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Digital document processing is becoming popular for applications to office and

library automation, bank and postal services, publishing houses and communication

management. In recent years, the demand for tools capable of searching written and

spoken sources of multilingual information has increased tremendously, where the

bilingual dictionary is one of the important resource to provide the required infor-

mation. Processing and analysis of bilingual dictionaries brought up the challenges

of dealing with many different scripts, some of which are unknown to the designer.

A framework is presented to adaptively analyze and process structured mul-

tilingual documents, where adaptability is applied to every step. The proposed

framework involves:

(1) General word-level script identification using Gabor filter.

(2) Font classification using the grating cell operator.

(3) General word-level style identification using Gaussian mixture model.



(4) An adaptable Hindi OCR based on generalized Hausdorff image comparison.

(5) Retargetable OCR with automatic training sample creation and its applica-

tions to different scripts.

(6) Bootstrapping entry segmentation, which segments each page into functional

entries for parsing.

Experimental results working on different scripts, such as Chinese, Korean,

Arabic, Devanagari, and Khmer, demonstrate that the proposed framework can

save human efforts significantly by making each phase adaptive.
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Chapter 1

Introduction

1.1 Background

As a subfield of digital image processing, document image analysis converts

document images to symbolic form for modification, storage, retrieval, reuse, and

transmission. It helps the transition from bookshelves and filing cabinets to elec-

tronic files. With the above-mentioned advantages, document image processing is

becoming more popular for application in office and library automation, bank and

postal services, publishing houses, and communication management [100, 55, 135,

42].

Given a binarized document image, the first step of document image analysis

involves the physical layout analysis where the document image is segmented into

different zones based on the spatial relations (usually spacing). Then each zone is

labeled as text, graphics, table, or form. Traditional document image analysis works

only on the text zone, and the analysis can be extended to table and form zones. To

facilitate the next-step analysis, the text zone is further partitioned into a hierarchy

of physical components containing text lines, words and characters.

During the past two decades, researchers working on document image analysis

have proposed several physical layout analysis algorithms. According to the liter-

ature survey done by Mao et al. [97], O’Gorman and Kasturi [103], and Jain and

1



Yu [55], these algorithms can be categorized into three classes: top-down, bottom-

up, and hybrid. The top-down algorithms [102, 71, 133, 55, 38, 135, 18] start from

the whole document image, which is iteratively decomposed into smaller compo-

nents. The bottom-up algorithms [101, 7, 40, 99, 37, 36] start with the image pixel.

Pixels are clustered into characters, then words, and further into text lines. The

hybrid algorithms [106, 4, 80] combine the above two approaches.

1.2 Structured Documents

Many documents we see in daily life contain a repeated structure at both

the physical and semantic levels, and the layout is often based on the function of

their components. Analysis of this functional layout (logical layout) is useful for

converting printed documents to a paperless retrievable database. Using a technical

journal paper page shown in Figure 1.1 as the example, physically segmented zones

can be labeled as title, author, affiliation, section title, footer, regular paragraph, and

so on. Therefore, logical layout analysis often follows the physical layout analysis and

assigns each text zone a label which represents the component’s function. Logical

layout analysis is performed based on either a set of rules [76, 84, 51, 70, 121, 127]

or formal grammars [77, 50, 23, 123].

In recent years, the demand for tools capable of searching written and spoken

sources of multilingual information has increased tremendously. Global organiza-

tions, the proliferation of information on the Internet, and the explosion of in-

formation available in multiple languages have made cross-language communication

essential. Access to large collections of information in a language other than English
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Figure 1.1: The first page of a technical paper with logical labels. (1) Title. (2) Au-

thor. (3) Affiliation. (4) Abstract. (5) Section title. (6) Regular paragraph.

(7) Footer.
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requires either a speaker of that language to help formulate queries and translate

the retrieved documents, or an automated system for Cross-Language Information

Retrieval (CLIR) and Machine Translation (MT). The former is not practical for

large collections, but automated systems for CLIR and MT are evolving rapidly.

CLIR systems can produce acceptable results by performing a term weight transla-

tion between the query and the document languages, thus allowing the use of well

developed term-based search techniques to identify relevant documents. This strat-

egy enables translation at the term level by building lexical resources of term-term

translation pairs.

We can acquire the needed lexical resources in different ways. Resnik has

shown that substantial amounts of translation-equivalent documents can be found

on the World Wide Web for many languages, and a translation lexicon can be

constructed from such a collection using automatic techniques for term-level align-

ment [110]. As the Web grows, this technique could extend to an increasingly large

set of languages. Similar corpus-based techniques can also be used with printed

documents [62]. Corpus-based approaches are particularly useful since the learned

term-term mappings have associated translation probabilities. However, infrequent

terms (which are highly valued by retrieval systems because of their selectivity) are

rarely observed in training data and thus rarely included in the learned translation

pairs. Hand-built translation lexicons have complimentary strengths and weak-

nesses; they usually lack translation probabilities, but they have better coverage of

rare terms that searchers use when posing queries.

Sometimes, these translation lexicons are directly available in electronic form.
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For example, the translation lexicon in an MT system could be used directly for

CLIR. Available MT systems cover fewer than fifty of the world’s thousands of

languages, unfortunately. Online dictionaries present another possible source, but

again, only a limited number of languages have such resources. When digital re-

sources are unavailable, printed dictionaries offer a third source of term-term trans-

lations. Moreover, bilingual dictionaries often contain a wealth of supplemental in-

formation about morphology, part of speech, and examples of usage useful to CLIR

and MT applications. Fortunately, bilingual dictionaries have a repeated structure

which makes logical layout analysis possible. During the analysis of bilingual dictio-

naries, we are interested in the complete entry formed by the definition of a word and

the supplemental information including the pronunciation, part of speech, example

of usage and so on. Different entries are often separated spatially or semanticaly.

Figure 1.2 shows a selection of bilingual dictionaries with different entry separators.

1.3 Multilingual Document Analysis

Compared with monolingual documents, the analysis of multilingual docu-

ments requires specific processing, most importantly script identification and opti-

cal character recognition (OCR). Script identification is absolutely critical to the

performance of OCR. Since Latin-based characters can appear in many different

documents, the OCR designers for almost all non-Latin scripts mush handle script

identification. Identification is usually based on the local feature differences between

two scripts, thus it requires a priori knowledge of the specific script. General script

identification approaches working at page or block level were proposed by Hochberg
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(a) Chinese-English dictionary (b) German-Arabic dictionary

(c) Hindi-English dictionary (d) French-English dictionary

Figure 1.2: Bilingual dictionaries with different separators.

et al. [46], Spitz et al. [119, 117], Waked et al. [134], and Zhu et al. [137]. These

approaches assumed an entire page (or at least one block of a page) would contain

the same script. This is not the case for many bilingual or multilingual documents

where text with different scripts may be interlaced. So, the analysis of multilin-

gual documents requires a general script identification approach that operates at

the word level.

Another challenge the analysis of multilingual documents faces involves OCR

for different languages. As the successful application of computer vision and pat-

tern recognition, OCR for some scripts such as Latin, Cyrillic, and CJK (Chinese,

Japanese and Korean) can provide high performance for scanned printed documents

with high quality. Two commercial products that can recognize almost all Latin-

based languages are OmniPage Pro from ScanSoft, Inc. [2] and FineReaders from
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Abbyy Software House [1]. For each major world language (such as Arabic), a corre-

sponding OCR system works for that language has been designed by researchers who

are native speakers. Current technology often takes an omnicentric view, providing

general solutions, which results in trade-offs between performance and application.

To maintain the generality, no existing OCR system can guarantee high accuracy

across a full range of documents, which makes it difficult to optimize an existing

system for a specific need. The system must be retrained with respect to the spe-

cific need such as a character set or fonts and symbols. However, providing training

samples for an OCR is “a high-skill, tedious, and thus often prohibitively expensive

manual effort” [113]. The rapid retargeting of an existing OCR system to a spe-

cific need (fonts, symbols, and special character sets, especially for a new language)

presents a big challenge in processing multilingual documents.

1.4 Problems We Want to Solve

Considering the tremendous amount of information contained in a printed

dictionary, converting the text into electronic format manually is difficult. An auto-

matic system would assist in extracting information from a printed document. An

important task of automatic document processing is reading text. The automatic

processing of a complex document which contains text, graphics, and/or images

can be divided into three stages: (1) region extraction and text region classification

using document layout analysis; (2) text line, and possibly word (glyphs separated

by white space), and character segmentation; and (3) optical character recognition

(OCR). Depending on document content, scanning quality, and requirements for dif-
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ferent documents, an automatic text reading system usually needs to be redesigned

to meet the different requirements. The redesign needs motivated us to design an

adaptive algorithm for each part, bootstrapping the system to make it more generic.

Using the bilingual dictionary as an example, dictionaries are designed for easy

search [32]. With a typically regular and repeating structure, “keys” offer access

points for each entry. The format varies from simple word-to-phrase translation

pairs to full descriptions containing parts of speech, related forms, and examples of

usage. The structure analysis can help extract and organize information. Recog-

nizing the consistency can also focus automated document analysis systems. The

goal of processing the structured documents involves capturing the salient struc-

ture of the entries and labeling each element appropriately. Because of the regular

structure, we typically can provide a relatively small number of training samples for

each dictionary, then have the system learn the features necessary for correct entry

extraction and labeling.

This research focuses on the rapid and reliable acquisition of electronic infor-

mation from printed structured documents, with an ultimate goal of supporting the

development of CLIR or MT systems which other translation resources lack. In

most parts of the thesis, bilingual dictionaries will be used as typical representa-

tives of the structured documents. Experimental results will also be shown for other

structured documents. Given a bilingual dictionary, with one of the two languages

being English, a scanner, and an operator familiar with the non-English language,

a system can be trained for the new language in as little as 48 hours.
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Chapter 2

Script Identification, Font Face, and Style

Classification

2.1 Word-level Script Identification

2.1.1 Previous Work about Page-level Script Identification

Several techniques for determining a document’s script have been proposed in

the literature. Hochberg et al. [46] described a technique for identifying 13 scripts,

including highly connected ones. In their algorithm, a scale-normalized cluster tem-

plate was created for each script, based on frequent characters or word shapes within

this script. Then scripts were classified by comparing a subset of the document’s

textual symbols with these templates. Spitz et al. [119, 117] initially divided scripts

into Asian (Chinese, Japanese, and Korean) or Latin, based on the observation that

upward concavities are distributed evenly along the vertical axis of Asian characters,

but tend to appear at specific locations in Latin characters. Furthermore, discrimi-

nation among Asian scripts was based on character density. Waked et al. [134, 120]

presented a set of statistical techniques for script identification. Based on con-

nected component analysis and the horizontal projection of a text line, document

images were categorized into script classes (Latin, Arabic, Ideographic, or Cyril-

lic) and seven European language classes. Pal and Chaudhuri [105] proposed an
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approach to identify English, Chinese, Arabic, Devanagari, and Bangla text line.

In their approach, the features used to identify two different scripts were different.

Depending on the characteristics of scripts, the features can be shape-based, statis-

tical, or obtained from the concept of a water reservoir. Chaudhury and Sheth [21]

proposed a trainable script identification scheme to separate Indic languages from

English. The identification was based on a frequency domain representation of the

horizontal profile of the textual blocks, Gabor filter-based features extracted from

the connected components, and the frequency distribution of the aspect ration of

the connected components. In recent years, texture analysis techniques have been

introduced to classify different font styles and font faces. Zhu et al. [137] presented a

font recognition algorithm based on global texture analysis. Gabor filters extracted

the global texture features, which were used to recognize different font styles and

faces. They also demonstrated the capability by identifying Chinese and English

documents with different fonts. A literature survey done by Busch et al. [17] gave a

brief review about using texture for script identification.

2.1.2 Script Identification at the Word Level

The previous work cited above operate at the block or page level, which as-

sumes the block or page contains the same script. Many bilingual or multilingual

documents have text where different scripts interlace. In the English-Chinese bilin-

gual dictionary shown in Figure 2.1, no rule identifies which part should be Chinese

and which part should be English without recognizing the content. Therefore, it is

impossible to combine words which belong to the same script into a whole compo-
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nent before the OCR phase, and the identification must be conducted at the word

level.

Figure 2.1: Part of an English-Chinese dictionary.

While creating an OCR system, the designer usually has knowledge of the

language which he/she needs. By knowing the most significant feature that can

identify that language from the Latin-based script, the designer can use those fea-

tures to perform word level script identification. For example, for Chinese, the

stroke complexity identifies the language in comparison to Latin-based languages,

while for Hindi, the header line of Hindi language is one of its identifying features.

Dhanya and Ramakrishnan [29] proposed a word level script identification approach

to identify Latin and Tamil script, using spatial spread features such as character

density, zonal pixel concentration, and Gabor filter responses. Except the approach

proposed by Zhu et. al [137], all other script identification approaches (both at the

page and word level) require sufficient knowledge about the scripts which makes

them case-dependent. While the analysis of general multilingual document images

can contain any unknown scripts, at the word level a general script identification
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approach is required.

In our work, we perform script identification using the Gabor filter analysis

of textures. The use of Gabor filters in extracting texture features of images is

motivated by two factors: (1) The Gabor representation is optimal in minimizing

the joint two-dimensional uncertainty in space and frequency [27]; and (2) Gabor

filters can be considered orientation and scale tunable edge and line detectors, and

the statistics of these micro-features in a given region characterize the underlying

texture information.

2.1.3 Document Image Preprocessing

The scanning of documents inevitably introduces noise to the scanned images.

Before applying the Gabor filter to extract features, we carry out the following

preprocessing operations.

Deskewing

In practical situations, image skewing can result in misalignment, causing

incorrect text line and word extraction. Therefore, knowing the precise skew angle

of a document image is crucial for horizontal profile computation and text line

extraction. To correct this, it is necessary to accurately determine the skew angle of

a document image or a specific region of the image. For this purpose, a number of

techniques have been presented in the literature [5, 109, 39, 107, 20, 47, 129, 85, 64,

65, 22]. Because of simplicity and efficiency, we chose the transition-count variance

maximization proposed by Chen and Wang [22] to detect the skew angle and deskew
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the document images.

Word Extraction

The DOCSTRUM algorithm [102] works as a bottom-up page segmentation

algorithm that can handle document page images with nonManhattan layout and

arbitrary skew angles. We modified the DOCSTRUM algorithm by inserting an

“make word from connected components” operation. For some languages with many

diacritics (Arabic) or with numerous accents (French), post-processing is often re-

quired to merge the separated diacritics or accents back to the core character. To

merge, every small part which is not on the major text line must find and connect

to the closest large component.

Word Image Replication and Scaling

Word images in different classes, even different word images in the same class,

may occur in different sizes (width and height). To make the extracted features

consistent, word image replication and scaling operations are applied to create a

normalized image with predefined size (64×64 pixels). Features used in the following

classification are extracted from same-sized images. Figure 2.2 shows word image

replication and scaling examples of two different scripts (Arabic, Latin).
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Figure 2.2: Word image replication and scaling. (a,c) The original word images.

(b,d) Replicated and normalized images.

2.1.4 Extract Texture Features Using the Isotropic Gabor Filter

A pair of isotropic Gabor filters extract texture features of each class. The

computational model for 2D isotropic Gabor filters are:

he(x, y) = g(x, y) · cos[2πf(xcosθ+ysinθ)] (2.1)

ho(x, y) = g(x, y) · sin[2πf(xcosθ+ysinθ)] (2.2)

where he and ho are the even- and odd-symmetric Gabor filters, and g(x,y) is an

isotropic Gaussian function with form:

g(x, y) =
1√

2πσ2
· exp

(
−x2 + y2

2σ2

)
(2.3)

The spatial frequency responses of the Gabor functions are:

He(u, v) =
[H1(u, v) + H2(u, v)]

2
(2.4)

Ho(u, v) =
[H1(u, v) + H2(u, v)]

2j
(2.5)

where j =
√
−1 and

H1(u, v) = exp{−2π2σ2[(u− fcosθ)2 + (v − fsinθ)2]} (2.6)
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H2(u, v) = exp{−2π2σ2[(u + fcosθ)2 + (v − fsinθ)2]} (2.7)

f, θ and σ are the spatial frequency, orientation, and space constant of the Gabor

envelope.

In our case, the image size is normalized to 64 × 64 pixels, so four values of

spatial frequency are selected: 0.04, 0.08, 0.16 and 0.32 c/deg. The combination of

these four frequencies with four selected values of θ (0◦, 45◦, 90◦, 135◦) give a total

of 16 Gabor channels.

The non-orthogonality of the Gabor wavelets implies redundant information

in the filtered images. To reduce the redundancy, the filters are designed to insure

the half-peak magnitude support of the filter responses in the frequency spectrum

touch each other, as shown in Figure 2.3.

(a) (b)

Figure 2.3: Frequency response of Gabor filters. (a) The desired response. (b) The

actual response.
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2.1.5 Texture Feature Representation

The Gabor wavelet transform of an image I(x,y) is defined as:

Gmn(x, y) =
∫ ∫

I(s, t)g∗mn(x− s, y − t)dsdt (2.8)

where * indicates the complex conjugate.

Based on the computed mean µmn and the standard deviation σmn of the

magnitude of the transform coefficients, a feature vector (with dimension 32 to

represent 16 channels) is constructed as:

x = [µ00, σ00, µ01, σ01, ..., µ33, σ33] (2.9)

where µmn and σmn are computed as:

µmn =
∫ ∫

|Gmn(x, y)|dxdy (2.10)

σmn =

√∫ ∫
(|Gmn(x, y)| − umn)2dxdy (2.11)

2.1.6 Classifiers

Four classifiers perform the classification. The first is the weighted Euclidean

distance (WED) classifier, which separate the test sample based on the computed

WED. Suppose the feature vector is in a d -dimensional space, and the computed

mean and standard deviation feature vectors for class λi are µ(i), α(i), where i =

1...M and M is the number of classes. Then for each test sample x ∈ Rd, the

distance between this sample and each class is computed using the following formula:

d(x, λi) =
d∑

k=1

∣∣∣∣∣∣xk − µ
(i)
k

α
(i)
k

∣∣∣∣∣∣ i = 1...M (2.12)
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The second classifier is the k -Nearest-Neighbor (k -NN) classifier, which ex-

tends the Nearest Neighbor classifier introduced by Cover and Hart [26] in 1967.

Using the k -NN classifier, a test sample x is assigned the label most frequently rep-

resented among the k nearest samples. A decision is made by examining the labels

of the k nearest neighbors and voting.

The support vector machines (SVMs), work as the third classifier. Introduced

in the late seventies, SVMs have received increased attention recently and been

applied in many fields, including handwritten digit recognition [25], object recog-

nition [12], speaker identification [114], face detection in images [104], and text

categorization [16]. The SVMs construct a “best” separating hyperplane (the maxi-

mal margin plane) in a high-dimensional feature space, which is defined by nonlinear

transformations from the original feature variables. Considering the binary classi-

fication task in which we have a set of training samples {xi, yi}, i = 1, ..., N, yi ∈

{−1, 1}, xi ∈ Rd, where yi are labels corresponding to two classes λ1 and λ2, and

yi = ±1, the discriminant function is defined as:

g(x) = wTΦ(x) + b (2.13)

with the decision rule

wTΦ(xi) + b > 0 for xi ∈ λ1 with yi = +1 (2.14)

wTΦ(xi) + b < 0 for xi ∈ λ2 with yi = −1 (2.15)

and all training points are correctly classified if

yi(w
TΦ(xi) + b) > 0 for all i (2.16)
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Figure 2.4(a) shows two linearly separable sets of data. Many possible hyperplanes

(a) (b)

Figure 2.4: Separating hyperplanes for two sets of data. (a) Linear separating

hyperplanes; (b) Nonlinear separating hyperplanes. The separating hyperplane is

H : wTΦ(x) + b = 0 and two canonical hyperplanes are H1 : wTΦ(x) + b = +1 and

H2 : wTΦ(x) + b = −1. The circled data points (on two canonical hyperplanes) are

support vectors.

can separate these two sets. SVMs’ goal is to determine the hyperplane for which the

margin - the distance between two parallel hyperplanes (H1 and H2 in Figure 2.4,

which are termed the canonical hyperplanes) on each side of the hyperplane H that

separates the data - is the largest. The data points that lie on the two canonical

hyperplanes are called support vectors (circled in Figure 2.4).

