local Location Discovery (LLD) phase using information stored in LCG and AC table.

ChangeStatus
46. ec: CH AD WAIT timer fires. // for NCH node
47. ac: if CH table empty
48. status := CH;
49. broadcast (CH AD, NID, NID, 1);
50. set JREQ WAIT timer;
51. else
52. for all CHID in CH table
53. RID := CH table[CHID].prev;
54. broadcast (JREQ, RID, NID, CHID, (NID, RSID, NID)1..d, (CHID)0..m);

Figure 4: The OK Algorithm
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1. Network size (n): the number of sensor nodes in the network. Since all the simulation

experiments assume a square area of side length l, changing the network size will

implicitly change the node density in the network (µ). Node density (µ) is defined to

be the number of nodes in unit area:

µ = n/l2 (1)

2. Cluster radius (k): the maximum graph distance between any node in the cluster and

the cluster head. Recall from section 3.2 that the graph distance between two vertices

u and v, dG(u, v), is the minimum number of edges in a u − v path. Hence, if u is a

CH node, then k = max
v∈Nk(u)

(distG(u, v)).

3. Average Node Degree (d): the average node degree in the network. Recall from

section 3.2, the node degree of a node u, is the number of nodes that are neighbors

of u. Node degree is a function of the node transmission range (Tr). Assuming that

n sensor nodes are uniformly distributed over a square field of side l, the probability

P(d) of a node u having degree d is given by binomial distribution [52]:

P (d) = P d
r (1 − Pr)

n−d−1





n − 1

d



 (2)

where Pr is the probability of being within the transmission range Tr from node u

Pr =
π.T 2

r

l2
(3)

For large values of n tending to infinity, the above binomial distribution converges to

a Poisson distribution:

P (d) =
λd

d!
e−λ (4)

where λ = nPr is the average node degree. Hence, the relation between the average

node degree (d) and the transmission range (Tr) of a node is given by:

d = nPr =
n.π.T 2

r

l2
= µ.π.T 2

r (5)

23



We will use the above equation frequently to map between average node degree and

transmission range.

4. The cluster head probability (p). Since each node decides randomly to be a cluster

head with probability p, then the average number of clusters is pn. Hence, increasing

p will increase the number of clusters in the network.

All experiments were performed over 150 different topologies representing different

network sizes (n) ranging from 50 to 800 sensor nodes. The nodes were randomly placed

according to a uniform distribution on a 100x100 area. For each topology, the transmission

range of each node (Tr) was varied in order to achieve different average node degree (d)

ranging from 7 to 21. In a wireless ad-hoc network with a uniform distribution of nodes, in

order to guarantee global network connectivity, the average node degree should be at least

6 [46]. Hence, we chose the minimum average node degree to be 7. The cluster radius (k)

ranges from 1 to 5. The cluster head probability (p) was varied from 0.05 to 0.5. For each

topology, since cluster heads are chosen randomly, we repeat the experiment 30 times, each

time with a different random set of cluster heads. To evaluate the performance of the OK

clustering algorithm, we use the following performance metrics:

1. Percentage of Covered Nodes (CN): this metric tests if the generated clusters satisfy

the coverage condition as defined in section 2.3. CN is defined as the percentage

of nodes that are either cluster heads or within k-hops from a cluster head after the

first wave of CH advertisement is propagated though the network (i.e. after t(k) time

units where t(k) is the time needed for a message to be forwarded for k hops). We

will prove in section 6 (lemma 6.2) that after 3t(k)+ δ, the OK clustering terminates

and each node is either CH or NCH.

2. The Average Overlapping Degree (AOD): this metric tests if the generated clusters

satisfy the overlapping condition as defined in section 2.3. AOD is defined as the

average overlapping degree between any two overlapping clusters in the network.

Assume that u, v are any two cluster head (CH) nodes. Then the overlapping degree

between the two corresponding clusters (O) is a discrete random variable where O =
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|Nk[u]∩Nk[v]| and Nk[u]∩Nk[v] 6= ∅. Notice that the overlapping degree is defined

only for overlapping clusters (i.e. the random variable O can not take the value 0).

We define AOD as the mean of this random variable O (i.e. AOD = E(O)).

3. The Connectivity Ratio (CR): this metric tests if the generated clusters satisfy the

connectivity condition as defined in section 2.3. Let S be the set of CH nodes. Let

GS be the undirected graph induced by S such that an edge exists between two nodes

u, v ∈ S if distG(u, v) < 2k (i.e the two corresponding clusters overlap). Notice that

GS is not necessary a connected graph. Then the connectivity ratio (CR) is defined as

ratio between the number of nodes in the largest spanning tree of GS to the number

of CH nodes (|S|). If CR = 1, this means that GS is a connected graph.

4. The Average Cluster Size (Nc): the average number of nodes per cluster taken overall

clusters. If u is a CH node, then Nc = |Nk[u]|. We use this metric to show that OK

generates equal-sized clusters, which is a desirable property to balance the load of

control overhead between cluster head nodes.

5. The Average Number of Edges per Cluster (Ec): the average number of edges per

cluster taken over all clusters. This metric is important for localization applica-

tions [62, 61] since the number of edges in the graph affect the accuracy of the

estimated node positions.

6. The Average CLIQUE Factor per Cluster (CF): the CLIQUE factor of a cluster mea-

sures how close the subgraph induced by cluster to a complete graph. The CF is

calculated as follows:

CF =
2 ∗ Ec

Nc ∗ (Nc − 1)
(6)

7. Communication Overhead: this metric measures the total energy spent in communi-

cation. Without loss of generality, it is assumed that the cost of transmitting 1 unit

of data (byte) is 1 unit of energy. This is a valid assumption since we assume that all

the nodes have a fixed transmission range.

