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Chapter 1: Significance of the Problem 
 

Human Immunodefficiency Virus (HIV) protease (HIVP) is an enzyme critical for the 

maturation of the virus. The protease plays a critical role in viral assembly. The 

protease cleaves the viral polyproteins gag or gag-pol at nine non-homologous sites 

(Table 1) to yield separate structural proteins and enzymes, including the protease 

itself, essential for the viral life cycle (Figure 1) (11).  Hence, the most potent 

medications currently available for treatment of Acquired Immunodeficiency 

Syndrome (AIDS), caused by HIV, are the inhibitors of the viral protease (3).  These 

agents in combination with other agents comprise highly active antiretroviral therapy 

(HAART).  

  

The active site of this aspartyl protease is located at the interface of the dimers and 

each monomer contributes an aspartate residue, which is part of an Asp-Thr-Gly triad.  

The interactions of HIVP with its natural substrates represent an interesting example 

of recognition of asymmetric substrates by a symmetric enzyme. The natural peptide 

substrates bind to HIV-1 protease in an extended conformation with eight contiguous 

residues on the peptide, labeled P4 to P4', making contact with the eight enzyme 

subsites S4 to S4' (Figure 2) (12). Insight about the interactions of the substrates with 

HIVP has been gained from crystallographic studies of substrates bound to a form of 

the enzyme that has been inactivated by mutating the catalytic aspartic acids to 

asparagines (11). From their analysis of six crystal structures with an inactive (D25N) 

HIV-1 protease mutant, King et al. have hypothesized that the substrate specificity of 
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HIV-1 protease is based largely on shape, which is conserved across substrates, rather 

than on the detailed amino acid sequences of the substrates (13). This view is 

corroborated by the fact that the nine substrate sequences cleaved by the protease 

differ significantly in their amino acid sequence, but fill very similar volumes within 

the active site, when bound. The shape defined by the van der Waals volume of the 

substrates in the active site of the protease has been termed the “substrate envelope” 

(Figure 3a & 3b).  

 

The currently available, FDA approved, HIV-1 protease 

inhibitors act by binding to the active site of the protease. However, they can become 

ineffective due to mutations in the protease that diminish the affinity of the inhibitors 

but do not prevent the cleavage of the natural substrates of the enzyme. The drug-

resistant mutations appear due to the high replicative rate of HIV, the infidelity of the 

reverse transcriptase and the selective pressure of protease inhibitor therapy on the 

evolution of the virus.  Hence, there is a continuing need for novel multi-targeted 

inhibitors of HIVP. The present project forms part of a larger, collaborative effort to 

develop protease inhibitors that effectively inhibit not only wild type but also mutant 

forms of HIV protease. 

 

Structure-based virtual screening of chemical libraries or 

optimization of lead compounds obtained from such screenings, have become 

valuable tools in drug development and the development of the existing HIVP 

inhibitors is considered a major success of structure-based drug design (6). Structure-
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based design essentially requires an understanding of the physical interactions 

between small molecule inhibitors and their target. Better elucidation of the factors 

influencing binding of HIVP and its inhibitors will facilitate the discovery of novel 

drug molecules, especially when combined with the extensive set of crystal structures 

of HIVP, both wild type and mutants, complexed with inhibitors and substrates that 

have become available (7). The binding affinities of many inhibitors to both wild type 

and mutant HIVPs have also been published. These data include the affinities of the 

cyclic urea inhibitors of HIVP (12-14). The binding affinities of this class of 

compounds span a wide range, providing the scope to optimize and test models of 

binding with a varied set of ligands. In addition, the experimental data for the cyclic 

ureas are likely to be consistent because they are from a single laboratory. The data 

for this set of ligands have been used extensively in the present study. 

 

Structure-based design of HIVP inhibitors targeted against both 

wild type protease but also mutants will involve adequate ranking of the binding 

affinities of potential ligands. Binding affinity predictions of HIVP inhibitors using an 

empirical force field like CHARMM (8) combined with a continuum solvation model 

(9) have yielded promising results in a previous study (10). Although the method was 

not highly accurate, it did appear to have significant predictive value. However, the 

prior method is limited by its use of computationally expensive detailed calculations 

of configurational integrals for energy minima. In this project an energy model is 

being parameterized with the goal of developing a fast  method for predicting binding 

affinities of HIVP inhibitors. This method will be used for in silico compound 
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screening to discover new potential anti-HIV drug candidates. After such a lead drug 

molecule is obtained from virtual screening, its chemical structure usually must be 

optimized by chemical modifications to enhance its binding affinity to the receptor. 

 

In recent years, lead optimization procedures have been published which work by 

minimizing the electrostatic part of the binding free energy by adjusting the ligand’s 

atomic charges to maximize the complementarity of its charge distribution with that 

of the binding site. However, the existing computational procedures optimize the 

charge distribution of the whole ligand, so the charge changes suggested for a given 

part of the ligand may be based upon the assumption that charges elsewhere in the 

ligand also are changed. This assumption will frequently be a poor one, since 

chemical modifications of a lead compound are usually local in nature. Thus, local, 

rather than global, charge optimization should provide more accurate guidance for 

ligand modification. A central element of the present project is a method of 

optimizing the charges of local parts of a ligand while keeping the rest of the charges 

roughly constant, rather than attempting to modify all of the ligand’s charges towards 

a computed optimum, as done in previous approaches.  

 

The method developed here will also be computationally faster than existing 

approaches because it will require only one Poisson-Boltzmann calculation for the 

free ligand and one more for the bound ligand, while existing methods require two 

Poisson-Boltzmann calculations for each charge center of the ligand. The design 

algorithm can find direct application in the HIV protease inhibitor design effort. 



 

 5 
 

Chapter 2: Background 
 

2.1 Parameterization of an Energy Model 

 

An energy model, described below, is being tuned by fitting to 

experimental binding affinities of a training set of ligands by downhill simplex 

minimization (11), with the aim of using the parameterized model for scoring ligands 

according to their binding affinities to their target receptors. The parameterized 

energy model is being validated on various test systems. 

 

Energy model 

 

The binding energy of a ligand is the free energy change on 

complex formation of the ligand with its target protein: 

                     K 

                                  L  +  P      PL.          (1) 

 

The binding energy of a ligand can be calculated as the difference between free 

energy of the complex, the free ligand and the free protein: 

 

�GL =  GPL - GL - GP  =  -RTlnK,   (2) 
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where K is binding affinity of the ligand, L, and GX is the free energy of the 

subscripted species. 

 

Influences that stabilize the complex are dispersion forces, charge-charge 

complementarity, hydrogen bonding, and hydrophobicity. In the present energy 

model, the first three driving forces are explicitly accounted for by Lennard-Jones and 

electrostatic terms that form part of the empirical force field CHARMM22.  Thus, the 

van der Waals interaction between atoms i and j is approximated as 12-6 Lennard-

Jones potential 

 

ULJ = 4�ij { (�/rij)12 - (�/rij)6 },      (3) 

 

where, rij is the distance between atoms i and j,  �is the mean radius of atoms i and j, 

and �ij is a constant for the atom pair. The electrostatic Coulombic energy is 

computed according to Coulomb’s law as 

 

UCoulombic = qiqj / Drij ,              (4) 

 

where D is the dielectric constant of the medium and qi is the charge on atom i. The 

force field also includes a term that accounts for intrinsic energy changes associated 

with bond rotations. This dihedral energy term is proportional to the cosine of the 

dihedral angle under consideration.  The hydrophobic effect is accounted for 

approximately via a term proportional to the molecular surface area: 
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WNP = C A    (5) 

 

where A is the surface area, which falls when two molecules bind to form a complex, 

and C is a coefficient fitted to reproduce measured solvation energies of nonpolar 

compounds in water.  It is also possible to allow the surface area component to 

account for the van der Waals dispersion forces between ligand and protein, and 

variant models were tested in which the Lennard Jones term was omitted, as 

described below.  

