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In apoptosis, the mitochondrial outer membrane (MOM) becomes permeable, 

releasing proteins.  This permeability has been attributed to the action of various 

factors, including mitochondrial apoptosis-induced channel (MAC), Bax and 

ceramide channels.  Amphiphilic cations that inhibited MAC and Bax-induced 

permeabilization were tested on ceramide-induced permeabilization of MOM of 

mammalian and yeast mitochondria, as well as liposomes.  Both propranolol and 

dibucaine inhibited C2- and C16-ceramide-induced permeabilization of mammalian 

MOM with an IC50 for C16-ceramide of 410 and 230 µM, respectively.  In yeast 

mitochondria, propranolol and dibucaine inhibited C2-ceramide-induced 

permeabilization, but potentiated the effect of C16-ceramide.  Similar results were 

obtained in liposome experiments.  These results suggest that inhibition is via another 

factor found in mammalian cells but not the other systems.  The pharmacology of 



ceramide membrane permeabilization is inconsistent with that of MAC but is 

compatible to that of Bax.  
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Chapter 1: Introduction 

 Apoptosis is a necessary process required to maintain homeostasis in higher 

organisms.  Various stimuli, including physiological factors as well as cytotoxic 

agents, can initiate apoptosis, whereby the cell undergoes a series of biochemical and 

physical changes, resulting in its termination.  Apoptosis is an organized way for the 

cell to die, and is morphologically different from necrosis.  Necrosis is characterized 

by a rupture of the plasma membrane, leading to a leakage of contents, resulting in an 

inflammatory response.  Whereas in apoptosis, the cell contents are broken down and 

repackaged into apoptotic bodies.  These apoptotic bodies are then engulfed by 

phagocytes, resulting in no inflammatory response (for review see 1-2).   

 In a healthy organism, the regulation of apoptosis is used to maintain the 

balance between multiplying and dying cells.  For example, apoptosis eliminates 

damaged and differentiated cells that are no longer needed and would otherwise take 

up space and consume resources.  However, apoptosis is also fundamental to many 

diseases.  For example, the failure of cells to undergo apoptosis occurs in cancers and 

excessive apoptosis is central to neurodegenerative diseases, such as Parkinson’s and 

Alzheimer’s (for review see 3).  In order to develop more effective therapy and drugs 

to treat these many diseases, it is essential to gain a better understanding of the 

apoptotic mechanism, more specifically, the initiation steps.   

In addition to the naturally programmed cell death, the initiation of apoptosis 

can occur under a variety of conditions, such as serum deprivation, oxidative stress 

and treatment with cytotoxic drugs.  The cell can undergo apoptosis via an extrinsic 

(receptor-mediated) or intrinsic (mitochondrial) pathway (for review see 1-2).  
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Briefly, the extrinsic pathway is triggered by receptors located on the cell that will 

undergo apoptosis.  Once activated by extracellular ligands, a series of intracellular 

events occur ultimately leading to the activation of death caspases, which are 

responsible for degrading the cell.  The intrinsic pathway is initiated from within the 

cell, causing a permeability increase of the mitochondrial outer membrane (MOM).  

This permeability increase results in the release of  pro-apoptotic proteins, such as 

cytochrome c, AIF, endonuclease G, Smac/DIABLO and HtrA2/OMI from the 

intermembrane space (for review see 4).  Once released into the cytosol, these death 

proteins can then activate caspase dependent and independent cell death pathways.  

The intrinsic and extrinsic pathways converge at the caspase level; however, the 

extrinsic pathway can also stimulate the intrinsic pathway. 

 One major goal of many apoptosis researchers is to gain a better 

understanding of how the mitochondria release the pro-apoptotic proteins.  The 

mechanism which results in an increase in the permeability of the mitochondrial outer 

membrane to pro-apoptotic proteins continues to be an intense topic of debate.  In one 

hypothesis, a permeability transition pore (PTP) complex is formed early in 

apoptosis.5 PTP complex is believed to be made up of the inner mitochondrial 

membrane adenine nucleotide translocase in association with the outer mitochondrial 

membrane voltage-dependent anion channel (VDAC) and a matrix protein, 

cyclophilin D.  This pore complex spans the outer and inner membranes dissipating 

the membrane potential and allowing low molecular weight solutes to permeate.  As a 

result, the matrix swells, thereby causing rupture to the outer membrane, leading to 

the release of pro-apoptotic proteins into the cytosol.6 While some experiments have 
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shown that the loss of potential is required for a complete loss of cytochrome c7,

others propose that cytochrome c release can occur prior to or in the absence of 

changes in the inner membrane potential.8,9 Furthermore, the mitochondrial outer 

membrane remains intact after the release of cytochrome c in some cell types.7 These 

findings suggest that a pore may be forming in the MOM in order to facilitate the 

release of the pro-apoptotic factors.   