The first three performance metrics measure how close is OK to meet the conditions

listed in section 2.3. Nc, Ec, and CF give more insight into the size of each cluster. Finally,
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measuring the communication overhead shows how scalable the proposed algorithm is in

terms of messages exchanged between nodes. For simplicity, we assume that the communi-

cation environment is contention-free and error-free; hence, sensors do not have to retrans-

mit any data. The Multiple Access with Collision Avoidance (MACA) protocol [51] may

be used to allow asynchronous communication while avoiding collisions. MACA utilizes a

Request To Send/Clear To Send (RTS/CTS) handshaking to avoid collision between nodes.

Other MAC protocols such as TDMA [27] may be used to provide collision-free MAC

layer communication.

Our main goals behind the simulation experiments are: (1) to show that with the

careful selection of input parameters (p, k, d), the proposed clustering algorithm meets the

conditions listed in section 2.3 with high probability; (2) to show that although we have

overlapped clusters, the OK clustering still produces approximately equal-sized clusters;

(3) to show that OK is scalable in terms of communication overhead. Since each of the

above protocol parameters has a different effect on one of the performance metrics, we

wanted to give a sensor network engineer a set of parameters to tune to achieve different

design goals (minimize power consumption by playing with node transmission range, in-

crease overlapping degree, reduce cluster size, increase inter-cluster connectivity, reduce

number of clusters, reduce cluster formation time). In order to qualify the impact of the

various parameters, we will try answering the following questions:

• Q1: What is the effect of different simulation parameters (k, d, p) on the percentage

of covered nodes (CN) (section 4.1)?

• Q2: What is the effect of different simulation parameters (k, d, p) on the average

overlapping degree (section 4.1)?

• Q3: What is the effect of different simulation parameters (k, d, p) on the connectivity

ratio (section 4.1)?

• Q4: What is the effect of different simulation parameters (k, d, p) on Nc, Ec and CF

(section 4.2)?
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• Q5: What is the total energy spent in communication until the clustering protocol

terminates (section 4.3)?

• Q6: Is the OK protocol scalable (section 4.3)?

• Q7: Given (n, k, d), what are the best protocol parameters that guarantee that all the

conditions discussed in section 2.3 are satisfied with high probability?

4.1 Coverage, Cluster Overlapping and Connectivity Ratio

We start by studying the effect of cluster head probability (p) on the percentage of cov-

ered nodes (CN). From Fig. 5, we can see that increasing p increases the coverage almost

exponentially specially for lower values of d (i.e. low transmission range). The standard

deviation curves (Fig. 5(c) and 5(d)) show that the coverage is guaranteed within 2% for p

> 0.25. It is also clear that for each combination of (k, d), there is a minimum value for p

that guarantees 100% coverage with high probability. We will discuss this in more details

in section 5.4.

The impact of average node degree (d) on the percentage of covered nodes is shown

in Fig. 6(a). Increasing d increases the coverage almost exponentially for lower values of

k. For k > 1, increasing d above a certain threshold has almost no effect on the coverage.

The standard deviation curve (Fig. 6(c)) shows that this is guaranteed within 1% with high

probability for d > 16 and k > 1. In Fig. 6(b), the relation between cluster radius (k)

and percentage of covered nodes is shown. Increasing k seems to increase the coverage

exponentially. Again we can see from the standard deviation curve in Fig. 6(d) that the

results are within 1% if k > 2 and d ≥ 9. These values for k and d are very common

and realistic in sensor networks applications. As a summary, the effect of increasing d,

k is the same. However, d is directly proportional to transmission range; hence it affects

node energy dramatically. On the other hand, k is application dependent. For example,

in routing protocols, increasing k will increase cluster size, and latency; in localization

applications, increasing k will reduce the accuracy of the estimated node position. We will

see later in section 4.3, that both k and d increase communication overhead. However, the

communication overhead is proportional to k3 as we will discuss in section 4.3. Finally,
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Figure 5: The relation between cluster head prob. (p) and percentage of covered nodes
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from the figures we can see that by careful selection of the parameters (p, d, k) we can

guarantee 100% coverage with high probability. This means that each node is either a

cluster head or belongs to at least one cluster (i.e. the coverage condition discussed in

section 2.3 is satisfied with high probability).
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Figure 7: The cluster head prob. (p) has no effect on the average overlapping degree (AOD)

We will now turn our discussion to the study of the average overlapping degree be-

tween clusters. Fig. 7 shows an interesting anomaly. Although one may think that in-

creasing p (i.e. increasing number of cluster heads and hence clusters) should increase

the average overlapping degree (AOD), the results showed that p has no effect on AOD

regardless of the values of other parameters (d, k) and network size (n). We will prove

analytically in section 5.3 that the AOD does not depend on p. This will leave us with only

two parameters to play with to control the overlapping between clusters d, and k. As shown

in Fig. 8(a), the AOD is linearly proportional with d. Notice that AOD can never exceed the

network size n so the curve saturates at n. On the other hand, increasing the cluster radius

(k) will increase the AOD quadratically as shown in Fig. 8(b). We will discuss analytically

in mode details the relation between AOD and d and k in section 5.3. Notice that for many

applications, the required AOD between clusters should be below 10. For example in local-

30



7 9 11 13 15 17 19 21
0

20

40

60

80

100

120

140

160

180

Node Degree

A
O

D

AOD Vs. Node Degree (N=400,P=15)

K=1
K=2
K=3
K=4
K=5

(a) The impact of average node degree (d) on the av-

erage overlapping degree (AOD)

1 2 3 4 5
0

20

40

60

80

100

120

140

160

180

Cluster Radius (K)

A
O

D

AOD Vs. Cluster Radius (K) (N=400,P=15)