 

Influences that destabilize the complex are desolvation of polar groups and loss of 

translational, rotational, configurational entropies. The Poisson Boltzmann solvation 

energy accounts for desolvation penalty paid for complexation. Here, the electrostatic 

potential is computed by solving the three-dimensional linearized Poisson-Boltzmann 

equation.  

 

 

where [ ( ) ( )]D r rφ∇• ∇  is the divergence of the displacement field, ( )rρ  is the 

charge density as a function of the position r, 
2( ) ( ) ( )oD r r rε κ φ gives a measure of the 

screening effect of the salt in solution, D(r) is the position dependent dielectric 

constant having a particular value in the molecular region (Dint) and a second value 

in the solution region and the ion-exclusion region (Dsolv). Here 
2 ( )rκ  is given by 

)()()()()]()([ 2 rrrDrrrD oo φκερφε +=∇•∇−
(6) 
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2 2 ( )( )
o

I rr
D kT

κ
ε

=
   (7) 

where I(r) is the ionic strength as a function of position, k is the Boltzmann constant 

and T is the temperature in Kelvin. Note that the ionic strength is zero inside the 

solute and so 
2 ( )rκ is also zero there.  The Poisson-Boltzmann can be solved using 

numerical techniques, such as the finite difference method. This method discretizes 

the continuum electrostatics problem onto a 3D grid, where the dielectric constants 

are coded onto the grid lines and the charges and ionic strength are coded onto the 

vertices of the finite difference grid, thereby transforming the Poisson-Boltzmann 

equation into a set of difference equations, which can then be solved by standard 

techniques of linear algebra. 

Then the electrostatic energy can be calculated as: 

 

W  = 

arg

1

1
2

ch esN

i i
i

qφ
=
∑

.  (8) 

 

The number of rotatable bonds (Ntor) of a ligand is considered an approximate 

measure of configurational entropy loss. Rotational and translational entropies are 

difficult to compute. Here, it is assumed that these changes are about the same for all 

inhibitors. As a consequence, this term cancels when one considers relative binding 

affinities of various ligands for the same receptor, as done here. 
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In summary, for a molecular species i, the potential energy is 

calculated as the sum of the Lennard-Jones, Coulombic and dihedral energy terms 

 

Ui  = ULJ,i + UCoulombic,i + UDihedral,i   (9) 

 

and the solvation energy for the species i is computed as the 

sum of the polar, Poisson-Boltzmann component (PB) and the non-polar surface area  

(NP) terms: 

 

 Wi  = WPB,i + WNP,i .   (10) 

 

The total free energy for the species i, is then, calculated as the 

sum of potential and solvation energies:  

 

Gi  = Ui  + Wi.        (11) 

 

                                     Treatment of multiple conformations 

 

A detailed physical model of the binding process of a ligand to 

its receptor considers an ensemble of conformations of the free ligand, and of the 

ligand in the complex, where the free energy of each conformation can be calculated 

according to equation (11). The free energy of the species can then be computed as 

the Boltzmann sum of the free energies of the conformations of that species, as shown 
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in equation (12). To account for the configurational entropy change, a term 

proportional to the number of rotatable bonds of the ligand is added to that energy. 

The resulting expression for n conformations of the free ligand is: 

 

GL = -RT ln Σn e - Gi /kT    ++    cc  NNttoorr..    ((1122))  

  

SSiimmiillaarrllyy,,  for an ensemble of n conformations of the 

complexed ligand, the free energy of the ligand in complex (GPL) is calculated as the 

Boltzmann sum of the free energies of all the conformations: 

 

GPL = -RT ln Σn e - Gi /kT   (13)   

  

Here it is assumed that the ligand’s bonds are no longer 

rotatable, so the additional term of Equation  (12) is omitted.  

 

In the present method, multiple conformations of the free 

ligand are generated in the absence of the protein, and their energies are computed 

and combined as described above.  Similarly, multiple conformations of the ligand-

protein complex are generated, with the protein part currently held rigid, and again 

the energies of the conformations are computed and combined.  When all the ligands 

in a series are modeled as binding to exactly the same protein sequence and structure, 

then the internal energy of the protein conformation is a constant in the calculations 

and will cancel when relative binding affinities are computed for the ligands.  
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However, when different ligands are fitted into different conformations of the 

protease, and/or different mutants, then the computed binding energy includes not 

only ligand-protein interactions but also differences in the internal energy of the 

protein.  Some of these changes result from conformational differences that are 

unrelated to binding and result from arbitrary details such as the arrangement of side-

chains far from the binding site, depending upon the crystal structures used. If any 

useful signal is to be obtained from the calculations, it is important that these rather 

random energy components be eliminated.  This can be done by forming a model of 

the free protein, for each conformation used, which consists of the complexed 

conformation of the protein without the ligand, and then subtracting the free energy of 

this isolated protein from that of the complex. 

 

 

                                    2.2 Optimization of Lead Drug Compound 

 

Computational ligand design and optimization in drug 

discovery 

 

Computer-aided drug design involves the design of compounds 

that bind with high affinity to key regions of biologically important molecules like 

enzyme active sites, leading to inhibition or alteration of the activity of the target.  A 

rational strategy for ligand design may involve de novo design of a potential lead 

compound followed by chemical optimization of the compound to enhance its 
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binding affinity for the targeted receptor. Several methods of de novo ligand design 

and/or optimization of lead compounds exist, of which some representatives are now 

discussed.  

 

One way to optimize an existing ligand is to manually modify 

it via computer graphics software and study the new interactions of the modified 

ligand with the receptor using three-dimensional molecular graphics programs like 

QUANTA and Insight (1).  However, it is difficult to test many possible changes by 

this approach, and hence several automated approaches have been developed. 

 

A more detailed and automated approach (2, 3) involves the 

use of the multiple copy simultaneous search (MCSS) method, which is suitable for 

both de novo construction of ligands and optimization of known ligands. In the de 

novo design mode, the MCSS method uses molecular dynamics with the CHARMm 

force field (4) to search for optimal positions and orientations of small chemical 

fragments, each with a single functional group in most cases, in the binding site of the 

targeted receptor. Fragments in these favored positions are subsequently connected to 

form candidate ligands. An appropriate set of chemical fragments is one in which 

most organic molecules can be described as a collection of such groups. Functional 

groups that may be considered are acetonitrile, methanol, acetate, methyl ammonium, 

dimethyl ether, methane, acetaldehyde and isobutane.  Such groups are simple enough 

to facilitate discovery of favorable positions in the receptor binding site but complex 
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enough to approximate the steric and electrostatic interactions of a chemical moiety 

forming part of a complete ligand.  

 

To optimize a known ligand with the MCSS method, set of 

functional groups is chosen so that the desired ligand may be reconstructed. The 

functionality maps obtained from the MCSS method may then indicate ways of 

modifying an existing ligand to improve its binding affinity for the receptor. For 

example it may be observed that a different stereochemistry is required for formation 

of additional hydrogen bonds by the ligand with the receptor. Another approach may 

be to determine whether a fragment finds a low-energy position next to an existing 

ligand. Such fragments may be chemically linked to the ligand to increase affinity. 

