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Mass spectrometry (mass spec) has proven valuable in understanding and 

controlling chemical processes used in semiconductor fabrication. Given the 

complexity of spatial distributions of fluid flow, thermal, and chemical parameters in 

such processes, multi-point chemical sampling would be beneficial.  

 This dissertation discusses the design and development a multiplexed mass 

spec gas sampling system for real-time, in situ measurement of gas species 

concentrations in a spatially programmable chemical vapor deposition (SP-CVD) 

reactor prototype, where such chemical sensing is essential to achieve the benefits of 

a new paradigm for reactor design. The spatially programmable reactor, in which 

across-wafer distributions of reactant are programmable, enables (1) uniformity at 

any desired process design point, or (2) intentional nonuniformity to accelerate 

process optimization through combinatorial methods. The application of multiplexed 

mass spec sensing is well suited to our SP-CVD design, which is unique in effectively 

segmenting the showerhead gas flows by using exhaust gas pumping through the 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Repository at the University of Maryland

https://core.ac.uk/display/56099833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  

showerhead for each segment.  In turn, mass spec sampling signals for each segment 

are multiplexed to obtain real-time signatures of reactor spatial behavior. In this 

dissertation, we have reported the results using inert gases to study the spatial 

distributions of species, validate SP-CVD reactor models, and lead to an 

understanding of fundamental phenomena associated with the reactor design.  

 This novel multiplexed mass spec sensing system has been employed to 

monitor the process among three segments in real time. Deliberate non uniform W 

SP-CVD was performed using H2 reduction of WF6. A process based metrology, 

which reflects the relationship between the process recipe and film thickness was 

established. From the process based metrology, a recipe for uniform film deposition 

was determined and the re-programmability of the SP-CVD system was proven. 

Meanwhile, a mass spec sensor based film thickness metrology, which reflects the 

relationship between the normalized mass spec signal and film thickness, was built. 

Mass spec sensor based thickness metrology with precision of 2~4% was obtained, 

approaching the desired range of thickness control precision.  

 The scientific contributions from this work are summarized as two points: (1) 

spatially resolved in situ sensing metrologies have been developed for real-time 

advanced process control; and (2) the results of this sensing methodology not only 

demonstrates real-time spatially-distributed end point control, but also makes it 

possible to guide rapid reprogramming of process recipes intended to achieve 

simultaneous high material quality and uniformity, or to serve as a valuable asset to 

potential combinatorial experimental capabilities of the SP-CVD reactor. 
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Chapter 1: Introduction 

 

1.1 Function of advanced process control (APC) 

 Semiconductor manufacturing has faced increasing pressure to improve 

process efficiency and flexibility, meanwhile, decreasing production costs. Without 

making significant changes to the production process and equipment, improvement 

can be made by applying advanced process control (APC) technology in the 

manufacturing process. APC is a methodology used to determine when and how to 

make adjustments so that the process output remains on target.1, 2, 3, 4 Course 

correction and fault management are the two main components of APC technology.1 

 Using a metrology method to maintain process reproducibility is defined as 

course correction. Course correction has been used for both run-to-run control and 

real-time control.1 In a run-to-run controlled process, the sensor measures, collects 

and analyzes the data, as well as calculates new settings for the next run. Therefore, a 

run-to-run process can use in situ and ex situ measurements to correct systematic 

process drifts.  

 Fault management includes fault detection and fault diagnosis. Fault detection 

registers an alarm when an abnormal condition develops in the monitored process or 

system. Once a fault is detected, the process/systems engineer can identify the root 

cause of the abnormality and implement corrective action before more wafers are 

degraded.5 
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1.2 Motivation 

1.2.1 Importance of in situ chemical sensors 

Real-time, in situ chemical sensing has played an important role in advanced 

process control (APC) in the semiconductor industry.1,2,6 Understanding and 

controlling these processes are the two primary motivations of applying in situ 

chemical sensing in semiconductor processes.7 From a manufacturing efficiency point 

of view, production yield and capital equipment productivity can be significantly 

improved through direct process monitoring and real-time process control of gas 

phase composition.1 Ideally, an effective process sensor can provide direct 

information regarding deposition kinetics as well as information on nominal process 

parameters, such as gas flow rate, process pressure and reaction time.5 In such cases, 

the sensor can reflect equipment state, process state, and wafer state, providing an 

avenue to both course correction and fault management, the two thrusts of advanced 

process control.1 

1.2.2 Value of multi-point sensing 

 Multi-point chemical sensing is a method by which multiple sensors are 

spatially dispersed to collect signals from several spatially separated points in 

chemical processes such as chemical vapor deposition (CVD) or atomic layer 

deposition (ALD). Compared to single-point sensing technology, multi-point 

chemical sensing offers the potential of greater understanding and control of three-

dimensional process behavior and its consequences across the wafer. Our recent 

research has been focused on: 
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• Development and demonstration of a spatially programmable CVD (SP-

CVD) reactor design;  

• A new paradigm for process equipment generally and for CVD equipment 

specifically. 

This approach has promise to control the spatial profile of gas composition 

across the wafer surface, and thereby to achieve uniformity or to intentionally 

introduce nonuniformities in pursuit of combinatorial process studies. Real-time 

multi-point sensing is particularly useful in programmable CVD, not only to detect 

spatial variations in process conditions, but also to drive control through the spatial 

programmability of the SP-CVD reactor design.  This should be valuable in achieving 

real-time end point control at multiple locations across the wafer, or for other 

approaches, which tailor spatial distributions through the process cycle.  

1.2.3 Types of chemical sensors  

 Several techniques have been developed for in situ process monitoring,8, 9, 10  

including Fourier transform infrared spectroscopy (FTIR),11, 12, 13 acoustic sensing14, 15 

and quadrupole mass spectrometry (QMS).16,17,18  We concentrate here on QMS 

because of its ability to detect both reactant and product species, to use for metrology 

and control (discussed in Chapter 5), and to exploit the fact that QMS sensors are 

already present for fault detection on many manufacturing process tools (described in 

Chapter 3.4.2). 

 QMS ionizes atoms or molecules from a sample and then separates them 

according to their mass-to-charge ratio.19 Traditional applications of QMS include: 

vacuum system leak detection and monitoring of residual gas distributions for 
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contamination control.20, 21 More advanced applications of QMS have been 

demonstrated by several research groups.22, 23 Greve’s group used mass spectrometry 

(mass spec) for process control24 and for real-time multivariable control of PECVD 

SiN film properties.25 T. Gougousi et al. applied QMS to run-to-run control on a W-

CVD cluster tool.26 Xu et al. successfully demonstrated QMS-based thin film 

thickness metrology and end point control in a tungsten chemical vapor deposition 

(W CVD) process.27, 28 

 In this work, we have extended QMS sensing to incorporate multiplexing of 

the sensor to sample various segments of a segmented showerhead, which is the key 

feature of the SP-CVD reactor. This makes possible experimental validation of fluid 

flow models essential to process control in the context of the programmable reactor 

concept. It also enables quantitative monitoring of deposition on the wafer associated 

with each showerhead segment, leading to film thickness metrology and real-time end 

point control. In this dissertation, we report the results of: 

• Using inert gas mixtures (which is a standard approach) to understand and 

improve our models of the programmable CVD reactor and to develop the 

multiplexed QMS technology. 

• Applying the programmable reactor concept to demonstrate both uniformity 

control and combinatorial experimentations in W CVD process. 

1.2.4 Benefit of using real-time mass spec APC 
 

Within the three segments, across-wafer impingement is programmable in 

order to achieve uniformity or to intentionally introduce non-uniformities in the run-

to-run control process. However, with the use of an in situ mass spec sensor to 
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monitor and control the SP-CVD process in real time (as shown in Figure 1- 1), 

greater flexibility can be introduced into the programmable CVD process. For 

instance, the thickness target can be changed during the deposition process and a film 

with a new target thickness can be obtained without wasting wafers or precursors. 

This method offers the benefit of a faster turn around time during the process. 

Figure 1- 2 explains the chronological order of experimentation to establish 

mass spec based metrology. After building the SP-CVD reactor and multiplexed mass 

spec sampling system, non-uniformity depositions were conducted as training 

experiments in order to build film thickness metrology. At the same time, the mass 

spec was used to monitor the process and collect the signal of reactant and byproduct 

gases within the system. Post-process characterization was performed by a 4-point-

probe measurement to determine the film thickness. Thereafter, two metrologies to 

the SP-CVD process control were developed: (1) a process based metrology, which 

reflects the relationship between the reactant gas concentration and film thickness in 

each segment; (2) a mass spec sensor based metrology, which reflects the relationship 

between the normalized mass spec signal and the film thickness in each segment. 

Finally, the process based metrology was employed to reprogram the process and 

deposit a uniform film across the wafer. Furthermore, the sensor based metrology was 

applied to conduct real-time end point control in W SP-CVD. 

1.3 Research objectives 

There are four research objectives:  
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(1) Design and develop a multiplexed and multipoint mass spec sampling 

system to provide in situ measurement of the spatial distribution of gas composition 

above wafer surface.  

