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Vertical and radial inhomogeneity of asphalt mixture components in laboratory-

fabricated specimens have been of concern in asphalt mixture testing because of their 

potential effect on the mechanical response of the materials. Two important questions 

needed to be answered. First, can the existence of inhomogeneity in laboratory specimens 

definitively be distinguished? Second, if inhomogeneity exists, what effect would it have 

on the performance of asphalt materials?  

Several new indices were developed to assess the extent of inhomogeneity. The 

level of accuracy of the suggested indices was evaluated by testing virtual and real 

specimens. Computer simulation was used to fabricate virtual specimens with various 

aggregate structures and to test the indices. The statistical power of the tests and the 

critical values for tests on the proposed indices were computed. The computed power of 

the tests indicated that the proposed tests are accurate for the measurement of both 

vertical and radial inhomogeneity.  

Actual specimens, both homogeneous and inhomogeneous, were fabricated to 

validate the simulation results. The indices of homogeneity were computed from the 

x-ray computed tomography images of the specimens. Among the proposed indices, the z 



index on frequency proportion most clearly distinguished between the homogeneous and 

inhomogeneous specimens.  

The specimens were then subjected to mechanical testing to examine the effect of 

inhomogeneity on the mechanical performance of the material. The effect of vertical and 

radial inhomogeneity was examined on compressive and shear properties of the mixtures, 

respectively. Statistical analyses on the results indicated that the compressive modulus 

(E*) of homogeneous specimens were slightly but not significantly higher than those of 

vertically inhomogeneous specimens, and the shear modulus (G*) of homogeneous 

specimens were significantly lower than those of radially inhomogeneous specimens.  

A correlation analysis indicated insignificant correlation between the compressive 

properties and the index of vertical homogeneity but significant correlation between the 

shear properties and the index of radial homogeneity. The asphalt mixture was not 

sensitive to extreme level of vertical inhomogeneity when loaded axially but was 

responsive to radial inhomogeneity when loaded in shear. 
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CHAPTER 1 - INTRODUCTION 

1.1 BACKGROUND 

Segregation, which is defined as “inhomogeneity” in the internal structure of 

asphalt mixture specimens, has been of concern in laboratory testing. The internal 

structure of specimens is characterized by the distribution of the asphalt mixture 

components such as aggregates, mastic, and voids. Several studies have indirectly aimed 

to relate the mechanical properties of asphalt mixture specimens to their internal 

structure. Research on the required minimum dimension of a specimen with respect to 

aggregate size that provides consistent engineering properties were a means of explaining 

the effect of internal structure (Witczak et al. 1999). The research showed that, as the 

minimum dimension of the specimen increased, the consistency of the measured 

mechanical properties increased. Similarly, Romero and Anderson (2000) associated a 

high variability in the measured shear properties to the small ratio of the smallest 

specimen dimension to largest aggregate diameter. It is generally believed that the 

probability of achieving a homogeneous material increases as the dimensions of the 

specimen are increased because the aggregates have a better chance of being distributed 

randomly.  

The internal structure of granular materials, which was defined by the distribution 

and orientation of the grains and the voids, has been shown to have an important 

influence on the mechanical properties of the material (Oda 1972). It is documented that 

the aggregate distribution and orientation controls the shear strength and yielding 

behavior of unbound granular materials (Tobita 1989). Thus, it can be speculated that the 

 1



 

internal structure of an asphalt mixture as a bounded granular material has a significant 

effect on its stress-strain response.  

The effect of field segregation on the performance of the asphalt pavements has 

been investigated (Chang et al. 2000; Stroup-Gardiner and Brown 1999; AASHTO 

1997); however, the effect of segregation (inhomogeneity) on the mechanical 

performance of laboratory specimens has not been fully examined. Although, this effect 

has been speculated for a period of time, a tool that quantitatively characterizes the 

internal structure of asphalt mixture specimens has not been identified. Until recently, 

imaging techniques have been utilized to study the internal structure of the aggregates 

and voids (Erikson 1992; Yue 1995; Masad et al. 1998). They developed and applied 

innovative techniques to quantify the distribution, orientation, shape, and contacts of the 

coarse aggregates.  

Several of the parameters used in characterizing the internal structure of asphalt 

mixtures have been initiated in other fields of science and their reliability in their 

intended use has been tested. Examples of this are the parameters for the measurement of 

orientation of aggregates. These parameters have been successfully applied to the 

analysis of soil mass particles in the past (Curray 1956; Oda 1972) and recently to asphalt 

mixture aggregates (Masad 1998). However, the available statistical methods for 

evaluating the distribution of the aggregates have not been evaluated, and it has not been 

shown that they provide the accuracy and the reliability required.  

1.2 PROBLEM STATEMENT 

With the advances of the Superpave volumetric mixture design, the use of coarse 

graded mixtures has become more common. However, coarse graded mixtures are prone 
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to segregation. The Superpave gyratory compactor itself might also induce segregation. 

Thus, if segregation occurs during the mixing and compaction process and if it affects the 

load response of the mixture, then merely because the specimens were prepared 

according to Superpave volumetric mixture design does not ensure the reliability of the 

measured mechanical properties.  

The mechanical properties of the laboratory compacted specimens, known as 

local properties, are used as parameters to design a pavement layer or used in the models 

to predict its performance. In the presence of inhomogeneity, the local mechanical 

properties will not be representative of the global properties of the material. Using an 

incorrect parameter can result in either the over-design or under-design of the pavement 

layer or under-prediction or over-prediction of its performance, with either one being 

problematic. Therefore, characterizing inhomogeneity in laboratory prepared specimens 

is essential to understand the material behavior, to better predict performance, and to 

design a better performing pavement.  

Two types of inhomogeneity are probable while preparing laboratory specimens: 

random and systematic. Random inhomogeneity is caused during aggregate batching and 

mixture handling. As a result, the sieve sizes that have not been mixed thoroughly would 

appear as pockets of fine and coarse aggregates in the compacted specimens. Based on 

empirical knowledge, random inhomogeneity has been held responsible for occasional 

high variability in the measured mechanical properties. Every now and then, an 

unexpectedly high or low stiffness value is measured as a specimen is subjected to 

various modes of loading such as shear, indirect tension, or compression, which is 

commonly believed to relate to random inhomogeneity. 
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Systematic inhomogeneity occurs in the process of placing asphalt mixtures into 

the gyratory mold and the kneading and gyrating process of the gyratory compactor. 

During these processes, the coarser particles may tend to positions in the bottom and 

periphery of the gyratory compacted specimens, which creates vertical and radial forms 

of inhomogeneity, respectively. The properties of systematically inhomogeneous 

specimens might not be representative of the properties of the material. In this case, the 

measured properties would not be reliable design and distress prediction parameters. 

While identifying both random and systemic inhomogeneity and examining their 

effect on mechanical response of the mixture are important, the systematic 

inhomogeneity seems more critical to be characterized. The random inhomogeneity is 

hypothesized to be the cause of occasional low or high property measurements, which 

can be disregarded as outliers. Systematic inhomogeneity, on the other hand, has a 

systematic effect on the property measurements. The measured properties might be 

consistently skewed in one direction, either lower or higher than the property of 

homogeneous specimens. In this case, the bias in the property measurements is not 

recognizable, and therefore, its effect on design and distress prediction will not be taken 

into account.  

1.3  GOAL AND OBJECTIVES 

Since reliable material characterizations is important for the support of 

performance prediction models and the design of pavement structures, this study is 

directed towards quantifying systematic inhomogeneity and examining its effect on the 

mechanical response of asphalt mixture material. The effect of the variation in aggregate 

structure on the mechanical properties of an asphalt mixture is investigated. This requires 
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the measurement of the distribution of aggregates, which is done by an analysis of the 

images of the specimen cross-sections, captured nondestructively using 3-D x-ray 

computed tomography (XCT). The measurement of the aggregate distribution 

necessitates evaluation of existing methods of analysis and the development of new 

statistical tests using 3-D computer simulation.  

The goal of this study was to improve our understanding of the effect of 

systematic inhomogeneity on the mechanical properties of asphalt mixture specimens. 

The following objectives follow from this goal: 

1. To develop optimum indices of aggregate homogeneity. 

a. Identify existing homogeneity indices and evaluate them based on the type 

of inhomogeneity being distinguished. 

b. Propose new indices that are best able to characterize inhomogeneity. 

c. Use simulation to evaluate critical statistics and the power of the tests. 

2. To verify one or more of the optimal indices.  

a. Develop a procedure for introducing various levels of inhomogeneity into 

laboratory specimens. 

b. Use image analysis techniques to compute a precise value of the index for 

each laboratory specimen.  

3. To show the effect of inhomogeneity on mechanical properties. 

a. Identify mechanical properties that might be affected by inhomogeneity. 

b. Test laboratory specimens of various levels of inhomogeneity for 

mechanical properties. 
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c. Relate the indices of homogeneity validated at Step 2 to the measured 

mechanical properties. 

1.4 IMPLICATIONS OF RESEARCH 

Based on the results of this study engineers and technicians will better understand 

asphalt mixture behavior in the laboratory. This will produce more reliable designs and 

more realistic performance prediction of asphalt pavement structures and in turn, lower 

total cost. Knowing that both the level of inhomogeneity is detectable and quantifiable 

and that the effect of inhomogeneity is observable in mechanical property measurements 

will motivate technicians to do their best to prepare homogeneous specimens. Also, it 

will enable engineers to identify the factors that cause inhomogeneity even when care is 

taken to ensure homogeneity. Factors such as mixing and compaction temperatures and 

the angle and speed of the gyratory compactors can be reliably examined since the 

required tools, the test methods, and the specific procedures to be followed will be 

available. Specific implications for the objectives can also be stated as follows: 

1. The development of statistical tests to identify inhomogeneous specimens will 

provide engineers with methods that can determine the type and the level of 

inhomogeneity in asphalt-aggregate mixtures. This will lead to a better 

understanding of the requirements for fabricating homogeneous specimens in the 

laboratory. 

2. The development of a statistical sampling program removes the arbitrariness in the 

selection of test variables such as the slice face direction and the number and 

location of the slice faces that are needed for the reliable measurement of 

homogeneity. By following the standard sampling program, engineers will be 
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guaranteed that the results obtained at one laboratory is understandable in other 

laboratories and that the results of research can be reproduced and followed by 

others.  

3. A standard sampling program provides assurance for engineers that the planned 

experimental design will provide conclusive results and the sampling program will 

reliably detect the level of homogeneity. For example, if a statistical test indicates 

that a specimen is homogeneous while the measured mechanical property seems 

irrational, then it can be stated confidently that factors other than inhomogeneity 

have caused the irrationality.  

4. Showing that computer simulation and image analysis of actual specimens agree, 

will indicate that simulation is a reasonable mathematical tool to test and measure 

the indices of homogeneity. This will verify that the statistical indices provide a 

realistic indication of various levels of inhomogeneity.  

5. Simulation validates the adequacy of the number of actual specimens for 

inhomogeneity testing. For example, a collection of four specimens might not be 

capable of providing accurate statements about the existence of inhomogeneity.  

6. The outcome of the establishment of relationships between the level of 

homogeneity and the measured mechanical properties will provide a means of 

estimating the reliability of the measured properties. The reliability of the 

mechanical results is expected to increase as the level of inhomogeneity in the 

specimen decreases. 
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1.5 ORGANIZATION OF THE REPORT 

This dissertation documents the research aimed at developing indices for the 

measurement of inhomogeneity that prevails in gyratory compacted asphalt mixture 

specimens. In addition, the effect of inhomogeneity on the results of commonly used 

compressive and shear laboratory load tests was investigated. After the introductory 

discussion in this chapter, a literature review of various concepts utilized in this study is 

presented is Chapter 2. The models for simulating homogeneous and inhomogeneous 

specimens are explained in Chapter 3. Chapters 4 and 5 provide the proposed indices for 

the measurement of vertical and radial inhomogeneity, respectively. In Chapter 6, using 

Monte Carlo simulation, the critical statistics and the statistical power of the indices are 

detailed. Chapter 7 discusses the fabrication of homogeneous and inhomogeneous 

laboratory specimens and the application of x-ray computed tomography and image 

processing in measuring geometric properties of the aggregates and voids, which are 

utilized by the selected indices for the measurement of homogeneity (validating results of 

simulation using laboratory measurements of homogeneity). Chapter 8 presents the 

results of compressive load tests on homogeneous and inhomogeneous specimens and the 

correlation between compressive properties and vertical inhomogeneity. Chapter 9 

provides the results of shear loads test on homogeneous and inhomogeneous specimens 

and the correlation between shear properties and radial inhomogeneity. Chapter 10 

includes a summary of the research and identifies major conclusions of the research. 

Chapter 11 includes recommendations for further study. 
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CHAPTER 2 - LITERATURE REVIEW  

2.1 INTRODUCTION 

The laboratory testing of asphalt mixture specimens is an important part of 

research that ultimately will contribute to the improvement of highway pavement 

serviceability. Performance and design decisions are made based on the results of such 

laboratory tests in the shear, tension, or compression mode of loading. However, if 

inhomogeneity was present and it influenced the results of mechanical tests, incorrect 

design and performance decisions could be made. 

Evaluation of the effect of inhomogeneity on mechanical properties of laboratory 

prepared asphalt mixture specimens requires testing of specimens for both inhomogeneity 

and mechanical properties. This necessitates the development of the indices that reliably 

measure inhomogeneity and the selection of the mechanical tests that could be affected 

by inhomogeneity. This chapter reviews the literature specific to the development of the 

homogeneity indices, selection of the mechanical tests, and establishing the correlations 

between the two sets of information. At first a general discussion on the concept of 

inhomogeneity in laboratory prepared specimens is provided. A review of the existing 

indices for the measurement of inhomogeneity is presented thereafter. The use of 

statistical testing in development of new indices and evaluation of the exiting indices is 

discussed, accordingly. The usefulness of computer simulation in determining the 

reliability of the indices is overviewed. The concept of nondestructive homogeneity 

testing of specimens using x-ray computed tomography and image analysis is talked 

about. Finally, the types of mechanical test that have been commonly used in practice and 
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are assumed to be useful for evaluation of the performance effect of inhomogeneity is 

described.  

2.2 DEFINITION OF INHOMOGENEITY 

Inhomogeneity of laboratory prepared specimens is the lack of uniformity in the 

distribution of various components of asphalt mixture composition, such as aggregates, 

mastic, and voids. Traditionally called segregation, inhomogeneity might occur during 

the steps of specimen preparation. Inhomogeneity might be in the form of random 

clusters or in the form of systematic arrangements in the top, bottom, or along the 

periphery of the specimens.  

The preparation of laboratory specimens includes several steps including 

batching, mixing, and compaction, while at any one of the steps in the process 

inhomogeneity can be introduced. Various mechanisms in the preparation of the 

specimens can impart various forms of aggregate inhomogeneity, specifically vertical, 

radial, or cluster inhomogeneity. Vertical inhomogeneity is the form that occurs in the 

process of emptying the mixture in the gyratory mold, when the original gradation gets 

separated into a finer and a coarser gradation along the depth of the specimen. This 

phenomenon is believed to be the result of the heavier, coarse aggregates gravitating to 

the bottom of the mold thus preventing the fine aggregates from sinking. Also, the 

kneading effort of compaction forces the larger particles to the bottom of the mold.  

Radial inhomogeneity is another form that is generally specific to gyratory 

compacted specimens. For radial inhomogeneity, the original aggregate gradation is 

radially separated with the finer aggregates being located near the center axis of the 

specimen. Radial inhomogeneity is often observed in Superpave Gyratory Compacted 
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specimens because of the rotational movement of the gyratory compactor and the 

boundary condition imposed by the gyratory mold. Tashman et al. have shown the 

non-uniform distribution of the air voids in the gyratory compacted specimens in lateral 

direction (2002), which might have been caused by inhomogeneous distribution of the 

aggregates. 

 Cluster inhomogeneity can occur when the differently sized aggregates are not 

well blended during batching, prior to the mixing with asphalt binder. Thus, a specimen 

would include pockets of aggregates that are coarser or finer than the design gradation. 

This form of inhomogeneity has been hypothetically associated to the variability in 

asphalt mixture mechanical test results. 

2.3 HOMOGENEITY INDICES 

To examine if erroneous decisions are being made with respect to the properties 

of asphalt material because of inhomogeneity, it is necessary to develop indices that can 

accurately measure inhomogeneity. Measures of inhomogeneity can be found in various 

fields of science. Examples are: satellite photographs, geological maps, urban settlement 

patterns, and microscopic sections of metals, minerals, and cellular tissues. In each of 

these areas, there is a great need to analyze the distribution of a set of elements within a 

media, where any such data set is called spatial point pattern (Vincent et al. 1976 and 

Vincent et al. 1977). Spatial point patterns, which have been commonly examined from 

2-dimensional plane sections (Vincent et al. 1983; Hilliard and Anacker 1974), are 

examined for a variety of reasons. A major reason is that studying the point patterns may 

be useful in learning more about the phenomena represented and the processes 

responsible for creating it. The information gained from analysis of spatial point pattern 
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enables acquiring some initial insights into the phenomena. For example, the finding that 

objects are spaced differently towards the margins of the media than they are at its center 

may lead to investigation of the possibility of different forces operating at those locations 

or of the same forces operating but with different intensities (Ripley 1981).  

The information from spatial point pattern also enables examining the correlation 

between the phenomena and the material behavior. For example, inhomogeneity in 

spatial point pattern has been accounted for local deficiencies that lead to premature 

failure of the material (Oda 1972 and Miles 1970). It is possible to build an explanatory 

model of the point pattern and to use it to drive hypotheses concerning the behavior of the 

phenomenon (Okabe et al. 1992).  

Asphalt mixture as a composite material is also hypothesized to behave as a 

function of locational properties of its component materials. Therefore, there has been 

concern to detect and quantify homogeneity of its constituent components. Several 

indices of homogeneity have been proposed, which were either adopted from the methods 

that are existed in other fields of science or developed specific for asphalt mixtures. Yue 

et al. (1995), Masad et al. (1998), and McCuen et al. (2001) have applied a number of 

these methods to asphalt concrete specimens, while the values of indices of homogeneity 

were computed from measurements made on vertical and horizontal slice faces through 

the specimen.  

Yet more methods exist in the field of spatial statistics that have been pertained to 

various areas of science, but their applicability to the asphalt material has not been 

investigated. Even though the statistical methods are well established and fully 

elaborated, their success in the asphalt concrete area needs to be examined.  
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2.3.1 Classification of Indices 

Numerous indices of homogeneity based on slice face measurements have been 

proposed. One class of statistics is based on the frequency of particles within a specified 

area; the quadrat methods are representatives of this class (Diggle 1983). A second class 

of statistics is based on the distances between the centers of the particle faces or distances 

of the center of particles to a reference point; nearest-neighbor distance methods are 

representatives of this class (Diggle et al. 1976). A third class is based on area 

measurements, with a representative area delineated within each particle face, about each 

particle face, or enclosed between particle faces; the Voronoi polygon statistic is an 

example of this class (Okabe et al. 1992, Lin 1997). Each group of indices is linked to 

different physical property of the composite material (Okabe 1992). The frequency-based 

methods better define the degree of dispersion of the studied phase, i.e., where particles 

are more concentrated (Busters et al. 1996). The arrangement of the particles is best 

described by the distance-based methods, i.e., how the particles are organized spatially 

(Byth and Ripley 1980). The area-based methods best reveal the amount of the material, 

i.e., what is the volume fraction of each class size (Besterci et al. 1996).  

2.3.2 Homogeneity Indices for Asphalt Mixture Specimens 

To measure the level of inhomogeneity of a mixture, the quality of the distribution 

of one or more components of the mixture needs to be evaluated. Since aggregates 

constitute the major portion of the asphalt mixture, the quality of the distribution of the 

aggregates is a good indicator of the quality of the distribution of the other components of 

the mixture such as the air voids and the mastic. If aggregates are distributed 

inhomogeneously, then the other constituents are more likely to exhibit inhomogeneity. 
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An assessment of the inhomogeneity of the aggregates should be the most reliable 

indicator of specimen inhomogeneity. Therefore, the statistical tests that measure 

homogeneity are defined based on geometric measurements of the aggregates. The 

general description of the available methods and their advantages and disadvantages are 

reviewed briefly. 

2.3.2.1 Random Quadrat Test 

One test (or variations thereof), which has been proposed is the quadrat test 

(Diggle 1983; Miles 1978; Heltshe and Ritchey 1984; Cressie 1993). The quadrat statistic 

is a frequency based descriptive statistic for the measurement of inhomogeneity in 

general. The method is based on quadrat sampling of the region of interest. The number 

of aggregate centroids located in each quadrat is recorded. From the frequency counts, 

the test statistic can be developed. Masad et al. (1998) have utilized the quadrat statistic 

described by Cressie (1993) to study the segregated pattern of the aggregates on the faces 

of sliced sections of asphalt mixture specimens. The procedure for the application of the 

test utilized by Masad (1998) is as follows: 

a. Three vertical slices, 37.5 mm apart, are made on each specimen (Figure 2-1). The 

slice face at the middle of the specimen provides the largest cross-sectional area; 

two additional equally spaced slices are made on both side of the middle slice face. 

b. The aggregates that have a diameter equal to or greater than 2.36 mm are signified 

by their centroids.  

c. One hundred square quadrats are randomly positioned within the cross-section. 

The ratio of the quadrat length to the small dimension of the cross-section is equal 
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to 1/30. This ratio has been used by Cressie (1993) in other spatial statistic 

problems. 

d. The number of centroids in each quadrat is counted.  

e. The frequency distribution of the number of particles per quadrat is then formed.  

f. The spatial point pattern is examined by comparison of the quadrat count 

distribution to a Poisson’s distribution. A significant departure of the calculated 

frequency distribution from a Poisson distribution indicates that the pattern is not 

spatially random. The degree of departure is then measured by an index based on 

the quadrat counts. A test statistic (Sr) that was developed by David and Moore 

(1954) is utilized to measure the departure from spatial randomness:  

2

1i
ri

i

sS
x

= −        (2-1) 

in which S  is the measure of deviation of the frequency distribution of the i  slice 

face from the Poisson distribution; s  is the variance and 

ri
th

i
2 ix  is the mean frequency 

of the one hundred quadrats on the ith slice face.  

g. For each specimen, the index of homogeneity is the average of the Sri values 

computed from the three slice faces of the specimen: 

Slice 2

Slice 1

Slice 3

37.5 mm

37.5 mm
Slice 2

Slice 1

Slice 3

37.5 mm

37.5 mm

Figure 2-1. The position of the slices for random quadrat test 
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1
i

S S
=

= 3r ri∑        (2-2) 

e value 

an 0 indicate segregation, while values 

ured 

es: The suggested quadrat method has several disadvantages: First, since the 

locatio  to the 

 

 a 

ed 

by particles sm

is only the result of the quadrat sitting on one particle that got separated from the other 

particles. This shows that the computed values of Sr must be interpreted differently for 

uniformly size aggregates and well-graded aggregates. Sr varies within the range of 

h. For a Poisson distribution, the mean and variance are equal. Therefore, th

of Sr in Equation (2-2) would be equal to zero for a truly Poisson process. Values 

of Sr that are significantly greater th

significantly smaller than 0 indicate regularity or a lack of segregation. 

Advantages: the suggested test statistic is assumed to have a known sampling 

distribution (Poisson distribution). Therefore, criteria for the comparison of the meas

segregation parameters exist. 

Disadvantag

ns of the quadrats are selected at random, the statistic would be insensitive

type of inhomogeneity. The quadrat method might indicate whether the specimen is 

segregated or not but it would not suggest if the segregation pattern is extended vertically

or radially.  

Second, the null hypothesis (Ho) for testing the test statistic Sr is that the 

frequency is Poisson distributed. From that, one must infer segregation or randomness. 

This would only be valid when the aggregates are uniform i.e., all one particle size. The 

method would not be applicable to well-graded aggregates. For well-graded aggregates,

frequency of 1 could occur because it is a large piece of aggregate and other particles 

would not fit in the quadrat, or one aggregate with a diameter of 2.36 mm is surround

aller than 2.36 mm. However, for uniform sized particles, a frequency of 1 
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1 rS− ≤ ≤ ∞ , since 2s can not be less than 0. When every quadrat has the same freque

then 2s  is zero. For well-graded aggregates, the probability of occurrence of 2 0s

ncy, 

=  is 

almost zero even for homogeneous specimens. Also, a large variance is possible when the 

gradati

 

0 

 ratio of 1 to 30 for the quadrat to the slice face dimensions would yield a quadrat 

of abou

han 

 

 that the 

quency may not be a good representation of the population since only a 

small p e an 

f 

on curve is shallow sloped even if the distribution pattern of the aggregates is 

homogeneous. This makes Sr a poor test statistic for aggregates with a shallow gradation 

curve (well graded aggregates). 

Third, the quadrat size for sampling of the specimen’s slice face is very small. For

an asphalt mixture specimen the largest cross-section has dimensions of 150 mm by 15

mm, the

t 5 mm x 5 mm. For the aggregates that have a diameter in the range of 4.75 mm 

to 19 mm, the probability of the centroids residing in such a small quadrat seems very 

small.  

Fourth, one hundred 5-mm × 5-mm panels could cover a maximum area less t

11% of the slice face area even if none of the randomly placed quadrats overlapped. The

percentage could be much less depending on the amount of overlap. This implies

estimated fre

ortion of the slice face is actually sampled. Therefore, it is necessary to hav

adequate number of quadrats that will provide a reliable estimate of the particle 

dispersion. 

Fifth, averaging of the parameter, Sri, of the three slice faces might not be 

appropriate. It is more logical to compute a single index from frequency measurements o

the three slice faces. 
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Sixth, the changing cross-section of the slice faces necessitates computation of the 

frequency intensities rather than use of absolute frequencies. The mean and variance of 

the frequency intensities are better representatives of the frequency distribution using the 

changing cross-sections than the absolute frequencies. 

The quartered quadrant method has been suggested by Masad et al. (1998) for 

testing general forms of inhomogeneity. The test is based on the measurement of the 

variations in the mean aggregate diameters in the four quadrants of the sampled slice face 

of a specimen. The test is applied as it follows: 

a. Three vertical slices, 37.5 mm apart, are made on each specimen (Figure 2-1). The 

slice face at the middle of the specimen provides the largest cross-sectional area; 

two additional equally spaced slices are made on each side of the middle slice face. 

b. On each slice face, the aggregates that have a diameter equal to or greater than 

2.3.2.2 Quartered Quadrant Test 

2.36 mm are identified. 

c. Each vertical slice face is divided into four equal size quadrants, with two located 

on top of the other two. 

d. On each slice face, the mean diameter ( jq ) of the aggregates in each quadrant is 

calculated where j=1, 2, 3, 4. 

e. On each slice face, the average (Qi ) and the standard deviation ( Qis ) of the mean 

aggregate diameters of the four quadrants is calculated.  

For each slice face, The f. coefficient of variation of the four averages is calculated 

as follows:  
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qi

s
S       (2-3) =  

g. The segregation index (Sq) is defined as the average of the coefficient of variations 

(Sqi) of the three slices: 

 
3

1

1
i

S S
=

= 3q qi∑       (2-4) 

Advantages: Four advantages are associated with this method: First, the method provides 

the potential for evaluating different patterns of segregation since the location of the 

quadran e 

ents. 

that 

n. 

oided since the cross-sectional 

al values of 

the test statistic (Sq) and therefore criteria for distinguishing between condition of 

ts is known. The information regarding the average and standard deviation of th

particle diameters in each quadrant reveals the variation in aggregate size in each quarter 

of the slice face. Comparison of the means and standard deviations could reveal the 

pattern of the particle arrangem

Second, the advantage of this method over the random quadrat methods is 

rather than dealing with particle frequencies the method takes into consideration the size 

of the particles. The reduction of the aggregates to their centroids would result in loss of 

informatio

Third, the slice face area that is being tested is completely covered by the 

quadrants. Under-sampling of the cross-sectional area is av

area is divided into equal panels and all of the panels enter into the calculation of the test 

statistics. 

Fourth, the quadrants are not overlapping; therefore, the information obtained 

from one quadrant is independent of the other quadrants.  

Disadvantages: This method has the following disadvantages: First, the critic
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homog

ociated with the four 

quadra ach 

s might 

be the same while the standard deviations would be very different.  

Third, four quadrats is an inadequate number of samples to be tested. Sample 

eneity and inhomogeneity are not known. Therefore, a reliable decision regarding 

homogeneity of the specimen based on the calculated value of Sq cannot be made. This 

disadvantage is overcome by simulating the distribution of the test statistic Sq.

Second, by averaging the four mean aggregate diameters ass

nts, the information regarding the variations in the aggregate diameters within e

quadrant would be lost. The four average aggregate diameters of the four quadrant

values of iQ and sQi have poor accuracy when the number of quadrats is low. The 

standard error of the mean (
n

Se ) could result in more accurate estimates of the mixture 

homogeneity if the slice face is divided into more number of quadrats. 

Fourth, the test statistic ( sQi

iQ
) is indifferent to the type of inhomogeneity. The test 

quadran

e 

Sixth, averaging of the parameter, Sri, of the three slice faces might not be 

appropriate. It is more logical to compute a single index from the means and standard 

deviatio  faces.  

statistic is the same if the two low average aggregate diameters correspond to the top 

ts or the alternate quadrants at the top and bottom. 

Fifth, the changing cross section of the slice faces necessitates comparison of th

frequency densities of the slice faces rather than comparison of absolute frequencies.  

ns of the frequency densities of the quadrats measured from the three slice
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2.3.2.3 CV Quadrat Test 

CV quadrat test is a variation of the quadrat test that has been proposed by 

McCuen and Azari (2001). For this test, n panels of the same size are placed over the 

middle slice face of the specimen and the number of particle faces in each panel is 

counted. The mean and standard deviation of the particle counts from the n panels are 

computed. The test statistic is the coefficient of variation, denoted as Cv, and is equal to 

the ratio of the standard deviation to the mean. For a homogeneous specimen each panel 

would expect to have nearly the same number of aggregate faces, so the standard 

deviation, and therefore Cv, would be small. For an inhomogeneous specimen, some 

panels would be placed over portions of the specimen dominated by small particles while 

other panels would cover areas associated with large particles. Thus, both the standard 

deviation and Cv would be relatively large. Using Monte Carlo simulation, the 

distributions of Cv for both homogeneous and inhomogeneous specimens were 

determined in order to identify the decision criterion. When a computed value of Cv 

exceeds the decision criterion, the specimen is assumed to have been taken from an 

inhomogeneous specimen. 

Quadrat sampling requires specification of several variables, including the shape, 

size, number, and the placement (systematically located or randomly placed) of the 

quadrats (Miles and Davy 1977). McCuen and Azari (2001) used a simulation model to 

evaluate the power of the quadrat test and to determine critical values for a 5% level of 

significance for various combinations of quadrat size and quadrat number. For each 

combination of size and number of the square panels, 50,000 specimens were created by 

simulation for both homogeneous and inhomogeneous conditions. The distributions of Cv 
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for both conditions were used to determine the critical values and the corresponding 

power of the test. Sample sizes of 10, 20, and 30 panels were tried with the lengths of the 

square panels varying from 20 mm to 90 mm. Table 2-1 provides an alternative sampling 

scheme which includes various combinations of the panel size and panel number. To 

evaluate alternative sampling schemes, in addition to the computed power of the test,

proportions of the slice face area covered by the area of the panels was considered. For 

the middle slice face (150-mm x 150-mm), the area of the slice face was compared to the 

product of the number of panels and the area of a panel. Analysis indicated that accuracy

increased as the coverage of the slice face increased. For example, ten 30 mm × 30 mm

panels would cover an area that is 40% of the slice face area. If any of the randomly 

located panels overlap, then less than 40% of the slice face area would be involved in th

testing. The power of the test statistic for this combination was 44%. Accuracy increase

to 57% when the coverage of the slice face by the panels increased to 80%. However, it 

was not recommended to use too many pane

 the 

 

 

e 

d 

ls or have panels with large areas because 

then th

a, 

ates 

from each panel would not be independent. 

ncluded that the power of the test is about equally sensitive 

to panel size and the panel number. For the sampling schemes that resulted in small 

coverage of the slice face (small panel sizes or small number of panels), the power of the 

test was very low. In such cases, only a small portion of the slice face was actually  

e entire face area may be sampled in a way that the results are not independent. 

Thirty 70 mm × 70 mm panels would cover an area that is 653% of the slice face are

which implies that each aggregate face might be sampled on the average more than six 

times. Obviously, this was not a realistic sampling scheme since the frequency estim

In summary, it was co

 22



 

Table 2-1. Critical val of the quadrat tes of panel length (L) 
and the number of panels (n) 

ritic es for Test  for 

ues and the power t as a function 

C al Valu PowerPanel 
Le h 
(mm) n= 0 n= 0 

ngt
n=10 n=20 3 n=10 n=20 3

20 0.395 0.360  0.25 0.37  
30 0.260 0.242  0.44 0.57  
40 0.194 0.183  0.56 0.69  
50 0.156 0.144  0.63 0.75  
60 0. 4 0. 9 0.  0.  12 11 0.118 70 78 0.82 
70 0. 8 0. 8 0.  0.  09 09 0.096 75 82 0.85 
80   0.078   0.90 
90   0.059   0.96 

 

sampled. Accuracy increased with either an increase in the panel area or an increase in 

the number of panels (see Table 2-1). However, the increase in the power of the test after 

the coverage of the slice face exceeded 100% did not indicate the increase in the ac

of the test since the measured frequency from the overlapped panels would not be 

independent of each other. The optimum power of the test was obtained where the 

coverage area was approximately 100%, although the actual coverage would be less

because of the random sampling. For this situation, the power of the quadrat test at 

optimum was about 60%, which suggested th

curacy 

 

at the power of the quadrat test for even 

e 

, the 

ore, the critical values for the comparison with the 

optimum sampling scheme is relatively low. 

Advantages: The method offers several advantages: First, the panels are selected larg

enough to include reasonable number of aggregate centroids. Second, the number of 

panels is adequate to provide about 100% coverage of the slice face area. Third

probability distributions of the test statistic for both states of homogeneity and 

inhomogeneity are known. Theref

measured statistic are available.  
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Disadvantages: Similar to other quadrat methods, because of randomly positio

quadrats, the test is not sensitive to vertical or lateral forms of inhomogeneity, but 

measures the existence or lack of inhomogeneity in general. To overcome this 

disadvantage the locat

ned 

ion of the panels should be linked to the measured frequency. 

Second, the quadrat test randomly samples from the entire slice face, but the entire face 

may not be sampled. 

2.3.2.4 Eccentricity Test 

f 

ere 

dius 

m distribution of the aggregates, the eccentricity 

urement of inhomogeneity. The eccentricity of the aggregates could be a good 

The eccentricity test was suggested by Yue et al. (1995) for the measurement of 

vertical uniformity. The test involved evaluating the variation of the eccentricity 

parameter in the vertical direction. The eccentricity parameter were computed from the 

horizontal cross-sections that were made in equal intervals of 5-mm along the height o

the specimen. The mean and residual of the eccentricity values of the cross sections w

used as the measure of uniformity. To compute the eccentricity parameter from each 

horizontal cross-section, the origin of the X- and Y-coordinates were selected at the 

center of the circular cross-section. The eccentricity parameter is the ratio of the distance 

between the aggregate centroids and the geometric center of the slice face over the ra

of the slice face. For a completely unifor

should be zero on each cross-section and there should be no vertical variation in the 

eccentricity values of the slice faces. 

Advantages: The advantage of this method is the potential that the method can offer in 

the meas
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indicator of the equilibrium of the aggregates in the mixture if an appropriate test statistic

is used. 

Disadvantages: There are four disadvantages associated with this test: First, the method 

is not well documented. The authors do not provide mathematical expression on how 

eccentricity parameter is computed. Second, a zero criterion on eccentricity value that is

decided for the state of uniformity does not warranty homogeneity of the specimen. A 

zero value might correspond to radial segregation where most of the coarse aggregate

are arranged along the periphery of the specimen. Third, zero variation in eccentricity 

values of the cross-sections might correspond to consistent radial segregation that is 

observed in all cross-sections but not to complet

 

 

s 

e homogeneity. Fourth, the distribution 

of the eccentricity parameter and the critical values that distinguishes between the state of 

uniformity and non-uniformity are not known.  

2.3.2.5 Moment of Inertia Test 

tes were 

eter 

e 

n 

spect to X- and Y-axes would be the 

This test was also suggested by Yue, et al. (1955) for uniformity evaluation of the 

aggregate distribution in vertical direction. The origin of the X- and Y-coordina

selected at the center of horizontal circular cross-sections. A moment of inertia param

was computed as the ratio of the summation of the moment of inertia of coarse 

aggregates over the moment of inertia of slice face with respect to the X-axis or the 

Y-axis. The mean and residual of the moment of inertia ratios of all cross sections wer

used as the measure of uniformity of the mixture. For a completely uniform distributio

of the aggregates, the moments of inertia with re
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same on each cross-section and there would be no vertical variation in the moment of 

inertia parameter along the height of specimen. 

Advantages: The advantage of this method is the potential that the method can offer in 

the measurement of inhomogeneity. The moment of inertia of the aggregates could be a 

 how the 

h 

 

 to consistent radial inhomogeneity but not to complete homogeneity. 

Fourth, the distribution and the critical values of the moment of inertia parameter were 

not determined.  

2.3.2.6 Runs Test 

ns 

st 

f 

good indicator of the equilibrium of the aggregates in the mixture if an appropriate test 

statistic is used. 

Disadvantages: There are four disadvantages associated with this test: First, the method 

is not well documented. The authors do not provide mathematical expression on

moment of inertia parameter is computed. Second, the equality of moment of inertia wit

respect to X- and Y-axis does not warranty homogeneity. This condition might 

correspond to radial inhomogeneity where arrangement of coarse aggregates along the 

periphery of the specimens results in equal moment of inertia with respect to X- and 

Y-axes. Third, the zero variability in the percent moment of inertia of the cross-sections

might correspond

The runs test is a nonparametric method that was traditionally used to test a 

spatial or temporal sequence for randomness. McCuen and Azari (2001) applied the ru

test to evaluate for vertical homogeneity of asphalt mixture specimens. The Runs te

assumes equally spaced measurements; therefore, the number of particles in layers o

equal thickness is of interest. To develop the distribution of the runs statistic, 5000 

 26



 

homogeneous and 5000 vertically inhomogeneous specimens were simulated. Each 

specimen was virtually sliced through the diameter, resulting in a rectangular face

homogeneity analysis. The slice face was then divided horizontally into layers of equal 

thickness and the number of particle centroids in each layer was measured. For a 

homogeneous specimen, each layer contains approximately the same number of pa

at least within sampling variation. For an inhomogeneous specimen with most of the 

larger aggregates near the bottom of the specimen, the particle count in the layers 

decreases with depth. The median frequency was computed, and the frequency in e

layer was compared with the median. A frequency above the median was denoted as a 

“+” sign, while a frequency below the mean was denoted as a “–” sign. A run was 

defined as a sequence of one or more like symbols. A homogeneous specimen had a m

number of runs while an inhomogeneous specimen had only a few runs. From the 

distribution of the runs statistic for homogeneous specimens the critical value fo

 for 

rticles, 

ach 

id-

r 5 % 

level of

 

any 

increased as the 

sample

 significance was obtained. If for a specimen the number of runs was below the 

critical number of runs, then the specimen was assumed to be inhomogeneous. 

McCuen and Azari (2001) showed that the critical value of the runs test would

depend on the number of layers into which the slice face is separated. The number of 

layers would also influence the power of the test. However, the task of measurement 

increased as the number of layers was increased. The layers would be thinner and m

of the particles would overlap the boundaries of the layers, which made counting the 

frequencies more difficult. However, the power of a test generally 

 size increased. Therefore, a larger number of layers were desirable as long as the 

frequency of the particles in each layer did not become too small. 
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To investigate the relationship between the number of layers and the power

test, McCuen and Azari (2001) conducted separate simulations of homogeneous and 

inhomogeneous specimens with different numbers of layers. The results for 5000 

simulations for each number of layers are given in Table 2-2. An inhomogeneity was 

assumed if the calculated number of runs was less then or equal to the critical number

runs. A 5% level of significance was used, but since the number of runs is a discrete 

random variable and can only take on integer values, the critical value that defined a 

region of rejection just less than 5% was used. The selected critical value was used with 

the distribution of runs for the inhomogeneous specimens to compute the probability of 

the type II error and the power of the test. The values in Table 2-2 indicate that the po

increased with increases in the number of layers. For 30 layers, with each layer being 5

mm, the test showed a power of 95%. The power for twenty 7.5mm layers was 90%. 

Given the size distribution of the particles on the slice face, twenty layers se

 of the 

 of 

wer 

 

emed the 

n 

sideration of the particle size relative to the size of the layer. 

les 

inction based on the size of the aggregates, 

although an inverse relationship between the size of the aggregates and the number of 

aggregates within an area is expected. 

most practical decision. The 5% gain in power was not justified based on the computatio

effort and con

Advantages: The runs test samples systematically from top to bottom and all partic

are counted. 

Disadvantages: The test makes no dist
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Table 2-2. Variation of runs test critical values and test power for various number of layers 

Number of 
Layers 

Critical 
Number of 

Runs 

Type I Error  
Probability 

Type II Error  
Probability Power 

10 2 0.0095 0.2805 0.7195 

15 4 0.0200 0.1475 0.8525 

20 6 0.0325 0.1025 0.8975 

25 8 0.0465 0.0760 0.9240 

30 10 0.0445 0.0525 0.9475 

 

2.3.2.7 Average Depth Test 

The average depth test was developed by McCuen and Azari (2001) for the 

measurement of vertical inhomogeneity. The test was based on sampling of all particles 

that have a diameter equal to or greater than 2.36 mm in diameter on the vertical slice 

face that goes through the diameter of the specimen, distinguished between particles of 

different area-gradation classes. The distance from the top of the specimen to the center 

point of each particle was measured, and the mean distance for each sieve size was 

computed. For a homogeneous specimen, the means would be one-half of the specimen 

height. For an inhomogeneous specimen with the large particles at the bottom of the 

specimen, the mean distances for the large sieve sizes would be larger than the mean 

distances for the smaller sieve sizes. A one-way analysis of variance on the means was 

used to test for equality of the mean distances. The test showed that the means were 

significantly different, when the specimen was inhomogeneous. 

The average-depth test was applied to 25,000 simulated slice faces for both 

homogeneous and inhomogeneous conditions. The distributions of the analysis of 

variance F statistic were computed for the two conditions, with the critical F values for 
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5% and 1% levels of significance determined from the F distribution for the 

homogeneous condition. The critical values were then used with the distribution of F 

statistics for inhomogeneous simulated specimens to estimate the corresponding 

probabilities for type II errors and the power of the test. 

The values of the average-depth statistic using computer simulation are given in 

Table 2-3. The one-sided upper tail of the F distribution for homogeneous specimens was 

used to obtain the 5% and 1% F values. The lower tail of the F distribution for 

inhomogeneous conditions was used to compute the probability of the type II error (β), 

with the power being equal to 1-β. When the larger five sieve sizes were used, the power 

was 92% for the 5% test and 81% for the 1% test. The power of the test when only the 

four largest gradation levels were used was very poor. Although using more than five 

sieve sizes increased the power, it drastically increased the computational effort and 

reduced the reproducibility of the test. 

Advantages: The advantage of this method is that both size and the location of the 

aggregates are included in the computation of the index. The more 

inhomogeneity-relevant information is used the more reliable the test statistic would be. 

Disadvantages: The disadvantage of the method is that involving only the large 

aggregates from less than five class sizes would result in not enough aggregates in each 

class size of one slice face. Including the classes with small size particles will drastically 

increase the computation time. To overcome this disadvantage, a larger number of slices 

can be used. This provides enough numbers of particles if only larger classes of 

aggregates are used. 
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Table 2-3. Critical values and test power for the average-depth F-test 

 Critical F β Power  
 Test  

No. of 
Gradation 

Levels  α =5% α =1% α =5% α =1% α =5% α =1% 

 
5 
 

2.31 3.39 0.083 0.195 0.917 0.805 
Average 
Depth  

4 
 

2.89 4.49 0.741 0.893 0.259 0.107 

 

2.3.2.8 Nearest Neighbor Distance Test 

The nearest neighbor distance test was suggested by McCuen and Azari (2001) 

for the measurement of vertical inhomogeneity. The nearest-neighbor statistic required 

separating the middle slice face of the specimen into upper and lower halves and 

computing the mean distances between the centers of the nearest neighbor particle faces 

in both halves. The standard parametric two-sample t-test was used to test for a 

significant difference in the means. For the larger particles in one half of the specimen, a 

one-tailed test was applied, with the mean distance for one half of the specimen expected 

to be larger than the mean distance for the other half. 

The distribution of the two-sample t statistic for homogeneity was evaluated from 

5000 slice face simulations and the distributions compiled for both homogeneous and 

inhomogeneous specimens. The critical values were obtained from the distributions for 

levels of significance of 5% and 1%. Since inhomogeneity would yield large values of t, 

the critical value was obtained from the upper tail of the t statistic for homogeneous 

conditions. The probability of a type II error was computed from the lower tail of the t 

distribution for inhomogeneity using the 5% and 1% critical values. 
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The computational effort was considerably less when only the four largest 

gradation levels were used rather than the largest five levels. Separate sets of simulations 

were made for both 4 and 5 gradation levels. Fewer than four levels did not yield reliable 

values because the gradation distribution dictated a small number of aggregate particles 

for the large sieve sizes, which were used to compute the nearest neighbor means.  

Table 2-4 contains the results of the simulations. The results suggested that the average 

depth test was a powerful test as long as 5 or more gradation levels were used. When four 

gradation levels were used, the test provided 63% power at the 5% level of significance 

and 36% power at the 1% level. For five gradation levels of significance the power was 

essentially 100% for both levels of significance. Thus, the increase in effort required to 

evaluate the statistic for five gradation levels was warranted. 

 Advantages: The advantage of this method is involving the size and relative location of 

the aggregates with respect to each other in the computation of the index. The more 

inhomogeneity-relevant information is involved, the more accurate index can be 

computed.  

Disadvantages: The disadvantage of the method is that involving only the large 

aggregate class sizes would result in not enough aggregates in each class size. However, 

including the classes with small size particles will drastically increase the computation 

Table 2-4. Critical values and test power for the nearest neighbor t-test  

Critical t β  Power 
Test 

No. of 
Gradation 

Levels  α =5% α =1% α =5% α =1% α =5% α =1% 

 
5 
 

2.133 3.075 0.001 0.002 0.999 0.998 
Nearest 

Neighbor  
4 
 

2.520 3.454 0.374 0.640 0.626 0.360 
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time, while involvement of small particles in the measurement of inhomogeneity might 

not be necessary. Inhomogeneity can be quantified by measuring the changes in 

properties of either coarse or fine aggregates. Since it is much easier to detect and 

measure the properties of the coarse particles than the fine particles, it is preferred to 

emphasize on the coarse aggregates. To overcome the inadequacy of the number of 

particles when only larger class sizes are involved, a larger number of slice faces can be 

analyzed. This would provide enough number of particles regardless of inadequacy of the 

number of aggregates in each class size of a slice face. 

2.3.2.9 Inner-Outer Average Diameter  

This method is suggested by Tashman et al. (2001) for the measurement of radial 

inhomogeneity. The method compares the average diameter of the aggregates that have a 

diameter equal to or greater than 2.36 mm in the inner and the outer portions of a 

specimen. Figure 2-2 shows the divisions of a slice face into the inner and outer portions. 

The division is based on the location of the areas with the highest concentration of the 

coarse aggregates, which are mainly along the periphery of the gyratory compacted 

specimen. The procedure for the application of the test is as follows: 

a. Three vertical slices, 37.5 mm apart, are made on each specimen (Figure 2-1). One 

slice face is made in the middle of the specimen and two additional equally spaced 

slices are made, one on each side of the middle slice face. 

b. Each slice face is divided into inner and outer areas, such that the area of the inner 

portion is equal to the area of the outer portion (Figure 2-2). The width and the 

height of the inner rectangular portion is obtained using the following equations: 
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/ 2i iw W=        (2-5)  

/ 2i ih H=        (2-6)  

where wi and hi are the width and the height of the inner portion of the ith slice 

face, respectively; and Wi and Hi are the width and height of the ith vertical slice 

face, where i=1, 2, 3, respectively. The inner portion is centered within the slice 

face.  

c. On each slice face, the average diameter of the aggregates that have a diameter 

equal to or greater than 2.36 mm in the outer ( uid ) and in the inner ( nid ) portions 

are measured. 

d. For each slice face, the computed average aggregate diameters are used to compute 

parameter Sli that is a measure of the percent difference between the average 

aggregate diameters in the inner and in the outer portions: 

( 1) 100%ui
li

ni

dS
d

= − ×       (2-7) 

Inner region

Outer region

Inner region

Outer region

 

Figure 2-2. The division of a vertical slice faces for the inner-outer average diameter test 
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e. The index of lateral segregation for each specimen is computed as the average of 

the Sli values of the three slice faces:  

3
1S S=

1i=
3l li∑        (2-8) 

eity is 

ic 

ion 

t is 

ging 

correct since the cross-sections of the slice faces are not the same. The two slice faces at 

ve smaller width than the middle slice face. 

Therefore, the aggregate diam

The authors explain that a zero value of Sl indicates a lack of radial segregation, 

while a positive value indicates that more of the coarser aggregates are distributed in the 

outer portion and a negative value indicates the opposite.  

Disadvantages: Three disadvantages are associated with this method. First, the 

distribution of the test statistic for either condition of homogeneity or inhomogen

unknown. Therefore, the critical value for the comparison with the computed test statist

for a selected level of significance is not available. Second, the inner and outer port

method is applicable to homogeneity testing of full size gyratory specimens. The tes

not applicable to the cut specimens that meet the size requirements of a specific 

mechanical test such as the Superpave shear test in which the top and bottom portions, 

which include the coarser aggregates, are cut prior to the shear test. Third, the test 

statistic based on the existing inner-outer division does not distinguish between the 

concentration of the coarser aggregates at the top and bottom or at the periphery. 

Therefore, the test does not exclusively measure the lateral segregation. Fourth, avera

the lateral segregation index values computed from the three slice faces might not be 

both sides of the middle slice face ha

eters measured from the slice faces should be adjusted 

based on the area of the slices before they are used in the computation of the index.  
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2.3.3 Independency of the Slices 

A cylindrical asphalt mixture specimen is sliced at multiple positions and an ind

of homogeneity is computed from measurement of geometric properties of the aggregates 

observed on the slice faces (Masad et al., 1998 and Yue et al., 1995). Obviously, the more 

the number of slices, the more accurate estimate of homogeneity of the specimen is 

obtained. However, it seems reasonable to believe that the slices would need to be far 

enough apart to ensure that any one particle is not part of both slice faces. In other w

the slices should be far enough apart to 

ex 

ords, 

ensure that the values of the index are made from 

differen acing 

ith each 

 

through the center, which was denoted as x4. The second specimen, which had the same 

t pieces of aggregate. It was therefore of interest to know the minimum sp

between the slices. Additionally, it also seems rational that the slices should be made at 

locations that would ensure slice faces that are large enough to obtain a reasonable 

number and distribution of aggregates. 

McCuen and Azari (2001) used a three-dimensional simulation model of 

cylindrical specimens to examine the hypothesis of obtaining accurate estimate of 

homogeneity from independent slice faces. 2500 pairs of cylindrical specimens w

specimen having a diameter of 150-mm and a height of 150-mm were simulated. The 

following weight gradation curve was used for all specimens: 25, 19, 12.5, 9.5, 4.75, 

2.36, 1.18, 0.6, 0.3, 0.15, 0.075 mm with weight fractions passing 1.0, 0.992, 0.828, 

0.695, 0.46, 0.31, 0.21, 0.15, 0.11, 0.078, 0.058, respectively. For each pair, one 

specimen was sliced in three places: ¼ diameter (denoted x1), ½ diameter (center slice 

denoted x2), and ¾ diameter (denoted x3). This means that the center slice would be 37.5

mm from both of the quarter point slices, which was at least 50% more than the largest 

particle diameter of 25mm. The second specimen of each pair was only sliced vertically 
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design mix gradation as the first specimen, was used as a control specimen since it was 

known to be independent of the first specimen. The Runs test was applied separately to 

each of the four faces and the number of runs computed. This yielded four values of t

Runs test homogeneity index for each pair of specimens, from which six comparisons of

the number of runs was made: (face x

he 

 

3), (x2 

h 

comparisons [(x1, x2), (x1, x3), and (x2, x3),] 

should itive 

 

. x4. 

 

 

 comparisons, which led to the 

conclus

1 vs. face x2), (x1 vs. x3), (x1 vs. x4), (x2 vs. x

vs. x4), and (x3 vs. x4). Since x4 was from the independent control specimen, then all 

correlations with x4 should not be statistically different from zero when compared wit

slices made in the first specimen. If multiple homogeneity indices from the same 

specimen were independent, then the three 

 also not be statistically different from zero. In all cases, a significant pos

correlation would indicate a lack of independence. Negative correlations and near-zero 

correlations would indicate independence. 

For each of the four slice faces in the 2500 pairs, the Runs test index of 

homogeneity was computed. Correlation coefficients were computed for each of the six

paired comparisons, with the following results: -0.0026 for x2 vs. x1, 0.0087 for x2 vs. x3, 

-0.0090 for x1 vs. x3, 0.0032 for x1 vs. x4, -0.0042 for x2 vs. x4, and –0.0205 for x3 vs

For a one-tailed test of the correlation coefficient, the critical values of the correlation

coefficients for 5% and 10% rejection probabilities are 0.0329 and 0.0256, respectively.

Since none of the six correlations exceeded even the critical value for 10%, the null 

hypothesis of zero correlation was accepted for all six

ion that all of the slice faces gave independent estimates of the Runs test index. 

These results suggested that for the gradation used, 37.5 mm spacing between the slices 

was adequate for accurate estimate of homogeneity. 
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The simulation model was then used to evaluate the hypothesis that slices that a

too close to each other would not yield independent estimates of the homogeneity index

For each of these analyses, 2500 additional pairs of specimens were formed, sliced in the

same manner as above but not at the same locations, and evaluated for the correlation 

coefficient between Runs test indices. However, for this analysis, the first specimen of 

each specimen pair was sliced at the center (x

re 

. 

 

ter 

 

l and 

imen 

 

 made on a single 

specim

The minimum offset distance would depend on the gradation curve. 

For the mix design used for that analysis, the largest particles passed a 25-mm 

sieve but not the 19 mm sieve. However, the gradation curve was such that less than 1%  

2) and at an offset distance from the cen

slice; this slice was denoted as the offset slice x5. For example, a second slice may be

made at 2 mm from the center slice. Again, the second specimen is used as a contro

only sliced through the diameter. Three comparisons were made using the Runs test 

statistic: (x2 vs. x5), (x2 vs. x4), and (x4 vs. x5). The correlation coefficients from the 

comparisons are given in Table 2-5 for various offset distances. For a 5% level of 

significance and a sample size of 2500, the critical correlation coefficient was 0.0329. 

Therefore, the null hypothesis of zero correlation was accepted for the control spec

versus all of the slices in the first specimen. However, the null hypothesis was rejected

for comparisons of the center slice on the first specimen with the offset slice faces of 5 

mm or less (see Table 2-5). For small offset distances, the correlation coefficients 

increased as the distance between the slice faces decreased. These results support the 

results from the above analysis, suggesting that multiple slices can be

en as long as the slice faces are separated by a reasonable distance. A 10-mm 

offset would be the minimum slice-face separation suggested by the results of Table 2-5. 
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Table 2-5. Correlation coefficients between the runs test statistic for offset slice faces 

Offset Distance 
(mm) 

x4 vs. x2
(Control vs. Center) 

x4 vs. x5
(Control vs. Offset) 

x2 vs. x4
(Center vs. Offset) 

2 -0.0116 -0.0049  0.3776 
3 -0.0084  0.0268  0.2234 
5  0.0102  0.0263  0.0895 

10 -0.0161  0.0057  0.0038 
15  0.0163  0.0163 -0.0042 
20 -0.0116  0.0118  0.0100 
25  0.0077  0.0270  0.0086 
30 -0.0137 -0.0094  0.0008 
35  0.0053  0.0013 -0.0274 

37.5  0.0032 -0.0042 -0.0026 
 

of the particles by weight were in this largest gradation class. Also, since the Runs test 

measurements were made on the slice faces, where the face area gradation curve indicates 

smaller particle diameters than that suggested by the weight gradation curve, the 10-mm 

offset distance may be indicative of the aggregates from the larger weight gradation 

levels. A larger offset distance would be warranted if the weight gradation had a higher 

fraction in the larger sieve sizes. It seemed reasonable to conclude that the offset distance 

should be at least equal to the largest sieve size for which 95% of the material passes. 

2.4 X-RAY COMPUTED TOMOGRAPHY  

The computation of homogeneity indices has been conducted on two-dimensional 

slice face images of asphalt mixture specimens. Based on stereology, the use of 

two-dimensional planer images for characterizing the geometric properties of the 

components of a three-dimensional object is efficient in addition to being valid (Mathieu 

et al, 1980). In the past, in order to make available the slice face images for the 2D 

analyses, the specimens were cut at several locations either horizontally or vertically and 

the images of the slice faces captured using a digital camera. Yue et al. (1995) and later 
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Masad et al. (1998) developed methods for quantifying the aggregate structure using 

two-dimensional image analyses from the actual slices of specimens.  

The actual slicing of the specimens has several disadvantages. First, the cutting 

destroys the specimen, which prevents the specimens from some forms of mechanical 

testing. Second, a specimen that is cut in one direction cannot be used for obtaining 

images from another direction. Third, since it is preferred to mechanically test the same 

specimens as the ones used for image analysis, the number of cuts that can be made on a 

specimen is limited by the size requirement for the mechanical test. For example, 50-mm 

thick circular disks that are required for the Superpave Shear Tester are the result of three 

slices on a gyratory compacted specimen. These provide only three independent slice 

faces for image analysis, which is not adequate for making reliable measurements of 

specimen homogeneity. Fourth, if mechanical testing is not planned, the number of cuts 

that can be made on a specimen is limited by the thickness of the blade. Fifth, the surface 

of the specimen that is being prepared for image analysis might get damaged when 

cutting. Sixth, some mechanical tests, e.g., the axial compression test, do not require 

cutting of the specimen except trimming of the top and bottom. Therefore, only two slice 

faces from the top and the bottom are available for the analysis. However, the top and the 

bottom slices are mostly affected by the boundary condition and may not serve as good 

representations of the internal structure of the specimen. 

With advances in technology, x-ray computed tomography (XCT) made it 

possible to nondestructively obtain images of the asphalt mixture specimens at any depth 

and at extremely small intervals. XCT has shown to be valuable tool for characterizing 

and quantifying the complex macro and microstructure of various materials, including 
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asphalt concrete. Wang et al. (2002), Ketcham and Carlson (2000), and Shashidhar 

(2000) utilized XCT to characterize asphalt concrete components. Tashman et al. (2005) 

has used the x-ray tomography images to quantify air void distribution and to analyze 

damage evolution under loading. Landis et al. (2003) aimed at quantifying 

microstructure-property relationships for cement based materials using x-ray CT.  

The XCT system consists of a continuous x-ray source, a digital detector to obtain 

data, a processor for data reconstruction, and a processor for data display (Figure 2-3). 

The procedure produces a series of cross-sectional images of an object from a number of 

projections. A thin plane layer of a 3D object, referred to as a slice, is isolated by the 

synchronized movement of the beam source and the detector. During this synchronized 

motion, x-ray beam projection data are obtained for the particular image plane from many 

different angles. Each slice image corresponds to a finite thickness of material, and by 

acquiring a series of adjacent slices an entire volume can be described (Figure 2-4).  

 

Figure 2-3. Computed x-ray tomography system 
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XCT w

enclosed by a pixel contains multiple materials (or voids), the net x-ray attenuation is a 

complexly weighted mean of the attenuations of the different materials. Pixel CT values 

are also affected by the x-ray spot size, detector spacing, and data acquisition protocol.  

Briefly, x-ray computed tomography could be described as follows. The x-rays 

from the source go through the specimen and are received by the detector. As the x-rays 

passes through the specimen, their intensity is reduced as a function of the density of the 

material. The construction of the cross-sectional images is based on the intensity of the x-

rays as the detector receives them. Different intensity levels of the x-rays then result in  

orks based on relating the changes in intensity of x-rays (particles or photon 

beams) to the density of the object as x-rays penetrate through the object. The gray level 

of the pixels in CT images, also called CT values or numbers; reflect the x-ray 

attenuation that is primarily a function of density. The atomic number and the spectrum 

of x-ray energies also play factors in the x-ray absorption of the material. If the area 

 

Figure 2-4. 3-D reconstruction of an asphalt mixture specimen using series of adjacent slices  
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different shades of gray on the scanned images. CT is highly sensitive to small density 

differences between the component materials. Therefore, in the scanned images, each 

constituent material can easily be isolated for further examination and analysis.  

imensional CT image of an asphalt concrete specimen. 

s of asphalt concrete material: aggregates, 

mastic,

nt to 

2.5.1 

, object recognition, and automated area calculations (Russ 1999 

and Wojnar 1998), which can be structured in nine steps:  

The first step of image processing is the length scale calibration. This involves 

determination of a calibration factor that converts the object measurements in pixels to 

other m

n 

length in millimeters.   

Figure 2-5 shows a two d

The figure clearly shows the three phase

 and air. Since the intensity of each pixel is proportional to object density, air 

voids with the lowest density are black while the solids vary from dark to light gray 

depending on relative densities. The intensity differences in the image are sufficie

clearly distinguish aggregates from mastic.  

2.5 IMAGE ANALYSIS 

Image Processing Techniques 

Digital image processing is a fairly mature field that has produced a wealth of 

analysis tools for extracting quantitative information. Image analysis requires image 

processing software, which visualizes the image data and provides the tools for   

processing of the images. The image processing and analysis steps include length scale 

calibration, thresholding

easurement units such as micron or millimeter. By default, spatial measurements 

are expressed in terms of pixels. To report the measurements in terms of millimeters the 

spatial scale needs to be calibrated by assigning a certain number of pixels to a know
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The second step is the image filtering. Several filters could be applied to enhance 

the contrast and visibility of the image. This will provide better delineation of the e

Figure 2-5. An example of x-ray computed tomography image 

dges 

of the aggregates and more clearly show the separation of the adjacent aggregates.  

 The third operation is thresholding. The improved image is reduced to a binary 

image by a thresholding operation. Image thresholding consists of separating different 

phases in the image through pixel intensity-based criteria. In asphalt mixture images the 

three phases are aggregates, voids, and mastic. Image thresholding sets pixel intensities 

that represent the boundary between each of the three phases. Therefore, two threshold 

values are required to separate the three phases. That is, all pixels with intensities above 

d is considered 

voids, and between the lower and upper threshold values are considered mastic. The 

phase of interest and every thing else. An example of this is shown in Figure 2-6.  

the upper threshold are considered aggregates, below the lower threshol

result of this operation is a binary (black and white) image showing only two phases: the 
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Figure 2-6. Threshold images of the aggregates, air voids, and 

tified as one piece. 

een commonly used for separating the aggregates.  

the 

he 

oid 

el of 

the mastic 

Fourth, the aggregates might need to be separated in the binary image since in the 

process of thresholding two or more aggregates might have been iden

The limited watershed technique has b

Fifth, particles smaller than a specific size, i.e. 2.36 mm in diameter, are 

eliminated. Including very small aggregates would make the analysis more complicated 

and decline the precision of the measurements.  

Sixth, additional thresholding provides a new image with particles larger than 

specified size separated and particles smaller than the specified size trimmed out. T

new binary image is used for the measurement of geometric properties. 

Seventh, important characteristics such as the area, frequency, diameter, centr

locations, and the angle of orientation of each individual aggregate are measured.  

Eight, based on the geometric data obtained in step seven, additional features of 

the aggregates such as the centroid-to-centroid distances of the aggregates, are calculated.  

Ninth, a statistical interpretation of the data from step eight quantifies the lev

inhomogeneity of the cross-section being analyzed. 
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2.5.2 Accuracy of Image Analysis 

The accuracy of measurements taken from a slice face using image processing 

techniques is highly dependent on the quality of the images and the validity of the im

as representations of the actual samples (Russ 1994). Images with low resolutions and

enough contrast are not easy to analyze. Manual measurements, which are subject to 

ages 

 not 

errors, 

re. 

 

erfere 

nt 

cting 

 establishes the characteristics of the 

x-ray signals as read by the detectors under scanning (Ketcham and Carlson, 2001).  

edges o

ss 

are required to measure the characteristics from these images. This is time 

consuming and is imprecise in comparison to automatic measurements. 

 There are several problems associated with the images acquired using x-ray 

computed tomography, with two of the commonly encountered problems addressed he

The first problem is the ring artifact, which is the appearing of concentric rings centered

on the scanned images. This problem can sometimes be very intense so that they int

with the measurement of components of interest such as air or aggregates. The ring 

artifact problem is caused by the change in the response of the detectors due to the 

changes in scanning conditions, such as changes in temperature or beam strength. These 

factors can be overcome by carefully controlling experimental conditions or by freque

calibrations. The ring artifact can also be addressed at the scanning stage with condu

a wedge calibration using a material of similar attenuating properties to the scanned 

objects.  The wedge calibration is a process that

The second problem with XCT images is the beam-hardening that causes the 

f the object to appear brighter than the center, even if the material is the same 

through out. This makes the detection of the objects at the edges of the specimens very 

difficult since the threshold value that is selected based on the pixel intensities of the 

middle portion is too low for the edges. The beam-hardening problem is caused by le
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attenuation of the x-ray beams at the edges than in the middle of the object. This is 

because the thickness of the object that x-rays go through is much less at the edges than 

in the m

ector. 

 

ng image analysis data. Statistical 

analyses are generally being carried out by exporting the measured data to a spreadsheet 

lized data analysis program. Generally the analysis involves the 

compar

 and 

ce 

ire 

iddle. The x-ray beams, which are absorbed in proportion to the thickness of the 

object, are less absorbed at the edges and are received at more intensity by the det

There are several techniques that can alleviate the beam-hardening artifact. The most 

effective technique is to correct the raw data at the data processing stage before the 

reconstruction stage. The correction converts each raw scan data to a non-beam hardened

equivalent data (Ketcham and Carlson, 2001).  

2.6 STATISTICAL ANALYSIS OF IMAGING MEASUREMENTS 

Statistical tools are widely used in interpreti

program or a more specia

ison of two or more sets of measurement data to determine whether the two 

samples can be distinguished from each other. The comparison can be made on means, 

standard deviations, or the distributions of the two samples (Russ 1999).  

To compare the means of two populations relative to the standard deviations

sizes of the two populations, a two-sample t-test can be used. For more than two 

populations, the same comparison can be performed using a one-way analysis of varian

(ANOVA) test. If the distribution of the population is different from that which underlies 

the test, then nonparametric tests, such as the Kolmogorov-Smirnoff test, can be applied 

(Russ 1999). The Runs test, which is an example of nonparametric test, can be used to 

test the randomness of the location of aggregates in space. These tests generally requ
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less eff

Image analysis and simulation are tightly bonded together. It is difficult to reach 

the desired precision using only image analyses of a limited number of laboratory-made 

specimens. Additionally, the real values of the estimated parameters are never known 

with real structures. On the contrary, a precise analysis of a structure can be easily 

achieved using simulation. Various microstructures and some processes leading to 

microstructure alteration can be developed using computer simulation. Any simulated 

structure is well defined and all the necessary parameters can be evaluated precisely. The 

exact values of the parameters can then be used for comparison with the results obtained 

from the verification process using image analysis. This gives the necessary information 

concerning the precision and bias of the procedures being verified (Wojnor 1998).  

Simulation is very effective in the modeling of granular structures. Simulation can 

be easily performed to create randomly packed or intentionally distributed to have 

inhomogeneous granular structures. Considerable care must be taken to ensure that 

simulation procedures give a reliable representation of the underlying processes (Diggle 

1977). 

ort to apply but they require a larger sample size for an equivalent confidence to 

the corresponding parametric test (McCuen 1985). 

2.7 SIMULATION 

2.7.1 Monte Carlo Simulation  

Where an analytical-experimental study of a system is not adequate or is 

impossible, the probabilistic nature of a system output can be studied using the Monte 

Carlo simulation (McCuen 1985). The Monte Carlo method provides approximate 
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solutions to a variety of mathematical problems by performing statistical sampling 

experiments on a computer (Sobel 1994). The Monte Carlo simulation is a set of methods 

that are

r of 

 

e 

om 

tical 

tem 

irst, a clear definition of the 

system m random 

l 

 utilized for inexpensively testing engineering systems by mimicking their real 

behavior (Ayyub and McCuen 1997). The main purpose of the simulation methods is to 

develop a computer-based analytical model that can be used in predicting the behavio

a system. The simulation of a probabilistic system provides the tools for examining the

expected response of the system for a wide variety of inputs and system conditions 

(McCuen 1985). The model is then evaluated based on the data measured from the 

system using many simulation runs. The random selection of parameters should be based 

on the probability distribution of the respective parameter. For example, if the input is th

value of a random variable having a normal distribution with a mean of µo and standard 

deviation of σo, then the random number generator must be capable of generating rand

numbers for this density function. The generated values are then input to the model and 

the output values are computed. In order to evaluate the behavior of the system, statis

methods are applied to compute the moments and the distribution type of the sys

output (Ayyub and McCuen 1997).  

The Monte Carlo simulation involves several steps. F

 being modeled must be developed; second, the ability to generate unifor

numbers should be achieved; third, the uniform numbers must be transformed to the 

probability density function of the population of the input variables; fourth, the mode

must be evaluated; fifth, a statistical analysis of the output must be performed; and sixth, 

the simulation efficiency and convergence must be evaluated. The definition of the 

system should indicate the boundaries of the system, input parameters, output measures, 
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and models that relate the input to the output parameters. The values of some inputs are

generated randomly using Monte Carlo simulation, with consideration of the uncertainty

of the model and the data variability. The generated input values are then input to th

model to obtain a computed output measure. N simulation cycles are made to obtain N

responses of the system. Statistical methods can then be applied to identify the 

distribution and parameters. The convergence of the simulation methods can be 

investigated by examining the expected values of the output parameters and the 

variability in the output values (Ayyub and McCuen 1997). 

Simulation has been widely used in different disciplines of science and 

technology. Statistical analyses of the spatial di

 

 

e 

 

stribution of the features of a point pattern 

have been particularly facilitated by the use of simulation. Diggle et al. (1976) used 

Monte Carlo m

ethod using Monte Carlo simulation. 

Nolan and Kavanagh (1993) have used computer simulation to produce gravitationally 

stable random loose and random

spheres. Using simulation, they evaluated the packing density, the mean coordination 

numbers (number of contacts) and the radial distribution function. Meakin and Jullien 

(1991) applied sim

systems formed by particle deposit processes. They also used their model to study the 

segregation of particles of iggle (1979) 

ethods to simulate two nonrandom population models and investigated the 

power of the statistics proposed by Holgate (1965) and Besag and Gleaves (1974). 

Heltshe and Ritchey (1984) have generated various spatial patterns and various sampling 

procedures for testing the power of the quadrat m

 close packing of lattices consisting of equal sized 

ulation models to investigate the surface and internal structure of the 

different sizes in the sedimentation process. D
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variou

2.7.2 Advantages and Disadvantages of Simulation 

modeling to

dealing with the real system is impossible or too costly. A few additional reasons for 

using sim

1. Simulation enables gathering of the applicable data systematically. 

with the real system (Ayyub and McCuen 

1997). 

how they are related. This will eventually lead to successful analytic formulations. 

7. Using simulation, prediction of future performance may be accomplished. 

e consuming than many forms of 

experim

mul ted several tests of spatial randomness to provide insight into the suitability of 

s models for different mapped patterns.  

Simulation is widely used in engineering decision making. It is a popular 

ol because it enables working with a representation of the system when 

ulation as a modeling tool are: 

2. Simulation enables the model parameters, variables, and initial conditions to be 

controlled, which is often not possible 

3. The simulation of a complex system determines which variables are important and 

4. Simulation enables experiments to be replicated. 

5. Simulation is the only tool that gives the complete probability distribution of the 

output of the process when information on only mean and variance is not adequate. 

6. A simulation can be performed to evaluate an uncertain analytic solution. 

8. Simulation is less expensive and less tim

ents. 

9. Simulation is an informative tool since it gives an insight of the system being 

studied.  
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f. Simulation allows the scaling of the time and space of the problem to be changed 

to more convenient scales. 

Computer simulation of the aggregate structure in asphalt concrete specimens, in 

particular, has num

 

and analyze laboratory specimens. Second, computer simulation enables alternative 

h is not always possible in the laboratory. 

Fourth, m

(McCuen et al. 2001).  

McCuen 1997). Third, the simulated models might not satisfactorily include all aspects of 

te the sequence of random 

numbers to represent the random variables. Random numbers are real numbers that have 

a uniform distribution with values of the location and scale parameter of 0 and 1, 

erous advantages. First, it enables computer generation and analysis of 

specimens with different aggregate structures without the cost and effort required to form

indices of aggregate inhomogeneity to be tested under a variety of gradation mixes and 

sampling programs. Third, simulation enables the testing to be made without 

uncontrolled variation of external factors, whic

illions of specimens can be created and analyzed in a matter of minutes 

While simulation has numerous advantages, it has a few drawbacks. First, it is 

possible that differently formulated models of a system could lead to different decisions. 

Second, if the data used in the calibration of the model is limited, then extrapolation out 

of range of the measured data could introduce inaccuracy into the results (Ayyub and 

a real system.  

2.7.3 Generation of Random Numbers 

Simulation requires a random number generator to crea

respectively. A sequence of random numbers should not be serially correlated. The 
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uniform numbers can be transformed into real values of any distribution of interest 

(Ayyub and McCuen 1997). 

The generation of the random numbers can be based on analytical models. In

these generators, a random number is obta

 

ined based on a uniform number (numbers) and 

a fixed 

 

e 

values is important for any comparison study of the 

alternative parameters of a system. Most computer installations provide random number 

generators for most probability functions. An introduction on methods of generating 

l and 

lt is also dependent on the number of 

simulation runs. The accuracy is expected to increase with an increasing number of 

t, 

arithmetic equation. Therefore, an initial value that is called the seed value is 

needed to start the generation of the random numbers. From that point a series of random

numbers is generated. An important characteristic of an arithmetic random generator is 

that for a given seed number, the same stream of random values will be generated. Th

repeatability of the generated 

random numbers is provided by Kennedy and Gentle (1980).  

2.7.4  Accuracy Assessment 

The accuracy of simulation results highly depends on having an accurate 

definition of the system. Including all of the critical parameters of the system is essential 

in obtaining accurate results. It is important to have the knowledge of the statistica

probabilistic characteristics such as moments and the distribution types of the input 

parameters. The accuracy of a simulation resu

simulations (Ayyub and McCuen 1997). 

When distribution theory is available, Monte Carlo testing provides an exact 

alternative for small samples and is a useful check on the applicability of the underlying 

theory. If the results of classical and Monte Carlo tests are not in substantial agreemen
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the explanation is usually that the classical test uses inappropriate distribution 

assumptions (Diggle, 1983). 