  

A third approach to ligand optimization involves automatically 

linking new groups to an existing ligand or scaffold. Implementations of such an 

approach are found in the programs LUDI (5) and GROW (6). LUDI makes use of 

statistical data from small-molecule crystal structures to determine possible binding 

geometries of a ligand that interacts with hydrogen bonding and hydrophobic sites of 

the receptor. The small molecules are then iteratively linked, and the growth process 

is evaluated with a simple energy function that has terms to account for hydrogen 

bonding, ionic interactions, lipophilic interactions, and changes in ligand entropy due 

to freezing of internal degrees of freedom. GROW, used for ligand design by Moon 

and Howe, utilizes a template set and iteratively pieces the library templates together, 

within a model of the target receptor, in a manner similar to LUDI.  Both LUDI and 
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GROW can be used for ligand optimization by determining whether the existing 

ligand should have a different stereochemistry or by adding functional groups to the 

existing ligand to enhance the computed binding affinity. 

 

The above approaches all use simplistic treatments of 

electrostatic interactions, which are widely believed to be important determinants of 

affinity. For example, they all neglect the energy cost of desolvating polar groups 

upon binding.  Also, all the methods described above rely upon trial and error during 

ligand construction, rather than taking a guided approach to speed the construction of 

improved ligands. This tends to make the calculations costly. The main theme of the 

present project is to utilize a full electrostatic model, including both Coulombic 

interactions and desolvation penalties for polar groups, to design and/or optimize 

ligands. Gradients of the binding free energy with respect to atomic charges are used 

to guide ligand modifications and thus speed the process. The following sections 

describe the electrostatic model used here, and the gradient-based optimization 

procedure.  

 

                                Detailed Description of Continuum model of molecular 

electrostatics  

                               In the binding reaction of a ligand with a receptor in an aqueous 

solution, interactions with the solvent and intramolecular Coulombic interactions in 

the unbound states are exchanged for intermolecular interactions between the ligand 

and receptor in the bound complex. The net change in the electrostatic component of 
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the binding free energy is thus the result of a delicate balance between the ligand-

receptor Coulombic interaction and desolvation effects. This balance is captured by a 

continuum electrostatics model (7) (Figure 4), which describes the ligand and 

receptor as low-dielectric regions with embedded charges surrounded by high 

dielectric solvent. 

 

The total electrostatic energy of a molecule or a complex of 

molecules is given by  

1

1
2

N

elec i iG qφ= ∑   (14) 

where iq  is the charge on atom i and iφ  is the electrostatic 

potential at atom i. 

  The electrostatic potentials at an atom can be obtained by 

solving the linearized Poisson-Boltzmann equation as described earlier. 

Given the electrostatic potentials from a solution of the 

linearized PB equation, the total electrostatic free energy of assembling solute charges 

from infinite separation into a cavity with dielectric constant, Dint, surrounded by an 

external continuum medium with dielectric constant, Dsolv, is given by, 

1 1

1 1 ( )
2 2

N N
C R

elec i i i i iG q qφ φ φ= = +∑ ∑   (15) 

where N is the total number of solute charge centers, φi is the 

potential at the position of charge qi, and φi
C and φi

R are the Coulomb and reaction 

field potentials, respectively. The reaction field potential is due to the polarization 

induced in the high dielectric solvent by the charges of the ligand and the protein.  
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The Coulombic potential is given by  

 

int 0

( )
4

c i
i j ij i

ij

qr b q
D r

φ
π ε

= =       (16) 

 

where ( )c
i jrφ  is the potential produced by charge located at 

position ir , at the position jr , ijb is a proportionality constant, intD is the dielectric 

constant inside a molecular cavity, 0ε  is the permitivity of vacuum and ijr  is the 

distance between charges at positions i and j. 

The reaction field potential at position of charge qi induced by 

a charge qj is proportional to the charge qj and opposite in sign  

 

R
i ij jc qφ =   (17) 

 

where ijc  is a proportionality constant less than zero whose 

value depends on the shape of the molecule or complex and position of the charges. 

Consequently, for both the free ligand and the complex the electrostatic free energy 

has a quadratic functional form 

 

2

1 1

1 ( )
2

N N N

elec ii i i ij ij j
i i j i

G c q q b c q
= = ≠

⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
∑ ∑ ∑  (18) 
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where the first term in the right-hand-side is the interaction of 

charge i with the reaction field potential induced by charge i itself, and the second 

term is due to the Coulombic and reaction field potentials produced at qi by all other 

charges qj. 

 

Electrostatic optimization 

 

When a ligand binds a receptor the change in Coulombic 

interaction is usually favorable due to the complementarity of the charge distribution 

of the ligand and the receptor binding site, while the desolvation of the ligand can be 

expected to be energetically unfavorable due to stripping of solvent molecules from 

the polar parts of the ligand and receptor. Consequently, in most complexation 

reactions, monotonically increasing the charge of the ligand makes the Coulombic 

interactions more favorable but makes the desolvation penalty more unfavorable.  

Hence, in order to maximize binding affinity the charge distribution on the ligand 

should be adjusted so that the gain in Coulombic interactions upon binding is 

maximized, while the desolvation penalty is minimized. 

 

Recently, the Tidor and Purisima groups have developed the 

concept of electrostatic optimization of ligands (8-9) showing that there exists a 

single charge distribution that optimizes the binding energy of the ligand for a 

targeted receptor, assuming the ligand’s conformation does not change upon binding.  
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This result can be understood as follows. In equation 18 the coefficient of the 

quadratic terms for the free ligand or the complex is given by 

1i

R
i i qc φ ==  (19) 

where 1i

R
qφ =  is the reaction field potential at charge i induced by 

a unit charge located at the position of qi. This quantity is always negative based upon 

equation 17. As a result the electrostatic free energy of the free ligand and the 

complex are parabolic functions of charge with the parabolas opening downward. The 

change in the electrostatic free energy upon binding has a quadratic functional form, 

too: 

2 2

1 1 1

1 1( ) {( ) ( )} ( )
2 2
[ ]

N N N N N
complex free c f c f c f

elec elec elec i ii ii i j ij ij ij ij ii i ij i j
i i j i i j i

G G G q c c q q b b c c a q a q q
= = ≠ = ≠

Δ = − = − + − + − = +∑ ∑ ∑ ∑ ∑  

                                                                                                                                    

(20) 

Here the coefficients with superscript “c” are for the complex, 

the coefficients with the superscript “f” are for the free ligand and receptor, aii denotes 

the difference of the cii coefficients, and aij denotes the sum of differences of the bij 

and cij coefficients.  Normally, the ligand interacts more strongly with the solvent 

before it is bound rather than after, so the reaction field felt by qi is usually smaller in 

magnitude in the complex than in the free ligand. This implies that c f
ii iic c>  and hence 

aii is always positive. As a consequence, the electrostatic free energy of binding 

elecGΔ  may be represented by an N-dimensional parabola that is concave up and has a 

unique minimum with respect to the charge qi  (Figure 5).   The charges corresponding 
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to this minimum are expected to optimize the binding affinity of the ligand and 

receptor.  