The transformation defined by mapping function Φ(x) in Eq. 2.13 can be lin-

ear or nonlinear, and can be applied to the separation of linearly-separable and

nonlinearly-separable-only data. Figure 2.4(a) shows an example of separating hy-

perplanes of linearly-separable data, while the two data sets shown in Figure 2.4(b)

can only be separated nonlinearly. For nonlinear SVMs, the kernel function K(xi,xj),

which is defined as K(xi,xj) = Φ(xi) ·Φ(xj) can be polynomial, Gaussian, or sig-
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moid. Burges [16] gave a detailed description of how to find the separating hyper-

planes. We chose the SVM implementation SVM-light [57] and the polynomial

kernel function for our experiments. The SVMs were trained using randomly chosen

pages.

The last classifier is the Gaussian Mixture Model (GMM), which models the

probability density function of a feature vector, x, by the weighted combination of

M multi-variate Gaussian densities:

p(x|Λ) =
M∑
i=1

pigi(x)

where the weight (mixing parameter) pi corresponds to the prior probability that

feature x was generated by component i, and satisfies
∑M

i=1 pi = 1. Each component

λi is represented by a Gaussian mixture model λi = N(pi, µi, Σi) whose probability

density can be described as:

gi(x) =
1√

(2π)d|Σi|
exp

(
−1

2
(x− µi)

T Σ−1
i (x− µi)

)

where µi and Σi are the mean vector and covariance matrix of Gaussian mixture

component i respectively, and d is the dimension of the input feature vector. So, the

Gaussian mixture is completely specified by the mean vectors, covariance matrices,

and mixture weights of all components and can be represented by

Λ = {λi = N(pi, µi, Σi)} i = 1...M

The probability that an observed input vector x belongs to the class λi = N(pi, µi, Σi)
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is given, in terms of density, by

p(λi|x) =
p(x|λi)p(λi)

p(x|Λ)
= pi

gi(x)∑M
j=1 pjgj(x)

(2.17)

For script identification, component M is the number of different scripts. So

for bilingual documents and 16 channels of Gabor filter features, we have M = 2

and d = 32. Given N training samples {x1,x2, ...,xN}, using standard techniques,

the initial Gaussian mixture model represented by (pi, µi, Σi) is estimated from the

training samples as:

p̂i =
1

N

N∑
n=1

p̂(λi|xn) =
Ni

N
(2.18)

µ̂i =

∑N
n=1 p̂(λi|xn)xn∑N

n=1 p̂(λi|xn)
=

1

Ni

Ni∑
k=1

x
(i)
k (2.19)

Σ̂i =

∑N
n=1 p̂(λi|xn)(xn − µ̂i)(xn − µ̂i)

T∑N
n=1 p̂(λi|xn)

=
1

Ni

Ni∑
k=1

(x
(i)
k − µ̂i)(x

(i)
k − µ̂i)

T (2.20)

In Eqs. 2.18, 2.19 and 2.20, 1 ≤ i ≤ M and Ni is the number of samples which be-

long to class λi. Considering the fact the different distributions of script components

on separate pages, the estimated models are refined iteratively via the maximum-

likelihood detection. At each iteration, the decision for each observation x (test

sample) is:

p(λ1|x)
λ1
>
<
λ2

p(λ2|x) (2.21)
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Substituting Eq. 2.17 into the above equation, then computing the likelihood of

both sides, we come to the following maximum likelihood decision rule:

(x− µ̂2)
T Σ̂−1

2 (x− µ̂2)− (x− µ̂1)
T Σ̂−1

1 (x− µ̂1)
λ1
>
<
λ2

ln (|Σ̂1|)− ln (|Σ̂2|) + ln p̂2 − ln p̂1

(2.22)

2.1.7 Experimental Results

The proposed approaches were applied to 20 randomly chosen pages of four

different bilingual dictionaries: Arabic-English, Korean-English, Hindi-English, and

Chinese-English dictionary. Based on these pages, we carried out the following two

experiments.

Leave-one-out

This experiment tests how the individual classifier affects the performance

for limited data. For each of the four dictionaries, we partition the 20 pages into

19 training pages and 1 test page. The process repeats a total of 20 times, and

Figure 2.5 shows the accuracy across all partitions. According to the experimental

results, k -NN classifier provides the best performace, the identification accuracy for

four dictionaries is betwee 94% and 98%. As the second best classifier for script

identification, SVMs provide comparable performance for some scripts. The results

of four dictionaries demonstrate the effectiveness of the texture features for word-

level script identification.
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Figure 2.5: Comparison of script identification results using four classifiers for the

leave-one-out experiment. (a) Arabic-Latin. (b) Chinese-Latin. (c) Korean-Latin.

(d) Hindi-Latin.

Use-one-training

In this experiment, a single page from the 20 pages is selected as the training

set. The trained system is then applied to all other pages, and the average accuracy

is recorded. Compared with the first experiment, these results show how a smaller

(and more realistic) training set affects the performance. Figure 2.6 shows the results

of this experiment. According to the experimental results, with limited amount of

training data, we are still able to get reasonable performance although with an

accuracy 5% drop down. k -NN and SVMs are still the two best classifiers under this

restriction. For the Hidi-Latin identification result, GMM classifier has a significant

accuracy drop for one page. The reason for such a low accuracy is that the randomly
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chosen page used for training only contains several words. Considering the situation

that the feature used for classification is a 32-dimensional vector, such a small set of

training data is obviously insufficient to precisely estimate a Gaussian model with

high dimension.
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Figure 2.6: Comparison of script identification results using four classifiers for the

use-one-training experiment. (a) Arabic-Latin. (b) Chinese-Latin. (c) Korean-

Latin. (d) Hindi-Latin.

Classification Based on Small Size of Training Set

Since the system requires the capability to rapidly extract information from

printed documents, large amounts of data are not always available. With the con-

straint of small training samples, the Bagging and a modified bootstrap technique

are applied to improve performance.

The bootstrap technique was first proposed by Efron [34] in 1979 and fully
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described in [35]. Initially proposed to evaluate the standard error of an estima-

tion under constraint of small size of samples, the technique has been successful

in improving the accuracy of certain classifiers. One of the most popular classifi-

cation algorithms that applied the bootstrap algorithm is the bagging (bootstrap

aggregating) algorithm proposed by Breiman [14]. Define a deterministic inducer

as a mapping from a training set to a classifier, the bagging algorithm is shown as

follows:

Input: training set S, inducer I, integer T (number of bootstrap samples)

1. for i = 1 to T {
2. S ′ = bootstrap sample from S (i.i.d. sample with replacement)
3. Ci = I(S ′)
4. }
5. C∗(x) = argmaxy∈Y

∑
i:Ci(x)=y 1 (the most often predicted label y)

Output: classifier C∗

Whether bagging will improve accuracy depends on the training procedure’s sta-

bility, improvement will occur for unstable procedures where small changes in the

training set can result in a large change in classifier. In his study of unstability [15],

Breiman pointed out that the k -Nearest Neighbor method is stable, which means

bagging may not improve the performance. In their paper [41], Hamamoto et al.

analyze four different procedures to generate new bootstrap samples, which differ

only in the computation of weights and drawing the first sample. Different from

the traditional bootstrap samples, each generated bootstrap sample is a weighted

combination of the original samples. Let XN = {x1, x2, ..., xN} be a set of original
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training samples for one class, a bootstrap sample set XB
N =

{
xb

1, x
b
2, ..., x

b
N

}
with

size N is generated from the original set XN . The procedure that we applied to

create the desired bootstrap set is:

1. Randomly select one sample xr0 from XN

2. Find the k closest samples xr1 , xr2 , ..., xrk
to xr0

3. Compute a bootstrap sample xb
1 =

∑k
j=0 wjxrj

where wj is a weight which is given by:

wj = ∆j∑k

c=0
∆c

, 0 ≤ j ≤ k

where ∆jis chosen from a uniform distribution on [0,1] and
∑k

j=0 wj = 1
4. Repeat until all N samples are generated

Our classifiers based on small size of training samples are designed by applying two

steps of bootstrapping. Give N training samples, first we generate NB(NB = N×B)

bootstrap samples by iterating the above procedure B times. Then, the bagging

algorithm (with replication T ) is applied to the combination of the N samples and

NB bootstrap samples. The procedure was applied to all the designed classifiers

except the K-Nearest-Neighbor classifier, and the results are shown in Table 2.1.

Table 2.1: Comparison of modified bagging results (N = 200, NB = 20× 200, T =

10) with the “use-one-training” results. (The first row shows the “use-one-training”

results, and the second row shows the modified bagging results.)

Arabic Chinese Korean Hindi

WED SVM GMM WED SVM GMM WED SVM GMM WED SVM GMM

82.24 89.90 86.01 86.64 90.77 90.71 85.36 90.52 91.87 92.35 95.80 91.32

81.26 86.65 86.26 89.75 90.81 90.13 77.59 90.98 91.53 94.70 95.87 88.28
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The experimental results show the capability of Gabor filters to capture the

features of different scripts and the effectiveness of these four classifiers to identify

scripts at the word level. Considering the small number of 400 training samples in

the modified bagging algorithm (one page can contain around 1000 words), the re-

sults in Table 2.1 show the modified bagging algorithm can improve the classification

performance. However, we are trying to provide a general script identification ap-

proach. The identification is a sequential process which includes three main phases:

document image preprocessing, word segmentation, and script identification. Any

factor in the previous phase has influence on the final identification result. By man-

ually examining the results, we found the following factors could affect the identi-

fication results: (i) word segmentation and font face; (ii) image quality; and (iii)

single-character word. So, removing or reducing the effect of these factors can abso-

lutely improve the performance. As the post-processing step, classifier combination

can also be applied to improve the performance [53].

2.2 Font Face Classification

In document analysis, font classification presents an important challenge. With

the availability of an accurate font classifier, an OCR system can be designed as a

combination of multiple single-font recognizers, improving the performance [59, 8].

2.2.1 Previous Work

Unlike font classification approaches based on typographical features extracted

by means of local attribute analysis [69, 24, 116, 139, 115], the approach proposed by

26



Zhu et al. [137, 122] performed the font (including face and style) identification based

on the global texture features extracted with an isotropic Gabor filter bank. This ap-

proach achieved high accuracy for font style identification of computer-generated dig-

ital binary images. However, because of the difference between computer-generated

images and scanned document images, the same approach only gave relatively ac-

ceptable performance for scanned document images. The performance decreased

significantly, especially when the brightness and contrast vary significantly. Ac-

cording to this paper’s analysis, one reason for the decrease involves the approach’s

ability to capture global font attributes but its lesser aptitude in distinguishing finer

typographical attributes. Also, the classifier is a simple weighted Euclidean distance

(WED) classifier, which is not effective in a 32-dimensional feature space.

Considering that they require no local analysis and may be easily tuned to work

on different scripts and different fonts, font identification algorithms using global

texture features are promising. In order to improve classification performance, we

employed a new type of texture operator called a grating cell operator to extract the

texture features and replaced the WED classifier with a back propagation neural

network (BPNN) classifier. The grating cell texture operator is also based on the

Gabor function but is constructed differently from the isotropic Gabor filter bank

operator.

This new operator was inspired by the function of a recently discovered orientation-

selective neuron type in areas V1 and V2 of the visual cortex of monkeys, called

the grating cell [131, 132]. Similar to other orientation-selective neurons, grating

cells respond vigorously to a grating of bars of appropriate orientation, position,

27



and periodicity. But unlike other orientation-selective cells, grating cells respond

weakly or do not respond at all to single bars. As an operator to extract texture

features, Petkov and Kruizinga [108, 78] show that the grating cell operator is very

competitive in texture detection and segmentation. The following section describes

the construction of this operator. Detailed presentation is available in Petkov and

Kruizinga’s paper [108, 78].

2.2.2 Grating Cell Operator

The grating cell operator is based on a 2D Gabor filter bank. The following

family of 2D Gabor functions model the spatial summation properties of a simple

cell:

gλ,θ,ϕ(x, y) =
1√

2πσ2
· exp

(
−x′2 + γ2y′2

2σ2

)
· cos

(
2π

x′

λ
+ ϕ

)
(2.23)

where,

x′ = x · cosθ − y · sinθ (2.24)

y′ = x · sinθ + y · cosθ (2.25)

In Eqs. 2.23, 2.24, and 2.25, the standard deviation σ of the Gaussian envelope

determines the size of the receptive field. The receptive field ellipse is determined

by the parameter γ, which is called the spatial aspect ratio. The value of γ varies in a

limited range (0.23, 0.92) [58], and in our experiments γ has value 0.5. Similar to the

isotropic Gabor filter, the parameter λ determines the preferred spatial frequency

(1/λ) of the receptive field function. The ratio σ/λ determines the spatial frequency

bandwidth of a linear filter. We chose σ/λ = 0.56, as suggested in Petkov and
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Kruizinga’s paper [78, 108]. The parameter θ specifies the orientation, and the

parameter ϕ (ϕ ∈ (−π, π]) is a phase offset and determines the symmetry of the

function g(x, y). Choosing three values (1.56, 3.12, 6.24) for λ and eight values

(0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, 157.5◦) for θ, Figure 2.7 shows the spatial

frequency response of this Gabor filter bank.

Figure 2.7: Spatial-frequency responses of the Gabor filter used for the grating cell

operator.

Using the above parameterization, the response sλ,θ,ϕ(x, y) of a simple cell

modeled by a receptive field function gλ,θ,ϕ(x, y) to an input image I(x, y) can be

computed as follows.

sλ,θ,ϕ(x, y) =


0 if aλ(x, y) = 0

χ

( rλ,θ,ϕ(x,y)

aλ(x,y)
R

rλ,θ,ϕ(x,y)

aλ(x,y)
+C

)
otherwise

where χ(z) = 0 for z < 0, χ(z) = z for z ≥ 0, R is the maximum response level and

C is the semisaturation constant. rλ,θ,ϕ(x, y) and aλ(x, y) are computed as follows:

rλ,θ,ϕ(x, y) =
∫ ∫

I(s, t)gλ,θ,ϕ(x− s, y − t)dsdt

aλ(x, y) =
1√
2πσ

∫ ∫
I(s, t)exp

(
−(x− s)2 + γ2(y − t)2

2σ2

)
dsdt
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A quantity qλ,θ(x, y), called the activity of a grating subunit with preferred orienta-

tion θ and preferred grating periodicity λ is computed as follows:

qλ,θ(x, y) =


1 if ∀n, Mλ,θ,n(x, y) ≥ ρMλ,θ(x, y)

0 if ∃n, Mλ,θ,n(x, y) < ρMλ,θ(x, y)

(2.26)

where ρ is a threshold parameter with a value smaller than but approaching one.

The auxiliary quantities Mλ,θ,n(x, y) and Mλ,θ(x, y) are computed as follows:

Mλ,θ,n(x, y) = max{sλ,θ,ϕn(x′, y′)}

with (x′, y′) satisfying the following conditions:
n(λ/2)cosθ ≤ (x′ − x) < (n + 1)(λ/2)cosθ

n(λ/2)sinθ ≤ (y′ − y) < (n + 1)(λ/2)sinθ

and ϕn takes values as follows:

ϕn =


0 n = −3,−1, 1

π n = −2, 0, 2

Mλ,θ(x, y) = max{Mλ,θ,n(x, y)|n = −3, ..., 2}

In the next stage, as the final output of the grating cell texture operator, the response

Wλ,θ is computed as:

Wλ,θ(x, y) =
1√
2πσ

∫ ∫
(qλ,θ(s, t) + qλ,θ+π(s, t)) · exp

(
−(x− s)2 + (y − t)2

2(βσ)2

)
dsdt

(2.27)

where β takes a value 5.
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2.2.3 Parameter Selection

We use an image containing four Cyrillic fonts to select the parameter val-

ues for the grating cell operator. Because of the parameter γ in expression 2.23

has a value 0.5, different from the isotropic Gabor filter bank operator, we chose

eight directions for the grating cell operator, to cover all possible feature orienta-

tions. Only three spatial wavelengths (1.56, 3.12, 6.24) are chosen for the grating

cell operator (Figure 2.7 shows the spatial-frequency response of this filter bank).

Figure 2.8 shows no significant difference between the segmentation result using

four spatial wavelengths and the result using three spatial wavelengths. Petkov and

Kruizinga [108, 78] suggested the value of ρ in expression 2.26 should be a value

smaller than but near one (such as 0.9). However, we found a value in range [0.4, 0.7]

is more appropriate for the analysis of document images. So in our experiments, the

value of ρ is chosen 0.5.

(a) (b) (c) (d)

Figure 2.8: Segmentation result of four Cyrillic fonts using the K -means clustering

algorithm. (a) Image with four different fonts. (b) Ground truth. (c) Segmentation

result using three spatial frequencies for the grating cell operator. (d) Segmentation

result using four spatial frequencies for the grating cell operator.
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Although we fixed the chosen spatial wavelengths for the texture operator

based on the experimental results, the values of wavelengths can be set dynamically,

which could be decided by the resolution of document images and the average size

of words in the images.

2.2.4 Experimental Results

With two classification techniques applied, we compare the grating cell oper-

ator with the isotropic Gabor filter operator. The first classifier used for the font

classification is a simple weighted Euclidean distance (WED), which is described in

Section 2.1.6 and Eq. 2.12. The second classifier is a three-layer fully-connected feed-

forward neural network classifier (BPNN), using a back propagation weight tuning

method. BPNN’s details can be found in Duda et al.’s book [33]. For this classifier,

the input layer has the same amount of units as the dimension of the input fea-

ture vector, and the output layer has the same amount of units as the font classes.

The hidden layer always contains the same amount of units as the input layer. So,

the BPNN classifier constructed for the isotropic Gabor filter features has 32 input

units and 32 hidden units; while the BPNN classifier constructed for the grating cell

features has 48 input units and 48 hidden units.

The proposed approach was applied to the scanned documents of three dif-

ferent scripts (Latin, Greek and Cyrillic), where each script has five common fonts

Arial(AR), Century Gothic(CG), Comic Sans MS(CSM), Courier New(CN), and

Times New Roman(TNR). Classification results are as follows:
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Font Classification Within Script

This experiment tests the font classification for the same script. Table 2.2

shows the results for three scripts.

Table 2.2: Font classification results using different texture operators and different

classifiers (IGF: Isotropic Gabor Filter, GC: Grating Cell).

Script Latin Greek Cyrillic

Operator IGF GC IGF GC IGF GC

Classifier WED BPNN WED BPNN WED BPNN WED BPNN WED BPNN WED BPNN

AR 93.10 100.00 93.10 100.00 70.59 100.0 58.82 100.0 76.84 71.58 60.00 84.21

CG 87.50 90.62 93.75 93.75 96.67 100.0 96.67 100.0 66.67 100.00 100.00 100.00

CSM 93.54 100.00 93.54 93.54 36.67 93.33 66.67 96.67 83.19 98.32 73.95 98.17

CN 94.00 94.00 94.00 94.00 76.32 86.84 84.21 97.37 36.25 90.00 67.5 94.25

TNR 96.88 100.00 96.88 100.00 96.67 96.67 96.67 96.67 29.46 84.50 53.49 90.31

OCR Performance Comparison

As we mentioned in Section 2.2, as a preprocessor of the OCR, font classi-

fication can help improve performance. Using a recognizer based on the Zernike

moment [68], we evaluated the accuracy of OCR with five fonts. The results are

displayed in Table 2.3. The recognizer with no font classification is trained using

the mixed training set from five fonts, and the final classifier is a Nearest-Neighbor

classifier. The OCR with font classifier has five recognizers built for five fonts re-

spectively, and the final classifier is also a Nearest-Neighbor classifier. The two

OCR systems have the same training set. The results in Table 2.3 show that font

classification can improve the OCR performance.
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Table 2.3: OCR results for Latin, Greek, and Cyrillic scripts with and without

font classification (where “WTFC” means “without font classification” and “WFC”

means “with font classification”).