(2) Use the mass spec as a distributed chemical sensor to evaluate and 

improve the models of SP-CVD equipment and process.  

(3) Develop a thin film thickness metrology by establishing a model between 

the film thickness and the mass spec signal integrated over the deposition time.  

(4) Apply the thickness metrology to achieve real-time process control and 

process end point detection and control, which lead to efficient process development, 

process optimization and combinatorial process studies.  

1.4 Problems and challenges in this research 

 As described earlier, we use the mass spec as a real-time in situ chemical 

sensor to monitor and control the CVD process. The main technical challenges in this 

research are described in the following sections. 

1.4.1 Pressure transduction 

Mass spec is chemical sensing instrument comprising three physically 

important sub-systems: the ion source, mass filter (quadrupole separation system) and 

ion detector (Figure 1- 3). Mass Spec ionizes atoms or molecules from a sample, 

separates the different gas ions according to their mass-to-charge ratio (m/z),29 and 

measures the masses and relative concentrations of molecules. The ions of different 

mass are separated by controlling the travel paths of the ionized sample molecules. 

The ions should pass through the spectrometer system without collisions with other 
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molecules or other ions; deflection with other ions causes them to deviate from the 

path that the electric fields are directing them30. Inficon mass spectrometer’s 

operation pressure is required to be lower than 10-5 Torr;31,32 however, the 

programmable CVD process is at 1 Torr region. One of the big challenges in the mass 

spec sampling system is to design a process specific inlet system which makes mass 

spec have the capability of monitoring high pressure process.  

1.4.2 Multiplexed chemical sensing applications for process monitor and control 

  Mass spec are fairly expensive process analyzers.30 Cost reduction is one of 

the biggest concerns in implementing advanced process control in manufacturing. 

The question is: can we use one chemical sensor to monitor the reaction rates in the 

different segments nearly simultaneously, so that the result approximates multi-

channel real-time chemical sensing. There are three segments in programmable CVD 

reactor; each segment experiences different CVD recipes with different parameter 

settings, such as, different gas flow rates, different precursors and different 

temperatures. In order to monitor the gas concentration in each of three segments 

during a single deposition process quite frequently, it is necessary to switch the sensor 

between segments. This cyclic switching is henceforth referred as multiplexed 

process monitoring. However, the monitoring time for each segment is limited by the 

gas transfer time of the process monitor. We defined the gas transfer time as the time 

taking the process gas from the CVD reaction chamber to the mass spec sensor. If the 

monitoring time is less than gas transfer time, then the data shown on the mass spec 

cannot reflect the real-time process status. But if we set a long monitoring time, we 

will not have enough data point. For this reason, we should consider the tradeoff 
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between the monitoring time and the gas transfer time when we design the sampling 

inlet system and the parameters for the monitoring switch of the segment.  
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Figure 1- 1 Real time mass spec APC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 10

 
 

 
 
 

Figure 1- 2 Chronological order of experimentation to establish mass spec 
based metrology 
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Figure 1- 3 Structure of mass spec 
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Chapter 2: Spatially programmable chemical vapor deposition 
system 
 

 

2.1 Chemical vapor deposition 

 Chemical vapor deposition (CVD) is a chemical process for depositing thin 

films of various materials on a substrate. Compared to other thin film deposition 

technologies such as thermal evaporation, sputtering, pulsed laser deposition (PLD), 

electron beam evaporation (E-beam) and molecular beam epitaxy (MBE), it offers 

good control of film composition, step coverage, film uniformity, as well as excellent 

growth rates. Therefore, CVD is widely used in the semiconductor industry,33, 34 as 

part of the semiconductor device fabrication process, to deposit various films 

including: polysilicon, tungsten, silicon nitride, titanium nitride, silicon dioxide, 

silicon germanium and various high-k dielectrics. Figure 2- 1 depicts the basic steps 

in a typical CVD reaction: 

1. Transport of precursor molecules into reactor;  

2. Adsorption of precursor molecules to substrate; 

3. Chemical reaction and form solid films;  

4. Recombination of molecular byproducts and desorption into gas phase. 

There are various forms of CVD processes, including:  

1. Atmospheric pressure CVD (APCVD) - CVD process is at atmospheric 

pressure.  
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2. Low-pressure CVD (LPCVD) - CVD process is at subatmospheric 

pressures and high temperature.  

3. Ultra-high vacuum CVD (UHVCVD) - CVD processes at very low 

pressures, typically in the range of a few to a hundred millitorrs. Most 

modern CVD process is either LPCVD or UHVCVD. 

4. Plasma-enhanced CVD (PECVD) - CVD processes that utilize plasma to 

enhance chemical reaction rates of the precursors. PECVD processing 

allows deposition at lower temperatures, which is often critical in the 

manufacture of semiconductors.  

5. Atomic layer CVD (ALD) - A CVD process in which two complementary 

precursors are alternatively introduced into the reaction chamber. One of 

the precursors will adsorb onto the substrate surface, but cannot 

completely decompose without the second precursor. The precursor 

adsorbs until it saturates the surface and further growth cannot occur until 

the second precursor is introduced. The film thickness is controlled by the 

number of precursor cycles rather than the deposition time. ALD is very 

good for extremely precise control of film thickness and uniformity.  

6. Metal-organic CVD (MOCVD) - CVD processes based on metal-organic 

precursors.  

7. Rapid thermal CVD (RTCVD) - CVD processes that use heating lamps or 

other methods to rapidly heat the substrate. Heating only the substrate 

rather than the gas or chamber walls helps reduce unwanted gas phase 

reactions that can lead to particle formation.  
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 Reducing pressure in CVD process can reduce unwanted gas phase reactions 

and improve film quality (purity, uniformity across the wafer).  In this research, we 

select LPCVD process to produce W thin film in a spatially programmable CVD 

reactor at a high temperature ~ 400ºC.  

2.2 Tungsten CVD  

 In the last decade, the tungsten chemical vapor deposition using tungsten 

hexafluoride (WF6) is a very active research area in ultra large scale integrated 

(ULSI) fabrication. The attractive feature of tungsten CVD is the possibility of filling 

contact holes and vias. For example, deposition of pure tungsten can be used to fill 

the holes that make contact to the transistor source and drain ("contact holes") and 

also to fill vias between successive layers of metal. This approach is known as a 

"tungsten plug" process.  

The basic chemical reaction is the reduction of the WF6 moledule, depositing 

the tungsten and removing the fluorine atoms through a volatile reaction product.35 

One of the most common processes uses WF6 as the tungsten precursor and H2 as the 

reducing agent.36, 37  

The deposition process includes two steps:38  

 

Step 1: Si reduction of WF6.  

3 Si (s) + 2 WF6 (g)  2W (s) + 3SiF4 (g)     [1] 

Step 2: H2 reduction of WF6:  

3 H2 (g) + WF6 (g)  6 HF (g) + W (s)     [2] 
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In step 1, WF6 is reduced by reaction with the silicon substrate, which typically 

results in the formation of a “nucleation layer” approximately 300Å thick.39, 40 The 

thickness of the seed layer can vary considerably from sample to sample, but it 

appears to be dependent on the amount of native oxide which remains on the surface 

prior to deposition.41 On this tungsten nucleation layer, WF6 further reacts with H2 

and deposits solid W film.42 In step 2, three moles of H2 and one mole of WF6 can 

produce six moles of HF and one mole of W film. In general, the hydrogen reduction 

process is capable of producing conformal film coverage on submicron features of 

aspect ratio > 1.43, 44, 45 

2.3 Spatially Programmable CVD (SP-CVD) concept 

Spatially Programmable CVD (SP-CVD) system design has the potential to 

overcome shortcomings in conventional CVD equipment, including: (1) difficulty to 

control thin film uniformity across the wafer surface; (2) equipment flexibility to 

allow optimization of material quality and uniformity simultaneously.46 

 The programmable CVD system has been built based on a new paradigm of 

equipment aimed at achieving distributed sensing and spatial control of process 

parameters. In the case of CVD, we achieve this through a reactor design,47 which 

employs a segmented gas injection showerhead with exhaust gas recirculation (Figure 

2- 2). With this design, we can produce desired gradients of gas impingement or 

deposition – or uniformity – across the wafer surface. Initial feasibility of the 

programmable CVD concept was demonstrated in prototype reactors.48, 49 The 

programmable CVD system has two chambers: the load lock chamber and reaction 

chamber (reactor), both made of ultrahigh vacuum grade stainless steel. The current 
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programmable CVD reactor design includes a three-segment showerhead, 

recirculated exhaust gas flow through the showerhead, and a dynamic multiplexed 

sampling system for multi-point real time process monitoring.50 The present three-

segment design of the CVD showerhead is intended to prove feasibility, validate 

models, and demonstrate control.  Manufacturing implementation will require scaling 

to more segments, higher spatial fidelity and control. We have developed a process 

sensing and control system for the novel SP-CVD equipment, along with dynamic 

software models to guide the equipment design, the corresponding process control, 

and the rapid optimization of materials deposited. The sensor design employs 

multiplexed mass spec sensing in the SP-CVD system, extending such real-time 

sensing and metrology distinctly beyond the state of art. 