ND=7
ND=9
ND=11
ND=13
ND=15
ND=17
ND=19
ND=21

(b) The effect of cluster radius (k) on the average

overlapping degree (AOD)

7 9 11 13 15 17 19 21
0

0.5

1

1.5

2

2.5

3

3.5

4

Node Degree

A
O

D

AOD Vs. Node Degree (N=400,P=15)

K=1
K=2
K=3
K=4
K=5

(c) The standard deviation of average overlapping

degree (AOD) as d increases

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

Cluster Radius (K)

A
O

D

AOD Vs. Cluster Radius (K) (N=400,P=15)

ND=7
ND=9
ND=11
ND=13
ND=15
ND=17
ND=19
ND=21

(d) The standard deviation of average overlapping

degree (AOD) as k increases
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31



ization, an AOD of 3 is enough [61, 62] and in routing protocols having 10 gateway nodes

between clusters is more than enough. It is clear that we can guarantee an AOD of more

than 10 with high probability using small d (i.e. low transmission range) and small cluster

radius (k = 2). This is confirmed also by the standard deviation curves, Fig. 8(c) and 8(d).

We can clearly see from the curves that an AOD of at least 10 can be guaranteed with high

probability if k ≥ 2 and any d > 6.

Finally, to show that the OK protocol satisfies the connectivity condition, as defined

in section 2.3, we study the connectivity between clusters. Fig. 9(a) shows the relation

between connectivity ratio and p for different values of k. The figures show that with 15%

of the nodes are cluster heads; we can have 100% connectivity with high probability. This

means that for any cluster head, there is a path of less than 2k hops to at least another cluster

head (i.e. there is at least one border node between the two clusters). We can see that this

still holds for any value of k and d > 10 as shown in Fig. 9(b). the standard deviation

curves (Fig. 9(c) and 9(d)) confirm the above results with high probability.

As a general conclusion, it is clear that the OK protocol satisfies with high probabil-

ity the three conditions, defined in section 2.3. The cluster head probability (p) plays an

important role in terms of coverage and connectivity between cluster. The average node de-

gree (d) and the cluster radius (k) can be tuned to achieve a reasonable average overlapping

degree between clusters regardless of p.

4.2 Cluster Size

In this section we will study the properties of the generated clusters in terms of average

cluster size (Nc), average number of edges per cluster (Ec) and average CLIQUE factor

(CF). Since the clusters are overlapping, increasing the number of clusters will not affect

the cluster size. Hence, p has no effect on Nc, Ec and CF as shown in Fig. 10. On the

other hand, increasing d increases Nc linearly, as shown in Fig. 11(a), and increases Ec

quadratically (Fig. 11(b)). Substituting in Eq. 6, we can see why the CF is almost constant

as d increases (Fig. 11(c)). A detailed analytical model for the average cluster size is

discussed in section 5.2.
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As a measure of load balancing, the standard deviation of average number of nodes

per cluster is shown in Fig. 11(d). The figure shows very low standard deviation regardless

of the values of d and k. This means that the OK protocol produces equal-sized clus-

ters. The same facts can be concluded from the standard deviation curves of number of

edges per cluster (Fig. 11(e)) and the average CLIQUE factor (Fig. 11(f)). From Fig. 12(a)

and 12(b), we can see that both Nc and Ec are proportional with the square of the cluster

radius (k2). Hence, from Eq. 6, we can see why the average CLIQUE factor (CF) de-

creases quadratically as k increases (Fig. 12(c)). Again the standard deviation curves, Fig.

8 12(d), 12(e), 12(f), confirm that OK produces equal-sized clusters regardless of the values

of d and k.

As a final conclusion, although the OK protocol generates overlapping clusters, the

simulation results show that those clusters are equal-sized. Equal-sized clusters is a de-

sirable property because it enables an even distribution of control (e.g., data processing,

aggregation, storage load) over cluster heads; no cluster head is overburdened or under-

utilized. Moreover, the results show that the average cluster size can be controlled by tun-

ing the average node degree (d) or the cluster radius k. A closed form for the upper bound

of the average cluster size (Nc) as a function of d and k is given in section 5.2. Finally, the

average number of edges and the intra-cluster connectivity, measured by the CF metric, can

also by controlled by changing d and k. This is a desirable feature in anchor-free localiza-

tion applications [62, 61, 53, 43] where the number of edges in the cluster determines the

accuracy of the estimated node positions.

4.3 Scalability

In this section we analyze the communication overhead of the OK clustering protocol and

show that OK is scalable and energy efficient in terms of communication overhead. The

total energy spent in communication is measured in terms of the number of bytes transmit-

ted per node. Without loss of generality, it is assumed that the cost of transmitting 1 unit of

data (byte) is 1 unit of energy. This is a valid assumption since we assume that all the nodes

have a fixed transmission range. We will start by describing the model used for estimating
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Figure 11: The effect of average node degree on cluster size properties
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the communication overhead. Then we show the impact of different simulation parameters

on the overall communication overhead and study the scalability of the OK protocol. An

analytical model for the communication overhead is discussed in the next section ( 5.4).

There are two phases in the OK protocol: the cluster head advertisement phase

(CHAD phase) and the join request phase (JREQ phase). For each network topology i

with network size n, we calculate the total number of bytes sent by all the nodes during the

two phases (TotalMsgSize(i)). We then repeat the experiment over 900 different topologies,

with the same network size n. Hence, the average number of bytes sent by all nodes (avg-

TotalMsgSize) is the mean of the vector TotalMsgSize (i) for i= 1..900. Finally, we divide

avgTotalMsgSize by the network size (n) in order to get the average number of bytes sent

by one node avgCommOverhead. We use the last metric to measure the average energy

spent by a node in communication.