Script Latin Greek Cyrillic

Font WTFC WFC WTFC WFC WTFC WFC

AR 98.13% 98.28% 98.37% 98.48% 91.41% 93.94%

CG 95.36% 96.17% 94.86% 94.92% 79.25% 89.34%

CSM 96.63% 96.63% 95.59% 96.63% 85.89% 87.22%

CN 95.31% 96.67% 93.85% 93.91% 97.48% 98.35%

TNR 96.33% 96.37% 94.19% 94.22% 91.32% 93.97%

2.2.5 Result Analysis

The results in Table 2.2 show the grating cell operator can accurately capture

texture features of different fonts. According to Petkov and Kruizinga’s experi-

ments [108, 78], the grating cell operator detects only texture and does not respond

to other image attributes, while the traditional Gabor filter operator responds to

both texture and other image attributes, such as edges. Because of the characteris-

tics of document images, character strokes of different fonts often create a series of

gratings with different patterns, which make the grating cell operator more effective

to extract these pattern features.

In Section 2.2 we mentioned that a simple classifier (such as WED) cannot

provide good performance for scanned documents, and when two fonts have close

texture features, a relatively complex classifier is required. Figures 2.9(a) and 2.9(c)

show images of five Cyrillic fonts and the segmentation result using the K -means
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clustering algorithm; only four can be correctly segmented. However, after removing

the representative of Comic Sans MS (Figure 2.9(d)) and using the same parameters

to extract the features, the remaining four parts can be correctly segmented using

the same K -means clustering algorithm (Figure 2.9(f)). So, the feature similarity

of different fonts caused the incorrect segmentation. Comparing this result with

Table 2.2, we can conclude the BPNN classifier improved the classification accuracy.

(a) (b) (c)

(d) (e) (f)

Figure 2.9: Results of font segmentation for different numbers of Cyrillic fonts using

the K -means clustering algorithm. (a) Image with five different Cyrillic fonts. (b)

Ground truth for five fonts. (c) Segmentation result for five fonts. (d) Image with

four different Cyrillic fonts. (e) Ground truth for four fonts. (f) Segmentation result

for four fonts.
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2.3 Adaptive Word-level Font Style Identification

Figure 2.10: An entry from an English-French dictionary.

In a structured document, word font styles often provide additional implicit

information along with the content. For example, Figure 2.10 shows an entry from

an English-French dictionary with a complicated structure. We notice the headword

and derived words are in bold, while the translation and pronunciation are normal,

and the cross-reference, example, and gender of French words are italicized. Accu-

rate OCR alone cannot parse such documents; style information is also necessary.

In addition to providing recognized text, current commercial OCR software often

provides font style information. While italic words are easily detected in most doc-

uments, boldness may differ significantly from the original printing either because

of the original page’s quality or because the scanner did not reproduce the original

quality accurately. Figure 2.11 shows three words extracted from the same scanned

dictionary using the same scanner configuration. Without comparing other words

on the same page, it seems easy to identify the first word as bold and the other two

as normal, where, in fact, all three words are normal. So, identifying word styles

(especially boldness) from scanned documents correctly is not a trivial task, where
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(a) (b) (c)

Figure 2.11: Normal words taken from different pages.

boldness must be detected as a relative measurement with respect to other words

on the same page.

2.3.1 Previous Work

In earlier work on word style identification, Bloomberg [13] proposed a multi-

resolution morphological approach, where features that distinguish styles were ex-

tracted and projected to the lowest reliable resolution. Properties at the lower level

were then returned to the higher resolution image to make a selection mask which

identifies words with different styles. This approach was successful for identification

of italic words but met limited success for bold words. Manna et al. [95] used the

tangent distance as a classification function in a nearest neighbor approach, and a

TD-Neuron discriminant model discriminated between two similar classes for font-

style detection. Kavallieratou et al. [66] presented a slant removal algorithm based

on the vertical projection profile of a word image and the Wigner-Ville distribution.

This approach can identify italicized words. Vinciarelli et al. [130] presented an al-

gorithm to detect the slant based on the number of vertical strokes. This approach

can also detect italicized words. In recent years, texture analysis using wavelets was

introduced to classify different font-styles. Zhu et al. [137] presented a font recog-

nition algorithm based on global textures extracted using Gabor filters. They also
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showed this approach’s capability to identify text blocks with different font-styles.

2.3.2 Proposed Approach

We present a new approach to identify bold and italic words within scanned

documents. Assuming the availability of OCR results, the approach adapts to dif-

ferent documents, different font faces, and different image qualities. The approach

consists of two steps: (1) semi-supervised training which performs exhaustive fea-

ture selection used for classification; and (2) testing performs the style classification

based on selected features. Both steps divide further into the “initialization” and

“iteration” steps shown in Figure 2.12. We describe this approach in the following

subsections.

Figure 2.12: The flow chart of the approach.
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2.3.3 Feature Extraction

For each character, the following features are extracted: (1) stroke width (SW);

(2) foreground density (FD); (3) character aspect ratio (CSR); (4) vertical skeleton

pixel ratio (VSPR); (5) possible slant angle (PS); and (6) nine-zone foreground

density (NZFD). The first three features are straightforward, so we focus on the last

three features as follows:

Vertical skeleton pixel ratio (VSPR): We first skeletonize the original character

Figure 2.13: The cases of vertical and horizontal skeleton pixels.

image by the simple “hit-and-miss” transform described in [54]. For each foreground

pixel in the skeleton image, the stroke’s orientation is decided based on its 3×3

neighbors. Figure 2.13 shows the vertical and horizontal stroke cases, where “1” is

the foreground pixel, “0” is the background pixel and “x” represents the pixel we

don’t care. The VSPR is defined as the fraction of vertical stroke pixels over the

total number of foreground pixels in the skeleton image.

Possible slant angle (PSA): Similar to [130], for each column k of the character

image, we compute the histogram using the following formula:

H(k) =
h(k)

∆y(k)
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Figure 2.14: Example of continuous vertical stroke ratio (ratio=0.5).

where h(k) is the vertical projection of column k, ∆y(k) is the difference between

the maximum and the minimum y coordinates of column k. The angle with the

maximum number of value 1 in H(k) is considered the normal style, and the possible

slant angle is computed by rotating the character image by a small angle in a

predefined range. Figure 2.14 shows an example with continuous vertical stroke

ratio 0.5.

Nine-zone foreground density (NZFD): Each character box is divided into 9 (3×3)

zones (Figure 2.15). For each zone, we compute the foreground pixel density and

position it into a nine-dimensional vector.

Figure 2.15: Nine zones of a character.
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2.3.4 Feature Selection

For each character, the extracted features are placed into a 14-dimensional

feature vector for training and testing. According to [56], feature selection can re-

duce not only the cost of recognition but can also provide a better classification

accuracy due to finite sample size effects. In our work, an exhaustive feature selec-

tion procedure guarantees the optimal feature subset. For each training page, only

the number of words of each style is given, and the evaluation of different feature

subsets is based only on the number of words, not on the actual word styles. It is,

therefore, a semi-supervised training. The classification procedure will be described

in subsection 2.3.5. We address how to evaluate the performance of a feature subset

as follows. Suppose the total number of words in one training page is N (g), and

the number of normal, bold, and italic words is N (g)
n , N

(g)
b , N

(g)
i respectively. After

classification based on one subset of features, the classified numbers of normal, bold,

and italic words are N (c)
n , N

(c)
b , and N

(c)
i . For a word k with M characters, we first

compute the style consistency, defined as: C(k) = Mc/M , where Mc is the number

of characters whose style is the same as the word style. The performance for the

feature subset S is defined as:

J(S) =
N(g)∑
k=1

C(k)−
∑

j=n,b,i

∣∣∣N (g)
j −N

(c)
j

∣∣∣
Let F be the set of all features, the optimal feature subset Sopt is selected as:

Sopt = argmax
S⊂F

J(S)

Compared with the standard training method and tested using different data sets,

we claim the above performance evaluation provides the optimal feature subset in
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most cases because the classes are continuous in feature space and labels are not

random.

2.3.5 Classification

Considering the fact that italic words are more apparent visually than bold

ones, the classifier is designed as a tree classifier with two levels. At the first level,

words are classified into italic and non-italic words, and, at the second level, non-

italic words are classified into bold and normal words. A Gaussian Mixture Model

Figure 2.16: The decision tree for style identification.

(GMM) (described in Section 2.1.6) is constructed for each cluster of characters with

the same code on one page. For each set of the characters with the same code, we

collect their feature vectors, then perform the K -Means clustering (K = 2). The

K -Means clustering result estimates all the parameters of the GMM using standard

techniques (see [11]).

The initial Gaussian mixture model represented by (pi, µi, Σi) is estimated

from the training samples as:

p̂i =
Ni

N
µ̂i =

1

Ni

Ni∑
k=1

x
(i)
k (2.28)
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Σ̂i =
1

Ni

Ni∑
k=1

(x
(i)
k − µ̂i)(x

(i)
k − µ̂i)

T (2.29)

Ni is the number of samples which belong to class λi.

Using Maximum Likelihood detection, the decision rule for a character with

feature x is:

L(x)
λ1
>
<
λ2

TH (2.30)

where

L(x) = (x− µ2)
T Σ−1

2 (x− µ2)− (x− µ1)
T Σ−1

1 (x− µ1) (2.31)

TH = ln
|Σ1|
|Σ2|

+ 2 ln
p2

p1

(2.32)

The confidence of decision for vector x is defined as:

Conf(x) = 1.0− e
−
∣∣∣L(x)−TH

TH

∣∣∣
(2.33)

It is easy to demonstrate that Conf(x) has the response shown in Figure 2.17. After

Figure 2.17: Confidence response.

obtaining the style of character and the decision confidence, a weighted majority

voting approach determines the word style. For example, for the boldness of a word

W with M characters, we compute the weighted voting score as follows:

S(W ) =
M∑

k=1

Conf(xk)[I(k is normal)− I(k is bold)]
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where xk is the feature vector of the kth character, I(·) is the indicator function

which only takes values 1 or 0 depending on whether the logical expression inside is

true or false. The word style of word W is determined based on the following rule:

S(W )
normal

>
<

bold

0

In the iterative procedure, once a word’s style is determined, the styles of characters

are set the same as the word style, then the updated character information help

update the GMM in the next iteration.

2.3.6 Experimental Results

Using one page for training, we applied the proposed GMM approach to four

bilingual dictionaries and compared the results with ScanSoft’s SDK 2000 by ran-

domly choosing 20 pages from each dictionary. Figure 2.18 shows the comparison.

From the results, we can see the proposed approach performs better for both bold

and italic style detection. For some documents, the improvement can reach 50%.

2.3.7 Robustness Analysis

The proposed approach depends on OCR performance. To evaluate the ro-

bustness with respect to OCR results, we generate four images from four pages of

texts. Using one image as the training sample to select features, the approach was

applied to 16 sets of images which were degraded with different levels of noise. The

results are shown in Figure 2.19, where the x-axis is the accuracy of OCR. The

result shows that this approach is more robust for boldness detection than for italic
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Figure 2.18: Result comparison for four bilingual dictionaries.

style detection. The detection rate for boldness is always higher than 90% while the

false alarm rate is higher than 10% when the OCR accuracy is lower than 65%. For

italic style detection, the detection rate is higher than 90% when the OCR accuracy

is higher than 87%. By examing the degraded images, we found there are many

broken strokes for images with low qualities, which affect not only the character

segmentation, but also the features for style detection. For SDK, the detection of

boldness totally failed, and the italic style detection is at the same level as the

proposed approach when the image has a high quality. The work was published

in [89]
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Figure 2.19: Performance corresponding to different image quality.
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Chapter 3

Adaptable Optical Character Recognition

3.1 Introduction

Digital document processing is gaining popularity for application int office and

library automation, bank and postal services, publishing houses, and communica-

tion management. An important task of automatic document processing involves

reading text. The automatically processing of the text components of a complex

document which contains text, graphics, and/or images can be divided into three

stages: (1) region extraction and text region classification using document layout

analysis; (2) text line, and possibly word (glyphs separated by white space), and

character segmentation; and (3) optical character recognition (OCR). Typically, the

OCR classifier stage needs to be redesigned for each new script, while the other

stages are easier to port. OCR technology for some scripts like Latin and Chinese is

fairly mature and commercial OCR systems are available with accuracy higher than

98%, including OmniPage Pro from ScanSoft, FineReader from ABBYY for Latin

and Cyrillic scripts, and THOCR from Tsinghua University for Chinese.

Although commercial systems are available for Latin, Cyrillic, far east, and

many middle eastern languages, such systems for Indic scripts, as well as many

low density languages, are still in the research and development stage. Sometimes

technical challenges present the difficulty, but more often it is due to a lack of a
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commercial market. Nevertheless, a real need exists for OCR in these languages.

The DARPA TIDES program supports a project at the University of Maryland

that focuses, in part, on acquiring resources rapidly from printed resources such as

bilingual dictionaries. With the large number of languages globally, obtaining OCR

system of every language is unrealistic. Instead, we need to be able to retarget OCR

systems to deal with specific tasks, including new languages or new scripts.

During the “Surprise Language” task for TIDES that focused on Hindi, we

faced the challenge of rapidly acquiring Hindi OCR capabilities. Since no feasible

commercial OCR system was available, we wanted to develop one rapidly. In this

chapter, we present a Devanagari (Hindi) OCR system using generalized Hausdorff

image comparison that was developed and trained in less than a month. Trained

using character samples extracted from different documents, the OCR system can

be easily adapted to perform Devanagari OCR of other fonts. Details of a complete

system for segmenting, parsing, and tagging bilingual dictionaries can be found

in [93].

3.1.1 Background

Devanagari, an alphabetic script, is used in a number of Indic languages,

including Sanskrit, Hindi, and Marathi, and many other Indic languages use close

variants of this script. Although Sanskrit is an ancient language no longer spoken,

written material still exists. Hindi has descended directly from Sanskrit through

Prakrit and Apabhramsha, and has been influenced and enriched by Dravidian,

Turkish, Farsi, Arabic, Portugese, and English. The third most common language

48



after Chinese and English, approximately 500 million people speak and write Hindi.

Thus, research on Devanagari script, mainly int Hindi, attracts interest. In the rest

of this chapter, Hindi, the language, and Devanagari, the script, are interchangable.

Unlike English and other Latin script languages, Hindi has few, commercial

OCR renders. Chaudhuri and Pal proposed a Devanagari OCR system that is being

marketed as a custom solution, but is not yet available commercially. The basic

components of the system, were described in the literature [19, 20]. After word and

character segmentation, a feature-based tree classifier recognized the basic charac-

ters. Error detection and correction using a dictionary search brought the recogni-

tion accuracy of the OCR to 91.25% at the word level and 97.18% at the character

level on clean images. In his Ph.D. thesis [9], Bansal designed a Devanagari text

recognition system by integrating knowledge sources. Character features such as

horizontal zero crossings, moments, aspect ratios, pixel density in nine-zones, num-

ber, and position of vertex points, with structural descriptions of characters were

used to classify characters and perform recognition. Based on dictionary search,

the accuracy after correction averaged about 87% at the character level for scanned

document images.

Both of the OCR systems mentioned above need vast amounts of training data

with ground truth to achieve acceptable levels of performance. Data collection and

ground-truthing is time consuming and labor intensive. Even so, before feeding a

new Hindi font to the OCR, the system must be retrained to obtain reasonable accu-

racy. In our application, we benefit by needing only a small number of fonts for any

given dictionary. We propose an approach to build a Hindi OCR quickly. Character
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segmentation is similar to the approach proposed in [9] with minor changes, and the

recognition is based on the generalized Hausdorff image comparison, which is like

a template matching method but overcomes some traditional disadvantages. This

OCR does not need to be trained using a large number of training samples, and

easily adapts to different types of documents.

3.1.2 System Design

Our Hindi OCR, designed to work on pure Devanagari, or bilingual and

multilingual document images with one script being Devanagari, is shown in Fig-

ure 3.1. The system contains three functional components: (1) document image

pre-processing including denoising and deskewing; (2) segmentation and script iden-

tification at the word level; and (3) a classifier. In the following sections, we describe

the word level script identification and focus on the design of the Hindi classifier.

Figure 3.1: System architecture.

First, the system scans pages of Hindi text at 300 or 400 DPI. Images are first

pre-processed with denoising and deskewing [52, 47]. An implementation of DOC-
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TRUM [102] segment the pre-processed images into zones, text lines, and words.

Then, components of the page are segmented further into entries based on the func-

tional features of documents using the approach described in [87]. Figure 3.2 shows

segmented dictionary entries. Script identification identifies the segmented word

images as Devanagari script or Latin script words (including symbols neither Latin

nor Devanagari). The identified Latin script word images can be processed by a

commercial English OCR, while the Hindi word images are segmented into charac-

ters, then, all character images are fed into a classifier to perform recognition. After

post-processing, the output of the Hindi OCR combines with the OCR output of the

Latin script to provide a complete result. The details of the approach and results

are described in the following sections.

Figure 3.2: Segmented entries of the Hindi-English dictionary.
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3.2 Technical Approach

3.2.1 Devanagari Script Identification

Before describing which features can identify Devanagari script words within

bilingual or multilingual document images, we examine the appearance of Devana-

gari script. Typically, regular Hindi words can be divided into three strips: top,

core, and bottom. For the Hindi word ak� lFn , Figure 3.3 shows the five-character-

word image, in which three strips are illustrated. The header line always separates

the top strip and core strip but no corresponding feature separates the bottom strip

from core strip. The top strip contains the upper modifiers, and the bottom strip

contains the lower modifiers. In a Hindi word, the top and bottom strips are not

always necessary, which depend on the appearance of upper and lower modifiers.

Figure 3.3: Three strips of a Hindi word.

In [88] and the previous chapter, we proposed an approach to identify scripts

at the word level based on the texture features extracted using Gabor filters. The

performance of the approach can be improved by applying Supported Vector Ma-

chines (SVMs), as found in [90]. The approaches in [88, 90], identify scripts under

the assumption that the operator knows nothing about non-Latin script, and the

only feature used for script identification is extracted in 16 Gabor channels. For a

specific script, some non-texture features can improve the performance when known
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by the system. The Hindi header line presents such a powerful feature that it identi-

fies Hindi words in bilingual or multilingual document images. For each segmented

word with width W and height H, we compute the horizontal projection (denoted

by HP) of this word, then find the maximum value HPmax and the position PSmax

of the maximum value. A word could be identified as a Hindi word if and only if:

HPmax > 0.8W

PSmax > 0.5H

In some documents, a single Latin character, such as E, e, R, T, t, I, P , D,

F, l, Z, z, or B in a specific font face may also satisfy the above two criteria. So,

these misidentification cases must be handled to improve performance. In a regular

document, all these characters except I seldom appear as a single character, and

I is usually much narrower than a single Hindi character. These misidentifications

are removed by setting a word width threshold that depends on font size and res-

olution of the document image. Figure 3.4 shows the performance comparison of

two script identification approaches, SVM and the above-mentioned Script-Oriented

approach, on 20 randomly chosen pages. The results demonstrate both approaches

work effectively with an average accuracy higher than 93%, and the latter is much

higher with an average accuracy of 98.94%.
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Figure 3.4: Accuracy comparison of two script identification approaches (random

pages, sorted by script-oriented accuracy).