A front view of the mechanical design of the programmable CVD reactor is 

shown in Figure 2- 3. There are three segments in the reaction chamber, each of 

which has two gas feed tubes and one mass spec sampling tube. Based on previous 

experimental and simulation work, we set the distance (h) between the wafer surface 

and the gas feed tube outlet as 2.25 inches.49, 13 A linear motion device enables 

adjustment of gap (z) between the bottom of the showerhead and the wafer, thereby 

controlling the inter segment diffusion. A substrate heater is employed to heat the 

wafer to a temperature of 350°C to 400°C during the deposition. Figure 2- 4 shows 

the picture of the real SP-CVD system. 

 There are two mechanisms of inter-segment gas mixing in the SP-CVD. One 

mechanism is convective gas mixing; another mechanism is mixing by gas diffusion. 

The segmented showerhead design minimizes inter-segment convective gas mixing 



 

 17

by drawing exhaust gas back up through the showerhead segment. This is very critical 

for programmable CVD system because the segments separate the process into three 

decoupled zone. However, inter-segment gas diffusion still exists in the SP-CVD 

reactor. As shown in Figure 2- 5, there are two zones where inter-segment gas 

diffusion takes place in the reactor: (1) Inter-segment gas mixing across the wafer 

(ISM-wafer) in the region between the wafer and the segment bottom; (2) Back 

diffusion (ISM-BD) of gases from one segment through the common exhaust port and 

back down into an adjacent segment. Inter-segment gas diffusion is not desirable in 

the deposition process since it disturbs the process in the neighbor segment.  
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Figure 2- 1 Chemical vapor deposition (CVD) reaction 
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Figure 2- 2   Programmable CVD reactor design 
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Figure 2- 3 Front view of programmable CVD chamber mechanical design. 
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Figure 2- 4 Spatially programmable chemical vapor deposition (SP-CVD) 
system. 
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Figure 2- 5  Gas flow in the SP-CVD reactor. 
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Chapter 3: Design and implementation of multiplexed mass 
spec sensing in SP-CVD 

 

3.1 Real time APC with in situ sensing for process metrology and process control 

Real time metrologies will drive course correction to keep the process stable. 

In real-time APC, in situ sensors are employed to continuously sense and calculate 

process data, adjust process parameters and keep the process at the desirable status. 

Both long term and short term process drifts can be compensated by real-time APC.1 

Moreover, in the fault management, real-time in situ sensing is more effective to 

detect problems from process/system and further initiate corrective actions. Mass 

spec is an ideal in situ sensor because it does not come in contact with the wafer or 

change the CVD process, and yet, it provides sensitive measurements of gas 

compositions and therefore, helps obtain real-time information about the process.  

3.2 Multi-point mass spec sensing  

 In order to study the gas flow behavior within the three segments, multi-point 

mass spec sensing has been introduced in the SP-CVD system as indicated by the 

QMS sampling tube in Figure 2- 3 and shown by the photo in Figure 3- 1. There are 

nine tubes in the segmented showerhead: tubes A1, A2 and A3 are the QMS sampling 

tubes; tubes B1, C1, B2, C2, B3, C3 are gas feed tubes. We changed the vertical 

position (d) of the sampling tubes in order to study the gas distribution within a 

segment. We used inert gases, which are sufficient for this study, in order to minimize 

any safety concerns during movement of the tubes on O-ring seals. 
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3.3 Pressure transduction strategy for gas sampling 

3.3.1 Mass spec and pressure reduction requirements 

The mass spec system, an Inficon Transpector™, consists of a closed ion 

source (CIS), a quadrupole mass filter and an ion detector mounted in a chamber. At 

the outside of the mass spec chamber, an electronic module is used to control the 

operation of the mass spec and transfer the monitor data to a computer through an 

RS-232 interface. A BAG100-S Bayard Alpert Gauge is attached to the mass spec 

chamber to check its pressure. A turbomolecular (turbo) pump is integrated with the 

mass spec chamber to maintain a high vacuum (10-8 torr). In order to dilute corrosive 

gas concentrations, the pump is purged with 10 sccm of N2 gas. 

The mass spec separates the different gas ions according to their mass-to-

charge ratio (m/z), distinguishing m/z by their different paths in electric and RF 

fields. In order to determine m/z, ions pass through the spectrometer system without 

collisions with other molecules or ions, meaning the QMS must maintain molecular 

flow, where approximately P < 10-5 Torr. Since the CVD processes of interest are in 

the range of 100 mTorr to 10 Torr, a pressure reduction method is needed which 

effectively samples CVD gas flows into the QMS system, as is seen in the 

literature.19, 51  

3.3.2 Simulation model for pressure reduction design 

 We define the time it takes the process gases from the wafer surface to reach 

the mass spec sensor as the gas transfer time. If the gas transfer time is too long, we 

can only monitor the process, which has happened in the past. Thus, short gas transfer 
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time and low pressure in the mass spec chamber are the key factors to achieve 

multiplexed real-time chemical sensing. Prior work shows that a workable method of 

sampling from a CVD process or plasma etching process chamber is to use a multi-

stage pressure reduction scheme.19, 52 A small amount of gas is drawn into a sampling 

tube through a small orifice by a differential pumping system, which was attached to 

the mass spec chamber. The schematic of the pressure reduction design in the mass 

spec sampling system is shown in Figure 3- 2. 

 The diameter of orifice 1 is the key parameter in determining the gas transfer 

time of the sampling system and the pressure in the QMS. It is necessary to perform 

simulations in order to calculate the size of the orifice; thus a simulation modeling 

was established as follows before settling on a final design.53 The gas flow before 

orifice 1 is in the viscous flow regime and the gas flow after orifice 2 is in the 

molecular flow regime. 
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Where,  

Q: Throughput of QMS pumping system; 

S: Turbo pump pumping speed; 

P3: Operational pressure of QMS pumping system; 

Ctube: Sampling tube conductance; 

CCIS: Closed ion source conductance; 

T: Gas temperature; 

M: Molecular weight; 

D: Inside diameter of sampling tube; 

L: Length of sampling tube; 

P1: Process pressure; 

P2: Pressure inside orifice 1. 

 In our system, the reactor pressure P1 is 1 Torr. We set the mass spec chamber 

pressure P3 at 10-5 Torr. The conductance of a closed ion source is around 0.7 L/sec,31 

turbo pump pumping speed S is 30 L/sec and the length of ¼ inch sampling tube is 62 

inches. As a result, the diameter of the orifice 1 can be calculated by: 

11.6*

*2

orificeC
A

k

Ad
π

=

=

 

 

Where, 

A: Orifice area; 
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k: Conversion factor from air to other gas. 

Since multiplexed sampling in SP-CVD is a complex dynamic process, we built the 

modeling and simulation by VisSim® software program. Calculation results based on 

the above modeling show the diameter of orifice 1 is 35µm. 

3.4 Multiplexed gas sampling system design 

3.4.1 Using the mass spec for sampling of the three segments 

 The unique design of the multiplexed mass spec sampling system gives us the 

opportunity of using one mass spec to multiplex the sampling of gases from the three 

segments. Our current design of an SP-CVD reactor is only a prototype reactor with 

three segments and is used to prove the SP-CVD concept. However, in the future, if 

SP-CVD is applied by the manufacturing industry, more than three segments may be 

used and multiplexed mass spec sampling will become even more beneficial.  

 A detailed view of the mass spec multiplexed sampling system is shown in 

Figure 3- 3. Each sampling tube employs an orifice (orifice 1) at its entrance near the 

wafer in order to sample gas. However, when another segment is being sampled, gas 

between orifice 1 and the QMS must be quickly removed, otherwise, it generates a 

high background QMS signal. Therefore, a bypass line is used to accomplish this for 

each segment. All three bypass lines are connected together with a differential 

pumping system, which consists of a turbo molecular pump and a diaphragm pump. 

Valve 1, valve 2 and valve 3 are the valves connected between each sampling tube to 

the mass spec chamber; valve1′ , valve ′2  and valve ′3 are the valves connected 

between each sampling tube to the bypass line.  
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  When segment-X (X=1, 2 or 3) is not monitored, sampling tube-X is in an idle 

state, most of the gas, which comes from the programmable CVD reactor through the 

orifice, is removed by the bypass line pumping system. During observation of 

segment-X, the valve to the bypass line is closed and all gases flow into the ion 

source region of the mass spec for analysis. 

 Operation of these control valves is summarized in Table 3- 1. During the 

process, if the mass spec is monitoring segment-1, then valve 1 opens, while its 

bypass line is closed. During this time, the other two segments’ sampling tubes to the 

QMS are closed and their bypass lines are opened.  