Fig. 13 shows the impact of different simulation parameters on communication over-

head. The effect of increasing cluster head probability (p) is shown in Fig. 13(a). We

observe that the communication energy increase linearly as p increases. We can also notice

that the rate increases significantly as the cluster radius (k) increases. This is can be clearly

seen in Fig. 13(c) where it can be shown that the communication overhead is cubically

proportional to the cluster radius (k). Mainly this cost is incurred during the JREQ phase

as we will show analytically in section 5.4.

The effect of average node degree (d) on communication overhead is shown in Fig. 13(b).

We can notice that the communication overhead increases linearly as d increases. Although,

we will discuss the relation between communication overhead and average node degree (d)

analytically in section 5.4, we can intuitively explain that by analyzing the relation between

average number of nodes per cluster Nc and average node degree (d) (Fig. 11(a)). As the

average node degree increases, the average number of nodes per cluster increases linearly

and hence the average number of JREQ messages increases linearly leading to a linear

increase in the overall communication overhead.

Finally, we will show that OK is scalable in terms of processing time in section 6,

(lemma 6.2). However, in this section, we study the scalability in terms of communication

overhead. We tested the OK protocol for different network size ranging from 50 to 800
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nodes. Fig. 14 shows the overall communication overhead per node as network size in-

creases. We can clearly see that the number of bytes transmitted by a node slowly increases

as the network size increases from 100 to 400. Then it remains almost constant afterwards.

The standard deviation curves (Fig. 14(b)) show that this happens with high probability (±
2 bytes).

5 Analysis of the Results

In this section, using unit disk graph properties, and simple geometry, we will analytically

show the following:

• The average number of nodes per cluster (Nc) is linear in d and quadratic in k (sec-

tion 5.2).

• The average number of edges per cluster (Ec) is quadratic in both d and k (sec-

tion 5.2).

• The cluster head probability (p) does not affect the average overlapping degree (AOD)

between clusters (section 5.3).

• The average overlapping degree (AOD) is linearly proportional to the average node

degree (d) and quadratically proportional to the cluster radius (k) (section 5.3).

• The overall communication overhead is linearly proportional with d and cubically

proportional with k (section 5.4).

We will start by describing the assumptions behind the proposed analytical model.

5.1 Assumptions

In order to simplify the proofs, we make the following assumptions:

• Each cluster can be approximated ideally by a circle of radius R.
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• Since the transmission range of each node is fixed (Tr), and since only nodes that are

within k hops from the cluster head can belong to this cluster, then we can approxi-

mate R as follows:

R = kTr (7)

In this case, R is considered the maximum euclidian distance that a node can be away

from cluster head. Hence, the circle representing the cluster is considered the largest

area that can be covered by a cluster.

• The cluster head is located at the center of this circle.

The above geometric representation of a k-hop cluster is considered the largest possible

area for the cluster. This will lead to considering some areas as belonging to the cluster

when they are not. We will refer to such an area as a false area. For example, if the

cluster head node is located within distance R from the boundary of the sensor field, the

circle representing the cluster will be clipped by the rectangle representing the field as

shown in Fig. 15. Hence, the area which lies outside the sensor field is a false area since

it is considered within the cluster but it does not really belong to it. Since the proposed

analytical model represents an upper bound, false area will just make the upper bound

not tight enough when compared with the simulation results. We will also show in the

following that as the number of cluster heads increases, either because the network size

(n) increases or the cluster head probability (p) increases, the probability of having cluster

heads within distance R decreases; hence the effect of false area decreases. So by carefully

selecting the simulation parameters, we can safely ignore the effect of false area.

Recalling that the average number of cluster heads is pn, and assuming a square field

with side length l, then the probability (PIN ) that a cluster head node is at least at distance

R away from the boundary of the field (i.e. inside the dotted rectangle as shown in Fig. 15),

is given by the following:

PIN =
(l − 2R)2

l2
(8)

Then the probability that a cluster head node is within distance R from the boundary will

be (POUT ):

POUT = 1 − PIN
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Let I be a discrete random variable representing the number of cluster heads that are within

distance R from the boundary of the field. Then I can be expressed as a binomial distribu-

tion:

P (I = m|pn) = P m
OUT P pn−m

IN





pn

m





and the expected number of cluster head nodes that are within distance R from the field

boundary is:

E(I) = pnPOUT

In order to ignore the effect of cluster heads that are near the boundary; hence decreasing

the size of false area:

POUT � PIN

l2

(l−2R)2
� 2

4R2 − 8lR + l2 � 0

Solving the quadratic equations in R, and substituting R = kTr, one of the following

conditions must hold:

Tr �
(1 −

√
3/2)l

k
(9)
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OR

Tr �
(1 +

√
3/2)l

k
(10)

The first condition was used in the simulations since it implies reducing the node transmis-

sion range; hence reducing energy consumption. However, we must be careful in reducing

the node transmission range (Tr) since there is a minimum critical value for Tr in order for

the graph to be connected [46]. Moreover, as k increases, it becomes difficult to satisfy the

first condition while guaranteeing connectivity. Since our main goal is to have a connected

graph, we have to violate the first condition as k increases. In a similar way, we notice that

in order to increase the average node degree (d), we have to increase Tr; hence, we may

violate the first condition to achieve a certain average node degree. That’s why we will

notice that the analytical model diverges a little bit from the simulation results as k or d

increases since the effect of cluster heads near the boundary starts increasing.