3.2.2 Character Segmentation

Devanagari Script Overview

Devanagari contains 11 vowels (shown in the first row of Table 3.1) and about

33 consonants (shown in Table 3.2). Each vowel except a corresponds to a modifier

symbol as shown in Table 3.1’s second row. In Hindi, when consonants combined, a

consonant with a vertical bar may appear as a half-form. Except for the characters

k and P, the half forms of consonants are the left part of original consonants with

the vertical bar and the part to the right of the bar removed. Table 3.3 shows the

half consonants, where the order of characters corresponds to the order in Table 3.2.

Table 3.4 gives examples of combinations of half-consonants with other consonants,

which are not always left-right structured. Sometimes the combination orients from

top-down, or becomes a new character. Examples of special combinations are shown

in Table 3.5. In addition to these special combinations, Table 3.6 lists some special
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Hindi symbols. The list of special combinations is far from complete, while all cases

need to be handled. In subsection 3.2.3, we address dealing with special cases with

an operator’s feedback.

Table 3.1: Vowels and corresponding modifiers.

Vowels: a aA i I u U � e e� ao aO

Modifiers: A E F � � � � { o O

Table 3.2: Hindi consonants.

k K g G R c C j J � V

W X Y Z t T d D n p P

b B m y r l v f q s h

Table 3.3: Half forms of Hindi consonants with a vertical bar.

Hindi Character Segmentation

Taking the segmentation of the Hindi word -vFk� Et as an example, the procedure

to segment a Hindi word into characters (including core characters, and upper and

lower modifiers) is illustrated in Figure 3.5. The numbered arrows in Figure 3.5

represent the segmentation steps, and the characters with solid boundary are the

final segmentation results. The procedure to perform character segmentation can

be described as follows:
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Table 3.4: Examples of combination of Hindi half-consonants and consonants.

k k?k k l?l G n ]n c � Q� � c �c t n (n p t =t p l =l

b v Nv B n <n m l Ml l lSl f n [n f b [b f l[l s n -n

Table 3.5: Examples of special combination of Hindi half-consonants and consonants.

k q" j �+ V V Ó V W á t r / d d �

d D � d v � d v r �ý f r� d B� d y�

• Step 1: Locate the header line and separate the core-bottom strip (containing

the core strip and bottom strip) from the top strip (containing the header line

and the upper modifiers).

• Step 2: Separate the core strip and the bottom strip, and extract the lower

modifiers.

• Step 3: Separate the core strip into characters which may contain conjunct/shadow

characters.

• Step 4: Segment the conjunct/shadow characters into single characters.

• Step 5: Remove the header line from the top strip and extract the upper

modifiers.

• Step 6: Put the header line back to the segmented core characters.

The details for each step are described below. We denote the width of the

Hindi word bounding box as W, the height as H, and the coordinates of the left-top
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Table 3.6: Special Hindi symbols.

* � � ) ' w x \  , . _ �

Figure 3.5: The procedure of Hindi character segmentation.

corner are set as (0,0).

Step 1: Separate the top strip and the core-bottom strip. The separation of

the top strip and the core-bottom strip is based on the header line’s location. For

each word, we compute the horizontal projection (HP) and find the row (with Y-

coordinate y) having the maximum value of HP. This is the candidate of the header

line position. A header line candidate can be the real header line if: y ≤ 0.4H. If

this condition is not satisfied, then set the HP value of this row to zero and search

the row again with the maximum value until a real header line position is located.

The maximum HP value is marked as HPmax, and the position of the header line

is marked as hPosition. Setting hPosition as the center, traverse the adjacent ten

HP values at each side of hPosition and find the continuous rows whose HP values

are all greater than 0.8HPmax. The number of these continuous rows is the word’s
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stroke width, which is marked as StrokeWidth and important for the post-processing.

hPosition is updated as the first row’s Y-coordinates of the header line. The header

line separates the Hindi word into the top strip, including the header line, and the

core-bottom strip. Step 1 of Figure 3.5 demonstrates this procedure.

Step 2: Separate the core strip and the bottom strip. This procedure is shown

briefly in step 2 of Figure 3.5. Denoting the width and height of the core-bottom

strip obtained in the last step as Wcb and Hcb, and using the Hindi word �� fn� mA

containing two lower modifiers as an example, the detailed procedure is shown in

Figure 3.6, by dividing it into the following steps:

(1) Compute the vertical projection V Pcb of the core-bottom strip (Figure 3.6(a)).

(2) The columns with no black pixels separate the Hindi word into several char-

acter candidates, which may contain conjunct/shadow characters or even in-

correctly segmented characters (Figure 3.6(b)).

(3) Find the maximum height of these characters and denote it Hmax. The sepa-

rated characters divide into three groups. The first group contains all charac-

ters with height greater than 0.8Hmax, the second group has characters whose

height is between 0.8Hmax and 0.64Hmax, and the remaining characters make

the third group. The group with the maximum number contains normal char-

acters without the lower modifiers, and the maximum height of members in

this group is set as a threshold hTh. If (Hcb−hTh) ≥ Hcb/4, the word contains

at least one lower modifier (Figure 3.6(b)).

(4) The horizontal projection HPcb is computed for each separated character with
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a lower modifier.

(5) In the HPcb obtained in the last step, set hTh as the center. Traverse the

adjacent five values at each side of hTh. The row with the minimum HPcb

value is the boundary that segments the core-bottom strip character into the

core character and the lower modifier (Figure 3.6(c)).

(a) (b) (c)

Figure 3.6: Extraction of lower modifiers from the core-bottom strip. (a) The core-

bottom strip and its vertical projection. (b) Separated characters based on the

vertical projection, the number under each character is its height, and numbers

with ‘*’ are used to compute the threshold hTh = 22. Note: The second character

is segmented incorrectly into two characters, but it doesn’t affect the final result.

(c) Two characters with lower modifiers and their horizontal projections, where the

two straight lines denote the separation positions.

Step 3: Separate the core strip into characters. In this step, the core strip is de-

composed into characters. The conjunct/shadow characters, which need further

segmentation, will be determined in this step as well. We borrow the definition of

shadow character from Bansal and Sinha [10]. A character is under the shadow of

another character if they do not physically touch but cannot be separated merely

by drawing a vertical line. In their paper, Bansal and Sinha proposed an approach
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based on the statistical information (such as average width, minimum and maxi-

mum width) of characters on the text line. The approach obviously can not model

our case, because in the bilingual documents, Hindi words and English words are

usually interlaced. It is impossible to obtain one Hindi text line that contains words

of the same size. Therefore, we separate a Hindi word into characters and determine

conjunct/shadow characters based on the statistical information obtained from the

current Hindi word. Before extracting the information, the Hindi modifier “A” has

a much smaller width than the regular characters after removing the header line.

So, this character cannot be applied in the computation of statistical information of

character width. Fortunately, this character is easily located based on the obtained

stroke width from the first step. The separation of the core strip and the deter-

mination of conjunct/shadow characters are shown in step 3 of Figure 3.5, where

one conjunct character is located. Taking the segmentation of another Hindi word,

i-t�mAl , as an example, Figure 3.7 details the procedure, which can be describe as:

(1) Using the method in step 2, separate the core strip into characters based on

the vertical projection (Figure 3.7(b));

(2) For each separated character, if the width is smaller than 2StrokeWidth,

consider this as A and remove it.

(3) Find the minimum width of remaining characters and denote this as Wmin;

(4) For each remaining character, if the width is greater than 1.5Wmin, remove

the character as it may be a conjunct/shadow character that can affect the

statistical information significantly (Figure 3.7(c));
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(5) After removing the too-narrow and too-wide characters, compute the average

width of the remaining characters and denote it as Wavg;

(6) Traverse all the separated characters, each character with width wider than

1.2Wavg is considered a conjunct/shadow character which needs further seg-

mentation (Figure 3.7(d)) ;

(a) (b) (c) (d)

Figure 3.7: Conjunct/shadow character determination. (a) Original word image

(located header line provides StrokeWidth=6). (b) Five characters separated based

on the vertical projection, with width 26, 51, 28, 7, 32, respectively. (c) Three

characters used to compute the average width, with width 26, 28, 32, respectively,

where Wmin = 26 and Wavg = 28.7. (d) Detected conjunct character (with width

51).

Step 4: Segmentation of the conjunct/shadow character. The segmentation of

a conjunct character is complicated by the different characteristics of conjunct and

shadow characters. They are described as follows:

Segmentation of the Conjunct Character: To segment the conjunct char-

acter is to find the segmentation column from the right and the left sides of the

word image, then determine the final segmentation position by comparing the two

columns. After examining all the consonants, we found the following four observa-

tions:
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(1) In each conjunct character, the right part is a full consonant wider than the

left part, and the left part is always a half consonant.

(2) For each consonant that can be combined with a half consonant to create a

conjunct character, after removing the header line, the vertical bar, and the

part to the right of the vertical bar (if there is a vertical bar), the horizontal

projection of the remaining part always connects without any discontinuity.

(3) Neither of a conjunct character’s two parts can be too short.

(4) The pixel strength in the touching column of the two characters is usually less

than that of other columns.

So, the segmentation algorithm contains three steps, based on the above observa-

tions. In the first step, segmentation column C1 is located by examining the right

part of the conjunct character image (based on observations (1), (2) and (3)). Then,

segmentation column C2 is located by examining the left part of the conjunct char-

acter image (based on observations (1), (3) and (4)). In the last step, the final

segmentation column C is determined by comparing C1 and C2.

We use the computation of the collapsed horizontal projection (CHP) as de-

fined by Bansal and Sinha [9, 10] to detect the continuity of an inscribed image.

Collapsed horizontal projection can be described as: for each row of the inscribed

image, if one foreground pixel can be found, then set the projection of this row 1;

otherwise set the projection of this row 0. The operations in the three steps are as

follows.
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Locate the segmentation column C1: Illustrated in Figure 3.8, the procedure

to locate the segmentation column C1 can be described as

(1) Check if a vertical bar exists in the right part of the image by computing the

vertical projection of the right half of the conjunct image.

(2) If a vertical bar is present, remove the bar and the image to the right of the

bar from the conjunct image. Figure 3.8(b) shows the new image.

(3) Suppose the right boundary of this new image is nRight, then the initial C1 is

set at one stroke width to the left of nRight. Inscribing the right part of the

image between C1 and nRight, the CHP is computed.

(4) If the CHP has no discontinuity and the inscribed image is higher than H/3,

C1 is the segmentation column and stop the searching procedure.

(5) Otherwise, shift C1 one column left and repeat the above computation until

a C1 that satisfies the above criteria is found.

This searching procedure is detailed in Figure 3.8(c), where the first two inscribed

images have discontinuity, and the final C1 is shown in the last image.

Locate the segmentation column C2: As we mentioned in subsection 3.2.2,

most half consonants have no vertical bar, but two consonants, k and P , whose half

forms also have a vertical bar. The appearance of the vertical bar can affect the final

segmentation column result. So, before setting the initial segmentation column C2,

we need to check the occurrence of the vertical bar in the left half of the conjunct

image using the vertical projection. If no vertical bar is found in the left part of the
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(a) (b)

(c)

Figure 3.8: Segmentation of the conjunct Hindi character (to find C1). (a) The

conjunct character image. (b) The remaining character image with vertical bar

removed. (c) Steps to search for C1.

image, the initial C2 is set at W/3, where W is the width of the conjunct image.

Searching of the segmentation column C2 is described as:

(1) Suppose the left boundary of the conjunct image is nLeft, the height of the

inscribed image between nLeft and W/3 is computed.

(2) If the computed height is less than H/3, then C2 shifts one column right. If

the inscribed image is higher than H/3, then C2 shifts one column right, but

only if the pixel strength of the new column is not greater than the present

column. The pixel strength of the column is defined as the number of black

pixels.

(3) Iterate the above steps until locate a segmentation column C2 that meets the

requirement.

64



This procedure is shown in Figure 3.9, where the inscribed image is always higher

than H/3, and the strength for the next column is shown in all three subfigures.

If the left part of the image has a vertical bar, suppose the right column of the

bar has location bRight, then set the initial segmentation column C2 as bRight+1.

Since the height of the inscribed image between nLeft and C2 is higher than H/3,

C2 shifts one column right only if the pixel strength of the new column is not greater

than the present column. Figure 3.10 shows one example.

Considering the observation (1), C2 must be smaller than W/2, which adds

another stop condition for the determination of C2.

Figure 3.9: Segmentation of a conjunct Hindi character (to find C2).

Figure 3.10: Example of conjunct Hindi character with two vertical bars.

Locate the segmentation column C by comparing C1 and C2: If an actual

conjunct character is detected, the found segmentation columns C1 and C2 should

be close. Considering the stop conditions of the searching iterations of C1 and C2,

C1 cannot be less than C2 for a real conjunct character. So, segmentation column
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C is decided using the following three situations:

(a) C1 is less than C2: the detected character is not a real conjunct character,

so no further segmentation is needed.

(b ) C1 is greater than C2, and C1 and C2 are close: If the difference between

C1 and C2 is less than the stroke width, then the segmentation column C is set as

the average of C1 and C2.

(c) C1 is one or more stroke width larger than C2: The segmentation column

C is set as the column that is one stroke width left of C1, and only the right part

will be extracted. The remaining left part will be considered as a new conjunct

character image with further segmentation needed.

Segmentation of the Shadow Character: The detection of a shadow char-

acter is straightforward. First, we find the character’s left-most pixel. Then, the

connected component starting from this pixel is detected, and the bounding box

of this connected component is computed. If the right value of the bounding box

is less than the right value of the original character image, then the character is

considered a shadow character requiring further segmentation. The segmentation of

a shadow character is shown clearly in Figure 3.11. Not many shadow cases exist in

Hindi words. Usually in the shadow character image, the right character can be rep-

resented as a single connected component. So, the shadow character segmentation

starts at the right side. First, we find the image’s right-most black pixel, then use

this pixel to find the connected component using 8-neighbor tracing. The connected

component is considered the right character and separated from the original image.

The left character is the remaining part with the detected connected component
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(a) (b)

(c) (d)

Figure 3.11: Segmentation of the shadow character. (a) Determination of the shadow

character. (b) Bounding box of the connected component (the right character).

(c) Bounding box of the left character. (d) Segmented characters.

removed.

The above mentioned segmentation can be extended to the segmentation of the

shadow upper modifiers (the lower modifiers usually do not have shadow situations).

Three examples of shadowed upper modifiers are shown in Figure 3.12.

Figure 3.12: Examples of shadow upper modifiers.

Step 5: Extract the upper modifiers. The extraction of upper modifiers from

the top strip (show in step 5 in Figure 3.5) is simple and straightforward. The header

line is removed from the top strip first, then the vertical projection of the remaining

strip is computed. The upper modifier’s boundary is located based on the column

without any black pixels. In some special cases, two upper modifiers may touch

each other, which are separated as a single upper modifier. Further segmentation of

the upper modifiers will be handled as a special case, described in subsection 3.2.3.
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Step 6: Replace the header line in the segmented characters. A straightforward

step, the header line is replaced to each segmented core character for recognition in

the next step.

In these operations, some constants are defined. Part of these constants depend

on the natural characteristics of the Hindi character, such as the factors 0.4, 0.8,

0.64, 1.2, 1/4, 1/3, and 1/2, which are usually fixed for different fonts or different

sizes of Hindi words. Some constants (such as the 5 and 10 when traversing the

projection profile) depend on size of Hindi words. We chose these constants based

on experimental results as they can be fixed when the font has the standard size

used in regular documents, or they can be changed based on a new size.

3.2.3 Recognition

In a typical OCR system, feature extraction is probably the most important

step to achieve high performance of character recognition. Devijver and Kittler [28]

defined feature extraction as the problem of “extracting from the raw data the infor-

mation which is most relevant for classification purposes, in the sense of minimizing

the within-class pattern variability while enhancing the between-class pattern vari-

ability.” Considering many variations of the same character exist, good features for

character recognition should be invariant to transformation, such as scale and rota-

tion. Some feature extraction methods work on grayscale images, while others work

on binarized images, vector images (thinned skeletons), or outer symbol contour.

Trier et al. presented an overview of feature extraction methods for recognition

of segmented (isolated) characters [126]. OCR approaches can be classified into
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template matching, transforming, zoning or moment based.

Our Hindi character recognition approach is based on the Hausdorff image

comparison. Huttenlocher et al. [49] proposed efficient algorithms to compute Haus-

dorff distance, comparing the resemblance between two binary images with the as-

sumption that only a translation appears between two images. We applied the

generalized Hausdorff image comparison (GHIC) to determine the resemblance of

one segmented character (a point set) to another character (a template point set),

by examining the fraction of points in one set that lie close to points in the other set,

and vice versa. Two parameters determine the degree of resemblance of two point

sets: (1) the maximum distance at which points can be separated and still be con-

sidered near; and (2) what fraction of the points in one set are at most this distance

away from points of the other set. Hausdorff-based distance measures differ from the

correspondence-based matching techniques in that no pairing of points in the two

sets are compared [49]. Often in matching and recognition problems, the two im-

ages undergo a geometric transformation in the matching process. We are concerned

with finding the transformations of one image (character image) that produce good

matches to the other image (template image). In the following subsections, we give

a brief introduction of generalized Hausdorff image comparison.

Generalized Hausdorff Image Comparison (GHIC)

Given two sets of points A = {a1, ..., am} and B = {b1, ..., bn}, the Hausdorff

distance is defined as:

H(A, B) = max(h(A, B), h(B, A))
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where h(A, B) = maxa∈Aminb∈B||a−b||. The function h(A, B) is called the “directed

Hausdorff distance” from A to B (this function is not symmetric and thus not a true

distance). It identifies the point a ∈ A furthest from any point of B, and measures

the distance from a to its nearest neighbor in B. So the Hausdorff distance, H(A, B),

measures the degree of mismatch between two image point sets, as it reflects the

distance of the point of A furthest from any point of B and vice versa.

The Hausdorff distance is very sensitive to even a single outlying point of

A or B. For example, consider A = B ∪ x, where the point x is a large distance

D from any point of A. In this case, H(A, B) = D, which is determined solely

by the point x. Considering the fact that scanned images are often noisy and

of different quality, directed Hausdorff distance cannot provide a satisfying match

between two character images. Therefore, when performing recognition, rather than

using H(A, B), a generalization of the Hausdorff distance (which does not obey the

metric properties on A and B, but does obey them on specific subsets of A and B)

is used. This generalized Hausdorff measure takes the kth ranked distance rather

than the maximum, or the largest ranked one:

hk(A, B) = kth
a∈Aminb∈B||a− b||

where kth denotes the kth ranked value (or equivalently the quantile of m values).

For example, when k=m, then kth is max. When k=m/2, then the median of

the m individual point distances determines the overall distance. Therefore, this

measure generalizes the directed Hausdorff measure by replacing the maximum with

a quantile.
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For character recognition, we are interested in using the Hausdorff distance

to measure the similarity of one image bitmap I (the character image) with some

“model” bitmaps M (character templates or samples), under the assumption that

only translation transformation can exist between two matched bitmaps. In other

words, we seek all translations t ∈ R2 such that hk(M + t, I) ≤ δ. The parameter

k tells us how many of the model points should be near image points to classify a

given translation as a potential matching instance of the model (i.e., we allow m-k

of the m model points to be outliers). The parameter δ tells us how close each non-

outlying model point must be to some image points. In our work, the parameter k

depends on the scanning image quality, while parameter δ is determined based on

the shape variability of same characters in different context.

To find each translation such that hk(M + t, I) ≤ δ, we form I ′ = I +Cδ, then

compute the correlation of M with I ′. For each translation t of M with respect to

I ′, the correlation determines p, how many points of M + t are superimposed with

I ′ (the logical and of M + t and I ′). If the point number p of one translation is

greater than or equals k (i.e. p ≥ k), then the current model M with translation t

is considered a match to I, i.e. hk(M + t, I) ≤ δ is satisfied. We refer to p/m as the

Hausdorff fraction for a given translation t (at some fixed δ). The Hausdorff fraction

measures the percentage of M + t near (within δ of) points of I, which provides the

degree of similarity of two image point sets and can provide the confidence value of

recognition.