 The nature and components of a channel formed to release pro-apoptotic 

proteins is unknown.  Several hypotheses are based on channels formed by Bcl-2 

family proteins.  Bcl-2 family proteins are known regulators of apoptosis, and are 

classified as pro- or anti-apoptotic.1,10-12 There are three main groups of Bcl-2 

proteins.  Group I contains anti-apoptotic proteins (i.e. Bcl-2, Bcl-xL) and are 

characterized by four short, conserved Bcl-2 homology (BH) domains, known as 

BH1-BH4.  Group II contains pro-apoptotic proteins (i.e. Bax, Bak) and have similar 

structure to group I, except they do not contain the N-terminal BH4 domain.  Group 

III consists of pro-apoptotic polypeptides (i.e. Bid, Bad) and contain only a single 

BH3 domain.  Group III act by binding the BH3 domain in group I or II.  One 

hypothesis suggests that Bid and Bax, cooperate with lipids to form supramolecular 

openings on the mitochondrial outer membrane.13 While others propose that the 

formation of Bax channels facilitates the release of pro-apoptotic proteins.14,15 In 

fact, Bax channels are large enough to release cytochrome c when in oligomerized 

form. 14,16 

Another theory is based on release via the mitochondrial apoptosis-induced 

channel (MAC).  MAC has been detected in apoptotic cells about the time 



4

cytochrome c is released.17,18 However a recent study demonstrated that MAC does 

not appear until a later stage in apoptosis, after the permeabilization of the MOM.19 

The diameter of MAC has been estimated to be ~ 5 nm,20 which is large enough to 

release cytochrome c, but not the larger pro-apoptotic proteins.  Thus far, the 

molecular identity of MAC is unknown, however several lines of evidence identifies 

Bax as a component.17,18,20 

Figure 1: General structure of a ceramide molecule.  Ceramide is made up of a 
backbone sphingoid base and an N-linked fatty acyl chain that can vary from n=1 to 
more than 23. 

 

Another hypothesis is based on the ability of the sphingolipid ceramide 

(Figure 1) to form channels.21,22 Ceramide is known to be involved in the regulation 

of differentiation, cell cycle arrest, cellular senescence and apoptosis.23-26 Ceramide 

can be synthesized in the cell via de novo synthesis from sphinganine and fatty-acyl-

CoA or through hydrolysis of sphingomyelin as catalyzed by the enzyme 

sphingomyelinase.  Interestingly, many lines of evidence link ceramide to the process 

of apoptosis.  For example, total cellular ceramide levels have been shown to increase 

up to 10 mole percent of the total cellular phospholipids during apoptosis.24 Many 

agents which initiate apoptosis also induce ceramide formation, such as TNF,27 fas 
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ligands,28 nitric oxide, ionizing radiation and chemotherapy drugs.24,29-31 In addition, 

exogenously added cell permeable ceramide analogues are capable of inducing 

apoptosis in several cell lines.22-34 Thus, ceramide appears to play a key role in the 

apoptotic process.   

 Ceramide plays a role specifically in the mitochondrial stage of apoptosis.  

Early generation of de novo derived C16-ceramide in response to B-cell receptor 

cross-linking was linked to a loss of mitochondrial function and subsequent activation 

of the apoptotic program.35 Fumonisin B1 (an inhibitor of ceramide synthesis) 

completely prevented not only ceramide production, but also disrupted mitochondrial 

membranes, PARP cleavage, and DNA fragmentation.35 Short-chain cell permeable 

ceramide analogues, such as C2- and C6-ceramide, have been shown to induce 

cytochrome c release when added to whole cell cultures31,36-41 and isolated 

mitochondrial suspensions.42-44 Long-chain, naturally occurring C16-ceramide also 

induced release of cytochrome c43 and AIF45 when added to mitochondrial 

suspensions.  Furthermore, cytochrome c release is decreased when cells are treated 

with inhibitors of ceramide synthesis.46 Enzymes responsible for ceramide 

metabolism (ceramide synthase and ceramidase) have been identified in mammalian 

mitochondria.47,48 Furthermore, highly purified mitochondria can generate ceramide 

via ceramide synthase and reverse ceramidase pathways.49 Thus, the enzymatic 

machinery exists in mitochondria for the formation and breakdown of ceramide.   

 Siskind and Colombini reported that C2- and C16-ceramides form large stable 

channels in phospholipid membranes21 (see Figure 2 for a sample trace).  The discrete 

stepwise changes in current under voltage-clamp conditions are characteristic of 
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Figure 2: Ceramide conductance trace.  5 µM of C2-ceramide was added to the 
aqueous phase (1 M KCl, 1 mM MgCl2, 5 mM PIPES, pH = 6.8) in a planar 
phospholipid membrane experiment.  The phospholipid monolayers were composed 
of the following (w/v): 0.5% diphytanoylphosphatidylcholine, 0.5% asolectin, 0.2% 
cholesterol.  The applied voltage used in this experiment was 10 mV.  (Figure from 
Siskind, 2005102)

membrane channels.  Conductances from 1 to 200 nS have been observed 

corresponding to pore diameters from 0.8 to 11 nm.21 The current structural model is 

based on a fundamental unit of a column of ceramide molecules stabilized by 

intermolecular hydrogen bonds between the carbonyl oxygens and amide nitrogens on 

opposite faces of the ceramide molecule.22 Multiple columns would come together to 

form an annulus, which is stabilized by a hydroxy-hydrogen-bonded network 

proposed to line the channel lumen (Figure 3).  The channel size would thus depend 

on the number of ceramide columns making up the annulus.   In order to span the 
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width of the membrane, the columns would have to be made up of 6 to 7 ceramide 

molecules.   