 The mass spec pressure is compared in the two settings of valve1′ during the 

monitoring of segment-1: (1) If valve 1′ is closed, the pressure in the mass spec 

chamber is approximately 10-6 Torr. (2) If valve 1′  opens, the pressure in the mass 

spec chamber is approximately 10-5 Torr. The low-pressure valve setting was chosen 

in order to prevent the ion source of the mass spec from being damaged. Therefore, 

when segment-X (X=1,2, or 3), is monitored, valve X’ is closed. When segment-1 is 

monitored, valve 2 and valve 3 are closed while valve ′2   and valve ′3  are opened to 

maintain low pressure in the sampling tubes of segment-2 and segment-3. To switch 

monitoring from segment-1 to segment-2, valve 1 and valve ′2   are closed and valve 

1′  and valve 2 are opened. Because most of the sampled gas in the sampling tube of 

segment-2 is pumped out through the bypass line, only a small fraction of the 

sampled gas flows into the mass spec chamber for analysis. Test results reveal that 

the gas transfer time from the SP-CVD reactor to the mass spec is less than 1 seconds 

and the pressure in the mass spec chamber is as low as 10-6 Torr.   
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3.4.2 Using the mass spec for process fault detection and contamination control 

 In addition to monitoring gas composition in each segment, the mass spec 

sampling system also was designed for process fault detection and monitoring 

equipment contamination. As shown in Figure 3- 3 (part 2), a 35µm orifice sampling 

tube coupled with a bypass line is connected with the common exhaust area to sample 

the gas from all three segments in the programmable CVD reactor. For process fault 

detection during programmable CVD process, we open valve ′4 and close valve 4. 

The gas will go through the 35µm orifice and flow into the mass spec chamber. To 

monitor chamber contamination level, we open valve 4 and close valve ′4 . The gas in 

the reactor will flow into mass spec through the bypass line. However, this can only 

be conducted when the chamber pressure is lower than 10-5 Torr, because there is no 

orifice connected in the bypass line.  

Previous experiments indicate that the purity of the precursor gas is a critical 

factor for the quality of CVD thin film. Water, oxygen, nitrogen and other 

contaminants can accumulate on the inside surface of the gas delivery system and 

decrease the purity of the precursor. As shown in Figure 3- 3 (part 3), the mass spec 

inlet system also includes a 2µm orifice tube and a bypass line connected with each 

gas delivery line. This enables checking the purity of precursor directly from cylinder 

(in Figure 3- 3 part 3, the valve in the bypass line is closed and the precursor goes 

through 2µm orifice) and the contaminant level in the gas delivery system (in Figure 

3- 3 part 3, the valve in the bypass line is opened) by the same mass spec as we used 

for the programmable CVD process monitoring.  
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3.5 Mass spec signal integration 

 As explained in Chapter 3.4.1, one mass spec was used to monitor the process 

within three segments and the monitoring was switched between segments every 20 

seconds. The mass spec signal shown from the TWare 32 is a mixed signal from three 

segments: the signal from the 1st 20 sec is the monitoring signal in segment 1, the 

signal from the 2nd 20 sec is the monitoring signal in segment 2, the signal from 3rd 20 

sec is the monitoring signal in segment 3, etc. Therefore, SP-CVD sensing virtual 

instrument (VI) was developed to collect the mass spec signal from process, to 

separate the mixed mass spec signal into three groups and to integrate the mass spec 

signal for each segment. The SP-CVD sensing virtual instrument (VI) is based on the 

National Instrument’s LabVIEW® platform. By using the Dynamic Data Exchange 

(DDE) protocol, SP-CVD sensing VI can collect and analyze the mass spec signal 

data from mass spec software package TWare 32 in real-time. DDE is a Microsoft 

protocol that allows for communication channels to be established between multiple 

software programs running on the same computer system (or network). TWare 32 

acts as the server and provides data for the SP-CVD sensing VI client. The DDE 

establishes communication channel between TWare 32 and SP-CVD sensing VI 

client so that they can communicate with each other.  

 Figure 3- 4 explains the concept of data separation. Different color bar 

represents the mass spec signal from a different segment. The SP-CVD sensing VI 

collected the mass spec signal through DDE and separates them into three groups. 

The data from the first 20 seconds, which means the mass spec monitoring signal 

from segment 1 was put into group 1; the data from the second 20 seconds was put 
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into group 2; and the data from the third 30 seconds was put into group 3. Then the 

SP-CVD sensing VI repeated this data separation process. Simultaneously, SP-CVD 

sensing VI performed signal integration for each segment in real time. Figure 3- 5 is a 

snapshot of the front panel of SP-CVD mass spec sensing VI. It shows the separated 

mass spec signal and the integrated mass spec signal from each segment. In Chapter 

2.2, W CVD reaction [2] shows HF is the byproduct gas from H2 reduction of WF6. 

Previous study from our group has proved that by monitoring the amount of HF gas, 

we can predict how much W film has been deposit on the wafer. This approach was 

used in this research to develop a mass spec sensor based film thickness metrology. 

The detailed metrology development and process control by using integrated mass 

spec signal will be described in Chapter 5 and Chapter 6.  
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Table 3- 1 Valve operation of the mass spec sampling system 
 

Segment 1 valves Segment 2 valves Segment 3 valves  

Sampling 

tube 

Bypass 

line 

Sampling 

tube 

Bypass 

line 

Sampling 

tube 

Bypass 

line 

Sample segment 1 O X X O X O 

Sample segment 2 X O O X X O 

Sample segment 3 X O X O O X 

O: open X: closed 
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Figure 3- 1 Bottom view of the programmable CVD showerhead 
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Figure 3- 2    Schematic of pressure reduction in the mass spec sampling system. 
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Figure 3- 3    Schematic diagram of multiplexed mass spec sampling system. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 36

 
 
 

 

 
Figure 3- 4 Mass spec signal separation. 
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Figure 3- 5 SP-CVD mass spec sensing VI front panel. 
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Chapter 4: Gas distribution and gas transportation mechanisms 

in SP-CVD reactor 

 

4.1 Mechanisms of inter-segment gas diffusion 

 One unique design feature of the programmable CVD system is the process 

gas exhausting through a common exhaust port at the top of showerhead.46,50 As 

mentioned in Chapter 2, there are two types of inter-segment gas mixing in SP-CVD 

reactor (as shown in Figure 4- 1): (1) inter-segment mixing across the wafer (ISM-

wafer) in the region between the wafer and the segment bottom; (2) back diffusion 

(ISM-BD) of gases from one segment through the common exhaust port and back 

down into an adjacent segment. The intra segment gas distribution at the different 

vertical positions is affected by both of these two types of gas diffusion. The distance 

between the segment and the wafer surface is particularly critical in that it controls 

the effect of ISM-wafer at the wafer surface. A smaller gap is desirable for greater 

spatial control and a larger gap is desirable for smoother gradients across the wafer.  

Mass spec has been used to experimentally validate the mechanisms of gas 

diffusion. Table 4- 1 shows the gas flow rates in three segments. In Experiment 1, 

60sccm of Ar gas was injected into segment-1 and segment-2; meanwhile, 60sccm of 

N2 gas was injected into segment-3. Figure 4- 2(a) shows Ar and N2 mass spec signals 

in segment-2 and segment-3. Ideally, if gas diffusion is not considered, the mass spec 

signal will be like the “ideal signal” shown in Figure 4- 2(a).  However, 

experimentally, the two types of gas diffusion have strong effects on the gas 



 

 39

distribution in each segment. When the gap size between the wafer surface and the 

bottom of the segmented showerhead was set at 32mm, Ar and N2 gases were mixed 

above the wafer surface. Therefore, this gap size at the wafer surface promotes 

substantial ISM-wafer in addition to ISM-BD. In the next step, the segmented 

showerhead was lowered from 32mm to 1mm. As the position of the segmented 

showerhead was lowered, the effect of ISM-wafer was reduced. The mass spec signal 

showed that, in segment-2, the Ar signal increased while the N2 signal decreased; in 

segment-3, the N2 signal increased while the Ar signal decreased. Since only Ar was 

flown in segment 2 and only N2 was flown in segment 3, a smaller gap makes their 

concentrations purer in the respective segments.  

 A second experiment (Experiment 2) was performed in order to study the 

relationship between the gas flow rates and inter segment gas diffusion. In 

Experiment 2, the gas flow rates in each segment were reduced in half (Table 4- 1). 

Similarly, a QMS signal trend was obtained in Experiment 2 (Figure 4- 2(b)). 

However, the difference between the Ar signal and the N2 signal has decreased from 

A (3.06x10-10 AMP) to B (1.85x10-10AMP). With a smaller gap, the gas purity in each 

segment is subsequently increased; however, the gas in Experiment 2 is not as pure as 

that in Experiment 1 since there is more ISM-wafer effect at lower gas flows.  