 

Traian and Purisima showed that the concept of optimal 

charges holds good for systems with irregular dielectric boundaries, such as a host-

guest complex of 18-crown-6 ether with alkali metal ions, a complex of calcium with 

the calcium-binding protein carp parvalbumin, and the complex of the covalent 

epoxysuccinyl inhibitor CA030 with human cathepsin B (9). Kangas and Tidor 

showed that an endo-oxabicyclic transition-state analogue of the enzymatic reaction 

of chorismate mutase from Bacillus subtilis, which exhibited good electrostatic 

affinity for the protein, had charge distribution complementary to the enzyme active 

site throughout much of the binding site, but had potential for improvement at a 

carboxylate since that group paid a substantial desolvation penalty upon binding and 

did not recover significant compensatory electrostatic interactions with the enzyme 

(8). Their calculations showed that replacement of the carboxylate group with the 

isosteric nitro group should improve electrostatic binding energy by 2-3 kcal/mol due 

to a decrease in the desolvation penalty of the ligand and smaller losses in other 

electrostatic interactions.  The above prediction was qualitatively, though not 

quantitatively, borne out by experiment (10). 

 

The published charge optimization methods described above 

have yielded promising results but are based on the optimization of charges over the 

entire ligand. This approach may not provide an accurate indication of the local 
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requirements for favorable charge complementarity between the ligand and the 

receptor and consequently may provide inaccurate guidance for lead optimization. 

For instance, in the complex of HIV-1 protease with its inhibitor saquinavir, the 

negative charge on the catalytic aspartates of the protease means that nearby ligand 

atoms prefer to become more positively charged in order to maximize affinity.  The 

optimal positive charges at these locations effectively screen the negative potential 

produced by the aspartyl groups, so that more distant atoms may now prefer to be 

more negative, depending upon their local environment. However, if the charges of 

ligand atoms near the aspartates are held fixed while optimizing more distant atoms, 

then the more distant atoms can still feel the negative potential of the aspartates and 

may prefer to become more positively charged as a consequence.  Thus, local 

optimization of charges may produce quite different results from global optimization.  

The methods of Tidor and Purisima require a separate PB 

calculation for each ligand charge and hence is computationally slow. The present 

design algorithm will not have these drawbacks of the published methods.
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Chapter 3: Methods 

3.1 Parameterization of an Energy Model 

 

For the free ligands, twenty low-energy conformations were 

identified by using a conformational search method implemented in our laboratory’s 

in-house software (15). For the sake of computational speed and simplicity, bond 

lengths and bond angles are held fixed. Thus, for the free ligand, only torsional angles 

were allowed to vary, while for the complexes, the position and orientation of the 

ligand also was included in the search.  During the search, energies were computed 

with the empirical force field CHARMM, with a distance-dependent dielectric 

constant to account approximately for the tendency of the high-dielectric solvent to 

weaken electrostatic interactions.  The low-energy conformations that resulted were 

then post-processed to yield energies according to the model described above, with 

fitted coefficients as described below. 

For bound ligands, the method of generating conformations depended upon whether a 

crystal structure of the complex was available. For all but one of the cyclic ureas 

considered, no crystal structure is available. The missing bound conformations were 

therefore generated by docking these compounds into the crystal structure 1hvr, 

which was solved with a cyclic urea inhibitor bound. The dihedral sampling range 

was  +/-180°, the translational search range was a cubic translational box with side of 

10A, and the rotational sampling ranges were +/-180°.  For ligands for which crystal 

structures are available, the ligands were locally optimized around the known 

conformations by redocking them with dihedral sampling ranges of +/-10° for each 
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dihedral except for hydroxyl hydrogens, which are sampled in the range of +/-180°, a 

cubic translation box with side 1A, and rotational sampling ranges of  +/-5°.  Such 

minimizations allow little deviations from the crystal structure conformations of the 

ligands but avoid interatomic clashes while using the force field of our choice, since a 

different force field might have been used to refine the crystal structures. During 

these samplings, protein is considered rigid.  

 

For conformation, electrostatic energies and surface area energies are computed using 

UHBD (17). The free energy of free ligand and the ligand in the complex is computed 

as the Boltzmann sum of the energies of 20 conformations of the respective species, 

as described above, and the unbound protein’s energy is approximated as described 

earlier. Relative binding energies of the ligands are calculated for each ligand with 

reference to a specific ligand, chosen arbitrarily, as the difference between the 

binding energy of the former and the reference ligand:  

 

 ��GL = �GL - �GReference Ligand.  (21)  

 

 

 The relative theoretical binding energies are fitted against the relative experimental 

binding energies for parameterization of the energy model. The experimental binding 

energies are calculated from dissociation constants of ligands as shown above in 

equation 2. The relative experimental binding energy of a ligand is calculated with 
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respect to the ligand used as reference for calculation of relative calculated binding 

energy:  

 

��GL = �GL - �GReference Ligand   (22) 

 

 

The root mean square deviation (RMSD) of relative calculated 

and relative experimental binding energies serve as the measure of error in the 

theoretical affinities during optimization. It is calculated as:  

 

 

 

 

An initial plot of experimental and calculated binding energies 

of the cyclic ureas with HIVP (Fig 6a & b) showed a poor correlation between the 

experimental and theoretical values and we conjectured that, although the energy 

terms might be basically reasonable, the final results are poor because the terms are 

not well balanced.  Therefore, fitted scaling terms are used for computation of 

binding energies, as has been done by other authors in parameterizing energy models 

with different functional forms (20). The raw energy terms are, hence, scaled prior to 

computing binding affinities. For each conformation of L or PL,  and the suitable 

conformation of P, the scaled free energy is computed as: 

 

(23) 
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Gscaled,i =  α ULJ,i + β UCoulombic,i + γ Udihedral,i + δSntor + ε WPB,i  + 

ςWsurface area energy,i +    

              � �    (24) 

 

The additional coefficient, �, takes into account any error in 

the calculated binding affinity of the reference ligand. RMSD of scaled theoretical 

affinities relative to experimental are minimized using “Down Hill Simplex” 

algorithm (11). This minimizer was chosen because it is a robust local optimizer 

capable of minimizing single-valued functions in multiple dimensions. It is not 

constrained by conditions like monotonocity, convexity or differentiability of the 

function optimized. It performed reasonably fast for our purpose. 

 

The experimental data, consisting of ligands and their 

affinities, were separated into training and test sets.  Initially, a set of 60 cyclic ureas 

(Fig 7) with dissociation constants (Kds) ranging from 0.25 nM to 21000 nM (12-14) 

was used as the training set for parameterization of the energy model, and another set 

of 20 cyclic ureas with Kds ranging from 0.41 nM to 25000 nM was used in the set to 

test the optimized model.  In addition a set of ligands, with chemical structures 

different from the cyclic ureas and having dissociation constants ranging from 0.02 

nM to 2300 nM was added to the test set. Crystal structures of this latter set of ligands 

are known. The latter set of ligands contained the FDA approved drugs presently 

available in the market.  
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Several variants of the energy model were parameterized and 

tested for correlation of experimental and predicted binding energies. Models both 

including and excluding van der Waals energies, solvation energy models with 

protein dielectric constants of 1 and 20 and energy models with and without Poisson-

Boltzmann solvation terms were tested. Moreover, different protonation states of the 

critical catalytic aspartate residues of HIVP were evaluated for agreement between 

theoretical and experimental energies. For each case the lowest test rmsd case was 

chosen from amongst 25 optimization runs.  The RMSD and Pearson’s correlation 

coefficient between the experimental and calculated binding energies were used to 

evaluate efficiencies of the energy models. 