It is essential that the results of simulation be validated with actual responses of 

the system to the same input. The objective of the validation process is to ensure that the 

in the validation should be the useful characteristics of the real system that were carefully 

selected initially to be included in simulation. All of the details of the system

2.7.5 Verification of Simulation 

simulation model satisfactorily duplicates the real system. The criteria that are to be used 

 need not to 

be mod

ALUATION OF INDEX RELIABILITY 

 indices of homogeneity includes use 

of statis

d 

 

 

ing the 

eled and validated. Only those characteristics pertaining to the design and 

performance of the system need to be included in the modeling and to be evaluated in the 

validation stage (Ayyub and McCuen 1997). 

2.8 STATISTICAL EV

The Statistical method for the analysis of the

tical hypothesis tests. The application of statistical tests is generally encouraged 

because it systematically accounts for the sampling variation of the random variable. 

Statistical testing provides a systematic means of identifying a significant result an

indicates the risk involved in making an incorrect decision. Statistical tests require 

knowledge of the distribution of the test statistic and the selection of the level of

significance that is appropriate for the physical system being studied (McCuen 2003). 

Statistical evaluation involves comparing of the distribution of the test statistics for the

condition of complete homogeneity and condition of inhomogeneity, identify
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critical values of the test statistics, evaluating probability of type I (α) and type II (β) 

errors, and assessing the power of the test (Heltshe and Ritchey 1984). 

 Statistical analysis of the point pattern starts with the null hypothesis, Ho, that the 

 al. 1976). In general, the 

hypoth f 

ased 

umption of having a known distribution such as the normal distribution with 

known 1985). A test of hypothesis based on the 

assump d parameters is called a parametric test. In cases 

where t

 

ariable to 

follow 

m 

ed 

s 

2.8.2 Type I and Type II Errors 

 analysis is formulating two or more 

hypotheses for testing. If the objective is to compare two or more distributions or specific 

observed distribution of events is homogeneous (Diggle et

esis of complete spatial randomness is tested by comparing of the measures o

selected characteristics of the empirical point pattern with those of the hypothesized 

pattern (Okabe et al. 1992).  

2.8.1 Parametric and Nonparametric Methods 

In general, a decision-making using hypothesis test on random variables is b

on the ass

 distribution parameters (McCuen 

tion of a known distribution an

he distribution of a random variable is not that which is specified in the 

underlying theorem, testing a hypothesis using a parametric test might lead to erroneous

results. Therefore, other methods of testing that do not require the random v

the underlying distribution should be used. These methods are called 

nonparametric tests. An example of a nonparametric test on the distribution of a rando

variable is the Kolmogorov-Smirnoff one-sample test. A nonparametric test is also us

when the random variable is not measured on continuous scales; For example, value

measured on nominal or ordinal scales require the use of nonparametric tests. 

The first step in performing a statistical
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parame

ive hypothesis (HA) are formulated as 

follows

 When using sample data to draw conclusions about the population, it is quite 

possible to ma e an erroneous decision to select one of the above two hypotheses. The 

task is to choose the decision criteria that minimize the likelihood of error. 

The errors associated with the potheses can be  in a decision 

table. Table 2-6 ecision table s of using samp n to make 

decisions about populations. Two errors are possible. A type Ι error occurs when the 

decision is made that the specimen is inhomogeneous even though the specimen is 

homogeneous; in this case, the sample information failed to reflect the true condition of 

the specimen. The probability of making this type of error is typically referred to as the 

level of significance, which is denoted as α. 

The second type of error occurs when the sample information leads erroneously to 

the conclusion that the specimen is homogeneous, when, in fact, it is not. The probability 

of this type of error is usually denoted as β. 

The two types of errors are not independent. While the best decisions are made 

when both errors are small, it is unfortunate that, when the decision is made to reduce the 

probability of one type of error, the probability of the other type is made larger. 

ters of the distributions, the hypotheses will be statements formulated to indicate 

the absence or present of differences. The first hypothesis that is the null hypothesis (Ho) 

and the second hypothesis that is the alternat

: 

Ho: The difference does not exist 

HA: The difference does exist 

k

 above hy  expressed

shows a d  in term le informatio
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Table 2-6. Decision table for hypothesis testing (McCuen 1985) 

 
Population 

 

 

 
Ho is true 

 
HA is true 

Accept H Correct Type ΙΙ error: 
o  Incorrect decision 

Sa
m

pl
e 

 

A

Type Ι error: 

 
Accept H Incorrect decision Correct 

 

Therefore, the decision criterion should be selected to yield acceptable values of 

both α and β. The only way to simultaneously reduce both α and β is to increase the 

sample size, but an increase in both time and cost is associated with increasing the sample 

size (McCuen 1985). 

 Heltshe and Ritchey (1984) evaluated various quadrat methods for different 

population sizes by monitoring the probability of type I errors. They found poor control 

over the probability of type I error when very large quadrats and consequently small 

sample sizes are used. Given a fixed total sampling area, they suggest that taking many 

small quadrats is better than taking a few large ones. For all population sizes, except for 

the lowest population size, use of many small quadrats resulted in the α-level less than 

2.8.3 

 

 

the nominal level of 0.05. 

Power of a Statistical Test 

In making statistical decisions, it is a general practice to select a level of

significance α and essentially ignore the magnitude of the type ΙΙ error. However, the

type ΙΙ error is a measure of the quality of the test. Subtracting the value of β from 1.0 

gives the power of the test, i.e., power = 1- β. The power of the test is useful for 
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comparing alternative tests. The test with the highest power for a given level of 

significance is generally preferred. Heltshe and Ritchey (1984) have investigated two 

quadrat sampling procedures by comparing the power of the two test statistics. On the

basis of their simulation studies they found that one test is more powerful in detecting 

regularity a

 

nd the other test is more powerful in detecting loose clumps. Diggle et al. 

(1976) 

nd 

ogeneous specimens is hypothesized 

to be di

 

 

track 

 performance of the material might also be 

greatly dependent on the type of mechanical testing that is being applied. If the test is 

sensitive to the distribution of aggregates, it will measure different properties when a 

have evaluated the power of the various distance methods against extreme 

aggregated and regular spatial point patterns using the Monte Carlo simulation. He fou

that T-square test statistic is more powerful than the rest of test statistics. Holgate (1965) 

considers the power of various distance methods against a lattice of clusters. 

2.9 MECHANICAL PROPERTIES 

The mechanical response of vertically inhom

fferent from the response of homogeneous specimens since each of the 

coarse-graded and fine-graded portions of the specimen have been shown to behave

differently. Khedaywi and White (1994) showed shorter fatigue life of the coarse-graded

and higher rutting susceptibility of the fine-graded mixtures compared to the well-graded 

mixtures. Williams et al., (1996) have shown a 70% decrease in the resistance of the 

material to failure of both fine-graded and coarse-graded mixtures tested in a wheel-

device. However, one cannot speculate about the performance of an inhomogeneous 

specimen that consists of both coarse graded and fine graded mixtures based on these 

findings.  

The influence of inhomogeneity on the
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specim

ts 

e 

rser 

ave 

 tall 

irst, 

hird, 

ted 

en is homogeneous than when it is not. In this case, care should be taken to 

prepare the specimen to be as homogeneous as possible. On the other hand, a test that is 

insensitive to the distribution of the mixture components, would measure some overall 

property that is indifferent to the local flaws.  

The main objective of this study is to determine whether a relationship exis

between the aggregate distribution and the engineering properties of the laboratory 

prepared specimens. Therefore, it is essential to select a mechanical test method that is 

sensitive to the aggregate-asphalt structure. This requires that the test specimens includ

the type of inhomogeneity that is intended to be measured. For example, the simple 

performance tester cannot measure the effect of radial inhomogeneity since the test 

requires a 100-mm core from the middle of the gyratory specimen where the coa

gradation at the periphery of the specimen has been removed. Similarly, the Superp

shear tester cannot measure vertical inhomogeneity since the test specimen is not

enough to represent vertical inhomogeneity.  

 In addition to the specimen size and shape requirement, the mechanical test 

should have several characteristics in order to be recognized as an appropriate test. F

the test should be able to mobilize the aggregates by applying a repetitive load either in 

the elastic range (modulus tests) or exceeding the elastic tolerance of the material 

(permanent deformation tests). Second, the test configuration should be such that 

aggregates exhibit high involvement in resisting the load. For example, in the shearing 

mode of testing the aggregates are greatly involved in resisting the applied stress. T

the variability in the produced data should not be related to the test configuration. For 

example, the high variability in the resilient modulus indirect tensile test has been rela
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to the test configuration and fixture setup. Therefore, resilient modulus test will not 

indicate the variability due to various aggregate structures. Based on the above 

information, the compression mode of loading for measuring the effect of vertical 

inhomogeneity and the shear mode of loading for measuring the effect of radial 

inhomogeneity are selected for this research.  

The use of both compression and shear mode of loading for the measurement of 

odulus 

with the changes in position of aggregates 

Masad and Tashman (2001) have used shear mode of loading for detection of the changes 

as a result of changes in relative internal positioning of the aggregates. In the following 

simple performance tests and the Superpave 

shear tests will be explained.  

2.9.1 Simple Performance Tests 

 

ition 

the effect of aggregate structure can be found in several occasions in the literature. 

Witczak et al. (1999) subjected fine and coarse graded specimens with different height to 

diameter ratios to set of simple performance tests to investigate the changes in m

relative to the boundary of the specimens. 

in the mechanical responses of hot mix asphalt specimens with the change in their 

internal structure as a result of the changes in compaction efforts. Romero and Masad 

(2000) applied shear load to the specimens with different aggregate size to specimen 

dimension ratio to detect the changes in the variability of the measured shear properties 

sections the methods and application of the 

The common tests for determining the behavior of hot mix asphalt in compression

loading are Simple Performance Tests (SPT). The Simple Performance Tests, in add

to characterizing the constitutive behavior of the asphalt-aggregate mixture, evaluates the 

performance of the material in permanent deformation.  
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Three types of tests can be conducted using SPT; the dynamic modulus (E*

repeated shear Flow Number test (FN), and the static flow time test (FT). The first two 

tests are mostly used in research and are also found applicable in this study. The dynam

modulus determines the relationship between the stress and strain for the asphalt materia

in the linear visco-elastic range. The Flow Number test is used for determining the 

performance-based properties of asphalt mix, i.e., permanent deformation estimation an

the number of cycles to failure. A schematic diagram of the simple performance tester is 

shown in Figure 2-7. 

), the 

ic 

l 

d 

2.9.1.1 Testing Procedures 

Dynamic Modulus- The standard method for performing the Dynamic Modulus 

(E*) tes

gle of 

g 

esulting recoverable axial strain response of the 

specim  

y 

n 

t is provided in the AASHTO standard TP 62-03 (2003) test procedure and 

NCHRP report 465 (2003). The test determines the dynamic modulus and phase an

asphalt concrete mixtures over a range of temperatures and loading frequencies. A 

sinusoidal (haversine) axial compressive stress is applied to a specimen of asphalt 

concrete in the linear viscoelastic range of the material at a given temperature and loadin

frequency. The applied stress and the r

en is measured and used to calculate the dynamic modulus and phase angle. The

dynamic modulus is computed by dividing the maximum (peak-to-peak) axial stress b

the recoverable (peak-to-peak) axial strain. The phase angle (ϕ) is the angle in degrees 

between a sinusoidal applied (peak-to-peak) stress and the resulting (peak to peak) strai

in a controlled-stress test. 
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Axial

LVDT
Specimen

Greased Double Membrane Hardened Steel Disks

 

Figure 2-7. General schematic diagram of the Simple Performance Tester 

Hz and stress levels up to 2800 kPa 

(400 ps r a 

h linear 

 

 

The dynamic modulus test system consists of a testing machine, environmental 

chamber, and measuring system. The testing machine is a servo-hydraulic testing 

machine, which produces a controlled haversine compressive loading. The testing 

machine applies a range of frequencies from 0.1 to 25 

i). The environmental chamber controls the temperature of the specimen ove

temperature range from –10 to 60°C.  

The measurement system measures and records the time history of the applied 

load, and the axial deformations. The load is measured with an electronic load cell in 

contact with one of the specimen caps. The axial deformations are measured wit

variable differential transformers (LVDT) mounted between gauge points glued to the

specimen as shown in Figure 2-8. The deformations are measured at three locations
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located 120° apart. The gauge length for measuring axial deformations is 100 mm, which 

is the d n the the s for mounting the LVDTs.  i tweestance be  centers of glued stud

 

d = GL
 

0.25 d  

0.25 d  

d

 

Figure 2-8. General schematic of gauge points  

 

s 100 mm.  

The average height of the test specimen is 150 mm, which cut from 170 mm high 

specimens compacted to the desired air void content.  

T

at loading frequencies of 0.1, 0.5, 1.0, 5, 10, and 25 Hz at each temperature. The 

specim e load is 

 25 Hz to 0.1 Hz. At the beginning 

of testing, the specimen is precondition w

corresponding to Table 2-7. Then the specimen is loaded as specified in Table 2-8. A 

0 minutes. The 

dynamic load should be adjusted to obtain axial strains between 50 and 150 microstrain. 

Dynamic modulus testing is performed on test specimens cored from the center of

gyratory compacted mixtures. The average diameter of the test specimens i

he recommended test series consists of testing at –10, 4.4, 21.1, 37.8, and 

54.4°C 

en is tested from lowest to highest temperature and at each temperature th

applied from highest to lowest frequency; that is from

ith 200 cycles at 25 Hz at stress level 

typical rest period between each frequency run is between two to 3
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Table 2

Range, psi 

-7. Typical dynamic stress levels 

Temperature, °C (°F) Range, kPa 
–10 (14) 1400–2800 200–400 
4.4 (40) 700–1400 100–200 
21.1 (70) 350–700 50–100 

37.8 (100) 140–250 20–50 
54.4 (130) 35–70 5–10 

 

ycles for dynamic modulus test sequence 

Frequency (Hz) Number of Cycles 

Table 2-8. Number of c

25 200 
10 200 
5 100 
1 20 

0.5 15 
0.1 15 

 

The dynamic modulus for each test condition is determined using the average 

amplitu ed 

o

de of the sinusoidal load from the load cell and the average deformation measur

from each axial LVDT over the last five loading cycles. Over the last five loading cycles 

and for each test condition, the loading stress, σ , is computed as follows: 

o A
σ =        (2-9) 

where 

P

P  is the average peak load, A is the area of specimen, and σo is the average peak

stress. 

 

Over the last five loading cycles and for each test condition, the average 

recoverable axial strain, εo, is computed as follows: 

o GL
∆

where 

ε =        (2-10) 

∆  is the average peak deformation, GL is the gage length.. 
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Over the last five loading cycles and for each test condition, the dynamic 

modulus, |E*| is computed as follows: 

* o

o

E σ
ε

=        (2-11) 

Over the last five loading cycles and for each test condition, the phase angle is 

calculated as follows: 

*360lt
t

φ =        (2-12) 
p

where tl is the average lag time between a cycle of stress and strain (sec), tp is the average 

time for a stress cycle (sec), and φ is the phase angle (degree). The average dynamic 

modulus and phase angle are calculated from the results of three LVDTs.  

Flow Number Test- This test is a simple performance test for measurement of 

permanent deformation based on repeated axial load test on asphalt concrete mixtures. 

The standard method for performing the flow number (FN) test is provided in NCHRP 

5 s a loading cycle of 1.0 second in duration, which 

consists of applying 0.1-second haversine load followed by 0.9-second rest period. The 

test is conducted at a single effective temperature, T , and the design stress level. The 

test is performed for duration of 10,000 load cycles.  

 The recorded data during the test are the applied load and the axial deflections 

measured from actuator LVDT. To determine the flow number, the plastic deformation is 

measured from the LVDT for the specified cycles. The average deformation values are 

), mm/mm by dividing them by the length of the 

specim

er of 

report 46 (2002). The procedure use

eff

converted to total axial strain (εTa

en, which is 150 mm. The plastic strains are summed to obtain the cumulative 

axial permanent strain. The cumulative axial permanent strain is plotted versus numb
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loading cycles in log space. The flow number of repetitions is viewed as the lowest point 

in the curve of rate of change in axial strain versus number of loading cycles. The rate of 

change of axial strain versus number of loading cycles is plotted and flow number (FN) is 

estimated where a minimum or a zero slope is observed.  

The accuracy of the SPT result is measured by the evaluation of the variability of 

the data from replicate samples. Although, the variability in SPT data has been 

documented to be in the acceptable range, on occasional basis a high amount of 

variability has been observed in the results of SPT. The source of the variability is not 

believed to be from the testing equipment or testing configuration, but from the stru

2.9.1.2 Accuracy of Tests 

ctural 

characteristics of the specimen. Therefore, E* and FN tests might be sensitive to 

inhomogeneity that is found in the laboratory prepared specimens. 

2.9.1.3 Effect of Inhomogeneity 

ve 

 

2.9.2 Superpave Shear Tests 

The common test for determining the shear behavior of hot mix asphalt can be 

conducted using a simple shear test device (Superpave Shear Tester-SST). The SST 

The effect of inhomogeneity on compressive properties of hot mix asphalt has not 

been studied in a systematic manner. However, variability in the measured compressi

properties of the laboratory prepared specimen has been traditionally related to the 

arrangement of the aggregates, specifically arrangement of the coarse aggregates in the

direction of the applied load and within the LVDT gage points. 
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device in addition to characterizing the constitutive behavior of asphalt-aggregate mixture 

y test for the evaluation of the mechanical 

performance of the hot mix asphalt. The description of the components of a shear test 

device is provided in the AASHTO standard TP7-94 test procedure. A shear test system 

consists of a loading device, specimen deformation measurement equipment, an 

environmental chamber, and a data acquisition system. The loading device consists of 

two hydraulic actuators, which simultaneously apply both vertical and horizontal loads to 

a specimen. Figure 2-9 shows a Superpave shear tester equipment. Several kinds of shear 

tests can be conducted using the SST device. The two types of shear tests that are mostly 

used in research and are found applicable for this research are the frequency sweep test at 

a constant height (FSCH) and the repeated shear test at a constant height (RSCH). 

e 

men 

DTs. The axial deformation from platen to 

platen is measured using a vertical LV

measure shear deform

specimen between two points at least 40mm apart. The assembled system is then placed 

and kept in an environmental chamber 

is one of the devices considered as a laborator

2.9.2.1 Testing Procedures 

The standard method for performing the FSCH and RSCH tests is provided in th

AASHTO standard TP7-94 test procedure. The standard method requires that the SST 

specimens be cut into 50mm thickness, 150-mm diameter circular disks after making the 

bulk specific gravity measurements and determining the air voids of hot mix asphalt 

specimens. The samples are glued to two parallel aluminum platens. The platen-speci

assembly is equipped with two vertical LV

DT attached vertically between the two platens. To 

ation, the horizontal LVDT is mounted on the side of the test 

for 2 to 4 hours to reach the required temperature.  
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Figure 2-9. Superpave shear tester equipment 

FSCH Test- The FSCH test is a strain-controlled test for determining the 

avior of the asphalt mixture (shear stiffness). During the test the height of 

eld c stant by controlling the vertical actuator from a LVDT that 

tical displacement. The horizontal actuator is controlled from an LVDT 

 that measures the shear deformation. The shear 

rder for the mixture to behave 

 test is performed by applying a constant static vertical 

strain a

est 

tudy. 

stress-strain beh

the specimen is h on

measures the ver

that is mounted directly on the specimen

strain should not exceed 0.0001 mm/mm (100 micron) in o

as a linear elastic material. The

nd a sinusoidal shear (horizontal) strain with peak amplitude of approximately 0.5 

µm/mm at each of the cycle and frequency specified in Table 2-9. A frequency sweep t

is usually conducted at 4, 20, and 40°C. However, to improve the detection of the effect 

of aggregate distribution, the high temperature will be increased to 50°C for this s

Recorded data for the test is the axial deformation, the shear deformation, the axial load, 

the shear load, and the phase angle. The phase angle (ϕ) is the angle in degrees between a 
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sinusoidal applied shear strain and the resulting shear stress. The axial and shear stres

the shear strain, and the shear modulus are calculated using the data obtained during 

FSCH test using the following formulas:  

s, 

 
P

Aσ =
      (2-13)

 
V

Aτ =
      (2-14) 

 2d
δε =

      (2-15) 

*G τ
 ε=

6)       (2-1

Table 2-9. Number of cycles for the FSCH test sequence 

Frequency  
(Hz) 

Number of  
Cycles 

10 50 
5 50 
2 20 
1 20 

0.5 7 
0.2 7 
0.1 7 

0.05 4 
0.02 4 
0.01 4 

 

where, 

σ

ε = shear strain 

 = stress along the vertical axis, 

P = load applied along the vertical axis 

A = cross-sectional area of the specimen 

τ= shear stress 

V = shear force  
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δ = displacement in the shear direction 

d = distance along which shear deformation is measured  

G* = complex shear modulus  

RSCH Test- The RSCH test is a stress-controlled test and is used for determining

the performance-based properties of asphalt mixture, i

 

.e., rut depth estimation and the 

umber of cycles to failure. During the test the height of the specimen is kept constant by 

controlling the vertical actuator and the magnitude of shear load is controlled by 

horizontal actuator. The test cycle duration is 0.7 sec consisting of the application of a 0.1 

sec haversine load followed by a 0.6 sec rest period. The repeated shear test has a 

duration of 5000 load cycles or until the permanent accumulated deformation strain 

reaches a level of 5 percent. The test is conducted at a single effective temperature, Teff, 

and the design stress level. The recorded data from the test are the axial load, the shear 

load, and the displacement in the shear direction. From the data recorded, the axial stress, 

shear stress and shear strain are computed using Equations (2-13) through (2-15). 

2.9.2.2 Accuracy of Tests 

The accuracy of the SST tester is measured by the variability of the data from 

replicate samples. The amount of variability in the shear test data is within acceptable 

range, with typical CV values of less than 15%; however, on an occasional basis, a high 

amount of variability has been observed in the results of SST. The source of the 

variability has not been related to the testing equipment or testing configuration, but to 

the structural characteristics of the specimens. Therefore, the shear test can be a good 

n
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candidate for examining the effect of inhomogeneity of the laboratory prepared 

specimens. 

eity 

ot been 

ties 

s of 

 

2.9.2.3 Effect of Inhomogen

The effect of inhomogeneity on shear properties of hot mix asphalt has n

studied in a systematic manner. However, the variability in the measured shear proper

of the laboratory prepared specimen has been traditionally related to the arrangement

the aggregates (Romero and Anderson 1999). Tashman and Masad (2001) investigated 

the relationship between the internal structure of asphalt mixtures and their shear 

properties. In most parts they found correlations between the results of aggregate 

distribution analysis and mechanical behavior of the asphalt mixture specimens. Harvey 

et al. (1994) have also studied the effect of aggregate and air structure, which was caused 

by various laboratory compaction methods, using the simple shear test.  However, a 

concluding remark regarding the result of simple shear test could not be made due to the

problems with the air-void content measurements.     
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CHAPTER 3 - SIMULATION OF HOMOGENEOUS AND 

3.1 INTRODUCTION 

required. Computer simulation offers the capability to analyze alternative indices of 

preparation of specimens in the laboratory. Simulation 

enables the development and analysis of both homogeneously configured specimens and 

specimens intentionally configured to be 

can be quickly generated, such that each of the generated specimens will have the design 

ll differ 

cal 

. The exposed 

2-dimensional face can then be analyzed for homogeneity by examining the distribution 

of the circular faces of particles. This provides a more realistic representation of the 

aggregate cross-section than when two-dimensional slice faces are simulated, which 

requires deduction of probability distribution of the circular cross-section from the 

distribution of the spheres (Taylor 1983; Hanisch and Stoyan 198

Wilkinson 1980; Tallis 1970). Figure 3-1 shows schematic diagrams of the simulated 

homogeneous, vertically inhomogeneous, and radially inhomogeneous specimens.  

 

 

 

INHOMOGENEOUS SPECIMENS 

Assembling hot-mix asphalt specimens in the laboratory is costly, time 

consuming, and somewhat imprecise, especially when a large number of samples are 

homogeneity without requiring 

inhomogeneous. A large number of specimens 

gradation and homogeneity characteristics of actual specimens. The specimens wi

in the specific location of the aggregates. Computer simulated 3-dimensional cylindri

specimens configured with spherical aggregates can be sliced in any way

1; Edwards and 
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3.2 COMPUTER DEVELOPMENT OF HOMOGENEITY  

a d the 

a p

s a p  

s p

a v ecimen was related 

to the other variables by: 

In order to obtain realistic results, the computer model of a specimen must adhere 

to realistic volume, weight, and packing constraints. The volume of air voids (V ) an

weight fractions of both asphalt (f ) and aggregate (f ) must be specified. The weight of 

the specimen (W ) equals the sum of the weights of asphalt (W ) and aggregate (W ). The

volume of the specimen (V ) equals the sum of the volumes of aggregate (V ), asphalt 

(V ), and air voids (V ). Given these constraints, the weight of the sp

( )

⎥⎦

⎤

⎢⎣

⎡
⎥⎢ +

−
=

p

p

a

vs
s ff

W

γγ

      (3-1) 

in which γ

a

rV 1

respect e of 

a and γp are the specific weights of the asphalt and aggregate particles, 

ively. Defining the volume packing fraction (Pv) as the ratio of the volum

particles to the volume of the specimen yields the following expression: 

Vertically Radially Homogeneous
Inhomogeneous Inhomogeneous
Vertically Radially Homogeneous
Inhomogeneous Inhomogeneous

 

Figure 3-1. Schematic diagram of simulated homogeneous and inhomogeneous specimens 
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Detailed derivations of Equations (3-1) and (3-2) are provided in Appendix A. 

3.2.1 Number of Particles 

To simulate 3-dimensional specimens, it is necessary to determine the number of 

particles in each gradation level of each specimen. In order to compute the number, 

particles were assumed to be spherical. In the actual simulation, diameters across the 

entire range of sieve openings were used. If the number of particles for gradation level i 

is n  and is equal to the ratio of the volume of all particles in the gradation level (Vi) to the 

volume of one particle (

i

vi), then the following relationship applied: 

33333

5.1666
6/

/ ssvisvipipipii
i d

HDPF
d

VPF
d
VF

d
WF

d
W

v
Vn ======

ππγ

2

iiipipii

γ
πγπ

γ
   (3-3) 

in which di is the average particle diameter for level i, Fi is the weight fraction for level i 

of the weight gradation curve, and Ds and Hs are the diameter and height of the specimen, 

respectively. A detailed derivation of Equation (3-3) is provided in Appendix A. 

As indicated by Equation (3-3) the number of particles in a specimen is 

ecimen sizes 

that represent the specimens made in the laboratory were simulated. The first set of 

specimens was simulated with diameters of 100 mm and heights of 150 mm, which is the 

required size for the Simple Performance Tests, SPT (NCHRP, 2002). Specimens of this 

size were made homogeneous and vertically inhomogeneous.  

determined by the dimensions of the specimen (Ds and Hs). Two different sp
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Specimens in the second set were simulated to have diameters of 150 mm and 

h 100 h n w ut i o

mm diameter by 50-mm thick cylindrical d sks, wh ecim

laboratory for th erpav ear Tes T (AASHTO 98). Using Equation (3-3), 

the num determined taking into consideration of the 

height and diame of the lated specimen.  

he smallest aggregate diameter used in simulation is 2.36 mm, because this is 

d in the computation of a number of the indices of 

particles with diameters of 2.36 mm and 4.75 mm 

e particles in the literature and their properties were indicated to 

e effective in the measurement of inhomogeneity (Bryant, 1967; Cross and Brown, 

. The number of particles in each of the 

four class sizes for the two specimen sizes and the properties of the mixtures are provided 

 

eigh s of t  mm. Eac  specime as then c n half horizontally t  provide two 150-

i ich represent the sp ens made in 

e Sup e Sh ts, SS , 19

ber of particles in each class size was 

ter simu

T

the minimum diameter use

homogeneity. On separat occasions, e 

were defined as the coars

b

1993). For the gradations that are used in this study, with a maximum aggregate size of 

19 mm, four class sizes above 2.36 mm were defined. Spherical aggregates in the range 

of 2.36 mm to 19 mm in diameter were simulated

in Table 3-1. 

3.2.2 Diameter of Particles 

For homogeneous specimens, the diameter of each particle was generated in such 

a way that the diameters within each class size were uniformly distributed between the

values of the lower and upper sieve openings. Within each class, the diameter (dj) of jth 

particle was generated randomly according to the equation: 

 1( )j i j i id d u d d+= + −      (3-4)
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Table 3

 

(mm) 

Average 

(mm) 

Percent 

(%) 

Percent 

(%) 

Number of Particles 

150 mm x 100 mm 

Number of Particles 

100 mm x 150 mm 

-1. Number of particles retained in the class sizes above 2.36 mm sieve 

 

Class Size 

di 

Diameter 

Pi

Passing 

Fi 

Retained 

ni

(SST size) 

ni

(SPT size) 

19-12.5 15.8 76.0 24.0 168 112 

12.5-9.5 11 62.0 14.0 288 192 

9.5-4.75 7.1 44.0 17.9 1357 905 

4.75-2.36 3.6 30.1 14.0 8543 5695 

< 2.36   30.1   

 

a 

Asphalt Binder Specific Gravity, γa = 1.02 
 = 0.81 

Percent Air void, AV = 7 % 
Asphalt Weight Fraction, f = 4.85 
Aggregate Weight Fraction, fp = 95.15 
Aggregate Specific Gravity, γp = 2.87 g/m3

Packing Fraction, Pv

 

 through which all of the aggregates passed (upper class size), and 

uj is a uniform random

For homogeneous specime

specim

ocation of the particles in the cylindrical specimen was generated 

in polar coordinates. The use of polar coordinates simplified the simulation such that 

particles did not reside outside of the cylinder. Once each aggregate particle was located 

 

where di is the sieve size on which aggregates are retained (lower class size), di+1 is the 

next largest sieve size

 number between 0 and 1. 

3.2.3 Positioning Particles 

ns, the aggregates were randomly placed within the 

en. The coarse particles were identified first to avoid problems in locating 

particles. The random l

in the specimen, the polar coordinates were converted to rectangular coordinates to
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simplify the assessment of the indices of homogeneity. Figure 3-2 shows the polar and 

rectangular coordinates of a particle in a cylindrical specimen. 

For a homogeneously configured aggregate structure, the individual particles w

assigned a random location. Using a constant-slope transformation curve, three random 

uniform numbers (u

ere 

rent parameters: a radial coordinate 

(ri), an angular coordinate (θi), and  

position to the particle centroid, the following expression was used:  

i) were transformed to three diffe

 a vertical coordinate (h ). To randomly assign a radiali

2
i

s iu− ⎟
⎠

       (3-5)  i
dr R⎛ ⎞= ⎜

⎝

 r e centroid from the vertical centroid axis; Rs is 

the rad

where i is the radial distance of the particl

ius of the specimen, which is equal to 75 mm for SST sized specimens and 50 mm 

for SPT sized specimens; di is the diameter of the particle; and ui is a random number 

between 0 and 1. 

x

h

θ
r

Y

x

h

θ
r

Y

 

Figure 3-2. Rectangular (x, y, h) and polar (θ, r, h) coordinates of a particle in a three-
dimensional cylinder 
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To determine the angular position, θi, of a centroid between 0° and 360° the 

following equation was used: 

360i i        (3-6) uθ °=

To randomly assign a ver

expression was used:  

tical position to a particle centroid, the following 

( )2
i

i s i i
dh H d u= + −      (3-7)  

where hi is the vertical position of the particle centroid and Hs is the height of the 

specimen, which is equal to 100 mm for SST specimens and 150 mm for SPT specimens. 

dom numbers to any 

rand cal position within the specimen.  

he 

Equations (3-5) through (3-7) ensured transforming the uniform ran

om radial, angular, and verti

The x and y coordinates of the particles were computed from the original polar 

coordinates ri and θi (Equations (3-5) and (3-6)) and the z coordinate was the same as t

vertical position of the particle, hi (Equation (3-7)): 

cosi i ix r θ=        (3-8) 

siny ri i iθ=        (3

(3-10) 

3.2.4 Verification of Particle Overlap 

Once the coordinates of a particle were determined, it was necessary to sho

the new particle did not overlap with any of the particles already parked. The proc

locating the particles, which is called

-9)

        

w that 

ess of 

 “parking”, continued until all particles were placed 

within the boundaries of the specimen. In order to verify the process, the distance 

between the centroid of the new particle and the centroid of every particle already parked 

i iz h=
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was computed. The distance between any two centroids must be greater than the 

summation of the radii of the two particles.  

To compute the distance between any two centroids, the rectangular coordinates 

of the centroids were used. Knowing the rectangular coordinates of the aggregate 

centroids, the distance between any two centroids (D) could be computed and compared 

with the summation of the two aggregate radii:  

2 2 2D x y z= + +       (3-11) 

where D is the distance between the centroid of a new particle and the centroid of an 

already parked particle, and the x, y, and z coordinates were defined as follows: 

2 1x x x= −        (3-12) 

       (3-13) 

       (3-14) 

3.3 COMPUTER DEVELOPMENT OF VERTICAL 

ogeneous specimen is defined as a specimen that has changes 

in grad

ls 

2 1

2 1

where x2, y2, and z2 are rectangular coordinates of the new particle and x1, y1, and z1 are 

the rectangular coordinates of the already parked particle, which were computed from 

Equations (3-8) through (3-10).  

INHOMOGENEITY  

A vertically inhom

y y y= −

z z z= −

ation throughout its height; however, the total gradation of the specimen is the 

same as that of a homogeneous specimen. Depending on the process of mixing and 

compaction, the vertical change in the gradation could occur in various levels. Two leve

of inhomogeneity are defined here. First, a specimen can be inhomogeneous in two 
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layers: coarser and finer. The two-layer inhomogeneity represents abrupt inhomogeneity. 

Second, vertical inhomogeneity may be separated into three gradations: coarse, medium, 

and fine. The three-layer inhomogeneity is intended to reflect gradual inhomogeneity. 

Both the abrupt and gradual forms of inhomogeneity in two and three layers wer

computer simulated. The following sections provide the information required for 

simulating each of these conditions. 

distinct gradations, one for each of the two layers. The specimens had a coarser gradation 

in the lower portion and a finer gradation in the upper portion. This would 

e 

3.3.1 Abrupt Vertical Inhomogeneity  

For abrupt vertical inhomogeneity, the design gradation was used to form two 

represent the 

e separated from the fine aggregates in the 

process of the mixture being transferred into the mold. In order to simulate the vertical 

inhomogene

3.3.1.1 Gradation of the Layers 

rser and a finer gradation, placed in 

the lower and upper layers of an abrupt vertically inhomogeneous specimen. A sieve that 

separates the weight of the dry aggregates into about 50% above and 50% below the 

sieve was identified. This sieve served as the demarcation between the coarse and fine 

aggregates (Khedaywi and White, 1994). For this study, the #4 sieve, which has a 4.75-

mm opening, separated the aggregates by weight into 56% above and 44% below the 

situation wherein the coarse aggregates becom

ity in two layers, the gradations of the layers, the number of particles in each 

layer, the volume of the layers, and the position of the particles within each layer were 

determined. 

The design gradation was used to create a coa
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sieve. The two gradations were referred to as the “very coarse” and the “very fine” 

gradations (Figure 3-3).  

The next step of the process involves combining different percentages of the very 

coarse and the very fine gradations to create two gradations that are placed in the lower 

and the upper portions of the specimen. Blending of 25% of the particles from the very 

fine gradation with 75% of the particles from the very coarse gradation provided the 

gradation for the lower portion of the specimen. The gradation at the lower portion is 

referred to as the “coarser” gradation. To create the gradation for the upper portion of the 

specimen, 75% of the particles in the very fine gradation were blended with 25% of the 

particles in the very coarse gradation (Figure 3-4). The gradation at the upper portion is 

cted based on the 

ly the bottom layer. If the bottom 

layer were made too coarse, the aggregates would not hold and the mixture would fall 

apart. Mo  maximize the difference between gradations in order 

to ensure that the indices would detect the created inhomogeneity and to enable the 

selecte chanical test to t the effect of in material response. The 

design, the coarser, and the finer gradations are provided in Table 3-2. 

.3.1.2 mber of Partic n the Layers 

referred to as the “finer” gradation. The percentages were sele

workability of the mixtures in each layer, particular

reover, it was necessary to

d me  detec homogeneity on 

3  Nu les i

The number of particles in the coarser and finer gradations was obtained by 

blending the required percentages of the number of aggregates from the very coarse and 

very fine gradations. The number of particles of the coarser and finer gradations, based 

on the selected percentages of the very coarse and very fine gradations, is provided in  
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Passing Sieve #4Retained Sieve #4 Passing Sieve #4Retained Sieve #4

 

Figure 3-3. “Very coarse” and “very fine” gradations 

 

75% + 25% = Coarser

25% + 75% = Finer

Very coarse Very Fine

Very coarse Very Fine

75% + 25% = Coarser

25% + 75% = Finer

Very coarse Very Fine

Very coarse Very Fine

 

Figure 3-4. Proportioning of the coarser and finer gradations  
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Table 3-2. The design, coarser, and finer gradations 

% Passing  
Sieve Size (mm) Design Aggregate 

Gradation 
Coarser Aggregate 

Gradations 
Finer Aggregate 

Gradation 
19 100.0 100 1.0 00.0 

12.5 76. 0 66.0 87.2 
9.5 62.0 46.2 79.8 

4.75 44.1 20.8 70.3 
2.36 30.1 14.2 48.0 
1.18 22.3 10.5 35.5 
0.6 15.7 7.4 25.0 
0.3 10.2 4.8 16.3 

0.15 7.1 3.4 11.3 
0.075 4.9 2.3 7.8 

 

Table 3-3. The number of aggregates in the design gradation (Column 4) that are above 

umn 4 that 

n 

 

en, the 

 

 

f the volume of aggregates in a homogeneous 

sieve #4 represent the very coarse aggregates. The number of aggregates in col

are below sieve #4 represent the very fine aggregates. Multiplying the number of particles 

in the very coarse gradation by 0.75 and multiplying the number of particles in the very 

fine gradation by 0.25 provided the aggregate numbers in the coarser gradation (Colum

2). Multiplying the number of particles in the very coarse gradation by 0.25 and 

multiplying the number of particles in the very fine gradation by 0.75 provided the

numbers in the finer gradation (Column 3). 

3.3.1.3 Volume of the Layers 

In order to position the particles in the appropriate portion of the specim

volumes of coarser and finer mixtures were determined. The volumes of the mixtures in 

the lower and upper portions were computed using volumes of the aggregates, air voids,

and asphalt binder in each portion. The volume of the aggregates in each portion was 

determined by summing the volume of individual particles in that portion. Table 3-4

shows the calculation o
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Table 3-3. Number of particles in the lower and upper portions of a two-layered vertically 
inhomogeneous specimen 

(1) 
 Size

(mm) 

C
G  

(Low n) 

(3) 
F  Gradatio

ortio

(4) 
Design Gr tion 

(Homoge us 
Specimen) 

Class  

(2) 
oarser 

radation
er Portio

iner n 
n(Upper P ) 

ada
neo

19-12.5 28 1184 2 

12.5-9.5 48 1 144 92 

9.4-4.7 6 4 679 22 905 

4.75-2 1 .36 1424 427 5695 

 

specim e of aggregates in the coarser and finer portions of an 

inhomogeneous specimen. The volume of each particle was based on the assumption that 

it was spherical. To compute the volume of aggregates in each class size, the number of 

 specific surface area 

calculations (Kandhal et al. 1997; Ch

a 

study by Khedaywi and White (1994

l 

ns, 

ach 

ortion to the total volume of the specimen. The height of the coarser mixture was 

computed as follows: 

en and the volum

particles in that class size was multiplied by the volume of an individual particle. The 

total volume of the aggregates equaled the summation of the volumes of aggregates in all 

class sizes. The asphalt binder contents were estimated from

ristensen 2001). The computational details are 

provided in Appendix B. The air void content was estimated based on the results of 

) and the measurements made on trial specimens 

prepared in the laboratory as part of this study. Table 3-5 provides the volume 

percentages occupied by the aggregates, air voids, and asphalt binder, along with the tota

volume of the coarser and finer mixtures. The heights of the coarser and finer portio

which are also provided in Table 3-5, were obtained using the ratio of the volume of e

p
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Table 3-4. Calculation of the ratio of the volume of the specimen occupied by the aggregates 
where ni is the number of aggregates in various class sizes  

ne r  Homoge ous Coarse Finer 

Class Size n  Volume 
(m ni 

Volume 
(mm3) ni 

Volume 
(mm3) (mm) i m3)  

19-12.5 11 9  84 172251 28 57417 2 22 668  
1 1 133 10048 48 33493 2.5-9.5 92 973 144 
9.5-4.74 905 171294 678 128470 226 42824 

4.75-2.36 5 133 14 33493 4271 10048 695 973 24  
2.36-1.18 25708 74642 6427 18661 19281 55982 
1.18-0.6 171105 63159 42776 15790 128329 47370 
0.6-0.3 1103101 52632 275775 13158 827326 39474 
0.3-0. 5 4973981 29661 5 1243495 7416 3730486 22249 

0.15-0 75 28239378 2105.0 3 7059845 5263 21179534 15790 
<0.075 212276689 46891 53069172 11723 159207517 35168 
To 50244 tal 246796866 956949 61699821 506704 185097045 4

Pack
Fraction (P ) 382 ing 

v
 0.812  0.430  0.

 

2

2
c s c

s s s

V R H
V R H

π
π

where Vc is the volume of th

0.528= =       (3-15) 

e coarser mixture, Vs is the volume of the specimen, Rs is the 

radius 

(3-16) 

Substit

-17) 

f  

of the specimen, Hc is the height of the coarser mixture, and Hs is the height of the 

specimen. Removing the like terms and rearranging yields: 

sc HH 528.0=       

uting for Hs, which is 150 mm, determined the height of the coarse mixture: 

79.2cH mm=        (3

Subtracting the height of the coarser mixture from the total height of the specimen 

yielded the height of the finer mixture, H , which is 70.8 mm. Therefore, in simulating a

two-layer vertically inhomogeneous specimen, the separation line between the two 

gradations was located at a height of 79.2 mm from the bottom of the specimen. 
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Table 3

Aggregates Air Void Asphalt Binder Volume 
ght 

(mm) 

-5. Percent volume of the specimen occupied by the mixture components 

Mixtures Percent Percent Percent Percent Hei

Coarser 43.0 5.5 4.3 52.8 79.2 

Finer 38.2 1.5 7.5 47.2 70.8 

Homogeneous 81.2 7.0 11.8 100 150 

 

3.3.1.4 

In a homogeneous specimen, each particle has an equal chance of being in any 

portion of the specimen. On the other hand, in specimens with two-layer vertical 

inhomogeneity, the large particles have a higher probability of being located in the 

bottom portion and the smaller particles have a higher probability of being located in the 

top portion of a specimen.  

In simulating homogeneous specimens, the coarse particles were placed first, with 

the same probability of being at any point of the specimen. Fine particles were then 

randomly positioned to fill up the empty spaces between the coarse particles. 

In simulating abrupt inhomogeneity, coarse particles were placed first. Coarse 

particles could reside anywhere in the specimen but had a 75% probability of being 

within 79.2 mm from the bottom and a 25% probability of being within 70.8 mm from 

the top of the bottom layer. The fine particles were then placed in the spaces that were 

available between the coarse particles with a 25% probability of being within 79.2 mm 

from the bottom of the specimen and a 75% probability of being within 70.8 mm from 

the top of the bottom layer.  

Positioning the Particles 
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To place particles of the coarser and finer gradations in the bottom and in the top 

portions of a specimen, a series of transformation curves were used to transform a 

random number between 0 and 1 to the vertical, radial, and angular coordinates of a

random position. Equations (3-5) and (3-6) made placement of particles of the coarse

and finer gradations possible anywhere along a radius of the specimen and at any angu

position betwe

 

r 

lar 

en 0° and 360°.  

 for the vertical positioning of the 

particles, tw

 

d 

adations were placed in different lifts into 

the gyratory mold and the compaction process blended the two gradations in the vicinity 

yers. Therefore, a clear separation line between the 

gradations was not enforced in the s

uniform random numbers associated with fine particles to a location along the height of 

the specimen in such a way that 75% of the particles were placed in the top 47.2% and 

In developing the transformation curves

o conditions were satisfied. First, the particles were allowed to occupy any 

vertical position, with different probabilities associated to each layer of the specimen. 

Second, the aggregates were not forced to reside entirely within the boundary of the two

mixtures and as much as half of the volume of each particle was allowed to reside in the 

adjacent mixture. These were intended to mimic the condition in a laboratory compacte

specimen. In the laboratory coarser and finer gr

of the borderline between the two la

imulated specimens, as seen in the laboratory.  

Considering the two conditions above, a second-order transformation curve was 

used to convert the uniform random numbers associated with the coarse aggregates to a 

random location along the height of the specimen in such a way that 25% of the particles 

were located in the top 47.2% and 75% were located in the bottom 52.8% of the 

specimen volume. Likewise, a second-order transformation curve was used to convert the 
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25% were placed in the bottom 52.8% of the volume of the specimen. Table 3-6 provides 

the tra or determi  of particles with resp  

height of the specimen. Figure 3-5 shows the plot of the transformation curves f

po coarse and the fine particles in homogeneous and inho ogene

specimens. The detailed derivation of Equations (3-18) through (3-20) is provided in 

Ap

.3.2 Gradual Vertical Inhomogeneity  

e 

3.3.2.1 Gradation of the Layers 

 used to create the 

coarse, fine, and the average gradations that were placed in the bottom, top, and the 

n, respectively. The 

procedure included the separation of the original gra ery 

fine gradations, followed by blending of various percentages of very co e and the very 

fine g te the gradations of e layers. 

nsformation equations f ning the location ect to the

or 

sitioning of the m ous 

pendix C. 

3

Simulated specimens are separated into three layers to reflect gradual 

inhomogeneity, with the coarse particles near the bottom and the fine particles near the 

top of the specimen. The design gradation is used to form three distinct gradations, on

for each layer. To simulate gradual vertical inhomogeneity, the gradations of the layers, 

the number of particles in each layer, the volume of the layers, and the position of the 

particles within each layer were determined. 

The design gradation of the homogeneous specimens was

middle layers of a gradual vertically inhomogeneous specime

dation into the very coarse and v

ars

radations to crea  the thre
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Table 3-6. Transformation equations for assigning a vertical position (hi) to the particles in

Particles Transformation  Equat

 
a homogeneous and in an abrupt two-layered vertically inhomogeneous specimen 

Equation 
ion 

Number 
Homogeneous 

(150 ) 2
idh d u= − +  

(3-18) 
i i i

Inhomogeneous 
 (Coarse Particles)  

2(177.6 1.33 ) (27.6 0.33 ) / 2i i i i i ih d u d u d= − − − +  (3-19) 

Inhomogeneous  

 

2( 222.4 1.33 ) (372.4 2.33 ) / 2i i i i i ih d u d u d= − + + − +  (3-20) 
(Fine Particles) 

 

To separate the design gradation into very coarse and very fine gradations, the 

procedure in Section 3.3.1.1 was followed. Varying proportions of the very coarse and 

radations for the three layers. Table 3-7 

provides the percentages of the very coarse and very fine gradations that were blended to 

create the gradations of the three layers. The coarse gradation that was used in the bottom 

portion of the specimen was made by blending 15% from the very fine and 52% from the  

very fine gradations were used to create the g
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Figure 3-5. Transformation curves for vertical positioning of particles in a homogeneous 
and in an abrupt two-layered vertically inhomogeneous specimen 
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Table 3-7. Percentages of the very coarse and the very fine gradations to make gradations of 
th  a three erticall ogeneous men 

t of  
ions 

e layers in -layer v y inhom  speci

Percen
datGra

Layer 

ry Fine oarse Ve Very C
Top (fine) 52 15 

Middle (average 33 33 ) 

Bottom (bottom 15 52 ) 

 

very e gradatio o create the fine gradation for the top portion of the specimen, 

52% from the very fine was blended with 15% from the very coarse gradation. The 

3.3.2.2 Number of Particles in the Layers 

The number of particles in each of the three mixtures is required to compute the 

volume of the m

mbers  

 coars n. T

average gradation for the middle layer was made by blending of 33% from the very fine 

and 33% from the very coarse gradations, which resulted in the same gradation as the 

design gradation. The selection of the percentage blends was based on creating the 

maximum difference between the three gradations that ensured detection of the created 

inhomogeneity using the suggested indices, and at the same time, not creating too coarse 

a mixture at the bottom that is not realistic in preparation of actual specimens. The 

coarse, fine, and the average gradations are provided in Table 3-8.  

ixtures. The number of particles in the bottom, middle, and the top layers 

was obtained by applying the percentages of Table 3-7 to the number of aggregates in the 

very coarse and very fine gradations. Table 3-9 provides the computed number of 

aggregates in the design gradation and in each layer of the gradual vertically 

inhomogeneous specimen. The numbers in Column 5 (design gradation) that are above 

sieve #4 represent the number of aggregates in a very coarse gradation and the nu
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Table 3-8. The design, coarse, fine, and average gradations for three-layer vertically 
inhomogeneous specimens 

 Pas  % sing  
Sieve Si

(mm) 
D

Aggregate 
Gradation 

oars
Aggreg
Gradations 

Fine 
Aggrega
Gradation 

Averag
Aggregates 
Gradation 

ze esign C e 
ate tes 

e 

19 100.0 100.0 100.0 100.0 
12.5 76.0 62.9 88.5 76.0 
9.5 62.0 41.3 81.8 62.0 

4.75 44.1 13.6 73.2 44.1 
2.36 30.1 9.3 50.0 30.1  
1.18 22.3 6.9 37.0 22.3 
0.6 15.7 4.9 26.1 15.7  
0.3 10.2 3.2 17.0 10.2 

0.15 7.1 2.2 11.8 7.1 
0.075 4.9 1.5 8.1 4.9 

 

in Column 5 that are below sieve #4 represent the number of aggregates in the very fin

gradation. The numbers in the coarse gradation (Column 2) were obtained by multiplying 

e 

very fine gradation by 

0.52. T  by 

me 

The volume of aggregates in each portion was determined by summing the volume of the 

individual particles in that portion. Table 3-10 shows the calculation of the volume of  

the number of particles in the very coarse gradation by 0.52 and in the very fine gradation 

by 0.15. The numbers in the fine gradation (Column 3) were obtained by multiplying the 

number of particles in the very coarse gradation by 0.15 and in the 

he number of aggregates in the average gradation (Column 4) was obtained

multiplying the aggregate numbers in the design gradation, both above and below the #4 

sieve, by 0.33.  

3.3.2.3 Volume of the Layers 

To position the particles in the appropriate portion of the specimen, the volume of 

each layer was determined. The volumes of the layers were computed using the volu

of the aggregates, volume of the air voids, and volume of the asphalt binder in each layer. 
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Table 3-9. Number of particles in a three-layer vertically inhomogeneous specimen 

(1) 
 Size 

) 
 

(2) 
 

wer P
 

(3) 
Fine 

Gradation
(Upper 
Por ) 

(4) 
Average 

Gradation 
le 

on) 

(5) 
D dation

Specim
 

Class
(mm

Coarse
Gradation 

ortion) (Lo

 

tion
 

(Midd
Porti

 

esign Gra
(Homogeneous 

ens) 

19-12.5 58 1  112  7 37

12.5-9.5 100 29 192 63 

9.4-4.74 470 905  136 298 

4.75-2.36 854 9 569 2961 187 5 

 

agg  in a ous men lum ggre e th ers 

of a vertically inhom neous specimen. Th e of each particle was computed 

ased on the assumption that the particles were spherical. To compute the volume of the  

that class size. The total volume of the aggregates 

equaled sum of the volumes of the aggregates in all class sizes.  

The asphalt binder contents were esti

 

boratory. Table 3-11 

provides the estimated volume perce

specimen that is occupied by the thre

portions, which are also provided in Table 3-11, were obtained using the ratio of the  

 

regates homogene  speci  and the vo e of a gates in th ree lay

oge e volum

b

aggregates in each class size, the number of particles was multiplied by the average 

volume of an individual particle in 

mated from the specific surface area 

calculations (Kandhal et al., 1997; Christensen, 2001). The air void content was estimated

based on the results of a study by Khedaywi and White (1994) and the air void 

measurements made on the trial specimens prepared in the la

ntages occupied by the aggregates, air voids, and 

asphalt binder, as well as the estimated volume percentages of the total volume of the 

e mixtures. The heights of the coarse and fine 
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Table 3-10. Calculation of the ratio of the volume of each layer of a three-layer vertically 
inhomogeneous specimen occupied by the aggregates where ni is the number of aggregates 
in various class sizes  

 Coarse Fine Average 
Class size 

(mm ni  
Volume 
(mm3) ni 

lume 
3)  Volume 

) 
Vo
(mm ni (mm ) 3

19 5 427 7 50 -12.5 8 119  1 344 37 75790 
12.5-9.5 100 69666 29 20096 63 44211 
9.5- 470 89073 136 694  54.74 25 298 6527 

4.75 854 20096 2961 69666  4-2.36 1879 4211 
2.36-1.18 3856 11196 13368 38814 8484 24632 
1.18- 25666 9474 88975 32842 5 20.6 5646 0842 
0.6-0.3 165465 7895 573612 9 23 1 2736 3640 7369 
0.3-0.15 746097 4450 2586470 15426 1641414 9790 

0.15-0.075 4235907 3158 14684477 10947 9318995 6947 
<0.075 31841503 7034 110383878 24383 70051307 15474 
Total 37019977 341468 128333923 299688 81442966 315793 

Packing 
Fraction (Pv) 

 0.290  0.254  0.268 
 

e of the specimen. The height of the coarse 

mixture

volume of each portion to the total volum

 was computed as follows: 

2

0.345c s c

s s s

V R Hπ
= =       (3-2

where Vc is the volume of the coarse mixture, Vs is the volume of the specimen, Rs is th

radius of the specimen, Hc is the height of the coarse mixture, and Hs is the height o

specimen. Removing the like terms and rearranging yields: 

0.345c sH H=        (3-2

The height of the coarse mixture is determined by substituting for Hs, which is 150 m

51.7cH mm=        (3-23)

Similarly the height of the average and fine gradations were computed as 49.6 mm and

48.7 mm, respectively. Therefore in simulating a three-layer vertically inhomogeneous  

2V R Hπ
1) 

e 

f the 

2) 

m: 
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Table 3-11. Percent volume of the homogeneous specimen and each portion of three-layer

percent volume of the specimen occupied by 
of three-layer vertically inhomogeneous speci

 
vertically inhomogeneous specimen occupied by the mixture components (Columns 2, 3, 4), 

each layer (Column 5), and height of each layer 
men (Column 6) 

(1) (2) (3) 
Mixtures Aggregates Air Void 

(4) 
Asphalt 
Binder 

(5) 
Percent 
Volume 

(6) 
Height  
(mm) 

Coarse 29.0 3.50 1.96 34.5 51.7 

Average 26.8 2.33 3.90 33.0 49.6 

Fine 25.4 1.17 5.91 32.5 48.7 

Homogeneous 81.2 7.0 11.8 100 150 

 

specimen, the separation lines between the three gradations were located at the heights of 

51.7 mm and 101.3 mm from the bottom of the specimen. 

In simulating the homogeneous specimens, each particle has an equal chance of 

being at any point of the specimen. The coarse particles were placed first and the fine 

particles were randomly positioned to fill up the empty spaces between the coarse 

particles. In simulating gradual inhomogeneity, the coarse particles were placed first. 

While coarse particles were positioned throughout the specimen, they had a higher 

probability of being located in the bottom portion than in the middle or upper portions. 

The coarse particles had a 52% probability of being within 51.7 mm from the bottom, 

33% probability of being within 49.6 mm from the top of the bottom layer, and 15% 

probability of being within 48.7 mm from the top of the middle layer. The fine particles 

were then placed in the spaces that were available between the coarse particles with a 

15% probability of being within 51.7 mm from the bottom, a 33% probability of being 

3.3.2.4 Positioning the Particles 
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within 49.6 mm from the top of the bottom layer, and 52% probability of being within 

48.7 mm from the top of the middle layer. 

In order to place the particles of the coarse, average, and fine gradations in the 

three portions of a specimen, a series of transformation curves were used to transform 

three random numbers between 0 and 1 to the vertical, radial, and angular coordinates

a random position. Equations (3-5) and (3-6) were used to place the particles along a 

radius and at any angular p

 of 

osition within the specimen. 

In developing the transformation curves for the vertical positioning of the 

vertical

ed to 

laboratory compacted specimen, where a defined borderline between the three gradations 

ates to a 

random location along the height of the sp such a way that 15% of the particles 

locate in the top 32.5%, 33% of the particles locate in the middle 33%, and 52% locate in 

th  the specimen volume. Likewise, a second-order transformation 

curve was used to convert the random numbers associated with the fine aggregates to a 

random en in such a way that 52% of the particles 

particles, two conditions were satisfied. First, particles were allowed to occupy any 

 position, with different probabilities associated with the various portions of the 

specimen. Second, the aggregates were not forced to reside entirely within the boundaries 

of the three mixtures and as much as half of the volume of each particle was allow

reside in the adjacent mixture. These were intended to mimic the condition in the 

would not be expected. Therefore, clear separation lines between the gradations were not 

enforced in the simulated specimens, as in the laboratory.  

Considering the two conditions above, a second-order transformation curve was 

used to convert the uniform random numbers associated with the coarse aggreg

ecimen in 

e bottom 34.5% of

 location along the height of the specim
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were placed in the top 32.5%, 33% of the particles were placed in the middle 33%, and 

15% were placed in the bottom 34.5% of the specimen volume. Figure 3-6 shows the plot 

of the t

s for 

OGENEITY  

A radially inhomogeneous specimen is defined as a specimen that has changes in 

gradation in the lateral extent; however, the total gradation of the specimen is the same as 

that of a homogeneous specimen. Comparable to the preparation of the shear test 

specimens in the laboratory, the simulated specimens were made 150-mm in diameter by  

ransformation curves for positioning the coarse and fine particles in homogeneous 

and inhomogeneous specimens. Table 3-12 provides the transformation equation

determining the location of the particles along the height of the three-layer vertically 

inhomogeneous specimen. A detailed derivation of Equations (3-24) through (3-26) is 

provided in Appendix C.  

3.4 COMPUTER DEVELOPMENT OF RADIAL INHOM
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Figure 3-6. Transformation curves for vertical positioning of particles in a homogeneous 
and in a gradual three-layer vertically inhomogeneous specimen 
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Table 3-12. Transformation equations for assigning a vertical position (hi) to the particles in 
a homogeneous and in a gradual three-layer vertically inhomogeneous specimen 

P
Equation Number 

articles Transformation  Equation  

Homogeneous 
(150 ) 2

i
i i ih d u= − +  

(3-24) d

Inhomogeneous 
 (Coarse Particles)  

2(2.75 ) (150.0 3.75 ) 2
i

i i i i ih d u d u= + − +  
(3-25) d

Inhomogeneous  

 
(Fine Particles) 

2( 2.75 ) (150 1.75 ) idh d u d u= − + + +  
(3-26) 

2i i i i i

 

100-mm in height and then cut in half along the height of the specimen to provide two 

150-mm diameter by 50-mm thick cylindrical disks for homogeneity testing.  

Radial inhomogeneity was created in two layers: a core and a ring. The specimens 

are inhomogeneously coarser near the periphery of the specimen. Similar to the 

simulation of the abrupt two-layer vertical inhomogeneity, simulation of two-layered 

radial inhomogeneity involved four steps: First, from the design gradation a coarser and a 

r nd, the number of particles in each class size of each 

gradati

3.4.1 

A coarser and a finer gradation that were assigned to two radial portions of the 

specimen were the same as the coarser and the finer gradations that were introduced in 

Section 3.3.1.1 for making of vertical inhomogeneity. The coarser and the finer 

gradations were placed at the periphery and the core of the specimen, respectively, to 

mimic the effect of gyration on the mixtures compacted in Superpave gyratory compactor 

and also to mimic the effect of a boundary condition imposed by the gyratory mold. 

finer g adation were created. Seco

on was determined. Third, the volumes of the two gradations were computed. 

Fourth, the particles were assigned to the positions within each volume.  

Gradation of the Mixtures 
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Mixing the coarser and finer gradations would result in the design gradation of the 

homogeneous specimen. As explained earlier, the ction of th was 

based on creating a high level of inhomogeneity that was detectable by both the 

inhomogen  mechanical testing, and at the same time creating a ageable 

specimen that did not crumble in the process of pr ation and testing

3.4.2 Number of Particles 

The number of particles of the coarser and finer gradations was determined by 

he 

 

plying the number of particles in very coarse gradation by 0.25 and the 

number of particles in very fine gradation by

the finer gradation (Column 3). 

e ring were determined from the percent volume 

of the specimen that was occupied b

The volume of the aggregates in the ring and the core portions were determined by  

 

sele e two gradations 

eity and  man

epar .  

blending the required percentages of the aggregate numbers from the very coarse and t

very fine gradations. Table 3-13 provides the number of particles in the core and the ring 

of the radially inhomogeneous specimen having a 150-mm diameter and a 100-mm 

height. The numbers in Column 4 (design gradation) that are above sieve #4 represent the 

number of aggregates in very coarse gradation and the numbers in Column 4 that are 

below sieve #4 represent the number of aggregates in very fine gradation. Multiplying the

number of particles in very coarse gradation by 0.75 and the number of particles in very 

fine gradation by 0.25 provided the number of aggregates in the coarser gradation 

(Column 2). Multi

 0.75 provided the number of aggregates in 

3.4.3 Volume of the Mixtures 

 The volumes of the core and th

y the aggregates, asphalt binder, and the air voids. 
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Table 3-13. Number of particles in the core and ring of a radially inhomogeneous specimen 

(1) 
s Size (m  

(2) 
 
n 

 

Finer Gr
(Cor

(4) 
Design Gr  

(Homogeneous
Specimen) 

Clas m)
Coarser

Gradatio
(Ring)

(3) 
adation 
e) 

adation
 

19-12.5 42 8  126 16

12.5-9. 72 8 5 216 28

9.4-4.7 9 7 4 1018 33 135

4.75-2 407  .36 2136 6  8543
 

s e v the ual n eac tion. T  pro

tota mes o  in se port is no at th e 

f the aggregates ring and e core ar ame as i he bottom

top portions of the vertically inhomogeneous specimens. Using the same percent air void 

and the same binder content as provided in 

e 

umming th olumes of individ  particles i h por able 3-14 vides 

l volu f particles  the coar r and finer ions. It ticeable th e volum

percentage o in the  th e the s n t  and 

Table 3-5 resulted in the same total volume 

proportions of the coarser and finer mixtures as of the vertical inhomogeneity, which ar

provided in Table 3-15. Using the ratio of the volume of the finer gradation in the core to 

the total volume of the specimen, the diameter of the core and the thickness of the ring 

were determined: 

2

2
s s s

V R H
V R H

π
π

0.472c c s= =       (3-27) 

s is the volume of the specimen, Rc is the radius of 

the cor ng 

where Vc is the volume of the core, V

e, Rs is the radius of the specimen, and Hs is the height of the specimen. Removi

the like terms and rearranging yields: 

0.687c sR R=        (3-28) 

Substit or Rs, which is 75 mm, the radius of the core mixture was determined: uting f
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Table 3-14. Calculation of the percent volume of a radially inhomogeneous specimen 
occupied by the aggregates 

 Ho s C Fimogeneou oarser ner 
Class

(mm) ni 
ume

(mm3) ni 
lume 
m3) i 

e 
3) 

 Size  Vol  Vo
(m n Volu

(mm
m

19 8 344502 126 8376 42 125 -12.5 16 25 86
12 8 200959 216 150719 72 240 .5-9.5 28 50
9.5- 1357 256941 1018 92706 339 35 4.74 1 642

4.7 543 200959 2136 50240 6407 19 5-2.36 8 1507
2.36-1 38562 111963 9640 27991 28921 83972 .18 
1.18-0  256658 94738 64165 23684 192494 71053 .6
0.6-0.3 1654651 78948 413663 19737 1240988 59211 
0.3-0.15 7460972 44498 1865243 11125 5595729 33374 

0.15-0.075 42359067 31579 10589767 7895 31769300 23684 
<0.075 318415033 70336 79603758 17584 238811275 52752 
Total 370195300 1435423 277645568 675367 92549732 760056 

Packing 
Fraction (Pv)   0.812   0.382   0.430 
 

51.5cR mm=        (3-29

Subtracting the radius of the core mixture from the radius of the specimen yielded the 

thickness of the ring mixture, Tr, which is 23.5 mm. Therefore in simulating the radia

inhomogeneity, the separation line between the two gradations was located at a radius of

51.5 mm from the center of the specimen. The radius of the core and the thickness of the 

ring that were computed based on the p

) 

l 

 

ercent volume of the specimen occupied by the 

coarser

in the 

 and finer mixtures are also provided in Table 3-15. 

3.4.4 Positioning the Particles 

In a homogeneous specimen, each particle has an equal chance of being 

ring or in the core of the specimen. In a radially inhomogeneous specimen, the coarse 

particles have a higher probability of being located in the ring portion and the fine  
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Table 3-15. Percent volume of a specimen occupied by mixture components 

Percent 
Aggregates 

Percent Air 
Void 

Percent 

Binder 

Percent 
Volume 

Radius 

 (mm) 
Mixtures Asphalt /Width  

Coarser (Ring) 43.0 5.5 4.3 52.8 23.5 

Finer (core) 38.2 1.5 7.5 47.2 51.5  

Homogeneous 81.2 7.0 11.8 100 75 

 

particles had a higher probability of being located in the core of the specimen. The coars

particles were placed first with a 75% probability of being in the ring and a 25% 

probability of being in the core. The fine particles were then placed in the spaces 

available between the coarse particles with a 75% probability of being in the core and a 

25% probability of being in the ring portions of the specimen.  

In order to place the particles of the finer and the coarser gradations in the core 

and the ring of a specimen, a series of transformation curves were used to transform thre

random numbers between 0 and 1 to the vertical, radial, and angular coordinate o

e 

e 

f a 

random position. Equations (3-6) and (3-7) m ent of the particles of 

icles, two 

e not forced to reside entirely within the boundary of the two mixtures and 

as much as half of the volume of each particle was allowed to reside in the adjacent 

ade possible placem

the finer and the coarser gradations anywhere along the height of the specimen and at any 

angular position between 0 and 360°.  

In developing the transformation curves for radial positioning of the part

conditions were satisfied. First, the particles were allowed to occupy any radial position, 

with different probabilities associated with the two radial portions. Second, the 

aggregates wer

mixture. These were intended to mimic the condition in the laboratory compacted 
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specimen. While the coarser and the f ere placed in differen s of 

the gyratory mold, the compaction process in the laboratory blended the two gradations in 

the vicinity of the borderline between the two radial layers. Therefore, a clear separation 

line he gradations was not enforced in the simulated specimens as occurs in the 

l

Considering the two conditions above, a second-order transformation curve was 

used to convert the uniform random numbers associated with the coarse aggregates to a 

random location along a radius of the specimen in such a way that 25% of the particles 

were located in the core portion of the specimen and 75% were located in the ring portion 

of the specimen. Likewise, a second-order transformation curve was used to convert the 

uniform random numbers associated with the fine particles to a random location along the 

radius of the specimen in such a way that 75% of the particles were placed in the core 

portion and 25% were placed in the ring portion of the specimen. Figure 3-7 shows the 

plot of the transformation curves for positioning the coarse and fine particles in  

iner gradations w t position

 between t

aboratory.  
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Figure 3-7. Transformation curves for radial positioning of particles in a homogeneous and 
in a two-layered radially inhomogeneous specimen 
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homogeneous and radially inhomogeneous specimens. Table 3-16 provides the 

transformation equatio along the radius of 

the specimen. The detailed derivation of Equations (3-30) through (3-32) is provided in 

Table 3-16. Transformation equations for assigning a radial position (r ) to the particles in a 

ns for determining the location of the particles 

Appendix C.  

i
homogeneous and in a radially inhomogeneous specimen 

Particles Transformation  
Equation 

Equation 
Number 

Homogeneous 
(75 )idr u= −  

(3-30) 
2i i

Inhomogeneous 
 (Coarse 
Particles)  

2( 174.64 0.67 ) (249.67 0.17 )i i i i ir d u d u= − − + +  (3-31) 

Inhomogeneous  2(25.33 2 ) (49.67 1.5 )d u= − + +  (3-32) 
(Fine Particles) i ii i ir d u
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CHAPTER 4 - DEVELOPMENT OF INDICES OF 

4.1 INTRODUCTION 

the test . 

 

use the properties that are being tested (geometric properties of 

the agg

nd two or 

more h

the 

specific 

propert  for the state 

tive 

(4-1) 

HA : The specimen is inhomogeneous.      (4-2) 

VERTICAL HOMOGENEITY  

 To test simulated and actual specimens for vertical homogeneity, several 

statistical tests are being introduced. The statistical tests involve the six steps of 

hypothesis testing. The basis of a hypothesis test is the comparison of the sample value of 

 statistic with the population value for the condition of complete homogeneity

This requires knowledge of the distributions of the test statistic for conditions of both

homogeneity and inhomogeneity. Although, some statistical tests were derived from 

standard tests, such as chi-square, t, and z tests, their distributions differ from those of the 

standard tests. This is beca

regates) are not the same as the properties on which the statistical tests were 

developed. Therefore, the distributions need to be identified either analytically or by 

simulation before decisions can be made with the homogeneity tests.  

The first step in hypothesis testing is to formulate the null hypothesis a

ypotheses that reflect the alternative lines of action. The null and the alternative 

hypotheses are formulated based on the differences between specific properties of 

aggregates in different portions of the specimens or the differences between 

ies of the specimens with the expected values of the same properties

of homogeneity. The null hypothesis always reflects homogeneity while the alterna

hypothesis reflects inhomogeneity:  

Ho : The specimen is homogeneous.      
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The second step of a hypothesis test is to identify the method of computing a

value of the test statistic and its distribution. The test statistic should distinguish between 

the conditions of homogeneity and inhomogeneity. 

 The third step is to specify the level of significance. It is necessary to select a 

level of significance that is appropriate for the physical property that is being tested.

level of significance is an indicator of the probability of a certain type of statistical error, 

namely the probability of

 

 The 

 rejecting the null hypothesis when, in fact, it is true.  

 

en is computed.  

en 

If the null hypothesis is rejected, then inhomogeneity is assumed.  

Vertical inhomogeneity can be either abrupt or gradual. For abrupt 

inhomogeneity the changes occur gradually over a longer length through the height of a 

specimen. Therefore, vertical inhomogeneity is assumed to occur in either two or 

The fourth step of a hypothesis test involves collecting a sample of data and 

computing an estimate of the test statistic. The collected data include the geometric 

properties such as the area, frequency, and location of the aggregates that are measured

from various slice faces. Using the collected data, the sample value of the test statistic for 

a specim

In the fifth step, the region of rejection of the test statistic is defined, whether in 

the lower, in the upper, or in both tails of the distribution function. The region of 

rejection, in one tail or two tails and in the lower tail or upper tail, is based on the 

knowledge on the expected locations of the coarser and the finer gradations.  

The decision to accept or reject the null hypothesis is made in the sixth step wh

the sample value of the test statistic is compared with the critical value of the test 

statistic. 

inhomogeneity, the changes occur over a relatively short length while for gradual 

 105



 

three-layers, with the two-layer analyses used to test for abrupt inhomogeneity and 

three-layer analyses used to test for gradual inhomogeneity. Two separate sets o

were defined for abrupt and gradual forms of vertical inhomogeneity (Sections 4.3 and 

4.4). In addition, a third set of indices was described that can be used to measure both

forms of abrupt and gradual vertical inhomogeneity (Section 4.5). It is important to 

identify the test statistic that is specific to the form of vertical inho

f indices 

 

mogeneity that the user 

suspects being present.  

face directions, while the Spearman-Conley test is defined specifically for horizontal slice 

vertical homogeneity of the specimens as they are compacted in the Superpave gyratory 

compactor. In addition, the specim

compressive properties can be correlated with the computed vertical homogeneity 

The tests are also described for horizontal or vertical slice faces. Several of the 

tests are defined for both vertical and horizontal slice faces, while others are specific to 

only one slice face direction. For example, the chi-square test is defined for both slice 

faces.  

The size of the specimens for testing vertical homogeneity is 100 mm in diameter 

and 150 mm in height, which is the size requirement for the axial compression testing of 

asphalt mixture specimens. Use of 100-mm tall specimens allows the evaluation of 

ens can be tested in compression and the measured 

indices. 

4.2 TWO-LAYER VERTICAL INHOMOGENEITY: HORIZONTAL 
SLICE FACES  

A number of statistical tests are suggested for the detection and measurement of 

two-layer vertical inhomogeneity using horizontal slice faces. The suggested tests are 
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adopted from the chi-square and the two sample t-tests. The tests include the chi-

test on aggregate frequencies and the t-test on total aggregate areas, aggregate 

frequencies, and mean nearest neighbor distances. The test statistics are computed

on comparison of the geometric properties of coarse aggregates in the lower and the 

square 

 based 

4.2.1 Selection of Specimen Sampling  

Application of the statistical tests requires specifying the slices of the specimen 

volume of the coarser mixture was 1.125 times the volume of the finer mixture (Section 

79.2 mm and the finer portion would have a height of 70.8 mm. However, to eliminate 

the bias in statistical sampling from the coarser and the finer gradations, an equal number 

specimens.  

oarser and finer portions were 

determ nd, the 

 

wed that 10-mm spacing was required 

be e ulation, the top and 

bottom slices are located 15 mm away

particles to be fully contained within the specimen. In addition, a 20 mm thick cylindrical 

upper portions of the specimens. The statistical tests examine the significance of the 

difference between the aggregate properties in the two portions.  

from which the measurements would be made. The level of vertical inhomogeneity that 

was created resulted in unequal volumes of the coarser and the finer mixtures. The 

3.3.1.3). Thus, in a 150-mm high specimen, the coarser portion would have a height of 

of horizontal slices were sampled from the lower and the upper portions of the 

The location and the number of the slices in the c

ined with two considerations: First, the slices should be independent; seco

slices within each portion should be from the same population. To ensure independency

of the slices, McCuen and Azari (2001) sho

twe n the slices. To ensure that the slices are from the same pop

 from the ends of the specimen to allow for large 
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volum

transit  lied in that volume were disregarded. 

T e

border e layers, which results in a gradation that does not distinctively 

follow either the coarser away 

fr t

popula

er nd l ve 

factors tions of 

the spe

specimen. The other five slices were taken at 10-mm intervals starting from the first 

bo m r 

five sl  the first top slice (Figure 4-1). 

e, between the lower and the upper sampling portions, was considered the 

ion zone and the aggregates whose centers

he r ason is that the process of compaction blends the two mixtures around the 

line between th

 or the finer gradation. By selecting the sampling portions 

om he blended mixture, the materials in each portion should follow a distinct statistical 

tion. 

The numb  a ocation of the slices were then determined based on the abo

. Six horizontal slices in the lower and six horizontal slices in the upper por

cimen were made. The first bottom slice was taken 15 mm from the bottom of the 

tto  slice. The first top slice was taken 15 mm from the top of the specimen. The othe

ices were taken at 10-mm intervals below

15 mm

1

Transition zone

15 mm

20 mm

50 mm

50 mm

100 mm

3
2
1

6

3

4

6
5

15 mm

5
4

2

150 mm Transition zone

1
15 mm

20 mm

50 mm

50 mm

100 mm

3
2
1

6

3

4

6
5

5
4

2

150 mm

Figure 4-1. Locations of the horiz ntal slice faces on a specimen to be evaluated for two-
layer v

 

o
ertical inhomogeneity 
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4.2.2 

proper

The steps of the procedure are as follows: 

a. The area of one horizontal slice face (Ahv) is computed as: 

Computation of Parameters of Test Statistics 

The computation of the test statistics requires measurement of geometric 

ties of coarse aggregates and computation of the selected statistical parameters. 