The computation of hk(M + t, I) ≤ δ alone does not necessarily find good

matching of M in I, rather it finds portions of I that could contain M plus some
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other points. For instance, with black as the foreground pixel, a totally black image

will match any model in any translation. Thus, we must use the other direction

of the generalized Hausdorff measure, hk(M + t, I), to “verify” those translations

where hk(M + t, I) ≤ δ. This reverse Hausdorff fraction ensures a given portion of

an image’s points (covered by the model array) are near points of M + t. It thereby

prevents situations in which a totally black image may match any other images.

The details of the generalized Hausdorff image comparison can be found in

[49]. In our recognition, the forward and reverse distance thresholds are specified

to compare the resemblance between a character and the templates. Under the

constraint of the two thresholds, more than one character may satisfy the conditions,

thus the forward and reverse Hausdorff fractions can prune the character candidates.

Furthermore, we also set two thresholds of these two fractions. The sum of the

forward and reverse Hausdorff fraction computes the confidence (half of the sum

which has value between 0.0 and 1.0) of character recognition, and the confidence

value is used for follow on processing, which will be discussed in Section 3.4.

Normalization of Template and Character Images

Since we consider only the translation when computing the generalized Haus-

dorff image measure to perform recognition, the same character cannot be matched

in different sizes. One solution to solve the scaling problem involves image nor-

malization, i.e. the template and character images fed into the system must be

normalized before computing the Hausdorff distance. We employ a simple normal-

ization based on the long edges of images, which normalizes all core characters into
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images with long edge 32 and all upper and lower modifiers into images with long

edge 16, while preserving the aspect ratio. Denoting the image’s dimensions as W

(width) and H (height), the normalization procedure is:

Dmax = max(W, H)

if low or upper modifiers, then

Factor = 16/Dmax

else

Factor = 32/Dmax

NW = W × Factor, NH = H × Factor

Resize the image into a new image with size NW ×NH

The constants 16 and 32 are not important in the normalization step, we can change

this value into a variable, dependent on the average size of character images.

Classification of Characters

Hindi characters do not contain a vertical bar at the left. If a vertical bar

is present, it either appears at the right end (End Bar) or in the middle (Middle

Bar) of characters. Given the presence and position of the vertical bar and the

conjunction number of the character with the header line, all core Hindi characters

can be divided into the following six groups shown in Table 3.7.

The four characters g Z f � in the Special Case class possess an end bar.

After removing the header line and computing the vertical projection, each of these

four characters will decompose into two parts. The over-segmentation is handled in

the next subsection. The character e in the No Bar class is also special as it is the
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Table 3.7: Classes of core Hindi characters.

Open Header a T D B

One Conjunction End Bar c j � t n v )

More Conjunctions End Bar K G J p m y q s �

Middle Bar � k P * '

No Bar i u U e R C V W X Y d r h w x

Special Case g Z f �

only No Bar character which has more than one conjunction with the header line.

Over-segmentation Processing

In the above character segmentation procedure, a possibility of over-segmentation

of characters exists, i.e. one single character could be segmented into two or more

parts. We divide the over-segmentation into two types, horizontal and vertical, and

handle them separately.

The over-segmentation in the vertical direction happens only to long char-

acters, such as e h , and other strongly combined forms of consonants such as

� � � �ý and �. After being segmented into two parts, often the bottom part

is rejected or incorrectly recognized during the recognition procedure. This type

of over-segmentation is handled by adding the over-segmented top part into the

templates and assigning them special codes. Once recognized, we know this is an

over-segmented character and its following part will be replaced. For example, Fig-
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ure 3.13(a) shows some of the over-segmented characters we added to our templates,

and characters in Figure 3.13(b) are the original complete forms.

(a) (b)

Figure 3.13: Examples of over-segmented characters added in the template. (a)

Over-segmented characters. (b) Original characters.

The handling of over-segmentation in the horizontal direction can be more

complex because of the half-consonant. Taking the four Special Case characters,

their half forms occur in the left part of the over-segmented parts. The determi-

nation of an over-segmented character depends whether the following character is

character A or not. If the four cases are over-segmented, then the next character

must be character A, but this cannot be determined until the next character has

been recognized. We will discuss this type of over-segmentation in the “Ligature

Processing” section.

Dealing With Special Characters

It is impractical to add all special characters to the template because many

of them are rarely used. In addition, adding more templates will significantly slow

the recognition. We provide a simple scheme allowing the operator to add new

special characters easily, meaning the recognizer can easily adapt to new cases.

If the operator finds one new character, he first classifies this character (end bar,

middle bar, no bar, etc), and places it into a corresponding file that includes the
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template name and unicode of this character. Then, he cuts this character from

the image, saves it into a TIFF file, and places the file name into the training

template directory. The recognizer will automatically read the templates from the

file and perform recognition. The recognition of all of the special characters listed

in Table 3.5 and Table 3.6 are handled by our system.

Due to the quality of scanned document images, two or more upper modi-

fiers may touch each other and cannot be segmented using the approach described

above. Some of these touching upper modifiers are shown in Figure 3.14. These

touching upper modifiers are considered as special upper modifiers added to the

class. Fortunately, few cases exist, so this case can be handled easily.

Figure 3.14: Examples of touching modifiers.

3.2.4 Ligature Processing

Devanagari characters, like characters from many other scripts, combine or

change shape depending on their context. A character’s appearance is affected by

its relation to other characters, the font used to render the character, and the appli-

cation or system environment. Subsection 3.2.3 discusses these special characters.

Additionally, a few Devanagari characters may result in a change in the order

of the displayed characters. This re-ordering is rare in non-Indic scripts. One such

character is E, which is always displayed one consonant left of its real position. When

exporting the codes of one Hindi word with this character, the codes of characters
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must be reordered.

The Devanagari script is noted for its large number of consonant conjunct

forms that serve as orthographical abbreviations (ligatures) of two or more adjacent

letter forms. This abbreviation takes place only within a consonant cluster.

Some independent characters, such as I, e�, ao, aO, a\, o and O have a top strip

segmented and classified as upper modifiers. When exporting the characters’ encod-

ing, the upper modifier should be replaced into the corresponding core character to

generate a correct code.

Independent characters such as aA, ao, aO will be segmented into a plus A, o,

O. When exporting the encoding of these characters, the separated parts should also

be replaced to generate a correct single code.

Our system has success with the above schemes. Since most of them are caused

by the Devanagari ligature, we discuss this in “Ligature processing”.

3.3 Experimental Results

3.3.1 OCR Evaluation

The proposed system was applied to the 1083 pages of the “Oxford Hindi-

English Dictionary” [98] and to a collection of PDF-converted Hindi document im-

ages. The dictionary binding was burst and scanned at 400 DPI. The PDF-converted

Hindi document images are obtained directly without the introduction of scanner

noise, so they are ideal images.

Figure 3.15 shows an example of the scanned dictionary image, where (a) is
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the original image, and (b) shows the identified Hindi words (with errors) and the

segmented characters. The OCR result which combines the Hindi OCR and the

Latin OCR is shown in Figure 3.16. To evaluate the accuracy of this OCR, we

randomly chose 7 pages and counted the number of Hindi words and characters

recognized. Table 3.8 demonstrates the results. From Figure 3.15, we notice the

identified Hindi words can be correctly segmented into isolated characters using the

proposed approach. The evaluation result displayed in Table 3.8 shows the recogni-

tion accuracy at the character level reaches 87.75%, while the accuracy at the word

level nears 67%. The experiment was conducted on scanned images containing noise,

and the result is the pure recognition result without any spell checking and word

correcting based on dictionary search. We strongly believe, with the availability of

Hindi language constraints and electronic text, correction techniques can be applied

to the postprocessing stage to improve performance.

As we mentioned in subsection 3.1.1, Bansal [9] proposed a Hindi text recogni-

tion system by integrating knowledge sources. After correction, based on dictionary

search, the average accuracy nears 87% at the character level for scanned docu-

ment images. This result is comparable with our system’s performance without any

correction. The recognition accuracy of the Hindi OCR system proposed by Chaud-

huri and Pal can achieve 91.25% at the word level and 97.18% at the character

level. However, this accuracy was obtained on clean images with error detection

and correction based on a dictionary search.

To test the effectiveness of the proposed approach working on clean images,

we processed PDF-converted ideal images and evaluated them. The accuracy comes
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(a) (b)

Figure 3.15: One example from the bilingual dictionary. (a) Original image. (b)

Identified Hindi words and character segmentation.
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Figure 3.16: OCR results of images shown in Figure 3.15 (reconstructed by combing

Hindi and Latin results).

close to 95% (with 2584 characters and 2450 correctly recognized for one page).

Figure 3.17 shows part of one converted clean image and its OCR result.

3.3.2 Discussion

In examining the data, we found a number of factors contributed to the incor-

rect recognition including:

(1) Incorrect word segmentation. The word segmentation performance de-

pends on the quality of document images. Noise may cause the incorrect under-

or over-segmenting of words or merging of words with other symbols. Incorrect

word segmentation can further affect the script identification result, leading to the

degradation of OCR performance.

(2) Incorrect character segmentation. Segmentation is a challenging task, es-

80



Table 3.8: Result evaluation of the Hindi-English dictionary, where “A1” is the

character accuracy with respect to “Chars”, and “A2” is the character accuracy

with respect to “Recognized”. “A” is the word accuracy.

Pages Chars Recognized Correct A1 A2 Words Correct A

p0098 451 443 407 90.24% 91.87% 110 79 71.82%

p0160 317 311 272 85.80% 87.46% 73 54 73.97%

p0179 480 477 409 85.21% 85.74% 113 67 59.29%

p0401 294 290 264 89.80% 91.03% 71 53 74.65%

p0799 437 451 379 86.73% 84.04% 80 50 62.50%

p0987 405 402 359 88.64% 89.30% 67 39 58.20%

p1023 343 338 303 88.34% 89.64% 64 44 68.75%

Total 2727 2712 2393 87.75% 88.24% 578 386 66.78%

pecially for scanned Hindi images. If images contain noise, the average width and

height of characters may not be obtained accurately. During segmentation, many

decisions, such as identifying conjunct/shadow characters, determining lower modi-

fiers, and determining stroke width, are based on these statistics. Incorrect statistics

can significantly degrade the performance of character segmentation, therefore de-

grading the final performance of recognition.

(3) Missing punctuation such as commas, periods, and parentheses. Often

the space between words and the following punctuation is small. Punctuation can

therefore be merged with Hindi words during word segmentation. As a direct re-

sult, these symbols can influence negatively the distribution of the features used to

perform segmentation. Although we tried to solve this by detecting punctuations

first, some cases were incorrect.
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(a) (b)

Figure 3.17: OCR result of the PDF converted ideal image. (a) Original image. (b)

OCR result.

(4) Character mis-classification due to noise. This typically happens with

Open Header and Middle Bar characters. Noise may cause an Open Header char-

acter to become a closed header character, or cause the detected vertical bar in a

Middle Bar character to shift. The classes rarely overlap, so if one character is

mis-classified, it most likely will not be recognized correctly.

(5) Character similarity. There exist Hindi characters with similar appear-

ances. Sometimes the scanning noise makes them appear almost indistinguishable.

During recognition, they may have the same confidence value, which can then make

the final selection of OCR output of this character ambiguous. Higher level context

or language models may help solve this problem.

(6) Special symbols which are noise-like. Some special symbols (including

notations) are visually noise-like, although the position of these symbols relative to

the text provides strong context. Sometimes, these symbols are removed as noise,

other times noise is left and results in incorrect modifiers. This causes incorrect
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classification and degrades the OCR’s performance.

To improve performance, we consider all the factors discussed above and strive

to remove their effects. Since noise causes a majority of the incorrect recognition,

applying new denoising techniques, such as the approach in [136], or making the

parameters more flexible with varying image quality can improve performance. For

incorrect recognition caused by mis-classification, more rules or new classes may be

added to increase the accuracy.

As a post-processing step, a number of known ways can increase OCR’s ac-

curacy for free text, and most use either general or domain specific lexicons. The

recognized terms are looked up in the lexicon, and if they are present, no further

analysis is required. If they are not present, we must assume an OCR error oc-

curred and attempt to select the correct term. Often, this is accomplished with a

distance measure between terms, typically based on character recognition confusion

probabilities.

We use OCR to process bilingual dictionaries, and these types of documents

introduce several inherent problems for OCR correction. First, we have a source,

that, by nature, has few instances of some words, yet has a fairly complete coverage

of the language. In the case of Hindi, the lexicons are not sufficiently complete to

warrant statistical correction approaches. Although we have significant amounts of

electronic text to generate a lexicon, most naturally occurring text provides only a

limited coverage of the language. We have performed experiments with a limited

lexicon, but not surprisingly, the overall recognition rates decrease. When a term

is spelled correctly, but does not appear in the lexicon, we actually introduce more
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errors by mapping these words incorrectly.

The second problem appears similar to the question the chicken and egg prob-

lem. Since we have no ground truth information (and it was not feasible to obtain

it), it is difficult to estimate the OCR confusion probabilities needed for intelligent

distance measures. We are currently exploring various character level correction

schemes, but they rely on a statistical distribution of character bi- or tri-grams that

may not be accurate for dictionaries.

In general, if we are trying to produce OCR systems for low density languages,

large amounts of electronic text may not be available, so we are exploring other ways

to semi-interactively identify common confusions.

3.4 Summary and Future Work

We have presented an adaptive Hindi OCR system that uses a generalized

Hausdorff image comparison implemented as part of a rapidly retargetable language

tool. The system includes three stages: (1) script identification; (2) character seg-

mentation; and (3) training sample creation and character recognition. Based on

the generalized Hausdorff image comparison, the system retargets easily to different

Hindi fonts or even a different script, provided the segmentation can use the same

or a similar approach. The OCR is also designed to recognize unknown special

characters and to provide a simple interactive interface for the user to add them.

The OCR (designed and implemented in one month) was applied to a complete

Hindi-English bilingual dictionary and a set of ideal images extracted from Hindi

documents in PDF format. Experiments result in an average recognition accuracy
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of 87.82%, while the accuracy for ideal images was 95%, both at the character level,

without any spell checking.

A major thrust of future work will be to perform OCR correction or to resolve

ambiguity among candidates. One advantage is we assign confidence as a side effect

of recognition. By setting two thresholds on the Hausdorff distance, the forward

and reverse Hausdorff fractions under the constraint of these two thresholds can

compute the confidence of a character and word recognition. This confidence has

a real value between 0.0 and 1.0, making it more intuitive and usable than current

commercial OCR software such as ScanSoft Developer’s Kit 2000 from ScanSoft

and FineReader Engine from ABBYY. For these packages, the confidence of each

character is a boolean value, which gives the same weight to all characters when

computing a word’s confidence.

Given the confidence of characters and words, we can further consider the

word correction based on a dictionary search. The word correction engine would

determine whether a word should be replaced with another correct word from the

dictionary, significantly improving the recognition performance at both character

and word level. Since a possibility exists that the recognized result may be over-

corrected, the word correction also can provide a probability for the replacement,

which tunes the correction. Details of this correction are discussed in [73, 74].

Another advantage involves the adaption to different image qualities. For

example, if a scanned document image has a poor quality, the Hausdorff thresholds

can be set to lower values, making the classifier and recognizer more tolerant. If

the image has high quality, the thresholds can be set to higher values, speeding the
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recognition process.

The next recognition step is to apply new, possibly multiclassifier techniques,

and combine them with the current Hausdorff classifier to provide improved per-

formance. The approach assumes we can train the system using a small number of

samples, so the new classification techniques must also have this property.

Our OCR system was designed with the assumption that no vast amount of

training samples are available, so it easily extends to the recognition of other lan-

guages or scripts under the following two conditions: (1) symbols of the same class;

(2) the words can be segmented into characters. Once segmented, glyphs can use

the same classifiers for recognition. Segmentation, however, differs greatly between

Hindi and other non-Indic languages. For Chinese, segmentation is straightforward

because character spacing is fixed. For many Latin fonts, kerning must be consid-

ered, while languages such as Arabic must consider touching characters during seg-

mentation. Under the two assumption conditions, the segmentation can be changed

based on the characteristics of the new script, while the recognition will be adapted

through exemplars. The user can create new rules to classify characters, obtain

samples from document images, set output codes for each character, set thresholds

for the Hausdorff distance, and perform recognition. If extracting features that clas-

sify characters is difficult, the operator can put the whole set of characters into a

single class, compute the Hausdorff distance between the segmented characters and

each character in the class, then perform recognition. Although the system was

designed to deal specifically with Hindi text, it was modularized so we can apply

different components for other languages. Overall, our goal is to build a toolkit of
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components that can be reused to build OCR capabilities rapidly for new languages.

Dealing with special characters can also extends to the recognition of some

symbols that are difficult to segment correctly (such as complex ligatures). The

user can include them in the samples and perform recognition. The only thing the

user needs to do before performing recognition is to make sure the encoding of these

special characters is correct. Finally, a key to making our system generally adaptive

is to consider how to allow system parameters to dynamically adjust for changes in

image quality.
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Chapter 4

Automatic Training Sample Creation for OCR

4.1 Introduction

Optical character recognition (OCR) is one of the successful applications of

the research in the computer vision and pattern recognition field. The technology

for some scripts, such as Latin, Cyrillic, Chinese, Japanese, and Korean is fairly

mature. Commercial OCR systems on the market today can provide recognition re-

sults with reasonable accuracy for high-quality printed documents. However, current

technology takes an omnicentric view and provides general solutions, with trade-offs

between performances and applications. To maintain the generality, no existing

OCR systems can guarantee high accuracy across a full range of documents, which

makes it difficult to optimize an existing system for a specific need. The system

needs to be retrained with respect to a specific need such as a special character

set, special fonts, and symbols. Providing training samples for an OCR is, “a high-

skill, tedious, and thus often prohibitively expensive manual effort” [113]. Some

researchers have focused on relieving this critical restriction to the automatic anal-

ysis of printed documents. For example, Liang et. al [82] proposed a methodology

for special symbol recognition. Working on the output of an available OCR system,

special symbols were detected and recognized based on the recognition confidence

level. The research of Sarkar et. el either focused on the automatic creation of
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training samples by aligning noisy and synthetic text-line images [112] or on the

automatic classifier selection [113], and both required the support of ground-truth

text. Ho and Nagy [44] presented an OCR with no shape training, where isolated

character images were clustered based on the metric distance, then labeled accord-

ing to a corpus. Their approach required the support of an available corpus and

assumed extracted connected components can separate most characters. However,

these two conditions are not always satisfied either because of the corpus availability

or the poor quality of documents with many touching characters.

Preparing ground truth for an OCR system can also be a training sample

creation procedure. The existing approaches to automatic ground-truthing divide

into two categories: (1) truthing of scanned images; and (ii) degrading images with

a degradation model. The approaches described in [62, 60] and [45] fall in the

first category, where the synthetic images were generated from the electronic text,

then printed and scanned. To perform automatic ground-truthing, ground-truthed

bounding boxes of characters are matched with the scanned document images. The

approach described in [138] belongs to the second category, where the generated

synthetic images were degraded. Different models can be applied to degrade the

synthetic images. Baird presented a brief survey of degradation models in [6].

In the approaches mentioned above, the noisy document images were generated

from the synthetic images directly or indirectly. The layout obtained from the

synthetic images was the same as the noisy images, and the character bounding

boxes on the noisy images were known. The alignment of the synthetic image

and the noisy image is performed by computing a transformation. However, if
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the given images are scanned from newspapers or magazines, simulating the noise

and obtaining the character bounding boxes are not trivial, especially when many

touching characters exist.