5.2 Average Cluster Size

We shall start by estimating an upper bound of the average cluster size (average number

of nodes per cluster). The cluster will be represented by a circle with radius R = kTr as

discussed in section 5.1. Assume that Nc is a discrete random variable representing the

cluster size. Then using the same analysis as we did in the previous section, we can show

that Nc can be expressed by the following binomial distribution:

P (Nc = m) = P m
c (1 − Pc)

n−m





n

m



 (11)

where n is the network size and Pc is the probability that a node is inside the circle repre-

senting the cluster

Pc =
πR2

l2
=

πk2T 2
r

l2
(12)

where l is the side length of the square field. Now substituting from equation 5, in order to

get Pc in terms of average node degree (d), we get

Pc =
dk2

n
(13)
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Figure 16: The relation between the analytical model for average cluster size (Nc) and

simulation results

Hence the average cluster size (E(Nc)) is:

E(Nc) = nPc = dk2 (14)

The above equation shows that the average cluster size is linearly proportional with average

node degree (d) and quadratically proportional to the cluster radius (k). This conforms with

the simulation results shown in section 5.2. Moreover, we can see that Nc is not a function

of the cluster head probability (p). Fig. 16 shows the relation between the simulation results

and analytical model given by equation 14.

Using the above model, we can estimate the average number of edges per cluster (Ec)

as follows. Since each node has an average node degree (d), and since the average number

of nodes per cluster is Nc, then

Ec =
dNc

2
=

d2k2

2
= O(d2k2) (15)

Fig. 17 shows the relation between the simulation results and analytical model given by

equation 15.

5.3 Average Overlapping Degree

Using the assumptions in section 5.1, we shall calculate an upper bound for the average

overlapping degree (AOD). Assume that A, B are any two cluster head (CH) nodes. Then
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Figure 17: The relation between the analytical model for average number of edges per

cluster (Ec) and simulation results

we recall from section 4 that the overlapping degree between the two corresponding clusters

(O) is a random variable where O = |Nk[A] ∩ Nk[B]| and Nk[A] ∩ Nk[B] 6= ∅. Notice that

the overlapping degree is defined only for overlapping clusters (i.e. the random variable

O does not take the value 0). We define AOD as the mean of this random variable O

(i.e. AOD = E(O)). As shown in Fig. 18, the two clusters A and B are represented by two

BA
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R R

PSfrag replacements

θθ

Figure 18: Overlapping Degree (O) between two overlapping clusters

symmetric circles of radius R = kTr. Instead of calculating the exact intersection of the

two sets (Nk[A] ∩ Nk[B]), we shall estimate the intersection of the two sets by the area

of intersection between the two corresponding circles. Let W be the euclidian distance

between the two CH nodes. Then, W is a continuous random variable that can take values
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ranging from 0 to 2R. The two clusters are completely overlapped if W = 0 and there is

no overlapping if the distance between the two cluster heads is greater than or equal 2R.

Let F (w) and f(w) be the CDF and PDF of the random variable W consequently. Then

F (w) = P (W < w) =
πw2

π(2R)2
=

w2

4R2
(16)

∴ f(w) =
dF (w)

dw
=

w

2R2
(17)

We will express O as a function of w as follows. The area of intersection between two

symmetric circles A and B (IAB) is 4:

IAB = (2θ − sin 2θ)R2 = E(O | w) (18)

where w = 2R cos θ (using cosine rule). Hence, O is a continuous random variable that is

represented as a function of θ or w alternatively.

∴ E(O) =

2R
∫

0

E(O | w)f(w)dw =

2R
∫

0

(2θ − sin 2θ)R2f(w)dw (19)

Substituting from Eq. 17, 18, and noticing that dw = 2R sin θ, we have the following:

E(O) =

π/2
∫

0

(2θ − sin 2θ)R22 sin θ cos θdθ = R2

π/2
∫

0

(2θ − sin 2θ) sin 2θdθ (20)

It can be shown that
π/2
∫

0

(2θ − sin 2θ) sin 2θdθ = π
4
. Hence,

E(O) =
πR2

4
(21)

Substituting from Eq. 7, we have:

E(O) =
πk2T 2

r

4
(22)

Substituting from Eq. 5 to get the relation in terms of average node degree, we reach the

following:

E(O) =
dk2l2

4n
=

dk2

4µ
= AOD (23)

4For more details of the proof, please refer to appendix A.1
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Figure 19: The relation between the analytical model for average overlapping degree

(AOD) and simulation results

The above equation shows that the average overlapping degree is linearly proportional with

average node degree d and quadratically proportional to the cluster radius k. This conforms

with the simulation results shown in section 5.3. We can also notice that AOD is not a

function of cluster head probability p. Fig. 19 shows the relation between the simulation

results and analytical model given by equation 23.

5.4 Overall Communication Overhead

In this section, we will calculate an upper bound of the average number of control messages

transmitted by a node. As we did in the previous sections, the cluster will be approximated

by a circle with radius R = kTr. Recall that there are two phases in the OK protocol: the

cluster head advertisement phase (CHAD phase) and the join request phase (JREQ phase).

We will estimate the number of messages sent during each phase per node. Then the overall

communication overhead per node will be the total number of messages. We will start by

estimating the average number of nodes that are exactly k hops away from the cluster head

(nk). From equation 14, the average number of nodes in k-hop cluster is:

E(Nc) = nPc = dk2 = Ek(Nc) (24)
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Then

nk = Ek(Nc) − Ek−1(Nc) = dk2 − d(k − 1)2 (25)

∴ nk = d(2k − 1) (26)

Using the above results, we can calculate the average number of CH AD messages

sent during the CHAD phase. Initially, the cluster head (CH) node broadcasts one CH AD

message to neighbors. The message is then flooded for k hops with no duplication (i.e. if

a node received the same CH AD message multiple times, it will just forward it once to its

neighbors. Hence, the CH AD message is forwarded through the edges of a spanning tree

of the cluster graph as shown in Fig. 20. Initially, the CH node broadcasts one message to

all its neighbors {A, C, D}. Now each of those nodes will broadcast the same message to

its corresponding neighbors, after incrementing the hop count. Hence, B will receive the

same message from {A, C} and N will receive the same message from {C, D}. However,

since the OK protocol uses smart flooding, the second CH AD will be dropped by both B

and N. The CH AD broadcast will continue for k hops away from the CH node (in this

particular example, k = 5).
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Figure 20: The CH AD message will follow a spanning tree rooted at the CH node (k = 5)

Let MCHAD be the average number of CH AD messages broadcasted within the clus-

ter. Then MCHAD is equal to the average number of non-leaf nodes in breadth-first tree of
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the graph rooted at the CH node.