 20.25hv vA Dπ=        (4-3)   

where Dv is the diameter of a horizon

vertical homogeneity, which is 100 mm.  

b. The total area of six slice faces in the lower (Ahl) and upper (Ahl) portions are 

computed as:  

      (4-4)  

c. On each slice face that is located in the lower o

the frequency (fhli, fhui), the total area (ahli, ahui), and the mean nearest neighbor 

distance (

tal slice face of a specimen evaluated for 

6hl hu hvA A A= =

r the upper portion of the specimen, 

hlid , huid ) of the coarse aggregates that have a diameter equal to or 

greater than 4.75 mm are measured. The nearest neighbor distance of each 

aggregate is the distance between each aggregate centroid and its nearest neighbor 

centroid. 

d. The coarse aggregate frequencies from the slice faces in the lower and the upper 

portions of the specimen are summed:  

1

hln

hl hli
i

f f
=

= ∑        (4-5) 

1

hun

hu hui
i

f f
=

= ∑        (4-6) 
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where fhl and fhu are the total coarse aggregate frequencies in the lower and the 

upper portions; nhl and nhu are the number of slice faces in the lower and the uppe

portions, which are six; and fhli and fhui are the aggregate frequencies in th

r 

e ith 

e. ncy from the 12 slice faces is computed by: 

horizontal slice face in the lower and the upper portions of the specimen, 

respectively (see Step c).  

The total freque

hv hl huf f f= +        (4-7) 

where fh,  fhl, and fhu will be used in chi-square test (see Section 4.2.3.2).  

f. The means and standard deviations of the agg

six slice faces in the lower portion (

regate frequencies observed on the 

lf ,sfl) and six slice faces in the upper portion 

( uf ,sfu) are computed as: 

 

1hl i

1
hln

hlilf f= n
=
∑       (4-8) 

0.5
2

1

1 ( )
1

hln

ihl

s f f
n =

⎡ ⎤
fl hli l= −⎢ ⎥  

−⎣ ⎦
∑     (4-9)

1

1
hun

huiu
hu i

f fn=
=
∑       (4-10) 

0.5
21 ( )

1

hu

fu hui us f f
n

⎡ ⎤

1

n

ihu =

= −
⎣ ⎦

where nhl and nhu ber of slice faces in the lower and the upper portions, 

which are six; and fhli and fhui are

slice face in the lower and the upper portions of the specimen, respectively (see 

⎢ ⎥− ∑     (4-11) 

are the num

 the aggregate frequencies in the ith horizontal 
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Step c). The computed means and standard deviations are used for the t-test on 

frequencies (see Section 4.2.3.4). 

g. The total aggregate areas in the lo

computed by: 

    

a a

r of slice faces in the lower and the upper portions, 

which are six; ahli and ahui are the total aggregate areas in the ith slice face in the 

ely (see Step c).  

h. The mean and the standard deviation of the total aggregate areas on the slice faces 

in the lower portion (

wer (ahl) and the upper (ahu) portions are 

1

hln

hl hli
i

a a
=

= ∑    (4-12) 

1

hun

i=
= ∑        (4-13) 

where nhl and nhu are the numbe

hu hui

lower and the upper portions of the specimen, respectiv

la , sal) and in the upper portion ( ua , sau) of the specimen are 

computed as:  

1hl i=

1
hln

l hlia an= ∑       (4-14) 

0.5
2

1

( )
1

lal hli
ihl

s a a
n =

1 hln⎡ ⎤
= − ) ⎢ ⎥−⎣ ⎦

∑      (4-15

1

hun

u hui
hu i

n
=

1a a= ∑       (4-16) 

0.5
2

1

1
1

hun

ihun =

⎡ ⎤
−⎣ ⎦

where nhl and nhu are the number of slice faces in the lower and the upper portions, 

which are six; ahli and ahui are the total aggregate areas in the i

( )uau huis a a= −⎢ ⎥∑     (4-17) 

th slice face in the 
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lower and the upper portions of the specimen, respectively (see Step c), the 

computed means and standard deviations are used for the t-test on total a

Section 4.2.3.3). 

i. The mean and the standard deviation of the nearest neighbor distances in six slices 

in the lower (

reas (see 

ld , sdl) and six slices in the upper ( ud , sdu) portions are computed as: 

1

1
hln

hli
hl i

n
=

ld d= ∑       (4-18) 

0.5
21 ( )

hln

s d d
⎡ ⎤

11 ihln =−⎣ ⎦
ldl hli= −⎢ ⎥ 4-19) ∑     (

1

1
hun

u huid d=
hun

i=
∑       (4-20) 

0.5
21 ( )

hun

udu huis d d
⎡ ⎤
⎢ ⎥− ∑     (4-21) 

11 ihun =

= −
⎣ ⎦

where hlid  and huid were defined in Step c. The means and standard deviations on 

the mean nearest neighbor distances are used in the t-test on mean nearest neighbor 

distances (see Section 4.2.3.5). 

Hypothesis Testing using Suggested 4.2.3 Test Statistics 

The six steps of hypothesis testing are followed in order to evaluate the 

homogeneity of a specimen. The following sections explain the steps for evaluation of 

two-la ca

faces.  

yered verti l inhomogeneity using various statistical tests on horizontal slice 

 112



 

4.2.3.1

The two-sample chi-square test on frequencies is used to measure the two-layer 

vertical inhomogeneity by comparing the frequen

the fin

specim

and bo  of a vertically inhomogeneous specimen are significantly different 

fr t nce 

betwee n 

of the ner 

gradations, the critical value is always in the upper tail of the distribution. The 

ex d e 

freque

expected frequencies of the portions of a homogeneous specimen. However, from the 

va  cate

lower or higher than the expected frequency. The steps of a hypothesis test using the two-

sample chi-square test as applied to the horizontal slice faces are as follows: 

1. The following hypotheses for the aggregate frequency, which are implications of 

the hypotheses of Equations (4-1) and (4-2), are tested: 

H  : The observed frequencies of the portions are equal to the mean frequency. 

           (4-22) 

H  : The observed frequency of at least one portion is different from the mean 

frequency.          (4-23) 

A specimen is considered homogeneous if the null hypothesis is accepted. 

 Two-Sample chi-Square Test on Frequencies  

cies of the aggregates in the coarser and 

er portions of the specimen with the expected frequency of a homogeneous 

en. It is hypothesized that the frequencies of the coarse particles in both the top 

ttom portions

om he expected frequency of the particles in a homogeneous specimens. The differe

n this method and the t-test is that the chi-square test is indifferent to the directio

coarser-to-finer gradation. Regardless of the location of the coarser and the fi

cee ance of the test statistic over the critical value will indicate that the aggregat

ncies of either top, bottom, or both portions of the specimen are different from the 

lue of the test statistic, it is not indi d whether the observed aggregate frequency is 

o

A
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2. To test the hypotheses in step 1, the chi-square test statistic, as the index of 

homogeneity of the specimen, is used: 

2 2
2

(1 ) (1 )
hl hv hl hu hv hu

hv
( ) ( )

hv hl hl hv hu hu

f f r f f r
f r r f r r

χ − −
= +  (4-24) 

in which 

− −
    

2 2χ   is the index of homogeneity and is a random variable that has a hvχ

distribution with the degree of freedom of (N -1) where N  is the number of layers 

in specimens that are evaluated for two-layer vertical inhomogeneity, which is 

two; fhl, fhu, fhv are the coarse aggregate frequencies (Equations (4-5), (4-6), and 

(4-7), respectively); r  and r  are the ratios of the slice face areas in the lower and 

the upper portions to the slice face areas in both the lower and upper portions:  

l l

hl hu

0.5
T hTA

= =      (4-25) hl hu
hl hu

h

A Ar r
A

= =

hl  to

ve 

3. 

4. 

 

where A  is the tal area of the six slice faces in the lower portion, Ahu is total 

area of six slice faces in the upper portions, and AhT is the total area of the twel

slice faces.  

The level of significance is selected. The selection of the level of significance 

should be based on the physical significance of homogeneity and the impact of 

rejecting the null hypothesis of Equation (4-22) on design and performance 

decisions. 

The measured and computed data on the geometric properties of the coarse 

aggregates (Equations (4-5) through (4-7)) are used to compute an estimate of the

test statistic of Equation (4-24).  

5. The critical chi-square value ( 2
hvαχ ) is determined from the distribution of 2

hvχ  

statistic for the selected level of significance. For an inhomogeneous specimen the 
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differences between the observed aggr

aggregate frequencies in the lower and upper portions are significant. Therefore, 

6. The decision on homogeneity or inhomogeneity of a specimen depends on a 

comparison of the computed value of the test statistic and the critical value. Any 

chi-square value greater than the critical value suggests an inhomogeneous 

specimen. 

4.2.3.2 Two-Sample t-Test on Total Aggregate Areas 

The assessment of a difference in the total coarse aggregate area on horizontal 

slice faces in the lower portion and upper portions of a specimen will indicate 

inhomogene total areas on the slices in the coarser 

portion is hypothesized to be greater than the mean of coarse aggregate total areas on the 

slices in the finer portion of

testing u atistic of total coarse ag ea is as f s:  

1. ate total area, w

of the null hypothesis of Equation (4-1), is tested: 

egate frequencies and the expected 

the critical value would be represented by the upper tail of the distribution.  

ity. The mean of coarse aggregate 

 a specimen. A two-sample t-test is used to assess the 

significance of the difference between the two means. The procedure for hypothesis 

sing a t-st gregate ar ollow

The following null hypothesis for the aggreg hich is an implication 

: l uoH A A=        (4-26) 

where lA  and uA  are the population values of the mean total coarse aggregate 

areas from the slice faces in the lower and the upper portions, respectively. A 

specimen is considered homogeneous if the null hypothesis is accepted. The 

possible alternative hypotheses for the mean total aggregate areas are provided in 

 115



 

Table 4-1. In the case where the coarser gradation is expected at the bottom of the 

specimen, the alternative hypothesis of Equation (4-29) would be tested. If the 

2. 

coarser gradation were expected at the top of the specimen, the alternative 

hypothesis of Equation (4-30) would be tested. If the expected direction of the 

coarser-to-finer gradation were not known a priori, the alternative hypothesis of 

Equation (4-31) would then be used. 

The t statistic, which is the index of homogeneity of the specimen, is selected:  

0.5( )

l u

av
hl hu

a at
s

n n

−
=

+
      (4-2

in which t  is the index of homogeneity and is a random variable that has a t 

distribution with degrees of freedom of ( 2)

1 1av 7) 

av

hl hun n+ − ; n  and n  are the number hl hu

of slice faces in the coarser and the finer gradations, respectively; la ua and  are 

the means of total aggregate areas (Equations (4-14) and (4-16)); and s  is the 

square root of the pooled variance given by: 

av

2 2
2 ( 1) ( 1)

2
hl al hu au

av
n s n ss

n n
=

+ −
    (4-28)

2 2

hl hu

− + −  

in which and  are the variances of total area values in the lower and the 

upper portions (Equations (4-15) and (4-17)). 

3. The level of significance is selected. This selection should be based on the impact 

of rejecting the null hypothesis on design and performance decisions.  

al aus s
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Table 
on mean total areas 

Number Region 

4-1. The alternative hypotheses and the corresponding critical regions for the t-test 

Test for: HA Equation Test Critical  

Co
Bottom 

arse Material on 
l uA A>  (4-29) One-tailed upper tav >tavα 

Coarse Material on Top 
l uA A<  (4-30) One-tailed lower tav <-tavα 

Coarse Material on Top 
r Bottom l uA A≠  (4-

o
31) Two-tailed  tav <-tavα/2  or 

       tav > tavα/2 

 

tic     

 those values of test statistic that would 

te the region of 

rejection from the region of acceptance, are obtained from the distribution of the 

tav statistic for the selected level of significance. Table 4-1 provides the regions of 

rejection that correspond to the possible alternative hypotheses. If the expected 

lower portion of the specimen, the region of rejection would be represented by the 

4. The measured and computed data on the coarse aggregate total area are used to 

compute both an estimate of the test statistic of Equation (4-27) and a statistical 

parameter that is required to define the sampling distribution of the test statis

(Equation (4-28)).  

5. The region of rejection, which consists of

be unlikely to occur when a specimen is homogeneous, is represented by one or 

both tails of the distribution. The critical tavα values, which separa

locations of the coarser and the finer gradations are known a priori, a one-way      

t-test is utilized. In the case where the coarser gradation is expected to be in the 

upper-tail of the distribution. In the case where the coarser gradation is expected to 

be in the upper portion of the specimen, the region of rejection would be 

represented by the lower tail of the distribution. If the expected locations of the 

coarser and the finer gradations are not known a priori, the region of rejection 
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would be represented by both the lower and the upper tails of the distribution but 

with half of the level of significance in each tail.  

ogeneity of a specimen depends on a comparison of the 

computed value of the test statistic with the critical value. In the case where region 

of rejection is in the upper tail of the distribution, any tav value greater than the 

lu e 

where the region of rejection is in the lower tail of the distribution, any t value 

more negative than the critical value (-tavα) is assumed to indicate an 

inhomogeneous specimen. In the case where the region of rejection is in both tails 

of the distribution, any t  value greater than upper tail critical value (tavα/2) or more 

negative than the lower tail critical value (-tavα/2) is assumed to indicate an 

inhomogeneous specimen. 

4.2.3.3

A two-sample t-test can also be used to compare the mean frequency of the coarse 

particles in the lower and upper portions to assess vertical inhomogeneity. The coarse 

significa er than the coarse particl y in the portion with the f

grad re for hyp thesis testi ng a  aggreg

freq s:  

1 ull hypoth sis for the ate frequency, which is an implication 

of the null hypothesis of Equation (4-1), is tested: 

6. The decision on hom

critical va e (tavα) is assumed to indicate an inhomogeneous specimen. In the cas

av 

av

 Two-Sample t-Test on Frequencies 

particle frequency in the portion with the coarser gradation is hypothesized to be 

ntly great e frequenc iner 

ation. The procedu o ng usi t-statistic of the ate 

uencies is as follow

. The following n e aggreg

: b toH F F=        (4-32) 
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bF  and where tF  are the population values of the mean coarse aggregate 

frequencies in the bottom and the top portions, respectively. A specimen is 

considered homogeneous if the null hypothesis is accepted. The possible 

alternative hypotheses for the mean aggregate frequencies are provided in Table 

 

e expected direction of the 

f 

2. 

4-2. In the case where the coarser gradation is expected at the bottom of the 

specimen, the alternative hypothesis of Equation (4-35) would be tested. If the 

coarser gradation was expected at the top of the specimen, the alternative 

hypothesis of Equation (4-36) would be tested. If th

coarser-to-finer gradation were not known a priori, the alternative hypothesis o

Equation (4-37) would then be used.  

The test statistic is:  

0.51 1( )
fv

fv

f f

s

−

+

hl hu

l u

hl hu

t

n n

=       (4-33) 

in which tfv is the index of homogeneity that is a random variable having a t 

distribution with degrees of freedom of n n( 2) l uf  and f  are the mean 

 

+ − ; 

coarse aggregate frequencies (Equations (4-8) and (4-10)); nhl and nhu are the 

number of slice faces in the coarser and finer gradations, which are six; and sfv is

the square root of the pooled variance given by:  

2 2
2 ( 1) ( 1)hl fl hu fu

fv
hl hu

n s n s
s

− + −
=      (4-34) 

in which fls and fus  are the variances of the total aggregate frequencies in the 

lower and the upper portions (Equations (4-9

2n n+ −

) and (4-11)). 

 

2 2
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T  -test 
on frequencies 

Number Region 

able 4-2. The alternative hypotheses and the corresponding critical regions for the t

Test for: HA Equation Test Critical  

Co
Bottom 

arse Material on (4-35) One-tailed upper tfv >tfvα l uF F>  

Coarse Material on 
Top 

(4-36) One-tailed lower t  <-t α l uF F<  fv fv

Co
To
arse Material on 

p or Bottom 
(4-37) Two-tailed  t  <-t or 

        tfv > tfv
l uF F≠  fv fvα/2  

α/2 

 

3. vel of significance 

should be based on the physical significance of homogeneity and the impact of 

rejecting the null hypothesis of Equation (4-32) on design and performance 

4. The measured and computed data on the geometric properties of the coarse 

aggregates are used to compute both an estimate of the test statistic of Equation 

(4-33) and the statistical parameter that is required to define the sampling 

distribution of the test statistic (Equation (4-34)).  

5. The region of rejection, which consists of those values of the test statistic that 

would be unlikely to occur if the specimen was homogeneous, is represented by 

one or both tails of the distribution, depending on the alternative hypothesis. The 

critical tfv values, which separate the region of rejection from the region of 

acceptance, are obtained from the distribution of t  statistic for the selected level 

of significance. Table 4-2 provides the regions of rejection that correspond to the 

possible alternative hypotheses. If the expected locations of the coarser and the 

finer gradations are known a priori, a one-way t-test is utilized. In the case where 

the coarser gradation is expected at the bottom of the specimen, the critical region 

The level of significance is selected. The selection of the le

decisions. 

fv
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would be represented by the upper-tail of the distribution. In the case where the 

coarser gradation is expected at the top of the specimen, the critical region would 

be represented by the lower tail of the distribution. If the expected location

coarser and the finer gradations are not known a priori, the critical region would 

be represented by both the lower and the upper tails of the distribution but with 

half of the level of significance in each tail.  

The decision on homogeneity of a specimen depends on comparison of the 

computed value of the test statistic and the critical value. In the case where the 

region of rejection is in the upper tail of the distribution, any tfv value greater tha

the critical value (tfvα) is assumed to indicate an inhom

s of the 

6. 

n 

ogeneous specimen. In the 

, any tfv 

value more negative than the critical value (

inhomogeneous specimen. In the case where the region of rejection is in both tails 

tive 

n. 

4.2.3.4

The two-sample t-test is used to compare the mean distances between the nearest 

neighbor aggregates in the lower and upper portions of a vertically inhomogeneous 

specimen. It is hypothesized that the mean distance between the nearest neighbor 

particles in the coarser portion of the specimen is significantly smaller than the mean 

distance between the nearest neighbor particles in the finer portion since a greater 

concentration of the coarse particles is in the coarser portion of the specimens. The 

case where the region of rejection is in the lower tail of the distribution

-tfvα) is assumed to indicate an 

of the distribution, any tf value greater than critical value (tfvα/2) or more nega

than the critical value (-tfvα/2) is assumed to indicate an inhomogeneous specime

 Two-Sample t-Test on Nearest Neighbor Distances 
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procedure for computing the t-statistic using the mean nearest neighbor distances from 

the horizontal slice faces is as follows:  

1 ull hypothesis for the t neig  which  

of Equation (4-1), is tested: 

. The following n neares hbor distances,  is an

implication of the null hypothesis 

: l uoH D D=        (4 ) 

where 

-38

lD  and uD  are the population values of the mean coarse aggregate nearest 

neighbor distance for the lower and the upper portions, respectively. A specimen is 

considered homogeneous if the null hypothesis is accepted. The possible 

alternative hypotheses for the mean nearest neighbor distances of the aggregate are 

provided in Table 4-3. In the case where the co

would be tested. If the coarser gradation is expected in the upper portion of the 

specimen, the alternative hypothesis of Equation (4-41) would be tested. If the 

direction of the coarser-to-finer gradation is not known a priori, the alternative 

hypothesis of Equation (4-42) would then be used.  

2. The t statistic, which is the index of homogeneity of the specimen, is:  

arser gradation being expected in 

the lower portion of the specimen, the alternative hypothesis of Equation (4-40) 

 
0.51 1

u l
dv

hl hu

t

n n

=       (

in which tdv is the index of homogeneity that is a random variable having a

distribution with degrees of freedom of ( hl hun n

( )dv

d d

s

−

+
4-39) 

 t 

ld  and  are the mean 2);+ − ud

nearest neighbor distances (Equations (4-18) and (4-20)); hln  and hun  are the  
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Table -test 
on means of the nearest neighbor distances 

Number 
 

Region 

4-3. The alternative hypotheses and the corresponding critical regions for the t

Test for: HA Equation Test Critical 

Coarse Material on 
Bottom 

(4-40) One-tailed upper tdv > tdvα 
 

u lD D>  

Coarse Material on 
Top 

(4-41) One-tailed lower t  <-t
 

u lD D<  dv dvα 

Coarse Material on 
Top or Bottom 

(4-42) Two-tailed  t  <-t  or  
       tdv>tdvα/2 

l uD D≠  dv dvα/2

 

number of slice faces in the coarser and the finer gradations, which are six; and sdv 

is the square root of the pooled variance given by: 

2 2
2 ( 1) ( 1)hl dl hu du

dv
hl hu

n s n ss − + −
=     (4-43

in which dls and dus  are the variances of the mean nearest neighbor distances in 

2n n+ −
) 

3. 

p

4. etric properties of the coarse 

aggregates are used to compute both an estimate of the test statistic of Equation 

(4-39) and the statistical parameter that is required to define the sampling 

distribution of the test statistic (Equation (4-43)).  

5. The region of rejection, which consists of those values of the test statistic that 

would be unlikely to occur when the specimen is homogeneous, is represented by 

one or both tails of the distribution, depending on the alternative hypothesis. The 

2 2

the lower and the upper portions (Equations (4-19) and (4-21)). 

The level of significance is selected. The selection of the level of significance 

should be based on the physical significance of homogeneity and the im act of 

rejecting the null hypothesis of Equation (4-38) on design and performance 

decisions. 

The measured and computed data on the geom
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c

ted 

d to 

d the 

zed. In the case where 

the coarser gradation is expected to be in the lower portion of the specimen, the 

al  be represented b r tail of the dist

the dation is expected to be in the upper porti e spe n, 

the region of rejection would then be represented by the lower tail of the 

ibutio pected locations of the coarser and the finer gradations are 

ould be represented by both the lower and 

the upper tails of the distribution with half of the level of significance in each tail.  

isio mogeneity or inhomogeneity of a specimen s on 

comparison of the computed value of the test statistic with the critical value. In the 

case of the region of rejection in the upper tail of the distribution, any tdvα value 

ase of the region of rejection in the lower tail of the distribution, 

a

he 

ritical tdv value, which separates the region of rejection from the region of 

acceptance, is obtained from the distribution of the tdv statistic for the selec

level of significance. Table 4-3 provides the regions of rejection that correspon

the possible alternative hypotheses. If the expected locations of the coarser an

finer gradations are known a priori, a one-way t-test is utili

critical v ue would y the uppe ribution. In the case 

where  coarser gra on of th cime

distr n. If the ex

not known a priori, the critical region w

6. The dec n on ho depend the 

greater than the critical value (tdvα) is assumed to indicate an inhomogeneous 

specimen. In the c

ny tdv value smaller than the critical value (-tdvα) is assumed to indicate an 

inhomogeneous specimen. In the case of the region of rejection in both tails of t

distribution, any tdv value greater than the upper tail critical value (tdvα/2) or more 

negative than the lower tail critical value (-tdvα/2) is assumed to indicate an 

inhomogeneous specimen. 
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Table 4-4 provides a summary of the test statistics for the measurement of vertica

inhomogeneity in two layers using horizontal slice faces, the statistical tests, the 

corresponding geometric properties, the equation num

l 

bers, and the section numbers 

where the tests are described. The tests will be applied to both simulated and actual 

specime

ion 
er 

ns and their accuracy will be tested in Chapters 6 and 7.  

Table 4-4. Indices of two-layer vertical inhomogeneity using horizontal slice faces 

Statistical Test Property Statistical  
Index 

Section 
Number 

Equat
Numb

Two-Sample 
Chi-Square  

Frequencies 2 2
2 ( ) ( )hl hv hl hu hv hu
hv

f f r f f r
(1 ) (1 )hv hl hl hv hu huf r r f r r

χ − −
= +

− −
 

4.2.3.1 4-24 

Two-Sample Total 

Areas 
 t-Test  Aggregate 

0.51 1( )

hl hu

av

a a

s
n n

−

+

4.2.3.2 
av

hl hu

t =  
4-27 

Two-Sample 
 t-Test  

Frequencies 

0.5( )
hl hu

fv

f ft
s

n n

−
=

+
 

4.2.3.3 4-36 

1 1fv

hl hu

Two-Sample  
t- Test 

Nearest 
Neighbor 

0.51 1( )

hl hu
dv

d dt −
=  

4.2.3.4 4-42 

Distances 
dv

hl hu

s +
n n

 

 INHOMOGENEITY: VERTICAL 
SLICE FACES 

A number of statistical tests are suggested for the detection and measurement of 

two-layer vertical inhomogeneity using horizontal slice faces. The suggested tests are 

adopted from the normal standard z, chi-square, and two sample t-tests. The tests include 

the normal z test on aggregate frequency proportions, the chi-square test on aggregate 

frequencies, and the t-test on total aggregate areas, aggregate frequencies, and mean 

nearest neighbor distances. The test statistics are computed based on comparison of the 

4.3 TWO-LAYER VERTICAL

 125



 

geometric properties of coarse aggregates in the lower and the upper portions of vertical 

slice fa

4.3.1 Selection of Vertical Slices  

To determine the location and the number of vertical slice faces, two factors were 

considered: First, independency of the slices and second, adequacy of the sampling areas 

on each slice face. To ensure independency of the vertical slices, McCuen and Azari 

(2001) showed that 10-mm spacing was required between the slices. To ensure adequacy 

of the sampling areas, the smallest cross-section that is used for the homogeneity 

sampling should have a width equal to the diameter of the largest size aggregate. The 

distance of the smallest slice face from the center of the specimen can then be determined 

based on the geometry of the circular cross-section of the specimen (Figure 4-2). If the 

maximum aggregate size were 19 mm, then the minimum width of the slice face should  

ces of specimens. The statistical tests examine the significance of the difference 

between the aggregate properties in the two portions. 

R d

w

2

3
4

1
2

4

w = width of the furthest slice face 
d = distance of the furthest slice       
face from the middle slice face  
R= 50 mm

middle slice

3

1

R d

w

2

4
3

1
2

4

w = width of the furthest slice face 
d = distance of the furthest slice       
face from the middle slice face  
R= 50 mm

middle slice

3

1

 

Figure 4-2. Location of vertical slice faces for the analysis of vertically inhomogeneous and 
corresponding homogeneous specimen 
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be equal to 19 mm, which is located 49 mm from the middle slice face. Allowing 10-mm 

spacing between the slices results in the furthest slice face to be taken at 40 mm from the 

middle slice face. Therefore, nine vertical slices were made on each 100-mm diameter 

specimen. One slice face was made in the middle, two slices were made at 40 mm from 

the middle slice face, and six additional slices were taken in between the middle slice and 

the outermost slices at the distances of 10 mm, 20 mm, and 30 mm from the middle slice.  

4.3.2 Selection of Sampling Areas  

e properties in the lower and the upper portions of 

the vertical slices require determination of the sampling areas. The level of vertical 

er 

ne and the aggregate properties in that area were disregarded (Figure 4-3). 

4.3.3 Computation of Parameters of Test Statistics 

The parameters of test statistics are computed using the geometric properties of 

the coarse aggregates. However, several of the properties need to be modified to account 

for unequal cross-sections of the vertical faces. The properties that are mainly affected by 

Measurement of the aggregat

inhomogeneity that was created resulted in unequal areas of the lower and the upper 

portions. The volume of the coarser mixture was 1.125 times the volume of the finer 

mixture. Thus, in a 150-mm high specimen, the coarser portion would have an 

approximate height of 79.2 mm and the finer portion would have an approximate height 

of 70.8 mm. However, to avoid a bias in statistical sampling from the coarser and fin

portions, sampling was conducted on two equal lower and upper areas. Two rectangular 

areas with the height of 60 mm were selected at the top and bottom, 5 mm away from the 

ends of each slice face to avoid uneven ends of the specimen. A rectangular area between 

the lower and the upper sampling portions, which is 20-mm high, was considered the 

transition zo
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Transition zone 20 mm

60 mm

60 mm

100 mm

5 mm

 

5 mm

150 mm

Figure 4-3. Location of the lower and upper sampling areas on vertical slice faces of 
vertically inhomogeneous specimens 

the ch g area are the properties that are used by the t-test. This is because 

the t-test uses the means of the properties, which should not be biased by the size of the 

sampling area. The t-tests are defined for three geometric properties of the total aggregate 

area, the frequency, and the mean ne

the area of the cross-sections, where the properties were measured. The computed 

properties referred to as frequency density

distant density are then compared from the lower and upper portions of vertical slice 

faces using the t-s

compu

follow

a. 

anging samplin

arest neighbor distance, which would be divided by 

, area proportion, and mean nearest neighbor 

tatistic. The steps for the measurement of the geometric properties and 

tation of the parameters of the test statistics using vertical slice faces are as 

s:  

The width of the slice face i is computed by: 

2 2= −2vi v iw R d       (4-44) 
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where wvi is the width of the ith vertical slice face,

is 50 mm, and di is the distance between the slice face i and the middle slice face 

measured along a radius that is per

b. The areas of the lower and the upper portions of the ith slice face are computed as: 

      (4-45)  

h   w  

of each slice face that changes according to its distance from the middle slice face 

c. The Total areas of the lower and upper portions of nine vertical slice faces are 

computed as: 

 Rv is the radius of the specimen, which 

pendicular to the slice face. 

lv

where v is the height of the sampling area, which is 60 mm, and vi is the width 

i uvi v viA A h w= =

(Step a).  

1
lv lvi

i
A A=

=

=
lvn

∑        (4-4

uvn

6) 

uv uvi
i

A A=
=

=
1

∑        (4-47)  

where Alvi and Auvi are the areas of the lower and the upper portions of the ith slice 

face, respectively.  

d. On the lower portion and upper portion of each slice face, the frequency (f , f ), lvi uvi

the total area (alvi, auvi), and the mean nearest neighbor distance ( lvid , uvid ) of the 

coarse aggregates that have a diameter equal to or greater than 4.75 mm are 

measured. The nearest neighbor distance of each aggregate is the distance between 

e. The coarse aggregate frequencies from the nine lower portions and nine upper 

portions of the slice faces are summed:  

each aggregate centroid and its nearest neighbor centroid. 
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1

lvn

lv lvi
i

f f
=

= ∑        (4-48) 

1

uvn

uv uvi
i

f f
=

= ∑     

where flv and fuv are the total coarse aggregate frequency in the lower and the upper 

portions; nlv and nuv are equal to the number of slices, which is nine; and flvi and fuvi 

are the aggregate frequencies in the lower and the upper portions of the ith slice 

face, which were measured in Step d.  

f. 

   (4-49) 

The total frequency from the nine slice faces is computed by: 

vv lv uvf f f= +        (4-5

where flv, fuv, and fvv are used for chi-square test.  

The aggr

0)  

g. egate frequency densities in the lower portion (,fdli) and upper portion 

(,fdui) of the ith slice face are computed as follows: 

lvi
dli

lvi

ff
A

=        (4-51) 

uvi
dui

uvi

ff
A

=        (4-52) 

where flvi and fuvi are the aggregate frequencies in the lower and upper portions of 

h. andard deviations of the aggregate frequency densities in the 

lower portions (

the ith slice face, which were measured in Step d; Alvi and Auvi are the areas of the 

lower and the upper portions of the ith slice face, which were computed using 

Equation (4-44). 

The means and st

dlf , sfdl) and upper portions ( duf , sfdu) of nine slice faces are 

computed as follows: 
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1

1
lvn

lv i
dlidlf f

=

= n ∑       (4-53) 

0.5
2

1

1 ( )
1

lvn

fdls
⎡ ⎤

= ⎢ ⎥dli dl
ilv

f f
n =

−
−⎣ ⎦

∑     (4-54) 

1

1
uvn

duidu
uv i

f fn
=

= ∑       (4-55) 

0.5
2

1

1 ( )
1

uvn

fdu dui du
iuv

s f f
n =

⎡ ⎤
= −⎢ ⎥−⎣ ⎦

∑     (4-56) 

where fdli and fdui were computed using Equations (4-51) and (4-52); nlv and nuv are 

the number of l wer and upper po

computed means and standard deviations are used in the t-test on frequency 

density. 

i. 

o rtions of the slice faces, which are nine. The 

The aggregate area proportions in the lower portion (apli) and the upper portion 

(apui) of the ith slice face are computed as follows: 

lvi
pli

aa =        (4-57)
lviA

 

uvi
puia

A
=

uvi

a        (4-58) 

lvi uvi

hich were measured in Step d, Alvi and Auvi are the areas of the 

lower and the upper portion

Equation (4-45). 

where a  and a  are the total aggregate areas in the lower and the upper portions 

of the ith slice face, w

s of the ith slice face, which were computed using 
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j. The means and standard deviations of the total aggregate proportions in the lower 

portions ( pla , sapl) and in the upper portions ( pua ,sapu) of the slice faces are 

computed as follows: 

 

1lv i=

1
lvn

pl plia an= ∑       (4-59) 

0.5
2

1
( )

1
plpli

i
a a

=

−
1 lvn

apl
lv

s
n

⎡ ⎤
= ⎢ ⎥

⎣ ⎦− ∑     (4-60) 

1

1
un v

pu
uv i

a a
=

= puin ∑       (4-61) 

0.5
2

1

1 ( )
1

uvn

puapu pui
iuv

s a a
n =

⎡ ⎤
= −⎢ ⎥−⎣ ⎦

∑     (4-62) 

a  and a  are the aggregate area proportions in the lower portion and the 

upper portions of the ith slice face (Equations ((4-57) and (4-58)), respectively; and 

nlv and nuv are the number of lower and upper portions, which is nine. The m

k.  lower (alv) and the upper (auv) portions of the slice 

lv lvi
i=

   (4-63) 

       (4-64) 

where pli pui

eans 

and standard deviations of Equations (4-59) through (4-62) are used in the t-test on 

total area proportions.  

The total aggregate areas on the

faces are computed: 

lvn

a a= ∑     
1

1

lvn

uv lvi
i

a a
=

= ∑
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where alvi and auvi are the total

of the ith slice face, which were defined in Step d; nlv and nuv are the number of 

l. y: 

5)

m. The m

 aggregate areas on the lower or the upper portions 

lower and the upper portions, which are 9. 

The total area of the coarse aggregates from the nine slice faces is computed b

a a a= +        (4-6   

ean area of the coarse aggregates, 

vv lv uv

vva , is computed as:  

vv
vv

vv

aa
f

=        (4-66) 

where avv is the total area and fvv is the total frequency of the coarse aggregates on 

both the lower and upper portions of nine slices (Equations (4-65) and (4-50), 

respectively). 

n. The expected maximum frequencies on the lower and the upper portions (xlv and 

xuv) are computed as: 

lv uv
lv uv

vv vv

A A
a a

x x= = =       (4-67) 

where Alv and Auv are the total area of nine lower and nine upper portions, 

respectively (Equations (4-46) and (4-47)); and vva  is the mean area of the coarse 

aggregates (Equation (4-66)).  

o. The frequency proportions of the coarse aggregates in the lower, upper, and both 

portions of the slices are computed as follows: 

lv
lv

lv

fp
x

=        (4-68) 

uv
uv

uv

fp
x

=        (4-69) 
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lv uv
vv

lv uv

f fp
x x

+
=

+
    

flv uv are the total frequen

   (4-70) 

where and f cy of the coarse aggregates on the lower and 

the upper portions (Equations (4-48) and (4-49)), xlv and xuv are the expected 

maximum frequencies on the lower and the upper portions. The values of ˆ lvp , ˆuvp , 

ˆvvp , xlv, and xuv are used in the frequency proportion test. 

tion ( dlidp. The mean nearest neighbor distance density in the lower por ) and in the 

u duid ) of each of nine slice faces are computed as follows: pper portion (

lvi
dli

lvi

dd =        (4
A

-71) 

uvi
dui

dd
A

=        (4-72) 
uvi

where lvid  and uvid  are the mean nearest neighbor distances in the lower and the 

upper portions of the ith slice face, which were measured in Step d, A and A  are 

the areas of the lower and the upper portions of the ith slice face.  

q. The means and standard deviations of the mean nearest neighbor distance densities 

lvi uvi

in the lower ( duddld , sddl) and the upper ( , sddu) portions of nine slice faces are 

computed. 

1

1
lv

dl dlid dn=
n

lv i=
∑       (4-73) 

0.5
21 ( )

lvn

ds d d
⎡ ⎤

= −∑     (4-74) 
11

dli dldl
ilvn =

⎢ ⎥−⎣ ⎦

1

1
uvn

uv i=
du duid dn= ∑       (4-75) 
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0.5
2

1

1
1

uvn

ddu
iuvn =

( )dui dus d d
⎡ ⎤

= −⎢ ⎥−⎣ ⎦

where 

∑     (4-76) 

dlid  and duid are the mean nearest neighbor distance densities, which were

computed using Equations (4-71) and (4-72). The means and standard deviations 

of Equations (4-73) through (4-76) are used in the t-test on nearest neighbor 

distance densities.  

 

4.3.4 Hypothesis Testing using Suggested Test Statistics 

rtions, 

the chi-s  on aggrega equenci  t-tests o l area propo

frequency density, and mean nearest neighb ance rtical slice faces. 

The hypothesis tests using the chi-square and the t-tests foll

in Section 4.2.3. The hypothesis test using standard normal z test on frequency 

proportions is explained in this section. The test is adapted from the stan est 

and compares the proportion of the coarse aggregate frequency to the maximum expected 

co e  

procedure for making a decision on h

proportion z statistic is as follows:  

1.  

imp on 

The statistical hypothesis tests are made using the z-test on frequency propo

quare test te fr es, and the n tota rtion, 

or dist density using ve

ow the procedures explained 

dard normal t

ars  aggregate frequency of the lower and the upper portions of a specimen. The

omogeneity of a specimen using normal frequency 

The following null hypothesis for the aggregate frequency proportions, which is an

licati of the null hypothesis of Equation (4-1), is tested: 

: l uoH P P=        (4

where 

-77) 

lP  and uP  are the population values of the coarse aggregate frequency 

proportions for the lower and the upper portion

considered homogeneous if the null hypothesis is accepted. The possible 

s, respectively. A specimen is 
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alternative hypotheses for the aggregate frequency proportions for inhomogeneous 

specimens are provided in Table 4-5. If the coarser gradation is expected to be in

the lower portion of the specimen, the alternative hypothesis of Equation 

 

(4-78) 

f 

 

cified, 

ve hypothesis of Equation (4-80) would then be tested. 

T  
frequency proportion z

 

2. 

would be tested. If the coarser gradation is expected to be in the upper portion o

the specimen, the alternative hypothesis of Equation (4-79) would be tested. If a

priori knowledge of the expected location of the coarser gradation is not spe

the alternati

able 4-5. The alternative hypotheses and the corresponding critical regions for the 
 test 

To test the hypotheses in Step 1, the standard proportion z statistic is used: 

lv uv

pvv
vv

p p
s
−

where zvv is the value of a random variable having a standard normal distribution; 

z =       (4-81) 

lvp  and uvp  are the coarse aggregate frequency proportions (Equations (4-68) an

(4-69)); and spvv is the pooled sample standard deviation, which is defined as 

follows: 

d 

0.5
1 1

pvv v v
lv uvx x

ˆ ˆ(1 )( )s p p
⎡ ⎤

= − +⎢ ⎥
⎣ ⎦

    (4-82) 

A l  Test for: H  Equation 
 

Test Critica
Region 

Coarse Material on 
l uP P>  

Bottom 
(4-78) One-tailed upper zhv >zhvα 

Coarse Material on Top 
l uP P<  (4-79) One-tailed lower zhv <-zhvα 

Coarse Material on Top 
or Bottom l uP P≠  hv hvα/2  

       zhv > zhvα/2 
(4-80) Two-tailed  z  <-z or 
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where vp  is the proportion of coarse aggregate frequency in both lower an

portions (Equation (4-70)); xlv and xuv are the maximum expected frequencies

coarse aggregates in the lower and the upper portions (Equation (4-67)). 

The level of significance is selected. The selection of the level of significance 

d upper 

 of 

3. 

f 

4. 

t 

5. tic that 

when a specimen is homogeneous, is represented by 

o he 

ative hypotheses. If the expected locations of the coarser and the 

finer gradations are known a priori, a one-way z-test is utilized. In the case where 

 specimen, the 

critical region would be represented by the upper-tail of the distribution. In the 

case where the coarser gradation is expected to be in the upper portion of the 

should be based on the physical significance of homogeneity and the impact o

rejecting the null hypothesis of Equation (4-77) on design and performance 

decisions.  

The measured and computed data on the geometric properties of the coarse 

aggregates (Equations (4-67) through (4-70)), are used to compute both an 

estimate of the test statistic of Equation (4-81) and the statistical parameters tha

are required to define the sampling distribution of the test statistic (Equations 

(4-82)).  

The region of rejection, which consists of those values of the test statis

would be unlikely to occur 

ne or both tails of the distribution, depending on the alternative hypothesis. T

critical zvv values, which separate the region of rejection from the region of 

acceptance, are obtained from the probability distribution of zvv for the selected 

level of significance. Table 4-5 provides the critical regions that correspond to the 

possible altern

the coarser gradation is expected to be in the lower portion of the
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specimen, the critical region would be represented by the lower tail of the 

tion. If expected locations of the coars ot 

n a p itical region would be repr oth the lower and the 

upper tails of the distribution but with half of the level of significance in each tail.  

6. The decision on homogeneity of a specimen depends on a comparison of the 

ted value of the test statistic and the critical value. In the case where the 

region of rejection is in the upper tail of the distribution, any samp  zvv value 

greater than the critical value (zvvα) suggests an inhomogeneous specimen. In the 

the lower tail of the distribu y 

ple zvv value m e than the critical valu (-zvvα) suggests an 

inhomogeneous specimen. In case where regions of rejection in both tails of the 

distribution, any sample zhv value more negative than the lower tical value (-

zvvα/2) and greater than the upper tail critical value (zvvα/2) suggest an 

mogene cimen. 

Table 4-6 provides a summary of the test statistics for evaluation of vertical 

inhomogeneity in two layers using vertical slice faces. The statistical tests and the 

corresponding geometric properties are also provided in the table. The proposed tests 

w lied mulated and actual specimens and their accu sted 

in Chapters 6 and 7

4.4 THREE-LAYER VERTICAL INHOMOGENEITY: 
HORIZONTAL SLICE FACES 

Vertical inhomogeneity may be gradual rather than abrupt. The abrupt vertical 

inhomogeneity was simulated by two layers, while gradual vertical inhomogeneity was  

distribu er and finer gradations are n

riori, the crknow esented by b

compu

le

case where the region of rejection is in tion, an

e sam ore negativ

tail cri

inho ous spe

ou ppld be a to both si racy will be te

. 
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Table 4-6. Indices of two-layer vertical inhomogeneity using vertical slice faces 

Statistical Test 
 

Property Statistical  
Index 

Equation 
Number 

Standard Frequency 
Normal z  Proportions lv uv

vv
pvv

p pz −
=  

s
0.5

1 1
pvv v v

lv uvx x
ˆ ˆ(1 )( )s p p

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦

 

 
 

(4-82) 
 

 

(4-81) 

 

Two-Sample Frequencies  
Chi-Square  2 2

2 ( ) ( )
(1 ) (1 )

lv vv lv uv vv uv

vv lv lv vv uv uv
vv

f f r f f r
f r r f r r

χ − −
= +  

− −
 

0.5lv uv
lv uv

A Ar r= = = =
+ +

 

 

 
(4-83) 

 
 

(4-84) 
uv lv uv lvA A A A

 

 

Two-Sample Area  
 t- Test Proportions 

0.51 1( )

pl pu
apvt =

apv

a a

s

−

+
 

lv uvn n
 

2 2
2 ( 1) ( 1)lv apl uv apu

apv
lv uv

n s n s
s

− + −
=  

 

 
 

(4-86) 
2n n+ −

(4-85) 
 
 
 

 

Two-Sample Frequency 

0.51 1
dl du

fdv

fdv
lv uv

f ft

n n

−
=  

 

 t- Test Density 

( )s +

2 2
2 ( 1) ( 1)

2
lv fdl uv fdu

fdv
lv uv

 

n s n s
s

n n
− + −

=
+ −

 

(4-87) 

 
(4-88) 

 
 
 
 

Two-Sample Nearest 

0.51 1
dl du

ddv

ddv
lv uv

d dt

n n

−
=   t- Test Neighbor 

Distance 
Density 

( )s +

 
2 2

2 ( 1) ( 1)lv ddl uv ddu

lv uv

n s n ss − + −
=  

 

 
 
 
 
 

(4-90) 
2ddv n n+ −

(4-89) 
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modeled using specimens made with three layers. In such a case, the selected tests should 

involve comparison of the properties of the coarse aggregates in three horizontal layers. 

A number of statistical tests are suggested for the detection and measurement of three-

layer vertical inhomogeneity using horizontal slice faces. The tests include the chi-square 

test on aggregate frequencies and the F-test on total aggregate areas, aggregate 

frequen ed 

e 

4.4.1 Selection of Specimen Sampling  

Application of the statistical tests requires selection of the sampling spaces, in 

conducted. Although, the level of gradual vertical inhomogeneity that was created 

resulted in three unequal volumes of the coarse, medium, and fine portions (Section 

3.3.2.3), equal number of the slices was taken in each portion to avoid a bias in statistical 

The selection of the slices in each of the three portions was determined with two 

 within each 

portion should be from the same population. To ensure independency of the slices, 

McCuen and Azari (2001) showed that a 10-mm spacing was required between the slices. 

To ensure that the slices are from the same population, the top and bottom slices are 

located 15 mm away from the ends of the specimen to allow for the large particles to be 

fully contained within the specimen. In addition, a 15 mm gap between the last and the 

cies, and mean nearest neighbor distances. The test statistics are computed bas

on comparison of the aggregate properties observed in the lower, middle, and the upper 

portions of the specimens. The statistical tests examine the significance of the differenc

between the aggregate properties in the three layers.  

which the measurements of the geometric properties of the coarse aggregates need to be 

sampling. 

considerations: First, the slices should be independent; second, the slices
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first sl

that th he 

portion istinctively follow either the coarse, 

m

mixtur  in each portion should follow a distinct statistical population. 

Therefore, four horizontal slices in each of the three portions of the specimen 

were made. The first slice of the lower portion was taken 15 mm from the bottom of the 

specim

from t

slice o m intervals starting 

fr t ken 15 

mm from the top of the specimen (top sl

intervals below the top slice (Figure 4-4). 

ices of any two adjacent portions was considered as a transition zone. The reason is 

e process of compaction blends the two mixtures around the borderline between t

s, which results in a gradation that does not d

edium, or the fine gradation. By selecting the sampling portions away from the blended 

e, the materials

en (bottom slice). The other three slices were taken at 10-mm intervals starting 

he bottom slice. The first slice in the middle portion was taken 15 mm from the last 

f the lower portion. The other three slices were taken at 10-m

om he first slice of the middle portion. The last slice of the upper portion was ta

ice). The other three slices were taken at 10-mm 

 

Transition zone

15 mm

Bottom portion

Top portion

30 mm

30 mm

30 mm

15 mm

100 mm

Transition zone 15 mm

15 mm
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Transition zone

15 mm

30 mm

30 mm

30 mm

15 mm

100 mm

Transition zone 15 mm

15 mm

Middle portion

Figure 4-4. Location of the horizontal sli
layer vertical inhomogeneity 

 

ce faces on a specimen to be evaluated for three-
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4.4.2 

proper nd computation of the selected statistical parameters. 

T t e 

a. ace that is located in the jth sampling portion (lower, middle, and 

upper portions) of the specimen, the frequency (fhji), the total area (ahji), and the 

mean nearest neighbor distance (

Computation of Parameters of Test Statistics  

The computation of the test statistics requires measurement of geometric 

ties of coarse aggregates a

he s eps of the procedur are as follows: 

On each slice f

hjid ) of the coarse aggregates that have a diameter 

 o

b. e three portions 

equal to r greater than 4.75 mm are measured; j indicates the sampling portion 

and i indicates the slice face in each portion. 

The coarse aggregate frequencies from the slice faces in each of th

are summed:  

1

sn

hj hji
i

f f
=

= ∑        (4-91) 

where fhj is the total coarse aggr

of slices in each portion, which is four; and f  is the aggregate frequency in the ith 

slice face of the jth portion, which was measured in Step a. 

c. The total frequency (f ) from the three sampling portions is computed by: 

j

egate frequency in the jth portion; ns is the number 

hji

h

1

pn

h hjf f
=

∑        (4-

where n  is the num

= 92) 

p ber of portions, which is three and fhj is the total coarse 

aggregate frequency in the jth po

d. The area ratio of the slices (rhj ) in the jth portion to total number of slices is:  

rtion.  

1
3

hj
hj

hT

Ar A= =       (4-93) 
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where A  is the total area of four slice faces in the jhj l 

 frequencies.  

th portion and AhT is the tota

area of twelve slices in the three sampling portions. The variables computed in 

Equations (4-91) through (4-93) are used in the chi-square test on

e. The mean aggregate frequency in each portion is computed: 

1

1
sn

hjihj
s i

f fn
=

= ∑       (4-94) 

where ns is the number of slices 

th th me  

f. 

in the jth portion, which is four and fhji is the 

aggregate frequency in the i  slice face of the j  portion of the speci n, which

was measured in Step a. 

The grand mean ( hf ) of the aggregate frequencies of the three portions is 

computed by: 

1

1
h

pn

hj
p j

f f
=

n= ∑       (4-95) 

where hjf  is the mean aggregate

g. 

 frequency in portion j and np is the number of 

sampling portions, which is three. The mean frequency values computed using 

Equations (4-94) and (4-95) are used in the F-test on frequencies. 

The mean total aggregate area ( hja ) in each sampling portion of the specimen is 

computed:  

1

1
s

hj hjia an=
n

s i=
∑       (4-96) 

th

th th

where ns is the number of slices in the j  portion, which is four and ahji is the total 

coarse aggregate area in the i  slice face of the j  portion of the specimen, which 

was measured in Step a. 
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ha ) of the total coarse aggregate arh. The grand mean ( eas from all portions are 

computed: 

1

1
p

h hja an=
n

p j=
∑       (4-97) 

hjawhere  is the mean of total coarse aggregate areas in portion j and n  is the 

i. The mean of the nearest neighbor distances in any of the three sampling portions is 

p

number of sampling portions, which is three. The mean values computed using 

Equations (4-96) and (4-97) are used in the F-test on total areas. 

computed: 

1

1
sn

hj hji
s i

d dn
=

= ∑       (4-98) 

where ns is the number of slices in the j  portion, which is four and th
hjid  is the 

mean nearest neighbor distance of the coarse aggregates on the ith slice face of the 

jth portion of the specimen, which was measured in Step a. 

j. The grand mean ( hd ) of the mean nearest neighbor distances in the three sam

ons is computed by: 

pling 

porti

1

1
pn

h hjd dn=
p j=
∑       (4-99) 

where hjd  is the mean nearest neighbor distance in portion j and np is the number 

of sampling portions, which is three. The mean values computed using Equations 

(4-98) and (4-99) are used in the F-test on mean nearest neighbor distances. 
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4.4.3 

 a 

specim

inhom

ex i

4.4.3.1 Three-Sample chi-Square Test on Frequencies  

uare test can be applied to aggregate frequencies to test gradual vertical 

inhom wer, 

middle

ag g

homog

freque the 

signifi

homogeneity of a specimen using three-sample chi-square test on frequencies is as 

follows:  

1. The following hypotheses for the aggregate frequencies, which are implications of 

the hypotheses of Equations (4-1) and (4-2), are tested: 

 Ho : The observed frequency of each portion is equal to the mean.  

     (4-100) 

 H  : At least one observed frequency is different from the mean.  

          (4-101) 

A specimen is considered homogeneous if the null hypothesis is accepted. 

2. To test the hypotheses, the chi-square test statistic is used:  

Hypothesis Testing using Suggested Test Statistics 

The six steps of hypothesis testing are followed in order to test homogeneity of

en. In the following sections the steps for testing the three-layer vertical 

ogeneity using the proposed statistical tests on the horizontal slice faces are 

pla ned:  

The chi-sq

ogeneity. The test compares the frequencies of the coarse aggregates in the lo

, and the upper portions of a specimen. The objective is to examine whether the 

gre ate frequencies of the portions vary from the expected aggregate frequency for a 

eneous specimen. It is hypothesized that for an inhomogeneous specimen, the 

ncy of the coarse particles in at least one of three sampling portions is 

cantly different from the expected frequency. The procedure for testing the 

     

A
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2
2

1

( )
(1 )

pn
hj hj h

j hj h hj
3h

f r f
r f r=

−

−

where 2
3h

χ = ∑       (4-102) 

χ  is the value of a random variable having a chi-square distribution with 

the degree of freedom of ν3χ: 

3 1pnχν = −         (4-103

where n  is the number of layers, which is three; f  is th

) 

p hj e total frequency of the 

c arse aggregates in th

s h is the total 

)).  

3.  

ac f 

0) on design and performance 

decisions. 

4. The measured and computed data on the geometric properties of the coarse 

102).  

5. f those values

tail 

o e jth portion (Equation (4-91)); rhj is the area ratio of the 

lices in the jth portion to all 12 slices (Equation (4-93)); and f

aggregate frequency on 12 slices in the three sampling portions (Equation (4-92

The level of significance is selected. The selection of the level of significance

should be based on the physical significance of homogeneity and the imp t o

rejecting the null hypothesis of Equation (4-10

aggregates are used to compute an estimate of the test statistic of Equation (4-

The region of rejection, which consists o  of test statistic that would 

be unlikely to occur when a specimen is homogeneous, is represented by upper 

of the distribution. The critical 2
3hχ  value ( 2

3hαχ ) value, which separates the region

of rejection from the region of acceptance, is obtained from the distribution of 

 

2
3hχ  

statistic for the selected level of significance.  

6. The decision on homogeneity of a specimen depends on comparison of the 

computed value of the test statistic and the critical value. Any chi-square value 

greater than the critical value suggests an inhomogeneous specimen. 
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4.4.3.2

served 

on the  

will in al c

portion regate areas in 

the me

betwee n 

F-test 

1. ing hypotheses for the aggregate total areas, which are implications of 

 F-Test on Total Aggregate Areas 

The assessment of a difference in the total area of the coarse aggregates ob

 horizontal slice faces in the upper, middle, and the lower portions of a specimen

dicate inhomogeneity. The mean of the tot oarse aggregate areas in the coarse 

 is hypothesized to be greater than the mean of the total coarse agg

dium or fine portions of the specimen. An F-test is used to assess the difference 

n the three means. The procedure for testing homogeneity of a specimen using a

on total coarse aggregate areas is as follows:  

The follow

the hypotheses of Equations (4-1) and (4-2), are tested: 

 : b m toH A A A= =        (4-104) 

 HA : At least one pair of the means is not equal.    (4-105) 

bA , mA tA, and where  are the population values of the total coarse aggregate 

areas in the bottom, middle, and top portions of a specimen, respectively. A 

specimen is considered homogeneous if the null hypothesis is accepted.  

To test the hypothesis, the F statistic is used:  2. 

ba
a

wa

MSF
MS

where Fa is the index of homogeneity that is a random variable that has an F 

distribution with degrees of freedom of ( 1, )p pn n n

=        (4-106) 

− − , where np is the number of 

sampling portions, which is three and n is the total number of slice faces in the 

three sampling portions, which is 12. MSba and MSwa are the between and within 

total area mean squares (McCuen, 1985), which are computed as follows: 
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2

1
( )

( 1)ba
pn

pn

hj hs
j

n a a
MS =

−
= −

∑
    (4-107) 

2

1 1
( )

( )

p sn n

hj
j i

wa
p

a a
MS n n

= =

−
= −

∑∑
    (4-108

where n  is the number of slice faces in the j

hij

) 

s
th layer, which is 4; hja  is the mean of 

th
hatotal coarse aggregate areas on the slices in the j  layer (Equation (4-96));  is 

the grand mean of the total coarse aggregate areas of 12 slice faces in the three 

sampling portions (Equation (4-97)); and  is the total coarse aggregate area on 

the ith slice face in the jth sampling portion (Section 4.4.2, Step a). 

3. The level of significance is selected. The selection of the level of significance 

should be based on the physical significance of homogeneity and the impact of 

4. 

 of Equation (4-106) 

and its components (Equati

5. The region of rejection, which consists of those values of test statistic that would 

be unlikely to occur when a specimen is homogeneous, is represented by the upper 

tail of the distribution. The critical F value (Faα), which separates the region of 

a

statistic for the selected level of significance.  

ahij

rejecting the null hypothesis of Equation (4-112) on design and performance 

decisions. 

The measured and the computed data on the geometric properties of the coarse 

aggregates are used to compute an estimate of the test statistic

ons (4-107) and (4-108)).  

rejection from the region of acceptance, is obtained from the distribution of F  
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6. The decision on homogeneity of a specimen depends on comparison of the 

computed value of the test statistic and the critic

the critical value suggests an inhomogeneous specimen. 

4.4.3.3 F-Test on Aggregate Frequencies 

An F-test can also be utilized to compare the mean frequencies of the coarse 

particles in the lower, m

coarse

mean o n 

F-test is used to assess the difference between the three means.  The procedure to test the 

ho g

1.  of 

al value. Any Fa value greater than 

iddle, and upper sampling portions of a specimen. The mean of 

 aggregate frequencies in the coarse portion is hypothesized to be greater than the 

f coarse aggregate frequencies in the medium or fine portions of the specimen. A

mo eneity of a specimen using F-test on mean frequencies is as follows:  

The following hypotheses for the aggregate frequencies, which are implications

the hypotheses of Equations (4-1) and (4-2), are tested: 

: b moH F F F= = t         (4-109) 

HA : At least one pair of frequency means is not equal.   (4-110) 

where bF , mF , and tF  are the population values of the coarse aggregate 

frequencies in the bottom, middle, and top portions of a specimen, respectively. A 

specimen is considered homogeneous if the null hypothesis is accepted.  

2. To test the hypothesis, the F statistic is used:  

bf
f

wf

MS
F

MS
=        (4-1

where F is the index of homogeneity that is a random

11) 

f   variable that has an F 

distribution with degrees of freedom of ( 1, )p pn n n− − , where np is the number of 
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sampling portions, which is three and n is the total number of slice faces in 

three sampling portions which is 12. MSbf and MSwf are the between and within 

mean squares, which are computed as follows: 

the 

2

1

( )
(

s hj h
bf

pj

MS n
=

= 1)
pn n f f−

−∑
    (4-112) 

2

1 1
( )

( )

p sn n

j i
wf

p

f f
MS n n

= =

−
= −

∑∑
    (4-113) 

where n  is the number of slice faces in the jth layer, which is four; 

hij hj

s hjf  is th

of coarse aggregate frequencies on the slices in the j  layer (Equation (4-94)); 

e mean 

th
hf  

is the grand mean of the coarse aggregate frequencies of 12 slice faces in the three 

sampling portions (Equation (4-95)); and fhji is the aggregate frequency on the ith 

th

3. cance 

should be based on the physical signifi

rejecting the null hypothesis of Equation (4-117) on design and performance 

decisions. 

4. The measured and the computed data on the geometric properties of the coarse 

aggregates are used to compute an estimate of the test statistic of Equation (4-111) 

and its components (Equations (4-112) and (4-113)).  

5. The region of rejection, which consists of those values of test statistic that would 

be unlikely to occur when a specimen is homogeneous, is represented by the upper 

tail of the distribution. The critical Ff value (Ffα), which separates the regions of 

slice face in the j  layer.  

The level of significance is selected. The selection of the level of signifi

cance of homogeneity and the impact of 
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rejection from the region o

statistic for the selected level of significance.  

6. 

 test statistic f 

4.4.3.4 F-Test on Nearest Neighbor Distances 

The F-test is utilized to compare the mean distances between the nearest neighbor 

aggregates in the lower, middle, and upper portions of

the mean distance between the nearest neighbor particles in the coarse portion is 

significantly smaller than the mean distance in the mediu

inhomogeneous specimen. This is because of a greater concentration of the coarse 

aggreg neity 

of a sp

1.  

f acceptance, is obtained from the distribution of Ff 

The decision on homogeneity or inhomogeneity of a specimen depends on 

comparison of the computed value of the and the critical value. Any F

value greater than the critical value suggests an inhomogeneous specimen. 

 a specimen. It is hypothesized that 

m or the fine portion of an 

ates in the coarser portion of the specimen. The procedure for testing homoge

ecimen using F-test on mean nearest neighbor distances is as follows:  

The following hypotheses for the aggregate nearest neighbor distances, which are

implications of the hypotheses of Equations (4-1) and (4-2), are tested: 

: b m toH D D D= =         (4-114

HA  : At l

) 

east one pair of mean nearest neighbor distances is not equal.  

115)           (4-

where bD , mD , and tD  are the population values of the mean coarse aggregate

nearest neighbor distances in the bottom, middle, and top portions of a specim

respectively

 

en, 

. A specimen is considered homogeneous if the null hypothesis is 

accepted.  
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2. To test the hypothesis, the F statistics is used:  

bd

wd
d

MSF
MS

=        (4-116) 

where Fd is the index of homogeneity that is a random variable and has an F 

distribution with degrees of freedom of ( 1, )p pn n n− − , where np is the number of 

sampling portions, which is three and n is the total number of slice faces in the 

three sampling portions, which is 12. MSbd and MSwd are the between and withi

nearest neighbor distance mean squares, which

n 

 are computed as follows:  

2

1

( )

( 1)

pn

hj h
j

bd
p

n d d
MS n

=

−
=

s

−

∑
    (4-117) 

2

1 1
hji hj

j i
wdMS = == −     (4-118) 

where ns is the number of slice faces in the j  layer, which is four; 

( )

( )p

d d

n n

−∑∑

th

p sn n

hjd  is the 

average of the mean nearest neighbor distances on the slices of the j  layer 

(Equations (4-98)); 

th

hd  is the grand mean of the mean nearest neighbor distances 

on 12 slice faces in the three sampling portions (Equation (4-99)); and hjid  is the 

S

ce 

decisions.  

mean nearest neighbor distance on the ith slice face in the jth layer (Section 4.4.2, 

tep a). 

3. The level of significance is selected. The selection of the level of significan

should be based on the physical significance of homogeneity and the impact of 

rejecting the null hypothesis of Equation (4-122) on design and performance 
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4. The measured and computed data on the geometric properties of the coarse 

tes  to compute an e  the test statist ati 6) 

 components (Equations (4-117) and (4-118)).  

5.  regio n, which consists of those values of test c th  

be unlikely to occur when a specimen is homogeneous, is represented by the upper 

tail of the distribution. The critical Fd value (Fdα), which separates the region of 

rejection from the region of acceptance, is obtained from the distribution of Fd 

stic f ed level of significance.  

6. The decision on homogeneity of a specimen depends on the comparison

computed value of the test statistic and the critical value. Any Fd value greater than 

the critical value suggests an inhomogeneous specimen. 

le 4-7  a summary of the test statistics for the measurement cal 

inhomogeneity in three layers using horizontal slice faces, the statistical tests, t

corresponding geometric properties, the equation numbers, and the section numbers 

where the tests are described. The tests of Table 4-7 would be applied to simulated 

specimens and their accuracy will be tested in Chapter 6.  

Y 

ether in two or three layers, is not 

known, a test that is specific to one form of vertical inhomogeneity would not be 

powerful enough for the detection of the other form of vertical inhomogeneity. Number 

of tests is proposed for the cases where the nature of vertical inhomogeneity, abrupt or  

aggrega  are used s oftimate ic of Equ on (4-11

and its

 The n of rejectio  statisti at would

stati or the select

 of the 

Tab  provides  of verti

he 

4.5 TESTS FOR ALL FORMS OF VERTICAL INHOMOGENEIT

When the nature of vertical inhomogeneity, wh
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Table 4-7. Indices of three-layer vertical inhomogeneity using horizontal slice faces 

Statistical Test Property Statistical  
Index 

Section 
Number 

Equation 
Number 

Three-Sample Frequencies 2

Chi-Square 2 ( )p
hj hj h

1 (1 )

n

j hj hj hj

f r f
χ

−
= ∑  

r f r= −

4.4.3.1 (4-102) 

F-Test Total Areas 
2

1

2

1 1

( )

p s

hj hs
j

p
a n n

j i

n a a

F

=

= =

=

∑

 

(4-108) 
( 1)

( )

( )

pn

hji hj

p

n

a a

n n

−

−

−

−

∑∑

4.4.3.2 (4-106) 
(4-107) 

 

F-Test Frequencies 
2

1

pn

s hj h
j=

2

1 1
( )

( )

p s
f n n

j i

p

F
f f

n n
= =

( )

( 1)p

hij hj

n f f

n

−

−
=

−

−

∑∑
 

∑ (4-112) 
(4-113) 

 

4.4.3.3 (4-111) 

F-
Distances 

Test  Neighbor 
2

1
( 1)

pn

j
n

=
−

4.4.3.4 (4-116) 

2

1 1
( )

p s
d n n

hij hj
j i

d d
= =

−∑∑

( )

( )

hj hs

p

p

n d d

F

n n

−

=

−

∑

 

(4-117) 
(4-118) 

 

gradual

al 

4.5.1 Spearman-Conley Test (Horizontal Slice Faces) 

easure 

the change in the frequency of the coarse

evaluating the serial co

, is not known. The tests are the Spearman-Conley, the runs, and the average 

depth. The six steps of hypothesis testing are followed in order to evaluate vertic

homogeneity of a specimen using the proposed tests.  

The Spearman-Conley test (Conley and McCuen, 1997) can be used to m

 aggregates through depth of a specimen by 

rrelation of the coarse aggregate frequency in the adjacent 
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horizon atistic 

are compute

measu of the test statistic 

ar  

a. t 10-mm spacing. The first and the last slices 

are taken 15 mm from the ends of the specimen to allow the large size aggregates 

to be fully contained within the specimen

b. 

equal to or greater than 4.75 mm is measured.  

first sequence includes aggregate frequencies of all slices excluding the frequency 

ing the value of the last slice face.  

d. While keeping the values in each series in chronological order, the rank of each 

e. 

homogeneity of a specim

hypothesis test using the Spearm

1. 

tions (4-1) and (4-2), are tested: 

Ho : The aggregate frequencies of the consecutive slices are independent.  

          (4-119) 

tal slice faces. Prior to the application of the test, the parameters of test st

d based on the frequency of the coarse aggregates. The steps for the 

rement of the frequencies and the computation of the parameters 

e as follows:  

Twelve horizontal slices are made a

.  

On each slice face, the frequency (fi) of the coarse aggregates that have a diameter 

c. Two data series from the aggregate frequency of the slice faces are formed. The 

of the first slice face. The second sequence includes the aggregate frequencies of 

the slice faces exclud

frequency value in each series is determined. 

 The difference in the ranks (∆i) of the frequencies of the two series is computed.  

The six steps of hypothesis testing are then followed in order to evaluate the 

en. Using the information obtained above, the steps of 

an-Conley test statistic are as follows:  

The following hypotheses for the aggregate frequencies, which are the 

implications of the hypotheses of Equa

 155



 

HA : The aggregate frequencies of the consecutive slices are correlated.  

          (4-1

A specimen is homogeneous if the null hypothesis is accepted.  

20) 

2. To test the hypotheses, the test statistic, which is Spearman–Conley correlation 

coefficient is specified as follows: 

1
2

3

6

( 1) ( 1)

i

sc n n
11

n

iR

−

== −
− − −

∑

where n is the number of slice faces, which is 12; and ∆i is the i

     (4-121) 

 

ficance 

sult, 

 

th difference in the

ranks of the two series (see Step e).    

3. The level of significance is selected. The selection of the level of signi

should be based on the physical significance of homogeneity and the impact of 

rejecting the null hypothesis of Equation (4-127) on design and performance 

decisions.  

4. An estimate of the test statistic of Equation (4-121) is computed. 

5. The critical Rsc value, which separates the region of rejection from the region of 

acceptance, is obtained from the table of Spearman-Conley critical values. The 

critical Rsc is obtained by entering the table with the number of pairs of data (n-1) 

for the selected level of significance. For an inhomogeneous specimen, the 

aggregate frequencies of the consecutive slices would be correlated. As the re

Rsc would be large and the region of rejection would be represented by the upper

tail of the distribution. 
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6. 

gests an inhomogeneous specimen.  

4.5.2 Average Depth Test (Vertical Slice Faces) 

 by McCuen and Azari (2001) for the 

measurement of vertical inhomogeneity. The details of the test are provided in Section 

2. .7 cle

middle slice face. The particles were then grouped into different area-gradation classes. 

The distance from the top of the speci

measured, and the average distance for each sieve size was computed. For a 

homogeneous specimen, the means were expected to be equal to one-half of the specimen 

height. For an inhomogeneous specimen with the large particles in the lower portion of 

the specim ean distan an 

the mean distances for the smaller sieve sizes. A one-way analysis of variance on the 

means was used to test for equality of the mean distances. Here, the test is modified for 

multiple vertical slices and for aggregates larger than 4.75 mm in diameter. The average 

distance of the centroids of all sampled aggregates to the top of the specim

and compared to the mid-height of the specimen. The one sample t-test is used to 

measur n

aggrega cimen. Prior to applying the test, the 

require

eometric center of the core. 

The decision on homogeneity of a specimen depends on the comparison of the 

computed value of the test statistic and the critical value. Any sample Rsc value 

greater than the critical Rsc sug

The average depth test was suggested

3.2 . For that test, the parti s larger than 2.35 mm in diameter were sampled on the 

men to the center point of each particle was 

en, the m ces for the large sieve sizes was expected to be larger th

en is computed 

e the sig ificance of the difference between the average depth of the coarse 

te centroids and the mid-height of the spe

d parameters of the t-statistic are computed as follows:  

a. Nine vertical slices at 10-mm spacing are made on each 100-mm diameter 

specimen. The primary slice face passes through the g
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The slice face at the middle of the specimen provides the largest cross-sectional 

area; four additional equally spaced slices are made on each side of the middle 

slice face (see Section 4.3.1). 

b. On each slice face, the centroid of each particle that has a diameter equal to or 

greater than 4.75 mm is identified. 

c. The distance (d ) of aggregate centroid j to the top of slice face i is measured. 

d. The average distan

ij

ce ( id ) of the aggregate centroids on slice face i to the top of 

puted as: the slice face is com

1

1
a

i ijd dn=
n

a j=
∑       (4-122) 

where na is the number of aggregates on slice face i and dij is the distance of 

aggregate centroid j to top of slice face i.  

e. The mean ( d ) and standard deviation (sd) of the average centroid distances is 

computed as: 

1

vvn

i
i

vv

d
d n

==
∑

       (4-123) 

0.5
2

1ivv =⎣ ⎦

1 ( )
1

vvn

ids d d
n

⎡ ⎤
= −⎢ ⎥− ∑      (4-124) 

where id  is the average centroid d lice face  

is the number of vertical slice faces. 

The six steps of hypothesis testing are followed in order to evaluate homogeneity 

of a specimen. Using the information obtained above, the steps of hypothesis test using 

the t-sta erage centroid dis ances are as follows:  

istance of the aggregates on s i and nvv

tistic on av t

 158



 

1. T

the

he following hypothesis for the aggregate frequencies, which is an implication of 

 hypothesis of Equation (4-1) are tested: 

: 2o
HH D =        (4-125) 

D  where is the population value of the coarse aggregate centroid distance to top 

of a specimen and H is the height of the specimen. The specimen is homogeneous 

if the null hypothesis is accepted. The possible alternative hypotheses for the 

aggregate locations are provided in Table 4-8. If the coarser gradation is expected 

2. 

to be in the lower portion of the specimen, the alternative hypothesis of Equation 

(4-127) would be tested. If the coarser gradation is expected to be in the upper 

portion of the specimen, the alternative hypothesis of Equation (4-128) would be 

tested. If a priori knowledge of the expected location of the coarser gradation 

were not known, the alternative hypothesis of Equation (4-129) would then be 

tested. 

The test statistic is specified as follows: 

2
d

vv

h
t s

n

=        (4-1

4-8. The alternative hypotheses and the corresponding critical regions for the t-te
n distance to the top 

Number 

vd −
26) 

Table st 
on mea

Test for: HA Equation Test Critical Region 

Coarse Material on 
2D >  α

Bottom 
H (4-127) One-tailed upper t >t  

Coarse Material on Top 
2

HD <  α(4-128) One-tailed lower t <-t  

Coarse Material on Top 
or Bottom 2

HD ≠  (4-129) Two-tailed  t <-tα/2 or t >tα/2 
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where nvv is the number of slice faces, which is nine, hv is the height of specimen, 

d  and sd are the mean and standard deviation of average centroid distances, 

3. 

4. 

5. 

en is homogeneous, is represented by 

one or both tails of the distribution. The critical t value (tα), which separates the 

region of rejection from the region of acceptance, is obtained from the t 

distribution, for the selected level of significance. Table 4-8 provides the regions 

of rejection that correspond to the possible alternative hypotheses. If the expected 

locations of the coarser and the finer gradations are known a priori, a one-way 

t-test is utilized. In the case where the coarser gradation expected at the bottom of 

the specimen, the critical value would be represented by the upper-tail of the 

distribution. In the case where the coarser gradation expected at the top of the 

specimen, the critical region would then be represented by the lower tail of the 

distribution. If the expected locations of the coarser and the finer gradations are 

not known a priori, the critical region would be represented by both the lower and 

respectively.   

The level of significance is selected. The selection of the level of significance 

should be based on the physical significance of homogeneity and the impact of 

rejecting the null hypothesis of Equation (4-134) on design and performance 

decisions.  

The computed statistical parameters of Equations (4-123) and (4-124) are used to 

compute an estimate of the test statistic of Equation (4-126).  

The region of rejection, which consists of those values of the test statistic that 

would be unlikely to occur when the specim
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the upper tails of the distribution but with half of the level of significance in each

tail. 

6. The decision on homogeneity or inhomogeneity of a specimen depends on the 

comparison of the computed value of the test statistic and the critical value. In t

case of the region of rejection in the upper tail of the distribution, any sample t 

value greater than the critical t (tα) suggests an inhomogeneous specimen.

case of the region of rejection in the lower tail of the distribution, a

 

he 

 In the 

ny sample t 

lue 

l t 

t an inhomogeneous specimen. 

4.5.3 

The runs test on the aggregate frequencies has been suggested by McCuen and 

Azari (2001) for evaluation of randomness of the aggregate distribution observed on the 

vertical slice face that goes through the diameter of a specimen (the middle slice face). 

The slice face was divided into a number of horizontal layers of equal thickness from top 

to bottom and the number of particles in each layer was computed. The basis of the test is 

the number of times (runs) the aggregate frequency in the layers oscillates between above 

and below the median aggregate frequency of all layers. The detailed explanation of the 

runs test is provided in Section 2.3.2.6. Here, the test is modified to be applied to multiple 

horizontal slice faces. The frequency of aggregates on each slice face is measured and 

compared with the median aggregate frequency of all slice faces. Each layer is assigned a 

“+” sign if the aggregate frequency of the slice face is greater than the median frequency. 

value smaller than the critical t (-tα) suggests an inhomogeneous specimen. In the 

case of the region of rejection in both tails of the distribution, any sample t va

lower than the lower tail critical t (-tα/2) and greater than the upper tail critica

(tα/2) sugges

Runs Test (Horizontal Slice Faces)  
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A  

For ea  

the nu on, i.e., from 

positive  

able of 

 of the test, the statistical 

param

a. st 

f each portion are taken 15 mm away from the ends of the 

s  wi n the 

s

b. han 

c.  

d.  of the particle frequencies of all slice faces (fm) is obtained. The 

of 

e. dian 

m). A “+” sign is devoted to a slice in which fi exceeds the median 

ceed fm.  