3.2 Optimization of Lead Drug Compounds Theory 

In preliminary studies, I have shown that one can improve the 

charge distribution of ligands to optimize binding, within the context of continuum 

electrostatics, by a much faster, simpler and more accurate method than those 

previously described in the literature.  From Equation 20 the derivative of 

electrostatic binding energy with respect to charge is,  

( ) ( )
1

1 1

( ) ( ) ( )
N

c f c f c felec
i ii ii j ij ij ij ij

ii

N N
c c c f f f

i ii j ij ij i ii j ij ij
j j

c f
i i

G q c c q c c b b
q

q c q c b q c q c b

φ φ

=

= =

∂Δ ⎡ ⎤= − + − + −⎣ ⎦∂

⎡ ⎤ ⎡ ⎤
= + + − + +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

= −

∑

∑ ∑  

(25) 

Thus, the derivative of the change in electrostatic binding 

energy with respect to charge qi is merely the change in potential at charge i upon 
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binding.  This quantity can be computed from two linearized Poisson-Boltzmann 

solutions, one for the free ligand and one for the bound ligand, and it can be used to 

predict the change in electrostatic binding energy for a given change in qi. Thus, it is 

conjectured that these derivatives can be used to guide the chemical optimization of 

an existing ligand. For example, it should be advantageous to replace an atom for 

which the change in potential upon binding is very positive with a more 

electronegative element, and vice versa.  More particularly, one can use the 

derivatives from Equation 25 to predict the change in the electrostatic part of the 

binding energy, when a set of charges i is changed, as 

 

 ( )c f
elec i i i

i

G qφ φΔΔ ≈ − Δ∑  (26) 

It is expected that the best results will be obtained for atoms 

with large gradients because, as can be seen from the parabolic plot of the 

electrostatic binding energy against charge (Figure 5), charge changes at atoms with 

low gradients risk overshooting the optimum and may even yield worse binding. 

 

I tested whether it was actually possible to use energy gradients 

to predict the change in electrostatic binding energy of a ligand when its charge is 

changed.  This was done by studying the electrostatic component of the binding free 

energy of HIV protease with inhibitors XK263 and saquinavir, as well as cytosine 

deaminase with one of its inhibitors, using for now the assumption that the ligand 

keeps the same conformation in solution as in the bound complex. The crystal 

structures of the complexes were obtained from the Protein Data Bank (PDB). The 
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PDB codes for the complexes with XK263, saquinavir and the cytosine deaminase 

inhibitor are 1HVR, 1HXB and 1CTT respectively. The aspartyl dyad of HIV 

protease was considered to be monoprotonated and the crystal water was retained in 

the calculations for the saquinavir. The conformations of the free ligands were taken 

to be the same as in the bound complexes. The partial atomic charges of the ligands 

were calculated using Vcharge (14), and the receptors were assigned CHARMm 

charges with the program QUANTA (4). The linearized Poisson-Boltzmann equation 

was solved with the program UHBD (15), using a solute dielectric constant of 1 

initially for the HIV protease systems and 4 for the cytosine deaminase inhibitor. The 

solvent dielectric constant used was 78.5, since the complexation reaction was 

assumed to take place in an aqueous medium. The solvent was considered to have 

physiological ionic strength, 150 mM. An ion-exclusion zone defined with a probe of 

radius 2 A was used. The dielectric constant in this region is that of the solvent, but 

the ionic strength is zero. The cubic grid used for the HIV protease calculations had a 

side length of 110 grid units and a grid spacing of 0.25 Angstroms; the corresponding 

parameters for the cytosine deaminase system are 200 and 0.35 Angstroms.  
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Chapter 4: Results and Discussion 
 

4.1 Parameterization of Energy Model 

Optimization of the model for cyclic urea ligands of HIV protease 

 

Amongst the variants of energy models compared, the model 

excluding van der Waals term and using protein dielectric constant of 20 for 

electrostatic energy calculations, gave the highest correlation between calculated and 

experimental binding energies. The diprotonated HIVP yielded the best-predicted 

binding energies.  This model yielded a Pearson’s correlation coefficient (r) of 0.55 

between calculated and experimental relative binding energies, for the test cyclic 

ureas (Fig 7), when energy coefficients were optimized with a training set having 

cyclic urea ligands only. The coefficients from optimization of these energy terms are 

shown in Table 2.  When the Poisson-Boltzmann energy component was omitted 

from the model and the coefficients were re-optimized, the resulting correlation 

coefficient between calculated and experimental binding energies was somewhat 

worse, at 0.35 (Fig 8).  
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Testing the model on a broader set of HIVP  ligands 

 

When the model trained on cyclic ureas was tested on a 

broader set of ligands, the correlation coefficient for the test set fell to 0.09 (Fig 9). 

Interestingly, however, a high correlation coefficient of 0.62 was found for the subset 

of new ligands whose scaffold was most similar to that of the cyclic ureas  (Fig 10).  

On addition of a subset of the broader set of ligands to the training set and re-training 

the model, the results improved. The overall correlation coefficient was still 0.03, but 

removing the only outlier increased the r-value to 0.5 (Fig 11).  

 

Testing the model on a system other than HIVP 

 

We conjectured that part of the reason the correlations fall 

when the data set is expanded beyond the cyclic ureas is that the broader set of 

ligands was studied in different laboratories with different assays and under 

somewhat different experimental conditions. In contrast, all of the cyclic urea data 

were obtained at the same company under at least nominally uniform conditions.  In 

order to determine whether the model optimized with cyclic ureas alone would be 

transferable to a very different data set that had been obtained under its own uniform 

set of conditions, we applied the cyclic urea-derived model to a test set of Factor Xa 

inhibitors (18-19), without any further parameterization.  This yielded a correlation 

coefficient of 0.43, which is significantly better than that obtained for the broad group 

of HIV protease inhibitors (Fig 12). 
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Discussion 

 

Optimization of the model for cyclic ureas ligands of HIV 

protease 

 

Due to approximation of van der Waals energy as 12-6 

Lennard Jones potential, small changes in interatomic distances can yield large 

changes in van der Waals energy. Consequently, even for a well-docked ligand, this 

energy term can have a large positive value due to proximity of a ligand and receptor 

atom. On optimization, the large van der Waals energies tend to force the Lennard-

Jones term to be assigned small, negative coefficients, which are physically 

meaningless (data not shown). Therefore, van der Waals energies were removed from 

the model and the surface area energies were allowed to take into account dispersion 

forces, hydrophobic effects and steric complementarity. The other energy term with a 

small negative coefficient was dihedral energy. However, the dihedral energy term is 

small and, hence, makes little contribution to the energy model. Therefore, the 

physically meaningless coefficients of dihedral energies are not a cause of concern.  

An interior protein dielectric constant of 20 reduced noise in Poisson-Boltzmann 

solvation energy calculations and, hence, gave better, predicted binding energies than 

a protein dielectric constant of 1. Though computation of Poisson-Boltzmann 

solvation energy is computationally expensive, inclusion of this term appears justified 
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by the improvement in the predictive power of the energy model. Comparing the 

chemical structures of the various cyclic urea ligands with that of the outlier in Fig 7, 

shows that there exist compounds with very similar chemical structures (Fig 13), but 

while the outlier has a Kd of 25000 nM, the structurally similar compounds have Kds 

ranging from 1.4 to 51, suggesting that the experimental data for the outlier may be 

flawed.  