MCHAD = 1 +
k−1
∑

i=1

ni (27)

where ni is the expected number of nodes that are exactly i hops way from the CH node

(Eq. 26). Substituting from Eq. 26 and simplifying the expression, we reach the following:

MCHAD = 1 +
2d(k − 1)2

2
= O(dk2) (28)

Using a similar approach, we can calculate the average number of JREQ messages

(MJREQ) unicasted from non-CH nodes to the CH node. We assume that we do not do any

aggregation of the messages5; hence; a JREQ message, unicasted from a leaf node in the

spanning tree, will be forwarded k times till it reach the CH node. Therefore, MJREQ can

be calculated as follows:

MJREQ = knk + (k − 1)nk−1 + . . . + 2n2 + n1 =
k

∑

i=1

ini (29)

Substituting from Eq. 26 and simplifying the expression, we reach the following expres-

sion:

MJREQ =
dk(4k − 1)(k + 1)

6
= O(dk3) (30)

Fig. 21 shows the relation between the simulation results and analytical model of the com-

munication overhead.

6 Correctness and Complexity

In this section we shall discuss that the OK protocol provided in Fig. 4 meets the following

design goals (requirements):

1. Completely distributed.

2. Terminates within O(k) iterations, regardless of network diameter, where k is the

cluster radius.
5Of course, if message aggregation is used, the overall communication overhead will improve. So the

above analysis is considered a worst case analysis.
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Figure 21: The relation between the analytical model for overall communication overhead

per node and simulation results
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3. At the end of the algorithm, each node is either a cluster head, or non-cluster head

node that belongs to one or more clusters.

4. Efficient in terms of memory usage.

Observation 1. OK is completely distributed (requirement 1). A node can either elect

to become a cluster head, or join a cluster if it receives CH AD messages within its cluster

radius. Thus, node decisions are based solely on local information.

Lemma 6.1. The time complexity of OK is O(k) (requirement 2).

Proof. The worst case scenario is: a non-CH (NCH) node does not receive any CH AD

messages and changes its status to CH. Then broadcasts a CH AD message and waits for

JREQ messages. Recall from section 3.3 that the maximum time that an NCH node waits

for a CH AD message is equal to t(k) + δ, where t(k) is the time needed for a message to

travel k hops and δ is a constant value independent from k. Hence, the total time of this

worst case scenario is t(k) + δ + 2t(k). Therefore the maximum time that a node should

wait before terminating OK is t(k) + δ + 2t(k) = 3t(k) + δ = O(k).

Lemma 6.2. At the end of the OK algorithm, a node is either a cluster head, or non-cluster

head node that belongs to one or more clusters (requirement 3).

Proof. Initially each node is either CH or NCH node. If the node is a CH node, it will

terminate the OK algorithm after 2t(k)+ δ time units when the JREQ WAIT timer fires. In

case of NCH node, after t(k)+ δ time units, either it joins one or more clusters that it heard

from or changes status to CH and terminates the OK algorithm after 2t(k) time units.

Lemma 6.3. The expected number of adjacent overlapping clusters is O(pdk2), where p is

the cluster head probability, d is the average node degree, and k is the cluster radius.

Proof. Recall that the expected number of clusters is np where n is the network size. Let

u and v be two cluster head nodes. Then the two corresponding clusters of u and v are

overlapping iff distG(u, v) < 2k. Using the circle approximation of the cluster as discussed
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in section 5.1, then the probability (PAdj) that a CH node is within distance 2R,R = kTr,

from m other CH nodes is given by the following binomial distribution:

PAdj(m) = P m
2R(1 − P2R)np−m−1





np − 1

m



 , where P2R =
π(2R)2

l2
(31)

Hence, the expected number (f adjacent clusters is (E(PAdj):

E(PAdj) = P2R(np − 1) ' npP2R =
4πnpR2

l2
(32)

Since R = kTr, substituting from equation 5 and simplifying the expression, we get the

following:

E(PAdj) = 4πpdk2 = O(pdk2) (33)

Lemma 6.4. The OK algorithm has an average memory usage of O(1) per node (require-

ment 4).

Proof. The two major data structures used by the OK protocol are: CH table and AC table.

Any other data structures will take O(1) memory to store. Recall from section 3.1, CH table

is used by each node, whether CH or NCH, to store information about the known CH nodes.

Hence, the average size of the CH table is equal to the expected number of clusters that

cover a certain node; which is equal to the expected number of adjacent clusters (E(PAdj).

Therefore, using lemma 6.3, the average size of the CH table is O(dk2). Since both d, and

k are constants and independent of the network size, the average size of CH table is O(1)6.

Recall from section 3.1, AC table is used by only CH nodes to keep track of adjacent

clusters. Hence, we can calculate the average size of AC table as follows:

size(AC table) = E(PAdj x the expected number of boundary nodes

However, the expected number of boundary nodes is equal to the average overlapping de-

gree (AOD). Substituting from Eq.23, we get the following:

size(AC table) = E(PAdj) x dk2

4µ
= O(d2k4

µ
)

6Notice that the maximum size of CH table can not exceed the average number of clusters (pn
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Since both d, and k are constants and independent of the network size, the average size of

AC table is O(1). Hence, on the average, the total memory usage per node is O(1).