 The channel-forming ability of ceramide was tested in isolated rat liver 

mitochondria.50 Ceramide-treated mitochondria induced a size-selective protein 

release from the intermembrane space with a cut-off of 60 kDa.  This is consistent 

with the size of the intermembrane-space proteins that are released from mitochondria  

 

Figure 2: Theoretical structural model of a ceramide channel.  A top view of the 
channel is shown.  Each column consists of 6-7 ceramide molecules. 
 

during the induction phase of apoptosis.  Importantly, the ceramide precursor 

dihydroceramide (differs from ceramide by reduction in a double bond) is incapable 

of inducing apoptosis,51 does not form channels in phospholipid membranes and does 

not allow release of intermembrane space proteins from mitochondria.50 Therefore 

the apoptotic activity of ceramide correlates directly with its channel-forming ability.  
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It is possible that ceramides form homogenous channels and/or heterogenous 

channels with Bax, for example.  In planar membrane experiments, ceramides form 

channels that can pass molecules with a diameter as large as 11 nm, which would 

correspond to a molecular weight ~300 kDa.  However, when ceramide is added to rat 

liver mitochondria, the molecular weight cut-off is only 60 kDa.  The difference may 

have to do with the fact that planar membrane experiments are performed in a 

protein-free environment.   Therefore, size may be controlled in mitochondria via 

interactions with other lipids and/or proteins.  One possibility may be through an 

interaction with Bcl-2 proteins, such as Bax.   

 Pharmacological experiments were performed to see if agents that inhibit 

MAC and Bax-induced permeabilization also inhibit ceramide-induced permeability.  

The inhibitors tested were the amphiphilic cations shown in figure 4: propranolol, 

dibucaine, lidocaine and trifluoroperazine (TFP), as well as the PTP inhibitor 

cyclosporine A.   

 Lidocaine and dibucaine are local anesthetics.  Local anesthetics function by 

blocking sodium channels, thereby preventing depolarizations of nerve cells.  The 

mechanism of blockage is unknown but several theories exist.  One theory is that the 

drug binds to a receptor in or near the ion pore, thereby blocking the channel. 52 

Another theory suggests that changes in  membrane surface charge due to the 

anesthetic is important.52 However this theory does not explain how neutral 

anesthetics act.  Yet another theory proposes that the anesthetics increase membrane 

fluidity however it is not clear how this would cause a block in sodium 

conductance.53 
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Propranolol is a non-selective beta-adrenergic receptor blocking agent.  It 

blocks the receptor for epinephrine or norepinephrine, thereby decreasing sympathetic 

stimulation.  Propranolol is used to treat hypertension,54-55 cardiac arrythmias and 

angina pectoris;56 as well as to prevent myocardial infarction.57-58 TFP is a 

phenothiazinic drug, which is a type of anti-psychotic drug used to treat conditions 

such as schizophrenia and bipolar disorder.   

 Amphiphilic cations have been shown to have protective effects against 

ischemia-reperfusion injury,59 as well as anti-apoptotic effects.60  Both TFP and 

dibucaine inhibited or delayed PTP;61 and propranolol inhibited the “mitochondrial 

megachannel”, which is an electrophysiological manifestation of the PTP.62 Some 

amphiphilic cations also inhibit channels.  For example, propranolol, dibucaine and 

TFP (TFP being the most effective) inhibited MAC63 as well as protein import into 

the mitochondria (possibly through an interaction with the translocase of the inner 

membrane (TIM)).64 Propranolol has been shown to inhibit the inner membrane 

anion channel (IMAC);65 and both propranolol and dibucaine (propranolol being 

more effective) inhibited Bax channels.66 Since these cations have been shown to 

inhibit different channels, they were tested on ceramide channels.  The results in this 

study show that some amphiphilic cations that inhibit MAC and Bax channels also 

inhibit ceramide channels; however the inhibition patterns do not conclusively link 

ceramide to MAC or Bax. 



10 
 

Chapter 2: Materials and Methods 
 

Materials – Wild-type yeast cells (S. cereviciae) were obtained from a local bakery.  

Asolectin (polar extract of soybean lipids), C2-ceramide and C16-ceramide were 

supplied by Avanti Polar Lipids (Alabaster, AL). 4-Carboxyfluorescein (CF) and p-

xylene-bis-pyridinium bromide (DPX) were from Molecular Probes (Eugene, OR).  

Cytochrome c, antimycin A, 2,4-dinitrophenol (DNP), sodium ascorbate, bovine 

serum albumin (BSA, fatty acid depleted), dibucaine hydrochloride, lidocaine 

hydrochloride and cholesterol were from Sigma (St. Louis, MO). DL-Propranolol was 

from Acros Organics (Geel, Belgium).  Trifluoperazine dihydrochloride (TFP) was 

from MP Biomedicals (Solon, OH).  Cyclosporine A (CsA) was a generous gift from 

Sandoz Pharmaceuticals (Holzkirchen, Germany).   

 

Mitochondria Isolation  - Male Sprague-Dawley rat liver mitochondria were isolated 

by standard differential centrifugation as previously described67 with minor changes. 

Cell debris was sedimented at 600 g and mitochondria at 9700 g.  The isolation buffer 

used was 210 mM mannitol, 70 mM sucrose, 0.1 mM EGTA, 0.5% (w/v) BSA (fatty 

acid depleted bovine serum albumin) and 5 mM HEPES, pH  7.4.  The buffer used for 

the last spin and final resuspension did not contain BSA.  Yeast mitochondria were 

isolated by standard differential centrifugation as previously described68 with minor 

changes.  The Percoll gradient was found to be unnecessary and was omitted from 

later experiments.  Also the buffer used for the last high speed spin and final 

resuspension was 0.65 M Sucrose, 0.1mM EGTA, 10 mM HEPES, pH 7.2.  Protein 

concentration was determined spectroscopically.69 
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Preparation of Reduced Cytochrome c -  11 mg of cytochrome c and 4 mg sodium 

ascorbate was mixed in 500 µL of 200 mM HEPES, 10 mM EGTA, pH 7.5. The 

reduced cytochrome c was separated from the ascorbate on a Sephadex G-10 gel 

filtration column.  