 

Testing the model on a broader set of HIVP ligands 

 

The same basic physical forces govern binding of any ligand to 

its receptor. Hence, theoretically, an energy model optimized for the HIVP-cyclic-

urea system should be valid for any receptor-ligand system. Such a general energy 

model should be expected to be good for predicting binding energies of any inhibitor 

of HIVP. The poor prediction we initially obtained for the binding energies of non-

cyclic-urea molecules necessitated probing factors that might be leading to loss of 

general applicability of the above energy model. One possibility we considered was 

that binding of structurally different ligands might change receptor conformations 

differently. Hence, upon complexation with ligands with widely different chemical 

structures, the receptor internal energy change is considerable.  There is wide 

variation in chemical structures of the non-cyclic-ureas. Consequently, conformations 

of the protein vary considerably between complexes of the non-cyclic-ureas. As a 

result, receptor internal energy change due to ligand binding needs to be taken into 

consideration adequately. As explained earlier, the receptor internal energy change 
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upon complexation is approximated in our calculations as the energy of the receptor 

conformation in the crystal structure of the receptor-ligand complex. This 

approximation may be inadequate, leading to the poor correlations between the 

experimental and calculated binding energies of the non-cyclic-ureas using a model 

optimized with cyclic urea training set. It was not required to consider protein internal 

energy changes for complexes with cyclic ureas because all the cyclic ureas were 

docked into the same crystal structure obtained from a complex of a cyclic urea with 

HIVP. Due to similar binding modes of the ligands, all the cyclic ureas were binding 

well in the aforesaid receptor. Also, relative binding energies with respect to a cyclic 

urea reference ligand were being considered in the calculations.  Consequently, 

changes in protein internal energy were largely cancelled in case of cyclic urea 

ligands. Due to similar reasons, the theoretical binding affinities of the cyclic-urea-

like ligands, amongst the non-cyclic-ureas, are in good agreement with their 

respective experimental values. Thus, the binding modes of the cyclic-urea-like 

ligands are similar to that of the cyclic ureas. Notably, a carbonyl O-atom of the 

cyclic ureas or cyclic-urea-like molecules interact with the flap Ile residues of HIVP. 

For other ligands a water molecule mediates the interaction of the ligand with the 

same Ile residues. Due to similar binding modes, change in receptor internal energy 

for the cyclic ureas and the cyclic-urea-like ligands can be expected to be close. 

 

In order to address this problem, an attempt was made to use 

ligand conformations obtained by docking of non-cyclic-ureas in the context of the 

receptor structure solved with a bound cyclic urea. In principle, this would put all the 
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ligands on the same footing with regard to the internal energy of the protein. 

However, a very low correlation coefficient of 0.03 was obtained between 

experimental and predicted binding energies of the non-cyclic-ureas. Here it needs to 

be mentioned again that same calculations for cyclic-urea-like ligands yielded a 

correlation coefficient of 0.62 between the predicted and experimental binding 

energies. However, it should be noted that the above problem was partially resolved 

when some of the non-cyclic-ureas were included in the training set, in addition to the 

original cyclic ureas (Fig 11).   

 

The catalytic aspartates of HIVP play an important role in 

ligand binding. In their complexes with HIVP, different ligands may induce different 

protonation states of these aspartates, but the protonation states of the critical 

aspartate residues are not known with any certainty. For cyclic ureas, the present 

calculations show that the diprotonated HIVP gives the highest correlation between 

experimental and predicted binding energies. However, the aspartate protonation 

states suitable for the ligands from crystals structures may be different from that of 

the cyclic ureas. The issues of these protonation states will be considered further in 

future work. 

 

Unlike the Kds of the cyclic ureas, the Kds of non-cyclic-ureas 

were obtained from different sources. The experimental conditions, like pH, 

temperature and ionic strength, used for determination of Kds of non-cyclic ureas 

may be different. This may be a source of inconsistency between experimental and 
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calculated binding energies. For instance, lack of knowledge of the pH used for Kd 

determination make it hard to consider the correct ionization state of the ligands and 

proteins during binding energy calculations. 

 

 

                                  4.2 Optimization of Lead Drug Compounds 

 

I tested whether changes in ligand charges guided by 

electrostatic gradients (Equation 10) would in fact lead to a more favorable change in 

the electrostatic energy upon binding, as computed with full solutions of the PB 

equation. Thus, predicted changes in electrostatic binding energies (Equation 11) 

were compared with electrostatic binding energy (Equation 9) changes computed 

from the full solutions for the PB equation after the ligand modifications. In this 

process, I focused on the atoms at which the electrostatic gradients were high for 

reasons explained above.  I first looked at small artificial changes of single-atom 

charges, then at models of actual atom substitutions and small chemical additions that 

required recalculation of the partial charges of all the ligand atoms. Then I looked at 

serial modifications of a ligand, in which successive modifications were done 

according to the predictions based on the atomic electrostatic potential of the 

preceding version of the ligand.  For most of the above cases, the changes in ligand 

charges guided by electrostatic gradients improved the electrostatic binding energy 

computed with full solutions for the PB equation. Moreover, the quantitative changes 
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in electrostatic binding energies from the predictions agreed reasonably well with the 

full electrostatic energy changes (Tables 3-7 & Figures 14-18).  

 

I began by making a series of artificial charge changes at one 

atom of XK263 with a gradient of  5.34 kcal/mol/e. The agreement is better when the 

magnitude of the change in charge is not very small or not very large (Table 3 & 

Figure 14). With very small changes in charge, discrepancies arise due to rounding 

errors in electrostatic energy calculations using numerical methods. With large 

changes in charge, the electrostatic gradient of the atom changes significantly due to 

addition of the charge, as expected based upon the parabolic form of �Gelec, thereby 

giving rise to above-mentioned discrepancies.  

 

I then made a series of essentially isosteric hydrogen to 

halogen changes at high-gradient (4.4-8.2 kcal/mol/e) atoms in XK263. The changes 

in the electrostatic binding energies predicted from the gradients agree quite well with 

the changes obtained by a full electrostatic recalculation, (Table 4 and Figure 15), 

with a R2 value of 0.92. Most of the changes yield a more favorable electrostatic 

binding energy with respect to the original ligand, as expected according to the 

predictions. 

 

Next, functional group modifications involving additional 

atoms were made in the HIV protease inhibitor saquinavir, according to predicted 

changes in electrostatic binding energies computed on the basis of the gradient of the 
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original ligand atom. The changes in the electrostatic binding energies predicted from 

the gradients agree quite well with the changes obtained by a full electrostatic 

recalculation, (Table 5 and Figure 16), with a R2 value of 0.83. The electrostatic 

binding energies for the modified ligands did indeed become more favorable with 

respect to the original ligand, in accordance with predictions. For the modification of 

H14 of saquinavir to a hydroxyl group, the calculations were done for four different 

positions of the hydroxyl hydrogen. From such calculations it is observed that such 

rotatable bonds need to be in a particular orientation in order to improve the binding 

energy of the ligand.  

 

Functional group modifications involving additional atoms 

were made for the cytosine deaminase inhibitor, too.  Again, reasonable agreement 

was found between the changes in electrostatic binding affinities predicted based on 

the atomic electrostatic potentials and the computed changes in full electrostatic 

binding energies (Table 6 and Figure 17). The estimates and actual changes in 

electrostatic binding energies agree with a R2 value of 0.86. The electrostatic binding 

energies for the modified ligands were more favorable with respect to the original 

ligand, in accordance with predictions, as in the above cases. 