 

 “-” sign is assigned if the measured frequency is smaller than the median frequency. 

ch specimen, the number of runs (nr), as the index of homogeneity, is defined as

mber of times that the signs associated to the slice faces change directi

 to negative and vice versa. For a selected level of significance, the measured

number of runs is then compared with the critical number of runs (nrα) from the t

runs for complete randomness. Prior to the application

eters for computing the runs test statistics are obtained as follows:  

Twelve horizontal slices at 10-mm spacing are made on each specimen. The fir

and the last slice o

pecimen to allow the large size aggregates to be fully contained thi

pecimen.  

On each slice face, the centroid of each particle that has a diameter greater t

4.75 mm is identified.  

The frequency of the coarse aggregate centroids (fi) on each slice face is measured.

The median

median is the frequency that half of the slices have frequencies above and half 

the slices have frequencies below that.  

The frequency of the centroids on each slice face (fi) is compared with the me

frequency (f

frequency (fm) and a “-” sign is devoted to a slice in which fi does not ex

f. The number of runs (nr) is then computed as the number of times that the signs

devoted to the slice faces change direction. 
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g.  is 

homog

hypoth

1. 

 

mly in vertical direction.   (4-131) 

2. 

e 

4. An estimate of the test statistic (nr) is obtained (see steps c through f).  

5. The region of rejection, which consists of those values of the test statistic that 

would be unlikely to occur when a specimen is homogeneous, is represented by 

the lower tail of the distribution. In a homogeneous specimen the number of 

The exceedance (x1) and nonexceedance (x2) frequencies are computed where x1

the number of times the slice face frequencies exceed the median and x2 is the 

number of times the slice face frequencies do not exceed the median. 

The six steps of hypothesis testing are then followed in order to evaluate the 

eneity of a specimen. Using the information obtained above, the steps of 

esis test using the runs statistic are as follows: 

The following hypotheses on the randomness of the coarse aggregates in vertical 

direction, which are the implications of the hypotheses of Equations (4-1) and 

(4-2), are tested: 

Ho : Aggregates are distributed randomly in vertical direction.   (4-130)

HA : Aggregates are not distributed rando

A specimen is considered homogeneous if the null hypothesis is accepted. 

The test statistic as the number of runs (nr) is specified. The number of runs is the 

number of times the aggregate frequencies oscillates above and below the median 

frequency. 

3. The level of significance is selected. The selection of the level of significanc

should be based on the physical significance of homogeneity and the impact of 

rejecting the null hypothesis of Equation (4-138) on design and performance 

decisions.  
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particles in each slice face is either slightly below or slightly above the median 

icle . The here are

In a vertically inhomogeneous specimen, where the coarser gradation is vertically 

separated from the finer gradation, the number of centroids is significantly below 

the median frequency for the slice faces that are p ed portion 

and significantly above the median in the slice faces placed in the coarse graded 

ion. T re, the num n the direction of sig s from 

the slice faces. As a result, the critical region would be represented by the lower 

tail of the distribution. For the selected level of significance, the exceedance (x1) 

and nonexceedance (x2) frequencies (see Step g) are used to determine the critical 

runs value from the table of critical runs.  

6. The decision on homogeneity of a specimen depends on the comparison of the 

computed value of the runs statistic and the critical value. Any sample runs value, 

nr, smaller than the critical runs (nrα) suggests an inhomogeneous specimen.  

Table 4-9 provides a summary of the test statistics for the measurement of all 

forms of vertical inhomogeneity, the statistical tests, the corresponding geometric 

properties, the equation numbers, and the section numbers where the tests are described. 

The tests of  Table 4-9 would be applied to actual specimens only and their accuracy will 

be tested in Chapter 6. 

part  frequency refore, t  frequent shift between “+” and “-” signs. 

laced in the fine grad

port herefo re is less ber of changes i n
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Table 4-9. Indices of all forms of vertical inhomogeneity 

Direction Test Number 
Slice Face Statistical Property Statistical  

Index 
Section Equation 

Horizontal Spearman 
Conley  

Frequency 2

1
3

6
1

n

i
i

sc

d
R

n n
== −
−

∑
 

4.5.1 (4-121) 

Vertica

Top 

l  t-test  Centroid 
Distance to the 2

d

Hd
t

n

−
=  

4.5.2 (4-126) 

d s

Horizontal Runs  Frequency nr 
(Number of runs) 

4.5.3 - 
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CHAPTER 5 - DEVELOPMENT OF INDICES OF RADIAL 

e 

est statistic with 

the pop

ull and the alternative 

hypoth

sis 

us.      (5-1) 

ditions 

 

level of significance is an indicator of the probability of a certain type of statistical error, 

namely the probability of rejecting the null hypothesis when, in fact, it is true. 

HOMOGENEITY  

5.1 INTRODUCTION 

 To test simulated and actual specimens for radial homogeneity, several statistical 

tests are being introduced. The statistical tests use the six steps of hypothesis testing. Th

basis of a hypothesis test is the comparison of the sample value of the t

ulation value for the condition of complete homogeneity.  

The first step in hypothesis testing is to formulate the null hypothesis and one or 

more hypotheses that reflect the alternative lines of action. The n

eses are formulated based on the differences between the specific geometric 

properties of the aggregates in two radial portions of a specimen or based on the 

differences between specific geometric properties of the entire specimen with the 

expected values of the same properties for the state of homogeneity. The null hypothe

always reflects homogeneity while the alternative hypothesis reflects inhomogeneity:  

Ho : The specimen is homogeneo

HA : The specimen is inhomogeneous.      (5-2) 

The second step of a hypothesis test is the selection of the appropriate theorem 

that identifies the test statistic. The test statistic should distinguish between the con

of homogeneity and inhomogeneity. 

 The third step is to specify the level of significance. It is necessary to select a 

level of significance that is appropriate for the physical property that is being tested. The
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The fourth step of a hypothesis test involves collecting a sample of data and 

computing an estimate of the test statistic. The collected data include the geometric 

propert

r 

de in the sixth step 

when the sample value of the test statistic is compared with the population test statistic. If 

Several statistical tests are offered for the detection and measurement of radial 

inhomogeneity. The proposed tests are adopted from the standard tests such as the z, 

chi-square, and the t-tests. The proposed tests are defined for both horizontal and vertical 

slice faces. It is important to evaluate the level of agreement between computed test 

statistics using vertical and horizontal slice faces and to assess the slice face direction that 

results in a more accurate test statistic.  

In addition to the statistical tests mentioned above, three other tests are presented 

at the end of this chapter that have been defined based on the tests found in literature. The 

tests will be applied exactly the way they have been proposed by the authors (the 

ve been specifically modified for test of 

radial h

ies such as the area, frequency, or the location of coarse aggregates measured 

from slice faces of a specimen.  

In the fifth step, the region of rejection of the test statistic, whether in the lower o

the upper tail of the distribution function, is defined. The region of rejection is selected 

based on the test statistic and the nature of property that is measured.  

The decision on accepting or rejecting the null hypothesis is ma

the null hypothesis is rejected, then inhomogeneity is assumed.  

inner-outer average diameter test) or they ha

omogeneity (the eccentricity and the moment of inertia tests. Since the critical 

values of these statistics are not known, the accuracy of the tests would be examined by 
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comparison of the values of statistics computed from laboratory fabricated homogeneou

and inhomogeneous specimens (Chapter 7). 

The size of the specimens for testing radial inhomogeneity is 150-mm in diameter 

and 50-mm in thickness, which is the size requirement for the Superpave shear tester

(SST). Use of 150-mm diameter specimens allows evaluation of radial homogeneity

the specimens as they are compacted in the Superpave gyratory compactor. In additio

the specimens can be tested in shear tester and the measured shear properties can be 

correlated with the computed radial homogeneity indices (Chapter 9). 

5.2 STATISTICAL TESTS OF RADIAL HOMOGENEITY: 
HORIZONTAL SLICES  

s 

 

 of 

n, 

A number of statistical tests are proposed for the detection and measurement of 

radial inhomogeneity using horizontal slice faces. The tests are adapted from the normal 

standard z, the chi-square, and the two sample ts include normal z test on 

e t-test 

on total aggregate areas, and the t test on aggregate frequencies. The test statistics are 

computed based on comparison of the geometric properties of coarse aggregates in two 

radial sampling portions on horizontal slice faces: the ring and the core. The statistical 

tests examine the significance of the difference between properties of the two portions.  

 

from 

 t-tests. The tes

aggregate frequency proportions, the chi-square test on aggregate frequencies, th

5.2.1 Selection of the Horizontal Slices 

 The selection of the slices for the test of homogeneity was determined with two

considerations: First, the slices should be independent; second, the slices should be 

the same population. To ensure independency of the slices, McCuen and Azari (2001) 

showed that 10-mm spacing was required between the slices. To ensure that the slices are 
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from the same population, the top and bottom slices are located 15 mm away from the 

ends of the specimen to allow for large particles to be fully contained within the 

specimen. Five mm from the top and 5 mm from the bottom of each gyratory specimen is 

trimmed to prepare the specimens for mechanical shear testing. The cutting process 

would cause the properties of the slices that are within 14 mm (the diameter of the 

maximum aggregate size, which is 19 mm minus the 5 mm that was trimmed) of the 

specimen ends to be different from those slices that are located within the specimen. To 

resolve this problem, the slices within 15 mm from the ends of the specimens were 

disregarded. As a result, three horizontal slices were taken on each 50-mm thick 

specimen. The first and the last slices were made 15 mm from the ends of the specimen 

and one more slice was taken in the middle of the two slices with 10-mm spacing in 

between the slices (Figure 5-1). 

15 mm

15 mm

150 mm

1  mm
1
2 03

10 mm

 

Figure 5-1. Location of the horizontal slices for eva

5.2.2 

Statistical testing he geometric 

proper cimen. To 

make this comparison, separate measurements of the aggregate properties in the two 

portions are required. Therefore, the boundaries of the ring and core in which the 

sampling would take place need to be known. The volume of the coarser and the finer 

luation of radial homogeneity  

Selection of the Sampling Portions 

 of radial homogeneity is based on comparison of t

ties of coarse aggregates in the ring and core portions of a cylindrical spe
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as l

approx  

created f the coarser mixture to be 1.125 times the volume of the 

finer mixture (Section 3.4.3). Consequently, the area of the ring was 1.125 times the area 

of the core on each horizontal slice face. However, to eliminate the bias in statistical 

sampling from the coarser and the finer gradations the sampling areas were selected to be 

equal in area. In addition, a transition zone with a thickness of 4.95 mm was located 

between the core and the ring sampling portions, which was not included in the sampling. 

This was to ensure distinct statistical population in each sampling area since the coarser 

and the finer gradations might have been blended during the gyration process. The equal 

areas of the ring and the core with a consideration of a 4.95-mm transition zone resulted 

in a core of 101-mm in diameter and a ring of 19.55-mm in thickness (Figure 5-2).  

5.2.3 Computation of Components of Test Statistics  

ogeneity, requires 

m heir 

statistical parameters. The steps are e

a. The area of the core (A ) and the area of the ring (A ) on the ith horizontal slice 

face, which are equal to each other are computed as follows: 

pha t mixtures in a radially inhomogeneous specimen was used to determine the 

imate limits of the ring and the core. The level of radial inhomogeneity that was

 resulted in the volume o

The computation of test statistics, as the indices of hom

easurement of geometric properties of coarse aggregates and computation of t

xplained as follows: 

chi  rhi

2

4
c

chi rhi
DA A π= =

  

where Dc is the diameter of the core, which is 101 mm. 

b. The total area of the cores or rings of the three slice faces are computed:  

A A A A= = =  

    (5-3) 

3* 3*ch rh chi rhi      (5-4) 
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where Achi and Achi are the areas of the core and ring of the ith slice face. 

c. On the core and ring of horizontal slice i, the frequency (fchi, frhi) and total area 

(achi, arhi) of the coarse aggregates that have a diameter equal to or greater than 

4.75 mm are measured. 

Dc wRwR wTwT

Dc = Diameter of the core, 101 mm          
wR = width of the ring, 19.55 mm           
wT= width of the transition zone, 4.95 mm

Dc wRwR wTwT

Dc = Diameter of the core, 101 mm          
wR = width of the ring, 19.55 mm           
wT= width of the transition zone, 4.95 mm  

Figure 5-2. Position of ri

d. Total area of the sampling portions on the three slice faces is computed: 

       (5-5) 

e. The ratio of the area of the core or the ring portions to the entire sampling portions 

of the three slices is as follo

ng, core, and the transition zone 

hh ch rhA A A= +

ws: 

0.5ch rhA Ar r= = = =      (5-6)ch rh
hh hhA A

 

r

computed:     

f. The total frequency of the coarse agg egates on cores of the three slices are 
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3

1
ch chi

i

f f
=

= ∑
       (5-7) 

where fchi is the coarse aggregate frequency on the core of the ith slice face, Step c. 

The total frequency of the coarse aggregates on the rings of the three slic

computed:  

g. es are 

3

i 1
rh rhif f

=

= ∑
       (5-8) 

where frhi is the coarse aggregate frequency on the ring of the ith slice, Step c.  

h. The total freque cy of the coarse aggn regates on entire sampling areas of the three 

slices are computed: 

hh ch rhf f f= +        (5-9)
 

 

s 

e computed frequency parameters 

in Steps e through h are utilized by the chi-square test on frequencies.  

i. The total coarse aggregate area on both core and ring of the i  slice face is 

computed: 

 

j. 

=        (5-11) 

where ahhi is the total coarse aggregate area on both core and ring of the ith slice 

(Equation (5-10)).  

where fch and frh are the coarse aggregate frequency on the core and ring portion

of the three slices (Equations (5-7) and (5-8)). Th

th

hhi chi rhia a a= +       (5-10) 

 where achi and arhi were measured in Step c. 

The total area of the coarse aggregates on the entire sampling areas of the three 

slices are computed:  

3

a a= ∑
1

hh hhi
i
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k. The mean area of coarse aggregate ( hha ) is computed as follows:  

hh
hh

aa
hhf

=
       (5-12) 

where ahh and fhh are the total area and total frequency of the coarse aggregates on 

the entire sampling areas of the three slices (Equations (5-11) and (5-9), 

respectively).  

l. The expected maximum frequenc

computed as follows: 

ies on the core and ring portions (xch, xrh) are 

 
ch rh

ch rh
hh hh

A Ax x
a a

= = =
      (5-13)  

where Ach and Arh are the total area of three cores or three rings (Equation (5-4)), 

and hha  is the mean area of coarse aggregate (Equation (5-12)). 

The frequency proportions of the coarse aggregates in the core, ring, and both m. 

portions of slice faces are computed as follows: 

ch
ch

ch

fp
x

=
       (5-14) 

rh
rh

rh

fp
x

=
       (5-15) 

rh ch
hh

rh ch

f fp
x x

+
=

+       (5-16) 

where fch and frh are total frequency of the coarse aggregates on the core and on the 

ring portions of three slice faces (Equations (5-7) and (5-8)); x  and x  are the 

expected maximum frequencies in the core and ring portions (Equation (5-13)). 

ch rh
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The computed parameters in Steps (5-13) through (5-16) are used in the z test on 

frequency proportions. 

The mean and the standard deviation of the coarse aggregate frequencies observed 

on the three rings

n. 

 ( rf ,sfr) and the three cores ( cf , sfc) are computed:  

1

1
rhn

rhir
rh i

f fn=
=
∑       (5-17) 

0.5
21 ( )

rhn

fr rhi rs f f
⎡ ⎤

11 irhn =

= −
−⎣ ⎦

) ⎢ ⎥∑     (5-18

1

1
chic

ch

chn

i

f fn=
=
∑       (5-19) 

0.5

1fc
ich

s
n

= 2

1

1 ( )
chn

chi cf f
=

⎡ ⎤
−⎢ ⎥

⎦
    (5-20) 

ate frequencies on the core and ring areas of 

the ith slice face (Step c); nrh and nch are the number of rings and core portions, 

w   

−⎣
∑

where frhi and fchi are the coarse aggreg

hich are three. The computed statistics are utilized by the t-test on frequency.

o. The mean and standard deviation of total aggregate areas on the rings ( ra , s ) and ar

on the cores ( ca , sac) of the three slice faces are computed: 

1

1r rhi
rh i

a an
=

=
rhn

∑       (5-21) 

0.5

1

( )
1

n

rar rhi
irh

s a a
n =

21 rh⎡ ⎤
= − (5-22) ⎢ ⎥−⎣ ⎦

∑     

1ch i=

1c chia an=
chn

∑       (5-23) 
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0.5
2

1

1 ( )
1

chn

ich

a
n =

⎡ ⎤
cac chis a= −⎢ ⎥ 5-24) 

ring and on the core 

 nch are the number of rings and core 

portions, which a

5.2.4 Hy e

frequency proportions, the chi-square test on aggregate frequencies, the t-tests on total 

aggregate areas, and the t-tests on frequencies using horizontal slice faces. The six steps 

of hypothesis testing are followed in order to measure h

follow t g 

horizo

5.2.4.1 Standard Normal Proportion Test 

homog e 

aggreg ring and on the core of the horizontal slice faces. The procedure for 

m on 

statisti

1. 

tested: 

−⎣ ⎦
∑     (

where arhi and achi are the total coarse aggregate areas on the 

areas of the ith slice face (Step c); and nrh and

re three. The computed statistics are utilized by the t-test on total 

aggregate area.  

poth sis Testing Using Suggested Test Statistics 

The statistical hypothesis testing are conducted using the z-test on aggregate 

omogeneity of a specimen. In the 

ing sec ions the steps of hypothesis tests for testing radial inhomogeneity usin

ntal slice faces are explained: 

The standard normal proportion test is adapted for the measurement of radial 

eneity. The test is used for comparison of the frequency proportions of coars

ates on the 

aking the decision on homogeneity of a specimen using standard normal proporti

c (z) follows the six steps of hypothesis test:  

The following hypotheses for the aggregate frequency proportions, which are the 

implications of the hypotheses of Equations (5-1) and (5-2) are 

r: coH P P=          (5-25) 
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r: coH P P>          (5-26) 

where rP  and cP are the population values of the coarse aggregate frequency 

proportion on the ring and on the core of a specimen, respectively. A specimen is 

considered homogeneous if the null hypothesis is accepted.  

2. The proportion test statistic, z, is computed: 

rh ch
hh

phh

p p

       (5-27) 

where zhh is the value of a random variable having a standard normal distribution; 

z
s

−=

rhp  and chp  are the coarse aggregate frequency proportions (Equations (5-15) and 

(5-14)); and sphh is the pooled sample standard deviation, which is defined as 

follows: 

0.5
1 1ˆ ˆ(1 )( )phh hh hh
rh chx x

s p p
⎡ ⎤

= − +⎢ ⎥
⎣ ⎦     (5-28) 

where hhp  is the proportion of coarse aggregate frequency in the ring and

(Equation (5-16)); xrh and xch are the maximum expected frequency of the coarse 

aggregates on the rings and on the cores (Equation (5-13)). 

3. The level of significance is selected. The selection of the level of significance

should be based on the physical significance of homogeneity and the impact o

rejecting the null hypothesis of Equation (5-25) on design and performan

decisions. 

 core, 

 

f 

ce 

te both an estimate of the test 

4. The measured and computed geometric properties of the coarse aggregates 

(Equations (5-13) through (5-16)) are used to compu
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s

the s

5. T

woul

us 

e, 

f rejection is represented by the upper-tail of the distribution. The 

critical zhh value, at the upper tail of the distribution, separates the region of 

rejection from the region of acceptance and is obtai

6. 

per tail of the distribution, any sample zhh value greater than the 

5.2.4.2 

hi-square test on frequencies is used to test the radial 

ho g  finer 

portion

hypothesized that the frequency of the coarse aggregates in the ring and in the core 

po n  the 

expect r the 

two-sa

tatistic of Equation (5-27) and the statistical parameter that is required to define 

ampling distribution of the test statistic (Equation (5-28)). 

he region of rejection, which consists of those values of the test statistic that 

d be unlikely to occur when the specimen is homogeneous, is determined by 

the alternative hypothesis of Equation (5-26). For the radially inhomogeneo

specimens the coarser gradation is located in the ring of the specimen therefor

the region o

ned from the distribution of zhh 

statistic for the selected level of significance.  

The decision on homogeneity of a specimen depends on comparison of the 

computed value of the test statistic and the critical value. With the region of 

rejection in the up

critical value (zhhα) suggests an inhomogeneous specimen.  

Two-Sample chi-Square Test on Frequencies  

The two-sample c

mo eneity by comparing the frequencies of the aggregates in the coarser and the

s of the specimen with the expected frequency of a homogeneous specimen. It is 

rtio s of the radially inhomogeneous specimen is significantly different from

ed frequency of the aggregates for those po tions. The procedure for 

mple chi-square test on frequencies is as follows: 
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1. 

 (5-2) are tested: 

n 

9) 

nt from the 

mean frequency.        (5-30) 

A specimen is considered homogeneous if the null hypothesis is accepted. 

2. T

The following null and alternative hypotheses, which are the implications of the 

hypotheses of Equations (5-1) and

Ho : The observed frequencies on the ring and on the core are equal to the mea

frequency.          (5-2

HA : The observed frequency of at least the ring or the core is differe

he chi-square test statistic, as the index of homogeneity of the specimen, is 

computed: 

2 2
2 ( ) ( )

(1 ) (1 )
rh hh rh ch hh ch

hh rh rh hh ch ch
hh

f f r f f r
f r r f r r

χ − −
= +

) 

 

(5-6)). 

e 

pact of 

rejecting the null hypothesis of Equation (5

asphalt mixtures. 

4. The measured and computed data on the geometric properties of the coarse 

 

− −     (5-31

in which fch, frh, fhh are the total coarse aggregate frequencies on the cores, rings, 

and on the entire sampling areas of all three slices (Equations (5-7) through (5-9)); 

rch and rhh are the ratios of the core and ring areas to the entire sampling areas

(Equation 

3. The level of significance is selected. The selection of the level of significanc

should be based on the physical significance of homogeneity and the im

-29) on mechanical performance of 

aggregates (Equations (5-7) through (5-9)), are used to compute an estimate of the

test statistic of Equation (5-31).  
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5. From the distribution of the chi-square statistic, for the selected level of 

significance, the critical chi-square value ( 2
hhαχ ) is determined. For an 

inhomogeneous specimen the difference between the observed aggregate 

frequency and the expected aggregate frequency in the coarser and the finer 

portions is significant. Therefore, the region of rejection would be represented by

the upper tail of the distribution.  

 

6. The decision on h  comparison of the 

ogeneous specimen. 

5. .3

 

on the  the core portions of the horizontal slice faces of a specimen will 

in a  areas 

on the

aggreg  

the tw

sp m

hypoth

1. 

omogeneity of a specimen depends on the

computed value of the test statistic and the critical value. Any chi-square value 

greater than the critical value suggests an inhom

2.4  Two-Sample t-Test on Total Aggregate Areas 

The assessment of the difference in total area of the coarse aggregates observed

 ring and on

dic te homogeneity. It is hypothesized that the mean of the total coarse aggregate

 rings of an inhomogeneous specimen is greater than the mean of the total coarse 

ate areas on the cores. A two-sample t-test is used to assess the difference between

o means. The procedure for making a decision on radial homogeneity of a 

eci en using the t-statistic on total coarse aggregate area follows the six steps of 

esis test:  

The following hypotheses for the coarse aggregate total area, which are the 

implications of the hypotheses of Equations (5-1) and (5-2) are tested: 

: r coH A A          (5-32) =

: r cAH A A>          (5-33) 

 179



 

where rA  and cA are the population values of the total coarse aggregate 

the ring and th

areas from 

e core, respectively. A specimen is considered homogeneous if the 

2. 

null hypothesis is accepted. 

The t statistics is:  

0.51 1( )

r c

ah

a a

s
n n

−

+
ah

rh ch

t =

      (5-34) 

 that is a random variable having a t 

distribution with degrees of freedom of 

in which tah is the index of homogeneity

( 2);rh chn n+ − rh ch

of the rings and the cores, which are equal to three; 

n  and  are the number n

ra  and ca  are the means of the 

total coarse aggregate areas on the rings and on the cores (Equations (5-2

(5-23), respectively); and sah is the square root of the pooled variance given by:  

1) and 

2 2
2 ( 1) ( 1)rh ar ch ac

ah
n s n ss − + −

=
2rh chn n+ −     (5-35) 

e 

3. The level of significance is selected. The selection of the level of significance 

should be based on the physical significance of homogeneity and the impact of 

rejecting the null hypothesis of Equation (5-32) on the design and performance 

decisions. 

4. The measured and computed data on the geometric properties of the coarse 

aggregates (Equations (5-21) through (5-24)) are used to compute both an estimate 

of the test statistic of Equation (5-34) and the statistical parameter that is required 

to define the sampling distribution of the test statistic (Equation (5-35)).  

in which ars and acs  are the variances of the total coarse aggregate areas in th

rings and in the cores (Equations (5-22) and (5-24)). 

2 2
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5. For a radially inhomogeneous specimen, the total area of the coarse aggregates in 

the ring is greater than the total area of the coarse aggregates in the core. 

Therefore, the region of rejection that corresponds to the alternative hypothesis of 

Equation (5-33) is represented by the upper tail of the distribution. The critical tah 

value (tahα), which separates the region of rejection from the region of acceptance, 

ah

6. epends on the comparison of the 

computed value of the test statistic with the critical value. For the region of 

rejection in the upper tail of the distribution, 

α) um

5.2.4.4 

particl the 

coarse particle frequency in the ring portion of an inhomogeneous specimen is 

si i edure 

for me  

six ste

1. hich are the 

is obtained from the distribution of t  statistic for the selected level of 

significance.  

The decision on homogeneity of a specimen d

any tah value greater than the critical 

value (tah  is ass ed to indicate an inhomogeneous specimen.  

Two-Sample t-Test on Frequencies 

A two-sample t-test is utilized to compare the mean frequency of the coarse 

es in the ring and in the core of the horizontal slice faces. It is hypothesized that 

gnif cantly greater than the coarse particle frequency in the core portion. The proc

asuring radial inhomogeneity using t-statistic on aggregate frequencies follows the

ps of hypothesis test:  

The following hypotheses for the coarse aggregate frequency, w

implications of the hypotheses of Equations (5-1) and (5-2) are tested: 

: r coH F F=          (5-36) 

: r cAH F F>          (5-37) 
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where rF  and cF  are the population values of the mean coarse aggregate 

frequencies in the rings and the in cores, respectively. A specimen is considered 

homogeneous if the null hypothesis is accepted.  

The t statistics is:  2. 

0.51 1( )
r c

fh

f f

s
n n

−

+
fh

rh ch

t =

      (5-38) 

in which tfh is the index of homogeneity which is a random variable having a t 

distribution with degrees of freedom of n n  ( 2);rh ch+ − rf  and cf  are the mean 

 rings and cores, which are equal to three; 

and sfh is the square root of the pooled variance given by:  

coarse aggregate frequencies in the ring and in the core (Equations (5-17) and 

(5-19)); rhn  and chn  are the number of

2 2
2 ( 1) ( 1)rh fr ch fc

fh

n s n s
s

− + −
=

2rh chn n+ −      (5-39) 

in which 2
frs  and 2

fcs  are the variances of the coarse aggregate frequencies on the 

rings and on the cores (Equations (5-18) and (5-20)). 

3. The level of significance is selected. The selection of the level of significance 

should be based on the physical significance of homogeneity and the impact of 

rejecting the null hypothesis of Equation (5-36) on the design and performance 

decisions. 

4. The measured and computed geometric properties of the coarse aggregates, 

Equations (5-17) through (5-20), are used to compute both an estimate of the test 
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statistic of Equation (5-38) and the statistical parameter that is required to define 

amp uation (5-39

 reg tion that correspond to the alternative hypotheses of Equation 

(5-37) is represented by the upper tail of the distribution. The critical tfh value 

w tes the region of rejection from the region of acceptan

obtained from the distribution of tfh statistic for the selected level of significance.  

ogeneity of a specimen depends on the com

puted value of the test statistic with the critical value. For the region of 

rejection in the upper tail of the distribution, any tfh value greater than the critical 

value (tfh ) is assumed to indicate an inhomogeneous specimen. 

atistics for the measurement of radial 

inhomogeneity using horizontal slice faces, the statistical tests, the corresponding 

geometric properties, the equation numbers, and the section numbers where the re 

escribed. The tests will be applied to both simulated and actual specimens and their 

accurac

5.3 STATISTICAL TESTS OF RADIAL HOMOGENEITY: 

 the aggregate properties in the ring 

and cor

the s ling distribution of the test statistic (Eq )).  

5. The ion of rejec s 

(tfhα), hich separa ce, is 

6. The decision on hom parison of the 

com

α

Table 5-1 provides a summary of the test st

 tests a

d

y will be tested in Chapters 6 and 7. 

VERTICAL SLICES  

The tests of radial inhomogeneity using horizontal slice faces are also applied to 

vertical slice faces. The standard normal z test, the chi-square test, and the t-tests are used 

to examine the significance of the difference between

e portions of vertical slice faces of the specimens. 
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Table 5-1. Standard tests of radial inhomogeneity using horizontal slice faces 

Statistical 
Test 

Property Statistical  
Index 

Section 
Number 

Equation 
Number 

Standard 

 z  

Frequency 
Normal Proportions rh ch

hh
phh

p pz −=  
s

 
0.5

1 1ˆ ˆ(1 )( )phh hh hh
rh ch

s p p
x x

⎡ ⎤
= − +⎢ ⎥

⎦
 

 

5.2.4.1 (5-27) 

 
 
 

(5-28) 

⎣

 

Two-Sa
Chi-Sq

mple 
uare  

Frequencies 2 2
2 ( ) ( )

(1 ) (1 )
rh hh rh ch hh ch

hh rh rh hh ch ch
hh

f f r f f r
f r r f r r

χ − −
= +

− −  
 
 

5.2.4.2 (5-31) 
 

Two-Sample 
 t-Test  

Total 
Aggregate 

Areas 0.51 1( )

r c

ah

a at
s

n n

−
=

+
 

 

ah

rh ch

2 2( 1) ( 1)
2ah

rh ch

n s n s
n n

− + −
+ −

 

5.2.4.3 (5

 
 
 

(5-35) 
2 rh ar ch acs =

 

-34) 
 

 

Two-Sample Frequencies 

0.51 1( )
r c

fh

fh
rh ch

f f−t
s

n n

=
+

 

 

 t-Test  

2 2

2fh
rh ch

s
n n

=
+ −

  

 
 

2 ( 1) ( 1)rh fr ch fcn s n s− + −

 

 
 
 

(5-39) 

5.2.4.4 (5-38) 

 

 faces requires the adjustment of 

several of the measured geometric properties relative to the cross-sections of the vertical 

slice faces that vary with the location of the slices. The unequal area of slice faces mainly 

affects the t-test, which uses the mean and standard deviation of the measured properties. 

The changing cross-sectional area does not affect t

they use the summation 

The application of the tests to the vertical slice

he z and the chi-square statistics, since 

of the measured properties.  
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To account for the unequal slice face areas, the geometric properties that are us

 t-test are divided by the area from which they are sampled. The computed 

ties are then referred to as the frequency density and the area proportion.  The t-te

 two adjusted properties, the standard normal z test on aggregate frequency 

tions, and the chi-square test on aggregate frequencies are used to exam

ed 

by the

proper st 

on the

propor ine the 

significance of the difference between the aggregate properties in the ring and core 

portions of vertical slice faces of specimens. 

5.3.1 Selection of Sampling Areas 

On each vertical slice face three vertical strips representing the core and the ring 

of a specimen were selected. The height of the strips is equal to the height of the 

specimen, which is 50 mm. The widths of the strips on the middle slice face are 

determined by the width of the ring and the diameter of the core. Based on the discussion 

in Section 5.2.2, on the slice face that goes through the diameter of a specimen, the width 

. 

Two 4.95-mm strips were allowed between the core and the ring strips as the transition 

ith 

of each ring strip would be 19.55 mm and the width of the core strip would be 101 mm

zone (Figure 5-3). 

For the other slices, the width of a slice face along with the widths of the ring and 

core strips change according to the distance of the slice face from the middle of 

specimen. The following general relationships are used to determine the width of the 

slice face (whi), the middle strip (wci) that represents the core and the width of each side 

strip (wri) that represents the ring on the ith slice face: 

2 22hi h iw R d= −       (5-40)  
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2 22ci c iw R d= −       (5-41)  

2 2 2 2
ri h i t iw R d R d= − − −      (5-42) 

2 2 2
ti t i c iw R d R d= − − − 2

 

h is the radius of the specimen, which is 75 mm; Rc is the radius of the 

th dle 

     (5-43)

where R

core, which is 50.5 mm; di is the distance between the i  slice face and the mid

slice face measured along a radii that is perpendicular to the slice faces; Rt is the 

radius of a circle limited by the outer boundary of the transition zone, which is 

55.45 mm; and wti is the width of the transition zone (see Figure 5-4).  

wc wrwr

wt wt

wc = width of the core, 101 mm                   
w = width of the ring, 19.55 mm                
wt = width of the transition zone, 4.95 mm

r

50 mm

w ww

wt wt

c rr

wc = width of the core, 101 mm                   
w = width of the ring, 19.55 mm                
wt = width of the transition zone, 4.95 mm

r

50 mm

middle slice face  

5.3.2 Selection of the Vertical Slices 

To determine the location and the number of vertical slice faces, two factors were 

considered: First, independency of the slices and second, adequacy of the sampling areas 

on each slice face. To ensure independency of the vertical slices, McCuen and Azari 

 

Figure 5-3. The widths of the sampling areas over the core and the ring portions on the 
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(2 ) equacy 

of the sampling areas, the smallest 

sampling should have a core widt

aggregate. The middle slice face that has the largest cross-section includes 19.55-mm ring 

strip at each side and a 101-mm core strip in the middle of the cross-section (Figure 5-3).  

001  showed that 10-mm spacing was required between the slices. To ensure ad

cross-section that is used for the homogeneity 

h not smaller than the diameter of the largest size 

Rhdi

wci wriwri wtiwti

RtRc

whi = width of the slice i               
wci = width o he core i              
w =width of the ring  i             

f t
ri

wti= width of the transition zone i

Rhdi

wci wriwri wtiwti

RtRc

whi

whi = width of the slice i               
wci = width o he core i              
w =width of the ring  i             

f t
ri

wti= width of the transition zone i  

Figure 5-4. Schematic top view of the width of the core, transition zone, and the ring of an 
arbitrary slice  

The largest aggregate with a 19 mm 

portion en 

increa lightly increase allowing better accommodation of 

th ; 

which

diameter can fit in either of the rings or the core 

s of this slice face. As the distance of a slice face from the middle of the specim

ses, the width of the ring strips s

e aggregates in the ring portions. Simultaneously, the width of the core strip decreases

 would eventually make it impossible to fit a coarse aggregate in the core strip. 
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Theref

core st old the largest size aggregate, the width of the core 

sh d

on the a core width of 19 mm 

would correspond to the  

considering 10-mm spacing between 

m p  

geome ight additional slices are made at both sides of the 

middle slice face at 10, 20, 30, and 40 mm from the middle slice face (Figure 5-5).  

5.3.3 Computation of Components of Test Statistics 

The computation of test sta

measurement of geometric properties of coarse aggregates and computation of selected 

statistical parameters. The steps are explained as follows:  

a. The area of the ring and the core strips on each slice face is computed as: 

4) 

      (5-45) 

where hh is the height of the s

ring strip on the 

i=

ore, the location of the furthest slice face should be controlled by the width of the 

rip. In order for the core to h

oul  not be smaller than the diameter of the largest aggregate, which is 19 mm. Based 

 geometry of the circular cross-section (see Figure 5-4), 

 distance of 49 mm from the middle slice face. Therefore,

the slices would result in nine vertical slices at a 10-

m s acing on a 150-mm diameter specimen. The primary slice face passes through the

tric center of the specimen. The e

tistics, as the indices of homogeneity, requires 

2rvi h riA h w        (5-4

cvi h ciA h w=  

=

lice face, which is 50 mm; wri is the width of each 

ith slice face and wci is the width of the core strip on the ith slice 

face (Equations (5-42) and (5-41)), respectively.  

b. The total area of the ring and core portions on nine slice faces are computed as: 

2
rvn

rv h riA h w=
1

∑       (5-46) 
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1

cv

ciw
n

cv h
i

A h
=

= ∑        (5-47) 

where hh is the height of the slice faces, which is 50 mm; wri and wci are the width

of the ring and core strips (Equations (5-42) and (5-41), respectively); and nrv and

ncv are the number of rings and cores, which are nine.  

s 

 

R

d

w

1

3
2
4

1
2
3
4

w = width of the furthest slice face 
d = distance of the furthest slice                  

R= Radius of the specimen, 75 mm

middle slice

R

d

w

1

3
2
4
2
4

1
2
3
4

face from the middle slice face      

w = width of the furthest slice face 
d = distance of the furthest slice                  

R= Radius of the specimen, 75 mm

middle slice

 

Figure 5-5. Location of the slice faces within the allowable distance “d” from the middle 
slice face. 

c. The total area of the sampling portions on all nine slices is computed as: 

       (5-48) 

where Arv and Acv are the areas of the ring and core portions on nine slice faces 

(Equations (5-4 ) and (5-

d. On the two rings and the core strips (see Figure 5-3), the frequency (fr1i, fr2i, fcvi) 

and the total areas (ar1i, ar2i, acvi) of the coarse aggregates that have a diameter 

face from the middle slice face      

vh rv cvA A A= +

6 47)). 
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equal to or greater than 4.75 mm are measured, where the subscripts 1, 2 represent 

ring 1 strip and ring 2 strip. 

The aggree. gate properties measured on the two ring strips (fr1i, fr2i and ar1i, ar2i) are 

r i r i

summed to obtain the aggregate properties in the ring: 

rvi 1 2f f f= +       (5-49) 

      (5-50) 

f. The total frequency of the coars

i

1 2rvi r i r ia a a= +

e aggregates on the ring strips and core strips of 

the nine slices are computed by: 

rv rvi
1

rvn

f f= ∑        (5
=

-51) 

cvn

1
cv cvi

i

f f
=

= ∑        (5-

where frvi, fcvi are the frequencies of the coarse a

52) 

ggregates on the ring and core 

portions of the ith

cores, which are nine. 

g. The total frequency of th

nine slices are co

 slice (Steps e and d); and nrv and ncv are the number of rings and 

e coarse aggregates on entire sampling portions of the 

mputed as: 

vh rv cvf f f= +        (5-53) 

where frv and fcv are the frequencies of the coarse aggregates on the ring and core 

portions of the nine slice faces (Equations (5-51) and (5-52)). 

h. The ratios of the ring and core areas to the area of the entire sampling portions of 

the nine vertical slices are computed as: 

rv
rv

vh

Ar
A

=        (5-54) 
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cv
cv

vh

Ar
A

=        (5-55) 

where Arv, Arc, an

i. 

mputed: 

       (5-57) 

where arvi and acvi are the total areas of the coarse

portions of the ith slice (Steps e and d); and rv cv ber of rings and 

cores, which are nine. 

j. The total area of coarse aggregates from the entire sampling portions of the nine 

slices is computed by: 

       (5-58) 

e ring and core 

k. 

d Avh are the total areas of the rings, cores, and entire sampling 

portions of the nine slices (Equations (5-46) through (5-48)). The parameters of 

Steps f through h are used for the computation of the chi-square statistics. 

The total area of the coarse aggregates on the ring strips and on the core strips of 

the nine slices are co

1

rvn

a a
=

= ∑        (5-56) rv rvi
i

1

cvn

cv cvi
i

a a
=

= ∑

 aggregates on the ring and core 

n  and n  are the num

vh rv cv

where arv and acv are the total areas of coarse aggregates on th

a a a= +

portions of the nine vertical slice faces (Equations (5-56) and (5-57)). 

The mean area of coarse aggregate ( vha ) is computed as follows: 

 
vh

vh
vh

aa
f

=
       (5-59) 
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where avh and fvh are the total area and total frequency of the coarse aggregates on 

both ring and core sampling portions of nine vertical slices (Equations (5-58) and 

(5-53)).  

l. The expected maximum frequencies (xrv, xcv) on the ring and the core portions are 

co puted as follows: m

rv
rv

vh

Ax
a

=
       (5-60) 

cv
cv

vh

Ax
a

=
       (5-61) 

where Arv and Acv are the total area of ring and core portions of nine slices 

(Equations (5-46) and (5-47)); vha  is the mean area of the coarse aggregates  

(Equation (5-59))

m. 

.  

The frequency proportions of the coarse aggregates in the ring, core, and both 

portions of the slices are computed as follows: 

rv
rv

rv

fp
x

=
       (5-62) 

cv
cv

cv

fp
x

=
  (5-63)      

rv cv
vh

rv cv

f fp
x x

+
=

 

 

m 

+        (5-64)

where frv and fcv are the total frequency of the coarse aggregates in the ring and the

core portions (Equations (5-51) and (5-52)); xrv and xcv are the expected maximu

frequencies on the ring and the core portions (Equation (5-60) and (5-61)). The 

computed parameters are used in the normal frequency proportion test.   
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n. The aggregate frequency densities in the ring portion (,fdri) and core portion (,fdci) 

of the ith slice face are computed as follows: 

rvi
dri

rvi

ff
A

=
       (5-65) 

cvi
dci

cvi

ff
A

=
       (5-66)

where frvi and fcvi are the aggregate frequencies in the ring and core portions of

i

 

 the 

ns 

 

th slice face, which were measured in Steps e and d, respectively; Arvi and Acvi are 

the areas of the ring and the core portions of the ith vertical slice face (Equatio

(5-44) and (5-45)). 

o. The means and standard deviations of the aggregate frequency densities in the ring 

( dr dcf , s ) and core portions ( f , s ) of nine slice faces are computed as follows: fdr fdc

1

1
n

dridr
rv i

rv

f fn
=

= ∑
      (5-67) 

0.5
2

1

1 (
rvn

s f )
1fdr dri dr

irv

f
n =

⎡ ⎤
−= ⎢ ⎥−⎣ ⎦     (5-68) 

∑

1

cvn

dcidc
cv i

1f fn
=

= ∑
      (5-69) 

0.5

1

1
1

cvn

fdc dci dc
icvn =

2( )s f f
⎡ ⎤

= −⎢ ⎥−⎣ ⎦     (5-70) 

where fdri and fdci are computed using Equations (5-65) and (5-66); nrv and ncv are 

∑

the number of rings and cores, which are nine. The computed means and standard 

deviations are used in t-test on frequency density.  
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p. The aggregate area proportions in the ring portion (apri) and in the core portion 

pci puted as follows: (a ) of the ith slice face are com

rvi
pri

rvi

aa
A

=
       (5-71) 

cvi
pci

cvi

aa
A

=
       (5-72) 

arvi and  are the total aggregate areas in the ring and the core portions of 

th slice face (Steps e and d), Arvi and Acvi are the areas of the ring and the core 

portions of the i  vertical slice face (Equations (5-44) and (5-45)). 

ean ard deviations of total aggregate area proportions in the ring 

where acvi

th

the i

q.  m The s and stand

( pra , sapr) and in the core portions ( pca ,sapc) of the slice faces are computed as 

follows: 

1

1pr pri
rv i

a an
=

=
rvn

∑
      (5-73) 

0.5
2

1
( )

1
prapr pri

irv

s a a
n =

1 rvn⎡ ⎤
= −⎢ ⎥−⎣ ⎦

∑
    (5-74) 

1

1
n

pc pci
cv i

a an
=

=
cv

∑
      (5-75) 

0.5

1
( )

1

n

pcapc pci
icv

s a a
n =

21 cv⎡ ⎤
= −⎢ ⎥−⎣ ⎦

∑
    (5-76) 

where a  and a  are the aggregate area proportions in the ring portion and in th

core portion of the 

pri pci e 

ith slice face (Equations (5-71) and (5-72)), respectively; and nrv 

cv omputed 

means and standa

and n  are the number of ring and core portions, which are nine. The c

rd deviations are used in t-test on total area proportion. 
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5.3.4 Hypothesis Testing Using Suggested Test Statistics 

The statistical hypothesis tests are made using the z-test on frequency proportions, 

the chi-square test on aggregate frequencies, the t-tests on total area proportion, and the 

t-tests on frequency density using vertical slice faces. Table 5-2 provides a summary of 

the test statistics for evaluation of radial inhomogeneity using vertical slice faces, the 

statistical tests, and the corresponding geometric properties. The hypothesis tests using 

the test statistics of Table 5-2 follow the procedures explained in Sections 5.2.4.1 through 

5.2.4.4. The proposed tests will be applied to both simulated and actual specimens and 

their accuracy will be tested in Chapters 6 and 7. 

5.4 A ICES TO TEST RADIAL 

rature that are either specifically suggested 

or can be modified to test radial homogeneity. The tests include inner-outer average 

diameter (Tashman et al. 2001), the eccentricity, and the moment of inertia tests (Yue et 

al. 199

cr a

are not available. As expla

are bas d indices with conceptual decision criteria. In the 

fo

of the 

PPLICATION OF EXISTING IND
HOMOGENEITY  

A number of tests are available in lite

5). The sampling distributions of these tests are not defined and therefore the 

itic l values, which distinguish between the state of homogeneity and inhomogeneity, 

ined in Chapter 2, the decisions on homogeneity of specimens 

ed on comparison of the compute

llowing sections the geometric properties that are required by each test and application 

tests to actual specimen are explained.   
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5.4.1.1

A test that has been specifically suggested for test of radial homogeneity is the 

inner-outer average diameter test (Tashman et al. 2001). As described in Chapter 2, the 

test is based on the comparison of the aggregate diameters in the inner and outer portions 

test uses three vertical slice faces of a specimen, which are 

made 37.5 mm apart on each specimen (Figure 2-2). One slice face is made in the middle  

Statistical Test Property Statistical  Equation 

 Inner-Outer Average Diameter  

of the vertical slice faces. The 

Table 5-2. Proposed tests of radial inhomogeneity using vertical slice faces 

Index Number 
Standard Area 

rv cv
vh

pvh

p pz
s

−=  

 

Normal 
 z  

Proportions 

0.5
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x x
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⎣ ⎦
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of the specimen and two  one on each side of 

the mi r 

portion

explai f 

the inner rectangle with respect to the coordinates of the outer rectangle. For the purpose 

of

and in st in distinguishing between 

homogeneity and inhomogeneity would be examined. The steps for applying the inner-

outer test are as follows: 

1. 

 additional equally spaced slices are made,

ddle slice face. The required measurements of the aggregates in the inner and oute

s of the slices and the computation of the inner-outer test statistic have been 

ned in Section 2.3.2.9. Appendix D provides the information on the coordinates o

 evaluating the inner-outer test, the test would be applied to the actual homogeneous 

homogeneous specimens and the ability of the te

The following hypotheses for the aggregate area proportions is tested: 

: outer inneroH D D=       (5-84) 

: outer inneroH D D>       (5-85) 

innerD and where outerD  are the population values of the average diameter of the 

aggregates that have a diameter equal to or greater than 2.35 mm in the inner and 

in the outer portions of the specim

2. F ed: 

en, respectively. A specimen is considered 

homogeneous if the null hypothesis is accepted.  

rom each slice face, the inner-outer lateral segregation parameter is comput

( 1) 100oidS = − ×     l i    (5-86) 
nid

in which oid  and nid  are the average diameters of the aggr a at a eg tes th  have 

he inn r portidiameter equal to or greater than 2.35 mm in the outer and in t e ons of 

a slice face, respectively (Section 2.3.2.9). 
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3. The test statistic, Sl, is th

computed from the three slice faces: 

e mean of the three lateral segregation parameters 

3

1
3l l i

i=

1S S= ∑        (5-87) 

eral segregation parameter computed from the ith slice face.  

n the inner 

where Sli is the lat

4. The measured data on the diameter of the aggregates in the outer and i

oid  and portions ( nid ) are used to compute an estimate of the test statistics using 

Equations of (5-86) and (5-87).  

For a homogeneous specimen the mean diameter of the aggregates in the inner and 

outer portions are the same, therefore the ratio of the mean diameters in the outer

5. 

 

and inner portions ( oi

ni

d
d

would zero.  For an inhomogeneous specimen the mean diameter ratio (

) would be 1 and as a result the lateral segregation index 

oid ) 
nid

would be greater than 1 and as a result the lateral segregation index would be 

greater than zero. Therefore, the decision on homogeneity of a specimen will be 

made by comparison of the computed index values with zero. Index values close to 

zero would indicate radial homogeneity. 

5.4.1.2 Eccentricity Index  

The use of eccentricity concept was originally suggested by Zhong et al. (1995) to 

examine the vertical uniformity of asphalt mixture specimens (Section 2.3.2.4); however, 

the test can be modified for the measurement of radial inhomogeneity. The test assesses 

the equilibrium of the coarse aggregates in the radial plane by computing coarse 
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aggregate eccentricity. An eccentricity ratio, as the index of homogeneity, is the ratio of

the mean of the distances between the coarse aggregate centroids and the geometric 

center of the horizontal slice faces to the radius of the slice face. The measurement of 

geometric properties of the coarse aggregates from horizontal slice faces and the 

application of the test for the measurement of radial inhomogeneity of actual sp

are explained as follows: 

 

the 

ecimens 

re 

tric 

2 0.5
ijy−     (5-88) 

where dij is the distance between the jth particl

omputed: 

a. Three horizontal slices are taken on each 50-mm thick specimen (Figure 5-1).  

b. On entire face of the slices, the x-y coordinates of the coarse aggregate centroids 

(xij, yij) and the x-y coordinates of the geometric center of the slice face (xo, yo) a

measured. 

c. Using the coordinates of the aggregate centroids and the coordinates of the 

geometric center of the slice face, the distance of each particle to the geome

center of the slice face is computed: 

2[( ) (ij o ij od x x y= − + ) ]

e of the ith slice face and the center 

of the ith slice face; xo and yo are the coordinates of the geometric center of the ith 

slice face; and xij and yij are the coordinates of the centroids of the jth particle on 

the ith slice face. 

d. For each slice face, the average of the distances of the coarse particles from the 

geometric center of the slice face is c

1
j

pi j=

1
pin

=i id dn ∑
      (5-89)  
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where id is the average of the distances of coarse aggregate centroids to the center 

of the ith slice face; npi is the number of coarse aggregates on the ith slice face. 

For each specimen, the mean coarse aggregate centro de. id distance ( ) to the center 

of specimen is represented by th id  distances obtained from three e average of the 

slice faces of the specimen: 

1
i

hh i

d dn
=

= 1
hhn

∑       (5-

where nhh is the number of horizontal slice faces, which is th

90)  

ree. 

Subsequent to the computati

homog

1. eses are defined for this comparison: 

) 

 (5-92) 

2. 

on of the parameters of eccentricity test, radial 

eneity of a specimen is tested using the following steps: 

The following null and alternative hypoth

Ho : The specimen is not eccentric in coarse aggregates.   (5-91

HA : The specimen is eccentric in coarse aggregates.  

A specimen is considered homogeneous if the null hypothesis is accepted.  

The eccentricity ratio, as the radial homogeneity index, is defined: 

h

dE
R

=         (5-93) 

dwhere is the mean distance between the coarse aggregate centroids and the 

center of the slice face en, 

3. Using the collected da

4. 

test statistic (E) with the E value for the state of homogeneity. For a homogeneous 

(Equation (5-90)); and Rh is the radius of the specim

which is 75 mm. 

ta, radial homogeneity index (E) is computed.  

The decision on homogeneity of specimens is made by comparing the computed 
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specimen, coarse aggregates are distributed randomly in radial direction therefore, 

of 

 

 

 

5.4.1.3 Moment of Inertia Method  

to exa

the tes e 

size of r 

of the ine the area equilibrium of the coarse aggregates on horizontal 

slice fa

f a 

of 

plained as follows: 

. Three horizontal slices are taken on each 50-mm thick specimen (Figure 5-1).  

the average distance between the aggregate centroids and the center of the slice 

face is about one half the radius of the slice face. As a result, eccentricity (E) 

0.5 would be expected for a radially homogeneous specimen. For an 

inhomogeneous specimen, with the concentration of coarse aggregates in the 

periphery of the specimen, the eccentricity (E) should be close to the limit value of

1.0. The decision on homogeneity of a specimen will then depend on the 

comparison of the computed value of the test statistic with the E value that

represents homogeneity. An eccentricity of greater than 0.5 is assumed to indicate

inhomogeneity. 

The use of moment of inertia concept was also suggested by Zhong et al. (1995) 

mine vertical uniformity of asphalt mixture specimens (Section 2.3.2.5); however, 

t can be redefined for the measurement of radial homogeneity. The test utilizes th

 aggregates and the distances between aggregate centroids and the geometric cente

slice face to exam

ces. The test statistic is defined as the ratio of the mean moment of inertia of the 

coarse aggregates computed from horizontal slice faces to the moment of inertia o

solid circle with respect to the center of the circle. The required geometric properties 

the coarse aggregates and the application of the test for measurement of radial 

inhomogeneity from horizontal slice faces of actual specimens are ex

a
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b. On entire face of the five horizontal slices of the specimen, the x-y coordinates of 

oarse a gate ce , yij) and th rdinates m

center of the slice face (xo, yo) are measured. 

c. On entire face of the slices, the area of each coarse aggregate (aij) is measur

g th es gate centroids and the coordinates of the 

geometric center of the slice face, the distance of each particle from the geometric 

 com

2 0.5

    (5-94) 

where dij is the distance of jth particle on the ith slice face to the center of the slice 

face; xo and yo are the coordinates of the geometric center of the ith slice face; and 

x  and yij are the coordinates of the centroids of the jth particle on the ith slice face. 

e. On each slice face, moment of inertia of the coarse aggregates with respect to the 

center of the slice face is computed: 

the c ggre ntroids (xij e o x-y co of the geo etric 

ed. 

d. Usin e coordinat  of the aggre

center of the slice face is puted: 

2[( ) ( ) ]ij o ij o ijd x x y y= − + −

ij

1

pin

ai ij ij
j

I a d
=

= ∑
       (5-95) 

in which aij is the area of the jth coarse aggregate on the ith slice face, dij is obtained 

using Equation (5-94), and npi is the number of coarse particles on the ith slice face. 

f. For each specimen, the moment of inertia of the coarse aggregates with respect to 

the center of the specimen is computed as the mean of the moments of inertia of 

the coarse aggregates from the three slice faces:  

1

1
hhn

a a
hh i

iI In
=

= ∑       (5-96) 

   
where nhh is the number of horizontal slice faces, which is three. 
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g. The moment of inertia of the entire slice face (I , as a solid circular disk, with 

respect to its center axis, is computed as follows: 

 s)

21
2s h hI A R        (5-97) 

w

) 

f 

eous if the null hypothesis is accepted. 

2. The moment of inertia ratio, as the index of radial inhomogeneity, is:  

=

here Ah is the area of the circular cross-section of the specimen and Rh is the 

radius of the specimen, which is 75 mm. 

Subsequent to the computation of the parameters of the moment of inertia test, 

radial homogeneity of a specimen is tested using the following steps: 

1. The following null and alternative hypotheses are defined for this comparison: 

Ho : The moment of inertia of coarse aggregates is equal to the moment of inertia 

of a solid circle.         (5-98

HA : The moment of inertia of coarse aggregates is not equal to the moment o

inertia of a solid circle.       (5-99) 

A specimen is considered homogen

a
I

s

IR
I

=
100)        (5-

where aI is the moment of inertia of coarse aggregates (Equation (5-96)) and sI  is

the moment of inertia of a solid circular slice face (Equation (5-97)). 

3. Radial inhomogeneity (RI) is computed.  

4. The decision on homogeneity of specimens is made by comparing the computed 

test statistic with the value of the statistic for the state of homogeneity. For a

homogeneous specimen, coarse aggregates are distributed randomly in radial 

direction; therefore, the moment of inertia of the coarse aggregates with respect to 
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the central axis would not be significantly different from the moment of inertia of 

a solid circle. As a result, for a homogenous specimen a moment of inertia ratio 

(RI) of 1.0 would be expected. For an inhomogeneous specimen, with the 

concentration of coarse aggregates in the periphery of the specimen, the moment 

of inertia of the coarse aggregates should not be significantly different from the

moment of inertia of a solid ring with respect to its central axis. Knowing tha

moment of inertia of a solid ring is twice as much as the moment of inertia of a 

solid circle, the test statistic (RI) of an inhomogeneous specimen would be greate

than 1.0 and smaller than 2.0

 

t the 

r 

. The decision on homogeneity or inhomogeneity of a 

specimen will then depend on the comparison of the computed value of the test 

ny RI value greater than 1 is assumed to indicate 

i

dial 

ers 

statistic with the critical value. A

nhomogeneity. 

Table 5-3 provides a summary of the test statistics for the measurement of ra

homogeneity adapted from the existing tests in literature. The statistical tests, the 

corresponding geometric properties, the equation numbers, and the section numb

where the tests are described are also provided in the Table. The tests will be applied to 

the actual specimens and their accuracy will be tested in Chapters 7. 
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Table 5-3. Suggested tests of radial inhomogeneity  

Slice Face 
Direction 

Test Tested 
Property 

Statistical  
Index 

Section 
Number 

Equation 
Number 

Vertical Inner-Outer 

Diameter 

Diameter 
( 1) 100oi

l i
dS
d

= − ×Average 
ni  

3

1

1
l l

i

S S
=

= 3 i∑  

 

 
(5-87)

5.4.1.1 (5-86) 

 

 

Horizontal Eccentricity Frequency & 5.

h

dE
R

=  Distance 
4.1.2 (5-93) 

Horizontal
  

Moment of 
Inertia  

Area  
& Distance a

I
s

IR
I

=  
5.4.1.3 (5-100) 
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CHAPTER 6 - ANALYSIS OF SIMULATION RESULTS 

6.1 INTRODUCTION 

curate 

 5); 

ogeneous specimens are not known. To 

determine the critical values and the accuracy of the proposed indices, knowledge of their 

ogeneity and inhomogeneity are required. 

Monte Carlo sim

the 

6.2 HOMOGENEITY DECISION  

In making statistical decisions regarding homogeneity of specimens, several 

parameters are used.  The first parameter is the sample size (n), which is determined by 

economics and the resources. The second parameter is the probability of type I error (α), 

ce. The third parameter is the probability of 

type II error ( β are 

neity 

Inhomogeneity of laboratory prepared specimens can be assessed if ac

indices and reliable reference values for the comparison of the measured indices are 

available. Several indices have been proposed as part of this study (Chapters 4 and

however, the accuracy of the tests and the values of the critical statistics that could 

distinguish between homogeneous and inhom

sampling distributions for both states of hom

ulation was used to generate thousands of virtual specimens and to 

subject them to the statistical tests suggested in Chapters 4 and 5 in order to determine 

distribution functions of the test statistics. 

which is referred to as the level of significan

 β), which is the measure of accuracy of the tests. The values of α and 

determined by the amount of tolerance for making incorrect decisions. The fourth 

parameter is the criterion for rejection (C), which is determined based on engineering. It 

is a common practice to set C and n and to determine α and β. However, for homoge
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decisions, the criterion C is unknown and needs to be determined. Computer simulation 

was used to compute the critical test statistics for the selected sample sizes (n) an

typical levels of significance (α). The probability of type II error ( β), from which the 

statistical power of test is determined, uses the computed critical test statistic. If critica

statistics othe

d the 

l 

r than those computed from simulation (e.g., from standard tables) or α 

ability of a type II error and 

e e test would be different. Therefore, to ensure the accuracy 

of decisions about homogeneity, the parameters used to make a decision should be the 

same as

erate 

specimens were then 

 and the exposed two-dimensional faces were 

analyzed for homogeneity using the statistical tests of Chapters 4 and 5.  

 

 

compiled and the probability distribution function (pdf) and 

values other than those in simulation are used, the prob

consequ ntly the power of th

 of those from simulation.  

6.3 SIMULATION MODELS  

To obtain the probability distribution functions (pdf) of the suggested test 

statistics, the simulation models introduced in Chapter 3 were used to create virtual 

homogeneous and inhomogeneous specimens. Computer simulation was used to gen

three-dimensional, randomly packed cylindrical specimens (homogeneous) and 

specimens intentionally packed to be inhomogeneous. The virtual 

sliced both horizontally and vertically

6.4 SIMULATION RUNS  

The simulation programs require the input of several parameters such as the

percent air voids, the packing fraction, and the number of simulation runs. Based on the

values of the input parameters, the values of the test statistics were computed. The 

computed statistics are then 
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cumulat e probability div ensity function of the statistics were calculated. From the 

cumulative pdfs of homogeneous and inhomogeneous specimens, the critical statistics, 

the probabilities of a type II error, and the statistical power of the tests were determined. 

In the following sections, the parameters of the simulation program (simulation input) 

and the computed properties from the simulation output are explained. 

d to assess 

 The number of aggregates was 

sign gradation, air void content, and the binder content. 

The packing parameters of the simulated specimens include the volume fraction of the air 

voids a

 

6.4.1.2 Parameters of Probability Distribution Function 

In order to determine the critical value of each test statistic, a portion of the 

ogeneous probability dist e three rejection 

probab e 

the first interval were obtained using the simulation program.  

6.4.1 Input Parameters for Simulation Program 

6.4.1.1 Packing Parameters of the Simulated Specimens  

Since only aggregates that have a diameter larger than 4.75 mm are use

homogeneity, the aggregates in the three largest sieve sizes of 4.75-9.0, 9.0-12.5, and 

12.5-19 mm were placed within the simulated specimens.

determined with respect to the de

nd the weight fraction of the aggregates, which was determined using the weight 

fraction of the binder. In this study, an air void fraction of 0.07 was used. The binder

weight fraction was 0.0485, which results in an aggregate weight fraction of 0.9515.  

hom ribution function (pdf) that includes th

ilities of 10%, 5%, and 1% needed to be formed. For each pdf, the bounds of th

histogram ordinates were determined from the cumulative probabilities of occurrence in 

the range of 0.90 to 0.99. The optimum values of the width of the interval and the end of 
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6.4.1.3 Number of Simulation Runs 

Accurate determination of the critical statistics and the power of the tests require 

e simulation 

increas

ilize. To 

tions were run and the values of 

the stat

e 

 

ice face is equally important in the 

able 

hat 

n 

 same. The 

middle

n of 

simulation of a large number of specimens. In general, the accuracy of th

es with the number of virtual specimens. However, at some point, the 

improvement in accuracy is negligible and the values of the critical statistics stab

ensure that the computed critical statistics and the power of the tests are reliable, 

simulation sets of 1000, 5000, 10000, and 15000 simula

istics from each set were compared.  

6.4.1.4 Sample Size (Number of Slices)  

To quantify homogeneity of a specimen, a number of independent slices (n) at 

10-mm spacing are required (McCuen and Azari 2001). When sliced horizontally, th

slice faces have equal areas and if taken in the right position, the slices would be from the

same population. Therefore, each selected sl

computation of the statistics. Since a greater number of slices will provide more reli

statistics, the maximum number of independent slices would then be used in analyses t

involve horizontal slice faces. The maximum number of independent horizontal slices 

was 12 for the evaluation of vertical inhomogeneity (Chapter 4) and 3 for the evaluatio

of radial inhomogeneity (Chapter 5).  

When sliced vertically, the cross sections of the slices are not the

 slice face provides the largest cross-sectional area, while slices not in the middle 

provide smaller cross sections. The maximum number of vertical slices for evaluatio

both vertical and radial homogeneity was determined to be nine (Chapters 4 and 5). 
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However, the decrease in the size of the slice faces raised the question, are all nine slices 

necess ry for reliab  determination of the sta n be determined by 

c e v g  nu  slices. The 

indices were com  using  five, s and nin ical slic  simulated 

specimens.  

6.4.2 

6.4.2.1 Critica tics  

Critical s s are n ry for uishin tate of eneity from 

homogeneity. in val the cri atistic est, the distribution of the 

test statistic for the state of homogeneity is required. The critical statistic was determined 

for three levels of significance since the importance of inhomogeneity might be different 

tistics for the levels of significance were obtained from the 

cum  pro t cti mog pec responding 

to cumulative probabilities of occurrence of 0.90, 0.95, and 0.99. 

6.4.2.2 Type I 

The probability of a ty ror (α h is al rred to as the level of 

significance, is t ability ample ation leads erroneo  the 

conclusion that the specimen is not homog , when ct, it is. ritical 

statistics of the e  indice sually ined based on 5% probability of this 

type of error. However, to ensure accurate decisions, the probability of type II error 

should also be considered.  

a le tistics? This ca

omparing th computed alues of the statistics usin  a different mbers of

puted sets of even, e vert es for

Computed Properties from the Simulation  

l Statis

tatistic ecessa disting g the s homog

in To obta ues of tical st for a t

from one project to another. The three levels of significance considered were: 10%, 5%, 

and 1%. The critical sta

ulative bability dis ribution fun ons of ho eneous s imens cor

Error 

pe I er ), whic so refe

he prob  that s  inform usly to

eneous , in fa  The c

xisting s are u  determ
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6.4.2.3 Type II Error 

The type ΙΙ error (β) is a measure of t e test. Sample information 

c ron eci c  s  ho ous when, in 

fact, it is not (McCuen et al. 2001). To obt  proba  of the type II error (β), the 

cumulative probability distribution functio ) of the tatistic  state of 

inh eity is red. Fr  cumu pdf of ogeneo cimens, the 

cumulative prob s of oc ce that spond critical ics for 10%, 

5%, and 1% levels of significance were de ed. Th e area the 

inhomogeneous probability density function below the l statist e smaller the β 

alues are, the more accurate are the homogeneity tests.  

ted 

t of 

6.5 ANALYSIS OF THE SIMULATION RESULTS 

he quality of th

an lead to er eous d sions, specifi ally that the pecimen is mogene

ain the bilities

n (pdf  test s  for the

omogen  requi om the lative inhom us spe

abilitie curren  corre to the  statist

termin is is th under 

critica ic. Th

v

6.4.2.4 Power of the Tests 

The statistical power of a test is a measure of its accuracy. The power is compu

by subtracting the probability of a type II error (β) from 1.0, i.e., power = 1- β. The 

higher the statistical power of a test, the more accurate the test is in the measuremen

homogeneity. For the two types of inhomogeneity, vertical and radial, the power of each 

statistical test was computed for the three levels of significance. 

The computed statistics were obtained for four sets of simulation runs (1000, 

5000, 10,000, 15,000). Comparisons of the computed statistics were made for three sets 

of vertical slice faces (five, seven, and nine). The results of the analysis for two-layer and 
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three-layer vertical inhomogeneity and radial inhomogeneity using horizontal and vertica

slice faces are summarized in the following sections.  

l 

6.5.1  Two- Layer Vertical Inhomogeneity, Horizontal Slice Faces 

horizontal slice faces. The values are presented for each statistic, for three levels of 

A comparison of the statistics from 1000, 5000, 10000, and 15000 simulation runs 

indicates the

values stabilize after 10,000 simulations. This is shown by the small difference between 

simulation were adequate for reliable determination of critical statistics, the probabilities 

99.9% power in the detection of the created level of inhomogeneity, respectively. The 

t-test on nearest neighbor distances provided 

area-based indices. This is because the frequency of the aggregates is less affected by the  

Table 6-1 thorough Table 6-3 provide the critical statistics, probabilities of type II 

errors, and the power of the tests for evaluation of vertical inhomogeneity using 

significance and four different sets of simulation runs.  

 variation of the critical statistics with the increase in the number of runs. As 

indicated from Table 6-1 through Table 6-3, the critical statistics and the probability 

the parameters obtained after 10,000 and 15,000 of runs. Therefore, 15,000 runs of 

of type II errors, and the power of the tests. 

A comparison of the power of the tests after 15,000 of simulation runs (Table 6-3) 

indicates that the test on frequencies provided a very high statistical power. For a 5% 

level of significance, the chi-square test and the t-test on frequency each have 90% and 

fair power of 75%, and the t-test on total 

area provided the lowest power of 18% in detection of inhomogeneity. 

As observed, some tests are more accurate in measurement of homogeneity than 

the others. The frequency-based indices indicated very high power compared to the 
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Table 6-1. Values of the critical statistics for evaluation of two-layer vertical inhomogeneity 
using horizontal slice faces for three levels of significance and four sets of simulation runs  

   Test Statistics 
Level of 

Significance 
Simulation 

Runs 
Chi-Square 

on Frequency
t-Test on 

Total Area 
t-test on 

Frequency 
t-Test on 
Nearest 

Neighbor 
1000 2.384 1.725 1.763 1.732 
5000 2.406 1.784 1.795 1.625 

10000 2.406 1.792 1.795 1.624 

α = 0.10 

15000 2.405 1.795 1.795 1.616 
1000 3.396 2.243 2.210 2.03 
5000 3.404 2.286 2.236 1.949 

10000 3.403 2.308 2.248 1.939 

α = 0.05 

15000 3.403 2.309 2.244 1.929 
1000 5.540 3.575 3.133 2.640 
5000 5.828 3.350 3.460 2.595 

10000 5.840 3.368 3.522 2.577 

α = 0.01 

2.581 15000 5.829 3.361 3.511 
 

Table 6-2. Probabilities of type two errors (β) of the tests for measurement of two-layer 
four 

   Test Statistics 

 

vertical inhomogeneity using horizontal slice faces for three levels of significance and 
sets of simulation runs 

Level of 
Significance 

Simulation 
Runs 

Chi-Square 
on Frequency

t-Test on 
Total Area 

t-test on 
Frequency 

t-Test on 
Nearest 

Neighbor 
1000 0.055 0.697 0.000 0.138 
5000 0.053 0.694 0.000 0.165 

10000 0.052 0.696 0.000 0.163 

α = 0.10 

15000 0.052 0.696 0.000 0.160 
1000 0.100 0.826 0.001 0.220 
5000 0.094 0.817 0.001 0.254 

10000 0.097 0.821 0.001 0.248 

α = 0.05 

15000 0.097 0.820 0.001 0.245 
1000 0.217 0.956 0.013 0.251 
5000 0.238 0.951 0.036 0.485 

10000 0.239 0.954 0.040 0.476 

α = 0.01 

15000 0.237 0.954 0.040 0.476 
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Table 6-3. Statistical power of the tests for the measurement of two-layer vertical 
inhomogeneity using horizontal slice faces for three levels of significance and four sets of 
simulation runs  

   Test Statistics 
Level of 

Significance 
Simulation 

Runs 
Chi-Square 

on Frequency
t-Test on 

Total Area 
t-test on 

Frequency 
t-Test on 
Nearest 

Neighbor 
1000 0.945 0.303 1.000 0.862 
5000 0.947 0.306 1.000 0.835 

10000 0.948 0.304 1.000 0.837 

α = 0.10 

15000 0.948 0.304 1.000 0.840 
1000 0.900 0.174 0.999 0.780 
5000 0.906 0.183 0.999 0.746 

10000 0.903 0.179 0.999 0.752 

α = 0.05 

15000 0.903 0.180 0.999 0.755 
1000 0.783 0.044 0.987 0.749 
5000 0.762 0.049 0.964 0.515 

10000 0.761 0.046 0.960 0.524 

α = 0.01 

15000 0.763 0.046 0.960 0.524 
 

location at which the aggregates are sliced. On each slice face, frequencies of the 

particles that have a diameter equal to or larger than 4.75 mm are captured with the same 

tween the slice faces 

would be small and the computed statistics would be large. This would result in a large 

power of the test. However, the area-based test (t-test on total area) is significantly 

ea 

 

smaller 

 the areas. The outcome is less 

weight. Therefore, the variability in frequency measurements be

affected by the locations at which the aggregates are sliced. The slicing would result in a 

wide range of cross-sectional areas, which would cause high variability of the area 

measurements between the slice faces. Therefore, the computed t statistic on total ar

would be small and the power of the test would be low.  

The power provided by the nearest neighbor index was higher than that of the 

area-based index. This is because the distances between the aggregate are less affected by

the location at which the aggregates are sliced than the areas of the aggregates. A 

range of the values is then measured for the distances than
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variation in the distance measurements than in the area measurements between the slice 

faces, w

ts 

.75 

nce 

s. 

ts. 

ast amount of overlap 

indicate

 

eneous distributions is minimum for the 

frequency-based statistics and maximum for the total area t-statistic.  

Although each test of homogeneity was structured based on the standard t and 

chi-square tests, the critical values needed to be obtained through simulation. The 

computed critical statistics were compared with the values provided in the table of critical 

values for the standard tests of t and chi-square by comparing the exceedance 

probabilities of the computed statistics and the corresponding levels of significance. If the  

hich is indicated by the higher power of the nearest neighbor distance test than 

the total area test.  

In other words, the variability that is associated with the frequency measuremen

is a function of the number of coarse aggregates that appear as particles larger than 4

mm in diameter. However, the variability that is associated with the area and dista

measurements is a function of both the number of particles larger than 4.75 mm in 

diameter and the variation in the measured area and distance values. 

The power of the tests is also obtained from the plots of the distribution function

The plots of the tails of probability distributions for several of the statistics are provided 

in Figure 6-1 through Figure 6-4. The amount of overlap between the distribution plots 

for the state of homogeneity and inhomogeneity is an indication of the power of the tes

Distinct homogeneous and inhomogeneous distributions with the le

 that the test is powerful for measurement of homogeneity. On the other hand, 

major overlap of the tails of distributions indicates that the test is not powerful in 

distinguishing between states of homogeneity and inhomogeneity. As shown in the plots,

the overlap of the homogeneous and inhomog
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Figure 6-2. Tails of the probability density f ns (pd quenc istic for 
homogeneous and two-layer vertically inhomogeneous specimens 

unctio f) of fre y t-stat

 216



 

0.4

0

0.1

0

0.3

t- tc on n  neighb tances

Pr
ob

a .2

0 2 4 6 8
statisi earest or dis

bi
lit

y

Homogeneous
Inhomogeneous

 

Figure 6-3. Tails of the probability density f ns (pdf e neare hbor t statistic 
for homogeneou o-laye

 

unctio ) of th st neig
s and tw r vertically inhomogeneous specimens 

0

0.

0.

0.3

5 20

Chi-  statist

Pr
ob

ab
ili

ty
   

1

2

0 5 10 1

square ic

Homogeneous
Inhomogeneous

 

igure 6-4. Tails of the probability density functions (pdf) of chi-square statistic for 
homogeneous and two-layer vertically inhomogeneous specimens 
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exceed

 and 

 

. 

6.5.2 Two-Layer Vertical Inhomogeneity, Vertical Slice Faces 

ulated vertically inhomogeneous and corresponding homogeneous specimens 

were sliced vertically along the diameter and along additional planes parallel to the 

other on each simulated specimen. Table 6-5 through Table 6-7 provide the critical 

As shown from Table 6-5, the difference between the critical values obtained from each 

the probability of this error is zero for all of the tests. Therefore, it can be concluded that 

ance probabilities are not significantly different from the corresponding levels of 

significance, then standard tables can be used for the critical values. The simulated

table values are included in Table 6-4. As observed from the table, the exceedance 

probability values are different from the levels of significance. For example, for a 5%

level of significance, the exceedance probability for the t-statistic on frequencies is 2.9%

The difference in the simulated and table values is caused by the difference between the 

properties that are being tested (aggregate area, frequency, and distance) and the 

properties on which the statistical tests were developed.   

Sim

diametral plane. Sets of five, seven, and nine slices were made equidistance from each 

statistics, the probabilities of type II error, and the powers of the tests of vertical 

inhomogeneity using nine vertical slice faces for the three levels of significance. A 

comparison of the computed statistics from 1000, 5000, 10000, and 15000 simulation 

runs indicates the variation of the critical statistics with increase in the number of runs. 

two successive sets of simulations is small; particularly, the difference between 10,000 

and 15,000 runs is insignificant, which leads to the conclusion that 15,000 simulation 

runs is adequate for reliable determination of the critical statistics. 