 

Detecting Mitochondrial Outer Membrane Permeabilization  - The method of Siskind 

et al., 2002;50 was used to assess the permeability of MOM to cytochrome c.  Either 

rat liver mitochondria (10 µg of protein) or yeast mitochondria (40 µg of protein) 

were suspended in 750 µL of isolation medium containing 1.5 µM antimycin A and 

0.5 mM 2,4-dinitrophenol.  After different treatments, permeabilization of MOM was 

found from the initial oxidation rates, obtained from the decrease in absorbance at 

550 nm after the addition of reduced-form of cytochrome c.  Intactness was calculated 

from the rates obtained from intact and hypotonically-shocked mitochondria, and 

only mitochondria with an intactness greater than 80% was used.  Ceramide was 

added either as 9 – 36 nmoles of C2-ceramide (stock solution: 0.25 - 1 mg/mL 

DMSO) or 36 – 147 nmoles of  C16-ceramide (stock solution: 2 mg/ml isopropanol).  

Within in one experiment, the ceramide concentration was constant.  However, 

different mitochondria isolations had different sensitivities toward ceramide, 

therefore the amount of ceramide used varied in order to obtain a comparable rate of 

cytochrome c oxidation.  Also, the C16-ceramide concentration used was higher than 

the C2-ceramide concentration because there is much less insertion of the long-chain 

ceramide in the mitochondrial membrane (L. Siskind, unpublished results).  Besides 

permeabilization increase, C16-ceramide slightly increased light scattering.  
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Therefore, the rate change at 600 nm was subtracted from the rate change at 550 nm 

for all experiments performed with C16-ceramide to ensure that only cytochrome c 

oxidation was being measured.  Propranolol, dibucaine, lidocaine and TFP were 

added from an aqueous solution, and CsA was added from an ethanol vehicle (stock 

solution: 133µM).  All experiments that yielded inhibitory results on ceramide were 

tested on hypotonically-shocked mitochondria to determine if effects were due to 

inhibition of cytochrome oxidase or a rereduction of cytochrome c.  None of the 

compounds changed the rate when added to the shocked mitochondria alone.  

However, in the presence of ceramide, propranolol and dibucaine had small inhibitory 

effects at higher concentrations.  In order to correct for this, an inhibition factor, f was 

calculated: 
max

0
υ
υ=f , where 0υ = rate of shocked mitochondria in the presence of  

ceramide and the drug and maxυ = the rate of shocked mitochondria in the presence of 

the vehicle.  The corrected rate r was calculated: fr 1υ= , where 1υ = the rate obtained 

from intact mitochondria treated with ceramide and the drug.  Vehicle controls were 

performed as appropriate. 

 

Preparation of Liposomes – 93% asolectin and 7% cholesterol (by weight) was 

dissolved in chloroform, dried with a N2 stream and was put under vacuum for 2 

hours.  The liposomes were resuspended in buffer A (1.5 mM CF, 6 mM DPX, 39 

mM NaCl, 10 mM HEPES and 1mM EDTA pH 7.0) and were subjected to 4 freeze-

thaw-sonication cycles, followed by 11 extrusions through a 200 µm pore size filter.  
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The nonencapsulated fluorophores were separated from the liposomes using a 

sephacryl S-200 column and eluted with buffer A. 

 

Determination of Liposome Permeabilization -  50 µL of the liposome suspension (~ 

0.1 mg of lipid) were diluted into 2 mL of Buffer A.  Fluorescence was measured as a 

function of time using a Deltascan spectrofluorometer (Photon Technology 

Instruments).  The λex was 496 nm and the λem was 516 nm.  Propranolol was added 

at 15 seconds and ceramide was added at 75 seconds.  Increase in fluorescence was 

due to release of CF from the liposomes and its dilution from the quenching agent, 

DPX.  The fractional fluorescence fl was calculated from the following equation: 

0max

0
FF

FFfl −
−= , where F = each measured fluorescence intensity, 0F = the initial 

fluorescence of intact liposomes and maxF = the maximal fluorescence after the 

membranes have been solubilized with 30 µL of 5% Triton-X 100.  At lower 

propranolol concentrations there was an initial increase in fluorescence that remained 

level with time.  However, this effect disappeared at higher concentrations.  Therefore 

this initial rise was subtracted out of the data, and the results shown are only the 

effect of propranolol on ceramide.   



14 
 

Chapter 3: Results 

Some amphiphilic cations inhibit ceramide-induced permeabilization in rat liver 

mitochondria 

C16- and C2-ceramide have been shown to form channels in the outer 

membrane of rat liver mitochondria.50 Channel formation is inferred from an increase 

in the permeability of this membrane to cytochrome c.  This permeability increase 

was assessed by measuring the rate of oxidation of cytochrome c by cytochrome 

oxidase, as a decrease in absorbance at 550 nm.  Addition of ceramide to a 

mitochondrial suspension results in the development of permeability to cytochrome c 

after a 5 to 10 minute incubation period.   