We propose a novel methodology to automatic training sample creation. This

approach does not require the synthetic image have the same layout as the noisy

image, or even the same font. Obtaining the unknown character bounding boxes

on the noisy image, i.e. the character segmentation, is controlled by the characters

on a synthetic image. In this approach, graph theory is applied to optimize the

segmentation. The same approach works under three different situations seen in the

following sections.

4.2 Automatic Training Sample Creation Based on Electronic Text

Assuming electronic text is available, in Unicode, and has line breaks, the

process of automatic training sample creation is shown in Figure 4.1. A synthetic

image is generated based on the document’s Unicode text, using the closest font to

the original content. Given the electronic text, different approaches can generate

the synthetic image [138, 128]. The Microsoft foundation class (MFC) library also

provides a powerful Unicode package, which makes it convenient for the user to deal

with the input and output of Unicode. We use the MFC library to generate the

synthetic images using a specific font, size, and weight. Although the font is user-

specified given the content of the real document, it can be identified automatically

with methods proposed in Chapter 2, or [91], [137]. Using the MFC, the layout and

bounding boxes of all components (zone, text-lines, words and characters) on the
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synthetic image are obtained easily, so a hierarchical structure forms with these four

levels.

Figure 4.1: The flowchart to generate ground-truth automatically.

4.2.1 Preprocessing of the Scanned Documents

The scanned document image is deskewed, and words are extracted, both using

approaches described in Chapter 2. Using average word height and width obtained

from each page, the separated components (such as the dot of ‘i’ or ‘j’, and accents)

merge to form characters. Words with determined boundaries then organize first into

text-lines and further into zones. For each organized text-line, the ‘meanline’ and

‘baseline’ used for content alignment are detected using the horizontal projection of

the text-line image (shown in Figure 4.2). The ‘meanline’ and ‘baseline’ of each word

are refined based on the horizontal projection of the word image, and the x-height

Hx (the distance between the ‘meanline’ and ‘baseline’, shown in Figure 4.2) can

perform normalization during the matching. At the end of this stage, a hierarchical

structure with three levels (zone, text-line and word) appears.
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Figure 4.2: The meanline, baseline, and x-height detection.

4.2.2 Alignment of Text-lines and Words

The hierarchical structures obtained above are matched by performing text-

line alignment and word alignment. Each text-line image is first normalized to the

same x-height. The matching procedure consists of the following two steps:

(1) Coarse matching. The coarse matching applies to the vertical projection. As

shown in the Figure 4.3, spacing in the text-line image is removed before computing

the vertical projection profile. The profile with fewer values then elongate by simple

linear interpolation to have the same length L as the other. Given two profiles

p1(x) and p2(x), the mismatch degree Dm of the two profiles is evaluated using the

following metrics:

Dm(p1, p2) =
1

L

L∑
x=1

|p1(x)− p2(x)| (4.1)

Two text-lines with Dm less than a predefined value (2 in our experiment) are

considered a coarsely matched pair.

(2) Fine matching. The coarsely matched pair is verified by comparing two text-

line images. After removing spaces and normalizing these two images to the same

x-height, the smaller image is resized to equal the other one. Denoted by f1(x, y) and

f2(x, y), the similarity S(f1, f2) of two text-line images is measured by a Hamming
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Figure 4.3: Aligned text-line examples.

distance and computed as follows:

S(f1, f2) = 1.0− 1

WH

W∑
x=1

H∑
y=1

|f1(x, y)− f2(x, y)| (4.2)

where W and H are the image width and height, respectively.

Word alignment is performed on the words in each matched pair found in

the text-line alignment. Since the numbers of words in the two matched text-lines

may differ, merging and splitting words may occur on the noisy document text-line

image. Before checking the match, the spacing within each word is removed, and

the smaller image is resized to equal the other one again. The similarity of two word

images is computed with Eq. 4.2. Figure 4.3 shows an example of obtaining word

alignment from text-line alignment.

4.2.3 Automatic Character Segmentation

The alignment procedure cannot guarantee a match for each word on the

noisy image. For words with a match, the number of characters and the content are

known. The character segmentation is controlled by the matched ideal word image.

For those words without match, the number of characters and the word content are
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unknown, and the segmentation cannot be easily controlled. Thus, the segmentation

procedures must be different. Since most of the words will be segmented by the

controlled segmentation procedure, we can obtain reliable template maps for all the

characters, and use them to control the unmatched character segmentation.

To find the optimal character segmentation of a word, a weighted directed

acyclic graph (WDAG) representing all the possible character segmentations is cre-

ated as follows:

• A vertex represents a potential segmentation position.

• The source vertex represents the left word boundary.

• The target vertex represents the right word boundary.

• An edge between two vertices represents one character candidate.

• The weight of an edge is the complement of character similarity.

Traversed vertices of the shortest path from the source to the target are the opti-

mal segmentation positions. Therefore, finding the optimal character segmentation

converts to a problem of finding a WDAG’s shortest path. The controlled character

segmentation (for the matched word) and the uncontrolled character segmentation

(for the word with no match) using the WDAG are described in the following two

subsections.
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(a) (b)

Figure 4.4: The created weighted directed acyclic graph (WDAG) for optimized

character segmentation. (a) Controlled character segmentation. (b) Uncontrolled

character segmentation.

Controlled Character Segmentation

As shown in Figure 4.4(a), in the WDAG created for the word with a match,

one source vertex (labeled S) and only one target vertex (labeled T ) exist. The level

of edges is fixed and equal to the number of characters in that word. The synthetic

word image controls the possible segmentation position of the word. Suppose the

character to be extracted has an aspect ratio r on the synthetic image, then for

each left position pl, the possible right position pr of this character is in the range

[pl +h · (r− ε), pl +h · (r+ ε)], where h is the height of the word and ε is a predefined

shift of aspect ratio. The value of ε has little importance and only affects the number

of possible positions. However, a larger ε means a larger graph and will slow the

segmentation optimization. For each candidate between one pair of [pl, pr], the

image is first resized to equal the controlling synthetic character image’s size. Then

the similarity Sim of the resized image and the controlling image is computed with
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Eq. 4.2, and the weight of the edge between these two vertices is assigned 1.0−Sim.

The same procedure is repeated until the last character in a given word is complete.

The created WDAG has N + 1 levels, where N is the number of characters in this

word, and no edge exists between vertices in two nonadjacent levels. As an example,

the Figure 4.4(a) shows a five-level WDAG created for a four-character word, where

the character image shown along each right edge level is the controlling synthetic

character image.

After the WDAG is created, the Dijkstra algorithm [30] finds the shortest

path from source vertex S to the target vertex T , and the traversed vertices of this

shortest path are the optimal segmentation positions.

After performing the controlled character segmentation on all the words with

a match, the same character instances (characters with the same Unicode value)

are normalized and combined to generate a template map TM using the following

formula:

TM(i, j) =
Ninst∑
k=1

gk(i, j), 1 ≤ i, j ≤ N (4.3)

where Ninst is the number of the character instances, and N×N is the normalization

size of the images. As shown in the Figure 4.1, the generation of the template map

is iterative. If the similarity of one instance and the existing template is too low,

the instance is considered the outlier and creates a new template. The similarity is

computed using the formula describe in the following subsection.
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Uncontrolled Character Segmentation

For words without match found on the synthetic image, we have no knowledge

about characters contained in the word, even the number of characters that should

be segmented from the word. Thus, the level of the WDAG is undetermined and

the edge weights must be calculated using a different approach. Since most of the

words are segmented using the “controlled character segmentation” in Section 4.2.3

and the same characters combine to create template maps, the edge weights of the

WDAG can then be computed based on these templates, as described later.

By denoting the minimum and maximum average aspect ratio of all the tem-

plates as rmin and rmax, respectively, and given a left position pl of a possible charac-

ter, the possible right position pr of this character satisfies the following condition:

h · rmin ≤ (pr − pl + 1) ≤ h · rmax

where h is the word height. After deciding the right position pr, pr +1 is considered

the next possible left position. The above procedure is iterated until the right

boundary of the word falls in the range [h · rmin, h · rmax]. Each pr that is the right

word boundary is labeled a target vertex T . Obviously, the WDAG created using the

above procedure also has one source vertex S, but has more than one target vertex

T in different levels. To compute the edge weight between one pair of [pl, pr], we

first compute the similarity of the character image and all templates. The similarity

between the normalized image f(x, y) and a template g(x, y) can be computed as:

Sim(f, g) = 1.0− 1

N2

N∑
x=1

N∑
y=1

w(x, y)|f(x, y)− gb(x, y)| (4.4)
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where gb(x, y) is the binary image converted from g(x, y) by a simple thresholding,

and

w(x, y) =


1.0 if gb(x, y) is background

g(x, y)/Ninst if gb(x, y) is foreground

(4.5)

The weight w of the edge between pl and pr is then assigned 1.0− Simmax, where

Simmax = max
∀g

(Sim(f, g)) (4.6)

The Dijkstra algorithm [30] finds the shortest path from source S to all targets T,

and the optimal segmentation SEGopt is decided as follows:

SEGopt = argmin
SEG∈Λ

(
Ls

Nc

) (4.7)

where Λ represents all possible segmentations, Ls is the shortest path, and Nc is the

number of characters in this segmentation.

4.2.4 Segmentation Experimental Results

The proposed approach was first applied to a collection of scanned Cyrillic

newspaper and magazine pages. Because of the scanning quality, most of the char-

acters touch on images. The experimental results show this approach is effective and

efficient, however, quantitative evaluation of the performance is difficult. We chose

six pages and counted the segmentation errors manually; the results are shown in

the Table 4.1. The results were compared with a commercial software Capture De-

velopment System 12 (CDS12) from ScanSoft. Since it is troublesome to count the

segmentation errors with a high error rate, we cannot provide a quantitative eval-

uation of the CDS12 segmentation results, but only show the comparison result in

98



Figure 4.5. For the presented approach, most segmentation errors occur in the title

fields. A significant difference between the title fonts and regular content or having

the title overlay a graphic background made both the controlled and uncontrolled

segmentation challenging.

Table 4.1: Segmentation error rate for the Cyrillic documents.

P1 P2 P3 P4 P5 P6 Average

Error Rate (%) 0.86 1.26 1.13 1.10 0.80 1.43 1.10

The same approach was also applied to 40 pages of documents in the University

of Washington English Document Database I. The pages were selected to have many

touching characters. Figure 4.6 shows the sorted error distribution of the 40 pages

compared to the commercial software Capture Development System 12 (CDS12)

from ScanSoft. It is obvious that the average performance of the presented approach

is higher than CDS12.

By browsing pages with more errors, we found the following factors caused the

higher error rate:

• Italic words. We assume characters can be segmented using a vertical line.

However, italic words contain significant character kerning, which do no satisfy

the assumed conditions.

• Page warping. Photocopying caused page warping, where straight text-

lines overlap. Text-lines with significant overlapping affect first the text-line

matching and further the word matching.
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(a) (b)

Figure 4.5: The segmentation result comparison of the proposed approach and

CDS12 (errors are marked using gray boxes). (a) The result of the proposed ap-

proach. (b) The result of CDS12.

• Embedded formula. Many professional journals are embedded heavily with

mathematic formulas. Since embedded formulas often have a special format

and alignment, the symbol segmentation of the mathematic formula also re-

quires special handling.

• Different font. We assume page content has a single font, and the synthetic

image was generated with that font. The assumption is not strictly satisfied

for real documents because different fonts often represent a variety of content
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Figure 4.6: Error rate for the UW database I (GS: The proposed graph based

segmentation. CDS12: Capture Development System 12.).

fields. In the experiment, given the font of the major text is correct, content

with different fonts can still be matched correctly. Most errors involving font

occur when a special font has extensive character kerning.

• Reading order. We did not assume explicitly the content reading order.

However, in the text-line matching step, matched lines with higher values were

considered landmarks that broke the contents into several parts, with further

matching operations applied within these parts. If the detected reading order

is not the same as the electronic text, this results in many unmatched text-

lines and words. The unmatched words are segmented using uncontrolled

segmentation, reducing the accuracy.
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4.2.5 OCR Experimental Results

Trained by five pages’ automatic segmentation results, an OCR was tested on

20 pages of a Cebuano-English and transliterated Iraqi Arabic-English dictionaries.

In the OCR, the Nearest-Neighbor classifier applied to two sets of features, template

pixels and Zernike moments, was used for recognition. Using the template pixels

as features, the classification was based on a weighted Hamming distance computed

with formula 4.4.

The second set of features were Zernike moments. Moment descriptors have

been studied for image recognition and computer vision since 1960s [125]. Teague [124]

first introduced the use of Zernike moments to overcome the shortcomings of infor-

mation redundancy present in the popular geometric moments. Zernike moments

are a class of orthogonal moments which are rotation invariant and can be easily con-

structed to an arbitrary order. And it was shown in [68, 67] that Zernike moments

are effective for the optical character recognition (OCR).

The Zernike polynomials are a set of complex, orthogonal polynomials defined

over the interior of a unit circle x2 + y2 = 1. The form of these polynomials is:

Vnm(x, y) = Rnm(x, y)exp(jm · tan−1 y

x
)

where n is a non-negative integer, m is an integer such that n − |m| is even and

|m| ≤ n, and Rnm(x, y) is the radial polynomial defined as:

Rnm(x, y) =
n−|m|/2∑

s=0

(−1)s (n− s)!

s!(n+|m|
2

− s)!(n−|m|
2

− s)!
(x2 + y2)n/2−s

Zernike moments are the projection of the image function onto these orthogonal

basis functions. For a digital image f(x, y), the Zernike moments of order n with
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repetition m are defined as:

Anm =
n + 1

π

∑
x

∑
y

f(x, y)[Vnm(x, y)]∗, x2 + y2 ≤ 1

It has been shown in [68, 67] that the magnitudes of Zernike moments are rotation

invariant, and An,−m = Anm, thus we only use |Anm| for features. To make the

extracted Zernike moments be scaling and translation invariant, each input character

is normalized to a predefined dimension and the center of the unit circle is moved

to the centroid of the input image.

Figures 4.7(a) and 4.7(b) show the results for the above-mentioned dictionaries.

Accurach higher than 92% for both dictionaries demonstrates that the presented

approach can be easily retargeted to create a new OCR system for a totally new

collection of documents.

4.3 Automatic Training Sample Creation with Limited User Feedback

In the previous section, we assume availability of the scanned documents’

electronic text. However, the electronic text is not always available. In this section,

we propose a new framework to design an adaptive OCR system. Given scanned

document images, the adaptability lies in the automatic training sample extraction

and clustering with limited user interaction. Clustered samples are labeled by the

user and used to optimize automatic character segmentation. This approach does

not require the support of the ground truth text and a corpus, which is essential for

the processing of noisy document images where many characters touch each other.

The system is shown in Figure 4.8 and we focus only on the extraction of training
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Figure 4.7: OCR evaluation on two bilingual dictionaries. (a) Cebuano-English

dictionary. (b) Transliterated Arabic-English dictionary

samples.

The scanned document is processed as described in section 4.2.1. As shown in

Figure 4.8, the training part consists of three steps: (i) Template initialization; (ii)

Iterative template refinement; and (iii) Template combination and labeling.

4.3.1 Template Initialization

The extraction of templates from an image without any prior knowledge begins

with an initial set. For each segmented word, we extract the connected components
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Figure 4.8: Flow chart of the proposed adaptive OCR system

(a glyph) of this word, in which accents or separated dots are merged. With the

assumption that a regular character is neither too wide nor too narrow, a connected

component satisfying the following conditions is considered a template candidate:

(1) The aspect ratio falls in the range [rlow, rhigh];

(2) The area is larger than Amin;

where rlow and rhigh are the predefined low and high aspect ratio thresholds respec-

tively, and Amin is the area threshold (We found that rlow = 0.2, rhigh = 1.0, Amin =

5 is a good selection in our experiment.). Extracted candidates are indexed and nor-

malized into images with size N ×N (N = 32). A symmetric similarity matrix M

with dimension K × K is then computed, where K is the number of candidates.

The value of the element in cell (i, j) of M is defined as the similarity between the

ith and the jth candidate. The similarity between two normalized images f1(x, y)

and f2(x, y) is measured by a Hamming distance and computed as:

S(f1, f1) = 1.0− 1

N2

N∑
x=1

N∑
y=1

|f1(x, y)− f2(x, y)|
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Both f1(x, y) and f2(x, y) are binary images, therefore S has a value range [0.0, 1.0].

The matrix M can be described with a complete weighted graph, where each vertex

represents a candidate and the weight of edge between vertex ‘i’ and ‘j’ has value

Mij. Based on a predefined threshold Sth, the complete graph can be converted

to a disconnected graph consisting of several subgraphs by removing edges with

weight smaller than Sth. The extracted candidates are then clustered by extracting

the subgraphs which are the cliques of the disconnected graph. Working on the

converted disconnected graph, the clustering is described as follows:

1. for each vertex gi

2. for each cluster Ck

3. for each vertex gj in cluster Ck

4. if vertices gi and gj are connected, then
5. put gi in Ck and exit for loops 2 and 3
6. if gi does not belong to any Ck, then
7. create a new cluster Ck+1 and put gi inside

Figure 4.9(a) shows an example of the disconnected graph, and Figure 4.9(b) shows

the clustering result in which 32 vertices are clustered into six clusters. To insure the

initial complete graph converts into a disconnected graph, the threshold Sth should

be a value less than but approaching 1.0 (0.9 in our experiments).

After the clustering, all glyphs in the same cluster Ck are combined to generate

a template map TMk using the following formula:

TMk(i, j) =
∑

g∈Ck

g(i, j), 1 ≤ i, j ≤ N

The total number of glyphs in each cluster is denoted Ninst which is useful for the

computation of the weighted similarity in the following sections. Statistics of each
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(a) (b)

Figure 4.9: Illustration of the clustering.

template, such as the aspect ratio, the adjusted aspect ratio (the ratio of the width

and the x-height), and the connectivity, are noted, which help the normalization,

segmentation, and recognition of characters.

4.3.2 Iterative Template Refinement

When the initial templates are clustered, we traverse all the word images and

extract the matched parts. As illustrated in Figure 4.10(a), the matching procedure

consists of the following two steps:

(1) Coarse matching based on the vertical projection profile. Before computing the

vertical projection profile, the word image and the template are normalized to

have the same x-height. The template projection is considered a window and

slid along the word projection. At each position x of the word projection, we

evaluate the mismatch degree as:

Dm(x) =
1

W

W∑
i=1

|pt(i)− pw(x + i)|

where W is the normalized template width, and pt(i) and pw(i) are the pro-

jection values of the template and the word at the position i respectively. A
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coarse match at position x is found if Dm(x) is smaller than a predefined

threshold Dth (2 in our experiments). As an example, we found two coarse

matching positions for the template a in the Figure 4.10(a).

(2) Fine matching based on similarity. The obtained components in the first step

are further evaluated by computing their similarity with the template, and

those with similarities higher than a predefined threshold are the final matches.

The character candidate image is binary, while the pixel values of the template

map g(x, y) are in a range [0, Ninst], therefore g(x, y) is first converted into a

binary image gb(x, y) by a simple thresholding. The similarity of a character

image f(x, y) and a template g(x, y) is redefined as a weighted similarity which

has the following form:

Sw(f, g) = 1.0− 1

N2

N∑
x=1

N∑
y=1

w(x, y)|f(x, y)− gb(x, y)|

where the weight w(x, y) is defined as follows:

w(x, y) =


1.0 if gb(x, y) is background

g(x, y)/Ninst if gb(x, y) is foreground

(a) (b)

Figure 4.10: The procedure of iterative template refinement.