 From this experiment, we validated that: (1) The showerhead segment can 

separate the different CVD processes in one programmable CVD reactor. (2) High 

gas feeding rates will prevent gas diffusion (both ISM-wafer and ISM-BD) from other 

segments. These results are consistent with previous simulation models.50  



 

 40

4.2 Quantify the contribution of signal from ISM-wafer and ISM-BD 

A series of experiments were conducted to quantify the contribution of the 

signal from the gas diffusion through the gap between the wafer and the showerhead 

(ISM-wafer) and from the common exhaust area (ISM-BD). In Experiment 3 (shown 

in Figure 4- 3), segment-3 was monitored to measure the H2 signal, which was only 

contributed by gas diffusion from segment-2. 30 sccm of Ar and 30 sccm of H2 were 

flowed into segment-2, 60 sccm of Ar was flowed into segment-1 and segment-3 

respectively. First, we set a 0mm gap (no gap) between the segmented showerhead 

and the wafer surface. Then, we increased the gap size from 0mm to 1mm, 2mm, and 

3mm. The mass spec monitored segment-3 and the resulting H2 signal is shown in 

Figure 4- 3, Experiment 3. H2 was not flown through segment-3 for a gap size of 

0mm, therefore, the resulting H2 signal in segment-3 is due to the H2 ISM-wafer from 

segment-2. Furthermore, the contribution of the signal from the gas diffused through 

the gap (ISM-wafer) can be calculated by taking the difference between H2 signals 

from an Xmm (X=1, 2, or 3) gap size and the 0mm gap size.  

In Experiment 4 (Figure 4- 3), segment-3 was stilled monitored, however the 

recipe in segment-1 was changed to 30 sccm of Ar plus 30 sccm of H2. The measured 

H2 signal in segment-3 had contributions from other segments due to gas diffusion. 

By comparing the H2 signal taken from the 0mm gap size in Experiment 3 and 

Experiment 4, it was found that the H2 signal from Experiment 4 (2.26 x 10-9 amp) 

almost doubled the H2 signal from Experiment 3 (1.32 x 10-9 amp) in segment-3. This 

is because in Experiment 3, only segment-2 contributed H2 to segment-3 from the 

common exhaust port; however, in Experiment 4, both segment-1 and segment-2 
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could contribute H2 to segment-3 from the common exhaust port. Therefore, the H2 

signal is almost doubled, as in Experiment 3.  

4.3 Concentration profiles along vertical showerhead segments 

We have used mass spec to validate and quantify two types of gas diffusion in 

SP-CVD processes. In order to understand how these two types of inter-segment gas 

mixing affect the gas distribution in each segment, the mass spec was further applied 

to monitor the gas distribution at the different vertical positions within one segment. 

Before the SP-CVD system was built, Dr. Adomaitis’ group developed a simulation-

based design to model the SP-CVD.50 The mass spec was used to evaluate this 

modeling.  

A movable mass spec sampling method has been employed by Kastenmeier et 

al. and Xi Li et al. to monitor chemical processes.54 We applied this approach to 

understand the gas composition profile in one segment.   

In this evaluation experiment, the gap between the showerhead and the wafer 

surface was fixed at 1mm, with 60 sccm of Ar gas flowed into both segment-1 and 

segment-3; a mixture of 30 sccm of Ar and 30 sccm of H2 was flowed into segment-2. 

The reaction chamber pressure was kept at 1 Torr. Initially, the distance between the 

wafer surface to the bottom of the sampling tube and the bottom of the feeding tube 

were set at 0.5 inches and 2.25 inches respectively. Figure 4- 4 (a) presents the Ar and 

H2 gas composition profiles at the different height positions in segment-2. The Ar 

signal is much higher than the H2 signal even when the same amount of Ar and H2 

was flowed through segment-2. The Ar gas came from two main sources: (1) Ar gas 
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was introduced through the gas feed tube; (2) Ar gas diffused from the other segments 

(ISM-wafer + ISM-BD). 

The position of the bottom of the sampling tube to the wafer surface was 

moved up from 0.5 inches to 4.5 inches. As shown in Figure 4- 4 (a), before the outlet 

position of gas feed tube (2.25 inches above the wafer surface), the Ar signal 

decreased as the sampling tube was moved up. As explained in Figure 4- 4 (b), the 

higher Ar signal at low positions was caused by Ar diffusing from other two segments 

to segment 2 (ISM-wafer dominates at low positions). As the sampling tube reached 

2.5 inches, which is a little higher than the outlet of the gas feed tube position, the Ar 

signal reached its lowest value. Thereafter, the sampling tube continued to be lifted; 

however, the Ar signal started to increase. This signal increasing was due to Ar in the 

other segments back diffusing to segment-2 from the top exhaust area (ISM-BD 

dominates at high positions). Compared to the Ar signal, the profile of the H2 signal 

in segment 2 has the opposite trend. The highest value of the H2 signal was obtained 

around the outlet position of gas feed tube. H2 showed lower signal at both higher 

position and lower position of the segment.  

The mass spec signal is a current signal related to the partial pressure of the 

measured gas; however, for the purpose of these experiments the current signal was 

converted into the gas compositions mole fractions. Figure 4- 5 compares the 

converted gas concentration profile with the gas concentration profile taken from the 

simulation modeling.49 It is obvious to see that both of the experimental results and 

the simulation results indicate the same trend of the gas concentration profile at the 

different vertical positions in segment-2.  
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In addition to the experiment of different gas flow into different segment, we 

also conducted the experiment with feeding the same gas into all segments and 

evaluated the gas composition profile at the different height position within one 

segment. As the result shown in Figure 4- 6, both of H2 signal and Ar signal did not 

change as sampling tube position moved up. This gas composition profile is different 

with the profile shown in Figure 4- 4. Since all the segments were fed with the same 

gas (30sccm Ar + 30sccm H2), there was no driving force for diffusion between 

segments. So the gas composition is same at all the positions along the vertical 

direction of the segment.  
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Table 4- 1  Gas flow rates in three segments. 
 
Experiment 1 

 
Segment # 1 2 3 
Ar flow rate (sccm) 60 60 0 
N2 flow rate (sccm) 0 0 60 

 

Experiment 2 
 

Segment # 1 2 3 
Ar flow rate (sccm) 30 30 0 
N2 flow rate (sccm) 0 0 30 
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Figure 4- 1 Two types of inter-segment gas mixing 
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(a)  Experiment 1 

 

 

(b)  Experiment 2 

 

 
Figure 4- 2 QMS signal validates the recirculated gas flow in 

programmable CVD showerhead. 
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Figure 4- 3 Quantify contribution of H2 signal from inter-segment gas 
diffusion 
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Figure 4- 4 Gas composition at the different positions in segment-2 with a 
1mm gap size between the showerhead and the wafer surface. 
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Figure 4- 5  Gas composition in mole fraction in segment-2 (experimental result 
and simulation data), the standard deviation of experimental data is within 
0.3%~0.4%. 
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Figure 4- 6   Ar and H2 mass spec signal as a function of position in segment-2 
when feeding the same gas in three segments. 
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Chapter 5:  SP-CVD experimental procedure 
 

 

5.1 Methodology 

5.1.1 Equipment conditioning  

 

In order to achieve good deposition results on the wafer, reducing the 

contamination level in the CVD system is critical. It is known that WF6, HF and H2O 

condense on the inside surface of SP-CVD system. Therefore if H2O is not reduced, it 

will react with WF6 and form HF during the H2 reduction of WF6 experiment 

(reaction [3]).  

 

2 WF6 + 4 H2O  WOF4 + WO3 + 8HF [3] 

 

When the mass spec senses the HF signal, it cannot distinguish the HF signal between 

that obtained from the H2 reduction of WF6 (reaction [2]) and that obtained from the 

reaction of H2O with WF6 (reaction [3]). It will be explained why the HF mass spec 

signal was chosen as the metrology signal in Chapter 5.2.3. The HF signal from 

reaction [3] can affect the accuracy of the mass spec metrology. Hence, before the 

deposition experiment, the SP-CVD reactor, gas delivery system, and mass spec 

sampling system were baked at 150 º C for 3-4 days. After baking, the mass spec 

showed that the H2O levels within the SP-CVD reactor had decreased from 10-10 

AMP to 10-14~10-13AMP.  
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Before the deposition process, a mixture of WF6 and H2 gases were flown into 

the SP-CVD system for equipment conditioning. A dummy wafer was used during 

this conditioning process. The parameter settings (pressure/temperature/ process time) 

were the same settings used during the real deposition process. Meanwhile, the mass 

spec also conducted the same monitoring procedure as conducted during the real 

deposition experiment. There are three reasons to perform equipment conditioning: 

(1) Reduce water vapor residual in the reactor and gas delivery system by H2O 

reduction of WF6. (2) Passivate the reactor wall by saturating the reactant and 

byproduct gases in the reactor. (3) Allow the mass spec signal to reach a stable status 

after continuously running for 2~3 hours.55 After this conditioning sequence, the mass 

spec signal was checked. If the deposition from two consecutive conditioning wafers 

showed the same value of time integration of the HF mass spec signal, it was 

determined that the reactant and byproduct gases saturated the inside walls of the SP-

CVD reactor. The conditioning procedure for these experiments usually take about 3 

hours. 

5.1.2 Experimental procedure  

The W CVD process was carried out in the SP-CVD reactor by the following 

sequence of steps: (1) a 4 inch Si wafer was cleaned by a 10% HF solution in order to 

remove the surface layer of SiO2 (five minutes); (2) the Si wafer was dried by 

compressed N2; (3) the wafer was then manually loaded into the load lock chamber 

(this was done in order to keep the SP-CVD reactor clean); (4) next, the wafer was 

transferred into the SP-CVD reactor when the pressure in the load lock chamber 

reached a level below 10-4 torr. (5) The process pressure was kept at 1 Torr, the 
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deposition temperature was set at 400ºC and the total deposition time was set to 

900sec. 