To assess the effect of amphiphilic cations on ceramide-induced 

permeabilization of mitochondria, rat liver mitochondria were pretreated with 

propranolol, dibucaine, TFP or lidocaine prior to ceramide addition.  Propranolol and 

dibucaine inhibited the rate of cytochrome c oxidation caused by ceramide (Figures 

4a and 4a) and the inhibition was found to be dose-dependent (Figures 4b and 4b).  

Note that both inhibitors were equally effective on both long- and short-chain 

ceramide.  TFP was found to be ineffective on C16- ceramide-induced 

permeabilization up to a concentration of 12 µM.  Lidocaine had little effect on C2-

ceramide (23% inhibition with 500 µM and 38% inhibition with 900 µM) and no 

effect on C16-ceramide-induced permeabilization (results not shown).  CsA inhibited 

C16-ceramide-induced permeabilization in a dose-dependent manner (Figure 6).  

However, the addition of C16-ceramide to isolated mitochondria did not cause 
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swelling; and actually slightly increased absorbance at 600 nm (results not shown).  

Therefore the inhibition of C16-ceramide-induced permeabilization by CsA is not 

through an effect on PTP.  The IC50 for dibucaine, propranolol and CsA (and Hill 

coefficients) found for inhibition of C16-ceramide-induced permeabilization are 235 

µM (0.81),  415 µM (1.01) and 3.4 µM (0.54), respectively.   

Since the Hill coefficients for dibucaine and propranolol were essentially 1, 

this indicates a 1:1 complex between these agents and the ceramide-induced 

permeability pathway.  The hundreds of ceramides required to form a ceramide 

channel are not condusive to a simple 1:1 stoichiometry.  This may indicate the 

presence of another factor that confers sensitivity to these agents.  The fractional Hill 

coefficient observed with CsA could indicate an indirect, distal effect.   

 

Propranolol inhibits C2- but not C16-ceramide-induced liposome 

permeabilization  

It is possible that the inhibitory effect of propranolol on ceramide involves 

other mitochondrial components such as proteins.  Therefore its effect was tested on 

protein-free liposomes.  Liposomes loaded with CF and its quencher DPX were pre-

incubated with propranolol for 1 minute, followed by ceramide addition.  As seen in 

Figure 7a and 7b, propranolol inhibits C2-ceramide-induced permeabilization in a 

dose-dependent manner.  The fluorescence increase has 2 components.  The fast 

initial component is not inhibitable.  Nevertheless, in calculating the % inhibition we 

considered the entire response.  Thus the maximal inhibition appears at 55%.  Note 

that the inhibition occurred at lower concentrations in liposomes than in 
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mitochondria.  For example, 50 µM of propranolol yields ~ 19 % inhibition in 

liposomes, but no significant inhibition in rat liver mitochondria.  This higher 

sensitivity to the inhibitors may indicate a fundamentally different mechanism.  This 

is confirmed by the failure of propranolol to inhibit channel formation by C16-

ceramide.  The results are expressed as “relative ratios”.  These are defined as the 

fractional fluorescence of propranolol + ceramide divided by the fractional 

fluorescence of ceramide alone (Figure 7c).  A ratio greater than 1 is indicative of 

potentiation and less than 1 is indicative of inhibition.  As seen from the relative 

ratios in Figure 7c, propranolol potentiates the effect of C16-ceramide in a 

concentration-dependent manner.   

 

Propranolol and dibucaine inhibit C2- but not C16-ceramide-induced 

permeabilization in yeast mitochondria 

The different results obtained from experiments on rat liver mitochondria and 

those on liposomes indicate the presence of a factor in mitochondria that might confer 

a particular sensitivity to the amphiphilic cationic inhibitors.  This factor might not be 

present in yeast mitochondria because yeast cells do not contain the same apoptotic 

factors found in mammalian mitochondria.  If this hypothetical factor were required 

to sensitize mitochondria to ceramide channel formation, yeast mitochondria may be 

refractory to ceramide addition.   

Yeast mitochondria were found to be as responsive to ceramide 

permeabilization of their outer membrane as mammalian mitochondria (Figure 8a).  

However, their response to propranolol and dibucaine resembled that observed in the 
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liposome experiments.  The effects of propranolol or dibucaine on C16- and C2-

ceramide-induced permeabilization of MOM is expressed using a relative ratio as 

defined above.  As seen in Figures 8b and 8c, propranolol and dibucaine inhibit C2-

but not C16-ceramide-induced permeabilization.  Similar to the results found in 

liposomes, the effect of C16-ceramide-induced permeabilization is in fact potentiated.  

Thus, the action of these inhibitors in mammalian mitochondria may be through a 

factor found there and not in yeast mitochondria or liposomes.     
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Figure 4. Propranolol inhibits ceramide-induced permeabilization of MOM in rat 
liver mitochondria.  10 µg of mitochondrial protein in 750 µL of isolation buffer were 
incubated with propranolol for 1 min prior to a 5 or 10 min incubation with C2- or
C16-ceramide, respectively.  (a) Different concentrations of propranolol were added 1 
min prior to a 10 min incubation with 108 nmoles of C16-ceramide.  The reduced form 
of cytochrome c was added and absorbance measured at 550 nm as a function of time.  
(b) The percentage inhibition of ceramide-induced permeabilization as a function of 
propranolol concentration is shown for C2-ceramide (C2) and C16-ceramide (C16).  
Mean and SEM were calculated from several repeats within 2 to 3 independent 
experiments.  The concentration range of C16- and C2-ceramide used was 108 – 147 
nmoles and 11 – 18 nmoles, respectively.  The concentration of ceramide used within 
one set of experiments was kept constant. 