Table 6-6 provides the probabilities of type II errors. As indicated from the table, 

 218



 

the power of the tests in the detection of vertical inhomogeneity using vertical slices are 

all equal to 100%, as indicated in Table 6-7. 

Table 6-4. Comparison of the critical statistics computed from computer simulation and 
from the standard tables (two-layer vertical inhomogeneity, horizontal slice faces) 

 Test statistic 

Level of 
Significance 

 Chi-Square 
on 

Frequency

t-Test on
Total 
Area 

t-test  
on 

Frequency

t-test  
on 

Nearest 
Neighbor

Standard 2.706 1.356 1.356 1.356 

Simulation  2.405 1.795 1.795 1.616 

α = 0.10 

Probability 0.128 0.049 0.049 0.069 Exceedance 

Standard 3.842 1.782 1.782 1.782 
Simulation  3.403 2.309 2.244 1.929 

α = 0.05 

Exceedance 
Probability 0.069 0.015 0.029 0.043 

Standard 6.637 2.681 2.681 2.681 
Simulation  5.829 3.361 3.511 2.581 

α = 0.01 

Exceedance 
Probability 0.022 0.003 0.002 0.014 

 

Table 6-5. Values of the critical statistics of two-layer vertical inhomogeneity using nin
vertical slice faces for three levels of significance and four sets of simulation runs  

   Test Statistics 

e 

Level of 
Significance 

Simulation 
Runs 

Chi-Square 
on Frequency

t-Test on 
Total Area 

t-Test on 
Frequency 

Proportion 
z 

1000 3.100 1.305 1.247 1.133 
5000 3.275 1.329 1.305 1.184 

10000 3.263 1.312 1.337 1.193 

α   = 0.10

15000 3.328 1.333 1.349 1.206 
1000 4.782 1.681 1.69 1.525 
5000 4.805 1.726 1.744 1.562 

10000 4.685 1.716 1.762 1.578 

α = 0.05 

15000 4.712 1.739 1.767 1.590 
1000 8.900 2.54 2.402 2.162 
5000 8.425 2.546 2.545 2.267 

10000 8.278 2.553 2.609 2.309 

α = .01 0

15000 8.233 2.579 2.600 2.341 
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Table 6-6. Probabilities of type two errors (β) of statistics for measurement of two-layer 
vertical inhomogeneity using nine vertical slice faces for three levels of significance
sets of simulation

 and four 
 runs  

   Test Statistics 
Level of 
nificance Sig

Simulation 
Runs 

Chi-Square 
on Frequency

t-Test on 
Total Area 

t-Test on 
Frequency 

Proportion 
z 

1  000 0.000 0.000 0.000 0.000 
5  000 0.000 0.000 0.000 0.000 

10 0 00 0.000 0.000 0.000 0.000 

α  

15 0 

 = 0.10

00 0.000 0.000 0.000 0.000 
1  000 0.000 0.000 0.000 0.000 
5  000 0.000 0.000 0.000 0.000 

10 0 00 0.000 0.000 0.000 0.000 

α 5 

15 0 

 = .00

00 0.000 0.000 0.000 0.000 
1  000 0.000 0.000 0.000 0.000 
5  000 0.000 0.000 0.000 0.000 

10 0 00 0.000 0.000 0.000 0.000 

α = 0.01 

15 0 00 0.000 0.000 0.000 0.000 
 

Table 6-7. Statistical power of the tests for measurement of two-layered vertical 
inhomogeneity using nine vertical slice faces for three levels of significance and four sets of 
simulation runs  

   Test Statistics 
Level of Simulation Chi-Square t-Te

Significance Runs on Frequency
st on 

Total Area 
t-Test on 

Frequency 
Proportion 

z 
1000 1.000 1.0 0 1.000 00 1.00
5000 1.000 1.000 1.000 1.000 

10000 1.000 1.000 1.000 1 0 .00

α  

15 0 

 = .100

00 1.000 1.000 1.000 1.000 
1  000 1.000 1.000 1.000 1.000 
5  000 1.000 1.000 1.000 1.000 

10 0 00 1.000 1.000 1.000 1.000 

α  

15 0 

 = 0.05

00 1.000 1.000 1.000 1.000 
1  000 1.000 1.000 1.000 1.000 
5  000 1.000 1.000 1.000 1.000 

10 0 00 1.000 1.000 1.000 1.000 

α = 0.01 

15 0 00 1.000 1.000 1.000 1.000 
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The reason for the 100% power of the t-tests when applied to vertical slice faces 

can be explained based on the rationale of the statistic and the trend of the coarse 

a tribu n in l neous 

sp we ed in  a way arse a tes are uted with 

varying prob rtic ction a al pro y in lat rections. This 

wo  a ren e mea  small ing var  in the coarse 

aggregate pro ure in the and upper portions of vertical slice faces. 

Th am atio g with ge diff  in the s would result in 

a large t value and consequently igh power of the t-tes  vertical 

lice faces. 

 

15000 simulated specimens. The table shows that 

the crit

 

 

ggregate dis tio  vertical and lateral directions. Vertical y inh mogeo

ecimens re simulat  such  that co ggrega  distrib

ability in ve al dire nd equ babilit eral di

uld yield large diffe ce in th ns and sampl iation

perty meas ments lower 

e small s pling vari n alon  the lar erence  mean

 a h t when computed from

s

A comparison of the computed statistics from sets of five, seven, and nine slices

reveals the change in the values of the statistics with the change in the number of slices. 

A comparison also indicates if the power of the tests is greatly affected by the number of 

slices being analyzed. If the differences between the powers were not significant, then it 

would be more efficient to analyze using a smaller number of slices. Table 6-8 provides 

the critical values for 5% level of significance computed from sets of five, seven, and 

nine slices of 1000, 5000, 10000, and 

ical values, to different degrees, change with the change in the number of slices. 

For the chi-square test the critical values changed in the range of 4.59 to 4.71, which

represents a very small difference in probability. Therefore, only five slices are needed 

for this test. For the t-test on total area the critical values changed in the range of 1.74 to

1.84. This is also a small difference. The critical values for the t-test on frequency 

changed in the range of 1.77 to 1.86. This is also a small difference and indicates that 5 

 221



 

slices are adequate. The largest difference between the critical values corresponded to the

z proportion test, which changed in the range of 1.59 to 2.24.

 

 Therefore, all nine slices 

are nee

 faces 

 to 

 

 test statistic 

with the corresponding level of significance. The values are provided in Table 6-10. As 

 

oth  ex  si , th  to s exceedance 

probability of 5.1% while the chi-square test has exceedance probability of 3.8%. The 

difference in the es is caused by the difference between the 

properties that are being tested (aggregate area, frequency, and distance) and the 

properties on wh e statis sts we eloped

6. ee-La ertica mogen orizo lice Fa

Table 6-11 thorough Table 6-13 pr the cri atistics, the probabilities of 

pe II errors, an owers  tests for three-layer vertical inhom

ded for this test.  

Table 6-9 indicates that computing any of the test statistics using five slice

would result in zero probability of type II error. This would show that the statistical tests 

when applied to vertical slices are powerful in the measurement of homogeneity even if 

the maximum sampling capacity of a specimen is not utilized. Despite the high power of 

test when using even the least number of slices, use of nine slice faces is recommended

ensure the accuracy of the homogeneity measurement of actual specimens. 

Although each test of homogeneity was structured based on the standard z, t, and chi-

square test, the critical values needed to be obtained through simulation. The computed 

critical statistics were compared with the values provided in the standard tables of t, z,

and chi-square statistics by comparison of the exceedance probability of each

observed from the table, the values are the same in some occasions and different in

ers. For ample, for a 5% level of gnificance e t-test on tal area ha

simulated and table valu

ich th tical te re dev . 

5.3 Thr yer V l Inho eity, H ntal S ces 

ovide tical st

ty d the p of the ogeneity using  
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Table 6-8. Values of the critical statistics of two-layer vertical inhomogeneity using five, 
seven, and nine vertical slice faces for 5% level of significance and for four sets of 
simulation runs  

   Test Statistics 
S  P  imulation

Runs  
Number of 

Slices 
Chi-Square 

on Frequency
t-Test on 

Total Area 
t-Test on 

Frequency 
roportion

z 
5 4.813 1.670 1.839 2.120 
7 4.650 1.670 1.713 1.780 

1000 
 

9 4.782 1.681 1.690 1.525 
5 4.750 1.820 1.867 2.238 
7 4.622 1.745 1.758 1.779 

5000 
 

9 4.805 1.726 1.744 1.562 
5 4.726 1.809 1.877 2.226 
7 4.575 1.758 1.801 1.812 

10000 
 

9 4.685 1.716 1.762 1.578 
5 4.671 1.842 1.861 2.238 
7 4.598 1.777 1.790 1.831 15000 
9 4.712 1.739 1.767 1.590 

 

 

Table 6-9. Probabilities of type two errors (β) of statistics for measurement of two-layer 

   Test Statistics 

vertical inhomogeneity using five, seven, and nine vertical slice faces for 5% level of 
significance and four sets of simulation runs  

Simulation Number of Chi-Square 
o

t-Te Proportion 
Runs Slices n Frequency

st on t-Test on 
Total Area Frequency z 

5 0.000 0.001 0.000 0.003 
7 0.000 0.000 0.000 0.000 1000 
9 0.000 0.000 0.000 0.000 
5 0.000 0.001 0.000 0.007 
7 0.000 0.000 0.000 0.000 5000 
9 0.000 0.000 0.000 0.000 
5 0.000 0.001 0.000 0.006 
7 0.000 0.000 0.000 0.000 10000 
9 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.005 
7 0.000 0.000 0.000 0.000 15000 
9 0.000 0.000 0.000 0.000 
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Table 6-10. Comparison of the critical statistics computed from simulation and from the 
standard tables of the test statistics (two-layer vertical inhomogeneity, vertical slice faces) 

Test statistics    
Lev

S e 
  
 

Chi-S
Freq

st
tal A

-Test
e

porti
 

el of quare on 
uency 

t-Te
To

 on t   Pro on  
ignificanc rea on Fr quency z

Standa d 2.706 1.337 1.337 1.282r  
Sim 3.328 1.333 1.349 1.206  

α = 0.10 

ulation 
Ex
P 0.113 0.101 0.097 0.117 ceedance 

robability 
S 3.842 1.746 1.746 1.645 tandard 

Sim 4.712 1.739 1.767 1.590  ulation 
α = 0.05 

Ex
P 0.038 0.051 0.049 0.058 

ceedance 
robability 
S 6.637 2.583 2.583 2.328tandard  

Sim 8.233 2.579 2.60  2.341 ulation 
α = 0.01 

Ex
P 0.005 0.010 0.010 0.010 

ceedance 
robability 

 

ues are presented for each statistic, for the three levels of 

uns. The comparison of the 

statistics for the four sets of simulation runs indicated that the values of the statistics 

stabilize after 10,000 simulations. This is indicated by the small difference between the 

parameters obtained after 10,000 and 15,000 runs. Therefore, 15,000 runs of simulation 

were adequate for reliable determination of the critical statistics, the probabilities of type 

II errors, and the powers of the tests. 

A comparison of the powers of the tests after 15,000 simulation runs (Table 6-13) 

indicates that the tests on frequency provide the highest statistical power. For 95% 

reliability, the chi-square test and the F test on frequency have 85% and 99.8% power in 

the detection of the created level of inhomogeneity, respectively. The F test on nearest 

neighbor distances provided power of 66% and the F test on total area provided the 

lowest power (18%) for the detection of inhomogeneity. The reason for the difference in 

horizontal slice faces. The val

significance and for four different number of simulation r
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the statistical power of various tests was explained earlier based on the characteristics of 

the area, frequency, and distance properties (Section 6.4.1). 

Althou e c  o  s ard F and 

chi-square test, the critical values needed to be obtained through sim n. The 

computed critica tics were compared he values provided standard tables 

of chi-square and F statistics by comparing xceeda obabil  the statistics 

with the corresp  levels nifican e valu include able 6-14. As 

observed from th e, the e ance p lities a corresponding levels of 

significance are the same in some instance ifferen ther in . For example, 

el of significance, the F test on frequency has an exceedance probability of 

.8%, while chi-square test has an exceedance probability of 14.5%. The difference in the 

simulated and table values is caused by the difference between the properties that are 

being tested and the properties on which the statistical tests were developed. 

Table 6-11. Va r cs ye inh  using 
h th i n of simu tion runs  

t Statis

gh each test of homogen ity was stru tured based n the tand

ulatio

l statis  with t  in the 

 the e nce pr ities of

onding  of sig ce. Th es are d in T

e tabl xceed robabi nd the 

s and d t in o stances

for a 5% lev

4

lues of the c itical statisti
ree levels of s

 of three-la r vertical 
d four sets 

omogeneity
orizontal slice faces for gnificance a la

   Tes tics 
Level of 

Significance 
Sim Ch re 

on frequency
F-Test on  

To a 
F-Test on 
Frequency 

F  
N

N  

ulation i-Squa -test on
Runs tal Are earest 

eighbor
1000 3.087 2.917 3.032 2.440 
5000 3.083 3.097 3.028 2.265 

α = 0.10 

10000 3.077 3.126 3.042 2.241 
15000 3.082 3.128 3.04 2.24 
1000 3.917 3.993 4.183 3.110 
5000 3.978 4.346 4.346 3.004 

α = 0.05 

10000 3.978 4.424 4.402 2.984 
15000 3.988 4.415 4.385 2.972 
1000 5.470 7.350 7.150 4.420 
5000 6.104 7.866 7.816 4.593 

10000 6.094 7.888 7.837 4.579 

α = 0.01 

15000 6.085 7.889 7.807 4.569 
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Table 6-12. Probabilities of type two errors (β) of statistics for measurement of three-layer 
vertical inhomogeneity using horizontal slice faces for three levels of significance and four 
sets of simulation runs  

tat   Test S istics 
Level of 

Si  
Sim

on frequency To a Frequency 
F-t
N

N  
gnificance

ulation 
Runs 

Chi-Square F-Test on  
tal Are

F-Test on est on 
earest 

eighbor
1000 0.084 0.658 0.001 0.242 
5000 0.093 0.697 0.000 0.237 

10000 0.093 0.704 0.000 0.235 

α = 0.10 

15000 0.094 0.704 0.000 0.235 
1000 0.137 0.769 0.001 0.347 
5000 0.152 0.806 0.002 0.342 

10000 0.154 0.815 0.002 0.342 

α = 0.05 

15000 0.155 0.816 0.002 0.34 
1000 0.269 0.853 0.019 0.561 
5000 0.325 0.94 0.024 0.584 

10000 0.325 0.94 0.023 0.583 

α = 0.01 

15000 0.325 0.94 0.023 0.582 
 

Table 6-13. The statistical power of the tests for the measurement of three-layer vertical 
inhomogeneity using horizontal slice faces for three levels of significance and four sets of 
simulation runs  

  Test Sta

 

 tistics 
Level of 

Significance 
C re 

on frequency
F-Test on  

Total Area ncy 
 on 
st 

Neighbor 

Simulation 
Runs 

hi-Squa F-Test on 
Freque

F-test
Neare

1000 0.916 0.342 9 0.758 0.99
5000 0.907  0 3 0.303 1.00 0.76

10000 0.907  0 0.765 0.296 1.00

α = 0.10 

  0 5 15000 0.906 0.296 1.00 0.76
1000 0.863 0.231 0.999 3 0.65
5000 0.848  8 8 0.194 0.99 0.65

10000 

α = 0.05 

0.846  8 8 0.185 0.99 0.65
15000 0.845 0.184 0.998 0 0.66
1000 0.731 0.147 0.981 9 0.43
5000 0.675 0.060 0.976 0.416 

10000 0.675 0.060 0.977 0.417 

α = 0.01 

15000 0.675 0.060 0.977 0.418 
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Table 6-14. Comparison of the critical statistics computed from computer simulation and 

Test statistics  

from the standard tables (three-layer vertical inhomogeneity, horizontal slice faces) 

  
Level of   

Chi-Square on 
Frequency 

F-Test on 
Total Area 

F-Test  
on Frequency 

F-Test  
on Nearest 
Neighbor Significance  

Standard 4.604 * * * α = 0.10 

Simulation  3.082 3.128 3.040 2.240  
Exceedance 
Probability 0.222 * * * 
Standard 5.995 4.26 4.26 4.26 

Simulation  3.978 4.424 4.402 2.984  
α  

Exceedance 

 = 0.05

Probability 0.145 0.048 0.048 >>0.05** 
Standard 9.221 8.02 8.02 8.02 

Simulation  6.085 7.889 7.807 4.569 
α = .01 0

Exceedance 
Probability 0.049 0.011 0.012 0.047 

*The critical F for 10% level of significance is not available in the standard F table. **The exact valu
the exceedance probability can not be computed since the level of significance greater than 5% is not 
available in the table of critical F.  

6.5.4 Radial Inhomogeneity, Horizontal Slice Faces 

Table 6-15 thorough Table 6-17 provide the critical statistics, the probabi

type II errors, and the powers of the tests of radial inhomogeneity using horizontal slice 

faces. The

e of 

lities of 

 values are presented for each statistic, for three levels of significance (10%, 

5%, an , and 

that 

 

that all 

y at 

computed critical statistics were compared with the values provided in the standard tables 

d 1%), and for four different numbers of simulation runs (1000, 5000, 10000

15000). The comparison of the statistics for various sets of simulation runs indicates 

the differences in the critical values are very small. Therefore, 15,000 runs of simulation

were adequate. The comparison of the power of the tests in Table 6-17 indicates 

of the tests have a statistical power of 100% for the detection of radial inhomogeneit

all levels of significance. Although each test of homogeneity was structured based on the 

t, z, and chi-square test, the critical values needed to be obtained through simulation. The 
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Table 6-15. Values of the critical statistics for measurement of radial homogeneity using 

  

horizontal slice faces for three levels of significance and four sets of simulation runs  

 Test Statistics 
Leve

Signific
l of 
ance 

Simulation 
Runs 

Chi-Square 
on Frequency

t-Test on  
Total Area 

t-Test on 
Frequency 

Proportion 
z 

1000 2.805 0.973 1.077 1.256 
5000 2.600 0.998 1.094 1.248 

10000 2.635 1.018 1.100 1.264 

α = 0.10 

15000 2.731 1.012 1.089 1.275 
1000 3.826 1.326 1.552 1.643 
5000 3.678 1.390 1.525 1.599 

10000 3.724 1.439 1.543 1.620 

α = 0.05 

15000 3.827 1.426 1.514 1.640 
1000 6.340 2.570 2.620 2.370 
5000 6.560 2.480 2.710 2.310 

10000 6.740 2.570 2.750 2.310 

α = 0.01 

15000 6.740 2.480 2.650 2.310 
 

 

Table 6-16. Probabilities of type two error (β) of statistics for measurement of radial 
homogeneity using horizontal slice faces for three levels of significance and four sets of 
simulation runs  

tat   Test S istics 
Level of 

S e 
Sim

on F To a Frequency 
Prop tion ulation Chi-Square t-Test on  t-Test on or

ignificanc Runs requency tal Are z 
1000 0.000 0.000 0.000 0.000 
5000 0.000 0.000 0.000 0.000 

10000 0.000 0.000 0.000 0.000 

α = 0.10 

15000 0.000 0.000 0.000 0.000 
1000 0.000 0.000 0.000 0.000 
5000 0.000 0.000 0.000 0.000 

10000 0.000 0.000 0.000 0.000 

α = 0.05 

15000 0.000 0.000 0.000 0.000 
1000 0.000 0.000 0.000 0.000 
5000 0.000 0.000 0.000 0.000 

10000 0.000 0.000 0.000 0.000 

α = 0.01 

15000 0.000 0.000 0.000 0.000 
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Table 6-17. Statistical power of the tests for the measurement of radial homogeneity using 
horizontal slice faces for three levels of significance and four sets of simulation runs  

   Test Statistics 
Lev

Si e 
Simulation Chi-Square 

o
t-Te

T F  
Proportion el of 

gnificanc Runs n Frequency
st on  t-Test on 

otal Area requency z 
1000 1.000 1.000 1.000 1. 0 00
5000 1.000 1.000 1.000 1.000 

10000 1.000 1.000 1.000 1.000 

α = 0.10 

15000 1.000 1.000 1.000 1.000 
1000 1.000 1.000 1.000 1.000 
5000 1.000 1.000 1.000 1.000 

10000 1.000 1.000 1.000 1.000 

α = 0.05 

15000 1.000 1.000 1.000 1.000 
1000 1.000 1.000 1.000 1.000 
5000 1.000 1.000 1.000 1.000 

10000 1.000 1.000 1.000 1.000 

α = 0.01 

15000 1.000 1.000 1.000 1.000 
 

 

Table 6-18. Comparison of the critical statistics computed from computer simulation and 

Test statistics  

from the standard tables (radial inhomogeneity, horizontal slice face) 

  
Lev l of 

S e 
  Chi-Square on 

F
t-Test

To
 

Fre
Proportion e

ignificanc  requency 
 on  t-Test on

tal Area quency z 
Sta  1.28ndard 2.706 1.533 1.533 2 

Sim n 2. 1 1. 1.ulatio 731 .012 089 275 

α = 0.10 

Exceedance 
Pro  0. 0 0. 0.bability 099 .143 184 102 
St  3. 2 2. 1.andard 842 .132 132 645 

Sim n 3. 1 1. 1.ulatio 827 .426 514 640 
α = 0.05 

Exceedance 
Pro  0. 0 0. 0.bability 051 .109 104 051 
St  6. 3 3. 2.andard 637 .747 747 328 

Sim n 6. 2 2. 2.ulatio 740 .480 650 310 
α = 0.01 

Exceedance 
Pro  0. 0 0. 0.bability 010 .041 037 011 
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of t, z, and chi-square statistics by comparison of the exceedance probabilities with the 

corresponding levels of significance. The values are included in Table 6-18. As observed 

fr le, d li h d e 

sam  those of  t-tests a nifican ferent e corr ing levels of  

significance. The d erence i imulated and table  is caus

between the properties that ar g teste regate requency, and distance) and 

the rties on w ch the st al tests develo

6.5 dial Inh ogeneit tical S aces 

Simulated ially inh neous rrespo  homogeneous specimens 

were sliced vertically along the diameter and along additional planes parallel to the 

diametral plane. Sets of five, seven, and nine slices were made equidistance from each 

al 

ics, the probabilities of type II errors, and the powers of the tests of radial 

h  u ertical slice fac e l ign  10%, 5%, 

and

A comparison of the computed statistics for 1000, 5000, 10000, and 15000 

simulation runs in ates the on of t ical sta  with t nge in the 

sam e. As it hown fr ble 6-1  differe tween itical values 

obtained from either set of sim n runs hich leads to the 

conclusion that 15,000 simula ns is a te to p  reliab es of the 

ritical statistics. Table 6-20 includes the probabilities of type II errors. As indicated from 

the table, the probability of this error is zero for any of the test statistics. Therefore, it can 

om the tab  the excee ance probabi ties of the c i-square an the z tatistics are th s

e and  the re sig tly dif from th espond

iff n the s values ed by the difference 

e bein d (agg area, f

prope hi atistic  were ped. 

.5 Ra om y, Ver lice F

rad omoge  and co nding

other on each simulated specimen. Table 6-19 thorough Table 6-21 include the critic

statist

omogeneity sing nine v es for thre evels of s ificance of

 1%.  

dic variati he crit tistics he cha

ple siz is s om Ta 9, the nce be  the cr

ulatio  is not significant, w

tion ru dequa rovide le valu

c
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be concluded that the power of the tests in the detection of radial inhomogeneity are all 

 e  the z 

ed in 

e 

t-test on

sing 
nine vertical slice faces for three levels of significance and four sets of simulation runs  

100% (Table 6-21). 

A comparison between the computed statistics from the sets of five, seven, and 

nine slices indicates the variation of the values of the statistics with the change in the 

number of slices. Table 6-22 provides th  values of the critical statistics. Other than

statistic on frequency proportion, all other test statistics provided similar values when 

computed from either sets of slices. For the chi-square test the critical values chang

the range of 4.01 to 4.16, which represents a very small difference in probability. 

Therefore, only five slices is needed for this test. For the t-test on total area the critical 

values changed in the range of 1.75 to 1.85. This is also small. The critical values for th

 frequency changed in the range of 1.76 to 1.86. This is also a small difference  

Table 6-19. Values of the critical statistics for measurement of radial homogeneity u

   Test Statistics 
Level of 

Significance 
Simulation 

Runs 
Chi-Square 

on Frequency
t-Test on  

Total Area 
t-Test on 

Frequency 
Proportion 

z 
1000 2.847 1.371 1.384 1.971 
5000 2.936 1.361 1.371 1.904 

10000 2.839 1.330 1.320 1.877 

α = 0.10 

15000 2.858 1.340 1.323 1.890 
1000 4.186 1.791 1.858 2.607 
5000 4.166 1.765 1.787 2.511 

10000 4.099 1.730 1.737 2.472 

α = 0.05 

15000 4.079 1.752 1.755 2.480 
1000 7.600 2.513 2.920 3.920 
5000 7.211 2.522 2.618 3.853 

10000 7.162 2.489 2.574 3.720 

α = 0.01 

15000 7.120 2.536 2.566 3.733 
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Table 6-20. Probabilities of type two errors (β) of statistics for the measurement of radial 
homogeneity using nine vertical slice faces for three levels of significance and four sets of 
simulation runs  

  S  Test tatistics 
Level of 

S
Simulation e 

on Frequency
 

T rea 
 

ncy 
Proportion 

ignificance Runs 
Chi-Squar t-Test on 

otal A
t-Test on

Freque z 
1000 0.000 0.000 0 0 0.00 0.00
5000 0.000  0 0 0.000 0.00 0.00

10000 0.000  0 0 0.000 0.00 0.00

α = 0.10 

  0 0 15000 0.000 0.000 0.00 0.00
1000 0.000  0 0 0.000 0.00 0.00
5000 0.000 0.000 0 0.000 0.00

10000 0.000 0.000 0 0 0.00 0.00

α = 0.05 

0.000  0 0 15000 0.000 0.00 0.00
1000   0 0 0.000 0.000 0.00 0.00
5000 0.000 0.000 0.000 0.000 

10000 0.000  0 0 0.000 0.00 0.00

α = 0.01 

15000 0.000 0.000 0.000 0.000 
 

 

Table 6-21. Statistical power of the tests for the measurement of radial homogeneity using 
nine vertical slice faces for three levels of significance and four sets of simulation runs  

   Test Statistics 
Level of 

Significance 
Simulation 

Runs 
Chi-Square 

on Frequency
t-Test on  

Total Area 
t-Test on 

Frequency 
Proportion 

z 
1000 1.000 1.000 1.000 1.000 
5000 1.000 1.000 1.000 1.000 

10000 1.000 1.000 1.000 1.000 

α = 0.10 

15000 1.000 1.000 1.000 1.000 
1000 1.000 1.000 1.000 1.000 
5000 1.000 1.000 1.000 1.000 

10000 1.000 1.000 1.000 1.000 

α = 0.05 

15000 1.000 1.000 1.000 1.000 
1000 1.000 1.000 1.000 1.000 
5000 1.000 1.000 1.000 1.000 

10000 1.000 1.000 1.000 1.000 

α = 0.01 

15000 1.000 1.000 1.000 1.000 
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Table 6-22. Values of the critical statistics for measurement of radial homogeneity using sets 
of fiv

   

e, seven, and nine vertical slice faces for four sets of simulation run (N) 

 Test Statistics
Simulation 
Runs (N) 

Number of 
Slices 

Chi-Square 
on Frequency

t-Test on  
Total Area 

t-Test on 
Frequency 

Proportion 
z 

5 3.964 1.800 1.874 3.690 
7 3.875 1.815 1.758 2.820 

1000 

9 4.186 1.791 1.858 2.607 
5 4.049 1.886 1.901 3.594 
7 4.254 1.802 1.812 2.846 

5000 

9 4.166 1.765 1.787 2.511 
5 3.988 1.815 1.861 3.513 
7 4.198 1.780 1.791 2.814 

10000 

9 4.099 1.730 1.737 2.472 
5 4.013 1.848 1.854 3.541 
7 4.158 1.788 1.787 2.846 

15000 

9 4.079 1.752 1.755 2.480 
 

 

homogeneity using sets of five, seven, and nine vertical slice faces and four sets of simulation
runs  

   Test Statistics 

Table 6-23. Probabilities of type two errors (β) of statistics for measurement of radial 
 

Simulation 
Runs 

Number of 
Slices 

Chi-Square 
on Frequency

t-Test on  
Total Area 

t-Test on 
Frequency 

Proportion 
z 

5 0.000 0.001 0.000 0.004 
7 0.000 0.000 0.000 0.000 

1000 

9 0.000 0.000 0.000 0.000 
5 0.000 0.001 0.000 0.002 
7 0.000 0.000 0.000 0.000 

5000 

9 0.000 0.000 0.000 0.000 
5 0.000 0.001 0.000 0.005 
7 0.000 0.000 0.000 0.000 

10000 

9 0.000 0.000 0.000 0.000 
5 0.000 0.000 0.000 0.003 
7 0.000 0.000 0.000 0.000 

15000 

9 0.000 0.000 0.000 0.000 
 

 

 233



 

 

and indicates that five slices are adequate. The largest difference between the critical 

values corresponded to the z proportion test. The critical values for the z statistic changed 

in the range of 2.48 to 3.54. This is a significant difference and indicates that all nine 

slices are required for this test. Table 6-23 indicates that computing any of the test 

statistics even using five slice faces would result in zero probability of type II error. This 

would show that the statistical tests when applied to vertical slices are powerful in 

detection of radial inhomogeneity even if the maximum sampling capacity of a specimen 

is not utilized. However, despite the high power of the tests with even the least number of 

slices, use of nine slice faces is recommended to ensure the accuracy of the statistics.  

Although each test of homogeneity was structured based on the standard z, t, and 

chi-square test, the critical values needed to be obtained through simulation. The 

computed critical s

le 

simulated and table values is caused by the difference between the properties that are 

statistical tests were developed.  

tatistics were compared with the values provided in the standard tables 

of t, z, and chi-square statistics by comparison of the exceedance probabilities of the 

statistics and the corresponding levels of significance. The values are included in Tab

6-24. As observed from the table, the exceedance probabilities and the corresponding 

levels of significance are similar for the chi-square and the t-tests; however, the values 

are significantly different for the z test. For example, for a 5% level of significance, the 

exceedance probabilities are 4.7% and 5% for the chi-square and t statistics, respectively, 

while the exceedance probability of the z statistic is 0.07%. The difference in the 

being tested (aggregate area, frequency, and distance) and the properties on which the 
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Table 6-24. Comparison of the critical statistics computed from simulation and from the 

Test statistics  

standard tables (radial inhomogeneity, vertical slices) 

  
Level 

Significa
of 
nce 

  
 

Chi-Square on 
Frequency 

t-Test on  
Total Area 

t-Test on 
Frequency 

Proportion 
z 

Standard 2.706 1.337 1.337 1.282 
Simulation  2.858 1.340 1.323 1.890  

α = 0.10 

Exceedance 
Probability 0.093 0.100 0.103 0.036 
Standard 3.842 1.746 1.746 1.645 

Simulation  4.079 1.752 1.755 2.480  
α = 0.05 

Exceedance 
Probability 0.047 0.050 0.050 0.007 
Standard 6.637 2.583 2.583 2.328 

Simulation  7.120 2.536 2.566 3.733 
α = 0.01 

Exceedance 
Probability 0.008 0.009 0.011 0.000 
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CHAPTER 7 - LABORATORY WORK TO SUPPORT 

to 

s 

d 

 

ability when applied to inhomogeneous specimens.  

The validation process involves several tasks: first, the fabrication of 

homogeneous and inhomogeneous specimens; second, obtaining the scanned images of 

specimen using computed x-ray tomography; third, image analysis of the slice faces to 

measure the geometric properties of the aggregate faces; and finally, the statistical 

analysis of the measured geometric properties, which includes computation of the indices 

and their rejection probabilities.  

SIMULATION  

7.1 INTRODUCTION 

Homogeneous and inhomogeneous specimens were fabricated in the laboratory 

validate the results of simulation regarding the level of accuracy of the statistical indices 

in the measurement of homogeneity. The proposed statistical tests of Chapters 4 and 5 

were applied to thousands of simulated specimens (Chapter 6) and the power of the test

in the measurement of the intended inhomogeneity was evaluated. It is necessary to 

validate the accuracy of the statistical tests by applying them to similarly graded an

structured actual laboratory specimens and to observe if the same decisions with the same 

level of accuracy would be made. The rejection probability of a test statistic with respect 

to the decision criterion that was obtained from the simulation would reveal the accuracy 

of the tests when applied to the actual specimens. A robust test of inhomogeneity would

result in a high rejection probability when applied to homogeneous specimens and a low 

rejection prob
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7.2  LABORATORY FABRICATION OF SPECIMENS 

borato ation ecime luded the selection of the aggregate 

and the asphalt binder and the selection of  design. The asphalt mixture 

consisted of one aggregate gradation and one lt binder. The aggregates were 

blended from the diabase stockpiles to meet the 19-mm nominal maximum aggregate size 

surface gradation of the accelerated loading f  (ALF) test sections of the Federal 

Highway Administration (FHW he satis  performance, high abundance, and 

w bency o ase aggr s have le ive use of this aggregate in ALF 

test sections (Stuart et al., 1999). The asphalt binder was PG 64-28, which is unmodified 

asphalt from Venezuelan crude. The reason for the selection of a conventional versus 

modified binder was to emphasis on the role of aggregates in resisting the applied load. 

geneous and inhomogeneous 

specimens were fabricated. The size of the specimens was determined based on the size 

requirement of the Simple Performance Tests, SPT (NCHRP 2002), which would be 

performed on the specimens (Chapter 8). Eight homogeneous and eight inhomogeneous 

specimens were compacted in each set using a Superpave gyratory compactor. The 

homogeneous specimens are referred to as the H-SPT and inhomogeneous specimens are 

referred to as I-SPT. The specimens were prepared with the optimum asphalt content of 

4.85% at a 7 ± 0.5% air void content. The design parameters were selected based on the 

mixture design parameters of the ALF test sections of FHWA (Stuart and Mogawer, 

2001). To produce the required air void content, the specimens were compacted to the 

La ry fabric  of the sp ns inc

the mixture

 aspha

acility

A). T factory

lo  absor f diab egate d to extens

7.2.1 Fabrication of Vertically Inhomogeneous and Homogeneous Specimens 

To evaluate vertical inhomogeneity two sets of homo

height of 165 mm using approximately 50 gyrations of the gyratory compactor. The 
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as-com 0-mm 

mogeneous 

e 

x 

 homogeneous specimens. The 

inhomo he 

ss 

re retained on the sieve, and 44% 

were p

s were blended. The 

gradati g 

n 

 

pacted gyratory specimens were then sawed and cored into 150-mm tall, 10

diameter specimens to meet the specimen size requirements for the SPT.  

While effort was made to prepare the first set of specimens to be as ho

as possible, the second set of specimens was purposely fabricated to reflect an extreme 

level of vertical inhomogeneity. The lower portion of these specimens was made to hav

a significantly coarser gradation than the upper portion even though the overall mi

characteristics of the specimen were identical to the

geneous specimens would mimic extreme case of poor mixture handling at t

time of specimen preparation.  

The procedure that was used to make the coarser and finer gradations was adapted 

from Khedaywi and White (1994). The design gradation was separated over sieve #4, 

which is documented as the demarcation between the coarse and fine gradations (Cro

and Brown, 1993). About 56% of the aggregates we

assed through the sieve. The gradation retained on the sieve is called the very 

coarse gradation, and the gradation passed through the sieve is called the very fine 

gradations. To create the gradation in the lower portion, which is called the coarser 

gradation, 75% of the very coarse and 25% of the very fine gradation

on of the upper portion, which is called the finer gradation, was made by blendin

25% of the very coarse and 75% of very fine gradations. Combining the gradations of the 

lower and the upper portions would result in the original design gradation. The desig

gradation and the gradations of the two portions of inhomogeneous specimens are given

in Table 7-1 and the gradation curves are shown in Figure 7-1. 
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The optimum binder content of the coarser and the finer gradations were 

determined based on theoretical calculations, experimental laboratory results, and the 

workability of the mixtures. Theoretical calculation of the binder content based on 

specific surface area method (Kandhal et al., 1997; Christensen, 2001) is explained in 

Appendix B. While the overall binder content of inhomogeneous specimens should be 

equal to the optimum binder content of the homogeneous specimens, the portion with the

coarser gradation has a lower percentage and the portion with the finer gradation has a 

higher percentage of the total asphalt binder content. The specific surface computation 

and the results of past studies on coarse and fine graded spe

 

cimens (Williams et al., 1996) 

were the basis for the selection of the binder contents for the coarser and the finer 

 workability 

of the coarser and the finer mixtures were then utilized to optimize the selected values of 

the binder content. The workability was ensured by observations that all aggregates were 

coated and the mixing process was manageable. The desired workability of the coarser 

and the finer mixtures were achieved at the optimum binder contents of 3.5% and 6.3%, 

respectively. 

rred 

as compacted using Superpave 

gyrator e 

portions of the trial specimens that were initially made in the laboratory. The

7.2.2 Fabrication of Radially Inhomogeneous and Homogeneous Specimens 

To evaluate radial inhomogeneity, three sets of eight specimens were compacted: 

two sets of homogeneous and one set of radially inhomogeneous. The first set of 

homogeneous specimens was compacted using linear kneading compactor and is refe

to as L-SST. The second set of homogeneous specimens w

y compactor and is referred to as H-SST. An effort was made to fabricate th

homogeneous sets as homogeneous as possible. However, some radial inhomogeneity 
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Table 7-1. The finer and the coarser gradations 

% Passing  
Sieve 

(mm) 

Design  
Aggregate 
Gradation 

Coarser 
Aggregate 
Gradations 

Finer 
Aggregate 
Gradation 

Size 

19 100.00 100.00 100.00 
12.5 76.00 69.90 86.19 
9.5 78.03 63.00 52.10 

4.75 43.90 27.40 66.70 
2.36 30.40 20.80 43.67 
1.18 22.10 15.90 30.54 
0.6 16.30 12.10 22.15 
0.3 11.00 8.20 14.78 

0.15 7.60 5.70 10.25 
0.075 5.20 3.90 7.00 

 

t of specimens that represents the extreme level of 

inhomo

is hypothesized to be formed during the gyration process in the homogeneous gyratory 

compacted specimens. The third se

geneity by design was compacted using Superpave gyratory compactor. The outer 

portion of these specimens was made to have significantly coarser gradation than the 

inner portion. This set of specimens is referred to as I-SST. 

60
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Figure 7-1. Gradations of homogenous (design) and the coarser and the finer portions of 
inhomogeneous specimens 
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Similar to the specimens for the evaluation of vertical inhomogeneity, the 

specimens for evaluation of radial inhomogeneity were prepared with the optimum 

asphalt content of 4.85% at a 7 ± 0.5% air void content. The gradation of the 

homogeneous SST specimens were the same as that of homogeneous SPT specimens an

the gradations of the ring and core of the radially inhomogeneous specimens were the 

coarser and the finer gradations that were used in the lower and upper portions of 

vertically inhomogeneous specimens (Table 7-1).  

The homogeneous linear kneading compacted specimens were cored out of

180-mm by 480-mm linearly kneaded French slabs. To avoid the vertical inhomoge

that is commonly experienced with the slab specimens, the specimens were compacted to 

the minimum possible height of 68 mm. The compacted height was suffic ent to

d 

 

neity 

i  allow 

easy sawing of the top and the bottom of the specimens to achieve the 50-mm depth 

requirement of the Superpave Shear Tester (SST).  

The homogeneous gyratory compacted specimens were compacted to the height 

of 118 mm, which required approximately 50 gyrations of the gyratory compactor. The 

as-compacted gyratory specimens were then sawed into two 50-mm thick, 150-mm 

diameter specimens to meet the specimen size requirement of SST.  

T ed to 

have the coarser gradation along the periphery (ring) and the finer gradation in the middle 

(core) of the specimen to mimic the hypothesized effects of gyration and boundary 

ration process of the Superpave 

gyratory compactor is hypothesized to force the coarse aggregates to the outer edge of the 

specimen, and the boundary of the gyratory mold is hypothesized to limit the movement 

he radially inhomogeneous gyratory compacted specimens were fabricat

condition on the arrangement of the aggregates. The gy
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of the coarser aggregates along the periphery of the specimen. Both of these phenomena 

are assu

 

 

pared to 

ameter 

7.3 X-RAY COMPUTED TOMOGRAPHY SCAN OF THE 

specim ical positions to make available vertical 

and horizontal cross-sectional images of the specimens. Later, it will be determined if 

slice face direction would make a difference in the accuracy of the homogeneity 

measurements. The CT scanning of the specimens was done continuously in 0.8 mm 

intervals. Scanning in horizontal directions was relatively straightforward. The specimens 

were positioned in upward position (Figure 7-2) and the x-ray beams going through the 

specimens resulted in reconstruction of circular images of horizontal cross-sections. 

Figure 7-3 shows a typical horizontal scan of a specimen. 

To make available vertical images, which have rectangular cross-sections, 

specimens were positioned with their main axes parallel to the x-ray beams (Figure 7-4). 

med to result in the concentration of a coarser mixture in the outer ring, leaving a 

finer mixture in the middle core of the specimen. Specimens were compacted to the same

height as of the homogeneous specimens, which were 118 mm. However, compacting

inhomogeneous specimens to 118 mm required approximately 200 gyrations com

50 gyrations for homogeneous specimens. Achieving the same height ensured the same 

overall air void content for both homogeneous and inhomogeneous specimens. The as-

compacted gyratory specimens were then sawed into two 50-mm thick, 150-mm di

specimens to meet the specimen size requirement of SST.  

SPECIMENS  

Following the fabrication, specimens were scanned using x-ray computed 

tomography (XCT) to access to the specimens internal structure, nondestructively. The 

ens were scanned in horizontal and vert
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Two challenges were faced when scanning the specimens in prone position. The first 

challenge was that the width dimension of the specimen exceeded the diameter of the 

x-ray field of view and therefore, the slices in the middle portion of the specimens did not 

fit in the scanned images. To include the largest width of a specimen in the image, a field 

of view equal to the diagonal of the specimen was required. For the SPT specimens that 

are 150 mm tall and 100 mm in diameter, a field of view of 200 mm in diameter was 

required. A larger field of view was obtained by passing the specimen through the CT  

scanner at different angles. Through this process, which is called the translate-rotate, the 

x-ray beams are transmitted with an offset angle while the specimen is being rotated. The 

rger 

than that in the rotate only mode.  

of the 

specim

n. 

o  

translate-rotate mode of scan resulted in a field of reconstruction that was 160% la

The second difficulty with the scanning in the prone position was the shape 

en with respect to the x-ray beams. The x-ray system best provides images of the 

objects that are solid cylinders with consistent density within the limits of the x-ray fa

When the specimen is laid flat, it is no longer considered a solid cylinder with respect t

SpecimenCollimator
(window)

DetectorX-Ray Source Detector

SpecimenCollimator
(window)

X-Ray Source

 

Figure 7-2. Scanning of the specimens in upright position 
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the x-ray fan but a solid object within an imaginary air filled cylinder. This would cause 

high contrast in material densities (solid and air) and a large difference between x-ray 

attenuation properties of the materials within the imaginary cylinder. As a result, the net 

x-ray attenuation that would be computed by the system, which is based on the averagi

of the x-ray attenuations of different phases within the cylinder, would be far differe

from the attenuation of t

ng 

nt  

he asphalt mixture. Therefore, the images would be highly 

affected by blurring. To solve this problem, the specimen in prone position was placed 

within a cylindrical container 

consistent density within the cylindrical container, which resulted in the net x-ray 

 the 

ake the images ready for the analysis, they were 

preprocessed by cropping the cement portion and rotating the rectangular asphalt mixture 

with a diameter slightly greater than the diagonal of the 

specimen. The surrounding of the specimen was packed by cement powder, which has 

comparable x-ray attenuation property as of the asphalt mixture. This provided relatively 

attenuation of the material within the cylinder not being far from the attenuation of

asphalt mixture. Following of this procedure removed the blurring and resulted in 

satisfactory scanned images. To m

image to make the top of the image to be the top of the specimen (Figure 7-5). 

 

Figure 7-3. Horizontal slice faces of (a) a homogeneous, (b) the bottom portion of a 
en vertically inhomogeneous, and (c) the top portion of a vertically inhomogeneous specim
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Figure 7-4. Scanning of the specimens in prone position 

Although specimens were continuously scanned every 0.8 mm in both ho

and vertical direc

7.4 SELECTION OF THE SAMPLING PORTIONS  

rizontal 

tions, not all the slices were used for the evaluation of homogeneity. A 

number

d between the slices to ensure independency of 

the slic

ast 

cimen. (4) A transition zone between the 

coarser

 

. 

 of conventions were agreed for the selection of the slices for both radial and 

vertical homogeneity measurement, which were also followed for the simulated 

specimens: (1) a 10-mm spacing is require

es. (2) Only vertical slices that are located within 40 mm of the diameter of the 

specimen are used to ensure adequacy of the sampling areas. (3) The first and l

horizontal slices are taken 15 mm away from the ends of the specimen to allow for large 

particles to be fully contained within the spe

 and the finer portions is assumed to ensure sampling from distinct populations. 

Based on the above conventions, the following sampling portions were determined for

the measurement of vertical and radial homogeneity using horizontal and vertical slices
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(b)(a) (b)(a)  

Figure 7-5. Sections from vertical slices of (a) homogeneous and (b) inhomogeneous 
specimens 

on is 15 mm away from the top of the specimen. The other five slices are 

taken b

7.4.2 Sampling for Evaluation of Vertical Inhomogeneity, Vertical Slices  

To evaluate vertical homogeneity using vertical slice faces, 9 slices were used. 

Two sampling areas were positioned on the lower and upper portions of the slice faces. 

7.4.1 Sampling for Evaluation of Vertical Inhomogeneity, Horizontal Slices  

To evaluate vertical homogeneity using horizontal slice faces; total of 12 slices, 6 

slices in the lower and 6 slices in the upper portions, were used. The first slice in the 

lower portion is 15 mm away from the bottom of specimen. The remaining five slices 

were taken above the first slice with 10-mm spacing between the slices. The last slice of 

the upper porti

elow the top slice with 10-mm spacing between the slices. A gap of 20-mm, as a 

transition zone, was allowed between the last slice of the lower portion and the first slice 

of the upper portion (Figure 4-1).  
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The width of each sampling area is equal to the width of each slice face, which changes 

with the location of the slice (Section 4.3.1), and the height of each sampling area is 65 

mm. The bottom of the lower sampling area is at the bottom of the specimen and the top 

of the upper sampling area is at the top of the specimen. A rectangular transition area, 

20-mm in height between the upper and the lower portions, was excluded from the 

sampling (Figure 4-3).  

7.4.3 Sampling for Evaluation of Radial Inhomogeneity, Horizontal Slices  

Separate measurements of the geometric properties from the ring and core 

portions of each slice required the determination of the ring and core sampling areas. 

Based on the volume of the coarser and the finer mixtures, the core was determined to be 

101 mm in diameter at the center of each slice face. The ring was determined to be 19.55 

mm wi

7.4.4 Sampling for Evaluation of Radial Inhomogeneity, Vertical Slices  

pling areas 

change with the location of 

en, the width of the core strip is equal 

de at the periphery of each slice face. A transition zone with a thickness of 

4.95-mm wide between the ring and the core portions was excluded from sampling 

(Figure 5-1 and Figure 5-2).  

To evaluate radial homogeneity using vertical slice faces, 9 slice faces were used. 

On each slice face, the sampling areas included two vertical side strips representing the 

two ring portions and one vertical middle strip representing the core portion of each slice 

face. The height of the sampling areas is 50 mm and the widths of the sam

the slices faces (Equation 5.48 through 5.51). For the cross-

section that goes through the diameter of the specim

to 101 mm and the width of each ring strip is 19.55 mm (Figure 5-3). A transition zone of 

4.95-mm wide was considered between a ring and the core strips. The widths of the 

 247



 

sampling areas for the remaining slice faces were computed according to Equation 5.48 

through 5.51.  

7.5 IMAG Y  O Y UTED TO OGRAPHY 

e se  XCT scanned images were analyzed ing a ized computer 

p eve  und ge-P age analysis soft re (I Pro Plus 4.5, 

2  pro  opens a sequence of the slice face im es of imen one at a 

tim cond vera e p ing o ns o ch i The image 

pro ng of the images includes the selectio e are f inte OI) and 

conducting spatial calibration, thresholding, subject recognition, and geometric 

easurements.  

XCT i the AOI was coincide elected 

sam ng ar ed ct

e sp alibr proc rresp he number of e pixels to the unit 

le he m eme , mm he pr d im  1 m  length 

corresponded to an average number of 4 pixels. This would indicate the nominal spatial 

resolution of 0.25 mm of the XCT images. 

he p  of th ldin ed to ate ject nterest from the 

est of the image. In the AOI (sampling areas) of reshold value that 

matched the gray intensity of the aggregates were used to highlight the aggregates that 

had a diameter equal to or greater than 4.75 mm. Similarly, the threshold value that 

matched the gray intensity of the air voids were used to highlight the voids.  

E ANAL SIS F X-RA  COMP M
SCANS 

Th lected  us  custom

rogram, d loped er Ima ro im wa mage-

002). The gram ag  a spec

e and ucts se l imag rocess peratio n ea mage. 

cessi n of th a o rest (A

m

The AOI of an image is the area from which the sampling takes place. On the 

mages of each slice face direction, d with the s

pli eas describ  in Se ion 7.4.  

Th atial c ation ess co onds t  imag

ngth of t easur nt, i.e. . In t ocesse ages, m of

 T rocess resho g is us  separ the ob s of i

r  the images, the th

 248



 

The geometric measurements of the aggregates and the voids were conducted

within the AOI of the images. For the aggreg

 

ates, various geometric properties such as 

the area, diameter, frequency, the centroid coordinates, and the nearest neighbor distances 

were measured. For the voids, the total area of the voids was measured, from which the 

percent air void of the coarser portion, the finer portion, and the entire specimens were 

computed. The air void content of the specimens and the air void content of the coarser 

and finer portions of the specimens computed from the XCT images are provided in 

Appendix E.  

7.6 STATISTICAL ANALYSIS OF IMAGING MEASUREMENTS 

The measured geometric properties of the aggregates from the horizontal and 

vertica

 

provided in Chapters 4 and 5 and the 

critical  

) 

r 

e 

ch is the area in the tail of the 

probability distribution beyond the computed value of the test statistic. It is valid then to 

l slice face images were used to compute the statistical indices of vertical and 

radial homogeneity. The homogeneity of the specimens was evaluated by comparing the 

computed test statistics with the population values for the condition of homogeneity. The 

procedures for computing the statistical indices are 

 values of the statistics were obtained from computer simulation and are tabulated

in Chapter 6.  

Several comparisons were made on the computed index values to determine: (a

the tests that provide accurate measurement of both homogeneity and inhomogeneity and 

(b) the slice face direction that provides the more accurate statistics, horizontal o

vertical. Since the tests use different statistics, the values of the statistics could not b

compared directly. The computed test statistics were used with the underlying probability 

distribution to obtain the rejection probabilities, whi
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compare the rejection probabilities. The following sections provide the discussion of the 

results of various statistical tests for the measurement of vertical and radial homogeneity. 

7.6.1 Comparison of Tests of

e st l tes  be c red in  of th r acc in detecting both 

ho ity a om ty. H eneo cime  are n ected to show a 

statistical difference, so the rejection probabil ould  grea n 5%, while the 

rejection probabilities should be less than 5% for inhomogeneous specimens. Therefore, a 

tes re ac  if th ctio ability is large for homogeneous specimens and 

sma r inho eou imen

7.6.1.1 Comparison of the Tests on Horizontal Slice Faces 

measurement of homogeneity and vertical inhomogeneity using horizontal slice faces are 

give n Tab u le es p  faces: the chi-

square test on frequency, the t-test on total area, the t-test on frequency, the t-test on 

ne ighb  run  and earm nle

ru pea onl ts were obtaine  the tables of critical values since 

these tw sts  not by c ter si on. oll iscussions are 

m d on omp

For the gen peci (H-S e c ed st stics for the tests 

from the horizontal slice faces are given in Table 7-2. While the computed test statistics 

for some individual tests suggested inhomogeneity, on average all of the tests identified 

the homogeneous specimens to be homogeneous. The t-tests on total area and nearest 

 Vertical Homogeneity 

Th atistica ts can ompa  terms ei uracy 

mogene nd inh ogenei omog us spe ns ot exp

ities sh  be ter tha

t is mo curate e reje n prob

ll fo mogen s spec s.  

The computed test statistics and the corresponding rejection probabilities for the 

n i le 7-2 thro gh Tab  7-5. Six t ts were a plied to horizontal

arest ne or, the s test,  the Sp an-Co y test. The critical values for the 

ns and S rman-C ey tes d from

o te  were tested ompu mulati  The f owing d

ade base  the c uted test statistics and the rejection probabilities. 

 homo eous s mens PT), th omput ati
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Table 7-2. Computed indices of vertical homogeneity, the means, standard deviations (Sd), 
and the critical statistics (CS) using the horizontal slice faces of homogeneous (H-SPT) 
specimens 

Samp
ID on Total on on  

Neighbor 

Runs* Conle
le χ2 test  

Frequency 

t-Test on 

Area 

t-Test  

Frequency

t-Test  

Nearest 

No. of Spearman-
y Test 

 
r  

H-SPT1 0 032 0.635 0 330 1.784 8 -0.198 . .
H-SPT2 0.332 2.515 1.221 0.320 7 -0.371 
H-SPT3 0.002 2.189 0.086 1.301 7 -0.305 
H-SPT4 0.037 2.105 0.413 1.038 11 -0.599 
H-SPT5 1.257 0.967 1.988 3.693 9 0.000 
H-SPT6 0.217 1.257 1.063 1.073 8 -0.091 
H-SPT7 0.072 2.039 0.555 1.150 7 -0.291 
H-SPT8 0.022 0.945 0.307 1.237 8 -0.230 
Mean 0.246 1.581 0.745 1.450 8.2 -0.261 

Sd 0.424 0.708 0.635 0.990 1.3 0.182 
CS 3.403 2.309 2.244 1.929 3 0.385 

*The critical values for the Runs test are for a 2.5% level of significance.  

Table 7
from the horizontal slice faces of homogeneous (H-SPT) specimens 

Neighbor 

 

-3. Rejection probabilities, the means, and the standard deviations (Sd) computed 

Sample 
ID 

χ2 test  
on 

Frequency 

t-Test on 
Total 
Area 

t-Test  
on 

Frequency

t-Test  
on  

Nearest 

No. of 
Runs*

Spearman-
Conley Test 

r  
 

H-SPT1 0.883 0.533 0.741 0.077 0.960 >0.1 
H-SPT2 0.597 0.034 0.242 0.753 0.608 >0.1 
H-SPT3 0.990 0.052 0.930 0.198 0.738 >0.1 
H-SPT4 0.865 0.057 0.677 0.297 0.998 >0.1 
H-SPT5 0.243 0.341 0.077 0.000 0.791 >0.1 
H-SPT6 0.687 0.226 0.291 0.277 0.911 >0.1 
H-SPT7 0.568 0.062 0.568 0.246 0.738 >0.1 
H-SPT8 0.920 0.354 0.759 0.218 0.825 >0.1 
Mean 0.719 0.207 0.536 0.258 0.821 >0.1 

Sd 0.247 0.187 0.299 0.224 0.130 - 
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 neighbor distance each misidentified one specimen. All other tests identified eight 

homogeneous specimens correctly.  

The oba ties p  a s he  of the tests. 

For the homogeneous specimens the rejection probabilit  horizontal slice faces are 

provided in Table 7-3. Ot an o e of on to as an ase of t-test on 

n ighb tance ther idua tion p ilitie  above 5%. In 

agreem t to tion results, the frequency based tests provided the highest rejection 

probabilities. The runs test, th ean 

reje n prob s of 72% 4% e e rejection probabilities of 

e Spearman-Conley test could not be computed since the rejection probabilities above 

0% cannot be obtained from the table of Spearman-Conley critical values. 

For the inhomogeneous specimens (I-SPT), the computed test statistics from the 

st neighbor t-test, the runs test, and 

the Spearman-Conley test each misi ie im  oth dentified all 

inhom ous specimens to be inhom

r the oge spec , the tion p ilities e tests from 

the horizontal slice faces are given i le 7- gree ith t ical values, 

o dual ion p ility ch o test o t n r, the runs 

test, and the Spearman-C test bov All o jection probabilities were 

below 5%, which indicates inhomogeneity. Based on the identification of both 

homogeneity and inhomogeneity, it seems that the chi-square test and the t-test on 

frequencies are the most accurate tests using horizontal faces. They were the only tests to 

identify all sixteen-laboratory specimens correctly. 

 rejection pr bili rovide dditional in ight to t accuracy

ies from

her th ne cas  t-test tal are d one c

earest ne or dis s, all o  indiv l rejec robab s were

en simula

e chi-square test, and the t-test on frequency had the m

ctio abilitie 82%, , and 5 , respectiv ly. Th

th

1

horizontal slice faces are given in Table 7-4. The neare

dentif d one spec en. The er tests i

ogene ogeneous.  

Fo  inhom neous imens  rejec robab  for th

n Tab 5. In a ment w he crit

ne indivi  reject robab for ea f the t- n neares eighbo

onley were a e 5%. ther re
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Table 7-4. Computed indices of vertical homogeneity, the means, standard deviations (Sd), 

(I-SPT) specimens  
and the critical statistics (CS) using the horizontal slice faces of vertically inhomogeneous  

2

Frequency Area Frequency Nearest 

Sample 
ID 

χ  test  
on 

t-Test on 
Total 

t-Test  
on 

t-Test  
on  

Neighbor 

No. of 
Runs*

Spearman-
Conley Test 

r
 
 

I-SPT1 13.938 8.468 4.899 4.274 6 0.379 
I-SPT2 8.321 4.437 5.190 1.936 4 0.720 
I-SPT3 5.528 4.927 5.431 5.797 2 0.495 
I-SPT4 9.632 4.004 4.040 2.125 2 0.514 
I-SPT5 8.741 5.870 4.065 2.159 4 0.714 
I-SPT6 5.112 4.546 4.170 0.969 4 0.687 
I-SPT7 8.696 8.441 4.382 2.443 4 0.786 
I-SPT8 4.092 3.087 2.857 2.418 4 0.445 
Mean 8.007 5.473 4.379 2.765 3.8 0.592 

Sd 3.135 2.001 0.812 1.530 1.3 0.151 
CS 3.403 2.309 2.244 1.929 3 0.385 

*The critical values for the Runs test are for a 2.5% level of significance 

 

Table 7-5. Rejection probabilities, the means, and standard deviations (Sd) computed from 

Frequency Area Frequency Nearest 

the horizontal slice faces of vertically inhomogeneous (I-SST) specimens 

Sample 
ID 

χ2 test  
on 

t-Test on 
Total 

t-Test  
on 

t-Test  
on  

Neighbor 

No. of 
Runs*

Spearman-
Conley Test 

r  
 

I-SPT1 0.000 0.000 0.002 0.000 0.209 0.053 
I-SPT2 0.002 0.002 0.001 0.046 0.025 <0.001 
I-SPT3 0.013 0.000 0.000 0.000 0.004 0.024 
I-SPT4 0.001 0.004 0.004 0.032 0.001 0.019 
I-SPT5 0.002 0.000 0.004 0.030 0.025 <0.001 
I-SPT6 0.017 0.002 0.004 0.336 0.025 0.002 
I-SPT7 0.002 0.000 0.003 0.017 0.025 <0.001 
I-SPT8 0.032 0.001 0.020 0.018 0.025 0.036 
Mean 0.009 0.001 0.005 0.061 0.042 - 

Sd 0.011 0.001 0.006 0.113 0.068 - 

 

 253



 

7.6.1.2 Comparison of the Tests on Vertical Slice Faces 

The  tes tic  ding rejection ities for the 

measureme n e er ce faces are 

given in Table 7-6 through Table 7-  test  appl verti es: the z-test 

on frequency proportion, the chi-square test on frequency, the t-test on total area 

proportion, the t-test on f cy d , the t-test on nearest neighbor density, and the 

t- vera th de  The ade based on the 

com ed test je rob s. 

For the ogene ecim the c ted st s for the tests from the 

vertical slice faces are given in Table 7-6. Other than the t-test on average depth, which 

misidentified one specimen, all other tests identified individual specimens correctly. 

The rejection probabilities provide additional information on the accuracy of the 

tests. For the eo im re o fr rtical slice 

faces are pr t is ated that the h ect bability of 

74.7% is provided by the t and wes tion ility 7% is provided 

by st on ge d he z n ar porti vides cond highest 

re rob  of 42

r the oge spec , the ed ics fr  vertical slice 

fasc re give able  is in d fr  tabl in av tatistics 

dicated inhomogeneity, correctly. However, three cases of χ2 statistics were below the 

computed t statis s and the correspon  probabil

nt of homogeneity and vertical i homogen ity using v tical sli

9. Six s were ied to cal fac

requen ensity

test on a ge dep nsity.  following discussions are m

put  statistics and the re ction p abilitie

 hom ous sp ens, ompu atistic

 homogen us spec ens the jection pr babilities om the ve

ovided in Table 7-7. I  indic ighest rej ion pro

χ2 tes  the lo t rejec probab of 24.

 the t-te  avera epth. T -test o ea pro on pro  the se

jection p ability .5%. 

Fo  inhom neous imens  comput  statist om the

es a n in T 7-8. It dicate om the e that erage all s

in
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Table 7
(CV), and the critical statistics (CS) using vertical slice faces of homogeneous (H-SPT) 

Proportion 

2

Frequency Area Density Neighbor  Depth 

-6. Computed indices of vertical homogeneity, the means, coefficients of variations 

specimens 

Sample 
ID 

z-Test on 
Frequency  

χ  Test  
on 

t-Test on
Total 

Density 

t-Test on 
Frequency

t-Test on 
Nearest 

Density 

t-Test on 
Average 

Density 
H-SPT1 0.147 0.352 1.266 0.383 1.328 1.268 
H-SPT2 0.126 0.086 0.067 0.554 0.428 0.413 
H-SPT3 0.459 0.047 0.828 0.269 0.108 0.161 
H-SPT4 0.071 0.222 0.066 1.016 1.477 1.931 
H-SPT5 0.012 0.022 0.701 0.465 0.360 0.741 
H-SPT6 0.262 0.118 0.424 0.684 0.509 0.745 
H-SPT7 0.150 0.033 0.679 0.086 0.631 0.522 
H-SPT8 0.098 0.146 0.432 0.283 0.864 0.746 

Mean 0.166 0.128 0.558 0.468 0.713 0.816 
Sd 0.139 0.112 0.401 0.288 0.479 0.553 
CS 1.59 4.712 1.739 1.767 1.746 1.860 

 

 

Table 7-7. Rejection probabilities, the means, and standard devia
vertical slice faces of homogeneous (H-SPT) specimens  

tions (Sd) computed from 

Sample 
ID 

z-Test on 

Proportion 

χ2 Test  

Frequency

t-Test on

Area 

t-Test on 

Density 

t-Test on 

Neighbor 

t-Test on 

 Depth 
Frequency  on Total 

Density 

Frequency Nearest 

Density 

Average 

Density 
H-SPT1 0.428 0.553 0.112 0.353 0.101 0.120 
H-SPT2 0.437 0.769 0.473 0.294 0.337 0.345 
H-SPT3 0.308 0.826 0.210 0.396 0.458 0.438 
H-SPT4 0.469 0.638 0.474 0.162 0.080 0.045 
H-SPT5 0.496 0.875 0.247 0.324 0.362 0.240 
H-SPT6 0.375 0.739 0.339 0.252 0.309 0.239 
H-SPT7 0.426 0.848 0.253 0.466 0.268 0.308 
H-SPT8 0.458 0.724 0.336 0.390 0.200 0.239 

Mean 0.425 0.747 0.305 0.330 0.264 0.247 
Sd 0.059 0.109 0.126 0.095 0.130 0.124 

 

 255



 

critical on 

 

 the identification of both homogeneity and inhomogeneity using vertical 

faces, i

al slice 

faces y

e 

en 

d be greater than 5%. 

 statistic, indicating homogeneity. For the inhomogeneous specimens, the rejecti

probabilities from vertical slice fasces are given in Table 7-9. In average, all the rejection 

probabilities were below 5%, which indicate inhomogeneity. However, three individual

rejection probabilities of the chi-square statistic were greater than 5%, which indicates 

homogeneity. All other tests identified individual inhomogeneous specimens correctly.  

Based on

t seems that in average all of the proposed tests are reliable in measurement of 

homogeneity. Among the tests that identified all sixteen specimens correctly, the z test 

best differentiated between homogeneous and inhomogeneous sets, which are indicated 

from the difference between the rejection probabilities of the z statistic for the two sets.  

It seems that horizontal and vertical slice faces are equally reliable in 

measurement of homogeneity. However, if it were necessary to decide whether to use 

vertical or horizontal slice faces, the results of the test indices suggest that vertic

ield the most consistent results. A greater proportion of the tests provided zero 

incorrect decisions when using vertical slice faces rather than horizontal slice faces. Th

horizontal slice faces led to incorrect decisions using three tests, while vertical slices 

yielded incorrect decision using only one test. In addition, the distinction between the 

computed statistics of homogeneous and inhomogeneous specimens was greater wh

computed from vertical slice faces than when computed from horizontal slice faces.  

Homogeneous statistics of linearly kneaded specimens (L-SST) should show no 

significant difference; therefore the computed statistics for homogeneous specimens 

should not exceed the critical statistic for a 5% level of significant. As a result, the 

rejection probabilities of the computed statistics shoul
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Table 7-8. Computed indices of vertical homogeneity, the means, standard deviations (Sd), 
and the critical statistics (CS) using the vertical slice faces of vertically inhomogeneou
(I-SPT) specimens 

s      

on 

D
Density 

Nearest 
Neighbor 
D

 Depth 
D

Sample 
ID 

z-Test on 
Frequency  
Proportion 

χ2 Test  

Frequency

t-Test on
Total 
Area 
ensity 

t-Test on 
Frequency

t-Test on 

ensity 

t-Test on 
Average 

ensity 
I-SPT1 2.026 4.666 3.051 4.788 3.698 6.196 
I-SPT2 2.680 8.320 2.674 2.868 4.255 6.151 
I-SPT3 2.529 6.650 5.019 4.318 2.264 4.590 
I-SPT4 3.199 5.922 7.661 4.176 2.854 4.403 
I-SPT5 2  .190 6.964 5.718 2.695 3.758 4.212 
I-SPT6 2.508 3.491 7.133 4.375 3.127 5.255 
I-SPT7 2.926 3.817 6.378 4.546 3.171 9.410 
I-SPT8 2.725 7.143 5.403 4.217 4.674 6.481 
M  ean 2.598 5.872 5.380 3.998 3.475 5.837 

Sd 0.378 1.722 1.783 0.777 0. 8 1. 0 77 69
CS 1.59 4.712 1.739 1.767 1.746 1.860 

 

 

) computed from 
vertical slice faces of vertically inhomogeneous (I-SPT) specimens 

Sample 
ID  

Pr

χ2 t  

Frequency

t-

D  

Frequency
D

t-Test on 
Nearest 

Neighbor 
Density 

t-Test on 
Average 
 Depth 
Density 

Table 7-9. Rejection probabilities, the means, and standard deviations (Sd

z-Test on 
Frequency 

oportion 

 Tes
on 

Test on
Total 
Area 
ensity

t-Test on 

ensity 

I-SPT1 0.017 0.051 0.004 0.000 0.001 0.000 
I-SPT2 0.003 0.010 0.008 0.006 0.000 0.000 
I-SPT3 0.005 0.020 0.000 0.000 0.019 0.001 
I-SPT4 0.001 0.029 0.000 0.000 0.006 0.001 
I-SPT5 0.001 0.001 0.010 0.018 0.000 0.008 
I-SPT6 0.005 0.092 0.000 0.000 0.003 0.000 
I-SPT7 0.003 0.000 0.001 0.078 0.000 0.000 
I-SPT8 0.000 0.000 0.003 0.016 0.000 0.000 
Mean 0.006 0.039 0.002 0.002 0.004 0.001 

Sd 0.005 0.031 0.003 0.003 0.006 0.001 
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 Homogeneous gyratory compacted specimens (H-SST) are hypothesized to show

some radial inhomogeneity bas

 

ed on the effect of gyration and boundary condition. 

The re, t d s tic fo T s is expected rger than those 

o  spec s and a sult the rejectio babil ould b aller than those 

of L-SST spec s. On t her h the st s of inhomogeneous gyratory 

c d spe ns (I-SST) should show a significant difference; therefore, the 

c  stati hould d the critical v f the s ic for  level of 

significance. As a result, the rejectio babil ould b aller than 5%. The 

com ed stati and th ction abili mputed rom the horizontal slice 

faces of L-SST, H-SST, and    I-SST specimens are examined to make decisions 

ing the accuracy of the tests. 

he test istic ding rejection probabilities for the 

m ent of radial ho eity  the horizontal slice faces are given in Table 

7-10 through Table 7-15. Six tests were used easurements of radial homogeneity 

using horizont e fac  z-te requency proportion, the chi-square test on 

fr , the  on t ea a quen d tests on eccentricity and moment of 

in s observed from bles puted statistic, the computed values of the 

eccentricity and moment of inertia index did not show sensitivity to the three levels of 

inhomogeneity and were excluded from the discussion. All other statistics provided 

reasonable values. The following discussions are made based on the computed test 

statistics and the rejection probabilities. 

refo he compute tatis r H-SS  specimen to be la

f L-SST imen s a re n pro ity sh e sm

imen he ot and, atistic

ompacte cime

omputed stic s excee alue o tatist  a 5%

n pro ity sh e sm

put stics e reje  prob ties co  f

regard

7.6.1.3 Comparison of the Tests on Horizontal Slice Faces 

T  computed stat s and the correspon

easurem mogen  from

for the m

al slic es: the st on f

equency  t-tests otal ar nd fre cy, an

ertia. A  the ta  of com
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The computed test statistics of the L-SST specimens using the horizontal slice 

faces are provided in Table 7-10, whereas the critical statistics are provided at the bottom

of the table. As it is observed from the table two individual values of the t statistics on

frequencies are above the critical value. However, in average all computed statistics are 

below the critical values indicating that the proposed indices are reliable for the detection

of homogeneity. 

The rejection probabilities provide additional insight to the accuracy of the tests

Table 7-11 indicates that the mean rejection probabilities of all tests are greater th

However, two individual rejection probabilities of the t-test on frequencies are below 5%, 

resulting in the smallest rejection probability among the tests. This means that the t-test

on frequency was the least accurate in measuring homogeneity. The z-test on frequency 

proportion and the χ

 

 

 

. 

an 5%. 

 

 the second highest rejection 

probab

itical 

t 

ow 

observed from the table that the 

comput

2 test on frequency provide the first and

ilities, indicating the two most reliable tests in detection of homogeneity. 

The computed test statistics of the homogeneous gyratory compacted (H-SST) 

specimens using horizontal slice faces are provided in Table 7-12, whereas the cr

statistics are provided at the bottom of the table. The table shows that 6 out of 8 and 2 ou

of 8 computed t-statistics on total area and frequency, respectively, are greater than the 

critical statistics, indicating inhomogeneity. This might be because of slight radial 

inhomogeneity in H-SST specimens. All other tests provided statistics that were bel

the critical statistics, indicating homogeneity. It is also 

ed average statistics of the z-test on frequency proportion and the t-test on total 

area are significantly greater than those of the L-SST specimens, indicating presence of 

slight radial inhomogeneity in the H-SST specimens. 
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Table 7-10. Computed indices of radial homogeneity, the means, standard deviations (Sd), 
and the critical statistics (CS) using the horizontal slice faces of homogeneous linear 
kneading compacted (L-SST) specimens 

Sample 
ID 

z-Test on 
Frequency 
Proportion 

χ2 Test  
on 

Frequency

t-Test on 
Total 
Area 

t-Test on 
Frequency

Eccentricity Moment of 
Inertia 

L-SST1 0.58 2.41 0.13 1.76 0.71 0.36 
L-SST2 0.02 0.56 1.00 0.23 0.67 0.33 
L-SST3 0.09 0.97 1.37 1.05 0.67 0.42 
L-SST4 0.82 1.07 -0.35 0.65 0.70 0.32 
L-SST5 0.39 1.34 -0.99 1.00 0.69 0.35 
L-SST6 0.3 0.21 0.68 1.41 0.70 0.35 
L-SST7 0.01 0.29 0.50 0.12 1.07 0.69 
L-SST8 0.77 0.34 1.11 1.69 0.67 0.39 
Mean 0.19 0.92 0.39 1.11 0.69 0.35 

Sd 0.66 0.71 0.80 0.51 0.01 0.04 
CS 1.64 3.827 1.427 1.514 - - 

 

 

Table 7-11. Rejection probabilities, means, and standard deviations (Sd) of indices of radial 
homogeneity computed from horizontal slice faces of (L-SST) specimens 

Sample z-Test on χ2 Test  
on 

Frequency

t-Test on t-Test on 
Total 
Area 

FrequencyID Frequency 
Proportion 

L-SST1 0.035 0.242 0.121 0.428 
L-SST2 0.262 0.452 0.102 0.379 
L-SST3 0.556 0.321 0.055 0.108 
L-SST4 0.180 0.300 0.688 0.198 
L-SST5 0.686 0.246 0.896 0.117 
L-SST6 0.433 0.648 0.182 0.059 
L-SST7 0.828 0.475 0.434 0.104 
L-SST8 0.249 0.570 0.085 0.039 
Mean 0.430 0.392 0.359 0.130 

Sd 0.239 0.176 0.310 0.114 
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Table 7-12. Computed indices of radial homogeneity, the means, standard deviations (Sd), 

compacted (H-SST) specimens 

Sample 
ID 

z-Test on 
Frequency 

χ  Test  
on 

t-Test on 
Total 

t-Test on 
Frequency

Eccentricity Moment of 
Inertia 

and the critical statistics (CS) using horizontal slice faces of homogeneous gyratory 

Proportion 

2

Frequency Area 
H-SST1 1.22 1.82 1.76 0.46 0.70 0.29 
H-SST2 1.45 0.82 4.25 1.05 0.69 0.29 
H-SST3 1.33 0.54 2.81 0.96 0.66 0.37 
H-SST4 1.50 1.17 1.53 1.04 0.66 0.33 
H-SST5 1.43 0.26 2.26 1.35 0.69 0.29 
H-SST6 0.79 0.69 0.12 1.19 0.68 0.30 
H-SST7 0.98 1.01 1.37 1.69 0.66 0.40 
H-SST8 1.40 0.68 1.72 1.76 0.67 0.40 
Mean 0.90 0.87 1.98 1.19 0.68 0.33 

Sd 0.27 0.47 1.20 0.42 0.01 0.05 
CS 1.64 3.827 1.427 1.514 - - 

 

 

Table 7-13. Rejection probabilities, means, and standard deviations (Sd) of indices of radial 
homogeneity computed from horizontal slice faces of homogeneous gyratory compacted 
(H-SST) specimens 

Sample 
ID 

z-Test on 
Frequency 
Proportion 

χ2 Test  
on 

Frequency

t-Test on 
Total 
Area 

t-Test on 
Frequency

H-SST1 0.209 0.178 0.032 0.283 
H-SST2 0.243 0.368 0.000 0.108 
H-SST3 0.202 0.460 0.007 0.126 
H-SST4 0.179 0.280 0.043 0.109 
H-SST5 0.174 0.620 0.014 0.065 
H-SST6 0.304 0.408 0.434 0.085 
H-SST7 0.140 0.310 0.055 0.039 
H-SST8 0.080 0.411 0.032 0.035 
Mean 0.191 0.379 0.077 0.106 

Sd 0.067 0.132 0.145 0.079 
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 The rejection probabilities provide additional insight to the accuracy of the tests. 