5.1.3 End point detection 

End point control is a big challenge during a CVD process; using mass spec to 

detect the termination time of the process was one of the first methods for advanced 

process control.21, 56 Real-time end point process control using a mass spec sensor 

based metrology has been demonstrated in W SP-CVD processes. The sensor based 

metrology, which represents the relation between the mass spec signal and film 

thickness, is explained in detail in the “Training experiments to build metrologies” 

section of this dissertation. Before deposition, a target thickness was set in each 

segment. Next the integrated mass spec signal based on a pre-defined target thickness 

from a sensor based metrology was calculated. After the integrated mass spec signal 

in a specific segment reached the calculated target value, the process in that segment 

was terminated by only flowing 60sccm argon (60 sccm was the total gas flow rate in 

each segment). Meanwhile, the process in the other two segments was unchanged. 

Therefore, the deposition time in each segment could be different (not fixed at 900 

sec). Finally, we measured the thickness obtained from four-point-probe maps of 

sheet resistance and compared the measurement with the target value.  

5.2 Training experiments to build metrologies 

5.2.1 Deliberate non uniform film deposition to build process based metrologies 

Table 5- 1 lists process recipes used to deposit deliberate nonuniform films. In 

order to achieve high conformality via filling, we set WF6 : H2 = 1 : 4 in all process 

recipes.43,57 Since argon is an inert gas, it was used as a compensatory gas to keep the 
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total flow rate at 60 sccm in each segment. In Experiment (a), the flow rate of WF6 in 

segment 1, segment 2 and segment 3 were 6sccm, 9sccm and 12sccm respectively. 

These recipe settings were cycled in Experiment (b) and Experiment (c). Post process 

thickness measurements were conducted by four-point-probe maps of sheet 

resistance. Figure 5- 1 shows the picture of the wafer from the nonuniform film 

deposition Experiment (a) and the thickness measurement results. From the average 

thickness in Table 5- 1 (Experiment (a), (b) and (c)), it was found that the greater the 

reactant gas concentration in a specific segment, the greater the film thickness in that 

segment. Although this is an expected trend, it is important to point out that with 

respect to the SP-CVD reactor, inter segment interactions can disturb this trend 

depending on the magnitude of the interactions, which in turn depends on the 

wafer/showerhead gap size and the reactant gases flow rate in the segments. These 

results match previous simulation results.50, 49 

Nine wafers were deposited with recipes shown in Table 5- 1. The results 

demonstrate a linear relationship between the W film thickness and the square root of 

H2 mole fraction in each segment. Figure 5- 2 illustrates three linear models in three 

segments; the correlated coefficients (R2) are higher than 88%. These models are used 

to select the recipe for uniform deposition or non-uniform deposition, where the 

process can be controlled and the film thickness can roughly be predicted.  

5.2.2 Multiplexed real time mass spec sensing in W SP-CVD 

There are three segments in the programmable CVD reactor; each segment 

experiences different CVD recipes with different parameter settings; for instance, 

different gas flow rates, different precursors, and different temperatures. As 
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mentioned before, the objective is to monitor the gas concentration in each of the 

three segments during a single deposition process using only one mass spec. This 

implies that the mass spec has to be multiplexed amongst the three segments. One 

challenge for multiplexed sampling is to optimize the monitoring time for each 

segment. The time it takes for the residual gas from the CVD reactor to reach the 

mass spec sensor is defined as the gas transfer time (< 1 second). The time for the 

mass spec sensing the gas from the sampling tube is defined as the mass spec sensing 

time. The total value of gas transfer time and mass spec sensing time is called the 

monitoring time. In the process, the connection between the mass spec sensor and the 

sampling tubes were cyclically switched from segment-1 to segment-2, from 

segment-2 to segment-3, and from segment-3 to segment-1. The monitoring time in 

each segment was set to be 20 seconds in every cyclic switching period.  

5.2.3 Thickness metrology development  

Multiplexed real-time mass spec sensing is an insight to the SP-CVD process. 

Figure 5- 3 shows the H2, HF and WF6 mass spec signals from a typical 

programmable W CVD process. The monitoring time in each segment and each cycle 

was 20 sec and 60 sec respectively. There were 15 monitoring cycles during a single 

deposition process (except the end point control deposition). When the process 

started, the H2, HF and WF6 signals increased. In the 1st cycle, the process deposited 

the initial W nucleation layer (reaction [1] in Chapter 2.2) which resulted in a 

continuous increase to the mass spec signals. From the 2nd cycle, all the gases’ signals 

became stable, meaning the Si reduction of WF6 was completed and the initial seed 

layer covered the wafer surface. Meanwhile, the H2 reduction of WF6 was dominant 
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in the W deposition process. From reaction [2] in Chapter 2.2, three moles of H2 and 

one mole of WF6 are known to produce six moles of HF and one mole of W film. 

During the process, both of the reactants (H2 and WF6) and by product gas (HF) were 

detected by downstream mass spec. Previous results from our group57 showed HF 

provides a better metrology signal. Thus, the HF signal was selected as the metrology 

signal.  

Figure 5- 4 reveals an in situ HF generation signal obtained during the 

programmable W CVD process. The HF baseline is the HF background signal in the 

SP-CVD reactor and was obtained before the process started. After the deposition 

started, the difference between the real-time HF signal and the HF baseline was 

correlated with the thickness of the W film. The metric for the W film thickness based 

on HF signal was defined by the following equation [4].  

 

15

1
[ ( ) ( )]H F rea l tim e background

n n

S A H F A H F−
=

= −∑    [4] 

   

Where,  

real timeA − : The area beneath the HF signal in the specific segment;  

backgroundA : The value of the time integration of background HF signal; 

 n: Monitoring cycle number.  

For example, as illustrated in Figure 5- 4, the area A represents the HF signal 

integration value from the 1st cycle in segment 2; while in the 2nd cycle, the value of 

the area (A+B) is represented as the integration value from the 1st two cycles (where, 
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area B is the HF integration value from the 2nd cycle in segment 2); as the process 

continued, the area C was added to area (A+B), etc. We have developed a Labview® 

program to real-time integrate the HF signal (explained in Chapter 3.5). 

5.2.4 The in-situ mass spec sensor based metrologies 

 The normalized HF generation signals of 20 wafers were calculated according 

to equation [4]. A linear relationship between the W film thickness and the integrated 

HF signal were plotted in Figure 5- 5. A linear relationship was noticed in the 

metrology results from the HF signal in segment 2 and segment 3 (Figure 5- 5 (b) and 

(c)) with correlated coefficients (R2) of 96.8% and 92% respectively. However, it was 

found that the quality of the linear fit was better in segment 2 and 3 than in segment 

1; the correlated coefficient in segment 1 was around 64.9%. This was due to the 

limitation of the equipment. Previous experiments suggest that if the showerhead 

touched the wafer surface, there would be excess particle deposition around the area 

of contact. Therefore, a small gap (1mm) was left between the wafer and showerhead 

during the deposition process. However, the showerhead was not perfectly 

perpendicular to the wafer surface which resulted in a larger gap size over segment 1 

compared to the gap sizes over segment 2 and segment 3. The gas leak from inside 

the showerhead to the outside area was controlled by this gap size. Hence, the leakage 

effect in segment 1 was higher than in other segments. Consequently, the deposition 

results in segment 1 showed more scattering than in the other two segments. 

 Based on equation [5], the average uncertainties were calculated to provide an 

idea for the precision of the established thickness metrology. The data is listed in 

Table 5- 2. The two linear metrologies (sensor based and process based) show that 
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segment 2 and segment 3 have a better linear fit than segment 1. The uncertainties of 

1.9% ~ 4.9% were deemed sufficient for the use of a mass spec sensor based process 

control method.  

 

1

1 ( ) /
n

Avg measured estmated measured
i i

Uncertainty T T T
n =

= −∑      [5] 

Where, 

measuredT : Film thickness measured by 4 point probe; 

estmatedT :  Film thickness calculated from the linear regression fit; 

n:           Total wafer number (n = 20). 