4a

4b
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Figure 5. Dibucaine inhibits ceramide-induced permeabilization of MOM in rat liver 
mitochondria.  Experiments were performed as described in Figure 4.  (a) Different 
concentrations of dibucaine were added 1 min prior to a 10 min incubation with 108 
nmoles of C16-ceramide.  (b) The percentage inhibition of ceramide-induced 
permeabilization as a function of dibucaine concentration is shown for C2-ceramide 
(C2) and C16-ceramide (C16).  Mean and SEM were calculated from several repeats 
within 2 to 3 independent experiments.  The concentration range of C16- and C2-
ceramide used was 108 – 147 nmoles and 9 – 18 nmoles, respectively.  

5a

5b
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Figure 6. Inhibitory effects of CsA, dibucaine and propranolol on C16-ceramide-
induced permeabilization of MOM in rat liver mitochondria.  Experiments were 
performed as described in Figure 4.  The inhibitor was added 1 min prior to a 10 min 
incubation with 57 - 147 nmoles of C16-ceramide.  Mean and SEM were calculated 
from several repeats within 2 to 3 independent experiments.  The data were best fit 
for CsA, dibucaine and propranolol with IC50 values of 3.42, 233 and 417 µM; Hill 
coefficients of 0.54, 0.81 and 1.01; and correlation coefficients (R2) of 0.92, 0.99 and 
0.90, respectively. 

6

7a
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Figure 7. Propranolol inhibits C2- but not C16-ceramide-induced liposome 
permeabilization.  Propranolol was incubated with liposomes (~0.1mg lipids) 
composed of 93% asolectin and 7% cholesterol, followed by the addition of C2-
ceramide (C2) or C16-ceramide (C16).  (a) Representative experiment of propranolol 
concentration-dependence inhibition of permeabilization induced by 29 nmoles of C2-
ceramide.  Permeabilization results in a fluorescence increase due to the dilution of 
CF from its quencher DPX.  Data was normalized to 0 at baseline fluorescence and 1 
at maximal fluorescence, which was achieved with 0.07% Triton-X 100.  (b) The 
percentage inhibition of C2-ceramide-induced permeabilization as a function of 
propranolol concentration is shown.  Mean and SEM were calculated from several 
repeats within 2 independent experiments.  The concentration of C2-ceramide used 
was 14 and 29 nmoles.  (c) Effects of propranolol on C16- and C2-ceramide-induced 

7b

7c
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permeabilization is expressed using a relative ratio.  Relative ratio is the fractional 
fluorescence of propranolol + ceramide divided by the fractional fluorescence of 
ceramide alone.  The concentration of C2-ceramide used was 14 and 29 nmoles and 
the concentration of C16-ceramide was 190 nmoles.  Data shown is the average of 2 – 
4 data points from 2 independent experiments. 

 

8a

8b
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Figure 8. Propranolol and dibucaine inhibit C2- but not C16-ceramide-induced 
permeabilization of MOM in yeast mitochondria.  40 µg of mitochondrial protein in 
750 µL of isolation buffer were incubated with propranolol or dibucaine for 1 min 
prior to a 5 or 10 min incubation with C2- or C16-ceramide, respectively.  (a) 112 
nmoles of C16-ceramide (C16) causes permeabilization to the MOM of yeast.  Intact 
mitochondria were incubated with isopropanol.  250 µM dibucaine (D) and 500 µM
propranolol (P) potentiate the effect of ceramide.  Effects of propranolol (b) or 
dibucaine (c) on C16-ceramide and C2-ceramide-induced permeabilization is 
expressed using a relative ratio.  Relative ratio is the cytochrome c oxidation rate of 
the drug + ceramide divided by the oxidation rate of ceramide alone.  The relative 
ratios shown for rat liver mitochondria (C16-m, C2-m) were calculated based on the 
experiments in Figures 4 and 5.  The mean and SEM for results obtained with yeast 
mitochondria were calculated from several repeats within 3 independent experiments.  
The concentration of C16- and C2-ceramide (C16-y, C2-y) used in yeast  mitochondria 
were 36 – 147 nmoles and 29 nmoles, respectively. 

8c
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Chapter 4: Discussion 

 During the induction phase of apoptosis, pro-apoptotic proteins are released 

from the intermembrane space of mitochondria.  The mechanism by which these 

proteins are released from mitochondria is not well understood.  Several theories 

explain this as an increase in the permeability of MOM by the formation of pores 

capable of translocating proteins.  For example, some Bcl-2 proteins, which are 

known regulators of apoptosis, have been proposed to form such channels (for review 

see 12,70,71).  The pro-apoptotic protein Bax has been shown to form channels in 

artificial membranes with a peak conductance of up to ~ 2 nS.17,72,73 In a later study, 

Bax was shown to produce a conductance of up to 10 nS, with a mean conductance of 