7 Related Work

In the last few years, many algorithms have been proposed for clustering in wireless ad-

hoc networks [60, 39, 32, 7, 5, 37, 35, 6, 33, 8, 10, 31, 49, 9, 21, 4, 26, 47]. Clustering

algorithms can be classified as either deterministic or randomized. Deterministic algo-

rithms [9, 10, 21, 6, 33, 5, 48, 50] use weights associated with nodes to elect cluster heads.

These weights can be calculated based on number of neighbors (node degree) [9, 10],

node id [6, 33, 5], residual energy, and mobility rate [21]. Each node broadcasts the

calculated weight. Then a node is elected as a cluster head if it is the highest weight

among its neighboring nodes. In randomized clustering algorithms, the nodes elect them-

selves as cluster heads with some probability p and broadcast their decisions to neighbor

nodes [39, 60, 8, 7, 11]. The remaining nodes join the cluster of the cluster head that re-

quires minimum communication energy. The probability p is an important parameter in

a randomized algorithm. It can be a function of node residual energy [39] or hybrid of

residual energy and a secondary parameter [60]. In [7], the authors obtain analytically

the optimal value for p that minimizes the energy spent in communication. In OK, the

probability p is tuned to control the number of overlapping clusters in the network.

The Distributed Clustering Algorithm (DCA) [10] elects the node that has the highest

node degree among its 1-hop neighbors as the cluster head. The DCA algorithm is suitable

for networks in which nodes are static or moving at a very low speed. The Distributed and

Mobility-adaptive Clustering Algorithm (DMAC) [9] modifies the DCA algorithm to allow

node mobility during or after the cluster set-up phase. The Weighted Clustering Algorithm

(WCA) [21] calculates the weight based on the number of neighbors, transmission power,

battery-life and mobility rate of the node. The algorithm also restricts the number of nodes

in a cluster so that the performance of the MAC protocol is not degraded. In the Linked

Cluster Algorithm (LCA) [6], a node becomes the cluster head if it has the highest identity

among all nodes within one hop of itself or among all nodes within one hop of one of its
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neighbors. The LCA algorithm was revised [33] to decrease the number of cluster heads

produced in the original LCA. In this revised version of LCA (LCA2), the algorithm elects

as a cluster head the node with the lowest id among all nodes that are neither a cluster head

nor are within 1-hop of the already chosen cluster heads. Both LCA and LCA2 heuristics

were developed to be used with small networks of less than 100 nodes. As the number of

nodes in the network grows larger, LCA/LCA2 will impose greater delays between node

transmissions in the TDMA communication scheme and may be unacceptable.

Many of these clustering algorithms [6, 33, 21, 9, 48] are specifically designed with

an objective of generating stable clusters in environments with mobile nodes. But in a typ-

ical wireless sensor network, the sensors’ locations are fixed and the instability of clusters

due to mobility of sensors is not an issue. However, the network is still dynamic because of

node failure or adding new nodes. Moreover, the clustering time complexity in some pro-

tocols [10, 21, 8, 48, 50] is dependent on the network diameter. Most of these algorithms

have a time complexity of O(n), where n is the total number of nodes in the network. This

makes them less suitable for sensor networks that have a large number of sensors. Unlike

those protocols, OK terminates in a constant number of iterations.

Some clustering algorithms make assumptions about node capabilities, e.g., location-

awareness or clock synchronization. In [58, 59, 18, 22], the geographic location of each

node is assumed to be available based on a positioning system such as GPS or through

broadcast messages and routing updates [SPAN]. This is again not a reasonable assump-

tion in case of low-cost low-power sensor networks. The clustering algorithm proposed in

[Chiasserini02] assumes that each node is aware of the whole network topology, which is

usually impossible for wireless sensor networks with a large number of nodes. Some algo-

rithms [6, 33, 39, 21, 10, 9] require time synchronization among the nodes, which makes

them suitable only for networks with a small number of sensors.

The majority of clustering algorithms construct clusters where every node in the net-

work is no more than 1 hop away from a cluster head [6, 33, 10, 21, 9, 8, 31, 60, 32, 39]. We

call these single hop (1-hop) clusters. For example, the HEED [60] algorithm forms single-

hop non-overlapping clusters with the objective of prolonging network lifetime. Cluster

heads are randomly selected according to a hybrid of their residual energy and a secondary
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parameter, such as node proximity to its neighbors or node degree. A careful selection

of the secondary clustering parameter can balance load among cluster heads. HEED per-

formance was analyzed assuming synchronized nodes. However, the authors showed that

unsynchronized nodes can still execute HEED independently, but cluster quality will be

affected. In [32], the authors present a clustering algorithm (FLOC) that produces non-

overlapping and approximately equal-sized clusters. The clustering is such that all nodes

within one hop from a cluster head belongs to its cluster, and no node m hops away from

the cluster head may belong to its cluster. In [37, 35] the clustering algorithm assumes

gateway (master) nodes are already known and the objective is to perform load balancing

between different clusters by changing cluster radius. In large networks single-hop cluster-

ing may generate a large number of cluster heads and eventually lead to the same problem

as if there is no clustering.

In [39], Heinzelman et al. have proposed a distributed algorithm for wireless sensor

networks (LEACH) in which the sensors randomly elect themselves as cluster heads with

some probability and broadcast their decisions. The remaining sensors join the cluster of

the cluster head that requires minimum communication energy. This algorithm allows only

1-hop clusters to be formed. LEACH assumes that all nodes are within communication

range of each other and the base station (i.e. complete graph). LEACH clustering termi-

nates in a constant number of iterations (like OK), but it does not guarantee good cluster

head distribution and assumes uniform energy consumption for cluster heads [60].

Few papers have addressed the problem of multi-hop (k-hop) clustering [5, 7, 11].