For the H-SST specimens, the rejection probabilities from the horizontal slice faces are 

given in Table 7-13. It is shown from the table that although t-tests on total area and 

frequen

vera ty. 

of 

icated that 

both th

 the 

acted   

tistic. 

re equally reliable in the measurement of 

inhomo

is 

cy provided six and two individual rejection probabilities below 5%, respectively, 

the rejection probabilities in a ge were all greater than 5%, indicating homogenei

Also, it is indicated that the rejection probabilities of H-SST specimens are all smaller 

than those of L-SST specimens, showing presence of slight but not significant level 

radial inhomogeneity in homogeneous gyratory compacted specimens. From the 

comparison of the rejection probabilities in Table 7-11 and Table 7-13 it is ind

e z-test and the χ2 test provided all individual rejection probabilities above 5%; 

however, the z-test on frequency proportion provided the largest difference between

rejection probabilities of the L-SST and H-SST specimens. 

The computed test statistics of the radially inhomogeneous gyratory comp

(I-SST) specimens using the horizontal slice faces are provided in Table 7-14, whereas 

the critical statistics are provided at the bottom of the tables. All tests identified 

inhomogeneity correctly by providing all computed statistics above the critical sta

For the I-SST specimens, the rejection probabilities from the horizontal slice faces are 

given in Table 7-15. The table indicates that the rejection probabilities were extremely 

small, indicating that the proposed tests a

geneity when applied to horizontal slice faces. 

In summary, the suggested tests detected both homogeneity and inhomogeneity. 

The L-SST and I-SST specimens were identified most accurately by the tests. Fewer tests 

were successful in identifying the level of homogeneity of the H-SST specimens. Th
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Table 7-14. Computed indices of radial homogeneity, the means, standard deviations (Sd), 
and the critical statistics (CS) using the horizontal slice faces of radially inhomogeneous 
gyratory compacted (I-SST) specimens 

Sample 

Frequency

t-Test on 
Total 

t-T
Fre

ce ent of 
ID 

z-Test on 
Frequency 
Proportion 

χ2 Test  
on 

Area 

est on 
quency

Ec ntricity Mom
Inertia 

I-SST1 3.57 5.38 9 4.34 0.70 0.38 .09 
I-SST2 2.97 11.21 5 4.76 0.71 0.37 .51 
I-SST3 3.61 3.25 1 6.36 0.70 0.33 1.11 
I-SST4 2.82 6.29 10.06 3.96 0.70 0.36 
I-SST5 2.65 4.57 6 8.78 0.71 0.33 .09 
I-SST6 3.22 6.55 4.60 3.19 0.73 0.32 
I-SST7 2.80 8.36 5 4.26 0.72 0.23 .47 
I-SST8 3.12 10.10 5 7.33 0.74 0.30 .69 
Mean 3.10 6.96 7 5.37 0.71 0.33 .20 

Sd 0.36 2.74 2.48 1.92 0.01 0.05 
CS 1.64 3.83 1.427 1.514 - - 

 

 

Table 7-15. Rejection probabilities, means, and standard deviations (Sd) of indices of radial 
homogeneity computed from horizontal slice faces of radially inhomogeneous gyratory 
compacted (I-SST) specimens 

ID 
z-Test on t t-

r
Sample 

Frequency 
Proportion 

χ2 Test  
on 

Frequency

-Test on 
Total F
Area 

Test on 
equency

I-SST1 0.000 0.021 0 0..000 000 
I-SST2 0.001 0 0.0.001 .000 000 
I-SST3 0.000 0 0.0.073 .000 000 
I-SST4 0.002 0.013 0 0..000 000 
I-SST5 0.004 0.033 0.000 0.000 
I-SST6 0.001 0.011 0 0.004 .000 
I-SST7 0.003 0.004 0 0.000 .000 
I-SST8 0.001 0.001 0 0..000 000 
Mean 0.002 0.020 0 0.001 .000 

Sd 0.001 0.024 0 0..000 001 
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 might be the result of actual inhomogeneity of some of the H-SST specimens. However, 

 not 

in  by  tes ile, hi  t age statistics were 

distinct for  , i  a  not significant level 

of radial inhomogeneity in ST sp ns. B on the i fication of both 

h ity a homo ty, using horizont es, it s that the z-test on 

fr  prop n is th st accurate test. The test provi ll correct decisions. It 

identified the L T and T spec s as homogeneous and the I-SST specimens as 

inh geneou ditionally, the test best distin ed between the level of 

omogeneity of L-SST and H-SST specimens. 

7.6.1.4 Comparison of the Tests on Vertical Slice Faces 

 

m en  inh ene rtical slice faces are given in Table 7-16 

through Table 7-21. Five tests were used for th rement of radial inhomogeneity 

u ical aces: test o uenc ortion, the chi-square test on 

fr , the  on to a pro n, the  frequency density, and the 

in iam h r-outer average diameter statistic provided 

h riabl s an ot pr suffic istinction between homogeneous 

and inhomogeneous specim ade based on the 

computed test statistics and the rejection probabilities of the four remaining test statistics. 

The computed test statistics of the L-SST specimens using vertical slice faces are 

provided in Table 7-16, whereas the critical statistics are provided at the bottom of the 

this statement cannot be emphasized since inhomogeneity in H-SST specimens was

dicated  all of the ts. Wh  it can be ghlighted hat the aver

slight butthe L-SST and H-SST specimens ndicating

 H-S ecime ased denti

omogene nd in genei al fac eems 

equency ortio e mo ded a

-SS H-SS imen

omo s. Ad guish

h

The computed test statistics and the corresponding rejection probabilities for the

easurem t of radial omog ity from ve

e measu

sing vert slice f  the z- n freq y prop

equency  t-test tal are portio  t-test

ner-outer average d eter test. T e inne

ighly va e value d did n ovide ient d

ens. The following discussions are m
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tables. As it is observed from the table, except for one case of the t-statistic on total area 

proportion, the computed statistics are all below the critical statistic, indicating that the 

tests on vertical slice faces are reliable for the detection of radial homogeneity.  

For the L-SST specimens, the rejection probabilities for the tests from the vert

slice faces are given in Table 7-17. The t-test on total area, which misidentified

specimen, provided the mean rejection probability of 37%. All other tests identified all 

eight homogeneous specimens correctly. The χ

ical 

 one 

on 

probab

 are 

 

χ2 test identified 

all spec cs 

dual 

n Table 7-19. It is shown in the table that all of the mean rejection 

Probab

2 test provided the highest rejecti

ility (60%), the z-test provided the second highest mean rejection probability 

(44%), and the t-test on frequency had the mean rejection probability of 39%. 

For the H-SST specimens, the computed statistics from the vertical slice faces

given in Table 7-18. The values were in average smaller than the critical statistics; 

however, some individual values exceeded the critical statistics. The t-test on total area

misidentified three specimens as being homogeneous and the t-test on frequency 

misidentified two specimens as being homogeneous. The z-test and the 

imens as being homogeneous. All of the tests provided larger computed statisti

for the H-SST specimens than for the L-SST specimens, indicating a slight radial 

inhomogeneity in the H-SST specimens. Among the tests, which identified all indivi

specimens correctly, the z-test indicated the greatest difference between the computed 

statistic of L-SST and H-SST specimens. 

For the H-SST specimens, the rejection probabilities for the tests from vertical 

slice faces are given i

ilities are above 5%, indicating homogeneity. However, some individual rejection 

probabilities of both t-tests are below 5%, indicating inhomogeneity. The z-test on 
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Table 7-16. Computed indices of radial homogeneity, the means, standard deviations (Sd), 
and the critical statistics (CS) using the vertical slice faces of linear kneading compact
(L-SST) specimens 

ed  

ID 
 

 

 
 
 

Sample z-Test on 
Frequency  
Proportion 

χ2 Test  
on 

Frequency

t-Test on 
Total Area
Proportion

t-Test on
Frequency 

Density

Inner-outer
Average
Diameter

L-SST1 0.79 0.49 1.82 1.71  25.30
L-SST2 0.26 0.12 0.52 0.30 0.29 
L-SST3 0.17 0.69 -0.43 -0.70 11.43 
L-SST4 0.56 0.32 0.91 -0.03 -7.96 
L-SST5 -0.18 0.07 -0.13 0.89 -2.58 
L-SST6 0.31 0.14 0.64 0.32 7.09 
L-SST7 -0.43 0.46 -0.36 -0.96 -0.46 
L-SST8 0.14 0.63 0.55 1.64 -3.40 
Mean 0.20 0.37 0.44 0.40  3.71

Sd 0.39 0.24 0.75 0.98  10.64
CS 2.480 4.079 1.752 1.755 - 

 

 

Table 7-17. Rejection probabilities, means, and standard deviations (Sd) of indices of radial 
homogeneity computed from vertical slice faces of the linear kneading compacted (L-SST
specimens  

) 

Sample 
ID 

z-Test on 
Frequency  
Proportion 

χ2 Test  
on 

Frequency

t-Test on 
Total Area

t-Test on 
Frequency

Proportion Density 
L-SST1 0.291 0.500 0.042 0.051 
L-SST2 0.423 0.738 0.304 0.384 
L-SST3 0.449 0.422 0.662 0.754 
L-SST4 0.347 0.589 0.186 0.512 
L-SST5 0.554 0.830 0.553 0.192 
L-SST6 0.410 0.720 0.264 0.375 
L-SST7 0.620 0.514 0.640 0.826 
L-SST8 0.457 0.447 0.295 0.058 
Mean 0.444 0.595 0.368 0.394 

Sd 0.105 0.151 0.225 0.293 
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Table 7-18. Computed indices of radial homogeneity, the means, standard deviations (Sd), 
ry 

ID Frequency  on Total Area Frequency Average 

and the critical statistics (CS) using the vertical slice faces of homogeneous gyrato
compacted (H-SST) specimens 

Sample z-Test on 

Proportion 

χ2 Test  

Frequency

t-Test on 

Proportion

t-Test on 

Density 

Inner-outer 

Diameter 
H-SST1 1.07 0.97 1.80 0.92 -0.01 
H-SST2 0.63 0.91 1.38 1.82 4.96 
H-SST3 0.66 0.33 0.92 0.32 21.09 
H-SST4 0.77 1.14 1.52 1.68 -1.00 
H-SST5 0.97 0.49 2.48 2.12 20.29 
H-SST6 0.34 0.26 0.93 0.22 4.73 
H-SST7 1.24 0.62 2.51 0.91 12.27 
H-SST8 0.64 1.18 1.39 1.62 2.36 
Mean 0.79 0.74 1.62 1.20 8.09 

Sd 0.29 0.36 0.62 0.71 8.76 
CS 2.480 4.079 1.752 1.755 - 

 

 

Table 7-19. Rejection probabilities, means, and standard deviations (Sd) of indices of ra
homogeneity computed from vertical slice faces of the homogeneous gyratory compacted 
specimens (H-SST) specimens  

Sample z-Test on 

Proportion 

χ

dial 

ID Frequency  on Total Area Frequency
2 Test  

Frequency

t-Test on 

Proportion

t-Test on 

Density 
H-SST1 0.232 0.342 0.044 0.185 
H-SST2 0.329 0.357 0.092 0.042 
H-SST3 0.322 0.583 0.184 0.377 
H-SST4 0.295 0.303 0.072 0.054 
H-SST5 0.253 0.500 0.011 0.023 
H-SST6 0.402 0.627 0.182 0.413 
H-SST7 0.199 0.451 0.010 0.187 
H-SST8 0.327 0.296 0.090 0.061 
Mean 0.295 0.432 0.086 0.168 

Sd 0.065 0.128 0.068 0.154 
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f

above 5%. It sts for the 

ler than those of the L-SST specimens, indicating slight but 

not significant am

distinguished between the level of homogeneity of the L-SST and H-SST specimens by 

For the inhomogeneous gyratory compacted specimens (I-SST), the computed 

2

 

n 

2  probabilities of the z statistic are 

below 5 idual 

l 

it seems that radial inhomogeneity is better measured using horizontal slice faces than 

requency proportions and the χ2 test both provided the individual rejection probabilities 

is also shown in the table that the rejection probabilities of the te

H-SST specimens are all smal

ount of radial inhomogeneity in the H-SST specimens. Among the 

tests, which identified all H-SST specimens as homogeneous, the z-test better 

providing greater difference between the rejection probabilities of the two sets.  

statistics from the vertical slice faces are given in Table 7-20. As it is indicated from the 

table, any of the suggested tests misidentified one or more specimens. All individual 

values of the χ  statistic and 7 out of 8 values of z statistic are below the critical statistic, 

which indicate homogeneity. The t-test on total area, and the t-test on frequency each 

provided one and four individual statistics lower than the critical statistic, respectively.

However, in average the computed t statistics indicated inhomogeneity. 

For the I-SST specimens, the rejection probabilities for the tests from vertical 

slice faces are given in Table 7-21. In agreement with the critical values, all rejectio

probabilities of the χ  statistics and seven rejection

%, meaning that the tests misidentified inhomogeneity. Despite several indiv

rejection probabilities above 5%, the average rejection probabilities of the t-test on tota

area and the t-test on frequency were below 5% indicating inhomogeneity of the I-SST 

specimens correctly. 

Based on the identification of inhomogeneity, using horizontal and vertical faces, 
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Table 7-20. Computed indices of radial homogeneity, the means, standard deviations (Sd), 

gyratory compacted (I-SST) specimens 
and the critical statistics (CS) using the vertical slice faces of radially inhomogeneous 

Sample 
ID 

Proportion 

2

Frequency Proportion Density Diameter 

z-Test on 
Frequency  

χ  Test  
on 

t-Test on 
Total Area

t-Test on 
Frequency

Inner-outer 
Average 

I-SST1 2.69 2.72 4.16 2.91 18.86 
I-SST2 2.24 2.36 4.56 2.30 18.36 
I-SST3 1.89 1.31 2.94 1.10 2.51 
I-SST4 2.20 2.70 2.61 2.18 10.97 
I-SST5 0.94 2.74 1.59 2.16 9.82 
I-SST6 2.05 2.38 2.80 1.66 -19.29 
I-SST7 2.04 2.29 2.46 1.72 12.40 
I-SST8 1.22 3.30 3.12 1.71 11.95 
Mean 1.91 2.47 3.03 1.97 8.20 

Sd 0.57 0.57 0.95 0.54 12.23 
CS 2.480 4.079 1.752 1.755 - 

 

l 
homogeneity computed from vertical slice faces of the radially inhomogeneous gyratory 

Sample 
ID 

Proportion 

2

Frequency Proportion Density 

 

Table 7-21. Rejection probabilities, means, and standard deviations (Sd) of indices of radia

compacted (I-SST) specimens  

z-Test on 
Frequency  

χ  Test  
on 

t-Test on 
Total Area

t-Test on 
Frequency

I-SST1 0.037 0.108 0.000 0.004 
I-SST2 0.068 0.134 0.000 0.016 
I-SST3 0.101 0.270 0.004 0.142 
I-SST4 0.070 0.110 0.008 0.021 
I-SST5 0.349 0.107 0.064 0.021 
I-SST6 0.085 0.132 0.006 0.057 
I-SST7 0.086 0.140 0.012 0.051 
I-SST8 0.060 0.077 0.003 0.052 
Mean 0.107 0.135 0.012 0.046 

Sd 0.100 0.058 0.021 0.044 
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using vertical slice faces. When horizontal slice faces were used, 10 out of 96 cases were

misidentified; however when vertical slices were used 23 out of 96 cases were 

misidentified. The greater reliability of the results using horizontal faces is caused by th

orientation of the aggregates. The aggregates in gyratory compacted specimens are 

preferred to orient in horizontal direction (Azari et al., 2003; Masad et al., 1998) a

 

e 

nd as 

result,  

ntal 

etween the 

level o l 

ts 

cies in the 

f 

ted and 

at 

he factors are not thoroughly quantified. 

Factors

their appearance on the horizontal slice faces are better representative of their size

and arrangement.  

Based on the detection of both homogeneity and inhomogeneity, using horizo

slice faces, it seems that the z test on horizontal slice faces is the most accurate test. The 

test, in addition to identifying all specimens correctly, clearly distinguished b

f homogeneity of the L-SST, H-SST, and I-SST specimens. As a genera

statement, the selection of a test for inhomogeneity is not an arbitrary decision. Test 

accuracy can be quite variable. Although, the power of the z, chi-square, and the t-tes

were 100% for most cases, it was evident that not all of the tests yield the same finding, 

homogeneity or inhomogeneity. Two factors explain the occasional discrepan

simulated and actual results. One factor is the sampling variation of the limited number o

specimens. The small sample size that is generally available makes it difficult to evaluate 

the true precision of the tests. Another factor is the differences between the simula

fabricated specimens. There are factors in fabrication and testing of actual specimens th

are not captured in simulation, merely because t

 such as orientation and distribution of the aggregates in gyratory compacted 

specimens need to be quantified and incorporated in the simulation. 
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CHAPTER 8 - COMPRESSIVE TESTING OF SPECIM
USING SIMPLE PERFORMANCE TESTS 

8.1 INTRODUCTION 

ENS 

 ex the fec c ogeneity on the mech erfo nce 

of the mixture, the appropriat to ts had to be selected. The selected tests must 

h mportant ch ris First e test t hav  ap d by

p al c un  ch erizi phalt ure p ance. Secondly, the 

sp  for est ld  the ed ve l inho nei r th

co  sp ns are cut and cored en geometry. Based on 

these characteristics, s  pe anc s (SP ere se d. T ple 

perform

e 

inputs to mechanistic-empirical pavement design methods and support the predictive 

pe ce  de lop R ct 1-3  (  sim  

performance tests have also b ge s the potential quality control-quality 

as  test f a m  in eld. 

 add  to po e of imple performa sts ner

im  per nce parame the g etry o  test en s t ts 

go ida r th lua oge  The ired imen 

geom for ance tests would retai  vert hom eity as 

orig y cre  th ato cim he ogeneously compacted gyratory 

To amine ef t of verti al inhom anical p rma

e labora ry tes

ave two i aracte tics. ly, th  mus e been prove  the 

rofession omm ity for aract ng as  mixt erform

ecimens  the t s shou retain  creat rtica moge ty afte e 

mpacted ecime  to the required test specim

imple rform e test T) w lecte he sim

ance tests, which involve a compression mode of loading, have been suggested 

by NCHRP projects 9-19 and 9-29 to verify the performance characteristics of Superpav

mixture designs. The parameters computed from the SPT measurements are used as 

rforman  models ve ed as part of NCH P proje 7A 2004). The ple

een sug sted a

surance ing o sphalt ixtures the fi

 In ition  the im rtanc  the s nce te for ge ating 

portant forma ters, eom f the specim s make he tes

od cand tes fo e eva tion of the effect of inhom neity.  requ  spec

etry simple perform n the ical in ogen  that w

inall ated in e gyr ry spe ens. T inhom
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specime s can be cut and cored to the shape and size of SPT specimens and yet maintain 

their inhomogeneous characteristics.  

n

Eq and vertically inhomo

referred to as H- d , r ti were prep an ed according to the 

etho  performa st H 00  re f th

procedures for preparing and testing of asphalt mixture specimens to determine the 

mixture compres operties us ple performance tests is provided in Chapter 2.  

t g  SP ci  were prepared with the same gradation, 

asphalt content, v n e bu  of

result, the distribution of  v n P eci  w nte  be

significantly different from those of H-SPT specimens. The selected constituent 

 simple performance tests: 

the dynamic modulus and the repeated axial load (flow number) tests. The dynamic 

modulus test was conducted at intermediate and high temperatures of 21°C and 45°C, and 

5°C. 

h 

E* 

ually sized and shaped homogeneous geneous specimens 

SPT an  I-SPT espec vely, ared d test

standard m d f eor th simple nce te s (NC RP 2 2). A view o e 

sive pr ing sim

Al hou h T H-SP and I- T spe mens

 and air oid co tent, th  distri tions  the aggregates, asphalt, and as a 

the air oids i  the I-S T sp mens ere i nded to  

materials, the mixture design parameters for H-SPT specimens, and the altered mixture 

parameters for the I-SPT specimens were explained in Chapter 7.  

The H-SPT and I-SPT specimens were subjected to two

the flow number test was conducted at a high temperature of 4

The dynamic modulus test yields a compressive modulus (E*), which is the 

measured peak stress divided by the measured peak strain, and the phase angle (φ), whic

is the lag in time between the peak stress and the peak strain responses of the material. 

and φ 

te temperature represents the damage or the dissipated energy in a 

were used to compute three performance properties: the E*sinφ and sinφ/E* at 

intermediate temperature, and the sinφ/E* at high temperature. The E*sinφ at 

intermedia
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strain-c

e 

t 

ssive 

omogeneous specimens.  

e 

neous (I-SPT) specimens. The physical 

evaluat

the 

 

 

lected as the most accurate 

ontrolled mode of loading and is indicative of susceptibility for fatigue cracking 

in thin pavement layers. The sinφ/E* at intermediate temperature represents the damag

or the dissipated energy in a stress-controlled mode of loading and is indicative of the 

susceptibility for fatigue cracking in thick pavement layers. When measured at a high 

temperature, sinφ/E* is indicator of the susceptibility for permanent deformation.  

The repeated axial load test yields the flow number (FN), which is the number of 

cycles to reach the minimum change in permanent strain. The flow number is another 

performance parameter that evaluates the susceptibility of the material to permanen

deformation. Table 8-1 and Table 8-2 provide the measured and computed compre

properties of the eight homogeneous and eight inh

A comparison of the compressive properties of the homogeneous and 

inhomogeneous specimens would indicate the effect of vertical inhomogeneity on th

compressive performance of the material. The comparison would be made based on 

statistical analyses and physical evaluations. The statistical analyses include an F-test on 

variances and a two-sample t-test on the mean compressive properties of the 

homogeneous (H-SPT) and vertically inhomoge

ion would address the possible impact of vertical inhomogeneity on the design and 

performance prediction of a pavement layer. Table 8-3 provides the results of the 

statistical analyses and the decisions on the significance of the difference between 

properties of the H-SPT and I-SPT specimens. 

To further investigate the effect of vertical inhomogeneity on the compressive

performance, the relationship between each compressive property and the homogeneity

index, z, was evaluated. The z statistic was used since it was se
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Table 8-1. Dynamic modulus (E*), phase angle , stress controlled fatigue damage 
(sinφ/E*) measured at 21°C, strain controlled fatigue damage (E*sinφ) measured at 21°C, 

f eight 
homogeneous (H-SPT) specimens, “Sd” represents standard deviation and “CV” represents 
coefficient of variation  

C 
 

 (φ)

permanent deformation damage (sinφ/E*) measured at 45°C, and flow number (FN) o

 21°C 45°

Samp
ID x10 x10 x10

le E*x106 

(kPa) 
φ sin(φ)/E*

-8 

(1/kPa) 

E*sin(φ)
6 

(kPa) 

E*x105 

(kPa) 
φ sin(φ)/E*

-7 

(1/kPa) 

FN 

H-SPT1 6.61 29.97 7.56 3.30 6.58 35.42 8.81 4394 
H-SPT2 7.00 27.01 6.49 3.18 8.48 33.72 6.55 4864 
H-SPT3 5.01 27.67 9.28 2.32 5.31 35.70 11.00 3202 
H-SPT4 4.95 28.75 9.73 2.38 5.74 38.96 10.95 3375 
H-SPT5 4.79 27.96 9.78 2.25 6.25 37.92 9.84 3013 
H-SPT6 5.70 29.51 8.64 2.81 5.28 38.04 11.68 3455 
H-SPT7 5.53 28.54 8.63 2.64 5.48 36.87 10.95 3563 
H-SPT8 6.55 33.95 8.53 3.66 5.54 33.07 9.84 2963 
Average 5.77 29.17 8.58 2.82 6.08 36.21 9.95 3604 

Sd 0.85 2.16 1.11 0.52 1.07 2.11 1.65 677 
CV (%) 14.80 7.39 12.98 18.30 17.63 5.83 16.55 18.79 

Table 8-2. D

N t 

ynamic modulus (E*), phase angle (φ), stress controlled fatigue damage 
(sinφ/E*) measured at 21°C, strain controlled fatigue damage (E*sinφ) measured at 21°C, 
permanent deformation damage (sinφ/E*) measured at 45°C, and flow number (F ) of eigh
inhomogeneous (I-SPT) specimens, “Sd” represents standard deviation and “CV” 
represents coefficient of variation  

  21°C   45°C 
 

Sample 
ID 

E*x10
(kPa) 

φ sin(φ)/E*
x10

6 

(1/kPa) (kPa) 

5 

(1/kPa) 
-8 

E*sin(φ)
x106 

E*x10
(kPa) 

φ sin(φ)/E*
x10-7 

FN 

I-SPT1 5.06 27.17 9.02 2.31 3.76 40.06 17.13 3588 
I-SPT2 4.08 29.14 11.93 1.99 4.83 27.41 9.53 1067 
I-SPT3 3.85 26.50 11.58 1.72 8.19 36.75 7.30 4739 
I-SPT4 6.26 27.78 7.44 2.92 7.39 36.34 8.02 5166 
I-SPT5 6.79 26.67 6.61 3.05 4.66 37.16 12.95 3164 
I-SPT6 5.26 26.16 8.38 2.32 5.15 37.96 11.95 4350 
I-SPT7 4.64 26.96 9.76 2.11 6.04 34.70 9.42 4331 
I-SPT8 4.79 22.87 8.11 1.86 7.94 34.23 7.08 5082 
Average 5.09 26.66 9.11 2.28 6.00 35.58 10.42 3936 

STD 1.01 1.79 1.89 0.48 1.67 3.77 3.42 1349 
CV 19.81 6.71 20.78 20.96 27.77 10.60 32.86 34.29 

 274



 

Table 8-3. The computed F and computed t for the comparison of the variances (s2) and the 
means of compressive properties for homogeneous (H-SPT) and inhomogeneous (I-SPT) 
specimens at various test temperatures (T)  

 
Test 

T 
(°C) Property Sample Mean s2 F* t   tcr Decision 

Rejection 
Probability

(%) 
E*x106 

(kPa) 
H-SPT
I-SPT

5.77 
5.09 

0.72 
1.02 1.41 1.76 2.14 Accept 17.1 

sin(φ)/E* 
x10-8 

(1/kPa) 

H-SPT
I-SPT

8.58 
9.11 

1.23 
3.57 2.89 0.68 2.14 Accept 50.88 Dynamic 

Modulus 21 

sin(φ)E* 
x106 

(kPa) 

H-SPT
I-SPT

2.82 
2.28 

0.27 
0.23 0.86 2.15 2.14 Reject 4.99 

E*x105 

(kPa) 
H-SPT
I-SPT

6.08 
6.00 

1.14 
2.79 2.41 0.12 2.14 Accept 90.3 

Dynamic 
Modulus 45 sin(φ)/E* 

x10-7 H-SPT 9.95 2.72 4.32 0.35 1.81 Accept  36.62 
(1/kPa) I-SPT 10.42 11.70 

Repeated H-SPT 3604 458329
Axial 45 FN I-SPT 3936 181989 3.97 0.62 1.81 Accept  27.38 

*Critical F for equality of the variances is 3.79. 

ive 

8.2 COMPARISON OF DYNAMIC MODULUS TEST PROPERTIES 

t 

 is 

were 

, 

inder 

statistic for the measurement of homogeneity (Chapter 7). The discussion on the results 

of compressive testing and the effect of inhomogeneity on the measured compress

properties are presented for each test at each test temperature.  

AT 21°C 

8.2.1 Comparison of E* of H-SPT and I-SPT Specimens 

The compressive modulus (E*) of the asphalt mixture material is an importan

parameter that determines the ability of the material to resist compressive strain as it

subjected to cyclic compressive loading and unloading. The measured E* values 

compared for homogeneous and inhomogeneous specimens at a test temperature of 21°C

where the behavior of the mixture is hypothesized to be greatly dominated by b

stiffness.  
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The E* values for the eight specimens, for both groups, were ranked from highes

to lowest. Figure 8-1 indicates that at 21°C the E* values of homogeneous specimens 

were all slightly higher than those of the inhomogeneous specimens, which indicates a 

slightly higher ability of homogeneous specimens to resist compressive strain. The m

E* values are shown in Table 8-1 and Table 8-2, with the values being 5.77x10

t 

ean 

 

e 

respectively. The higher coefficient of variation indicates less stability in the test 

measurements of the inhomogeneous specimens.  

Statistical tests were conducted to evaluate the significance of the difference 

between the variances and the means of the two sets of specimens. An F test on the 

variances was applied to determine if the variability in the E* values of the two sets of 

specimens were significantly different. The computed F value of 1.41 was compared with 

the critical F value of 3.79 for a 5 % level of significance, which indicated that the 

difference in the variances was not significant. 

A two-sample t-test assuming equal variances was then conducted on the mean E* 

values of H-SPT and I-SPT specim

%

E*

6 kPa for 

H-SPT and 5.09x106 kPa for I-SST specimens. It is also indicated that the variability in

the E* values of the H-SPT specimens is lower than the variability in the E* values of th

I-SPT specimens, with the coefficients of variation being 14.80% versus 19.81%, 

ens to examine if the observed difference in the means 

was significant. Using a 5  level of significance, a computed t value of 1.76 was 

compared to the critical t value of 2.14, which indicates that the difference in the mean 

 values was not significant. The computed t value of 1.76 corresponds to a 17.1% 

rejection probability. Therefore, from a statistical standpoint, the measured moduli of 

homogeneous and inhomogeneous mixtures are not different. 
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Figure 8-1. Comparison of E* of homogeneous and inhomogeneous specimens, 21°C 

8.2.2 Comparison of sinφ/E* of H-SPT and I-SPT Specimens 

The fatigue damage in a stress controlled mode of loading or the susceptibility of 

the mixture to fatigue cracking in a thick layer is evaluated by sinφ/E* at intermediate 

temperatures. The higher the sinφ/E*, the greater the likelihood that the material is 

susceptible to fatigue damage when it is placed in a thick layer. Values of the sinφ/E* 

parameter for homogeneous and inhomogeneous specimens were compared to examine 

the effect of vertical inhomogeneity on estimates of fatigue susceptibility of the material 

when placed in a thick overlay.  

°C, five out of eight sinφ/E* values for 

homog

specimens, with values of 8.58x10-8 kPa versus 9.11x10-8 kPa, respectively (Table 8-1  

The sinφ/E* values for the eight specimens, for both groups, were ranked from 

highest to lowest. Figure 8-2 indicates that at 21

eneous specimens were smaller than those of inhomogeneous specimens. The 

mean sinφ/E* for homogeneous specimens is also lower than that of inhomogeneous 
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ous specimens indicates 

that the material would be estimated to be more susceptible to fatigue damage when it is 

placed in a thick layer. From Table 8-1 and Table 8-2, it is also indicated that the 

variability in the sinφ/E* values of the inhomogeneous specimens is higher than the 

variability in the sinφ/E* values of the homogeneous specimens, with coefficients of 

variation of 20.78% versus 12.98%, respectively. The higher coefficient of variation of 

the inhom

sts w

between the variances and the means of the two sets of specimens. An F test on the 

variances was applied to determine if the variability in the sinφ/E* values of the 

homogeneous and inhomogeneous groups were significantly different. The computed F 

value of 2.89 was compared with the critical F value of 3.79 for a 5% level of 

significance, which indicated that the difference in the variances was not significant.   

Figure 8-2. Comparison of sinφ/E* of homogeneous and inhomogeneous specimens, 21°C 

and Table 8-2). The higher mean sinφ/E* value of inhomogene

ogeneous specimens indicates less stability in the test measurements. 

Statistical te ere conducted to evaluate the significance of the difference 
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A two-sample t-test assuming equal variances was then conducted on the mean sinφ/E* 

values of inhomogeneous and homogeneous specimens to examine if the observed 

difference between the means is significant. Using a 5% level of significance, a computed 

t value of 0.68 was compared to the critical t value of 2.14, which indicated that the 

difference in the means was not significant. The computed t value of 0.68 corresponds to 

a 50.88% rejection probability. This indicates that based on the results of the dynamic 

modulus test the susceptibility of the material to fatigue damage in a thick layer would 

not be overestimated even if the tested specimens were extremely inhomogeneous.            

Comparison of E*sin

The fatigue damage in a strain controlled mode of loading or the susceptibility of 

e 

, for both groups, were ranked from the 

highest to lowest. Figure 

T 

n  

8.2.3 φ of H-SPT and I-SPT Specimens 

the mixture to fatigue cracking in a thin pavement layer is represented by E*sinφ 

measured at an intermediate temperature. The higher the E*sinφ, the more the material 

would be susceptible to fatigue damage when it is placed in a thin layer. The E*sinφ 

values were compared for homogeneous and inhomogeneous specimens to examine the 

effect of vertical inhomogeneity on the estimate of the fatigue susceptibility of th

material when placed in a thin overlay. 

 The E*sinφ values for the eight specimens

8-3 indicates that at 21°C, the E*sinφ values of homogeneous 

specimens were all higher than those of inhomogeneous specimens. Table 8-1 and Table 

8-2 also show that the mean E*sinφ values of H-SPT specimens is greater than that of 

I-SPT specimens, with the values of 2.82x106 kPa for H-SPT and 2.28x106 kPa for I-SP

specimens. This means that based on E*sinφ values of inhomogeneous specimens the 

material would be estimated to be less susceptible to fatigue cracking when it is placed i
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Figure 8-3. Comparison of sinφ E* of homogeneous and inhomogeneous specimens, 21°C 

a thin layer. Table 8-1 and Table 8-2 also show the variability of the E*sinφ values. The 

E*sinφ values of inhomogeneous specimens are slightly more variable than those of 

homogeneous (H-SPT) specimens, with coefficients of variation of 20.96% for I-SPT and 

18.30% for H-SPT specimens. The higher coefficient of variation of the inhomogeneous 

specimens indicates less stability in the test measurements.  

Statistical tests were conducted to evaluate the significance of the difference 

between the variances and the means of the two sets of specimens. An F test on the 

variances was applied to determine if the variability in the E*sinφ values of the 

homogeneous and inhomogeneous groups were significantly different. The computed F 

value of 0.86 was compared with the critical F value of 3.79 for a 5% level of 

significance, which indicated that the difference in the variances was not significant.  

A two-sample t-test assuming equal variances was then conducted on the mean E*sinφ 

values of the homogeneous and inhomogeneous specimens to examine if the observed 

difference in the means was significant. Using a 5% level of significance, a computed t 
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value of 2.15 was compared to the critical t value of 2.14, which indicates a significant 

difference. The computed t value of 2.15 corresponds to a 4.99 % rejection pro

This indicates that the effect of inhomogeneity on the estimate of fatigue susceptibility

the material in a thin layer is significant. 

In the testing of asphalt mixtures, the possibility of inhomogeneity exists. The test 

results may provide smaller E*sinφ values than that expected. The use of smaller E*

values would result in over-predictions of the fatigue performance of the material and 

under-design of a thin layer, which could result in premature failure of the layer.  

In summary, the statistical analyses indicated that vertical inhomogeneity has 

significant impact on measured E*sinφ values, w

bability. 

 of 

sinφ 

hich might impact the prediction of the 

fatigue performance of a thin pavement layer. The fatigue performance of a thin layer 

based on the laboratory measurement of inhomogeneous E*sinφ values might be over 

predicted, which could result in the premature failure of an overlay.  

8.3 COMPARISON OF DYNAMIC MODULUS PROPERTIES AT 
45°C  

8.3.1 Comparison of E* of H-SPT and I-SPT Specimens 

stru  

est 

s  

The compressive modules (E*) of the asphalt mixtures were compared for 

homogeneous and inhomogeneous specimens at a test temperature of 45°C, where the 

behavior of the mixture is hypothesized to be mostly dominated by the aggregate 

cture. Therefore, the effect of inhomogeneity is expected to be more evident at high

test temperatures.  

The E* values for the eight specimens, for both groups, were ranked from high

to lowest. Figure 8-4 shows that at 45°C, five out of eight E* values of homogeneou
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Figure 8-4. Comparison of E* of homogeneous and inhomogeneous specimens, 45°C 

specimens were higher than those of inhomogeneous specimens. Table 8-1 and Table 8-2 

indicate that the mean E* value of H-SPT specimens is slightly higher than that of I-SPT 

specimens, with the values being 6.08x105 kPa and 6.00x105 kPa, respectively. The tables 

also show that the variability in the E* values of the H-SPT specimens is lower than that 

of the I-SPT specimens, with coefficients of variation of 17.63% versus 27.7%, 

respectively. The higher coefficient of variation indicates less stability in the test 

measurements of the inhomogeneous specimens.  

Comparison of the variability of the E* values at 21°C and 45°C provides 

additional information on the effect of inhomogeneity. It is evident from Table 8-1 and 

Table 8-2 that the variability in the E* values is greater at 45°C test temperature than at 

21°C. The variabilities of 14.80% and 17.63% at 21°C are compared with 19.81% and 

27.77% at 45°C for the H-SPT and I-SPT specimens, respectively. The higher coefficient 

of variation indicates less stability in the test measurements at a high test temperature.  
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Statistical tests were conducted to evaluate the significance of the difference 

between the variances and the means of the two sets of specimens. An F test on the 

variances was applied to determine if the variability in the E* values of the homogeneous

and inhomogeneous groups were significantly different. The computed F value of 2.41 

was compared w

 

ith the critical F value of 3.79 for a 5% level of significance, which 

indicated that the difference in the variances was not significant.  

ean E* 

values  

nds to 

he 

effect of inhomogeneity is different at the two temperatures.  The results indicate that the 

difference between the E* values of the H-SST and I-SST specimens at the high test 

temperature is smaller than the difference at intermediate temperature. This is specified 

from the rejection probabilities of 90.3% and 17.1% for E* comparisons at the high and 

intermediate temperatures, respectively.  

In summary, based on the statistical evaluations, the differences between the 

means and variances of the E* values of homogeneous and inhomogeneous specimens 

A two-sample t-test that assumes equal variances was made on the m

of the inhomogeneous and homogeneous specimens to examine if the observed

difference in the means was significant. Using a 5% level of significance, a computed t 

value of 0.12 was compared to the critical t value of 2.14, which indicates that the 

difference in the means was not significant. The computed t value of 0.12 correspo

a 90.3% rejection probability. Therefore, from a statistical standpoint, the means and 

variances of the stiffness values of the homogeneous and inhomogeneous mixtures at 

high test temperatures are not significantly different. 

A comparison of the values of the dynamic modulus of homogeneous and 

inhomogeneous specimens at intermediate and high test temperatures would show if t
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were not significant, which means that inhomogeneity does not have an effect on the load 

capacity of the material either at intermediate or high temperatures. However, 

inhomogeneity might be the cause for the smaller difference in the dynamic modulus 

values of the homogeneous and inhomogeneous specimens at high temperature than at 

intermediate temperature. The smaller difference in modulus values at 45°C is caused by 

the smaller rate of decrease in modulus with the increase in test temperature for the 

inhomogeneous specimens. This might have been caused by the coarser mixture in the 

lower portion of inhomogeneous specimens resisting more of the axial load than the 

ure is 

more evident at high-test temperature is valid.  

8.3.2 Comparison of sinφ/E* of H-SPT and I-SPT Specimens 

The susceptibility of the material for permanent deformation (rutting) was 

evaluated by sinφ/E* measured at high temperatures. The higher the measured sinφ/E*, 

the more the material should be susceptible to permanent deformation. The sinφ/E* 

parameter of H-SPT and I-SPT specimens were compared to examine the effect of 

vertical inhomogeneity on the estimate of rutting potential of the material. 

The sinφ/E* values for the eight specimens, for both groups, were ranked from the 

highest f 

le 

ation damage. The tables also  

homogeneous mixture. Therefore, the hypothesis that the effect of aggregate struct

 to lowest. Figure 8-5 indicates that at 45°C, four out of eight sinφ/E* values o

homogeneous specimens were smaller than those of inhomogeneous specimens. Tab

8-1 and Table 8-2 show that the mean sinφ/E* for homogeneous specimens is smaller 

than that of inhomogeneous specimens, with values of 9.95x10-7 kPa for H-SST and 

10.42x10-7 for I-SST specimens. The higher mean sinφ/E* value indicates that I-SPT 

specimens are more susceptible to permanent deform
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Figure 8-5. Comparison of sinφ/E* of homogeneous and inhomogeneous specimens, 45°C 

of 16.55% and 32.86%, respectively. The higher coefficients of variation indicate less 

stability in the test measurements of the inhomogeneous specimens. 

Statistical tests were conducted to evaluate the significance of the differences 

between the variances and the means of the two sets of specimens. An F test on the 

variances was applied to determine if the variability in the sinφ/E* values of the H-SPT 

and I-SPT specimens were significantly different. The computed F value of 4.32 was 

compared with the critical F value of 3.79 for a 5 % level of significance, which indicated 

that the difference in the variances of the sinφ/E* of the two groups was significant. 

A two-sample t-test that assumes unequal variances was then conducted on the 

mean sinφ/E* values of H-SST and I-SST specimens to examine if the observed 

difference in the means was significant. Using a 5% level of significance, a computed t 

indicate that the variability in the sinφ/E* values of the H-SPT specimens is smaller than 

the variability in the sinφ/E* values of the I-SPT specimens, with coefficients of variation 
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value of 0.35 was compared to the critical t value of 1.81, which indicated tha

difference in the means was 

t the 

not significant. The computed t value of 0.35 corresponds to 

a 36.62

on of a 

s and inhomogeneous specimens was 

not significant.  

8.4 COMPARISON OF FLOW NUMBER TEST RESULTS  

In addition to the sinφ/E* parameter, the resistance of a mixture to permanent 

deformation can be measured using the flow number (F ) from the repeated axial load 

test. The flow number is the number of load cycles at which the rate of change of the 

cumulative axial permanent strain is minimum. The higher the F  value, the more 

resistant the material is to permanent deformation. The F  values of the homogeneous 

and inhomogeneous specimens were compared to examine the effect of inhomogeneity 

on the estimate of permanent deformation potential of the material. 

 The F  values of the eight specimens for both groups were ranked from the 

highest to the lowest. Figure 8-6 shows that seven out of eight F  values for H-SPT  

 % rejection probability. This indicates that from a statistical standpoint, 

homogeneous and inhomogeneous specimens have similar responses in permanent 

deformation. As a result, the prediction of the permanent deformation performance of a 

pavement layer based on the measurements of sinφ/E* from inhomogeneous specimens 

could be valid. 

In summary, based on the statistical evaluation, the performance predicti

pavement layer using laboratory measurement of sinφ/E* could be valid even if an 

extreme level of vertical inhomogeneity was present. This occurs because the difference 

between the mean sinφ/E* values for homogeneou

N

N

N

N

N
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Figure 8-6. Comparison of FN values of homogeneous and inhomogeneous specim

  

ens 

specimens were smaller than those for I-SPT specimens. Table 8-1 and Table 8-2 also 

show that the mean FN value of H-SPT specimens is smaller than that of I-SPT 

specimens, with values of 3604 for H-SST and 3936 for I-SST specimens. This means 

that the homogeneous specimens failed after a smaller number of load cycles than the 

inhomogeneous specimens. The tables show that the variance of FN values of H-SPT 

specimens is lower than that of I-SPT specimens, with coefficients of variation of 18.79% 

and 34.29 %, respectively. The higher coefficient of variation indicates less stability in 

the test measurements of the inhomogeneous specimens.   

Statistical tests were conducted to evaluate the significance of the difference 

between the variances and the means of the two sets of specimens. An F test on the 

variances was applied to determine if the variability in the FN values of the homogeneous 

and inhomogeneous groups were significantly different. The computed F value of 3.97 

was compared with the critical F value of 3.79 for a 5% level of significance, which 

indicated that the difference was significant.  
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A two-sample t-test that assumes unequal variances was conducted on the mean 

FN values of H-SST and I-SST specimens to examine if the observed difference in the 

means was significant. Using a 5% level of significance, a computed t value of 0.62 was 

compared to the critical t value of 1.81, which indicated that the difference in the means 

was not significant. The computed t value of 0.62 corresponds to a 27.38 % rejection 

probability. This indicates that based on FN measurements the prediction of the rutting 

performance of the material could be valid even if the tested specimens were extremely 

inhomogeneous. 

Although the difference between the FN values was shown to be statistically 

insignificant, the physical impact of the difference on the performance prediction of a  

pavement layer needed to be addressed. Since in testing of asphalt mixtures the 

possibility of inhomogeneity exists, large FN values might be measured. Therefore, the 

performance of a pavement layer based on the measured FN values could be over 

predicted. A premature failure of the layer could occur if the selection of the overlay 

materials were based on the FN values of inhomogeneous specimens. 

In summary, the statistical analyses indicated that the performances of 

homogeneous and inhomogeneous specimens in permanent deformation were not 

significantly different. Therefore, statistic  perfor redi ment 

layer based on the laboratory measurement of FN would be reliable even if an extreme 

level of vertical inhomogene resen ever, fr hysical st int, the 

performance of a layer in perm nt defor  might be over predicte  tested 

specimens were extremely inhom emature of the la ght occur 

ally, the mance p ction of a pave

ity was p t. How om a p andpo

ane mation d if the

ogeneous. A pr  failure yer mi

 288



 

if the materials for a paveme t layer were selected based on the FN values of 

inhomogeneous specimens.  

 It is also observed that although both FN and sinφ/E* at 45°C evaluate the 

permanent deformation performance of the aterial, they provided opposite decisions 

regarding the effect of inhomogeneity. Based on the sinφ/E* values of inhomogeneous 

specimens, the performance of a pavement layer would be under predicted, while the u

of FN values would result in over prediction of the performance. It appears that the 

response of the material is a function of the test type, which is charact

n  

m

se 

erized by 

magnitude, frequency, and duration of the load. Therefore, the design engineer needs to 

be aware of the specific effect of inhomogeneity on the property of interest and to adjust 

design and performance prediction accordingly.  

It is of interest to evaluate the relationship between compressive properties and 

the aggregate inhomogeneity to improve the reliability of the design and performance 

ible 

to improve the models for the prediction of the compressive properties of asphalt 

mixtures. A correlation analysis provides the means to examine the relationship between 

the compressive properties and inhomogeneity and to draw conclusions about the 

strength of the relationship. The correlation analyses include graphical analyses and 

computation of the correlation coefficient, R. The graphical analysis provides the visual 

inspection of the data that would indicate the degree to which compressive properties and 

the aggregate inhomogeneity are related. The correlation coefficient, R, is the quantitative 

8.5 RELATIONSHIP BETWEEN SPT RESULTS AND 
INHOMOGENEITY  

prediction of pavement layers. The existence of such relationship would make it poss
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measure of the degree to which variation in inhomogeneity can be used to explain the 

variation in compressive properties.  

To examine the relationship between compressive properties and index of 

homogeneity, the measured and computed compressive properties in Table 8-1 and Table 

8-2 and the computed z statistic in Tables 7-6 and 7-8 were used. The z statistic was 

selected among the tested indices of homogeneity since in addition to showing a 

statistical power of 100% (Chapter 6), it provided a high rejection probability in the 

measurement of homogeneity and low rejection probability in the measurement of 

homogeneous and inhomogeneous specimens (Chapter 7). Each of the compressive 

roperties was then plotted versus the computed z values to visually investigate a trend 

between the two sets of variables. The correlation coefficient between the computed z 

 

pressive response of the specimens was different with respect to different tests and at 

different temperatures. Two types of correlations will be discussed: (1) the correlation 

ens. The computed correlation coefficients, R, 

within the hom

homogeneous and inhomogeneous sets for the two temperatures of 21 C and 45 C are 

provided in Table 8-4. To examine the statistical significance of the correlations, the 

inhomogeneity. The z statistic also indicated the greatest distinction between 

p

values and each of the compressive properties was also computed.  

 The discussion is divided based on the test type and test temperature, since the

com

between computed z values and each compressive property within each set of 

homogeneous and inhomogeneous specimens and (2) the correlation between the 

computed z values and each of the compressive properties between the two sets of 

homogeneous and inhomogeneous specim

ogeneous set, within the inhomogeneous set, and between the 

° °

 290



 

computed values of Table 8-4 are compared to the critical correlation coefficients for a 

5% level of significance.  

8.5.1 Relationship between z Statistics and E* Properties at 21°C 

At 21°C the relationship between the z statistic and three compressive properties 

of E*, sinφ/E*, and E*sinφ were evaluated within H-SPT, within I-SPT, and between 

H-SPT and I-SPT sets. The coefficients in Table 8-4 indicate that within either 

homogeneous or inhomogeneous sets the compressive properties are not correlated with 

the z statistic. This indicates that the variability within compressive properties of either 

H-SST or I-SST specimens measured at 21°C was not explained by the variability in the 

aggregate distribution. This observation was expected since the range of z statistic for 

each set of specimens is very narrow. 

The relationship of the compressive properties and the z statistics between the 

H-SPT and I-SPT sets are shown in Figure 8-7 through Figure 8-9. In this case, a higher 

correlation between the compressive properties and the z statistic is expected since the 

range of z values is much wider for the two sets than the range within each set of  

ficients, R, between the z statistic and the compressive properties  

Between 
ogeneous 
and 

Inhomogeneous

Table 8-4. Correlation coef

Test 
Temperature Test Property Within 

Homogeneous 
Within 

Inhomogeneous 
Hom

E* -0.141 -0.063 -0.367 
sin(φ)/E* 0.000 0.055 0.184 21°C Dynamic 

Modulus 
E*sin(φ) -0.187 -0.032 -0.499* 

E* -0.344 0.625 -0.063 45°C Dynamic 
Modulus sin(φ)/E* 0.341 -0.780* 0.045 

45°C Flow Number FN -0.344 0.565 0.063 
* The computed R indicates that the correlation is statistically significant when compared with the critical 
correlation coefficient of 0.707 for n=8 and 0.497 for n=16. 
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specimens. Values in Table 8-4 indicate that R values for the correlation between 

sets are greater than the correlations within each set of specimens. Howev

the two 

er, among the 

three co ) 

ite 

rties of the specimens as measured by the dynamic modulus 

8.5.2 Relationship between z Statistics and E* Properties at 45°C 

The relationship of the z statistic and the two compressive properties of E* and 

sinφ/E* measured at 45°C were evaluated because the strength of the relationship at high 

test temperatures was of interest. It is hypothesized that at high-test temperatures the 

mechanical response of the material is more dominated by the aggregate structure than at 

mpressive properties, only the correlation between E*sinφ and z (|R| of 0.499

was above the critical R of 0.497. Figure 8-7 through Figure 8-9 also indicate that desp

clear distinction between homogeneous and inhomogeneous z statistics, the change in 

compressive properties with respect to the change in z statistic is small. In summary, 

among the compressive prope

test at 21C°, only E*sinφ was affected by specimen inhomogeneity.  
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Figure 8-7. Relationship between “z” and E* of homogeneous and inhomogeneous sets, 
21°C; H-SPT stands for homogeneous and I-SPT stands for inhomogeneous specimens 
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Figure 8-8. Relationship between “z” and sin /E* of homogeneous and inhomogeneous sets, 
21°C; H-SPT stands for homogeneous and I-SPT stands for inhomogeneous specimens 
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Figure 8-9. Relationship between “z” and E*sinφ of homogeneous and inhomogeneous sets, 
21°C; H-SPT stands for homogeneous and I-SPT stands for inhomogeneous specimens  
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intermediate temperatures. Therefore, a higher correlation between the compressive 

properties and z statistic would be expected. The evaluations were conducted for 

specimens within the H-SPT set, within the I-SPT set, and between the H-SPT and I-SPT 

sets. 

The correlation of each property with the computed z statistic within each set of 

specimens is provided in Table 8-4. As indicated from the R values within the H-SPT 

specimens, low correlations exist between the homogeneity index (z) and each of the 

compressive properties. However, a comparison of the computed and critical R values 

etween E* 

of the relationship (between 

sinφ/E* and z is counter to the expected direction of the trend (R= -0.780). This is the 

result of sampling variation for the small sample. However the trend implies that, at a 

high-test temperature, the variability in the compressive properties within each set of 

specimens was not explained by the variation in aggregate distribution.  

The relationships of compressive properties and the homogeneity indices for all 

specimens, homogeneous and inhomogeneous, are shown in Figure 8-10 and Figure 8-11. 

As shown in the figures and indicated by the R values of Table 8-4, the correlations 

between the z statistic and each of the compressive properties are very small. Despite the 

expectation of higher correlations for a wider range of z values, the difference between 

the compressive properties of homogeneous and inhomogeneous specimens was not 

explained by the level of inhomogeneity. The reason for the low correlations between the 

compressive properties measured at a high test temperature and the index of homogeneity 

indicated that none of the correlations were statistically significant. The R values within 

the I-SPT specimens indicated that the correlations are either insignificant (b

and z) or they have incorrect directions. The direction 
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is the small change in the compressive properties of the mixture with the increase in the 

level of inhomogeneity.   

8.5.3 Relationship between the z Statistics and the Flow Number  

The correlation of the flow numbers from the repeated axial load test at 45°C with 

the z statistic was investigated. The correlations were evaluated for specimens within 

H-SST, within I-SST, and between H-SST and I-SST sets. A higher correlation between 

the compressive properties and the z statistic should be expected since at high test 

temperatures the mechanical response of the material is hypothesized to be more 

dominated by the aggregate structure than at an intermediate temperature. 

The correlations of FN and the z statistic within the H-SST and within I-SST 

specimens are provided in Table 8-4. As observed from the R values, the correlations 

within each set are not significant. The variability in the result of the flow number test 

within either homogeneous or inhomogeneous group was not explained by the variation 

in the aggregate distribution.  

The relationship of FN and homogeneity index for all specimens, homogeneous and 

inhomogene

8-4, the co ow number is very low. Despite the 

expectation of a higher correlation for a wider 

the FN

reason f

homog ber of the mixture with the 

increase in the level of inhom

ous, is shown in Figure 8-12. As shown in the figure and indicated in Table 

rrelation between the z statistic and fl

range of z values, the differences between 

 values of the two sets of specimens were not explained by inhomogeneity. The 

or the insignificant correlation between flow number and the index of 

eneity is the insignificant change in the flow num

ogeneity. 
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 8-10. Relationship between “z” and E* for homogeneous aFigure nd inhomogeneous sets, 
45

 

°C; H-SPT stands for homogeneous and I-SPT stands for inhomogeneous specimens 
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Figure 8-11. Relationship between “z” and sinφ/E* for homogeneous and inhomogeneous 
sets, 45°C; H-SPT stands for homogeneous and I-SPT stands for inhomogeneous specimens  
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UMMARY OF THE CHAPTER  

Figure us sets; H-
SPT stands for homogeneous and I-SPT 

8.6 S

In this chapter the results of simple performance tests (SPT), which included the 

dynamic modulus and the repeated axial load (flow number) tests, were presented. The 

simple performance tests (SPT) were selected for the evaluation of the effect of vertical 

inhomogeneity on the mechanical performance of the asphalt mixture specimens for two 

reasons: first, the importance of the parameters that are measured from the tests and 

second, the suitability of the geometry of the test specimens. The compressive modulus 

(E*) of asphalt mixture as measured using SPT is an important parameter for the design 

and analysis of a pavement. Also, the cu

number test is an ind

and is used in prediction of the high tem

ens is the second advantage of the test. The SPT 

specimens, which are 150 mm in height by 100 mm in diameter, maintain the vertical 

mulative deformation obtained from the flow 

icator of permanent deformation characteristic of the asphalt mixture 

perature performance of a pavement layer.  

The geometry of the test specim
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in  

words and 

cored 

statisti f 

the tw

possib

i.e., if 

perfor

correla perties and the level of inhomogeneity was 

ev

homog

proper

1. se 

ecimens, but not significantly. From a statistical point of 

v  

n using 

 was 

cated 

homogeneity that might have been developed during the specimen fabrication. In other

, the test specimen retains the original vertical inhomogeneity after it is cut 

from the gyratory size to the standard test size.  

The results of SPT for homogeneous and inhomogeneous specimens were 

cally compared to evaluate if the difference between the means and variances o

o sets are significant. The results of the SPT tests were also used to evaluate the 

le physical impact of inhomogeneity on the design and performance predictions, 

the use of the measured dynamic modulus and flow number in design and 

mance prediction is valid when inhomogeneity is present. In addition, the 

tion between various compressive pro

aluated. The observations in this chapter might be used to reevaluate the emphasis on 

eneity of the fabricated specimens in order to obtain the true compressive 

ties of a mixture. The findings of the chapter are summarized as follows: 

At 21°C, the dynamic modulus of homogeneous specimens was higher than tho

of inhomogeneous sp

iew, pavement layers can be reliably designed for fatigue cracking using the E*

of vertically inhomogeneous specimens.  

2. At 45°C, the dynamic modulus of homogeneous specimens was higher than those 

of inhomogeneous specimens, but not significantly. From the statistical point of 

view, a pavement layer can be reliably designed for permanent deformatio

the E* of vertically inhomogeneous specimens.  

3. The difference between E* of homogeneous and inhomogeneous specimens

smaller at a high temperature than at an intermediate temperature. This is indi
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by the larger rejection probability of the t-statistic at the high temperature than 

the intermediate t

at 

emperature (90.3% versus 17.1%, respectively). This shows that 

inhomogeneity lowers the rate of decrease in the modulus with the increase in 

temperature. 

4. The sinφ/E* value measured at 21°C, which represents the fatigue susceptibility in 

thick pavement layer, increases with inhomogeneity, but not significantly, with the 

rejection probability of 50.88%. This means that from the statistical point of view 

the fatigue damage in a thick layer might be reliably predicted based on sinφ/E* of 

even extremely inhomogeneous laboratory specimens.  

5. The sinφE* value measured at 21°C, which represents the fatigue damage in thin 

layer, was smaller for inhomogeneous specimens. The rejection probability of 

4.99% indicated that the difference is significant but marginally so. Therefore, the 

fatigue performance of a thin pavement layer based on sinφE* values of 

inhomogeneous specimens might be over predicted, which might involve the risk 

of premature failure of the layer.  

6. The mean sinφ/E* value measured at 45°C, which represents the susceptibility for 

permanent deformation, is measured slightly higher for inhomogeneous than for 

homogeneous specimens, with the rejection probability of 73.03%. From a 

statistical standpoint the permanent deformation of a pavement layer might be 

reliably predicted based on sinφ/E* of inhomogeneous laboratory specimen.  

7.  The flow number, which is the number of repetitions to failure, was greater for 

inhomogeneous than for homogeneous specimens, meaning that the performance 

of the material in permanent deformation improves with the increase in the level of 
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inhomogeneity. However, the rejection probability of 54.4% indicated that the 

difference was ance of 

a pavement layer for permanent deformation can be reliably predicted based on the 

inhomogeneous specimens. However, from the physical 

s

mation, 

nd 

f 

ens were generally low. 

This indicates that even at high

not significant. From a statistical point of view the perform

flow number values of 

tandpoint, the possibility exists that the rutting performance of a pavement layer 

is over predicted if the test specimens are inhomogeneous. 

8. Although sinφ/E* and FN both represent the potential for permanent defor

they did not provide the same decision regarding the effect of inhomogeneity 

(items 6 and 7). It can be concluded that the effect of inhomogeneity on 

mechanical performance of a mixture is test dependant. The design engineer needs 

to be aware of the specific effect of inhomogeneity on the property of interest a

to adjust design and performance prediction accordingly. 

9. The correlation between dynamic modulus test properties measured at 21°C and 

homogeneity index (z) within sets of homogeneous and inhomogeneous specimens 

were generally low. This indicates that the variability in compressive properties o

homogeneous specimens was not explained by the variability in aggregate 

distribution.  

10. The correlation between dynamic modulus test properties measured at 45°C and 

homogeneity index (z) within the homogeneous specim

-test temperatures the variability in compressive 

properties of homogeneous specimens was not explained by the variability in 

aggregate distribution.  
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11. T  and 

tion 

d 

s for 

ive 

e not a 

eneous 

ion 

 in 

 

ing the properties of asphalt materials, since they measure some overall 

mixture

he correlations between dynamic modulus test properties measured at 45°C

the z index within inhomogeneous specimens were fair, with a significant 

correlation between z and sinφ/E* (R of 0.780). However, the observed direc

did not agree with the expected direction of the trend (Item 6). It can be conclude

that the significance of the correlation might be due to the sampling variation. 

12. The correlation between dynamic modulus test properties and homogeneity index 

(z) between the two groups of homogeneous and inhomogeneous specimen

the two test temperatures were generally very low, meaning that the compress

properties of asphalt mixtures as measured by the dynamic modulus test ar

function of specimen inhomogeneity.  

13. The correlation between FN and homogeneity index (z) within the homogeneous, 

within the inhomogeneous set, and between the homogeneous and inhomog

specimens was low. This indicates that the variability in cumulative deformat

measurements using the axial load test was not explained by the variability

aggregate structure.  

From the summary above, it can be concluded that the created level of vertical 

inhomogeneity that was accurately measured by normal proportion statistic (z), was not 

conclusively evident from the results of the simple performance tests. It can be assumed 

then that the simple performance tests are not sensitive to various arrangements of the

aggregates even at high-test temperatures. Therefore, the tests are dependable in 

characteriz

 properties regardless of the inhomogeneity in aggregate distribution. The 

observations in this chapter would raise the question: Should methods of laboratory 
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fabrication ensure homogeneity of specimens in order to obtain reliable compres

properties of a mixture?

sive 
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CHAPTER 9 - TESTING OF SPECIMENS USING 

ce of 

the mixture ld 

have tw

recommend

Second

selected 

 

 

 

e been 

l. 1999).  

ted in 

 cut 

to the shape and size of SST specimens and yet keep their inhomogeneous characteristics.  

SUPERPAVE SHEAR TESTER 

9.1 INTRODUCTION 

To examine the effect of radial inhomogeneity on the mechanical performan

, the appropriate laboratory test needs to be selected. The selected test shou

o important characteristics. First, it should be a robust test that has been 

ed by professional associations for testing of asphalt mixture specimens. 

, the geometry of the required test specimen should retain the created radial 

inhomogeneity. Based on these characteristics, the simple shear tests (SST) were 

to evaluate the effect of radial inhomogeneity on mechanical performance of asphalt 

mixture specimens. The SST tests have been suggested by AASHTO (1998) for 

determining the permanent deformation and fatigue cracking characteristics of hot mix

asphalt. The tests have been frequently used for characterizing the asphalt mixtures at the

Turner-Fairbank Highway Research Center (TFHRC) Laboratory of Federal Highway

Administration (FHWA). The asphalt mixture properties measured by the SST hav

used as major parameters for the design and performance prediction applications. The 

SST results have also shown to agree well with the performance of Accelerated Loading 

Facility (ALF) test sections of FHWA (Stuart et a

In addition to the applicability of the SST in characterizing asphalt mixtures, the 

geometry of the test specimens was a factor in the selection of the test. The required 

specimens for SST would retain the radial inhomogeneity that was originally crea

the gyratory specimens. The inhomogeneously compacted gyratory specimens can be
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Radially inhomogeneous and corresponding homogeneous specimens were 

fabricated and tested according to the standard test methods of simple shear tests 

(AASHTO, 1998). A summary of the procedures for preparing and testing asphalt 

mixture specimens to determ ixture shear properties is provided in Chapter 2. 

Alt gh the prepared hom eous inhom eous specimens were equal in size 

a e, is on e agg s, as , and resul distr n  

voids in the radially inhom eous mens  inte  to be ifica

d fr e gen  spec s. Th cted tituen terials, the 

m e a rs mog us sp ix

pa ters for the inhomogeneous specimens w pla in C  7. Three s

eight specimens were prepared using two methods of compaction. The first set was cored 

from homogeneous linear kneading compacted slabs and is referred to as L-SST. 

tory compactor. The as-compacted specimens were cut 

into the SST size specim ia nd 50 m i nd e ref

to as H-SST. This set was ted  as homogeneous as possible; however, it was 

inevitable for som al i ogeneity to develop during the gyration process (Chapter 

7 ir  o ime at we t from ator pact ecim a

purposely fabricated to reflect an extr level dial ogen s ferre to 

as I-SST.  

 Th e f sp ens w ubje o a s mode of loading. Using the 

Superpave Shear Tester, two types of tests were conducted: the frequency sweep at a 

ine the m

hou ogen  and ogen

nd shap the d tributi of th regate phalt  as a t the ibutio of air

ogen speci  were nded  sign ntly 

ifferent om th  homo eous imen e sele  cons t ma

ixture d sign p ramete  ofor h eneo ecimens, and the altered m ture 

rame ere ex ined hapter ets of 

Specimens of this set were assumed to be radially homogeneous. The second set of 

specimens was fabricated homogeneously according to the Superpave method of 

specimen preparation using a gyra

ens f 150o  mm in d meter a  m n he ght ai  ar erred 

 fabrica  to be

e radi nhom

). The th d set f spec ns th re cu  gyr y com ed sp ens w s 

eme  of ra  inhom eity and i  re d 

e thre sets o ecim ere s cted t hear 
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constant height (FSCH) and the repeated shear test at a constant height (RSCH) 

(AASHTO, 1998). The FSCH test is a strain-controlled test that characterizes the 

constitutive behavior of the asphalt-aggregate mixture in shear. The RSCH test is a 

stress-con tes ha s ha rform nce o alt mixt

by measuring the cumula anent deformation (εp) and the 

r s lu ). The FSCH test was conducted at intermediate and high 

t ur 5 d 5  respe ly, a  RS st w duc t th

high temp  C. 

A n r ar rties  com  usin  shea ss, s str

and the phase angle (δ), which were measured from the FSCH tests. The stiffness of the 

ding 

is measured by G*sin This is an indicator of fatigue d hin pavement layers at 

an intermediate pavem perature. The dama ipated energy for a stress 

controlled mode of loading is measured by sinδ/G This ents tigue cracking 

susceptibility in thick layers t in di mp ures n measured at a high 

te ure * is an indicat  the permanent def on s tibi

 During the RSCH test, a repeated sinusoidal shea  was ed 

sp  to  fa re. T e st  af 00 d cy d the number of cycles 

that causes 2% strain in the cim e  pr rties ere m red

average shear properties fro he H t a uenc 0 Hz the performance 

prop es f  R H te ar ided in Table 9-1 through Table 9-3. 

trolled t t t evaluate  the mec nical pe a f the asph ures 

tive perm number of load 

epetition  to fai re (Nf

emperat es of 2 °C an 0°C, ctive nd the CH te as con ted a e 

erature of 50°

umbe of she prope were puted g the r stre hear ain, 

material is evaluated by the shear modulus, G*, which is the shear stress divided by the 

shear strain. The damage or the dissipated energy in a strain-controlled mode of loa

δ. amage in t

ent tem ge or the diss

*.  repres  the fa

a terme ate te erat . Whe

mperat , sinδ/G or of ormati uscep lity. 

r load appli to the 

e ncime  ensure ilu h rains ter 50  loa cles an

spe en w re the ope  that w easu . The 

m t  FSC test a freq y of 1  and 

erti rom the SC st e prov
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The results of the FSCH and RSCH tests were analyzed to investigate the 

differences in the shear properties at the three different levels of radial inhomogeneity. 

One-way analyses of variance (ANOVA) were conducted to assess the difference. The 

 

          (5-101) 

HA: The mean shear property for the three levels of inhomogeneity is not equal 

          (5-102) 

The ANOVA test uses an F statistic to test for the significance of the differences 

in the means. The decision would be based on the comparison of the critical and 

computed F values, with the critical value obtained from an F table. If the computed F 

exceeds the critical F, then the alternative hypothesis HA is assumed to be valid. The 

computed F statistics and the decisions made on the acceptance or the rejection of the 

null hypothesis are provided in Table 9-4. The comparisons are presented separately for 

each pair of specimen sets, while “LH” represents comparison of the linear kneading 

compacted and homogeneous gyratory compacted specimens, “LI” represents the 

comparison of the linear kneading compacted and inhomogeneous gyratory compacted 

specimens, and “HI” represents comparison of the homogeneous gyratory compacted and 

inhomogeneous gyratory compacted specimens. 

 In addition to the ANOVA F test, a correlation analysis, which characterizes the 

relationship of each shear property and the homogeneity index, was conducted. The 

correlation analysis included graphical study and computation of the correlation 

coefficient, R. The graphical study would reveal the soundness of the trends and the  

comparison reflects the following hypotheses for the three groups of specimens: 

Ho: The mean shear property for the three levels of inhomogeneity is equal 
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Table 9-1. Shear modulus (G*), phase angle (δ) fatigue damage in stress-controlled mode 
(sinδ/G* at 25°C), fatigue damage in strain-controlled mode (G*sinδ), permanent 

 25°C 
 

50°C 

, 

deformation (sinδ/G* at 50°C), repetition to failure (Nf), and permanent strain after 5000 
cycles of linear kneading compacted (L-SST) specimens; “Sd” represents standard 
deviation and “CV” represents coefficient of variation  

Sampl
ID (kPa) x10 x10 (kPa) x10

e G*x105 δ sin(δ)/G* 
-4 

(1/kPa) 

G*sin(δ) 
2 

(kPa) 

G*x104 δ sin(δ)/G* 
-2 

(1/kPa) 

Nf εp, % 

L-SST1 9.06 48.35 8.24 6.77 3.86 71.54 2.46 732 3.62 
L-SST2 9.10 45.95 7.89 6.54 2.72 67.44 3.39 946 4.46 
L-SST3 7.72 44.65 9.45 5.64 3.74 71.58 2.51 - - 
L-SST4 8.26 46.91 8.87 6.05 3.97 69.8 2.35 3298 2.24 
L-SST5 7.76 47.1 9.47 5.70 3.47 68.84 2.74 1051 4.37 
L-SST6 8.55 47.31 8.43 6.16 4.29 72.07 2.21 1273 3.77 
L-SST7 8.23 46.13 8.68 5.89 4.11 71.12 2.30 - - 
L-SST8 7.22 45.66 10.19 5.32 3.48 71.48 2.67 - - 
Average 8.24 47.43 8.90 6.01 3.71 68.68 2.58 1460 3.69 

Sd 0.66 46.51 0.76 0.48 0.49 70.48 0.37 1046 0.89 
CV 8.01 1.11 8.51 7.99 13.17 1.64 14.49 71.63 24.11 

 

 

Table 9-2. Shear modulus (G*), phase angle (δ), stress-controlled fatigue damage (sinδ/G* 
at 25°C
50°C), repetitions to failure (Nf), and permanent strain after 5000 cycles of homogeneous 

represents coefficient of variation  

), strain-controlled fatigue damage (G*sinδ), permanent deformation (sinδ/G* at 

gyratory compacted (H-SST) specimens; “Sd” represents standard deviation and “CV” 

 25°C 50°C 
Sample G*x10

(kPa) 
δ sin(δ)/G* 

x10

5 

(1/kPa) (kPa) 

4 

(1/kPa) 
-4 

G*sin(δ) 
x102 

G*x10
(kPa) 

δ sin(δ)/G* 
x10-2 

Nf εp, % 

H-SST1 8.04 44.55 8.75 5.65 4.67 69.67 2.01 993 3.41 
H-SST2 8.50 44.73 8.25 5.96 4.88 69.95 1.92 834 4.17 
H-SST3 8.98 43.45 7.64 6.16 5.53 68.49 1.65 926 3.83 
H-SST4 8.17 43.32 8.42 5.61 5.18 65.86 1.80 1015 3.64 
H-SST5 9.32 43.07 7.52 6.54 5.41 68.25 1.72 952 3.72 
H-SST 55 6 8.95 44.56 7.63 6.11 5.28 68.69 1.76 1176 3.
H-SST7 10.40 43.14 6.65 7.20 5.07 69.28 1.84 - - 
H-SST8 8.88 43.82 7. 0 6.07 5.20 68.79 1.80 - 7  - 
Average 8.90 46.51 7. 16 5.15 68.62 1.81 983 82 6. 3.72 

Sd 0.74 0.69 0.65 0.51 0.28 1.26 0.11 114 0.26 
CV 8.36 1.48 8.29 8.29 5.38 1.84 6.24 11.59 7.07 
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Table 9-3. Shear modulus (G*), phase angle (δ), stress-controlled fatigue damage (sinδ/G* 

50°C), repetitions to failure (Nf), and permanent strain after
at 25°C), strain-controlled fatigue damage (sinδG*), permanent deformation (sinδ/G* at 

 5000 cycles of inhomogeneous 
gyratory compacted (I-SST) specimens; “Sd” represents standard deviation and “CV” 
represe

25°C 50°C 

nts coefficient of variation  

Sample 

(kPa) x10 x10 (kPa) x10
εp, % G*x105 δ sin(δ)/G* 

-4 

(1/kPa) 

G*sin(δ) 
2 

(kPa) 

G*x104 δ sin(δ)/G* 
-2 

(1/kPa) 

Nf 

I-SST1 9.85 42.01 7.17 6.96 5.11 71.10 1.83 9372 1.48 
I-SST2 10.68 44.99 6.26 7.15 4.82 69.22 1.96 7953 1.58 
I-SST3 15.07 43.45 4.57 10.38 5.68 69.03 1.60 5448 1.74 
I-SST4 10.78 43.57 6.38 7.41 5.39 65.68 1.73 4027 1.93 
I-SST5 10.72 43.72 6.33 7.28 5.87 70.84 1.59 6970 1.68 
I-SST6 10.26 42.79 6.73 7.09 5.01 68.84 1.89 5957 1.73 
I-SST7 12.17 41.36 5.32 7.89 5.32 69.59 1.76 4820 2.02 
I-SST8 11.44 40.41 5.78 7.55 5.97 69.72 1.57 8118 1.83 

Average 11.37 42.79 6.07 7.71 5.40 69.25 1.74 6583 1.75 
Sd 1.65 1.47 0.82 1.12 0.42 1.66 0.15 1832 0.18 
CV 14.52 3.43 13.56 14.48 7.69 2.39 8.41 27.82 10.11 

Table 9-4. The computed ANOVA F and critical F values for comparison of shear 
properties fo
linear k
specimens, “I” represents inhomogeneous gyratory compacted specimens, and “Sd” 

r the two test temperatures (T) and pairs of homogeneity levels. “L” represents 
neading compacted specimens, “H” represents homogeneous gyratory compacted 

represents standard deviation of the shear properties  

Property 
 

Test T 
(°C) Sets Mean Sd Pairs Computed 

F  Critical F Decision

G* 
5

 kPa 

FSCH 25 L 

I 

8.25 

11.4 

0.66 

1.65 

LH 

HI 

 0.72 

  9.81 

3.46 

3.46 

Accept 

Reject 
x10 , H 8.91 0.74 LI 15.84 3.46 Reject 

G*sinδ 
x10 , 
 kPa 

FSCH 25 L 
H 
I 

6.01 
6.16 
7.71 

0.48 
0.51 
1.11 

LH 
LI 
HI 

  0.08 
10.06 
  8.31 

3.46 
3.46 
3.46 

Accept 
Reject 
Reject 

2

Sinδ/G* FSCH 25 L 8.90 0.76 LH   4.20 3.46 Reject 
x10-4,  
1/kPa 

H 
I 

7.82 
6.07 

0.65 
0.82 

LI 
HI 

28.79 
10.99 

3.46 
3.46 

Reject 
Reject 

G* 
x104,  
kPa 

FSCH 50 L 
H 
I 

3.71 
5.15 
5.40 

0.49 
0.28 
0.42 

LH 
LI 
HI 

25.75 
35.25 
  0.75 

3.46 
3.46 
3.46 

Reject 
Reject 
Accept 

Sinδ/G* 
x10-2,  
1/kPa 

FSCH 50 L 
H 
I 

2.58 
1.81 
1.74 

0.37 
0.11 
0.15 

LH 
LI 
HI 

20.31 
24.22 
  0.17 

3.46 
3.46 
3.46 

Reject 
Reject 
Accept 

εp@ 5000, 
% 

RSCH 50 L 
H 
I 

3.69 
3.72 
1.75 

0.89 
0.26 
0.18 

LH 
LI 
HI 

 0.01 
24.89 
28.54 

3.63 
3.63 
3.63 

Accept 
Reject 
Reject 

Nf RSCH 50 L 
H 
I 

1460 
983 
6583 

1046 
114 
1832 

LH 
LI 
HI 

  0.18 
23.14 
30.81 

3.63 
3.63 
3.63 

Accept 
Reject 
Reject 
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direction of the trends between shear properties and the index of radial homogeneity. The 

coefficient of correlation, R, would evaluate the strength of the relationships. 