 

Sets of simultaneous multiple modifications in the cytosine 

deaminase inhibitor were not observed to improve the electrostatic binding energy 

markedly more than any of the isolated modifications (Table 6).  This may be 

because, on making multiple changes at once, one change can alter the actual charge 
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and the optimum charge at another site, and thus yield unexpected results. In an 

attempt to resolve this problem, I made ligand modifications serially rather 

simultaneously. Serial modifications involve using the derivatives to guide an initial 

modification of the ligand, generating updated charges for the modified ligand, 

recomputing the atomic potentials of the modified ligand, and using these potentials 

to guide further modifications. The net outcome of the serial mutations turned out to 

be better than isolated modifications, as can be seen by comparing the improvement 

in electrostatic energy of the serial mutations (Table 7 and Figure 18) with the 

simultaneous multiple mutations done on the same inhibitor (Table 6). Also the 

estimates and actual changes in electrostatic binding energies agree with a R2 value of 

0.71.   
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Tables and Figures 

 

Table 

Peptide sequences Cleavage domains 

Cleavage sites in gag 

 

SQNY * PIVQ 

ARVL * AEAM 

ATIM * MQRG 

QANF * LGKI 

PGNF * LQSR 

 

 

MA-CA 

CA-p2 

p2-NC 

NC-p1 

p1-p6 

 

Cleavage sites in pol 

 

SFNF * PQIT 

TLNF * PISP 

AETF * YVDG 

RKIL * FLDG 

 

 

 

TF-PR 

PR-RT 

RT-RH 

RH-IN 

 

Table 1: The nine non-homologous sites at which HIV protease cleaves the viral polyproteins 

gag or gag-pol to yield the structural proteins and enzymes essential for the viral life cycle. 

The cleavage sites are denoted by an asterisk. NC, nucleocapsid; MA, matrix; CA, capsid; 

TF, trans frame peptide; PR, protease; RT, reverse transcriptase; IN, integrase;RH, RNAse H. 

p1, p2, p6 are structural proteins. 

 



 

 39 
 

 

 

 

Energy Terms Coefficients 

Coulombic 1.08 

Dihedral -0.26 

Poisson-Boltzmann Solvation 2.03 

Surface area energy 0.57 

Number of Rotatable Bonds 0.05 

Offset(η) -2.53 

 

Table 2: Coefficients from optimization with a training set of cyclic urea ligands only 
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Change in 

charge 

Predicted change in 

electrostatic binding 

energy 

Full relative binding 

energy after artificial 

charge modification 

of ligand 

         -0.01 

-0.05 

-0.1 

 

-0.053 

-0.267 

-0.535 

 

-0.082 

-0.266 

-0.174 

  

Table 3: Comparison of predicted changes in electrostatic binding 
energy based on the gradient at H66 of the original ligand and changes in electrostatic 
binding energies from full electrostatic calculations for the on artificial charge changes of 
H66 of the HIV protease inhibitor XK263.  The calculations were done with a protein 
dielectric constant of 1. 
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Isosteric 

Modifications 

Original gradient 

(Kcal/mol/e) 

Change in charge 

due to 

modifications (e)

Predicted 

electrostatic 

binding energy 

Full relative 

binding energy of 

modified ligand 

H66→Br 5.35 -0.277 -1.56 -1.16 

H66→Cl 5.35 -0.258 -1.37 -0.91 

H66→F 5.35 -0.339 -1.68 -0.74 

H47→Br 8.19 -0.303 -2.03 -2.03 

H47→F 8.19 -0.332 -1.44 -0.86 

H48→Br 3.88 -0.303 -0.74 -0.52 

H48→F 3.88 -0.332 -0.05 0.29 

H50→Br 6.99 -0.319 -3.78 -3.36 

H50→F 6.99 -0.335 -5.51 -4.66 

H57→Br 5.73 -0.277 -1.36 -0.68 

H57→F 5.73 -0.339 -1.16 -0.36 

H58→Br 4.39 -0.277 -1.08 0.16 

H58→F 4.39 -0.339 -0.90 0.38 

H67→Br 4.79 -0.277 -1.28 -0.59 

H67→F 4.79 -0.339 -1.22 -0.33 

H69→Br 7.75 -0.277 -2.58 -1.44 
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H69→F 7.75 -0.339 -3.26 -2.60 

H71→Br 7.46 -0.292 -1.65 -0.84 

H71→F 7.46 -0.331 -1.06 -0.33 

H72→Br 6.16 -0.292 -1.28 -0.90 

H72→F 6.16 -0.331 -0.64 -0.37 

 

Table 4: Comparison of predicted changes in electrostatic binding 
energy based on the gradients of the atoms of the original ligand vs. actual changes in 
electrostatic binding energies from full electrostatic calculations for the modified ligand of 
the HIV protease inhibitor xk263 due to isosteric hydrogen to halogen changes. The 
calculations were done with a protein dielectric constant of 1. 
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Modifications 
Original gradient at 

the atoms 

Predicted relative 

electrostatic binding 

energy 

Full relative binding 

energy of modified 

ligand 

H14→OH 21.15 -10.14 -7.21 

H46→NH3
+ -3.11 -1.01 -2.09 

H48→NH3
+ -12.21 -1.18 -4.39 

-12.21   (atom 48) 
 

-10.72 H48→NH3
+ + H49→NH3

+ 

   -21.53  (atom 49)  

-18.53 

O34→NH3
+ -15.61 -12.30 -11.51 

H50→OH -5.45 3.58 0.40 

H14→OH (rotamer1) 21.15 6.98 2.78 

H14→OH (rotamer2) 21.15 3.25 1.81 

H14→OH (rotamer3) 21.15 7.85 2.83 

H14→OH (rotamer4) 21.15 1.40 -2.12 

 

 

Table 5: Comparison of predicted changes in electrostatic binding 
energy based on the gradients of the atoms of the original ligand vs. actual changes in 
electrostatic binding energies from full electrostatic calculations for the modified ligand of 
the HIV protease inhibitor saquinavir due to functional group modifications involving 
additional atoms. The calculations were done with a protein dielectric constant of 1. 
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Table 6: Comparison of predicted electrostatic binding energy based on the gradient of the 
atoms of the original ligand and actual changes in electrostatic binding energies from full 

Modification 

number Modifications 

Predicted relative 

electrostatic binding 

energy 

Full relative 

electrostatic binding 

energy 

A C2O3→SO2 -4.86 -3.03 

B C5H18H19→SO2 -0.08 -0.53 

C H19→F -1.53 -0.85 

D H27→OH -0.04 -0.47 

E O12→CH2 + H26→NH3
+ -7.72 -4.60 

G H18→F + H19→F -0.31 -0.30 

F B + D -0.63 -1.26 

H D + G -0.89 -1.03 

I C + D -2.14 -1.54 

J A + B + E -2.39 -3.14 

K A + B + D + E -4.24 -3.61 

L A + D + G + E -3.31 -3.23 
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electrostatic calculations for the modified ligand of the cytosine deaminase inhibitor 3,4-
dihydrozebularine due to functional group modifications. The calculations were done with a 
protein dielectric constant of 4. 
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Table 7: Comparison of predicted electrostatic binding energy based 

on the gradient of the atoms of the original ligand and actual changes in electrostatic binding 
energies from full electrostatic calculations for the serial modifications of the cytosine 
deaminase inhibitor 3,4-dihydrozebularine. The calculations were done with a protein 
dielectric constant of 4. 
 