5.3 Demonstration of programmability --- uniform film deposition 

The SP-CVD system has the unique capability to intentionally induce non-

uniform films and control wafer uniformity as well.46 In Table 5- 3 Experiment (d), 

the SP-CVD was reprogrammed to deposit 660nm of uniformed films in the three 

segments. Based on the models of Figure 5- 2, the process recipes in the three 

segments were reset, while other process parameters (deposition time, temperature, 

total pressure, etc.) were kept unchanged. A batch of 10 wafers was processed with 

the recipe shown in Table 5- 3. Thickness measurements showed that the average 

error to target in segment 1, segment 2 and segment 3 were 6.4%, 7% and 6.2% 

respectively. Figure 5- 6 shows the picture of the wafer from the uniform deposition 

Experiment (d) and the thickness measurement results.  
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Table 5- 1  Deliberate non uniform W film deposition recipes and thickness 
measurement 
 
  Experiment (a) 
 

Segment # 1 2 3 
WF6 flow rate (sccm) 6 9 12 
H2 flow rate (sccm) 24 36 48 
Ar flow rate (sccm) 30 15 0 
Sqrt of H2 mole fraction 0.63 0.77 0.89 
Avg thickness (nm) 558 742 686 

 
  Experiment (b) 
 

Segment # 1 2 3 
WF6 flow rate (sccm) 9 12 6 
H2 flow rate (sccm) 36 48 24 
Ar flow rate (sccm) 15 0 30 
Sqrt of H2 mole fraction 0.77 0.89 0.63 
Avg thickness (nm) 666 826 586 

 
  Experiment (c) 
 

Segment # 1 2 3 
WF6 flow rate (sccm) 12 6 9 
H2 flow rate (sccm) 48 24 36 
Ar flow rate (sccm) 0 30 15 
Sqrt of H2 mole fraction 0.89 0.63 0.77 
Avg thickness (nm) 684 700 669 
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Table 5- 2 Comparison of the average uncertainty and standard deviation 
obtained from two metrologies. 
 

Sensor 
based

Process 
based

Sensor 
based

Process 
based

Sensor 
based

Process 
based

Uncertainty Avg. 4.1% 9.6% 1.9% 17.8% 2.1% 4.4%
Std. 4.9% 4.7% 2.4% 11.8% 2.7% 2.9%

Segment 1 Segment 2 Segment 3
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Table 5- 3 Uniform W film deposition recipe and thickness measurement. 
 
  Experiment (d) 
 

Segment # 1 2 3 
WF6 flow rate (sccm) 10 5 10 
H2 flow rate (sccm) 40 20 40 
Ar flow rate (sccm) 10 35 10 
Sqrt of H2 mole fraction 0.82 0.58 0.82 
Avg thickness (nm) 660 681 648 
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Figure 5- 1  Non-uniform W film deposition. 
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Figure 5- 2      Linear statistic model between W film thickness and square root 
of H2 mole fraction. 
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Figure 5- 3 H2, HF and WF6 mass spec signals from a typical programmable 
W CVD process.  Monitoring time: 20 sec/segment; 60 sec/cycle. Typically, there 
are 15 cycles of monitoring during the process. This figure only illustrates the 
first 4 cycles of mass spec monitoring signals. 
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Figure 5- 4 In situ HF generation signal obtained in programmable W CVD 
process. A, B, C, D present the HF signal integration value from the 1st four 
cycles in segment 2. 
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 (a) 
   

 
 
 

 (b) 
 

 
 

 
 (c) 
 

 
 
 
Figure 5- 5      W film thickness vs. normalized time integration of HF mass spec 
signal. (a) Metrology results in segment 1; (b) Metrology results in segment 2; (c) 
Metrology results in segment 3. 
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Figure 5- 6 Uniform W film deposition. 
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Chapter 6:  Discussion 

 

6.1 Use inter-segment gas diffusion to control the deposition gradient 

The SP-CVD reactor has the unique capability of producing thin films with 

desired properties across the wafer and has proven to be an ideal tool for the research 

of combinatorial materials development.48 Mass spec has been employed to study the 

gas distribution and gas transport in the SP-CVD system in order to validate the 

modeling of SP-CVD and to monitor the deposition process. As discussed in Chapter 

4.2, the contribution of the signal from the inter-segment gas mixing from these two 

mechanisms can be clearly quantified. In Figure 4- 3, the mass spec signal in both 

Experiment 3 and Experiment 4 show that when the showerhead/wafer gap size 

increase, there is more inter-segment gas diffusion at the gap area. As a result, we can 

control the gas concentration gradient at the gap region by adjusting the 

showerhead/wafer gap size. As shown in Figure 4- 2, by comparing the value of A 

and B it is found that B is almost half of A. This was due to the feed gas flow rate in 

Figure 4- 2 (b) being reduced to half of the feed gas flow rate in Figure 4- 2 (a). A 

high gas feeding rate prevents more gas diffusion from both the common exhaust port 

(ISM-BD) and the showerhead/wafer gap area (ISM-wafer). This result indicates that 

another method to control the gas concentration distribution above the wafer is to 

change the feed gas flow rate. Therefore, in the future, deposition gradients can be 

controlled by adjusting the feed gas flow rate as well as the gap size between the 

wafer surface and the bottom of the segmented showerhead.  
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6.2 Mass spec signal variations in different segments 

One of the main novelties of the multiplexed mass spec sensing system is that 

one mass spec is used for real time in-situ monitoring of all three segments of a CVD 

process to conduct process/equipment diagnosis and to perform leak checks at the 

common exhaust port and the precursor source area. The mass spec data from the 

three segments reveal a signal difference between segments even when all three 

segments have the same gas flow rates. In Figure 6- 1: an H2 signal ratio of segment-

1: segment-2 : segment-3 as 1.1 : 1.3 : 1. As shown in Figure 3- 2, there are many 

connection devices between the CVD reactor and the mass spec, such as, orifice, 

sampling tube, valve, and flexible tube. There is some variation in these connections 

from one segment to another. The tolerance of orifice 1 (35µ orifice flow rate 

tolerance ±10%),58 the conductance of the valve, and the length of the flexible tube 

are the main factors that affect the total conductance of each sampling tube causing 

the mass spec signal to have differences between segments. The signal ratio between 

segments also depends on the gas type. In Figure 6- 1 we find that the Ar signal ratio 

of segment-1 : segment-2 : segment-3 is 1.2 : 1.5 : 1, which is different from the H2 

signal ratio. The reason for this difference is we use a turbo molecular pump to keep 

the mass spec working at a low pressure and the pumping speed of Ar is higher than 

H2 because Ar’s compression ratio is higher than H2’s compression ratio. As a result, 

the signal ratio between segments depends on the type of gas. We believe the signal 

differences between segments can be reduced if the variation of hardware 

configuration between segments can be reduced.  
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We have developed a film thickness metrology, which reflects the relation 

between the mass spec signal and the film thickness which will allow us to do end 

point detection in SP-CVD process. In order to solve the problem of signal variation 

between segments, we have developed a model-based metrology for each segment 

and have further applied the metrology to control the process in the correlative 

segment.  

6.3 Transient peak in the mass spec signal 

6.3.1 Origin of the transient peak  

 Each sampling tube was coupled with a bypass line. During idling status (not 

monitoring status), most of the gas in the sampling tube was pumped out through the 

bypass line. However, because the pumping speed of turbo pump 2 (in Figure 3- 3) is 

lower than that of turbo pump 1 (in Figure 3- 3), a little gas still remained in the 

sampling tube and the valve area. The transient peak seen in Figure 6- 1 is the signal 

of the gas cumulated in the sampling tube and the valve. Once the valve was opened, 

the cumulated gas was first sensed by QMS. After the cumulated gas was pumped out 

by the turbo pump (which was connected with the QMS chamber), the mass spec 

signal reached a stable value. The transient time is different with different gases, our 

test results are summarized in Table 6- 1. The transient peak can be reduced if the 

pumping speed of turbo pump 2 is same as the pumping speed of turbo pump 1, since 

no gas will be cumulated at the sampling tube and the valve area.  

6.3.2 Transient peak vs. the precision of mass spec based metrology  

 The transient peak is one reason that caused the error of the mass spec based 

metrology. As described in Chapter 3.5, the SP-CVD sensing algorithm (executed by 
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a Labview® VI module) separates and integrates the mass spec signal for each 

segment. The signal from the transient peak is also included in the integrated signal 

value. In the future, if the turbo pump 2 is replaced by a pump with the same pumping 

speed of turbo pump 1, the transient peak effect will be reduced and the precision of 

mass spec based metrology will be increased. For example, if the SP-CVD system has 

10 segments, in order to get more sampling data during the process, the monitoring 

time of each segment will be decreased. However, the monitoring time should be 

longer than the transient time, therefore, if the transient time can be decreased, the 

monitoring time in each segment can also be decreased. Hence, reducing the effect of 

the transient peak will be more important for the more segment design in the next 

generation of SP-CVD system. 

6.3.3 Remove the transient signal by SP-CVD sensing VI  

 We can avoid integrating the transient signal by changing the starting time for 

the signal integration. The transient time of HF is around 5 seconds (if HF 

concentration is very low, the transient time will be shorter). So we can change the 

program of SP-CVD sensing VI and make it to start integrating 5 seconds later after it 

receives the mass spec signal in a specific segment.  This is also a future work we are 

still working on.  

6.4 Non-uniform heating effect and programmability of SP-CVD  

 All experimental results revealed that the W film in segment 2 was 

significantly thicker than that in segment 1 and segment 3 even though the same gas 

flow rates were introduced in all segments. This is caused by the non-uniform heating 

effect in different segment. As shown in Figure 6- 3, a spirally shaped substrate heater 
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was used to heat the wafer during the deposition. Because there are more heater coils 

in segment 2 region than that in other segments region, the temperature in segment 2 

region is much higher. This nonuniform heating is considered to be a process 

disturbance. The SP-CVD system is capable to re-program the process by adjusting 

the gas flow rates in three segments to deposit the desired film across the whole wafer 

surface (either uniform films or deliberate non-uniform films). This is also an 

effective way to prove the programmability of this novel SP-CVD system.  