9.2 COMPARISON OF THE FSCH TEST RESULTS AT 25°C 

9.2.1 Comparison of G* of SST Specimens  

The shear stiffness of the material that is represented by G* determines the 

amount of shear strain in the mixtures as they are subjected to cyclic shear loading and 

unloading. The G* values were compared for homogeneous linear kneading compacted 

(L-SST), homogeneous gyratory compacted (H-SST), and inhomogeneous gyratory 

t 

specimens of each of the three groups were ranked from highest to lowest and 

 

 the 

* 

ST 

surements of the 

inhomogeneous specimens.  

compacted (I-SST) specimens at test temperature of 25°C. The G* values for the eigh

represented in Figure 9-1. As it is observed in the figure, the G* values of I-SST 

specimens were all considerably higher than those of H-SST and L-SST specimens and 

the G* values of H-SST specimens were slightly higher than those of L-SST specimens. 

This trend is also observed from the mean G* values in Table 9-1 through Table 9-3, with 

the mean values of 8.24x105 kPa for L-SST, 8.90x105 kPa for H-SST, and 11.37x105 kPa

for I-SST specimens. This indicates that at 25°C, the shear modulus of the material 

increases with the increase in the level of inhomogeneity. The tables also indicate that

variability in G* values of inhomogeneous specimens is higher than the variability in G

values of the homogeneous specimens, with coefficients of variation of 14.52% for I-S

versus 8.01% and 8.36% for L-SST and H-SST specimens, respectively. The higher 

coefficient of variation indicates less stability in the test mea
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Figure 9-1. Comparison of G* of homogeneous and inhomogeneous specimens at 25 C; L-
SST stands for linear kneading compacted, H-SST stands for homogeneous gyratory 

°

compacted, and I-SST stands for inhomogeneous gyratory compacted specimens 

s to 

s 

* 

ritical F value of 3.46, 

which s is 

ed 

e 

ion probability of a less than 1%. This 

An F test was conducted on the mean G* values of the three sets of specimen

assess if the observed differences in the means are significant. To evaluate the 

significance of the difference in the means of any pair, the computed F value wa

compared to the critical F for a 5% level of significance. The comparison of the mean G

values of the L-SST and H-SST specimens is designated as “LH” in Table 9-4. A 

computed F of 0.72 for the LH comparison was compared to the c

indicates that the difference between G* values of L-SST and H-SST specimen

not significant. This implies that, when tested at 25°C, the responses of H-SST and 

L-SST specimens are not different. 

The comparison of the G* values of the L-SST and I-SST specimens is designat

as “LI” in Table 9-4. A computed F value of 15.81 for the LI comparison indicates that 

the difference between mean G* values of L-SST and I-SST specimens is significant. Th

computed F value of 15.81 corresponds to a reject
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implies that radial inhomogeneity causes a significant increase in the shear stiffness of 

the material. 

The comparison of the mean G* values of the H-SST and I-SST specimens is 

designated as “HI” in Table 9-4. A computed F value of 9.81 for the HI comparison 

indicates that the difference between G* values of H-SST and I-SST specimens is 

significant. The computed F value of 9.81 corresponds to a rejection probability of less 

than 1%. Therefore, the shear response of homogeneous gyratory specimens is different 

from the response of radially inhomogeneous specimens.  

In summary, at a test temperature of 25°C, the responses of the two sets of L-SST 

and H-SST specimens are not different when loaded in shear. On the other hand, 

inhomogeneous I-SST specimens exhibit significantly greater shear moduli than the other 

two sets of specimens. This implies that the design of a pavement layer based on G* 

values of gyratory compacted specimens would be reliable. However, if specimens are 

extremely inhomogeneous, it is probable to under design a thick layer and over design a 

thin layer for fatigue based on the measured G* values. 

δ

 

lowest in Figure 9-2. The figure indicates that at 25°C, the sinδ/G* values of I-SST  

9.2.2 Comparison of sin /G* of SST Specimens 

The susceptibility of the mixture to fatigue cracking in a thick pavement layer is 

evaluated by sinδ/G* at the intermediate temperature. The higher the sinδ/G* value, the 

more the material is susceptible to fatigue cracking in a thick pavement layer. The 

sinδ/G* parameter was compared for L-SST, H-SST, and I-SST specimens to examine 

the effect of radial inhomogeneity on the fatigue performance of the material. The

sinδ/G* values for the eight specimens, for the three groups, were ranked from highest to 
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Figure 9-2. Comparison of sinδ/G* of homogeneous and inhomogeneous specimens at 25°C. 
L-SST stands for linear kneading compacted, H-SST stands for homogeneous gyratory 
compacted, and I-SST stands for inhomogeneous gyratory compacted specimens 

specimens were all lower than those of H-SST and L-SST specimens and the sinδ/G* 

values of H-SST specimens were all lower than those of L-SST specimens. This trend is 

also observed from the mean sinδ/G* values in Table 9-1 through Table 9-3, with mean 

values of 8.90x10-4 1/kPa for L-SST, 7.82x10-4 1/kPa for H-SST, and 6.07x10-4 1/kPa for 

I-SST specimens. This indicates that the potential for stress-controlled fatigue cracking 

(in a thick layer) decreases with an increase in the level of radial inhomogeneity. It is also 

indicated from the tables that the variability in sinδ/G* values of I-SST specimens is 

higher than the variability in sinδ/G* values of the L-SST and H-SST specimens, with 

coefficients of variation of 13.56% for I-SST versus 8.51% and 8.29% for L-SST and 

H-SST specimens, respectively. The higher coefficient of variation indicates less stability 

in the test measurements of the inhomogeneous specimens.  

 312



 

An F-test was conducted on the mean sinδ/G* values of the three groups of 

specimens to examine if the observed differences in the means are significant. The  

computed F value was compared to the critical F for a 5% level of significance. The 

comparison of the mean sinδ/G* values of the L-SST and H-SST specimens is designat

as “LH” in Table 9-4. A computed F of 4.20 for the LH comparison was compared to the 

critical F value of 3.46, which indicates that the difference between sinδ/G* values of the 

two sets is significant. The computed F value of 4.20 corresponds to a 4% rejection 

probability. This implies that the fatigue damage potential of a material in a thi

would be estimated to be lower based on sin

ed 

ck layer 

δ/G* of gyratory compacted specimens than 

based o

s 

is 

 layer is 

 

tion probability of the computed F value of 10.99 is 

less tha el of 

e 

n sinδ/G* of linearly kneaded specimens.  

The comparison of the sinδ/G* values of the L-SST and I-SST specimens i

designated as “LI” in Table 9-4. A computed F value of 28.79 for the LI comparison  

indicates that the difference between mean sinδ/G* values of L-SST and I-SST 

specimens is significant. The rejection probability of the computed F value of 28.79 

less than 1%. Therefore, the potential of the material for fatigue damage in a thick

under estimated if the test specimen is radially inhomogeneous.  

The comparison of the mean G* values of the H-SST and I-SST specimens is 

designated as “HI” in Table 9-4. A computed F value of 10.99 for the HI comparison

indicates that the difference between mean sinδ/G* values of H-SST and I-SST 

specimens is significant. The rejec

n 1%. This indicates that, at a test temperature of 25°C, an increase in the lev

radial inhomogeneity of the test specimens would result in a lower estimate of a fatigu

damage potential of the material in a thick layer. 
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In summary, for the three sets of specimens, three significantly different sinδ/G* 

values were measured. This means that a lower estimate of the fatigue damage potential 

of the material is obtained with the increase in the level of radial inhomogeneity of the 

test specimens. From the physical standpoint, if tested specimens are inhomogeneous, the

fatigue performance of a thick layer might be overestimated, which could result in 

premature failure of the layer.  

 

9.2.3 Comparison of G*sinδ of SST Specimens  

The susceptibility of the mixture to fatigue cracking in a thin pavement layer is 

represented by sinδG* at intermediate temperatures. The G*sinδ parameter was 

compared for L-SST, H-SST, and I-SST specimens to examine the effect of radial 

inhomogeneity on fatigue performance of the material. The G*sinδ values for the eight 

specimens, for the three groups, were ranked from the highest to lowest in Figure 9-3. 

° δ

ecimens. 

 

of L-SST and 

trolled fatigue damage 

(in a th  is also 

The figure indicates that at 25 C, the G*sin  values of I-SST specimens were all 

considerably higher than those of L-SST and H-SST specimens. Also, six out of eight 

G*sinδ values of H-SST specimens were slightly higher than those of L-SST sp

Table 9-1 through Table 9-3 show that the mean G*sinδ value of H-SST is slightly higher 

than that of L-SST specimens (6.12x102 kPa versus 6.01x102 kPa) and the mean G*sinδ

value of I-SST specimens (7.70x102 kPa) is considerably higher than those 

H-SST specimens. This indicates that the potential for strain-con

in layer) increases with the increase in the level of radial inhomogeneity. It

observed from the tables that the variability in G*sinδ values of inhomogeneous 

specimens is higher than the variability in G*sinδ values of the other two sets, with  
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F 

value was compared to the critical F for a 5% level of significance. The comparison of 

the mean G*sinδ values of the L-SST and H-SST specimens is designated as “LH” in 

Table 9-4. A computed F of 0.08 for the LH comparison was compared to the critical F 

value of 3.46, which indicates that the difference between G*sinδ values of L-SST and 

H-SST specimens is not significant. This implies that the estimate of the fatigue damage 

potential of the material in a thin overlay based on G*sinδ values of homogeneous 

gyratory specimens is valid.  

Figure 9-3. Comparison of G*sinδ values of homogeneous and inhomogeneous specim
25°C; L-SST stands for linear kneading compacted, H-SST stands for ho
gyratory compacted, and I-SST stands for inhomogeneous gyratory comp

coefficients of variation of 14.48% for I-SST versus 7.99% and 8.29% for L-SST 

H-SST specimens, respectively. The higher coefficient of variation indicates less stabilit

in the test measurements of the inhomogeneous specimens.  

An F test was conducted on the mean G*sinδ values of the three sets of specimens

to examine if the observed differences in the means are significant. The computed 
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The computed F value was compared to the critical F for the comparison of the 

G*sinδ values of the L-SST and I-SST specimens designated as “LI” in Table 9-4. A 

computed F value of 10.06 for the LI comparison indicates that the difference between 

mean G*sinδ values of L-SST and I-SST specimens is significant. The rejection 

probability of the computed F value of 10.06 is less than 1%. This implies that the fatigue 

damage potential of a material in a thin layer is significantly overestimated if the tested 

specimens are radially inhomogeneous. 

The computed F value was compared to the critical F for the comparison of the 

A computed F value of 8.31 for the HI comparison indicates that the difference between 

f 

 

fferent from that of radially inhomogeneous specimens. This implies that 

the esti

 

mean G*sinδ values of the H-SST and I-SST specimens designated as “HI” in Table 9-4. 

G*sinδ values of H-SST and I-SST specimens is significant. The computed F value of 

8.31 corresponds to a rejection probability less than 1%. This implies that the estimate o

the fatigue performance of a thin layer based on G*sinδ values of homogeneous gyratory

compacted specimens would be valid. Only when the tested specimens are extremely 

inhomogeneous, can the fatigue performance of the material in a thin layer be 

underestimated. 

In summary, at a test temperature of 25°C, the G*sinδ of homogeneous gyratory 

specimens is not different from that of linear kneading compacted specimens and 

significantly di

mate of fatigue damage potential of a material in a thin layer based on G*sinδ 

values of homogeneous gyratory specimens is valid. However, if the specimens are 

extremely inhomogeneous, the fatigue damage potential of a thin layer could be 

overestimated. To reduce the fatigue damage potential of the layer, the materials with
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which the layer was originally designed can be changed. However, this might increase 

the susceptibility of the material to another type of damage. For example, if a softe

asphalt binder is selected, the fatigue damage would be reduced but the rutting potenti

of the layer would be increased.  

The significantly different shear performance of homogeneous and radially 

inhomogeneous specimens can be explained based on the difference in the agg

r 

al 

regate 

structur f 

o  

e 

 at 

 

969) indicated that only the middle third (core) of the specimen receives 

uniform

second hypothesis is that the ring of the specimen controls the shear 

perform

e 

es of the three sets of specimens. Two hypotheses were assumed: first, the core o

the specimen mostly controls the performance of the material and second, the ring f the

specimen mostly controls the performance of the material. The former is supported by th

non-uniformity of the stress distribution across the specimen. The lack of confinement

the sides of specimens in a Superpave shear tester introduces a non-uniform shear stress 

distribution across the top and the bottom surfaces. The experimental measurements and

analytical analyses by Masad and Bahia (2002), Ansell and Brown (1978), and Duncan 

and Dunlop (1

 shear stress. Therefore, the shear performance of the material is determined 

mainly by the response of the core portion, which is stressed the most. Since the core of 

an inhomogeneous specimen is comprised of a very dense material with low air content, 

the resistance of the specimen to the applied shear load would be higher than that of a 

homogeneous specimen.  

The 

ance of the material. Since the coarser gradation of the ring has more 

aggregate-to-aggregate and more aggregate-to-platen contact than the finer mixture in th

core, gluing the top and bottom of the specimen to the platens introduces more 
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confinement at the edges than in the middle of the specimen. However, for homogeneou

specimens, the confinement of the top and bottom surfaces is constant through the ring

and the core. As a result higher shear stiffness is measured for the radially 

inhomogeneous specimen than for the homogeneous specimen.  

Although the factor responsible for the behavior of the homogeneous and 

inhomogeneo

s 

 

us specimens is not known, it is important to acknowledge and account for 

it in lab y, even if 

nd 

The shear modulus (G*) of the asphalt mixture material were compared for 

L-SST, H-SST, and I-SST specim f 50°C, where the behavior of 

the mixtures is hypothesized to be mostly dominated by the structure of the aggregates. 

Therefore, the difference in performance of the homogeneous and inhomogeneous 

observation at 25  

lues 

oratory analyses. Failure to account for the effect of radial inhomogeneit

it is only moderate, could result in under or over prediction of the field performance a

consequently the over or under design of the pavement layers, respectively. 

9.3 COMPARISON OF THE FSCH TEST RESULTS AT 50°C 

9.3.1 Comparison of G* of SST Specimens 

ens at test temperature o

mixtures is hypothesized to be more evident at high-test temperatures.  

The G* values for the eight specimens in each of the three groups were ranked 

from highest to lowest. Figure 9-4 indicates that at 50°C, the G* values of I-SST 

specimens were all considerably higher than those of L-SST specimens and, unlike the 

°C, only slightly higher than those of H-SST specimens. This is also

observed from the mean values provided in Table 9-1 through Table 9-3, with the va

of 3.71x104 kPa for L-SST, 5.15x104 kPa for H-SST, and 5.40x104 kPa for I-SST  
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Figure 9-4. Comparison of the G* values of homogeneous and inhomogeneous specimen
50°C; L-SST stands for linear kneading compacted, H-SST stands for homogeneous 
gyratory comp

s at 

acted, and I-SST stands for inhomogeneous gyratory compacted specimens 

specim ecimens 

 to 

at 25°C, the variability in G* values of homogeneous L-SST specimens at 50°C is higher 

 

.69% for H-SST and 

I-SST specimens, respectively. The higher coefficient of variation indicates less stability 

 

 and 

ens. This indicates that at 50°C, the response of homogeneous gyratory sp

in shear is different from the response of homogeneous linearly kneaded and similar

the response of inhomogeneous gyratory specimens. Unlike the variability in G* values 

than those of H-SST and I-SST specimens. The coefficient of variation of 13.17% for

L-SST is compared with the coefficients of variation of 5.38% and 7

in the shear test measurements of the homogeneous L-SST specimens at higher test 

temperatures.  

An F-test was conducted on the mean G* values of L-SST, H-SST, and I-SST 

specimens to examine if the observed differences in the means was significant. The

computed F values were compared to the critical F for a 5% level of significance for the 

three sets of comparisons. The comparison of the mean G* values of the L-SST
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H-SST  LH 

e 

at 

y 

pared to the critical F for the comparison of the 

mean G

n 

f 

iate 

f the 

9-4. 

en 

, 

ad 

ns, the 

needs to be addressed. In designing an overlay to resist permanent deformation in high 

 specimens is designated as “LH” in Table 9-4. A computed F of 25.75 for the

comparison was compared to the critical F value of 3.46, which indicates that the 

difference between the G* values of L-SST and H-SST specimens is significant. Th

rejection probability of the computed F value of 25.75 is less than 1%. This implies th

at a test temperature of 50°C the slight inhomogeneity that was introduced by gyrator

compactor causes a significant increase in the shear modulus of the material.  

The computed F value was com

* values of the L-SST and I-SST specimens designated as “LI” in Table 9-4. A 

computed F value of 32.25 for the LI comparison indicates that the difference betwee

mean G* values of L-SST and I-SST specimens is significant. It is also noted that the 

computed F value of 32.25 is greater than that for the LI comparison at 25°C (F value o

15.84). This implies that the same level of radial inhomogeneity would cause a greater 

resistance of the material to shear load at a high test temperature than at an intermed

temperature. 

The computed F value was compared to the critical F for the comparison o

mean G*sinδ values of the H-SST and I-SST specimens designated as “HI” in Table 

A computed F value of 0.75 for the HI comparison indicates that the difference betwe

G* values of H-SST and I-SST specimens is not significant. This implies that at 50°C

homogeneous and inhomogeneous gyratory compacted specimens resist the shear lo

similarly.   

Since testing of asphalt mixtures is mainly on gyratory compacted specime

physical impact of testing gyratory compacted specimens for the design of a pavement 
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temper

 of 

 

ded specimens. A small amount of inhomogeneity causes significant 

increase in shear resistance of the material at high temperature. Therefore, based on G* 

valu igned, which 

involve layer.  

9.3.2 Comparison of sinδ/G* of SST Specimens 

The susceptibility of the material for permanent deformation (rutting) is evaluated 

by sinδ/G* measured in high temperature. The higher the sinδ/G* value, the more 

permanent deformation is estimated for a pavement layer. The sinδ/G* parameter of 

L-SST, H-SST, and I-SST were compared to examine the effect of radial inhomogeneity 

on the performance of the material in permanent shear deformation. The sinδ/G* values 

 

from the mean sinδ/G* values in Table 9-1 through Table 9-3, with the mean values of 

ature, G* is directly proportional to the performance, i.e., a mixture with higher 

modulus is preferable to reduce the permanent deformation. Based on the modulus

gyratory compacted specimens, which is greater than the modulus of radially 

homogeneous specimens (e.g., L-SST), the thickness of a pavement layer might be under

designed. As a result, premature failure of the layer in permanent deformation might be 

an outcome. 

In summary, the comparisons of the G* values at 50°C indicate that the 

homogeneous gyratory compacted specimens behave significantly different from the 

linearly knea

es of gyratory compacted specimens; a layer would be under-des

s the risk of premature failure of the pavement 

for the eight specimens, for the three groups, were ranked from highest to lowest. Figure 

9-5 indicates that at 50°C, the sinδ/G* values of L-SST specimens are considerably 

higher than those of H-SST and I-SST specimens and the sinδ/G* values of H-SST

specimens are slightly higher than those of I-SST specimens. This trend is also indicated 
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2.58x10-2 1/kPa for L-SST, 1.81x10-2 1/kPa for H-SST, and 1.74x10-2 1/kPa for I-SS

specimens. This indicates that the response of homogeneous gyratory specimens in 

permanent deformation is different from the response of homogeneous linearly knead

specimens and similar to the response of inhomogeneous gyratory specimens. It is 

observed from the tables that the variability in sinδ/G* values of L-SST specimens is 

higher than the variability in sinδ/G* values of H-SST and I-SST specimens, with 

coefficients of variation of 14.49% for L-SST versus 6.24% and 8.41% for H-SST an

T 

ed 

also 

d 

I-SST specimens, respectively. The higher coefficient of variation indicates less stability 

in the shear test measurements of the homogeneous L-SST specimens at higher test 

temperatures.  

An F-test was conducted on the mean sinδ/G* values of the three sets of 

specimens to examine if the observed differences in the means are significant. The 

computed F values were compared to the critical F for a 5% level of significance for the 
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Figure 9-5. Comparison of sinδ/G* of L-SST, H-SST, I-SST specimens at 50°C; L-SST 

and I-SST stands for inhomogeneous gyratory compacted specimens 
stands for linear kneading compacted, H-SST stands for homogeneous gyratory compacted, 
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three sets of comparisons. The comparison of the mean sinδ/G* values of the L-SST and 

H-SST specimens is designated as “LH” in Table 9-4. A computed F of 20.31 for the LH

comparison was compared to the critical F value of 3.46, which indicates that the 

difference between sinδ/G* values of L-SST and H-SST specimens is significant. 

Therefore, a slight level of radial inhomogeneity in gyratory compacted specimens wou

result in a significan

 

ld 

tly lower estimate of the rutting potential of the material. 

mogeneity of 

the lab

s is 

not significant. Therefore, the response of homogeneous and inhomogeneous gyratory 

specimens in shear is not different. This implies that the susceptibility of the material to 

permanent deformation based on shear testing of H-SST specimens is significantly 

underestimated. 

In summary, the comparisons of the sinδ/G* values at 50°C indicate that 

homogeneous gyratory compacted specimens with an insignificant amount of radial 

inhomogeneity behave similar to the inhomogeneous gyratory compacted specimens 

The comparison of the sinδ/G* values of the L-SST and I-SST specimens is 

designated as “LI” in Table 9-4. A computed F value of 24.22 for the LI comparison 

indicates that the difference between the mean sinδ/G* values of L-SST and I-SST 

specimens are significant. The computed F value of 24.22 corresponds to a rejection 

probability of less than 1%. This implies that the estimate of the susceptibility of the 

material to permanent deformation is lowered when the level of radial inho

oratory specimens is increased. 

The comparison of the mean sinδ/G* values of the H-SST and I-SST specimen

designated as “HI” in Table 9-3. A computed F value of 0.17 for the HI comparison 

indicates that the difference between sinδ/G* values of H-SST and I-SST specimens is 
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when loaded in shear. Homogeneous gyratory (H-SST) and inhomogeneous (I-SST

specimens have significantly lower sinδ/G* values than the radially homogeneou

(L-SST) specimens. Therefore, the susceptibility of the material to permanent 

deformation, based on sinδ/G

) 

s 

* values of H-SST and I-SST specimens, would be 

underestim premature failure of the pavement layer.  

 

h test 

CH 

 the 

high test temperature the same level of radial inhomogeneity caused a significant increase 

in shear modulus and as a result a significant increase in the permanent deformation 

resistance.  

9.4.1 Comparison of Nf Values of SST Specimens 

The resistance of the material to permanent deformation can be evaluated using 

 specimen is used to 

evaluate the resistance of the material to permanent deformation. The higher the Nf value, 

the more the material is resistant to shear failure. The Nf values of L-SST, H-SST, and 

I-SST specimens were compared to examine the effect of radial inhomogeneity on the 

ated, which would involve the risk of 

At 50°C the behavior of the mixtures was hypothesized to be mostly dominated

by the structure of the aggregates. Therefore, the difference in performance of the 

homogeneous and inhomogeneous mixtures was expected to be more evident at hig

temperatures. This hypothesis, to some extent, was supported by the result of the FS

test at 50°C. The slight level of inhomogeneity in H-SST specimens was not affecting

shear stiffness properties of the specimens at intermediate temperature. However, at a 

9.4 COMPARISON OF THE RSCH TEST RESULTS  

repeated shear at constant height (RSCH) test conducted at 50°C. The number of load 

cycles (Nf) in RSCH test that cause 2% cumulative shear strain in a
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resistance of the material to permanent deformation. The Nf values of the eight specim

for each of the three groups were ranked from highest to lowest. Figure 9-6 shows three

out of eight L-SST specimens and two out of eight H-SST specimens failed at the ea

stages of the test while the I-SST specimens reached the 2% failure criteria after a 

considerable n

ens 

 

rly 

umber of load cycles. Table 9-1 through Table 9-3 also show that the mean 

Nf valu

3 for 

 

e of I-SST specimens is much higher than the mean Nf values of L-SST and 

H-SST specimens, with the values of 6583 for I-SST specimens versus 1460 and 98

L-SST and H-SST specimens, respectively. This indicates that radial inhomogeneity 

increases the resistance of the material to permanent shear deformation.  It is also 

indicated from the tables that the variability in Nf values of L-SST specimens is 

considerably higher than those of the other sets, with coefficients of variations of 71.63

for L-SST, 9.95 for H-SST, and 18.49 for I-SST specimens. A higher coefficient of  
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Figure 9-6. Comparison of Nf values of homogeneous and inhomogeneous specimens; L-SST 
stands for linear kneading compacted, H-SST stands for homogeneous gyratory compacted, 
and I-SST stands for inhomogeneous gyratory compacted specimens 
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An F-test was conducted on the mean Nf values of L-SST, H-SST, and I-SST 

specimens to examine if the observed differences in the means are significant. The 

computed F value for unequal sample sizes was compared to the critical F for a 5%

of significance for the three sets of comparisons. The comparison of the mean Nf values 

of the L-SST and H-SST specimens is designated as “LH” in Table 9-4. A computed

0.18 for the LH comparison was compared to the critical F value of 3.46, which indicate

that the difference between Nf values of L-SST and H-SST specimens is not significant

This implies that in resisting the repeated shear load homogen

 level 

 F of 

s 

. 

eous gyratory specimens 

and rad he 

ated 

 1%. 

significant. The computed F value of 30.81 corresponds to a rejection probability of less 

than 1%. This indicates that H-SST specimens behave significantly different from 

radially inhomogeneous specimens in resisting permanent shear strain. Therefore, the 

ially homogeneous specimens behave similarly. Therefore, the prediction of t

rutting performance of a pavement layer based on Nf values of homogeneous gyratory 

specimens is valid.  

The comparison of the Nf values of the L-SST and I-SST specimens is design

as “LI” in Table 9-4. A computed F value of 23.14 for the LI comparison indicates that 

the difference between the mean Nf values of L-SST and I-SST specimens is significant. 

The computed F value of 23.14 corresponds to a rejection probability of less than

This implies that radial inhomogeneity in RSCH specimens would cause a significant 

overestimation of the resistance of the material to permanent shear strain.  

The comparison of the mean Nf values of the H-SST and I-SST specimens is 

designated as “HI” in Table 9-4. A computed F value of 30.81 for the HI comparison 

indicates that the difference between Nf values of H-SST and I-SST specimens is 
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prediction of the rutting performance of a pavement layer based on Nf values of 

homogeneous gyratory specimens is valid. 

In summary, the comparison of the Nf values indicated that in the RSCH test, 

homogeneous gyratory and linearly kneaded specimens performed similarly in re

the permanent shear deformation. As a result, the prediction of the performance of a 

pavement layer in resisting permanent deformation based on Nf values of gyratory 

compacted specimens would be reliable. However, if specimens were extremely 

inhomogeneous, the resistance of the material to permanent shear deformation would be 

significantly overestimated.  

9.4.2 Comparison of ε  of SST Specimens 

The resistance of the material to permanent deformation can also be evaluated 

sisting 

p

using the permanent cumulative shear strain (ε ) after 5000 load cycles measured from 

the r ight (RSCH) test. The smaller the εp, the more the 

materia

 the three 

n 

-SST 

p

epeated shear at constant he

l is resistant to shear failure. The εp values of L-SST, H-SST, and I-SST 

specimens were compared to examine the effect of radial inhomogeneity on the 

permanent deformation of the mixture. The εp values of the eight specimens for

groups were ranked from highest to lowest. Figure 9-7 shows that three out of eight 

L-SST specimens and two out of eight H-SST specimens reached the maximum strai

level at the early stages of the test, while the amount of cumulative strain for I-SST 

specimens after 5000 cycles were considerably lower than those of the L-SST and H

specimens. Table 9-1 through Table 9-3 also show that the mean εp value of I-SST  
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Figure 9-7. Comparison of εp values of homogeneous and inhomogeneous specimens; L-SST 
stands for linear kneading compacted, H-SST stands for homogeneous gyratory compacted, 
and I-SST stands for inhomogeneous gyratory compacted specimens 

specimens are much smaller than the mean εp value of L-SST and H-SST specimens, 

with the values of 1.75% for I-SST specimens versus 3.69% and 3.72% for L-SST 

H-SST specimens, respectively. This indicates that radial inhomogeneity increases the 

resistan

and 

ce of the material to permanent shear deformation. The tables also include the 

variabi is 

ens, 

l 

and H-SST specimens is designated as “LH” in Table 9-4. A computed F of 0.01 for the 

lity of the εp measurements. The variability in εp values of L-SST specimens 

considerably higher that those of H-SST and I-SST specimens, with coefficients of 

variation of 24.11 for L-SST versus 6.46 and 7.11 for H-SST and I-SST specim

respectively.  

An F-test was conducted on the mean εp values of L-SST, H-SST, and I-SST 

specimens to examine if the observed differences in the means are significant. The 

computed F value for unequal sample sizes was compared to the critical F for a 5% leve

of significance for the three cases. The comparison of the mean εp values of the L-SST 
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LH comparison was compared to the critical F value of 3.46, which indicates that the 

difference between εp values of L-SST and H ST-S  specimens is not significant. This 

indicates that slight inhomogeneity in H-SST specimens did not affect the resistance of 

the material to permanent deformation as measured by RSCH test. 

The comparison of the εp values of the L-SST and I-SST specimens is designated 

as “LI” in Table 9-4. A computed F value of 24.89 for the LI comparison indicates that 

the difference between mean εp values of the two sets is significant. The computed F 

value of 24.89 corresponds to a rejection probability of less than 1%. This implies that 

radial inhomogeneity would increase the resistance of the material to permanent 

deformation.  

The comparison of the mean εp values of the H-SST and I-SST specimens is 

designated as “HI” in Table 9-4. A com

 ε

significant. The computed F value of 28.54 corresponds to a rejection probability of less 

og ous sp imens when subjected to repeated shear 

load. Therefore, the prediction of the rutting performa

RSCH properties of homogeneous ime

In r he jecte the R  tes test t rature °C, 

T cim erf imi The slight level of inhomogeneity that is 

 

resisting permanent deformation. Therefore, the decisions that are made based on εp 

measurements of the homogeneous gyratory specimens would be valid. However, a high 

puted F value of 28.54 for this comparison 

indicates that the difference between p values of H-SST and I-SST specimens is 

than 1%. This implies that homogeneous gyratory specimens respond significantly 

different from the radially inhom ene ec

nce of the material based on the 

 spec ns would be valid. 

summa y, w n sub d to SCH t at a empe  of 50

L-SST and H-SS  spe ens p orm s larly. 

caused by a gyratory compactor would not change the performance of the material in

 329



 

level of radial inhomogeneity would significantly increase the resistance of the material 

to permanent deformation. Therefore, the RSCH test on highly inhomogeneous 

specimens would indicate elevated resistance of the material to permanent deformatio

which would cause overestimation of the performance of the material in the field.

A comparison of the results of the FSCH and RSCH tests would indicate 

response of a material is a function of the test type. Both sinδ/G*, as measured by th

FSCH at 50°C, and εp, as measured by the RSCH, are measures of permanent 

deformation.  The two parameters are interchangingly used by the asphalt industries for 

the evaluation of the permanent deformation performance of asphalt mixtures. Althoug

n, 

 

that the 

e 

h 

the same results were expected from sinδ/G* and ε , they led to opposite conclusions 

regardi -

nt loading 

frequencies and loading patterns of the two tests. In the FSCH test, the cyclic load was 

applied without any rest; while in the RSCH test, the cyclic load was applied in 0.1 

second followed by 0.6 second rest period. It seems that aggregates show more resistance 

to the shear load if it is applied continuously (i.e., in the FSCH test). Therefore, it can be 

stated that the slight inhomogeneity in H-SST specimens increases the load carrying 

capacity of the specimens more prominently in the FSCH test than in the RSCH test.  

p

ng the effect of radial inhomogeneity. In FSCH at 50°C, the sinδ/G* values of H

SST specimens were similar to those of inhomogeneous (I-SST) specimens, while in 

RSCH tests, the εp values of H-SST specimens were similar to those of radially 

homogeneous (L-SST) specimens. The difference in the behavior of the H-SST 

specimens as measured in FSCH at 50°C and RSCH might be due to the differe
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9.5 RELATIONSHIP BETWEEN SST RESULTS AND 
INHOMOGENEITY 

It is of interest to evaluate the relationship between shear properties and the 

aggregate inhomogeneity to improve the reliability of the design and performance 

predictions. A correlation analysis was utilized to evaluate the strengths of the 

relationships between SST measurements and the level of radial inhomogeneity. The 

correlation analysis includes the graphical study and the computation of correlation 

coefficients. The graphical study provides the visual inspection of the data that would 

indicate the degree to which shear properties and the aggregate inhomogeneity are 

ies.  

To examine the correlation between shear properties and index of homogeneity, 

the measured and computed shear properties in Table 9-1 through Table 9-3 and the 

cted 

as the index of homogeneity since (1) it indicated a statistical power of 100% (Chapter 6), 

(2) it showed a low rejection probability in detecting radial inhomogeneity of I-SST 

specimens and a high rejection probability in detecting the homogeneity of L-SST 

specimens, and (3) it provided the greatest distinction between the levels of homogeneity 

of the three sets of L-SST, H-SST, and I-SST specimen. The values of each shear 

property were plotted versus the computed z values to visually investigate whether or not 

a trend existed between the two sets of variables. The correlation coefficient, R, was 

computed between the shear properties and the computed z values to examine the degree 

to which the shear properties are affected by the radial inhomogeneity. Additionally, R 

values were computed between the shear properties and the ring and core air void 

related. The correlation coefficient, R, is a quantitative measure of the degree to which 

variation in inhomogeneity can be used to explain the variation in shear propert

computed z statistic in Tables 7-10, 7-12, and 7-14 were used. The z statistic was sele
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contents to examine if the core or the ring was more responsible for resisting the shear 

load.  

 The discussion of the correlations is divided based on the test type (FSCH, 

RSCH), test temperature (25°C, 50°C), and the correlation variables (shear properties 

versus z, shear properties versus air void content). For each test, three types of 

correlations would be discussed: (1) the correlation of the computed z values and each 

shear property within each set of L-SST, H-SST, and I-SST specimens, (2) the correlation 

of computed z values and each shear property between the three sets of L-SST, H-SST, 

and I-SST specimens, and (3) the correlation of the ring and core air void contents and 

e 

tatistics and FSCH Properties at 25° C 

 

on 

hear 

ecimens as measured by the FSCH test at 

25°C w

e  a

each shear property between the three sets of L-SST, H-SST, and I-SST specimens. The 

computed correlation coefficients, R, within each set and between the three sets for th

two test temperatures are provided in Table 9-5.  

9.5.1 Relationships between z S

From the FSCH test at 25°C, the relationship between z statistic and the three 

compressive properties of G*, sinδ/G*, and G*sinφ were evaluated within each and 

between the three sets of L-SST, H-SST, and I-SST specimens. The computed correlati

coefficients in Table 9-5 indicate that the correlations of the shear properties and the z 

statistic within each set are very low. The small ranges of z values within each set of 

specimens are responsible for the low correlations. In summary, the variations in s

properties within H-SST, L-SST, and I-SST sp

ere not explained by the variations in the aggregate distribution.  

The relationship of the shear properti s nd the z statistics between the three sets 

of specimens are shown in Figure 9-8 through Figure 9-10. In this case, a higher 
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Table 9-5. Correlation coefficients, R, between the z statistic and the shear properties and 
between the ring and core air voids and the shear properties 

) 

Property 
 

Test 
 T °C z 

(L-SST)
z  

 (H-SST)
z 

 (I-SST) 
z  

(All sets)

Ring 
 Air void  
(All sets) 

Core 
 Air Void 
(All sets

G*  FSCH 25 -0.26 -0.45 0.33 0.78 0.58 -0.71 

Sinδ/G* FSCH 25 0.40 0.46 -0.10 -0.81 -0.59 0.76 

G*sinδ FSCH 25 -0.14 -0.40 0.14 0.73 0.53 -0.65 

G*  FSCH 50  0.17 0.03 -0.14 0.71 0.58 -0.55 

Sinδ/G* FSCH 50 -0.35 0.35 0.52 -0.71 -0.56 0.48 

εp@ 5000 RSCH 50 -0.87 0.48 -0.48 -0.89 -0.66 0.82 
Nf RSCH 50 0.69 -0.81 0.35 0.87 0.57 -0.83 

The critical correlation coefficient (R) for n= 8 is 0.71 and for n=24 is 0.40. 

correlation between the compressive properties and the z statistic was expected since the 

range of z values is much wider than the range of values within each set of specimens. 

The figures indicate that the relationship between shear properties at 25°C and the z 

statistic are well defined. For the three distinguished sets of z statistics, the shear 

computed within each set of eight specimens. The comparison of the computed R values 

δ

δ/G* obtained from the FSCH test at 50

 each set of L-SST, H-SST, and I-SST, and between the 

three sets of specim

properties of the sets are noticeably different. Table 9-5 shows that, when all 24 

specimens are included, the computed R values are much greater than the R values 

of 0.78 for G*, -0.81 for sin /G*, and 0.73 for G*sinδ with the critical R value of 0.40 

indicates that all three shear properties are significantly correlated with the z statistic.  

9.5.2 Relationships between z Statistics and FSCH Properties at 50°C 

The relationships between the z statistic and two compressive properties of G* 

and sin °C were evaluated. The evaluations were 

conducted for specimens within

ens. It is hypothesized that at high test temperatures the mechanical 

response of the material is more dominated by the aggregate structure than at  
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Figure 9-8. Relationship between “z” and G* of L-SST, H-SST, and I-SST groups at 25°C;

compacted, and I-SST stands for inhomogeneous gyratory compacted specimens 
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Figure 9-9. Relation between “z” and sinδ/G* of L-SST, H-SST, and I-SST groups at 25°C; 
L-SST stands for linear kneading compacted, H-SST stands for homogeneous gyratory 
compacted, and I-SST stands for inhomogeneous gyratory compacted specimens 
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Figure 9-10. Relation between “z” and G*sinδ of L-SST, H-SST, and I-SST groups at 25°C; 

s 

Correlation coefficients between the FSCH properties at 50°C and the z statistic 

 

 the 

small ranges of the z values within each set of specimens. In summary, the variation in 

the shear properties within the L-SST, H-SST, and I-SST specimens as measured by the 

FSCH test at 50°C was not explained by the variation in radial distribution of the 

aggregates.  

The relationship of the shear properties at 50°C and the z statistic between the 

three sets of specimens are shown in Figure 9-11 and Figure 9-12. As indicated from the 

figures, the trends of the relationships exhibit greater nonlinearity than the trends at 25°C  

L-SST stands for linear kneading compacted, H-SST stands for homogeneous gyratory 
compacted, and I-SST stands for inhomogeneous gyratory compacted specimens 

intermediate temperatures. Therefore, a higher correlation between the shear propertie

and z statistic should be expected. 

within each set of specimens are included in Table 9-5. The values in the table indicate

that the correlations are either low or have inaccurate directions. This results from
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Figure 9-11. Relationship between “z” and G* of L-SST, H-SST, and I-SST sets at 50°C; 
L-SST stands for linear kneading compacted, H-SST stands for homogeneous gyratory 
compacted, and I-SST stands for inhomogeneous gyratory compacted specimens 
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Figure 9-12. Relationship between “z” and sinδ/G* of L-SST, H-SST, and I-SST sets at 
50°C; L-SST stands for linear kneading compacted, H-SST stands for homogeneous 
gyratory compacted, and I-SST stands for inhomogeneous gyratory compacted specimens 
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(Figure 9-8 through Figure 9-10). The difference in the trends at the two test temperatures 

results because the H-SST specimens responded differently at different test temperatures. 

The responses of H-SST specimens at the intermediate temperature were very similar t

those of L-SST specimens; however, at high temperature the responses of the H-SST 

specimens were very similar to those of I-SST specimens. In addition, as indicated from

Table 9-5, lower correlations were observed between the FSCH properties and the z 

statistic at 50°C than at 25°C.  

In summary, the shear properties of the specimens as measured by the FSCH

at 50°C were significantly correlated with the level of radial inhomogeneity. However, 

the correlations were lower than those at 25°C. The trends of the relationships between 

values and FSCH properties at 50°C were curvilinear, indicating a greater difference 

between the shear responses of the L-SST and H-SST specimens than between the

responses of H-SST and I

o 

 

 test 

z 

 shear 

-SST specimens at 50°C.  

the SCH Properties  

The relationships between the z statistic and the two shear properties of ε  and Nf 

 

within each set of L-SST, H-SST, and I-SST specimens are included in Table 9-5. The  

9.5.3 Relationships between z Statistics and  R

p

obtained from the RSCH test at 50°C were evaluated. The evaluations were conducted for 

specimens within each set of L-SST, H-SST, and I-SST, and between the three sets of

specimens. It is hypothesized that at high-test temperatures the mechanical response of 

the material is more dominated by the aggregate structure than at intermediate 

temperatures. Therefore, a higher correlation between the compressive properties and z 

statistic should be expected.  

The relationships between the two shear properties and the computed z statistic 
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correlation coefficients in Table 9-5 show that correlation of εp and z within L-SST

specimens is significant. For other cases the correlations are either low or have inaccur

directions. The small ranges of the z values within each set of specimens are responsib

for insignificant correlations. In summary, the variation in the shear properties within th

L-SST, H-SST, and I-SST specimens a

 

ate 

le 

e 

s measured by the RSCH test at 50°C was not 

explain

shown 

 

 

hat this test is more 

responsive to the differences in aggregate structure than the FSCH test.  

9.5.4 Relationships between the Air Void Distribution and the Shear Properties 

The correlation between the measured air void contents of the core and the ring 

and the shear properties for each specimen was evaluated. The correlation would assess if 

the core or the ring mixture was responsible for the changes in shear properties when 

inhomogeneity was present. Image analyses were applied to all specimens to provide 

indepe f 

ed by the variation in radial distribution of the aggregates.  

The relationships of εp and Nf versus z statistic for the three sets of specimens are 

in Figure 9-13 and Figure 9-14. As indicated from the figures, the relationships between z

and the RSCH properties are well defined. For the three distinct levels of inhomogeneity, 

three different sets of shear properties were measured. Table 9-5 shows that the highest 

correlation between any of the shear properties and the z statistic was observed between z 

and the RSCH properties, with an R of -0.89 for z versus εp and an R of 0.87 for z versus

Nf. In summary, the shear properties of the specimens as measured by the RSCH test 

were significantly correlated with the levels of radial inhomogeneity. The higher 

correlation between RSCH parameters and the z statistic indicates t

ndent measurements of the air void contents of the core and the ring portions o
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Figure 9-14. Relationship between “z” and Nf of L-SST,
L-SST stands for linear kneading compacted, H-SST sta
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each specimen. The results of air void measurement using analysis of x-ray comput

tomography images are provided in Appendix E. 

The correlation coefficients of the core and the ring air void contents with the 

shear properties were computed between the three sets of specimens. The computed 

correlation coefficients are provided in Table 9-5. The coefficients indicate moderate 

correlation between both the core air voids and the shear properties and between the rin

ed 

g 

air void irection of 

e 

econd, the directions of the correlations show that the decrease in the core 

air void This indicates 

 

 

ad in the 

 the 

ble for resisting the shear load. Fifth, similar to the FSCH test 

at 25°C

f), 

s and the shear properties. Additional specific findings are: First, the d

the correlations between shear properties and the core air voids are opposite of those 

between shear properties and the ring air voids. In other words, if a property has a 

positive correlation with the core air void content, the correlation with the ring air void 

content would be negative. This indicates that each portion works separately to resist th

shear load. S

 and increase in the ring air void would increase the shear stiffness. 

that a combination of a dense core and a coarse ring would result in a high shear resistant

material. Third, the shear properties from FSCH at 25°C are more correlated with the 

core air void content than with the ring air void content (R = -0.71 versus R= 0.58 for

G*), which indicates that the core is more responsible for carrying the shear lo

FSCH test at 25°C. Fourth, the shear properties from FSCH at 50°C are more highly 

correlated with the ring air void content than with the core air void content (R = –0.56 vs. 

R = 0.48 for sinδG*), which indicates that in the FSCH test at 50°C, the ring of

specimens is more responsi

, the properties measured in the RSCH test are more highly correlated with the 

core air void content than with the ring air void content (R = -0.83 vs. R = 0.57 for N
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which indicates that in RSCH, the core of the specimens are more responsible for 

carrying the shear load.  

9.6 SUMMARY OF THE CHAPTER  

g and 

Superpave gyratory compactors. Despite a low level of radial inhomogeneity that was 

observed in the homogeneous gyratory compacted specimens, they are still considered to 

be homogeneous. Among various statistics that were computed and tested in Chapters 6 

and 7, the values of the z statistic were used for the correlation analyses. The z statistic 

was selected since: (1) it indicated a statistical power of 100%, (2) it showed low 

rejection probabilities in detecting radial inhomogeneity of I-SST specimens and high 

rejection probabilities in detecting the homogeneity of L-SST specimens, and (3) it 

provided the greatest distinction between the levels of homogeneity of the three sets of 

L-SST, H-SST, and I-SST specimens. 

The three sets of specimens were subjected to a shear mode of loading. Using the 

Superpave Shear Tester, the frequency sweep test at a constant height (FSCH) at 

temperatures of 25°C and 50°C, and the repeated shear test at a constant height (RSCH) 

at 50°C was conducted. A number of shear properties were obtained from the FSCH and 

RSCH tests. Using the shear stress, shear strain, and the phase angle measured from the 

FSCH test at 25°C, the shear stiffness (G*), the stain controlled fatigue damage (G*sinδ), 

This chapter intended to evaluate the effect of the radial inhomogeneity that is 

specific to gyratory compacted specimens on permanent deformation and fatigue 

properties of the asphalt mixture material. Three sets of homogeneous and radially 

inhomogeneous specimens were created in the laboratory using linear kneadin
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and the stress controlled fatigue damage (sinδ/G*) were computed. From the FSCH test 

at 50°C, the shear stiffness (G*) and the permanent deformation damage (sinδ/G*) were 

e strains (εp) after 5000 load cycles and the number of 

cycles 

th of 

 inhomogeneity. Several 

finding

he level of 

the properties of L-SST and H-SST specimens indicated that G* and G*Sinδ were not 

significant; however, the sinδ/G* of H-SST specimens was significantly lower than that 

of the L-SST specimens. This indicates that based on sinδ/G* of H-SST specimens the 

performance of a thick layer in fatigue might be overestimated. 

computed. From the RSCH test, th

(Nf) that caused 2% strain in the specimen were measured.  

Several statistical analyses were conducted in order to draw logical conclusions 

based on the measured and computed data.  An F test on the means was used to test the 

significance of the change in the shear properties with the change in the level of 

inhomogeneity. In addition, the correlation analysis was used to examine the streng

the relationship between the shear properties and the level of

s resulted from this study: 

First, the shear properties from the FSCH test at 25°C indicate that the shear 

modulus (G*) increased, the stress controlled fatigue damage (Sinδ/G*) decreased, and 

the strain controlled fatigue damage (G* Sinδ) increased with the increase in t

inhomogeneity. All three shear properties of inhomogeneous (I-SST) specimens were 

significantly different than those of L-SST and H-SST specimens. This indicates that 

based on the FSCH properties of highly inhomogeneous specimens, the fatigue 

performance of a thin layer would be underestimated and that of a thick layer would be 

overestimated, with the later resulting in premature failure of the layer. Comparison of 
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Second, the comparisons of the G* and sinδ/G* values from FSCH test at 5

indicate that the shear modulus (G*) increased and the permanent deformation damag

(Sinδ/G*) decreased with the increase in the level of inhomogeneity. The homogene

gyratory compacted (H-SST) specimens that have slight radial inhomogeneity behaved 

significantly different from the homogeneous (L-SST) specimens and similar to

radially inhomogeneous (I-SST) specimens. In other words, at a high temperature, a 

slight amount of inhomogeneity 

0°C 

e 

ous 

 the 

caused significant increases in G* and significant 

decreases in permanent deformation damage (Sinδ/G*) of the material. Therefore, the 

performance of a pavement layer for permanent deformation, based on the shear 

propert  

f p

I-SST specimens are performing significantly better than L-SST and H-SST specimens in 

inhomogeneity that is present in a gyratory compacted specimen would not change the 

a result, the prediction of the performance of a pavement layer based on Nf and εp values 

of gyratory compacted specimens in resisting permanent deformation would be valid.  

Fourth, the correlations of the shear properties and the level of radial 

inhomogeneity within each set of specimens were very low or the direction of the trend 

was not accurate. In other words, the variation in the shear properties of the specimens 

was not explained by the variation in radial distribution of the aggregates. The reason for 

ies of gyratory compacted specimens would be over predicted, which would

involve the risk of premature failure of the pavement.  

Third, the comparison of the N  and ε  values from RSCH test indicates that 

resisting the shear deformation. The L-SST and H-SST specimens are performing 

similarly in resisting permanent shear deformation. Therefore, it is concluded that a slight 

performance of the material in permanent deformation as measured by the RSCH test. As 

 343



 

the low correlations is the small range of the homogeneity index values for each set of 

specim

pe 

that 

ties and the air void content 

of the r

ith 

ens. 

Fifth, the correlations of the shear properties and the level of radial 

inhomogeneity between the three sets of specimens were significant, where the test ty

and test temperature determined the trends of the correlations. The relationship of the 

FSCH test at 25°C and the RSCH test with the index of homogeneity exhibited very 

small nonlinearity, indicating that H-SST specimens behaved more similar to 

homogeneous specimens than to inhomogeneous specimens. However, the relationships 

between FSCH properties at 50°C and the z statistics were more nonlinear, indicating 

H-SST specimens behaved more similar to inhomogeneous specimens than to 

homogeneous specimens.  

Sixth, the correlation coefficients of the shear proper

ing and the core of all specimens indicated that the shear properties from the 

FSCH test at 25°C and from the RSCH test correlated better with the core air void 

content. The shear properties from the FSCH test at 50°C slightly better correlated w

the ring air void content.  

Seventh, the direction of the correlation between the shear properties and the core 

air void content is opposite to the direction of the correlation between the shear properties 

and the ring air void content. In other words, if a property has a positive correlation with 

the core air void content, it would have a negative correlation with the ring air void 

content, indicating that each portion works separately to resist the shear load. 
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CHAPTER 10 -  CONCLUSIONS  

e study were to develop 

statistic s 

 

-sectional 

ng 

tomography (XCT), followed by the mechanical testing of the 

specim

. 

nceptual 

problems that would reduce their statistical power. In addition, the indices by Yue et al. 

10.1 INTRODUCTION 

The goal of this research was to evaluate the effects of inhomogeneity on the 

mechanical response of an asphalt mixture. The objectives of th

al indices for the measurement of homogeneity, to demonstrate that the indice

could reliably distinguish between homogeneity and inhomogeneity, and to indicate that

the indices could be used as performance indicators by correlating the mechanical 

response of an asphalt mixture to a level of inhomogeneity. 

Since reliable material characterization is important for the support of the 

performance prediction models of the NCHRP Mechanistic-Empirical Design Guide 

(2004), this study was directed towards quantifying inhomogeneity and examining its 

effect on the mechanical response of asphalt mixture material. This involved 

measurement of the distribution of coarse aggregates by analyses of the cross

images of homogeneous and inhomogeneous specimens captured nondestructively usi

3-D x-ray computed 

ens. The reliable measurement of homogeneity necessitated evaluation of existing 

methods of analysis and testing of new statistical tests using 3-D computer simulation

10.2 EVALUATION OF EXISTING INDICES 

The first step in characterizing the effect of inhomogeneity was to evaluate 

existing methods of measuring inhomogeneity. Some of the existing tests had co
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(1995) and Masad et al. (1998) lacked a known statistical distribution. Therefore, 

statistical significance of sample values of the computed indices could not be tested. 

Critical  of 

he 

10.3 

. 

f the 

sts 

distanc

ower 

eflects the accuracy of the test, while the critical statistics enable 

homogeneous and inhomogeneous specimens to be distinguished.  

 values of these indices are needed to distinguish between the conditions

homogeneity and inhomogeneity. Thus, systematic decisions are not possible until t

distributions are identified. The lack of critical values for the selected levels of 

significance also prevent the assessment of the power of the tests, which is important in 

evaluating the best tests to use.  

NEW INDICES OF HOMOGENEITY 

Based on the need for reliable measurements of inhomogeneity, which is a 

common problem in laboratory specimens, several new statistics (indices) were proposed

Values of the proposed indices could be computed using the geometric properties o

coarse aggregates. The properties used to define the indices were the frequency, area, and 

centroid distances of the aggregates. Based on the rationality of index values, a number of 

tests were selected as the final candidates to be tested by simulation. The selected te

were the t-test on total area, the t-test on frequency, the t-test on nearest neighbor 

e, the z test on frequency proportion, and the chi-square test on frequency. 

Computer simulation was used to assess the selected tests. Virtual specimens with 

various aggregate structures were simulated and values of the indices of the proposed 

statistical tests were computed, from which the power of the tests and the critical 

statistics for three levels of significance of 10%, 5%, and 1% were obtained. The p

of each test r
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10.3.1 Power of Tests of Vertical Homogeneity 

 

ent of 

vertical

al 

 of the 

tions. 

nd finer portions, if the difference between the mean geometric properties of 

the coarser and finer portions is large and the variability in the measured properties 

The tests of vertical homogeneity were evaluated using both horizontal and 

vertical slice faces. The homogeneity tests on horizontal slice faces included the t-test on

total area, the t-test on frequency, the t-test on nearest neighbor distance, and the chi-

square test on frequency. The statistical power of the tests indicated that the frequency-

based indices provided very high power, the distance-based index provided medium 

power, and the area-based index provided the lowest power in the measurem

 inhomogeneity. The chi-square test and the t-test on frequency provided powers 

of 99.9% and 90.1%, respectively, the t-test on nearest neighbor provided a power of 

75%, and the t-test on total area provided a power of 18%. Therefore, among the four 

proposed tests, the two frequency based tests are most reliable for the detection of 

vertical homogeneity when horizontal slice faces are used.  

The difference in the powers of the t-tests can be explained based on the ration

examination of the t-statistic and the nature of frequency, distance, and area properties. 

The value of a t-statistic is a function of the difference between the mean geometric 

properties, the pooled variance of the means, and the sample size. The numerator

statistic represents the difference between the means of the slice face properties within 

the coarser and finer portions of specimens. The denominator of the statistic represents 

the sampling variation of the slice face properties within the coarser and finer por

The sample size, which is included in the denominator, also affects the computed index 

values. A large sample size would result in a small standard error of the mean and the 

greater accuracy estimator of homogeneity. Therefore, for a sufficient number of slices in 

the coarser a
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within 

thin 

 

neity.  

The nature of the area and distance properties as well as the rationale of the t 

statistic as explained ab

on the location of the slices through aggregates, a wide range of total aggregate areas and 

distance properties. 

be used to explain the large power of the frequency-based t-index. Regardless of the 

similarly. This means that the frequency of the aggregates cross sections would not be 

the two portions is small, a large index value would result. If the difference 

between the mean properties is large but the variability of the measured properties wi

the coarser and finer portions is also large, a computed index could be small. A low

power of a test would result from a small index value and a high power of a test would 

result from a large index value for the state of inhomoge

ove could be used to explain the lower power of the area-based 

and distance-based t-index. When large aggregates are sliced through, circular cross-

sections with diameters less than or equal to 19 mm are formed, with only cross sections 

with diameters in the range of 4.75 mm to 19 mm entering into the analysis. Depending 

mean centroid distances would then be measured from the slices. This would yield large 

sampling variation in the aggregate area and mean centroid distance measurements of the 

slices. The large variation would yield a small value of the t-statistic for the 

inhomogeneous specimens and, therefore, the low power of the t-test on the area and 

The nature of the frequency property as well as the rationale of the t statistic could 

locations of the slices through coarse aggregates, the frequency of the aggregates with 

cross-sections in the range of 4.75 mm to 19 mm in diameter would be recorded 

biased by their size. Therefore, there would be less variability in the frequency 
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measurements of the slice faces. This would yield a large t value, which result in the high 

power of the frequency-based tests.  

Vertical homogeneity was also evaluated using vertical slice faces. The 

homog

f 

uch a 

 

ces, 

other th f vertical 

need 

eneity tests using vertical faces included the t-test on total area, the t-test on 

frequency, the chi-square test on frequency, and the z test on frequency proportion. All 

indices of vertical homogeneity computed from vertical slice faces indicated a power o

100%. Therefore, all of the proposed tests are equally accurate for the measurement of 

vertical inhomogeneity when applied to vertical slice faces.  

The rationale of the t-statistic and the trend of the coarse aggregate location in 

vertical and lateral directions are used to explain the 100% power of the t-tests when 

applied to vertical slices. Vertically inhomogeneous specimens were simulated in s

way that coarse aggregates are distributed with varying probability in the vertical 

direction and equal probability in lateral directions. This would yield a large difference in 

the means and small sampling variation of the coarse aggregate properties measured from 

lower and upper portions of vertical slice faces. As a result, a large t value and 

consequently a high power of the t-test would be computed from vertical slice faces.  

Based on the findings of simulation for tests of vertical homogeneity, all of the

tests proposed for vertical slice faces are accurate. When applied to horizontal slice fa

an the t-test on total area, all other selected tests are accurate for testing o

homogeneity. However, the selection of the best vertical homogeneity index would 

to account for the results of verification process, which involves testing of actual 

specimens.  
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10.3.2 Power of Tests of Radial Homogeneity 

The power of the indices for measurement of radial homogeneity was evalua

using both horizontal and vertical slice faces. The tests included the t-test on total area, 

the t-test on frequency, the chi-square test on frequency, and the z test on frequency 

proportion. The analysis of the simulation results indicated that the power of the ind

applied to both horizontal and vertical slice faces were 100%, meaning that the proposed 

tests are equally accurate when computed from eithe

ted 

ices 

r slice face direction.  

n the 

orizontal 

 

all sampling variation in the measured properties from horizontal 

slice faces, which represents the vertical trend in coarse aggregate arrangement. The 

small sampling variation would result in a small-pooled variance in denominator, a large 

value of the t-statistic, and consequently the high power of the test. On the other hand, the 

coarse aggregates are positioned with different probabilities in lateral direction. 

Therefore, the sampling variation in the properties measured from vertical slice faces, 

which represents the lateral trend in coarse aggregate arrangement, would be higher than 

that from the horizontal slice faces. However, the relatively higher variability is 

overshadowed by the larger number of vertical slice faces, which is nine, compared to the 

number of horizontal slice faces, which is three. This would cause the indices to have 

100% power in the measurement of radial homogeneity using both horizontal and vertical 

slice faces. 

The rationale of the t-statistic and the distribution of coarse aggregates withi

specimen can be used to explain the 100% power of the t-statistics using either h

or vertical slice faces. Radially inhomogeneous specimens are simulated in such a way

that coarse aggregates have equal probability of being located at any vertical position. 

This would cause a sm
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The results of simulation indicate that, when testing for radial homogeneity, t

use of both vertical and horizontal slice faces is acceptable. In both cases, any of the 

proposed tests would accurately measure radial homogeneity. However, the fin

he 

al 

selectio

10.3.3 Determination of the Number of Slice Faces Using Simulation 

used had to be determined. For the gradation used in this study, McCuen and Azari 

hen 

taken in the right position, the slices would be from the same population. Therefore, each 

t in the computation of the statistics. Since a greater number 

of slices provide more reliable statistics, the maximum number of independent slices was 

used in analysis involving horizontal slice faces. The maximum number of independent 

horizontal slices was 12 for the evaluation of vertical inhomogeneity but only three for 

the evaluation of radial inhomogeneity.  

When cylindrical specimens are sliced vertically, the cross sections of the slices 

are not the same. The middle slice face provides the largest cross-sectional area, while the 

area of a cross section decreases as the distance from the center slice increases. Based on 

the required 10-mm spacing between the slices and meaningful size of the sampling 

adial 

homogeneity was determined to be nine. However, the unequal areas of the slice faces 

raised the question of whether all nine slices were necessary for reliable determination of 

n of the best test statistic and most appropriate slice face direction would need to 

account for the results of the tests on actual specimens. 

To quantify the homogeneity of a specimen, the number of slices that should be 

(2001) showed that a 10-mm spacing is necessary for independency of the slices. W

cylindrical specimens are sliced horizontally, the slice faces have equal areas, and if 

slice face is equally importan

areas, the maximum number of vertical slices for evaluation of both vertical and r
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the statistics. To answer the question, the test statistics for each specimen were comp

using five, seven, and nine slice faces, and the values of the statistics and the power 

tests were compared.  

A comparison of the computed statistics from sets of five, seven, and nine slices 

revealed a change in the values of the statistics with the change in the number of slices. 

the differences between the computed statistics were not significant, then it would be 

more efficient to conduct the analysis using a smaller number of slices. The comparison 

revealed that only the z statistic changed significantly with the increase in the number of

slice faces, all other statistics did no

uted 

of the 

If 

 

t change significantly. For example, with the change 

in the number of slices from five to nine, the chi-square statistic changed in the range of 

4.59 to 4.71 and the t-statistic changed in the range of 1.77 to 1.86, both of which 

 the 

the expected maximum frequency of coarse aggregates in the sampling portions. This 

denominator of the z statistic and consequently a significant increase in the z value.  

applied. On the other hand, five slices would be adequate to achieve the maximum 

e t-tests. This implies that it would be more efficient to 

apply the chi-square and t-tests to five slice faces than to apply the z-test to nine slice 

represent a very small difference in probability. However, the z statistic changed in the 

range of 1.59 to 2.24, which represents a significant difference in probability. The reason 

for the significant change in the z value could be explained in terms of the rationale of

z statistic (Equations 4-81 and 4-82). The increase in the number of slices would increase 

would result in a significant decrease in the sampling variation that is reflected in the 

Based on the results, all nine vertical slices are required for the accurate 

measurement of both vertical and radial homogeneity when the z proportion test is 

accuracy of the chi-square and th
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faces. H

al 

 

mphasize that the selection of the number of 

vertical

t selected 

10.3.4 Comparison of the Critical Statistics from Simulation and Standard Tables 

l tables in order to examine if they were significantly 

different. To examine the difference, the exceedance probabilities of the simulated 

critical values were compared with 10%, 5%, and 1% levels of significance that 

correspond to the critical values in the standard tables. The comparison indicated that for 

some statistics, the exceedance probabilities and the corresponding levels of significance 

were similar, while for others they were very different. For example, the exceedance 

probabilities and the corresponding levels of significance of the chi-square statistic for 

testing radial homogeneity were similar. For a 5% level of significance, the exceedance 

probability was 4.7%. However, the values of the t test on total area were very different.  

owever, the greater complexity of the z index (use of more geometric properties 

and larger number of slices) might be necessary to achieve adequate accuracy with 

homogeneity measurements of limited number of actual specimens. Therefore, the fin

decision on the number of slices would be made based on selection of the optimum test 

statistic, which is determined with consideration to the results of the tests on actual 

specimens. If homogeneity of the actual specimens was more accurately detected by the z

test, then use of all nine slices would be necessary.  

The findings in this section ree

 slice faces is not an arbitrary decision and needs to be determined using 

simulation. Therefore, the tests that are available in the literature might not accurately 

detect inhomogeneity since the number of slices for the suggested tests was no

based on simulation. 

The critical values computed from simulation were compared with the critical 

values from the standard statistica
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For a 5% level of significance, the exceedance probability was 10.9%. Therefore, it 

would  

he 

ate 

 

 and 

he 

 

ns. 

sure that the proposed tests and the selected factors provide correct 

decisio

ices of homogeneity were computed using homogeneous and 

inhomogeneous laboratory specimens in order to verify the applicability of the proposed 

be incorrect to automatically use the standard tables just because the form of a

standard test statistic is used. This practice could lead to erroneous decisions.  

The difference in the simulated and tabled values can be explained in terms of t

properties that are being tested. The measured geometric properties such as aggreg

area and aggregate frequency are very different from the properties on which the 

statistical tests were developed. Therefore, although each test of homogeneity was 

structured based on the standard z, t, and chi-square tests, the critical values for any new

test must be obtained through simulation. This conclusion reemphasizes that tests 

identified in the literature that use the form of the z or t test might not accurately detect 

inhomogeneity if their critical values were determined from existing tables and not 

verified by simulation.  

Computer simulation was necessary for derivation of the critical test statistics

the identification of the factors that influence the accuracy of the tests. Factors such as t

slice face direction and the number of slices were found to be important. In addition, 

simulation was necessary to determine the critical values of the indices that are specific to

the properties that are being measured and to the geometry of the test specime

However, to en

ns on the homogeneity of a limited number of laboratory specimens, their 

application to the actual specimens needs to be verified. 

10.4 HOMOGENEITY TESTING OF ACTUAL SPECIMENS 

The ind
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tests to equires 

10.4.1 Testing of Vertical Homogeneity 

The application of the indices of vertical homogeneity to the actual specimens 

vertical homogeneity detected 

the homogeneity of the homogeneous (H-SPT) specimens correctly using both vertical 

computed z values using vertical slice faces of H-SPT specimens were all less than the 

 actual specimens. Evaluation of actual specimens for homogeneity r

measurement of the geometric properties of the constituent aggregates, which were 

obtained by analysis of the x-ray computed tomography (XCT) scanned images. The 

indices were then computed using the measured geometric properties. The homogeneity 

of the specimens was then determined by comparison of the computed indices with the 

critical index values or comparison of the rejection probabilities with the 5% level of 

significance. The rejection probabilities from actual specimens in combination with the 

power of the tests from simulation would be used to select the optimum indices of 

vertical and radial inhomogeneity.  

revealed the following facts: First, the proposed indices of 

and horizontal slice faces. The average values of the test statistics were all below the 

critical values. Other than the t-statistic on total area applied to horizontal slice faces, 

which incorrectly identified one homogeneous specimen to be inhomogeneous, all 

individual values of the statistics were below the critical value. For example, the 

critical z, with the average z of 0.17 compared to the critical z of 1.59, and an average 

rejection probability of 0.45 compared to 0.05. This indicated that the specimens 

prepared to be homogeneous and compacted using Superpave gyratory compactor were 

in fact vertically homogeneous.  

 355



 

Second, in the testing of vertically inhomogeneous specimens (I-SPT), all averag

computed statistics were above the critical statistics, whic

e 

h indicated that the specimens 

were no

, 

ded the greatest discrimination between homogeneity and 

inhomogeneity. This was shown by the difference in the average rejection probabilities of 

ted 

rejection probabilities was in the range of 0.260 to 0.419, with the upper range value 

belonging to the z statistic.   

The results of homogeneity tests on actual specimens confirmed that the proposed 

indices of vertical homogeneity are reliable for distinguishing between homogeneity and 

inhomo

test, all

test and 

t homogeneous. Other than the chi-square test applied to vertical slice faces, 

which resulted in three computed statistics to be below the critical value, all other tests 

correctly identified the inhomogeneity of individual specimens. The reason for the 

incorrect decisions by the chi-square test might be that the test is excessively sensitive to 

the sampling variation that results during specimen preparation and the testing of a 

limited number of actual specimens.  

Third, the homogeneity test when applied to vertical slice faces of actual 

specimens showed that among the tests that identified all individual specimens correctly

the z statistic, provi

the homogeneous and inhomogeneous specimens. The difference in the compu

geneity. Other than one case of t-test on total area and three cases of chi-square 

 other actual cases were in agreement with the critical values developed with 

simulation. Both simulation and actual testing recommended the use of the z 

frequency based t test. Similar to the simulation results, the t-test on total area is more 

accurate when computed from vertical slice faces than from horizontal slice faces of 

actual specimens.  

 356



 

10.4.2 

hile 

 

n 

ntal 

Second, other than the z test, all of the tests applied to horizontal slice faces 

misidentified one or more specimens. Out of 24 L-SST, H-SST, and I-SST specimens, 

the chi-square test misidentified one, the t-test on total area misidentified six, and the 

t-test on frequency misidentified four of the specimens. As the z test did not result in any 

misidentifications, it is considered to be the most reliable for detecting radial 

homogeneity. 

Third, the z index identified three distinct levels of homogeneity for the three sets 

of specimens. The computed indices for the linearly kneaded (L-SST), homogeneous 

gyratory (H-SST), and inhomogeneous gyratory compacted specimens (I-SST) were 0.19, 

0.90, and 3.10, respectively. This indicates that the z index is accurate for test of 

homogeneity. 

Testing of Radial Homogeneity 

The application of the indices of radial homogeneity to the actual specimens 

revealed three facts: First, horizontal slice faces provide more accurate measurement of 

radial homogeneity than vertical slice faces. Although simulation indicated maximum 

power of the proposed tests with the use of both slice face directions, the indices 

computed from actual specimens were more accurate when computed from horizontal 

slice faces. Thirty-three out of 72 cases were misidentified using vertical slice faces w

only 11 cases were misidentified using horizontal slice faces. The reason for this is the 

larger sampling variation in the measured geometric properties from vertical slice faces

of actual specimens, which is caused by the trend in the coarse aggregate arrangement i

the lateral direction. Therefore, for measurement of radial homogeneity, using horizo

slice faces is recommended.   
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Fourth, the computed z statistics indicated that specimens prepared 

homogeneously (L-SST and H-SST) were in fact homogeneous and the I-SST set that 

was pre e 

l z 

nt amounts of 

radial i eater than 

 

 

al 

ed 

and distribution of the aggregates. This can produce actual-specimen indices that are 

ected to 

be sma

pared to be inhomogeneous was correctly identified as being inhomogeneous. Th

computed indices for L-SST specimens were all below the critical statistic (the average z 

of 0.19 was much less than the critical z of 2.48). For H-SST specimens, the computed 

indices were all greater than those for the L-SST specimens but still below the critica

(the average z of 0.90 was less than the critical z of 2.48), which indicated that, despite 

the tendency of more coarse aggregates to be in the periphery of gyratory compacted 

specimens, they are still homogeneous. The z index measured significa

nhomogeneity in the I-SST specimens. The computed indices were all gr

the critical z (the average z of 3.10 exceeded the critical z of 2.48), which indicated that

the tests accurately measured radial inhomogeneity.  

The fabrication of test specimens is not a perfect process. Sampling variation is

expected to occur. Discrepancies between the test accuracies of actual and simulated 

analyses can, therefore, result because of the variation inherent to the fabrication of actu

specimens. These variations were not included in the simulation. Although, the simulat

and actual specimens were fabricated based on the same gradations and same overall 

aggregate structure, the material handling and compaction process affects the orientation 

different from those generated by simulation, even though the differences are exp

ll. The orientation and distribution of the aggregates were not included in the 

simulation because the extent of these factors in laboratory specimens is not yet fully 

understood and therefore, has not been well quantified. The z index that uses both the 
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area and the frequency of the aggregates was less affected by such factors and provided 

the required accuracy when applied to actual specimens. 

The application of the tests of homogeneity to actual specimens was benef

confirming and refining the results of the simulations. The refinement of the simula

findings is necessary since factors exist in preparation and homogeneity testing of a

specimens that are not included in the simulation. Including the results of the verification 

process in the final selection of the test statistics as well as the selection of the number 

and direction of slices provides more assurance in the use of the tests. Pavement 

engineers can use the proposed indices of homogeneity with more confidence, since the 

applicability of the statistics generated from simulation have been demonstrated b

actual specimens.  

PROPERTIES 

Subsequent to the inhomogeneity testing, the specimens were subjected to 

mechanical loading to examine the effect of inhomogeneity on the compressive and shea

performance of the material. The following are the results of the mechanical tests:  

icial in 

tion 

ctual 

y the 

10.5 EFFECT OF INHOMOGENEITY ON MECHANICAL 

r 

10.5.1 Effect of Vertical Inhomogeneity on Compressive Properties of the Mixtures 

The effect of vertical inhomogeneity on the compressive properties of the asphalt 

mixtures was examined by subjecting homogeneous (H-SPT) and vertically 

inhomogeneous (I-SPT) specimens to the dynamic modulus (E*) and flow number (FN) 

of the simple performance tests (SPT). The E* test was conducted at intermediate and 

high temperatures of 21°C and 45°C, and the F  test was conducted at the high test 

temperature of 45°C.  

N
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Statistical analyses were conducted on the measured and computed mechanical 

properties in order to evaluate the significance of the difference between the mechanical 

response of the homogeneous and inhomogeneous specimens. The results of t-tests on the 

SPT measurements indicated that (1) I-SPT specimens had lower, but not significantly 

lower, dynamic moduli (E*) than H-SPT specimens at both intermediate and high-test 

temperatures. (2) I-SPT specimens had higher, but not significantly higher, potential for 

rutting using the dynamic modulus test (Sinϕ/E* at 45°C); (3) I-SPT specimens had 

higher, but not significantly higher, potential for fatigue damage in a thick layer using the 

dynamic modulus test (Sinϕ/E* at 21°C); (4) I-SPT specimens had significantly lower 

potential for fatigue damage in a thin layer using the dynamic modulus test (E*sinϕ at 

21°C); and (5) I-SPT specimens had lower, but not significantly lower, potential for 

rutting using cycles to failure (FN) at 45°C.  

A correlation analysis was used to evaluate the relationship between the z index 

and the compressive responses of the material. In agreement with the t-test, correlation  

analyses indicated that the only correlation that was significant was the fatigue potential 

for a thin la

insignificant correlations are caused by the insignificant differences between the 

compressive responses of the homogeneous and inhomogeneous specimens as measured 

by the simple performance tests. This would imply that the parameters of the simple 

performance tests, which are commonly used for the evaluation of the asphalt mixture 

yer (E*sinϕ at 21ºC). All other correlations were insignificant. The 

quality, might not always be sufficiently sensitive to the differences in aggregate 

structures. For this mixture, sampling variation in the laboratory that leads to 
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inhomogeneity may not affect the measurement of the compressive properties of the 

material and would not be a major concern.  

Another observation from the results is the contradiction between the perman

deformation potential of the material as measured by sinϕ/E* from the dynamic m

test and by FN from the flow number test. Although sinϕ/E* and FN are often considered 

to be interchangeable when characterizing high temperature performance of asphalt 

materials, they indicated an opposite tre

ent 

odulus 

nd when inhomogeneity was present. The design 

engine

f the 

s ones, 

es, 

e 

N 

s 

compacted (H-SST), and radially inhomogeneous (I-SST) specimens to Superpave shear 

tests (SST). The SST included frequency sweep at constant height (FSCH) and repeated 

er needs to be aware of the specific effect of inhomogeneity on the property of 

interest and to adjust design and performance prediction accordingly.  