 

 

 

 

 

 

Modification 

Predicted relative 

electrostatic binding  

energy 

Full relative 

electrostatic 

binding 

energies after 

modifications 

C2O3→SO2 -4.86 -3.03 

C2O3→SO2 + H19→F -3.24 -5.06 

C2O3→SO2 + H19→COO- -3.45 -5.72 

C2O3→SO2 + H19→COCH3 -3.15 -5.75 

C2O3→SO2 + H19→COO- + O12→CH2 + 

H26→NH3
+ 

-8.30 -14.35 
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Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The protease cleaves the viral polyproteins gag or gag-pol to yield structural 

proteins and enzymes, including itself, essential for the viral life cycle. 
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Figure 2: Complex of HIV-1 protease with a natural substrate. HIV-1 
protease is represented by molecular surfaces and ribbon diagrams with subunit A in red and 
B in blue. A ball-and-stick representation of a natural polyprotein substrate (SQNYPIVQ) is 
bound in the active site. (a) View of the entire complex. (b) Close-up of the active site, with 
the eight peptide side chains (denoted P4 to P1 and P1' to P4') labeled. (Figure from reference 
12) 
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Figure 3: Substrate and inhibitor envelopes of HIV-1 protease. a) The substrate envelope 
from the overlapping van der Waals volume of four or more substrate peptides. The colors of 
the substrate peptides are: red, matrix-capsid; green, capsid-p2; blue, p2-nucleocapsid; cyan, 
p1-p6; magenta, reverse-transcriptase-ribonucleaseH; and yellow, rnaseH-integrase. b) The 
substrate envelope as it fits within the active site of HIV-1 protease. The alpha carbon trace is 
of the CA-p2 substrate peptide complex. c) The inhibitor envelope calculated from 
overlapping van der Waals volume of five or more of eight inhibitor complexes. The colors 
of the inhibitors are: yellow, Nelfinavir (NFV); gray, Saquinavir (SQV); cyan,  Indinavir 
(IDV); light blue, Ritonavir (RTV); green, Amprenavir (APV); magenta, Lopinavir (LPV); 
blue, Atazanavir (ATV) and red,  TMC114 d) The inhibitor envelope as it fits within the 
active site of HIV-1 protease e) Superposition of the substrate envelope (blue) with the 
inhibitor envelope (red). Residues that contact the inhibitors where the inhibitors protrude 
beyond the substrate envelope and confer drug resistance when they mutate are labeled. 
(Figure drawn from reference 13) 
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Figure 4: In the binding reaction of a ligand with a receptor in an aqueous solution, 
interactions with the solvent and intramolecular Coulombic interactions in the unbound states 
are exchanged for intermolecular interactions between the ligand and receptor in the bound 
complex. L, R and RL represent the free ligand, the free receptor and the complex 
respectively. Dint, the dielectric constant in the cavities representing the free ligand, free 
receptor and the complex, is low in comparison with that of the aqueous medium, Dsolv. A 
charge embedded in the ligand is denoted by qi while a charge embedded in the receptor is 
denoted by qj. 
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Figure 5: Variation of computed electrostatic free energy of binding, based upon full 

solutions of the linearized PB equation, with variation of charge on (a) buried atom (atom 49) 

and (b) solvated atom (atom 14) of saquinavir-HIV-1 protease complex. 
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Fig 6. a. Fig 1 Cyclic urea scaffold showing the substituents corresponding to the S1, S2, S1’ 
and S2’ binding pockets of HIVP. b. Experimental vs. Calculated Relative Binding Energies 
without scaling. RMSD between experimental and calculated binding energies was as high as 
34.07.   
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Fig 7: Plot of experimental binding energies Vs. calculated binding energies 
for training set (a) and test set (b) of cyclic urea ligands, when Coulombic, 
Dihedral, PB-solvation and Solvent accessible surface terms were included in 
the energy model. The result for lowest test set RMSD has been shown. 
Pearson’s correlation coefficients of 0.4 and 0.55 were obtained between 
calculated and experimental binding energies for the training and test sets 
respectively.  
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Fig 8: Plot of experimental binding energies vs. calculated binding energies for test set of 
cyclic urea ligands, when PB-solvation was excluded from the energy model. A correlation 
coefficient of 0.35 was obtained between calculated and experimental binding energies for 
this test set.   
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Fig 9: Plot of calculated vs. experimental binding energies of non-cyclic urea 
test ligands, when energy model includes Coulombic, dihedral, solvent 
accessible surface area and PB-solvation terms. Correlation coefficient is 
0.09. 
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Fig 10: Plot of calculated vs. experimental binding energies of cyclic-urea-like test ligands, 
when energy model includes Coulombic, dihedral, solvent accessible surface area and PB-
solvation terms. Correlation coefficient for these cyclic-urea-like ligands is 0.62.   
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Fig 11: Plot of experimental binding energies vs. calculated binding energies for training set 
(a) and test set (b) of cyclic urea ligands and ligands other than cyclic ureas, when energy 
model ss optimized with a set of ligands having both cyclic ureas and the non-cyclic-urea 
ligands. Correlation coefficients of 0.59 and 0.03 are obtained between calculated and 
experimental binding energies for the training and test sets respectively. Taking off the outlier 
from the test set increases the correlation coefficient to 0.50.   
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Fig 12: Plot of calculated vs. experimental binding energies of Factor Xa inhibitors (red) 
using energy model optimized with cyclic urea ligands and ligands other than cyclic ureas. 
Data are also shown for a test set of cyclic urea ligands (blue). The latter set is taken from the 
known crystal structures of HIVP-inhibitor complexes.  Pearson’s correlation coefficient for 
the Factor Xa inhibitors is 0.43. Errors in prediction of binding energies of Factor Xa 
inhibitors compare well with the error in estimates of binding energies of HIVP cyclic urea 
inhibitors.            
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a)     b) 

 

          

   Kd : 25000 nM    Kd: 51 nM 

 

Fig 13: A representative cyclic urea ligand with structure very similar to the outlier marked 
“A” in Fig 3. The  ligand in panel (a)  is the  outlier marked “A” while the one in panel (b) is 
the cyclic urea which structurally similar to the outlier.  The Kd values (nM) of the ligands  
are given at the bottom of the chemical structures. 
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Figure 14: Predicted changes in electrostatic binding energy based on the 
gradient of H66 of the original ligand versus changes in electrostatic binding 
energies from full electrostatic calculations for the artificial charge changes 
of H66 of the HIV protease inhibitor XK263.  
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Figure 15: Predicted changes in electrostatic binding energy based on the gradients of the 
atoms of the original ligand versus actual changes in electrostatic binding energies from full 
electrostatic calculations for the modified ligand of the HIV protease inhibitor xk263 due to 
isosteric hydrogen to halogen changes. The estimates and actual changes in electrostatic 
binding energies agree with a R2 value of 0.92.  
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Figure 16: Predicted changes in electrostatic binding energy based on the gradients of the 
atoms of the original ligand versus actual changes in electrostatic binding energies from full 
electrostatic calculations for the modified ligand of the HIV protease inhibitor saquinavir due 
to functional group modifications involving additional atoms. The estimates and actual 
changes in electrostatic binding energies agree with a R2 value of 0.83.  
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Figure 17: Predicted changes in electrostatic binding energy based on the gradient of the 
atoms of the original ligand versus actual changes in electrostatic binding energies from full 
electrostatic calculations for the modified ligand of the cytosine deaminase inhibitor 3,4-
dihydrozebularine due to functional group modifications involving additional atoms. The 
estimates and actual changes in electrostatic binding energies agree with a R2 value of 0.86.   
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Figure 18: Predicted changes in electrostatic binding energy based on the gradient of the 
atoms of the original ligand and actual changes in electrostatic binding energies from full 
electrostatic calculations for the serial modifications of the cytosine deaminase inhibitor 3,4-
dihydrozebularine. The estimates and actual changes in electrostatic binding energies agree 
with a R2 value of 0.71.      
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