Most of the glyphs that can be matched to one of the templates are extracted,

and the templates are updated based on these newly extracted matches. Obviously
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only characters in the template set can be extracted. However, for each word, the

newly extracted components may leave another isolated component which can be

added to the template set. We then check the remaining part of each word, if one

part satisfies the two conditions described in Section 4.3.1, it is considered a new

template candidate. The same clustering procedure as described in Section 4.3.1 is

performed, and new template maps are generated. As shown in Figure 4.10(b), we

can extract two new template candidates N and K from the current words after

the match. The new templates can be used to find more matches, with additional

templates generated by the same procedure. This process is iterated until no new

template forms.

Typically, after the above processing, most words are segmented. The remain-

ing components of each word are either wide characters not in the template maps or

noisy characters. In the last step, we pair any two remaining components by consid-

ering each remaining component as a sequence, and extract the common component

using a longest common subsequence (LCS) algorithm [43, 48]. All template maps

can be generated using the LCS algorithm, in theory. However, complexity of the

algorithm (O((r + n)logn) and large number of words of each page makes applying

LCS algorithm to all words impractical.

4.3.3 Template Combination and Labeling

Theoretically, the generated templates for the same character do not need to

be combined if they are labeled correctly. However, a large number of templates

will significantly slow the segmentation and recognition procedure. In addition,
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non-character components can be extracted by the LCS algorithm and added to the

templates. In this step, we first perform template combination and pruning, then la-

bel each template with a correct Unicode value. The procedure to perform template

combination is: with a similarity threshold Stth defined, we compute the similarity

St(g1, g2) of two template g1(x, y) and g2(x, y). If St(g1, g2) ≥ Stth, then the two tem-

plates combine to generate a new template, and all statistics update accordingly. To

make the similarity value of two templates fall in the range [0.0,1.0], the similarity

St(g1, g2) is measured by a weighted Hamming distance which is computed using

the following formula:

St(g1, g2) = 1.0− 1

N2

N∑
x=1

N∑
y=1

∣∣∣∣∣g1(x, y)

Ninst1

− g2(x, y)

Ninst2

∣∣∣∣∣
where Ninst1 and Ninst2 are the instance number of glyphs that generate these two

templates.

The post-processed templates are saved into images, the user is required to

prune the templates by browsing and assigning Unicode values to them. As training

samples, these templates can then be used to perform character segmentation and

recognition. The detailed process to perform segmentation based on these templates

is described in “uncontrolled character segmentation” of Section 4.2.

4.3.4 Experimental Results

The proposed approach was first applied to a collection of Cyrillic documents

scanned from magazines and newspapers. In the scanned documents, most charac-

ters touch each other (shown in Figure 4.11). Comparing the proposed approach
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with a commercial software CDS12, the results (both segmentation and recogni-

tion) are shown in Table 4.2. The ground truth used for evaluation is obtained by

the alignment of synthetic images and the scanned images described in Section 4.2

and [92].

Figure 4.11: Part of the scanned Cyrillic document image.

Table 4.2: Segmentation and OCR result comparison (ADP: The proposed approach;

CDS12: Capture Development System 12.).

Operation Approach P1 P2 P3 P4 P5 P6

Segmentation ADP 97.33 97.61 97.39 98.09 98.01 96.38

CDS12 82.44 87.06 81.88 90.17 95.35 84.06

OCR ADP 75.38 76.15 79.85 82.52 80.57 77.71

CDS12 79.38 71.76 26.44 75.47 25.21 56.05

The same approach was also applied to 40 pages of documents in the Univer-

sity of Washington (UW) English Document Database I, where pages with many

touching characters were selected. The sorted segmentation and OCR results of our

system versus CDS12 are shown in the Figure 4.12.

The experimental results demonstrate that for a specific collection of docu-
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Figure 4.12: Segmentation and OCR result comparison with CDS12.

ments with many touching characters (for example, more than 90% of characters in

the Cyrillic document are touching characters), the proposed method can extract

training samples efficiently to retrain the system, improving the performance. For

documents with fewer touching characters (the UW documents contain about 20%

touching characters), the proposed approach can provide comparable segmentation

result, but the OCR accuracy is lower than the commercial software. Considering

good segmentation results, the simple template matching approach can be replaced

with other classification algorithm to improve performance. By examining the re-

sults, we also found that the following factors affect the performance:

• Isolated noise. Some noise could satisfy the initial template conditions and

be considered a template. This should be removed with the user’s help.
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• Wide characters. Wide characters, such as ‘m’ and ‘w’, are often over-

segmented, so post-processing is necessary to improve performance.

• Broken characters. Broken characters may appear as noise. So if a character

cannot be extracted as a connected component, the user may remove the

broken part.

• Disconnected characters. If one character is disconnected, it must be han-

dled specifically and carefully.

• Character kerning. We assume characters in a word can be segmented

using the vertical lines, so the kerning of some specific characters or italic

words makes it difficult to segment vertically.

• Incorrect LCS. The extracted LCS may contain more than one character,

which requires the user’s action to examine the results.

• Template combination. Templates might combine different but similar

character templates (such as ‘e’, ‘c’ and ‘o’), so combinations must be per-

formed carefully.

4.4 Automatic Training Sample Creation for Languages with Shadowed

Characters

Although the two approaches of automatic training sample creation described

above obtained satisfying results, they are based on an implicit assumption that ver-

tical segmentation can separate adjacent characters. However, many Asian scripts,
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such as Arabic, Khmer and Devanagari, can contain many shadowed characters and

particular attention is required to segment them. Besides the shadowed character

case shown in Figures 3.11 and 3.12, Figure 4.13 shows some shadowed characters for

Khmer and Arabic script. In this chapter, we use the Khmer script to demonstrate

how to create training samples for languages with shadowed characters.

(a) (b)

(c) (d)

Figure 4.13: Shadowed characters and character segmentation for Khmer and Arabic

script. (a) Shadowed Khmer characters. (b) Character segmentation of word in (a).

(c) Shadowed Arabic characters; (d) Character segmentation of word in (c).

4.4.1 Introduction of Khmer

Khmer is written in the Cambodia and Vietnamese languages, and Tampuan

and Krung. Khmer has about 33 consonants, 12 independent vowels, and 16 depen-

dent vowel signs [3], which are shown in Figures 4.14, 4.15, and 4.16.

The following are some particularities of Khmer script writing:

(1) It is written from left to right, with characters being placed also above and

below the main line of writing.
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Figure 4.14: Khmer consonants.

Figure 4.15: Khmer independent vowels.

Figure 4.16: Khmer dependent vowels.

Figure 4.17: Khmer subscript consonant.

Figure 4.18: Khmer diacritics.
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(2) Words are not separated by spaces. A space in Khmer is a punctuation sign

similar to a comma.

(3) A word is composed of clusters, sometimes also called syllemes. They are not

a proper syllable, as syllables are a unit of consonants and vowels pronounced

in one breath. Consonants pronounced after a vowel are part of the syllable,

but not part of the cluster or sylleme.

(4) Consonants have two forms: (i) Normal form written in the main line of text

(shown in Figure 4.14); (ii) Subscript form, placed under another consonant

and read after the normal consonant, without any vowel sound between them

(shown in Figure 4.17).

(5) Other signs, called independent vowels, behave like consonants (even if many

of them have vowels sounds), and for typographical purposes they can be

considered almost as consonants.

(6) Each vowel has a specific location in reference to the main consonant of the

sylleme.

(7) Some vowels have two graphs, which have to be placed before and above the

consonant, below and after, below and above, or before and after the consonant

(shown in Figure 4.16).

(8) Some diacritical signs (shown in Figure 4.18) exist for part of syllemes. In

special cases, one of these diacritical signs may change shape and location,

depending on the vowels that follow it.
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4.4.2 Controlled Khmer Character Segmentation

Compared with section 4.2, the main operations to obtain the Khmer character

bounding boxes from a scanned image also progress from text line alignment to word

alignment, and then from word alignment to character alignment. It also differs as

follows:

(1) By considering space as word separator.

(2) By optimizing segmentation at the sylleme level.

(3) By post-processing each extracted sylleme, and extracting superscript and

subscript if necessary.

The post-processing of extracted sylleme is based on the following definition in

theory [118]:

A Khmer sylleme is always composed of: (1) A normal consonant

or independent vowel (one and only one); (2) At most two subscript

consonants or independent vowels; (3) At most two diacritic signs; (4) At

most one vowel.

Some shadow characters, and the superscript and subscript consonants may make

vertical segmentation impossible, so we design a “pixel picking” mask for each

sylleme to separate shadowed characters and superscript and subscript consonants

as well. Figure 4.19 shows the “pixel picking” mask of a Khmer sylleme with shadow

character and subscript consonant. The procedure to separate characters based on

the mask is as follows:
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(a) (b)

Figure 4.19: How to segment shadow characters of Khmer. (a) A sylleme containing

shadow characters. (b) The “pixel picking” mask of each character (each filled cell

means to pick the pixel of this position and labeled with the index of the character).

(1) Normalize the mask to the same size as the matched sylleme on the scanned

document.

(2) Pick the pixels covered by the mask.

(3) For each remaining pixel not covered by any mask, find its nearest neighbor

among the covered pixels and assign the same label.

4.4.3 Khmer OCR Results

The proposed approach was applied to a set of real Khmer documents. Fig-

ure 4.20 shows the Khmer character segmentation results of a scanned document.

Using two pages of scanned documents as training pages (each page contains about

1,500 characters), part of the generated template maps are shown in Figure 4.21.

The OCR results using the Hamming distance and Zernike moments are found in

Table 4.3. The performance with average accuracy 84% does not look very sat-

isfying. However, the evaluation is based on results without any post-processing.
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(a)

(b)

Figure 4.20: Example of controlled character segmentation of Khmer document. (a)

The original scanned document; (b) The segmented characters.

Table 4.3: Khmer document OCR results.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Average

Hamming 82.68 83.78 82.58 82.15 79.99 81.40 83.00 81.55 82.47 80.24 81.98

Zernike 84.96 84.54 84.40 83.44 83.11 84.03 84.43 83.47 85.18 82.06 83.96

Similar to the Devanagari script described in Chapter 3, the phenomenon of dif-

ference between reading order and coding order also exists for Khmer script. We

strongly believe after correcting the reading order based on the language gramar,

the OCR results can be improved significantly.
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Figure 4.21: Part of the generated template maps.

4.5 Generalization of the Approach

Although the presented approach in the section 4.4 is described specifically

for the Khmer script, the idea can be generalized to process all scripts with shadow

characters. When vertical segmentation cannot be applied to the character level,

the script’s controlled segmentation must have specific handling. However, almost

all script content can be organized into units to which vertical segmentation can be

applied. For the Khmer script, this unit is the sylleme. Therefore, the automatic

training sample creation occurs as follows:

(1) Organize the electronic content into units to which vertical segmentation is

applicable.

(2) Obtain the “pixel picking” mask when generating a synthetic image.

(3) Segment the scanned document into units defined by (1), using the graph

theory.

(4) Separate possible shadow characters, using the “pixel picking” mask.
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Figure 4.22: The pattern recognition machine for Khmer script.

Pattern matching can organize the content into units. The unit is described using

a regular expression, and the organization of the content is carried out by pattern

matching through a pattern recognition machine. For Khmer script, each unit is

a sylleme. Based on the definition, a sylleme can be described using the following

regular expression:

C(1+S+SS)(1+D+DD)(1+V)

where:

• C is a consonant or independent vowel

• S is a subscript consonant or independent vowel

• D is a diacritic sign

• V is a vowel

The pattern recognition machine to recognize this unit (a pattern) from a

string is constructed as shown in Figure 4.22. Performing efficient pattern matching

after the pattern recognition construction falls outside this thesis’s range, but can

be referred to [72, 63].
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Due to the large variety of different scripts, besides the generalization of the

above approach, the following factors may require specific handling:

(1) New characters generated because of ligature. For instance, Devanagari script

described in the previous chapter, has a large amount of new characters gen-

erated from ligature. Some of them can be segmented into two or more parts,

but most of them are impossible to segment, so these characters must be

recognized as a single character.

(2) Difference between reading order and coding order. The reading order and

coding order of both Devanagari and Khmer script are different, which means

the output codes are different from what displayed on the image. Once this

happens, the recognition results must be post-processed based on some gram-

mars of the language.

(3) Characters containing two or more connected components. Connected com-

ponent extraction is a good way to segment characters. Usually, each ex-

tracted connected component represents a single character. However, almost

all scripts, such as Devanagari, Khmer, Arabic, Chinese, and Latin, have sev-

eral characters that contain two or more connected components. During seg-

mentation and recognition, these characters must be handled specifically.

(4) Different forms of the same character. In some script, such as Arabic, each

character has different forms depending on the location of which in the word.

These characters must be handled specifically based on their locations, which

often make the segmentation and recognition more challenging.
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Chapter 5

Adaptive Logical and Semantic Segmentation

5.1 Introduction

The process of document layout analysis can be divided into two tasks: physi-

cal segmentation and logical analysis. Physical segmentation usually divides a page

into zones with specific physical characteristics. Logical analysis labels each ex-

tracted zone with a specific function or logic label. The structural complexity of

different documents makes it difficult to design a generic document analysis tool that

can be applied universally. Furthermore, since logical analysis is often based on the

physical segmentation result, the performance of the physical segmentation module

is crucial for understanding the document image, and it dominates the results.

Dictionaries are members of a class of documents that are designed for easy

search [32]. Their structure is typically regular and repeating, and “keys” are dis-

tinguished as access points for each entry. The format varies from simple word-

to-phrase translation pairs through full descriptions that contain parts of speech,

related forms, and examples of usage. Our goal is to capture the salient structure of

these entries and label each element appropriately. Because of the regular structure,

we are typically able to provide a relatively small number of training samples for

each dictionary, and then have the system learn the features necessary for correct

segmentation and labeling.
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We present an approach that combines physical and logical segmentation, and

can segment pages with repeating structures by learning the physical and semantic

features that characterize the functionality of unique entries. A bootstrap technique,

when applied to the generation of training data, improves the accuracy of training

and segmentation. Before describing our page segmentation approach in details, we

provide a brief literature survey in the following section.

5.2 Related Work

In most document analysis systems, pages are segmented first into different

levels of entities based on physical features. With journal articles, for example,

the page can be represented with a hierarchical structure of zones, text-lines, words,

and characters. The segmentation is performed on physical features such as spacing,

relative position, and text-line attributes. After obtaining the physical segmentation

result, logical analysis is applied to the highest level – zones. For journal articles,

zones can be classified as title, author, abstract, body, and references. Work relevant

to the page segmentation is typically found in the logical layout analysis literature

([79] gives an overview of traditional methods). In our system, it is essential that

we are to learn a dictionary’s structure, since that structure is typically consistent

throughout a given dictionary but varies widely between dictionaries.

Liang et al. [83] presented a probability-based text-line identification and seg-

mentation approach. Their approach consisted of two phases: an offline statistical

training and online text line segmentation. In the online text line segmentation

phase, an iterative, relaxation-like method found an optimal partition of source
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entities by improving a conditional probability. Kopec and Chou [75] applied a

stochastic approach to build Markov source models for text line segmentation under

the assumption that a symbol template was given and the zone (or text columns) had

been previously extracted. Given the physical layout structures of document images

modeled by a stochastic regular grammar, Kanungo and Mao [96, 61] used a gener-

ative stochastic document model for a Chinese-English dictionary page. A weighted

finite state automaton modeling the projection profile at each level of the document

physical layout tree segmented the dictionary page at all levels. Lee and Ryu [81]

proposed a parameter-free method to segment document images with various font

sizes, text line spacing, and document layout structures. Also some segmentation

methods performed the segmentation based on rules that were either manually set

up by the user [96, 79] or learned automatically by training [94, 111, 75].

5.3 Bootstrapping Logical and Semantical Segmentation

The structured page segmentation problem we present here addresses the gen-

eral problem of identifying repeating structures by learning the physical and seman-

tic features that characterize them. Unlike traditional page segmentation problems

where zones are characterized by spatial proximity, we often find that publishers

of documents with multiple entries (dictionaries, phone books, and other lists) use

different font properties (bold, italics, size etc) and layout features (indentation,

bullets, etc.) to indicate a new entry. Although such characteristics vary for differ-

ent documents, they are often consistent within a single document, and hence the

task suggests learning techniques. Furthermore, these entries may occur in a single
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physical zone which traditional document analysis approach did not deal with. For

dictionaries, one classified entry may extend across several columns or zones. Some

zones may be ignored (i.e. classified as noise) because they have no interest for

logical labeling (for example, a page number, header, or footer). In a dictionary, our

functional segmentation essentially inserts a new level (an entry) between the zone

and text line of the typical hierarchical representation. The segmentation is based

not only on the structural features of the page, but also on the structural features

of the entry. Therefore, this problem can be viewed as a combination of physical

and logical segmentation because (1) pages are first segmented into physical zones;

(2) one physical zone can be functionally segmented further into multiple entries;

and (3) extracted entries are classified into different logical types.

A significant contribution to the effectiveness of entry segmentation results

from application of a bootstrap technique for the generation of new training samples.

Bootstrapping helps make the segmentation adaptive and improves the segmentation

performance. We start with OCR results that include text size, font, face, text line,

and text zone information. The goal of entry segmentation is to segment each page

into multiple (sometimes partial) entries or alternatively to organize multiple lines

of text as a single entry. Since the extraction of text lines in dictionaries is relatively

straightforward, the problem of entry segmentation can be posed as the problem of

finding the first (or last) line of each entry. The segmentation procedure is iterative

and illustrated in Figure 5.1, and each iteration consists of the following three steps:

(1) Feature extraction: The segmentation system is trained automatically using a
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small set of labeled samples (5-10 entries), and entry features are extracted.

(2) Segmentation: Pages are segmented based on the extracted features.

(3) Correction and bootstrapping: The segmented results are fed back to the

user, who can make corrections to the small subset with errors. Based on the

corrected segmentation results, bootstrapping samples are generated and used

to retrain the system.

To warrant the training, we concentrate only on documents with a significant number

of pages. Correction and training require an operator who knows the document

structure.

Figure 5.1: Diagram of the page segmentation approach

5.3.1 Feature Extraction

Based on a study of different types of structured documents, a feature pool

containing all possibly useful features is created. Parameters listed as follows have

been shown to be useful for the segmentation. The training module will select and

use a subset of these features. Examples are shown in Figure 5.2.
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• Special symbols : Special symbols such as punctuation, numbers, and other

non-alphabet symbols are often used to start a new entry, end an entry, or

mark the continuation of a text-line.

• Word font, face, and size: Word font, face, and size (especially the features of

the first word in each entry) are often important entry features. In a dictionary

page, for example, the first word of each entry (typically the headword) can

appear bold, all capital letters, in a different font, or larger than the rest of

the entry.

• Word patterns : Words often form distinguishable patterns which can be used

to describe the entry structure consistency.

• Symbol patterns : Combined with other symbols or regular characters, special

symbols can form consistent patterns to represent the beginning or ending of

an entry.

• Line structures : The indent, spacing, length, or height of text-lines in an entry

can be contained in the line structures to represent the entry features.

• Other features : Other features can also be used, such as spacing between

adjacent entries, the position of text, script type, word spacing, and character

case.

During the training (feature extraction) phase, each extracted feature is as-

signed a probability. Based on estimated probabilities, each feature is assigned a
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Figure 5.2: Some useful features for segmenation.

weight to compute the entry score from all extracted features. The detailed proce-

dure is as follows:

(1) Count the occurrence of different features in training samples;

(2) Compute the feature occurrence rate as the feature probability. Suppose a

total of N training entries and K extracted features, then for feature i (1 ≤

i ≤ K), the probability can be computed as: pi = Ki

N
, where Ki is the number

of occurrences of feature i.

(3) Assign feature weights based on the following computed probability:

wi = pi

A
× 100, where, A =

∑K
i=1 pi and 1 ≤ i ≤ K

(4) Considering the extracted features as a formed feature space, each entry is

projected to this space and a voting score is computed as follows:

FV =
∑K

i=1 wiSi where Si = 1 if the feature i occurs, otherwise Si = 0

(5) Obtain the minimum, maximum, and average voting scores of entries; these
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values will be used as thresholds in the segmentation stage.