These algorithms are mostly heuristic in nature and aim at generating the minimum num-

ber of disjoint clusters such that any node in any cluster is at most k hops away from the

cluster head. For example, the algorithm described in [11] constructs clusters such that

all the nodes within R/2 hops of a cluster head belong to that cluster head and the farthest

distance of any node from its cluster head is 3.5R hops where R is an input parameter to the

algorithm. With high probability, a network cover is constructed in O(R) rounds; the com-

munication cost is O(R3). The OK clustering algorithm has a much lower communication

overhead. In [5], the authors presented the Max-Min heuristic to form non-overlapping

k-clusters in a wireless ad hoc network. Nodes are assumed to have non-deterministic
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mobility pattern. Clusters are formed by broadcasting node identities along the wireless

links. When the heuristic terminates, a node either becomes a cluster head, or is at most

k wireless hops away from its cluster head. The value of k is a parameter of the heuristic.

Although the Max-Min algorithm generates k-hop clusters with a run-time of O(k) rounds,

it does not ensure that the energy used in communicating information to the information

center is minimized. Both OK and MaxMin have O(k) iterations. However, OK needs

exactly 2k iterations to terminate but MaxMin needs at least 2k iterations. This means that

the communication overhead is reduced in OK compared with MaxMin. In case of sensor

networks, this directly affects the energy level of the node. In [7], the authors proposed a

LEACH-like randomized clustering algorithm for organizing the sensors, in a wireless sen-

sor network, in a hierarchy of clusters with an objective of minimizing the energy spent in

communicating the information to the processing center (base station). They used results

from stochastic geometry to obtain analytically the optimal number of cluster heads at each

level of clustering.

None of the above algorithms construct overlapping clusters. Most of these algo-

rithms are heuristic in nature and their aim is either to generate the minimum number of

multi-hop clusters [5] or to minimize the energy spent in the network [7]. To the best of

our knowledge, this is the first paper to discuss the problem of overlapping multi-hop clus-

tering. We show that constructing the minimum overlapping k-hop dominating set in an ad

hoc network is NP-complete. Then we propose OK, a randomized multi-hop distributed

algorithm to solve the problem. The nodes randomly elect themselves as cluster heads with

some probability p. The clustering process terminates in O(1) iterations, independent of the

network diameter, and does not depend on the network topology or size. OK operates in

quasi-stationary networks where nodes are location-unaware and have equal significance.

The protocol incurs low overhead in terms of processing cycles and messages exchanged.

We also analyze the effect of different parameters (e.g. cluster radius, network connec-

tivity, cluster head probability) on the performance of the clustering algorithm in terms of

communication overhead, node coverage, and average cluster size.

OK is similar to the clustering algorithm described in [7] since both algorithms be-

long to the class of randomized multi-hop clustering. In [7], the main focus of the work
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was to find the optimal number of cluster heads at each level of clustering analytically,

and apply this recursively to generate one or more levels of clustering. However, our main

focus is to generate overlapping clusters with certain overlapping degree. Our main con-

tributions are (i) to formalize the problem of overlapping multi-hop clustering; (ii) extend

the work in [7] to meet the design goals; (iii) show how to tune the parameters (p and k)

given to the algorithm in order to achieve the design goals; (iv) give analytical models to

formulate the problem. In [7], the cluster radius (k) was calculated analytically to min-

imize the energy. In OK, the cluster radius is a parameter that can be tuned to increase

overlapping degree between clusters, or to decrease the cluster size (load balancing), or to

decrease communication overhead.

8 Conclusions and Future Work

In this report, we have presented a scalable randomized multi-hop clustering protocol for

ad-hoc sensor networks. OK organizes the sensors into overlapping clusters in a distributed

manner. We have formulated the overlapping multi-hop clustering problem as an extension

to the k-dominating set problem. OK is scalable in terms of communication overhead and

terminates in a constant number of iterations independent of the network size. Although

OK generates overlapped clusters, the simulation results show that the clusters are approx-

imately equal in size. OK parameters, such as cluster radius, average node degree, and

cluster head probability can be easily tuned to achieve the design goals with high proba-

bility. We have developed a detailed analytical model and have shown that it is valid by

comparison with the simulation results. The proposed clustering scheme can be used by

several types of sensor network protocols that require scalability, load balancing, and some

degree of overlapping between the clusters. While OK appears to be a promising protocol,

there are some areas for improvement to make the protocol more widely applicable. In the

current implementation of OK, we assume stationary nodes, which is a valid assumption,

for sensor networks. In the future, we plan to analyze the case when the nodes are mobile.

Another issue that we are currently looking at is sharing the cluster head role among nodes.

In general, cluster head nodes spend relatively more energy than other sensors because they
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have to receive information from all the sensors within their cluster. Hence, they may run

out of their energy faster than other sensors. One possible solution is to run the clustering

algorithm periodically for load balancing. Another possibility is that cluster heads trigger

the clustering algorithm when their energy levels fall below a certain threshold. We are

currently investigating the behavior of the proposed clustering algorithm in the event of

sensor failures. In the analytical model, we assume circle representation for the cluster.

We are looking to different improvements to derive a tighter bound by studying the actual

cluster shape using more complex stochastic geometry techniques.
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A Appendix

A.1 Area of Intersection Between Two Identical Circles

Assume that we have two identical circles A and B that intersect in some area IAB. Let r

be the radius length and w be the distance between the two centers A and B as shown in

Fig. 22. then the intersection (IAB) can be calculated as follows:

IAB = 2 (area of sector CBD - area of triangle CBD)

Area of sector CBD = 1
2
.2θ.R2 = θ.R2

∴ IAB = 2(θR2 − 1
2
.R2 sin 2θ) = (2θ − sin 2θ)R2

where w = 2R cos θ (using cosine rule)
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Figure 22: Area of intersection of two circles
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