6.5 Sensor based metrology vs. process based metrology     

 Comparing the data from the mass spec sensor based metrology and the 

process based metrology (as indicated in Table 5- 2), it was determined that the mass 

spec controlled metrology shows better precision with lower values of uncertainties 

and standard deviations in all three segments. This is apparent in segment 2, where 

the uncertainty was reduced from 17.8% to 1.9% after applying the mass spec sensor 

based metrology.  

 The process based metrology was developed based on the relationship 

between the equipment and process parameters on one hand and the film thickness on 

the other. This is strongly related to the process stability and equipment performance, 

and more specifically to how actual process conditions reflect the equipment settings. 

When we conducted training experiments to build this process based metrology, some 

process/equipment variations occurred, for example, the performance of mass flow 

controller and valves are different between the different processes. 

 In contrast, the sensor based metrology was built based on the byproduct gas 

signal from the process and the film thickness. Because CVD reaction is a 
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stoichiometric chemical reaction, in our W CVD process, the amount of byproduct 

gas HF is always proportional to the amount of deposited W film. In a sense, 

therefore, the sensor based metrology has in principle the advantage that it detects the 

actual process condition at the wafer, not the equipment settings intended to achieve 

the process condition at the wafer. This principle has paved a way for us to develop a 

mass spec sensor based film thickness metrology with a better precision. These 

results suggest that in future combinatorial material studies, the process recipe will be 

selected based on the process based metrology. This helps determine whether the 

deposited film will be uniform or nonuniform with the selected recipe. Second, during 

the process, the sensor based metrology will be applied to accurately control the 

process in real-time: (1) to determine the time to terminate the process; (2) to predict 

the film thickness.  

6.6  The accuracy of end point control  

A total of five wafers were processed to test the capability of end point control 

in the SP-CVD process. The detailed data is summarized in Table 6- 2 and the results 

are depicted in Figure 6- 2. Compared to previous research results,27, 51 the average 

error (5% ~ 10%) and standard deviation (7% ~ 13%) from the SP-CVD processes 

were higher. This was due to several reasons: (1) the extremely low conversion rate 

of H2 (~3%) in the H2 reduction process; and (2) interference from neighboring 

segments (ISM-wafer and ISM-BD). Better end point control performance is 

expected if the conversion rate is improved to a high conversion rate (~50% in high 

volume manufacturing industry). Increasing the process pressure and replacing the 

high reaction conversion reactant (such as SiH4) can improve the process conversion 
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rate. Moreover, it is believed that the interference effect from neighboring segments 

can be decreased if the inter-segment gas diffusion is decreased.59 The basic approach 

to reducing the neighboring interference includes increasing the gas flow rate in each 

segment and using the isolated down stream pumping system for each segment. 

Figure 6- 2 reveals that most of (>73%) the films are thicker than the target 

value. Root cause investigations indicate that the inter-segment gas diffusion and the 

precursor delivery system design are two main reasons that caused this error. 

6.6.1 Inter-segment gas diffusion  

 As discussed in Chapter 4.1, there are two mechanisms of inter-segment gas 

diffusion: ISM-wafer and ISM-BD. These two types of inter-segment gas diffusion 

affect the precision of the end point detection. For instance, during the end point 

control experiment, the process in segment 1 first reached the target value. The 

process in segment 1 was terminated by flowing only argon in that segment. At the 

same time, the process parameters in the other segments were not changed. The HF 

gas concentration in segment 1 was decreased since there was no reaction gas to 

produce HF in segment 1. Therefore, the byproduct HF in the other two segments 

diffused into segment 1 and caused the integrated HF signal in segment 2 and 

segment 3 to be lower. When the integrated HF signal in the other two segments 

reached the target value, the deposited films were actually thicker than the pre-

defined target thickness. Increasing either process pressure or gas flow rates can 

reduce the effect of inter-segment gas diffusion and increase the accuracy of end 

point control in SP-CVD. 
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6.6.2 Precursor delivery system design 

 The second reason is from the SP-CVD precursor delivery system design 

limitation, where the control valves of the precursors are installed out of the reactor. 

However, the distance between the valve and the end of the gas feed tube is around 

35 inches. When the process was terminated, the residual gases, which were left in 

the tubes between the valve and the end of the gas feed tube could still flow into the 

SP-CVD reactor and deposit films. This post-process deposition resulted in thicker 

films. The next generation of equipment design may apply MEMS based micro 

valves at the end of the gas feed tubes; thereafter, the post-process deposition problem 

can be solved and the precision of end point detection in SP-CVD will be increased. 
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Table 6- 1 Transient time for different gases 

 
Gas H2 HF Ar WF6 

Transient time (sec) 4.5 5 17 5 
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Table 6- 2 SP-CVD end point detection experiment data and statistical 
analysis results. 

 
 

Wafer 
# 

Segment-1 (nm) 
Target    Measurement 

Segment-2 (nm) 
Target    Measurement 

Segment-3 (nm) 
Target    Measurement 

1 590 610 722 727 543 559 
2 558 507 630 643 489 430 
3 578 634 620 680 495 590 
4 597 672 672 688 509 543 
5 528 585 644 579 476 422 

Avg. 
Error 8.61% 5.05% 10.35% 

Std. of 
error 8.72% 7.33% 12.82% 
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Figure 6- 1 Mass spec signal from different segment. 
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 (a) 

 
 

 
 (b) 

 
 
 

 (c) 

 
 

Figure 6- 2 Plots showing target thickness data from sensor based metrology  
vs.  experimental thickness data measured by 4PP after the experiments were 
stopped by end pointing using multiplexed  mass spec for 5 wafers. 
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Figure 6- 3 Substrate heater: more heater coils in segment-2 area. 
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Chapter 7:  Conclusion and future work 

 

7.1 Multiplexed mass spec sensing in SP-CVD 

 A multiplexed spatially resolved mass spec sensing system has been 

implemented for a spatially programmable CVD system. A simulation model has 

been designed to find the best parameters in the pressure transduction sampling 

system design. Based on the simulation results, a 35µm orifice sampling tube coupled 

with a bypass line is a primary approach to reduce the process pressure (~1 Torr) to a 

low pressure (10-6 Torr). This novel design has given the mass spec the ability to 

perform multiplexed real time in-situ monitoring of a CVD process in three segments 

with a short gas transfer time (1 sec), a key factor to achieve multiplexed real-time 

chemical sensing.  

Experimental results have demonstrated the two mechanisms of inter-segment 

gas mixing: (1) gas diffusion through the gap between the showerhead and wafer 

(ISM-wafer); (2) back diffusion from the common exhaust port (ISM-BD). These two 

types of gas diffusion affect the gas distribution in each segment. Mass spec has been 

used to experimentally validate the gas distribution at different vertical positions 

within one segment. The results from the mass spec show consistent trends with the 

simulation result taken from the model. From the mass spec signal, the amount of the 

signal from the gas diffused from other segments can be quantified and used to 

understand gas transport in the programmable CVD system. It is important to 

understand the fundamental phenomena associated with the reactor design and its 

capability to form mass spec sensor based metrology for future research of 
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combinatorial materials research.60 The asymmetrical design of the equipment into 

three segments will not affect the SP-CVD process control. A sensor based metrology 

of each segment has been established and applied to real-time control of the 

deposition process in each segment. 

7.2 Multiplexed mass spec based thickness metrology and process control 

 Spatially resolved mass spec sensing has been successfully used to monitor 

SP-CVD process in situ and in real-time. A W SP-CVD process using H2 reduction of 

WF6 was performed to deposit across-wafer uniform films and deliberate non-

uniform films. Thickness metrology based on the normalized HF mass spec signal 

was developed for each segment. The average accuracies of 1.9% ~ 4.4% were 

obtained from the linear models between the integrated mass spec HF signal and the 

post-process thickness measurements.  

 Multiplexed mass spec based thickness metrology has been applied to 

demonstrate the capability of end point detection in W SP-CVD processes. Film 

thickness can be estimated during the process. The average error of the end point 

detection approaches 5% at the best case. A better metrological precision can be 

expected if the process conversion rate is increased and the design of the precursor 

delivery system is improved.   

 Although intra-segment uniformity is also very important, this work has 

concentrated on real-time control of the inter-segment uniformity or nonuniformity by 

multi-point mass spec sensing. Intra-segment uniformity is under study, and results 

will be reported in future publications.61 
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 Future research includes working on the deposition with a larger gap size 

between the wafer and showerhead (3mm, 5mm…) in order to investigate the 

relationship between the gap sizes, film growth rate and mass spec signal. Moreover, 

exploration of new research directions, such as spatially programmable atomic layer 

deposition (SP-ALD) of high K material (SiO2, Al2O3…) and the sensor based 

metrology in SP-ALD, and more segmented showerhead design are being 

investigated. This research is paving the way for guiding rapid reprogramming of film 

deposition process for future combinatorial materials research.  
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