5.3.2 Segmentation

The segmentation is an iterative procedure that maximizes the feature voting

score of an entry in the feature space. Based on the extracted features, a document

can be segmented into entries by searching for the beginning and ending text lines

of an entry. This search operates like a threshold-based iterative procedure, and

the threshold can be estimated from the training set. Considering a relatively small

number of text lines on one page, this search can be accomplished with brute-force

search. The approach is iterative, the training set can be generated by bootstrap-

ping, and initial segmentation result is refined step by step. The segmentation

procedure is described as:

(1) Search for candidates from the first text line in one zone by feature matching.

This operation is equivalent to determining if the first line in one zone is the

beginning of a new entry or a continuation of an entry in the previous zone or

previous page.

(2) Search for the entry end. This operation can be replaced with the searching

of the next entry’s beginning, since the beginning of one entry is the end of

the previous entry.

(3) Remove the extracted entries, and iterate until all new entries are identified.

Once we obtain the initial segmentation results, the results are traversed and, if

necessary, two simple operations (splitting, merging) are applied. It should be noted
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that some features (such as spacing between entries and text line indent) are so

important and reliable that they must be given special attention. In our approach,

during the procedure of feature score computation, we consider entry spacing and

text line indent as rules if they appear as features. If one of the rule is broken, a

punishment (a negative score) is applied to the feature score. In this way, entry

spacing and text line indent are treated as the most important features and thus

have dominant influence on the final segmentation result. Details of this approach

was published in [31].

5.3.3 Correction and Bootstrapping

Due to many structured documents’ complexity, it is difficult to determine the

optimal value of some parameters. We attempt to learn as much as possible about

the features of the given training set. In our approach, a new training set is generated

from the original set and selected new segmentation results. This technique is the

bootstrap technique described in section 2.1.7.

Bootstrap samples can be generated from the original training samples, from

the new segmentation results, or from a combination of both. Considering the sit-

uation where the original training set is a small set, we always generate bootstrap

samples from the combined set of original training samples and selected segmenta-

tion results.

Before combining the segmentation results with original training samples to

generate bootstrap samples, the operator corrects the original segmentation results

by performing one or more of the following operations:
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• Splitting: divide one segmented entry into two or more individual entries

• Merging: combine two or more adjacent entries into one single entry

• Resizing: change the size of a segmented entry

• Moving: change the bounding box position of a segmented entry

• Removing: erase a segmented entry

• Relabeling: change the type label of an entry

Let XNi
=
{
xi

1, x
i
2, ..., x

i
Ni

}
be a set extracted from the set of original training

samples and new selected segmentation results for entry type i, where xi
j (1 ≤ j ≤

Ni) are the feature vectors with each vector element the probability of the specific

feature entity. We generate a bootstrap sample set XB
Ni

=
{
xbi

1 , xbi
2 , ..., xbi

Ni

}
with

size Ni from the original set XNi
. The procedure to generate bootstrap samples

described in section 2.1.7 is applied here.

We assume the document has consistent functional structure, but some fea-

tures may occur in only one entry type. For example, the line indent feature will

not appear in a single line entry, and the special ending symbol may not appear in

an entry that continues on the next page. So, we generate the bootstrap samples

for each predefined entry type.

5.4 Experimental Results

We have applied this approach to the segmentation of three categories of struc-

tured documents: (i) dictionaries; (ii) voice transcriptions; and (iii) phone books.
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(a) Word (b) Text line

(c) Entry (page number is noise)

Figure 5.3: English-French dictionary segmentation results.

The experimental results are shown as follows.

5.4.1 Dictionary Segmentation Results

The segmentation approach was applied to five dictionaries with different

structural features: French-English dictionary (613 pages), English-French dictio-

nary (657 pages), Turkish-English dictionary (909 pages), English-Turkish dictio-

nary (1152 pages) and Cebuano-English dictionary (1163 pages). The French-

English and the English-French pages are taken from the same bilingual dictionary,

so they have the same features. Figures 5.3 and 5.4 show the segmentation results

of some of these dictionaries, and Table 5.1 gives the evaluation results.

Figure 5.5 shows the performance improvement for the segmentation of the first

four dictionaries after bootstrapping. The evaluation results from the statistical

information of 50 pages of each dictionary. The initial segmentation used four

training entries. Iterations following the initial segmentation were based on adding
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(a) (b)

Figure 5.4: Segmentation of Turkish dictionaries. (a) Turkish-English dictionary

segmentation results (with many single-line entries). (b) English-Turkish dictionary

segmentation results (different entry features).

Table 5.1: Segmentation results of five dictionaries.

Document

Page

No
Total

Entries
Correct
Entries

Incorrect
Entries

False
Alarm

Mislabeled
Entries

EnglishFrench 635 20174 96.11% 3.89% 0.21% 0.80%

FrenchEnglish 75 2423 97.90% 2.10% 0.25% 0.49%

EnglishTurkish 96 3517 99.26% 0.74% 0.23% 0.31%

TurkishEnglish 70 2654 98.98% 1.02% 0.08% 0.38%

CebuanoEnglish 50 2152 99.21% 0.79% 0.00% 4.46%

different numbers of training entries used to generate bootstrap samples. The chart

in Figure 5.5(a) demonstrates the segmentation can be refined step by step by

applying the bootstrap technique. Figures 5.5(b) and 5.5(c) show the extracted

features and assigned weights in the initial step and after bootstrapping respectively.

It can be seen the weights changed after bootstrapping.

The evaluation of results is shown in Table 5.1. Obtaining ground truth on

a large data set is very time-consuming, so the evaluation is based only on the

available ground truth of these dictionaries.
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Figure 5.5: Progressive performance improvement based on bootstrapping (four

dictionaries)

5.4.2 APOLLO 15 Voice Transcription Segmentation Results

For the dictionary parsing problem, we wish to segment the dictionaries into

entries that can be tagged and used as lexical resources. Typed transcriptions of

audio content provide a related challenge. We are currently integrating into an audio

retrieval interface the audio, video and photographs from the Apollo 15 mission.

The audio and scanned images of typed transcripts are from the Lunar Module

(LM), the Command Module (CM), and mission control. We aim at synchronizing

the images of the transcriptions to the audio. First, we segment the transcript

images into spoken units and label the times, sources, and spoken text regions.
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While this text is not complicated, unparameterized segmentations will not be as

accurate as a modeled segmentation. Figure 5.6 shows the segmentation results of

the transcriptions. These transcriptions contain five parts (around 3400 pages), and

each part has different structural features. Table 5.2 shows the evaluation results of

the segmentation based only on available ground truths.

Compared with the segmentation results of five dictionaries, these transcrip-

tion documents have relatively simple structures and more obvious structural fea-

tures. The segmentation results are more accurate than the dictionary segmentation

results, with accuracy from 98.07% to 99.87%. Due to physical and logical noise

(uninterested entry), the “false alarm” and “mislabeling” errors are significantly

higher than the dictionary results. The highest “false alarm” error rate is 8.37% (vs

0.25% for dictionaries), and the highest “mislabeling” error rate is 2.75% (vs 0.49%

for dictionaries).

(a) (b)

Figure 5.6: Segmentation results of voice transcription ((a) and (b) have different

features).
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Table 5.2: Segmentation results of transcripts.

Document

Page

No
Total

Entries
Correct
Entries

Incorrect
Entries

False
Alarm

Mislabeled
Entries

AS15 CM 92 2112 99.20% 0.80% 3.65% 0.23%

AS15 LM 94 1969 98.07% 1.93% 3.71% 0.48%

AS15 PAO 101 1123 99.20% 0.80% 8.37% 1.38%

AS15 PAC 96 1540 99.22% 0.78% 0.19% 2.75%

AS15 TEC 93 1513 99.87% 0.13% 0.00% 0.59%

5.4.3 Other Structured Document

In addition to dictionaries and transcriptions, we also tested the approach’s

robustness by applying it to a phone book, with results shown in Figure 5.7. The

last text-line is ignored as noise (uninterested part).

Figure 5.7: Segmentation of contact information list.
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5.5 Specific Handling of Documents with Tables

The approach presented above can handle most documents with different struc-

tures. However, documents with table contents require specific handling because

they often contain more information which should be extracted. Basically, besides

the horizontal segmentation which can be conducted using the above approach, each

segmented entry requires a further vertical segmentation, which generally segment

the content in one entry to table cells by detecting table columns. Although table

content may have a large varieties of layout, spacing and vertical line are usually the

only possible column separators. So column detection is usually equivalent to the

detection of spacing or long vertical lines. Figure 5.8 shows examples of two different

table layouts, which use spacing and vertical line as separators, respectively.

5.5.1 Detection of Column Separators

The detection of the column separator of table is based on the following two

assumptions: (1) Column number is known; (2) Columns don’t have overlapping

on all pages; (3) A table header exists either on the first page or on every page.

Suppose there are N columns on every page, and the page size is W ×H, where W

is width and H is height, the detection procedure is described as follows:

(1) Extract the sub-image in bounding box [l t r b] = [W
10

H
6

9W
10

5H
6

], where l, t, r,

and b are the left, top, right, and bottom coordinates, respectively.

(2) Extract connected components from the sub-image and consider the narrow

and high components as vertical line candidates.
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(a)

(b)

Figure 5.8: Two tables using different column separators. (a) Spacing as separator.

(b) Vertical line as separator.

(3) Select N − 1 components from candidates by evaluating their locations and

consider the selected N − 1 components as column separators.

(4) If step 3 succeeds, then stop the procedure. Otherwise, the separators are

spacing, continue the procedure.

(5) Organize the connected components extracted in the second step into words.

Let the bounding box of a word be [l t r b], a vertical projection based on each

139



word’s box is calculated using the following formula:

Pnew[i] = Pold[i] + (b− t + 1) i ∈ [l, r]

(6) Detect all spacing existing in P .

(7) Select N − 1 spacing locations by evaluating the spacing width and location

simultaneously, and consider these spacing as column separators.

The reason that the above process was conducted on a sub-image is: because

of the photocopying or scanning, the page margins often contain some noise which

can affect the detection of spacing or vertical lines. By taking the sub-image, we

can reduce the detection errors greatly.

5.5.2 Table Content Segmentation Results

The segmentation of entry into table cells is straightforward after obtaining

the separator locations. The proposed approach was applied to two collections of

table content documents. Results displayed in Figure 5.9 demonstrate the proposed

approach is able to detect the table column correctly.

5.6 Summary and Analysis

The presented approach to page segmentation uses a bootstrapping technique

to learn a segmentation model. The segmentation system is first trained using a

small set of samples (typically less than 10 entries) and the model is used to segment

the whole set of documents. After the operator makes corrections to a selected set
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(a)

(b)

Figure 5.9: Segmentation results of tables. (a) Spacing as separator. (b) Vertical

line as separator.

of newly generated segmentation results, these corrected results are combined with

the original training set to generate a set of bootstrap samples which are used to

retrain the system. Starting with OCR results, this approach can be applied to the

segmentation of any documents with repeating structure whose structure can be

learned from training.

We applied this approach to many structured documents such as dictionaries

and voice transcripts and obtained satisfying results. Experiment results show that
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the bootstrap technique can improve the performance of segmentation even with a

small set of training samples.

Many structured documents contain pictures, figures, tables, and/or other

content, which makes the segmentation more difficult. We proposed an approach

to segment pages with table contents by detecting column separators. Although

accurate results were obtained for these document, for documents with mixed table

content and regular text content, the process is still challenging. The future work

can be extended to solve the segmentation of pages with these elements.
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Chapter 6

Conclusions and Future Work

This thesis considered the problem of adaptive analysis and processing of struc-

tured multilingual documents. We presented a framework to extract information

from multilingual documents, where adaptability was applied to every step, such as

word-level script and style identification, font identification, OCR, and page segmen-

tation. In this chapter we summarize the main results and propose new directions

for future research.

6.1 Script Identification, Font Face, and Style Classification

The approaches to perform script identification, font, and style classification

are conducted either at different levels (page or word) or using different features.

6.1.1 Main Results

Script Identification

We presented an approach to perform word-level script identification. Texture

features were extracted using the isotropic Gabor filter bank. Four classification

techniques, WED, k -NN, GMM, and SVMs were applied to perform the classifica-

tion and results were compared. Bootstrapping technique was applied to the small

training set to test the performance.
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(1) Isotropic Gabor filter bank is able to capture the features of different scripts

at the word level.

(2) Large number of training samples (19 pages) can produce better performance

than a small number of training samples although the performance difference

is often small.

(3) For large number of training samples, the k -NN classifier obtains the best

performance, while the SVMs classifier is the most robust.

(4) For a small training set, the performance of k -NN, GMM, and SVMs is almost

the same, and WED has the lowest performance.

Style Identification

We proposed an iterative approach to identify the word styles. Features used

for identification were selected using a brute-force search. A Gaussian mixture

model (GMM) was built for each character on every page. The word style was

decided based on the voting of character styles. Already decided word style updated

the styles of characters contained in that word. The GMMs were updated in each

iteration. Experimental results compared with a commercial software showed the

proposed approach was better performed.

Font Identification

A new texture operator, grating cell operator, was applied to extract texture

features for page-level font identification. Operator parameters were selected based
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on experimental results. Classification results based on features extracted using this

operator and the isotropic Gabor filter were compared, and two classifiers, WED

and BPNN, were applied and compared. Experimental results showed:

(1) The grating cell operator can more accurately capture texture features of dif-

ferent fonts. It detects only texture and does not respond to other image

attributes such as edges.

(2) Traditional Gabor filter operator responds to both texture and other image

attributes.

(3) Due to the characteristics of document images, strokes of characters of different

fonts often create a series of gratings with different patterns, which make the

grating cell operator more effective for extracting these pattern features.

(4) BPNN is more effective than WED classifier for font identification, implicating

a more complicated classifier can improve the performance than the simple

WED classifier.

6.1.2 Future Work

The future research directions for script identification, font and style classifi-

cation are described as follows.

The script identification is a following process after document image prepro-

cessing and word segmentation. Incorrect word segmentation, different word styles,

and single-character words can affect the identification result. Therefore, removing

or reducing the effect of these factors can absolutely improve the performance.
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The grating cell operator has a much higher complexity than Gabor filters.

Therefore, the approach can benefit from techniques reducing the computation com-

plexity.

As a post-processor of OCR results, the word-level style identification depends

on OCR performance. However, the same approach can perform as the feed-back

to OCR system to improve the recognition performance. So combination with OCR

should be the future research direction.

6.2 Adaptive Optical Character Recognition

In Chapter 3 and [86], we demonstrated how to design an OCR for a specific

script rapidly, by the design of a Hindi OCR. Due to the large amounts of ligatures,

the segmentation algorithm was designed specifically based on the characteristics

of Devanagari script. And, the small training set made the generalized Hausdorff

image comparison an effective recognition technique. Applying the designed OCR

to a Hindi-English bilingual dictionary and ideal image converted from PDF file,

the results are summarized below.

6.2.1 Main Results

(1) For scanned bilingual documents, the recognition accuracy at the character

level reached 87.75% without spelling checking and correcting based on dici-

tionary search.

(2) For clean image, the accuracy came close to 95%, also without any post-

146



processing, such as error correction. The result confirmed the effectivness of

the presented segmentation approach.

(3) With small training set, the generalized Hausdorff image comparison can be

easily tuned to handle the large number of special Hindi characters caused by

ligatures.

6.2.2 Future Work

A major thrust of future work will be to perform OCR correction or to resolve

ambiguity among candidates. One advantage is we assign confidence as a side effect

of recognition. The real values of the confidence make them more intuitive and

usable than current commercial OCR softwares.

Given the confidence of characters and words, we can further consider the

word correction based on a dictionary search. The word correction engine would

determine whether a word should be replaced with another correct word from the

dictionary, significantly improving the recognition performance at both character

and word level.

Another advantage involves the adaption to different image qualities. When

a scanned document image has a poor quality, the Hausdorff thresholds can be set

to lower values, making the classifier and recognizer more tolerant. If the image has

high quality, the thresholds can be set to higher values, speeding the recognition

process. The setting of the thresholds can also be determined automatically based

on the qualities of images.
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The next recognition step is to apply new, possibly multi-classifier techniques,

and combine them with the current Hausdorff classifier to provide improved perfor-

mance.

6.3 Automatic Training Sample Creation for OCR

In Chapter 4, we presented an approach which automatically extracts training

samples from scanned documents under different situations. When electronic text

is available, the procedure is completely automatic by aligning scanned documents

with synthetic images generated from electronic texts. However, limited user feed-

back is required when electronic text is unavailable while vertical segmentation is

possible. Under all above situations, graph theory was applied to handle touching

characters. Results working on different script, such as Cyrillic, Latin, and Khmer

are summarized below.

6.3.1 Main Results

(1) Dijkstra algorithm is efficient and effective to optimize the segmentation of

touching characters.

(2) The presented approach is able to provide segmentation results with high

accuracy, which can be used as training samples of an OCR.

(3) When the training samples are ready, the application of graph theory can

optimize the segmentation of touching characters. Compared with the current

commercial software, this approach is extremely useful for handling documents
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with a large number of touching characters.

(4) When the electronic text is unavailable but vertical segmentation is possible,

the proposed approach can iteratively and automatically extract characters

with limited user feedback.

(5) For some scripts, shadow characters caused by ligatures often make it impos-

sible to conduct vertical segmentation to extract characters. Experimental

result of Khmer script showed the proposed approach can still segment the

character with high accuracy by applying “picking mask” technique.

6.3.2 Future Work

The degradation of documents caused by many factors, such as page warping

from photocopy, character kerning from italic characters, and text line ambiguity

from mathematics formula, reduced the performance. Handling of different degra-

dation is desired in the future.

If the electronic text is unavailable, documents with significant broken charac-

ters make the extraction of training samples impractical. Techniques handling this

case are required, image morphology might be a good solution.

The segmentation of shadow characters was generalized, however, specific han-

dling still exist in the recognition phase. Generalization in the recognition phase is

desired.
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6.4 Adaptive Logical and Semantic Segmentation

A feature pool was created for the page segmentation. Extracted from several

training samples, features were used to segment one page into entries logically and

semantically. Bootstrapping technique was applied to refine the result based on

user’s feedback. Results are summarized as follows.

6.4.1 Main Results

(1) Useful features can be extracted from several training samples to conduct

segmentation.

(2) Experimental results obtained from different document types including bilin-

gual dictionaries, transcripts and phone-book list showed the proposed ap-

proach was effective for page segmentation.

(3) Bootstrapping technique can improve the performance progressively.

6.4.2 Future Work

This is the most stable phase of this thesis. The future work can be directed

to the following directions: (1) Processing of documents with more complicated

structures, such as pages with more complicated tables, forms or other types of

regions. (2) The feature pool can be updated by new features learned from new

documents. (3) Color documents often use different colors to represent different

functions, therefore, color information should be extracted from a document before

converting it into binary image to conduct OCR.
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6.5 Conclusion

The main goal of the work presented in this thesis has been to contribute to

structured multilingual document analysis through the development of an adaptive

framework. The designed framework consists of the following major components

where adaptability is applied to each part:

• A general word-level script identification approach based on global texture

features.

• A general font identification approach using a new texture operator.

• An adaptive font style identification approach based on Gaussian mixture

model.

• An adaptive OCR using generalized Hausdorff image comparison, demon-

strated on Hindi.

• An automatic training sample creation framework under different situations.

• A bootstrapping physical and semantical page segmentation approach.

Every part of the designed framework can be extracted as an independent toolkit to

perform multilingual document analysis without major modifications. It is proved

by experimental results that the research herein can help extract information rapidly

from multilingual documents which serve as important resource for language system

such as cross language information retrieval and machine translation.
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