~ 5 nS.20  Furthermore, Bax channels are large enough to release cytochrome c when 

in an oligomerized form.14,16 Bax in the presence of another pro-apoptotic Bcl-2 

protein tBid has been proposed to reorganize membrane lipids to form large lipidic 

pores, capable of releasing even larger pro-apoptotic proteins.74 In fact, it has been 

shown that Bax in the presence of tBid strongly promotes the rate of transbilayer 

phospholipid diffusion, thereby reorganizing lipids.74,75 

Another theory of how pro-apoptotic proteins are released from the 

mitochondrial intermembrane space is via MAC.  MAC has been detected in 

apoptotic cells about the time cytochrome c is released.17,18 However a recent study 

demonstrates that MAC did not appear until a later stage in apoptosis, after the 

permeabilization of MOM.19 MAC’s peak conductance was found to be 2.5 nS,17 but 

later studies reported a peak conductance as high as 10 nS, with a mean conductance 

of 3.3 to 4.5 nS depending on cell type.18,20 The diameter of MAC has been estimated 
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to be ~ 5nm, which is large enough to release cytochrome c, but not the larger pro-

apoptotic proteins.  The molecular identity of MAC is currently unknown, however 

there is evidence that Bax is a component of MAC. 17,18,20 

Still another theory of how pro-apoptotic proteins are released from the 

mitochondrial intermembrane space is via ceramide channels.21,50 Short and long 

chain ceramides form channels in phospholipid membranes and induce protein release 

from mitochondria up to 60 kDa.50 The large channel size of up to 11 nm 

demonstrated in planar membranes is not consistent with the smaller channel size 

formed in mitochondria.  The difference may have to do with the fact that planar 

membrane experiments are performed in a protein-free environment.   Therefore, the 

size may be controlled in mitochondria via interactions with other lipids and/or 

proteins.  One possibility may be through an interaction with Bcl-2 proteins, such as 

Bax.   

 In this study, pharmacological experiments were performed to test whether 

amphiphilic cations that inhibit MAC and Bax-induced permeabilization also inhibit 

ceramide-induced permeabilization.  Results obtained in mammalian mitochondria 

showed that some of the amphiphilic cations that inhibited Bax-induced cytochrome c 

release from rat forebrain mitochondria66 and MAC conductance from 

proteoliposomes containing mitochondrial membrane from FL5.12 cells63 also 

inhibited ceramide-induced permeabilization in rat liver mitochondria.  Table 1 

summarizes IC50 values, which were determined or extrapolated from %inhibition 

plots from Martinez-Caballero, et al., 2004;63 Polster et al., 2003; 66 and from plots 
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presented in this study.  Results were only quantified for BH3 peptide alone (BH3)*

in the Bax study, however propranolol and dibucaine (concentrations up to 500 µM) 

strongly inhibited cytochrome c release induced by Bax in the presence of cBid (B + 

cBid) and Bax in the presence of BH3 peptide (B + BH3).  They were also the 

strongest inhibitors of BH3-induced permeabilization.  This correlates well with their 

inhibition of ceramide-induced permeability in mitochondria.  TFP was not tested in 

any Bax experiments and lidocaine (up to 500 µM) was tested on BH3-induced 

permeabilization but was found to be ineffective, consistent with its marginal effect 

on ceramide-induced permeabilization.  The strongest inhibitors of MAC conductance 

are TFP, dibucaine then propranolol.  Lidocaine (up to 300 µM) was tested on MAC 

and was reported to be ineffective despite a very weak inhibitory trend.  All these 

results are consistent with the observations made with ceramide on rat liver 

mitochondria, except for TFP.  The latter was without detectable effect.  Considering 

the many reported effects of propranolol and dibucaine, the negative result with TFP 

argues strongly against a relationship between ceramide channels and MAC.   

 The amphiphilic cation propranolol was tested on C2- and C16-ceramide-

induced permeabilization in liposomes in order to determine if the inhibitory effect 

can be observed in a protein free system.  As shown in Figure 7c, propranolol 

inhibited C2- but not C16-ceramide-induced permeabilization.  This finding and 

similar results obtained with yeast mitochondria suggest that the inhibition via 

amphiphilic cations may be through a factor found only in mammalian mitochondria.  

In rat liver mitochondria, similar IC50 values for the inhibition by propranolol and 
 
* The BH3 peptide is a sequence of amino acids that comprise the BH3 domain of Bax.  This peptide 
caused release of cytochrome c in cell types that had Bax associated with the MOM (Polster et al., 
2001).76 
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dibucaine on C2- and C16-ceramide channels suggested a similar mechanism of 

inhibition of channels made up of ceramides of different chain lengths.  This again 

argues for a special factor that confers sensitivity to propranolol and dibucaine to both 

types of ceramide channels.  Since the Hill coefficient is close to 1 and ceramide 

channels are composed of hundreds of monomers, an inhibition-conferring factor 

could explain the observed stoichiometry.  In addition to this putative factor, 

liposome and yeast mitochondria experiments show that C2-ceramide channels might 

also be directly sensitive to these inhibitors.   

 

IC50 (µµµµM) 
 C2-m C16-m C2-y C16-y MACa BH3c

Dibucaine 200 235 <250 n.i. 39 185 
Propranolol 365 415 <500 n.i. 52 110 
Lidocaine >900 n.i. - - >300b >500d

CsA - 3.42 - - >10b >1d

TFP - n.i. - - 0.9 - 

Table 1. Comparison of IC50 values found for ceramide, MAC and Bax channels.  
n.i.: no inhibition 
a Martinez-Caballero et al., 2004  
b extrapolated from figure 3b in reference a. 
c extrapolated from figures in Polster et al., 2003 
d The release of cytochrome c was presented in an immunoblot and not quantified  

 

The pattern of inhibition by amphiphilic cations is consistent with a 

relationship between Bax-induced permeabilization of mitochondria and that of 

ceramide.  Yet any such link is tenuous because of the promiscuity of these 

inhibitors61,64,77-84 and the claim that Bax channels and MAC channels are related.  

There is substantial evidence linking Bax to MAC.  For example, MAC activity was 

not found in yeast mitochondria unless Bax was expressed in the yeast cells.  Also, 
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immunodepleting Bax in apoptotic HeLa cells resulted in almost no detectable MAC 

activity.20 Nevertheless it is possible that Bax may have multiple activities.  Indeed, a 

major distinction between mammalian and yeast cells is the lack of Bcl-2 proteins in 

yeast.  Thus the absence of Bax may account for the insensitivity of ceramide 

permeabilization of yeast mitochondria to propranolol and dibucaine.   

There are several lines of evidence that link ceramide to Bax.  An antisense 

Bax oligonucleotide inhibited ceramide-induced cytochrome c release and ceramide- 

induced Bax translocation to the mitochondria in HL-60 cells.85 Furthermore, HL-60 

cells which are resistant to ceramide have a reduced expression of Bax.86 Since Bax 

in the presence of tBid, was shown to reorganize some lipids,74,75 further 

experimentation may show that ceramide reorganization may occur as well.  There 

are contradictory reports of whether Bax is associated with mammalian mitochondria 

prior to the induction of apoptosis.  Polster et al., 2001;76 reported that Bax is not 

associated with mitochondria in some cell types (including rat liver mitochondria).  

While others have shown that monomeric Bax is associated with mitochondria from 

HeLa cells15 and rat liver,19 prior to the induction of apoptosis.  If it is the case that 

Bax is not found in the outer membrane of rat liver mitochondria, interaction of 

ceramide with Bcl-2 protein(s) is not ruled out.  There is another pro-apoptotic Bcl-2 

protein, Bak believed to be involved in MOM permeabilization.87-89 Bak has been 

shown to be functionally redundant with Bax20,88,90,91 and is found inserted in the 

MOM of healthy cells.92 Pharmacological experiments using C16-ceramide on yeast 

expressing Bax or Bak may provide further insight into possible interactions between 

these proteins and ceramide .   
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CsA,  was tested on C16-ceramide induced permeabilization to determine if 

ceramide might be involved with PTP.  CsA is known to bind cyclophilin D, thereby 

inhibiting the PTP.  Experiments with a positively-charged ceramide showed that the 

effects of this ceramide are sensitive to inhibition by CsA.93 This led to the 

hypothesis that ceramide induces cytochrome c release by permeabilizing the 

mitochondrial inner membrane.  This permeabilization would result in the same 

sequence of events as PTP: i.e. swelling of the matrix compartment, tearing of the 

outer membrane and thus free flow of proteins between the intermembrane space and 

the cytosol or medium.  In this work CsA was found to inhibit C16-ceramide channels 

(Figure 6) supporting the notion that ceramide works through PTP.  Supporting this 

conclusion is the fact that dibucaine has been shown to inhibit mitochondrial swelling 

believed to be due to PTP94 and propranolol blocked the “mitochondrial 

megachannel” which is thought to be an electrophysiological manifestation of the 

PTP.62 However, our findings are inconsistent with the PTP model because the 

addition of C16-ceramide to isolated mitochondria did not result in mitochondrial 

swelling.  In fact C16-ceramide caused a small increase in absorbance at 600 nm.  

Therefore the inhibition of C16-ceramide-induced permeabilization by CsA cannot be 

through an effect on PTP.  Like other inhibitors, CsA has other targets.  It binds 

calcineurin95 and has been found to increase the production of  reactive oxygen 

species.96 However these experiments were performed in whole cell environments  

and it is not clear what might be the other mitochondrial targets of CsA.  The 

significance of the inhibitory effect of CsA on C16-ceramide-induced 

permeabilization in mammalian mitochondria is not known.  However, it is another 
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difference between ceramide channels and MAC since CsA was reported to only have 

slight inhibitory effects on MAC.63 

The practical implications of the inhibition of ceramide-induced 

permeabilization by amphiphilic cations is the possibility of developing 

pharmacological agents that could be used to control the initiation of apoptosis.  The 

factor that confers sensitivity to these agents to mammalian mitochondria may be a 

good drug target.  Ceramide is known to be extensively involved in the apoptotic 

process; and endogenous ceramide levels in cells undergoing apoptosis have been 

shown to increase prior to the execution phase of apoptosis. 35,97-100 It is preferable to 

control apoptosis prior to the activation of effector caspases, since undesirable 

repercussions may result.  For example, pharmacological inhibition of executioner 

caspases has been shown to result in a condition resembling necrosis.101 Hence, 

inhibition of apoptosis at the ceramide permeabilization level may be a more effective 

approach. 
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Conclusion 

This study has shown that amphiphilic cations can be used to inhibit ceramide 

channels.  One surprising result was the finding that there is a factor in mammalian, 

but not in yeast mitochondria, that allows C16-ceramide to respond to the inhibitors 

propranolol and dibucaine.  The pattern of inhibition argues that there is a link 

between ceramide channels and channels induced by Bax.  However, the results 

indicate that ceramide channels are distinct from MAC.   
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