A word of caution must be given on the use of E*sinϕ and FN values of 

inhomogeneous specimens for performance prediction. Since the E*sinϕ values o

vertically inhomogeneous specimens were smaller than those of the homogeneou

fatigue performance of the material in a thin layer would be overestimated. Similarly, 

using the higher FN values of the vertically inhomogeneous specimens, the permanent 

deformation performance of a layer would be overestimated. Therefore, in both cas

premature failure of a layer could occur. To increase the reliability of the performanc

prediction for both fatigue and rutting, a factor of safety proportional to the amount of 

inhomogeneity of the specimens is suggested to be applied to the E*sinϕ and F values.   

10.5.2 Effect of Radial Inhomogeneity on Shear Properties of the Mixtures 

The effect of radial inhomogeneity on the shear properties of the asphalt mixture

was examined by subjecting linearly kneaded (L-SST), homogeneous gyratory 
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shear at constant height (RSCH) tests. The FSCH test was conducted at intermediate and 

high-test temperatures of 25°C and 50°C, and the RSCH test was conducted at 50°C.  

y of the gyratory compacted 

specimens caused significant increases in the shear modulus (G*), significant decreases 

increases in f

layers (E*sinφ), with only E*sinφ being significant. This might imply that the response of 

an inhomogeneous asphalt material is dependent on the mode of loading (axial or shear). 

Therefore, design engineers need to take into account the effect of inhomogeneity with 

consideration to the mode of loading that was used to measure the mechanical properties.  

Homogeneous gyratory specimens (H-SST) behaved similarly to radially 

homogeneous specimens (L-SST) in fatigue, measured at the intermediate temperature, 

while they behaved similarly to radially inhomogeneous specimens (I-SST) in rutting, 

measured at the high-test temperature. This might imply that there is an interaction 

between inhomogeneity and test temperature, which causes the trend in which the 

material behaves to be different at different test temperatures. Therefore, the effect of 

inhomogeneity should be taken into consideration with respect to the test temperature, 

Statistical analyses were conducted on the measured and computed shear 

properties in order to evaluate the significance of the difference between the shear 

responses of the three sets. The results of F tests indicated that at the intermediate 

temperature, the increase in the level of radial inhomogeneit

in fatigue damage potential of the material in thick layers (sinδ/G*), and significant 

atigue damage potential of the material in thin layers (G* Sinδ). These are 

contrary to the observations made from the axial compression tests (SPT), where 

inhomogeneous specimens indicated lower dynamic modulus (E*), higher fatigue 

damage potential in thick layers (sinφ/E*), and lower fatigue damage potential in thin 
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which has been determined based on the expected damage in the field. Thus, the eff

inhomogeneity should consider the type of damage for which the layer is being analyzed

or designed.  

ect of 

 

As measured by the RSCH test, homogeneous gyratory (H-SST) and linearly 

homogeneous 

specimens had significantly higher N  values than the two homogeneous sets. This might 

imply that for a specific mode of loading in the laboratory (e.g., shear), in addition to the 

test temperature, the loading pattern (cyclic load with or without rest period) has a 

significant effect on the trend in which the material responses. Therefore, the effect of 

inhomogeneity on performance prediction should consider the laboratory test-loading 

pattern. The findings above imply that pavement design engineers need to take into 

account the effect of inhomogeneity with respect to the mode of loading (shear or axial), 

test temperature (intermediate or high), and the loading pattern (continuous or with rest 

period), where these factors have been determined based on loading configuration and the 

damage expected in the field. 

A correlation analysis was used to evaluate the relationship between the z index 

and the shear responses of the material. The analyses indicated that all correlations were 

significant. The significant correlations are the result of significant differences between 

the shear responses of the L-SST, H-SST, and I-SST specimens as measured by the 

Superpave shear tests. However, the trends of the correlation were different for the two 

test temperatures of 25°C and 50°C and the two loading patterns in the FSCH and RSCH 

tests. In the FSCH test at intermediate temperature, homogeneous gyratory compacted 

specimens responded more closely to homogeneous linearly compacted specimens, which 

compacted (L-SST) specimens had similar cycles to failure (Nf), while in

f
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resulted in slightly nonlinear relationship between shear properties and z statistic with th

correlation coefficient of 0.78. In the FSCH test at the high temperature, homogeneous 

gyratory compacted specimens responded more closely to inhomogeneous gyra

compacted specimens, which resulted in a curvilinear relationship between shear 

properties and the z statistic with the correlation coefficient of 0.71. In the RSCH test, the 

relationships between shear properties and the z statistic w

e 

tory 

as slightly nonlinear with the 

highest correlation coefficient of 0.88. 

ions 

with the RSCH parameters indicate that the repeated shear test is most affected by the 

variations in aggregate structure. Second, the trend of the relationship between FSCH 

properties and the z statistic at the intermediate temperature and between RSCH 

properties and the z statistic indicates that gyratory specimens need to be highly 

inhomogeneous to exhibit significant changes in shear properties. Third, the trend of the 

relationship between FSCH properties and the z statistic at the high temperature indicates 

that even a slight amount of radial inhomogeneity that is created during specimen 

preparation significantly increases the shear resistance of the material in permanent 

deformation. This implies that the amount of radial inhomogeneity in gyratory compacted 

specimens should be minimized in order to prevent the overestimation of the rutting 

performance of the material in the field. In addition to the careful preparation of the 

specimens, application of a factor of safety to the shear properties of gyratory compacted 

. The value of the 

facto tional to the level of inhomogeneity of the specimens.

Several findings can be drawn from the correlations. First, the highest correlat

specimens would ensure the reliability of the performance prediction

r of safety should be propor
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CHAPTER 11 -  RECOMMENDATIONS  

ction 

ch 

11.1 FIELD MEASUREMENT OF INHOMOGENEITY 

he 

inhomogeneity of laboratory-prepared asphalt specimens. It is recommended to extend 

the applicability of the suggest

approach similar to the one taken for the measurement of laboratory inhomogeneity could 

provide an effective, nondestructive method for the measurement of inhomogeneity in the 

field. The approach includes collecting data on the mixture properties of the asphalt 

mixture layers from various locations of a pavement section followed by the computation 

frequency ground penetrating radar (GPR) could be used to nondestructively capture 2-D 

cross-sectional density map images from various locations of a pavement section. Using 

image analysis tools, the density information would then be measured from the 

cross-sectional images. Statistical testing would be used to examine the significance of 

testing includes computation of the index of homogeneity, such as the z index, using the 

collected density data and making a decision on the homogeneity of a pavement section 

based on the comparison of the computed and critical index values.  Research is needed 

Additional research is needed to further verify the findings of this study. The 

suggested recommendations are expected to improve our understanding of the intera

between asphalt mixture inhomogeneity and mechanical behavior. Since this resear

was a laboratory study, it needs to be extended to the field. 

This research focused on developing and testing indices that measure t

ed indices for the field measurement of inhomogeneity. An 

of homogeneity indices. To obtain the mixture properties, a device similar to a high 

the difference in the mixture densities at various portions of a pavement layer. Statistical 
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to evaluate the critical values of the indices that are specific to the field. Computer

simulation of homogeneous and inh

 

omogeneous test sections can be used to determine 

the distributions of the test statistics, their critical values, and the power of the tests. 

11.2 
IN

ld 

 

performance data starting from the early stages in the life of a pavement layer until signs 

suggest mended 

 

e 

ement layer shortly after construction 

and at m

li 

HOMOGENEITY INDICES AS PERFORMANCE 
DICATORS 

Inhomogeneity has been associated with poor performance, reduced durability, 

and shorter life (Stroup-Gardiner and Brown, 1999). Thus, an accurate estimate of fie

inhomogeneity would be of value to evaluate the performance of an existing pavement 

under loading and environmental influences.  

To ensure the suitability of the index of homogeneity as a performance indicator, 

the relationship between homogeneity and the mechanical performance of a pavement 

section must be assessed.  The assessment would include collecting homogeneity and

of distress develop. The z index on density data from the asphalt mixture layer is 

ed for the measurement of homogeneity. The use of density data is recom

since the differences in density result from the differences in the aggregate and air void 

distributions that are indications of inhomogeneity. In addition, density can be easily 

measured nondestructively by several different means, such as GPR, nuclear density

gauges, and pavement quality indicator (PQI) device. The performance data could b

obtained by measurement of the modulus of the pav

onthly intervals. A device such as a Portable Seismic Pavement Analyzer 

(PSPA) can be used for the quick measurement of moduli of the layers. The initial modu

and the reduction in moduli, which indicates the deterioration of the layer with the 
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application of the loads, can be measured and correlated to the level of homogeneity of 

the section. The use of an accelerated loading device, such as the Miniature Mobile Load 

Simulator (MMLS), is recommended to intensify the loading and expedite the 

deterioration of the sections. If a significant correlation between the values of the 

ex can 

be used as a measure of the performance of a pavement. 

t, air void, and aggregate gradation 

measur

yers. 

 

homogeneity of the mixture layer can then be assessed by a 

compar

 

A dense-graded blend with a 19.5-mm nominal maximum aggregate size (NMAS) 

was used in this study to form various aggregate structures. The compaction effort caused 

homogeneity index and the change in moduli is established, then the suggested ind

11.3 HOMOGENEITY INDEX FOR QUALITY CONTROL AND 
ACCEPTANCE 

The quality of new asphalt concrete pavement construction is traditionally 

assessed from the results of asphalt conten

ements of cored samples. Deviations of the measured values from the mixture 

design criteria have been the basis for quality control and acceptance of pavement la

Since inhomogeneity has been related to significant changes in the abovementioned 

quality indicators (Stroup-Gardiner and Brown 1999), a measure of homogeneity, such as 

the z index, can be used for routine quality control (QC). The z index can be computed 

using mixture density, which can be measured reliably in the field using GPR, PQI, or

nuclear density gauges. The 

ison of the computed z index with the critical z that was obtained from computer 

simulation. Any z greater than the critical z requires a penalty to the paving contractors. 

11.4 EFFECT OF AGGREGATE GRADATION ON 
INHOMOGENEITY  

 367



 

 368

an insignificant level of inhomogeneity in specimens that were prepared homogeneously. 

It is of interest to know if compaction causes significant levels of inhomogeneity in 

mixtures with other aggregate gradations. This would identify mixtures that are prone to 

inhomogeneity, which would identify the gradations that require greater care in the 

process of specimen preparation. A knowledge of the correlation between mixture 

gradations and inhomogeneity would make improvements in design and performance 

decisions based on gradation information.  

11.5 INDICES FOR THE MEASUREMENT OF RANDOM 
INHOMOGENEITY  

This research emphasized the characterization of systematic vertical and radial 

inhomogeneity of laboratory prepared specimens. It is also important to be able to detect 

and measure random inhomogeneity. Random inhomogeneity, which is the separation of 

a design mixture into random clusters of coarser and finer mixtures, is hypothesized to be 

a cause of occasional high or low mechanical property measurements. When mechanical 

test results are not consistent and inhomogeneity is not identified, it may incorrectly be 

concluded that factors other than inhomogeneity caused the inconsistency. This could 

misdirect engineers and technicians.  

To test for random inhomogeneity, an approach similar to that taken for the 

testing of vertical and radial inhomogeneity is recommended. One possible index of 

random homogeneity can be defined based on the comparison of the geometric properties 

of coarse aggregates within the openings of a grid imposed on slice faces of the 

specimens. For the purpose of testing the index, computer simulated and actual 
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inhomogeneous specimens can be created by randomly placing pockets of coarse 

aggregates within each specimen.  

11.6 EXAMINING THE FACTORS THAT AFFECT 
INHOMOGENEITY 

In the gyratory compaction of asphalt mixture specimens, several factors might be 

responsible for the occurrence of inhomogeneity, factors such as specimen height, the 

mixing and compaction temperatures, and the angle and pressure of the gyration. To 

examine the effects of these factors, various heights of asphalt mixture can be compacted 

at different temperatures, with varying angles and varying vertical pressures. The 

specimens can then be tested for homogeneity. This study would require a large number 

of specimens; however, the results would be very beneficial in obtaining the optimum 

gyratory setting to fabricate specimens with a minimum amount of inhomogeneity.  

11.7 EFFECT OF INHOMOGENEITY ON TENSILE RESPONSE  

In this study, the effect of inhomogeneity on the compressive and shear 

performance of laboratory specimens was examined. It is of interest to examine the effect 

of inhomogeneity on other modes of response, specifically the tensile response. In this 

respect, homogeneous and inhomogeneous specimens can be subjected to a tensile 

loading in a test set up such as beam fatigue. Inhomogeneous beam specimens are 

speculated to have less resistance to tensile strain.  

To measure the homogeneity of the beams, the z index that was suggested for the 

measurement of vertical homogeneity could be used. However, application of the index 

to beam specimens requires assessment of the critical statistics that are specific to the 
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geometry of the beams using computer simulation. This is because the slice faces of the 

beams would be different in number and size from those of the cylindrical specimens for 

which the critical z was computed.  

11.8 EFFECT OF INDIVIDUAL MIXTURES ON MEASURED 
PROPERTIES OF INHOMOGENEOUS SPECIMENS   

It is of interest to examine if the coarser or the finer mixtures were responsible for 

the responses of inhomogeneous specimens. In the compression test, the LVDTs extend 

over both the coarser and the finer portions and are speculated to have provided average 

strain measurements. Similarly, in shear test, the strain gauges measure an average strain 

from both the coarser and finer portions.  

To examine the effect of individual mixtures on the measured moduli, either the 

location of the LVDTs or the arrangement of the mixtures can be changed. For the 

compression test, the location of the LVDTs can be altered. Separate LVDTs can be 

placed over the coarser and finer mixtures and separate strains for the two portions can be 

measured. If the strain measurements are not significantly different from each other, it 

could be concluded that both coarse and fine mixtures are equally responsible for the 

response of the specimens.  

To examine the effect of coarser and finer mixtures on the shear modulus, it is 

recommended to alter the arrangement of the mixtures. Shear specimens can be created 

with the coarser mixture in the core and the finer mixture in the ring. The specimens can 

be tested with the conventional LVDT setup. If different structures provide similar 

responses, it can be concluded that both mixtures are equally responsible for the response 

of the specimens. 



APPENDIX A - DETERMINATION OF THE NUMBER OF 
PARTICLES FOR COMPUTER DEVELOPMENT OF A 

SPECIMEN 

To form virtual specimens as part of the simulation of homogeneity indices, it is 

necessary to determine the number of particles in each class size in a given size 

specimen. The information on the design components of asphalt mixtures needs to be 

used to determine the number of particles. This requires the knowledge of the weight-

volume relationship and the volume packing fraction of the asphalt mixture specimens.  

A.1 WEIGHT –VOLUME RELATIONSHIP 

 In order to obtain realistic results, the computer model of a specimen must adhere 

to realistic volume-weight constraints. Therefore, the volume of air voids (Vv) and the 

weight fractions of both asphalt (fa) and aggregates (fp) must be used to derive the weight-

volume relationship of asphalt mixture specimens. The derivation of the relationship is as 

follows:    

1. The volume of the specimen (Vs) equals the sum of the volume of aggregates (Vp), 

asphalt (Va), and air voids (Vv):   

s p aV V V V= + + v        (A-1) 

2. Both sides of Equation (A-1) are divided by the Vs:  

1 p a
v

s s

V V r
V V

= + +        (A-2) 

in which rv is the volume fraction of the air voids. 

3.  Rearranging the terms yields the following expression: 
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(1 )s v aV r V V− = + p        (A-3) 

4. Substituting the volumes in the right side of the equation with equivalent weight-

specific weight relationships yields the following: 

(1 ) pa
s v

a p

WWV r
γ γ

− = +        (A-4) 

in which Wa and Wp are the weights, and γa and γp are the specific weights of 

asphalt and aggregates, respectively.  

5. Writing the weights of aggregates and asphalt in term of the weight of specimen 

yields the following: 

(1 ) p s a s
s v

p a

f W f WV r
γ γ

− = +       (A-5) 

in which fp and fa are the specimen weight fractions of aggregates and asphalt.  

6. Rearranging the terms yields the following expression that relates the weight and 

the volume of the specimen:  

( )1 v
s s

p a

p a

r
W

f f
γ γ

−
=
⎡ ⎤

+⎢ ⎥
⎢ ⎥⎣ ⎦

V        (A-6) 

A.2 VOLUME PACKING FRACTION 

Knowledge of the volume packing fraction of an asphalt mixture specimen is an 

essential component of simulating a realistic number of particles. The derivation of 

volume packing fraction is as follows: 

1. The volume packing fraction (Pv) is defined as the ratio of the volume of particles 

to the volume of the specimen, which yields the following expression: 
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p s
p

p p
v

s s s

W WfV
P

V V V
pγ γ

= = =       (A-7) 

2. Substituting for Ws from Equation (A-6) and rearranging the terms yields the 

expression for the volume packing fraction: 

1

1

v
v

pa

p a

rP
f
f

γ
γ

−
=

⎛ ⎞⎛ ⎞
+ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

       (A-8) 

A.3 NUMBER OF PARTICLES 

The weight-volume relationship and volume packing fraction are used to derive 

the equation for computing the number of particles in each gradation level of a specimen. 

For the purposes of approximating, the particles can be assumed to be spherical with a 

diameter equal to the average of adjacent sieve sizes.  For example, for adjacent sieve 

sizes of 25 mm and 19 mm, the particle class diameter would be 22 mm. Derivation of 

the expression for computing the number of aggregates in each gradation class size is 

explained as follows: 

1.  The number of particles (ni) for gradation level i is expressed as the ratio of the 

volume of all particles in the ith gradation level (Vi) to the volume of one particle 

(vi):  

i
i

i

Vn
v

=            (A-9)  

2. Substituting the total volume of the aggregates in the gradation level i with the 

equivalent weight-specific weight expression and substituting the volume of the 

particle with volume of a sphere results in the following: 
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3

/
/ 6

i pi
i

i i

WVn
v d

γ
π

= =        (A-10) 

in which di is the average particle diameter for level i; Wi is the weight of particles 

in gradation level i; and γp is the specific weight of the particles. 

3. Expressing the weight of the aggregates in the gradation level i in terms of the total 

weight of particles yields the following: 

3

6 i p
i

p i

FW
n

dπγ
=         (A-11) 

where Fi is the weight fraction for gradation level i and Wp is the total weight of 

particles. 

4. Writing the weight of particles (Wp) in terms of volume (Vp) and specific weight 

(γp) of the particles and deleting the like terms result in the following: 

3

6 6i p p i p
i

p i i

F V FV
n

d d 3

γ
πγ π

= =        (A-12)  

5. The volume of the particles can be written in terms of the packing fraction (Pv) of 

the volume of the specimen: 

3

6 i v s
i

i

F PVn
dπ

=         (A-13) 

6. Expressing the volume of the solid in terms of the dimensions of the specimen 

yields the final expression for computing the number of particles: 

2

3

1.5 i v s s
i

i

F P D Hn
d

=        (A-14) 

in which Ds and Hs are the diameter and height of the specimen, respectively. 
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APPENDIX B - ASPHALT CONTENT DETERMINATION 
BASED ON SPECIFIC SURFACE AREA OF THE 

AGGREGATES 

B.1 INTRODUCTION 

Making inhomogeneous specimens requires separating the design gradation into a 

coarser and a finer mixture, which requires the knowledge of the gradation and the binder 

content of each mixture. The coarser and the finer gradations were obtained by modifying 

the design gradation as explained in Chapter 3. The asphalt contents were determined 

using the specific surface area method and were adjusted by the level of workability 

required in the laboratory.  

The optimum asphalt content, which is defined as the minimum amount of asphalt 

content that covers the surface of all aggregates ensures both workability and durability 

of the asphalt mixture. Therefore, after deducting the amount of asphalt absorbed into the 

aggregates pores, the optimum asphalt content for a specific gradation can be determined 

by summing of surface areas of aggregates in all class sizes multiplied by an assumed 

asphalt film thickness. The following sections explain determination of the optimum 

binder contents of the coarser and the finer mixtures using the specific surface area 

method. 

B.2 COMPUTING THE AGGREGATE SURFACE AREA 

The surface area measurement method used in this study was adopted from the 

methods suggested by Christensen (2001) and Kandhal et al. (1997). Table B-1 through 
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Table B-3 shows the computation of the aggregates total surface area for the three 

gradations. The steps of the computation are as follows: 

1. The percent retained on each sieve (Column 3) was calculated from the sieve 

analysis data.  

2. The average particle diameter in each of the class sizes (Column 4) was calculated 

as the arithmetic average of the smaller and larger sieve openings for each class 

size. For the passing 0.075-mm fraction, an average particle diameter of 0.0375 

mm was assumed.   

3. Based on the assumption that the aggregates are spherical in shape, the volume and 

surface area of the average particle in each class size was calculated (Columns 5 

and 7, respectively).  

4. The weight of each particle (Column 6) was determined based on the specific 

weight of the aggregates (γp) and the computed volume of each spherical particle 

(Column 5).   

5. The number of particles per unit weight of each class size (Column 8) was 

calculated based on the percent weight of the particles retained (Column 3) and the 

average weight of each particle (Column 6).  

6. The surface area per unit weight of each class size (Column 9) was calculated as 

the product of the number of particles per unit weight (Column 8) and the surface 

area of the particles in that class size (Column 7).  

7. The total surface area per unit weight of the aggregates was calculated by 

summing the unit surface areas of the aggregates in all class sizes; this is provided 

at the bottom of the tables. 
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Table B-1. Specific surface computation for the design gradation 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
Sieve 

Opening 
(mm) 

Percent 
Passing 

Retained 
(kg/kg) 

Average 
Particle 

Size 
(mm) 

Volume 
Per 

Particle 
(cm3) 

Weight 
Per 

Particle 
(kg) 

Surface 
Area 

Per Particle 
(m2) 

Number of 
Particles 
Per Unit 
Weight  
(ni/kg) 

Surface 
Area Per 

Unit 
Weight 
m2/kg 

19 100 0.240 15.75 2.05E+00 5.93E-03 1.49E-03 4.05E+01 0.060 
12.5 76 0.140 11 6.97E-01 2.02E-03 7.26E-04 6.93E+01 0.050 
9.5 62 0.179 7.125 1.89E-01 5.49E-04 3.05E-04 3.26E+02 0.099 

4.75 44.1 0.140 3.555 2.35E-02 6.82E-05 7.58E-05 2.05E+03 0.156 
2.36 30.1 0.078 1.77 2.90E-03 8.42E-06 1.88E-05 9.26E+03 0.174 
1.18 22.3 0.066 0.89 3.69E-04 1.07E-06 4.75E-06 6.17E+04 0.293 
0.6 15.7 0.055 0.45 4.77E-05 1.38E-07 1.22E-06 3.97E+05 0.483 
0.3 10.2 0.031 0.225 5.96E-06 1.73E-08 3.04E-07 1.79E+06 0.544 

0.15 7.1 0.022 0.1125 7.46E-07 2.16E-09 7.59E-08 1.02E+07 0.773 
0.075 4.9 0.049 0.0375 2.76E-08 8.01E-11 8.44E-09 6.12E+08 5.163 

γp = 2.89 E+03 kg/m3

γa = 1.02E+03 kg/m3

Total surface area per unit weight= 7.796 m2 /kg 
 

Table B-2. Specific surface computation for the coarser gradation 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
Sieve 

Opening 
(mm) 

Percent 
Passing 

Retained 
(kg/kg) 

Average 
Particle 

Size 
(mm) 

Volume 
Per 

Particle 
(cm3) 

Weight  
Per 

Particle 
(kg) 

Surface 
Area 

Per Particle 
(m2) 

Number of 
Particles 
Per Unit 
Weight  
(ni/kg) 

Surface 
Area Per 

Unit 
Weight 
m2/kg 

19 52.95 0.180 15.75 2.05E+00 5.93E-03 1.49E-03 3.03E+01 0.045 
12.5 34.95 0.105 11 6.97E-01 2.02E-03 7.26E-04 5.20E+01 0.038 
9.5 24.45 0.134 7.125 1.89E-01 5.49E-04 3.05E-04 2.44E+02 0.074 

4.75 11.03 0.035 3.555 2.35E-02 6.82E-05 7.58E-05 5.13E+02 0.039 
2.36 7.53 0.020 1.77 2.90E-03 8.42E-06 1.88E-05 2.32E+03 0.044 
1.18 5.58 0.017 0.89 3.69E-04 1.07E-06 4.75E-06 1.54E+04 0.073 
0.6 3.93 0.014 0.45 4.77E-05 1.38E-07 1.22E-06 9.94E+04 0.121 
0.3 2.55 0.008 0.225 5.96E-06 1.73E-08 3.04E-07 4.48E+05 0.136 

0.15 1.78 0.006 0.1125 7.46E-07 2.16E-09 7.59E-08 2.54E+06 0.193 
0.075 1.23 0.012 0.0375 2.76E-08 8.01E-11 8.44E-09 1.53E+08 1.291 

γp = 2.89 E+03 kg/m3

γa = 1.02E+03 kg/m3

Total surface area per unit weight= 2.054 m2 /kg 
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Table B-3. Specific surface computation for the finer gradation 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
Sieve 

Opening 
(mm) 

Percent 
Passing 

Retained 
(kg/kg) 

Average 
Particle 

Size 
(mm) 

Volume 
Per 

Particle 
(cm3) 

Weight  
Per 

Particle 
(kg) 

Surface 
Area 

Per Particle 
(m2) 

Number of 
Particles 
Per Unit 
Weight 
 (ni/kg) 

Surface 
Area Per 

Unit 
Weight 
m2/kg 

19 47.05 0.060 15.75 2.05E+00 5.93E-03 1.49E-03 1.01E+01 0.015 
12.5 41.05 0.035 11 6.97E-01 2.02E-03 7.26E-04 1.73E+01 0.013 
9.5 37.55 0.045 7.125 1.89E-01 5.49E-04 3.05E-04 8.15E+01 0.025 

4.75 33.08 0.105 3.555 2.35E-02 6.82E-05 7.58E-05 1.54E+03 0.117 
2.36 22.58 0.059 1.77 2.90E-03 8.42E-06 1.88E-05 6.95E+03 0.131 
1.18 16.73 0.050 0.89 3.69E-04 1.07E-06 4.75E-06 4.62E+04 0.220 
0.6 11.78 0.041 0.45 4.77E-05 1.38E-07 1.22E-06 2.98E+05 0.362 
0.3 7.65 0.023 0.225 5.96E-06 1.73E-08 3.04E-07 1.34E+06 0.408 

0.15 5.33 0.017 0.1125 7.46E-07 2.16E-09 7.59E-08 7.63E+06 0.580 
0.075 3.68 0.037 0.0375 2.76E-08 8.01E-11 8.44E-09 4.59E+08 3.872 

γp = 2.89 E+03 kg/m3

γa = 1.02E+03 kg/m3

Total surface area per unit weight, SSA = 5.742 m2 /kg 
 

B.3 BINDER CONTENT DETERMINATION 

With knowledge of total specific surface area, the optimum binder contents for 

the three gradations were estimated and provided in Table B-4. The procedure for 

computation of the asphalt content is as follows:   

1. The weight of asphalt binder per unit weight of aggregates is determined as:  

bP SSA T aγ= × ×        (B-1) 

where Pb is weight of asphalt per unit weight of aggregate (kg/kg); SSA is the 

total specific surface area per unit weight of aggregate (m2/kg); T is the asphalt 

film thickness, which increases with the aggregate size and is assumed in the 

range of 5.5 to 9 microns; and γa is the specific weight of asphalt, which is 

1.02E+03 kg/m3. 
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2. The percent asphalt content (fa) by weight of total mix is then determined as: 

(%) 100
1

b
a

b

Pf
P

= ×
+

       (B-2) 

Table B-4.The estimated percent asphalt content of the design, coarser, and the finer 
gradations. 

Gradation SSA 
m2 /kg 

 
Assumed Film 
Thickness, T 

(micron) 

 
Weight of 

asphalt Per 
Unit Weight of 

aggregates,  
Pb (kg/kg) 

 
Asphalt 

Content by 
Total Weight of 
Mixture,  fa (%) 

 

Design 7.796 6.6 0.052 4.92 

Coarser 2.054 9 0.019 1.85 

Finer 5.742 5.5 0.032 3.12 
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APPENDIX C -  TRANSFORMATION CURVES 

C.1 INTRODUCTION 

In order to simulate virtual homogeneous and inhomogeneous specimens, it is 

necessary to transform uniform random variates to random particle positions within the 

specimens.  Transformation curves are used for this purpose. For example, a uniform 

variate, 0 to 1, can be transformed to a location (0 to 150 mm) that positions the center of 

a particle within the vertical boundaries of the specimen. To create virtual specimens that 

reflect an inhomogeneous condition requires a different transformation curve than would 

be needed for the homogeneous condition. Also, different forms of inhomogeneity utilize 

different transformation curves. The purpose of this appendix is to provide details on the 

development of the transformation curves used herein. Specifically, the sections discuss 

detailed development of the transformation curves for the homogeneous, vertically 

inhomogeneous, and radially inhomogeneous specimens.  

C.2 TRANSFORMATION CURVES FOR VERTICAL 
POSITIONING OF AGGREGATES 

C.2.1 Vertically Homogeneous 

In a vertically homogeneous specimen, aggregates have an equal chance of 

residing in any vertical position throughout the height of the specimen. A first-degree 

polynomial is utilized to transform a uniform random number between 0 and 1 to a 

random vertical position through the specimen. The process of developing the 

relationship that associates a random vertical position to a random number is as follows: 

1. A linear model is selected to represent the transformation curve: 
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i ih au b= +         (C-1) 

where hi is the vertical position of the aggregate centroid, ui is the random number 

between 0 and 1, and a and b are the coefficients that need to be evaluated. 

2. It is necessary to set limits on the specimen height. The top and bottom limits that 

would ensure that each aggregate lies fully within the specimen are:  

2
i

b
dh =         (C-2) 

2
i

t s
dh H= −         (C-3)

where hb is the bottom limit and ht is the top limit; Hs is the height of the 

specimen, which is 150 mm; and di is the diameter of the aggregates that is being 

positioned.  

3. Solve for a and b in Equation (C-1) by correlating the limits of random numbers (0 

and 1) with the top and bottom limits of the specimen: 

2
i

i
dh b= =     for 0iu =     (C-4)  

2
i

i s
dh a b H= + = −   for 1iu =     (C-5)  

4. The values of a and b from Equations (C-4) and (C-5) along with the value of Hs 

are substituted into Equation (C-1) which produces the transformation curve for 

the vertically homogeneous specimen: 

 (150 ) 2
i

i i i
dh d u= − +       (C-6) 
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C.2.2 Two-Layer Vertical Inhomogeneity: Coarse Particles 

In two-layer vertical inhomogeneity, coarse aggregates have a greater chance of 

being positioned in the bottom portion of the specimen. In order to place the coarse 

aggregates in the specimen, a random number between 0 and 1 is used with each coarse 

aggregate. A second-degree polynomial is utilized to transform the uniform random 

number to a vertical position within the specimen so that a large particle has a 75% 

probability of residing in the bottom portion and a 25% probability of being located in the 

top portion of the specimen. Based on the estimate of the volume of the coarser mixture, 

the height of the bottom portion was determined to be 53% of total height of the 

specimen (Section 3.3.1.3). The process of developing the relationship that relates the 

vertical position of coarse aggregates to a random number is as follows: 

1. A second-degree polynomial is selected: 

2
i i ih au bu c= + +        (C-7) 

where h  is the vertical position of the aggregate centroid; u  is the random number 

between 0 and 1; and a, b, and c are the coefficients 

i i

that need to be evaluated.  

2. Values for a, b, and c in Equation (C-7) are obtained by associating the limits of 

random numbers with the top and bottom limits of the specimen (Equations (C-2) 

and (C-3)) and with the probability of the coarse aggregates being located at the 

bottom portion of the specimen:  

2
i

i
dh c= =       for  0iu =    (C-8)

2
i

i s
dh a b c H= + + = −   for 1iu =    (C-9) 

2(0.75) (0.75) 0.53i sh a b c H= + + = 0.75iu for =   (C-10) 

 382



3. The values of a, b, and c from Equations (C-8), (C-9), and (C-10) along with the 

value of Hs are substituted into Equation (C-7) which produces the transformation 

curve for the placement of the coarse particles in a two-layer vertically 

inhomogeneous specimen: 

2(177.6 1.33 ) (27.6 0.33 ) 2
i

i i i i
dh d u d u= − − − +i

h a b c H= + + = 0.25iu

   (C-11) 

C.2.3 Two-Layer Vertical Inhomogeneity: Fine Particles 

 In a two-layer vertically inhomogeneous specimen, the fine aggregates that have 

a diameter smaller than 4.75 mm have a greater chance of being positioned in the upper 

portion of the specimen than those in the 4.75 to 19 mm range. In order to determine a 

vertical position of a fine aggregate in the specimen, a random number between 0 and 1 is 

associated with each fine aggregate. A second-degree polynomial is utilized to transform 

the random number to a vertical position within the specimen with a 25% probability of 

the particle to reside in the bottom portion and 75% probability to reside in the top 

portion of the specimen. The process of developing the relationship that relates the 

vertical position of the fine aggregate to a random number is as follows: 

1. A second-degree polynomial is selected (Equation (C-7)). 

2. Values for a, b, and c in Equation (C-7) are obtained by associating the limits of 

random numbers with the top and bottom limits of the specimen (Equations (C-8) 

and (C-9)) and with the probability of the fine aggregates in the lower portion of 

the specimen:  

2(0.25) (0.25) 0.53i s  for =   (C-12) 
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3. The values of a, b, and c from Equations (C-8), (C-9), and (C-12), along with the 

value of Hs, are substituted into Equation (C-7) which results in the equation of the 

transformation curve for the placement of the fine particles in a two-layer 

vertically inhomogeneous specimen: 

2( 222.4 1.33 ) (372.4 2.33 ) 2
i

i i i i
dh d u d u= − + + − +i    (C-13) 

C.2.4 Three-Layer Vertical Inhomogeneity: Coarse Particles 

In three-layer vertical inhomogeneity, the particles in the original gradation are 

separated into coarse, fine, and medium gradations. The coarse particles have the greatest 

chance of being positioned in the bottom third portion and the least chance of being in the 

top third portion of the specimen. The chances of the fine and coarse aggregates to reside 

in the middle third of the specimen are the same.  

To place the coarse aggregates in a three-layer vertically inhomogeneous 

specimen, a random number between 0 and 1 is used with each coarse aggregate. A 

second-degree polynomial is utilized to transform the uniform random number to a 

vertical position within the specimen so that a particle has a 52% probability of residing 

in the bottom third portion, a 33% probability of being located in the middle third 

portion, and a 15% probability of being located in the top third portion of the specimen. 

The height of the bottom portion was determined to be 34%, and the heights of the 

middle and upper portions were each determined to be 33% of the total height of the 

specimen. These values were computed based on the estimate of the volume of the 

coarse, medium, and the fine mixtures (Section 3.3.2.3). The process of developing the 
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relationship that relates the vertical position of the coarse aggregate in a three-layer 

vertically inhomogeneous specimen to a random number is as follows: 

1. A second-degree polynomial is selected (Equation (C-7)). 

2. Values for a, b, and c in Equation (C-7) are obtained by associating the limits of 

random numbers with the top and bottom limits of the specimen (Equations (C-8) 

and (C-9)) and with the probabilities of the coarse aggregates being located in the 

bottom two-thirds and the bottom third of the specimen: 

2(0.85) (0.85) 0.67i sh a b c H= + + = 0.85iu for =   (C-14) 

2(0.52) (0.52) 0.34i sh a b c H= + + = 0.52iu for =   (C-15) 

3. Subtract Equation (C-15) from Equation (C-14) to obtain the relationship between 

the coefficients “a” and “b”: 

(0.45) (0.33) 0.33 sa b+ = H       (C-16) 

4. The values of a, b, and c from (C-8), (C-9), and (C-16) along with the value of Hs 

are substituted into Equation (C-7) which produces the transformation curve for 

the placement of the coarse particles in a three-layer vertically inhomogeneous 

specimen: 

2(2.75 ) (150.0 3.75 ) 2
i

i i i i i
dh d u d u= + − +     (C-17) 

C.2.5 Three-Layer Vertical Inhomogeneity: Fine Particles 

In three-layer vertical inhomogeneity, fine aggregates (smaller than 4.75 mm in 

diameter) have the smallest chance of being positioned in the bottom third portion and the 

highest chance of being in the top third portion of the specimen. To place the fine 

aggregates in the specimen a uniform random number between 0 and 1 is used for each 
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fine aggregate. A second-degree polynomial is utilized to transform the uniform random 

number to a vertical position within the specimen so that a particle has a 15% probability 

of residing in the bottom third portion, a 33% probability of being located in the middle 

third portion, and a 52% probability of being located in the top third portion of the 

specimen. The height of the lower, middle, and the upper portions are 34%, 33%, and 

33% of total height of the specimen, respectively (Section 3.3.2.3). The process of 

developing the relationship that relates the vertical position of the fine aggregate to a 

random number is as follows: 

1. A second-degree polynomial is selected (Equation (C-7)). 

2. Values for a, b, and c in Equation (C-7) are obtained by associating the limits of 

random numbers with the top and bottom limits of the specimen (Equations (C-8) 

and (C-9)) and with the probabilities of the fine aggregates being located at the 

lower two-third and the lower third of the specimen: 

2(0.48) (0.48) 0.67i sh a b c H= + + = 0.48iu for =   (C-18) 

2(0.15) (0.15) 0.34i sh a b c H= + + = 0.15iu for =   (C-19) 

3. Subtract Equation (C-19) from Equation (C-18) to obtain the relationship between 

the coefficients “a” and “b”: 

(0.21) (0.33) 0.33 sa b+ = H       (C-20) 

4. The values of a, b, and c from Equations (C-8), (C-9), and (C-20) along with the 

value of Hs are substituted into Equation (C-7) which produces the transformation 

curve for the placement of the fine particles in a three-layer vertically 

inhomogeneous specimen: 
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2( 2.75 ) (150 1.75 ) 2
i

i i i i i
dh d u d u= − + + +     (C-21) 

C.3 TRANSFORMATION CURVES FOR RADIAL POSITIONING 
OF AGGREGATES 

C.3.1 Radial Homogeneity 

In a radially homogeneous specimen, all aggregates have an equal chance of 

being located at any lateral position within the specimen. Assigning a random radial 

position to a random number requires a linear equation. The process of developing the 

transformation curve is as follows: 

1. A linear equation is selected: 

i ir au b= +         (C-22) 

where ri is the radial position of the aggregate centroid, ui is the uniform random 

number between 0 and 1, and a and b are the coefficients that need to be 

evaluated. 

2. It is necessary to set limit on the outer edge of the specimen. The outer edge limit 

that would ensure that the aggregates reside fully within the wall of the specimen 

is:  

2
i

e s
dr R= −         (C-23) 

where re is the outer limit for positioning the aggregate centroid; Rs is the radius 

of the specimen, which is 75 mm; and di is the diameter of the aggregate that is 

being positioned.  

3. The limits of random numbers are associated with the outer edge limit.  
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0ir b= =       for 0iu =    (C-24) 

2
i

i s
dr a R= = −    for 1iu =    (C-25) 

4. Solve for a and b in Equation (C-22) by substituting them from Equations (C-24) 

and (C-25), which produces the transformation curve for a radially homogeneous 

specimen: 

(75 )2
i

i
dr = − iu          (C-26)  

C.3.2 Radial Inhomogeneity: Coarse Particles  

In a radially inhomogeneous specimen, the coarse aggregates have a greater 

chance of being positioned in the ring of the specimen. For positioning the coarse 

aggregates, a second-degree polynomial is used to transform a uniform random number 

between 0 and 1 to a radial position such that a particle has a 75% probability of being 

positioned in the ring and a 25% probability of being located in the core. The thickness of 

the ring and the radius of the core were determined to be 23.5 mm and 50.5 mm, 

respectively (Section 3.4.1.3). These values were computed based on the estimates of the 

volumes of the coarser and the finer mixtures. The process of developing the 

transformation curve for relating the radial position of a coarse particle to a random 

number is as follows: 

1. A second-degree polynomial is selected: 

2
i i ir au bu c= + +        (C-27) 

where ri is the radial position of the aggregate centroid; ui is the random number 

between 0 and 1; and a, b, and c are the coefficients that need to be evaluated. 

 388



2. Solve for a, b, and c in Equation (C-27) by associating the limits of random 

numbers with the outer and inner limits of the specimen (Equations (C-23) and 

(C-24)) and with the probability of the aggregates residing in the core of the 

specimen:  

0ir c= =       for  0iu =    (C-28) 

2
i

i s
dr a b c R= + + = −   for 1iu =    (C-29) 

2(0.25) (0.25) 50.5ir a b c= + + =   for 0.25iu =   (C-30) 

3. The values of a, b, and c from (C-28), (C-29), and (C-30) are substituted into 

Equation (C-27) resulting in the transformation curve for the placement of the 

coarse particles in a radially inhomogeneous specimen: 

2( 169.33 0.67 ) (244.33 0.542 )i i ir d u= − − + + i id u    (C-31) 

C.3.3 Radial Inhomogeneity: Fine Particles 

In a radially inhomogeneous specimen, the fine aggregates (smaller than 4.75 mm 

in diameter) have a greater chance of being in the core of the specimen. A second-degree 

polynomial is utilized to transform a uniform random number between 0 and 1 to a 

random radial position in the specimen so that a fine particle has a 75% probability of 

residing in the core and a 25% probability of being located in the ring of the specimen. 

The process of developing the transformation curve to relate a fine aggregate radial 

position to a random number is as follows: 

1. A second-degree polynomial is selected (Equation (C-27)). 

2. Solve for a, b, and c in Equation (C-27) by associating the limits of random 

numbers with the inner and outer limits of the specimen (Equations (C-28) and 
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(C-29)) and with the probability of the fine aggregates being located in the core of 

the specimen: 

2(0.75) (0.75) 50.5ih a b c= + + =   for 0.75iu =   (C-32) 

3. The values of a, b, and c from (C-28), (C-29), (C-32) are substituted into Equation 

(C-27) which produces the transformation curve for the placement of the fine 

particles in a radially inhomogeneous specimen: 

2(25.33 2 ) (49.67 1.5 )i i ir d u= − + + i id u     (C-33)
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APPENDIX D - POSITION OF THE INNER RECTANGLE 
IN INNER-OUTER AVERAGE DIAMETER METHOD 

  The inner-outer average diameter method (Tashman et al., 2001) compares the 

average diameter of the aggregates in the inner and in the outer portions of vertical slice 

faces of a specimen. The dimensions and the location of the inner rectangle are 

determined based on two conditions: first, the area of the inner portion is equal to the area 

of the outer portion; second, the proportion of the dimensions of the inner portion is kept 

the same as the proportion of the dimensions of the slice face. The determination of the 

coordinates of the inner and outer rectangles is as follows:  

1.  The two conditions mentioned above are stated as follow: 

1 1
1

2w h WH=         (D-1) 

1

1

w W
h H

=         (D-2)  

where w1 and h1 are the width and height of the inner rectangle and W and H are 

the width and height of the slice face.  

2. Substituting w1 from Equation (D-1) into Equation (D-2) solves for h1: 

2
12

WH W
h H

=         (D-3) 

1 2
Hh =         (D-4) 

3. Substituting h1 from (D-4) into either (D-1) or (D-2) results in w1: 

1 2
Ww =         (D-5) 
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4. Based on the dimensions of the inner rectangle, the coordinates of the inner 

rectangle are determined as follows: 

1 1: ( , )
2 2 2 2

W w H hA − −  

1 1: ( , )
2 2 2 2

W w H hB + −  

1 1: ( , )
2 2 2 2

W w H hC − +  

1 1: ( , )
2 2 2 2

W w H hD + +  

5. Substituting h1 and w1 from Equations (D-4) and (D-5), respectively, will result in 

the coordinates of the inner rectangle in terms of the dimensions of the slice face 

(W, H): 

: ( , )
2 22 2 2 2

W W H HA − −  

: ( , )
2 22 2 2 2

W W H HB + −  

: ( , )
2 22 2 2 2

W W H HC − +  

: ( , )
2 22 2 2 2

W W H HD + +  
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Figure D-1. Position of the inner rectangle within the vertical slice face 
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APPENDIX E - AIR VOID MEASUREMENTS 

E.1 INTRODUCTION 

 The air void contents of homogeneous and inhomogeneous specimens were 

measured to ensure that the overall air void content of the specimens both within and 

between the homogeneous and inhomogeneous sets was similar. The conventional 

laboratory method for the measurement of the air void is the saturated-surface dry (SSD) 

method (AASHTO 1998b), which uses the bulk specific gravity measurements. However, 

this method is only appropriate for homogeneous specimens. For inhomogeneous 

specimens where one portion of the specimen is coarser than the other portion, the bulk 

specific gravity would not be measured correctly. The large surface voids extend through 

the specimen and connect to the inner voids. Water can then penetrate through the 

interconnected voids, which causes the air void measurements to be underestimated. 

Therefore, different methods of measuring air voids were required for the inhomogeneous 

specimens.   

Because of the potential error with the SSD method, two other methods were 

examined for the air void measurement of inhomogeneous specimens: the vacuum 

sealing (Corelok) and image analysis methods. In the vacuum-sealing method, a vacuum 

chamber is used to seal the specimen within a special plastic bag to prevent water from 

penetrating into the sample. Research by Buchanan (2001) has indicated that the Corelok 

vacuum-sealing device provides a better measure of internal air void content of coarse 

graded mixtures than the conventional SSD method.  
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The image analysis was used to measure the air void content from the x-ray 

scanned images of the specimens. The advantage of this method is that the air voids are 

measured using the exact geometric dimensions of the voids at the surface and within the 

specimen and there is no approximation involved. In addition, image analysis makes 

possible separate measurements of the air void contents of different portions of the 

specimens. The air void contents of the coarser and the finer portions of the specimens 

are additional information on the level of inhomogeneity of the specimens.   

E.2 AIR VOID MEASUREMENT OF SPECIMENS EVALUATED 
FOR VERTICAL INHOMOGENEITY 

The bulk specific gravity of vertically inhomogeneous and corresponding 

homogeneous specimens was evaluated using SSD, Corelok, and image analyses. The 

results are provided in Table E-1. It is indicated in the table that the SSD, Corelok, and 

image analysis methods provided comparable air void measurements of homogeneous 

specimens (averages of 6.45%, 6.21%, and 6.92%). However, for the inhomogeneous 

specimens the SSD underestimates the air voids by about 2% (average of 4.84). This 

results because the surface of inhomogeneous specimens was extremely porous with the 

pores extensively extended through the specimen. When the specimens are submerged in 

water during the SSD measurement, the surface pores are filled with water and excluded 

from the voids. On the other hand, Corelok slightly overestimates the specimen air void 

contents (average of 7.4 %) because the use of plastic bags as part of the measurement 

process smoothes out the surface of the specimen, which adds some voids to the existing  
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Table E-1- Air void contents (AVC, %) of the homogeneous (H-SPT) and vertically 
inhomogeneous (I-SPT) specimens using SSD, Corelok, and image analysis methods  

Specimens AVC 
(SSD) 

AVC 
(Corelok)

Image 
Analysis Specimens AVC (SSD) AVC 

(Corelok) 
Image 

Analysis 

H-SPT1 6.33 6.14 6.15 I-SPT1 4.66 7.53 6.84 

H-SPT2 6.33 6.18 6.78 I-SPT2 4.49 7.88 8.13 

H-SPT3 6.55 6.14 7.13 I-SPT3 4.86 7.05 6.73 

H-SPT4 6.48 5.85 7.45 I-SPT4 5.08 7.52 7.10 

H-SPT5 6.85 6.81 7.23 I-SPT5 5.00 7.71 7.72 

H-SPT6 6.25 6.07 6.65 I-SPT6 4.80 7.32 7.72 

H-SPT7 6.14 5.81 6.31 I-SPT7 4.92 7.12 7.03 

H-SPT8 6.70 6.70 7.67 I-SPT8 4.89 7.21 7.60 

AVG 6.45 6.21 6.92 AVG 4.84 7.42 7.36 

STD 0.24 0.36 0.54 STD 0.19 0.29 0.48 

 

surface voids. The measurement of the air voids using image analysis was comparable to 

the Corelok measurements, with the averages of 7.4 % and 7.36% using Corelock and 

image analysis, respectively. The results of image analysis also indicate that the overall 

air void values of homogeneous and inhomogeneous specimens were similar (average of 

6.92% and 7.36%, respectively), indicating that the intent of having homogeneous and 

inhomogeneous specimens with similar overall air void contents was satisfied. 

 In addition to the overall air voids of the specimens, the air voids of the lower 

and the upper portions were also measured using image analysis (Table E-2). Despite 

similar overall air voids of homogeneous and inhomogeneous specimens, the difference 

between the air voids of the lower and the upper portions of inhomogeneous specimens 

was significantly greater than those of homogeneous specimens with an average 

difference of 11% compared to the average difference of 1%. 
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Table E-2- Overall air void contents and air void contents of the coarser and the finer 
portions of homogeneous gyratory compacted specimens (H-SPT) and vertically 
inhomogeneous gyratory compacted specimens (I-SPT) using image analysis of CT images  

Specimens Lower Upper Overall Specimens Lower Upper Overall 

H-SPT1 7.52 6.15 6.84 I-SPT1 13.31 0.36 6.84 

H-SPT2 8.17 6.78 7.48 I-SPT2 13.73 2.54 8.13 

H-SPT3 8.58 7.13 7.86 I-SPT3 13.06 0.41 6.73 

H-SPT4 7.87 7.45 7.66 I-SPT4 13.09 1.11 7.10 

H-SPT5 8.82 7.23 8.03 I-SPT5 12.10 3.34 7.72 

H-SPT6 7.48 6.65 7.07 I-SPT6 12.89 2.55 7.72 

H-SPT7 7.74 6.31 7.03 I-SPT7 12.66 1.40 7.03 

H-SPT8 7.89 7.67 7.78 I-SPT8 12.83 2.37 7.60 

AVG 8.01 6.92 7.47 AVG 12.96 1.76 7.36 

STD 0.48 0.54 0.44 STD 0.48 0.48 0.48 

 

E.3 AIR VOID MEASUREMENT OF SPECIMENS EVALUATED 
FOR RADIAL INHOMOGENEITY  

The bulk specific gravity of radially inhomogeneous specimens was evaluated 

using SSD, Corelok, and image analyses. Since the air void values of homogeneous 

specimens were not different when measured with SSD and Corelok, the air void 

measurements for this set of specimens were only conducted by SSD and image analysis.    

The air void values are provided in Table E-3. As indicated in the table, the air void 

values of the radially inhomogeneous specimens were underestimated by SSD (average 

of 4.03%) and overestimated by the Corelok (average of 8.65%). The values provided by 

the image analysis were on average in agreement with the design air void values and  
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Table E-3- Air void contents (AVC, %) of the homogeneous linearly kneaded specimen 
(L-SST), homogeneous gyratory compacted specimen (H-SST), and radially inhomogeneous 
gyratory compacted specimens (I-SST); “S” represents specimens 

S AVC 
(SSD) 

Image 
Analysis S AVC 

(SSD
Image 

Analysis S AVC 
(SSD) 

AVC 
(Corelok) 

Image 
Analysis 

L-SST1 6.99 8.57 H-SST1 6.54 7.08 I-SST1 4.72 8.66 5.60 

L-SST2 6.60 8.03 H-SST2 6.75 5.91 I-SST2 3.67 9.03 6.84 

L-SST3 6.83 7.03 H-SST3 7.39 7.16 I-SST3 4.87 8.14 5.68 

L-SST4 6.22 7.08 H-SST4 6.50 6.34 I-SST4 3.11 8.88 5.46 

L-SST5 6.81 6.25 H-SST5 6.85 6.91 I-SST5 4.62 7.92 7.16 

L-SST6 6.11 6.09 H-SST6 6.07 6.85 I-SST6 3.42 9.47 5.74 

L-SST7 6.99 5.63 H-SST7 6.93 6.75 I-SST7 4.53 7.66 6.20 

L-SST8 6.55 8.75 H-SST8 6.27 6.93 I-SST8 3.27 9.47 7.13 

AVG 6.64 7.18 AVG 6.66 6.74 AVG 4.03 8.65 6.23 

STD 0.33 1.17 STD 0.41 0.42 STD 0.73 0.69 0.72 

 

were comparable for the homogeneous linearly kneaded, homogeneous gyratory 

compacted, and inhomogeneous specimens (averages of 7.18, 6.74, and 6.23, 

respectively). 

In addition to the overall air voids, the air voids of the ring and the core portions 

were measured separately using image analysis. The results are provided in Table E-4.  

The analyses indicated that there is no difference between the air voids of the ring and the 

core portions of the homogeneous linear kneading specimens (averages of 7.02 and 7.38, 

respectively). However, analyses of the homogeneous gyratory compacted specimens and 

radially inhomogeneous specimens indicated that the air void contents of the ring and 

core portions are significantly difference. The air void of the ring portion of the  
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Table E-4- Overall air void contents and air void contents of the coarser and the finer 
portions of homogeneous linearly kneaded (L-SST), homogeneous gyratory compacted    
(H-SST), and radially inhomogeneous gyratory compacted (I-SST) specimens measured 
using image analysis of CT scanned images; “S” represents specimens 

S  Ring Core Overall S  Ring Core Overall S  Ring Core Overall

L-SST1 8.68 8.42 8.57 H-SST1 9.37 4.35 7.08 I-SST1 9.79 0.35 5.60 

L-SST2 8.29 7.70 8.03 H-SST2 7.66 3.35 5.91 I-SST2 12.14 0.22 6.84 

L-SST3 7.52 6.41 7.03 H-SST3 10.70 3.85 7.16 I-SST3 10.00 0.29 5.68 

L-SST4 6.91 7.30 7.08 H-SST4 9.31 3.65 6.34 I-SST4 9.75 0.11 5.46 

L-SST5 5.69 6.95 6.25 H-SST5 9.37 3.93 6.91 I-SST5 11.01 2.34 7.16 

L-SST6 6.11 6.06 6.09 H-SST6 9.49 3.75 6.85 I-SST6 10.07 0.32 5.74 

L-SST7 5.03 6.39 5.63 H-SST7 8.82 4.02 6.75 I-SST7 9.34 2.27 6.20 

L-SST8 7.92 9.78 8.75 H-SST8 9.05 4.44 6.93 I-SST8 11.40 1.80 7.13 

AVG 7.02 7.38 7.18 AVG 9.22 3.92 6.74 AVG 10.44 0.96 6.23 

STD 1.31 1.24 1.17 STD 0.84 0.36 0.42 STD 0.97 0.99 0.72 

 

homogeneous gyratory specimens were on average 2.5 times greater than the air void of 

the core portion, indicating that the gyratory compactor induces inhomogeneity in the air 

void distribution of the compacted specimens. The air void contents of the ring portions 

of radially inhomogeneous specimens was on average ten times greater than the air void 

contents of the core portions, which was the result of the intended radial inhomogeneity 

that was created.
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APPENDIX F - ABBREVIATIONS AND NOTATIONS 

Ahl = Total area of six horizontal slice faces in the lower sampling portion of a 

specimen evaluated for two-layer vertical inhomogeneity. 

Ahu = Total area of six horizontal slice faces in the upper sampling portion of a 

specimen evaluated for two-layer vertical inhomogeneity.  

AhT = Total area of 12 horizontal slice faces in a specimen evaluated for two-layer 

vertical inhomogeneity. 

Ahv = Area of one horizontal slice face of a specimen evaluated for two-layer 

vertical inhomogeneity. 

Ahj = Total area of four horizontal slices in the jth portion of a specimens evaluated 

for three-layer inhomogeneity. 

Alvi = Area of the lower portion of the ith vertical slice face of a specimen 

evaluated for two-layer vertical inhomogeneity. 

Auvi = Area of the upper portion of the ith vertical slice face of a specimen 

evaluated for two-layer vertical inhomogeneity. 

Alv = Total area of lower portions of nine vertical slice faces of a specimen 

evaluated for two-layer vertical inhomogeneity. 

Auv = Total area of upper portions of nine vertical slice faces of a specimen 

evaluated for two-layer vertical inhomogeneity. 
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Arh = Total area of the rings on the three horizontal slice faces of a specimen 

evaluated for radial inhomogeneity. 

Ach = Total area of the cores on the three horizontal slice faces of a specimen 

evaluated for radial inhomogeneity. 

Ahh = Total area of the rings and cores of the three horizontal slice faces of a 

specimen evaluated for radial inhomogeneity. 

Arvi = Area of the ring on the ith vertical slice face of a specimen evaluated for 

radial inhomogeneity. 

Acvi = Area of the core on the ith vertical slice face of a specimen evaluated for 

radial inhomogeneity. 

Arv = Total area of the rings on the nine vertical slice faces of a specimen 

evaluated for radial inhomogeneity. 

Acv = Total Area of the cores on the nine vertical slice faces of a specimen 

evaluated for radial inhomogeneity. 

Avh = Total area of the rings and cores of nine vertical slice faces of a specimen 

evaluated for radial inhomogeneity.  

2lA  = Population value of the total coarse aggregate area in the lower portion of 

specimens evaluated for two-layer vertical inhomogeneity. 
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2uA  = Population value of the total coarse aggregate area in the upper portion of 

specimens evaluated for two-layer vertical inhomogeneity. 

3lA   = Population value of the total coarse aggregate area in the lower portion of a 

specimen evaluated for three-layer vertical inhomogeneity.  

3mA   = Population value of the total coarse aggregate area in the middle portion of 

a specimen evaluated for three-layer vertical inhomogeneity. 

3uA   = Population value of total coarse aggregate area in the upper portion of a 

specimen evaluated for three-layer vertical inhomogeneity.  

rA = Population value of total coarse aggregate area in the ring portion of 

specimens evaluated for radial inhomogeneity.  

cA = Population value of the total coarse aggregate area in the core portion of 

specimens evaluated for radial inhomogeneity. 

ahli = Total area of coarse aggregates on the ith horizontal slice face in the lower 

portion of a specimen evaluated for two-layer vertical inhomogeneity, where i = 1, 2, 3, 

4, 5, 6.  

ahui = Total area of coarse aggregates on the ith horizontal slice face in the upper 

portion of a specimen evaluated for two-layer vertical inhomogeneity, where i = 1, 2, 3, 

4, 5, 6. 
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ahl = Total coarse aggregate area on six horizontal slice faces in the lower portion 

of a specimen evaluated for two-layer vertical inhomogeneity. 

ahu = Total coarse aggregate area on six horizontal slice faces in the upper portion 

of a specimen evaluated for two-layer vertical inhomogeneity.  

ahv = Total coarse aggregate area from the 12 horizontal slice faces of a specimen 

evaluated for two-layer vertical inhomogeneity.  

ahji= The total area of coarse aggregates in the ith horizontal slice face of the jth 

portion of a specimen evaluated for three-layer vertical inhomogeneity, where i= 1, 2, 3, 

4 and j = 1, 2, 3.  

alvi = Total area of the coarse aggregates on the lower portion of the ith vertical 

slice face of a specimen evaluated for two-layer vertical inhomogeneity.  

auvi = Total area of the coarse aggregates on the upper portion of the ith vertical 

slice face of a specimen evaluated for two-layer vertical inhomogeneity.  

alv = Total coarse aggregate area in the lower portions of the nine vertical slice 

faces of a specimen evaluated for two-layer vertical inhomogeneity.  

auv = Total coarse aggregate area in the upper portions of the nine vertical slice 

faces of a specimen evaluated for two-layer vertical inhomogeneity.  

avv = Total coarse aggregate area from the lower and upper portions of nine 

vertical slices of a specimen evaluated for two-layer vertical inhomogeneity.  
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apli = Aggregate area proportion in lower portion of the ith vertical slice face of a 

specimen evaluated for two-layer vertical inhomogeneity.  

apui = Aggregate area proportion in upper portion of the ith vertical slice face of a 

specimen evaluated for two-layer vertical inhomogeneity. 

arhi = Total area of coarse aggregates on the ring portion of the ith horizontal slice 

face of a specimen evaluated for radial inhomogeneity, where i = 1, 2, 3.  

achi = Total area of coarse aggregates on the core portion of the ith horizontal slice 

face of a specimen evaluated for radial inhomogeneity, where i = 1, 2, 3.  

ahhi = Total area of coarse aggregates on the ring and core portions of the ith 

horizontal slice face of a specimen evaluated for radial inhomogeneity, where i = 1, 2, 3.  

ahh = Total coarse aggregate area from the ring and core portions of three 

horizontal slice faces of a specimen evaluated for radial inhomogeneity.  

ar1i = Total area of coarse aggregates on the first ring strip of the ith vertical slice 

face of a specimen evaluated for radial inhomogeneity, where i = 1, 2, …, 9.  

ar2i = Total area of coarse aggregates on the second ring strip of the ith vertical 

slice face of a specimen evaluated for radial inhomogeneity, where i = 1, 2, …, 9.  

arvi = Total area of coarse aggregates on the two ring portions of the ith vertical 

slice face of a specimen evaluated for radial inhomogeneity, where i = 1, 2, …, 9.  

acvi = Total area of coarse aggregates on the core portion of the ith vertical slice 

face of a specimen evaluated for radial inhomogeneity, where i = 1, 2, …, 9.  
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avhi = Total area of coarse aggregates on ring and core portions of the ith vertical 

slice of a specimen evaluated for radial inhomogeneity, where i = 1, 2, …, 9.  

avh = Total coarse aggregate area from the ring and core portions of nine vertical 

slice faces of a specimen evaluated for radial inhomogeneity.  

pria  = Total coarse aggregate area proportion from the ring portion of the ith 

vertical slice face of a specimen evaluated for radial inhomogeneity.  

pcia  = Total coarse aggregate area proportion from the core portion of the ith 

vertical slice face of a specimen evaluated for radial inhomogeneity.  

la  = Mean of total coarse aggregate areas from the six horizontal slices in the 

lower portion of a specimen evaluated for two-layer vertical inhomogeneity.  

ua  = Mean of total coarse aggregate areas from the six horizontal slices in the 

upper portion of a specimen evaluated for two-layer vertical inhomogeneity.  

hja = Mean of total coarse aggregate area from the four horizontal slice faces in 

the jth sampling portion of a specimen evaluated for three-layer vertical inhomogeneity, 

where j = 1, 2, 3.  

ha  = Grand mean of total aggregate areas from the twelve horizontal slices in the 

three sampling portions of a specimen evaluated for three-layer vertical inhomogeneity. 

vva  = Mean coarse aggregate area from the lower and upper portions of nine 

vertical slice faces of a specimen evaluated for two-layer vertical inhomogeneity.  
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pla  = Mean of total aggregate area proportion in the lower portions of the nine 

vertical slices of a specimen evaluated for two-layer vertical inhomogeneity.  

pua  = Mean of total aggregate area proportion in the upper portions of the nine 

vertical slices of a specimen evaluated for two-layer vertical inhomogeneity.  

hha  = Mean of coarse aggregate area from the ring and core portions of the three 

horizontal slice faces of a specimen evaluated for radial inhomogeneity.  

ra  = Mean of total coarse aggregate areas from the ring portions of three 

horizontal slice faces of a specimen evaluated for radial inhomogeneity.  

ca  = Mean of total coarse aggregate areas from the core portions of the three 

horizontal slice faces of a specimen evaluated for radial inhomogeneity.  

vha  = Mean coarse aggregate area from ring and core portions of the nine vertical 

slice faces of a specimen evaluated for radial inhomogeneity.  

pra  = Mean of total coarse aggregate area proportion from the ring portions of 

nine vertical slice faces of a specimen evaluated for radial inhomogeneity.  

pca  = Mean of total coarse aggregate area proportion from the core portions of 

nine vertical slice faces of a specimen evaluated for radial inhomogeneity.  

Dv = Diameter of a specimen evaluated for two-layer vertical inhomogeneity, 

which is 100 mm.  
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Dc = Diameter of the core of a horizontal slice face of a specimen evaluated for 

radial inhomogeneity, which is 101 mm.  

Dh = Diameter of a specimen evaluated for radial inhomogeneity, which is 150 

mm.  

2lD  = Population value of the mean coarse aggregate nearest neighbor distance in 

the lower portion of specimens evaluated for two-layer vertical inhomogeneity.  

2uD = Population value of the coarse aggregate mean nearest neighbor distance in 

the upper portion of specimens evaluated for two-layer vertical inhomogeneity.  

3lD = Population value of the coarse aggregate mean nearest neighbor distance in 

the lower portion of specimens evaluated for three-layer vertical inhomogeneity.  

3mD = Population value of the coarse aggregate mean nearest neighbor distance in 

the middle portion of specimens evaluated for three-layer vertical inhomogeneity.  

3uD = Population value of the coarse aggregate nearest mean neighbor distance in 

the upper portion of specimens evaluated for three-layer vertical inhomogeneity.  

di = Distance between the ith vertical slice face and the middle of a specimen 

measured along a radii that is perpendicular to the slice face. 

hlid = Mean nearest neighbor distance of the coarse aggregates on the ith 

horizontal slice face in the lower portion of a specimen evaluated for two-layer vertical 

inhomogeneity, where i = 1, 2, 3, 4, 5, 6.  
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huid = Mean nearest neighbor distance of the coarse aggregates on the ith 

horizontal slice face in the upper portion of a specimen evaluated for two-layer vertical 

inhomogeneity, where i = 1, 2, 3, 4, 5, 6.  

ld  = Average of the mean nearest neighbor distances in six horizontal slices in 

the lower portion of a specimen evaluated for two-layer vertical inhomogeneity.  

ud  = Average of the mean nearest neighbor distances in six horizontal slices in 

the upper portion of a specimen evaluated for two-layer vertical inhomogeneity.  

hjid  = Mean nearest neighbor distance of coarse aggregates in the ith horizontal 

slice face of the jth portion of a specimen evaluated for three-layer vertical 

inhomogeneity, where i= 1, 2, 3, 4 and j = 1, 2, 3.  

hjd  = Average of the mean nearest neighbor distances from the four horizontal 

slice faces in the jth sampling portion of a specimen evaluated for three-layer vertical 

inhomogeneity, where j = 1, 2, 3.  

hd = Grand mean of the mean nearest neighbor distances from the twelve 

horizontal slice faces in the three sampling portions of a specimen evaluated for 

three-layer vertical inhomogeneity.  

lvid = The mean nearest neighbor distance of the coarse aggregates on the lower 

portion of the ith vertical slice face of a specimen evaluated for two-layer vertical 

inhomogeneity. 
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 uvid = The mean nearest neighbor distance of the coarse aggregates on the upper 

portion of the ith vertical slice face of a specimen evaluated for two-layer vertical 

inhomogeneity.  

dlid = Mean nearest neighbor distance density in the lower portion of the ith 

vertical slice of a specimen evaluated for two-layer vertical inhomogeneity. 

duid = Mean nearest neighbor distance density in the upper portion of the ith 

vertical slice of a specimen evaluated for two-layer vertical inhomogeneity.  

dld  = Average of the mean nearest neighbor distance densities in the lower 

portions of the nine vertical slice faces of a specimen evaluated for two-layer vertical 

inhomogeneity.  

dud  = Average of the mean nearest neighbor distance densities in the upper 

portions of the nine vertical slice faces of a specimen evaluated for two-layer vertical 

inhomogeneity.  

Fa = F statistic on total coarse aggregate area for evaluation of three-layer vertical 

inhomogeneity using horizontal slice faces.  

Fd = F statistic on the coarse aggregate mean nearest neighbor distance for 

evaluation of three-layer vertical inhomogeneity.  

Ff  = F statistic on coarse aggregate frequency for evaluation of three-layer 

vertical homogeneity.  
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Faα = Critical Fa value for separating homogeneous and three-layered vertically 

inhomogeneous specimens for a selected level of significance.  

Fdα = Critical Fd value for separating homogeneous and three-layered vertically 

inhomogeneous specimens for a selected level of significance.   

Ffα = Critical Ff value for separating homogeneous and three-layered vertically 

inhomogeneous specimens for a selected level of significance.   

bF = Population value of the coarse aggregate frequency in the bottom portion of 

specimens evaluated for two-layer vertical inhomogeneity.  

tF = Population value of the coarse aggregate frequency in the top portion of 

specimens evaluated for two-layer vertical inhomogeneity.  

lF  = Population value of the coarse aggregate frequency on the horizontal slice 

faces in the lower portion of a three-layer vertical inhomogeneity, where j = 1, 2, 3.  

mF  = Population value of the coarse aggregate frequency on the horizontal slice 

faces in the middle portion of a three-layer vertical inhomogeneity, where j = 1, 2, 3.  

uF  = Population value of the coarse aggregate frequency on the horizontal slice 

faces in the upper portion of a three-layer vertical inhomogeneity, where j = 1, 2, 3.  

rF  = Population value of the coarse aggregate frequency in the ring portion of 

homogeneous specimens evaluated for radial inhomogeneity.  
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cF = Population value of the coarse aggregate frequency in the core portion of 

homogeneous specimens evaluated for radial inhomogeneity.  

fhli = Frequency of coarse aggregates on the ith horizontal slice face in the lower 

portion of a specimen evaluated for two-layer vertical inhomogeneity, where i = 1, 2, 3, 

4, 5, 6.  

fhui = Frequency of coarse aggregates on the ith horizontal slice face in the upper 

portion of a specimen evaluated for two-layer vertical inhomogeneity, where i = 1, 2, 3, 

4, 5, 6.  

fhl = Total coarse aggregate frequency on the six horizontal slice faces in the 

lower portion of a specimen evaluated for two-layer vertical inhomogeneity.  

fhu = Total coarse aggregate frequency on the six horizontal slice faces in the 

upper portion of a specimen evaluated for two-layer vertical inhomogeneity.  

fhv = Total frequency on the 12 horizontal slice faces in the lower and upper 

portions of a specimen evaluated for two-layer vertical inhomogeneity.  

fhji = Frequency of coarse aggregates in the ith horizontal slice face of jth portion of 

a specimen evaluated for three-layer vertical inhomogeneity, where i=1, 2, 3, 4 and j = 1, 

2, 3.  

fhj = Summation of the coarse aggregate frequencies on four horizontal slices of 

the  jth sampling portion of a specimen evaluated for three-layer vertical inhomogeneity, 

where j = 1, 2, 3.  
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fh = Total coarse aggregate frequency from the 12 horizontal slices in the three 

portions of a specimen evaluated for three-layer vertical inhomogeneity.  

flvi = Frequency of the coarse aggregates on the lower portion of the ith vertical 

slice of a specimen for two-layer vertical inhomogeneity.  

fuvi = Frequency of the coarse aggregates on the upper portion of the ith vertical 

slice of a specimen for two-layer vertical inhomogeneity.  

flv = Total coarse aggregate frequency on the lower portions of the nine vertical 

slice faces in a specimen evaluated for two-layer vertical inhomogeneity.  

fuv = Total coarse aggregate frequency on the upper portions of nine vertical slice 

faces of a specimen evaluated for two-layer vertical inhomogeneity.  

fvv = Total frequency from lower and upper portions of nine vertical slice faces of 

a specimen evaluated for two-layer vertical inhomogeneity.  

fdli = Aggregate frequency density in the lower portion of the ith vertical slice face 

of a specimen evaluated for two-layer vertical inhomogeneity.  

,fdui=  Aggregate frequency density in the upper portion of the ith vertical slice face 

of a specimen evaluated for two-layer vertical inhomogeneity.  

frhi = Frequency of coarse aggregates on the ring portion of the ith horizontal slice 

face of a specimen evaluated for radial inhomogeneity, where i = 1, 2, 3.  

fchi = Frequency of coarse aggregates on the core portion of the ith horizontal slice 

face of a specimen evaluated for radial inhomogeneity, where i = 1, 2, 3.  
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fhhi = Frequency of coarse aggregates on the ring and core portions of the ith 

horizontal slice of a specimen for radial inhomogeneity, where i = 1, 2, 3.  

frh = Total coarse aggregate frequency on the ring portions of the three horizontal 

slice faces of a specimen evaluated for radial inhomogeneity.  

fch = Total coarse aggregate frequency on the core portions of the three horizontal 

slice faces of a specimen evaluated for radial inhomogeneity.  

fhh = Total frequency on the ring and core portions of the three horizontal slice 

faces of a specimen evaluated for radial inhomogeneity.  

fr1i = Frequency of the coarse aggregates on the first ring strip of the ith vertical 

slice face of a specimen evaluated for radial inhomogeneity, where i = 1, 2, …, 9.  

fr2i = Frequency of the coarse aggregates on the second ring strip of the ith vertical 

slice face of a specimen evaluated for radial inhomogeneity, where i = 1, 2, …, 9.  

frvi = Frequency of the coarse aggregates on the two ring strips of the ith vertical 

slice face of a specimen evaluated for radial inhomogeneity, where i = 1, 2, …, 9.  

fcvi = Frequency of coarse aggregates on the core portion of the ith vertical slice 

face of a specimen evaluated for radial inhomogeneity, where i = 1, 2, …, 9.  

fdri = Frequency density of the coarse aggregates on the ring portion of the ith 

vertical slice face of a specimen evaluated for radial inhomogeneity, where i = 1, 2, …, 9.  

fdci = Frequency density of the coarse aggregates on the core portion of the ith 

vertical slice face of a specimen evaluated for radial inhomogeneity, where i = 1, 2, …, 9.  
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fvhi = Frequency of coarse aggregates on the ring and core portions of the ith 

vertical slice of a specimen evaluated for radial inhomogeneity, where i = 1, 2, …, 9.  

frv = Total coarse aggregate frequency on the ring portions of nine vertical slice 

faces of a specimen evaluated for radial inhomogeneity.  

fcv = Total coarse aggregate frequency on the core portions of nine vertical slice 

faces of a specimen evaluated for radial inhomogeneity.  

fvh = Total coarse aggregate frequency on the ring and core portions of the nine 

vertical slices of a specimen evaluated for radial inhomogeneity.  

lf  = Mean coarse aggregate frequency of the six horizontal slice faces in the 

lower portion of a specimen evaluated for two-layer vertical inhomogeneity.  

uf  = Mean coarse aggregate frequency of the six horizontal slice faces in the 

upper portion of a specimen evaluated for two-layer vertical inhomogeneity.  

hjf = Mean aggregate frequency of the four horizontal slices in the jth portion of a 

specimens for three-layer vertical inhomogeneity, where j = 1, 2, 3.  

hf = Grand mean of aggregate frequency of the twelve horizontal slices in the 

three sampling portions of a specimen for three-layer vertical inhomogeneity. 

 dlf  = Mean of the coarse aggregate frequency densities in the lower portions of 

nine vertical slice faces of a specimen for two-layer vertical inhomogeneity.  
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duf  = Mean of the coarse aggregate frequency densities in the upper portions of 

nine vertical slice faces of a specimen for two-layer vertical inhomogeneity.  

rf  = Mean coarse aggregate frequency on the ring portions of three horizontal 

slice faces of a specimen evaluated for radial inhomogeneity.  

cf  = Mean coarse aggregate frequency on the core portions of three horizontal 

slice faces of a specimen evaluated for radial inhomogeneity.  

 drf  = Mean coarse aggregate frequency density on the ring portions of nine 

vertical slice faces of a specimen evaluated for radial inhomogeneity.  

dcf  = Mean coarse aggregate frequency density on the core portions of nine 

vertical slice faces of a specimen evaluated for radial inhomogeneity.  

hv = Height of the lower or upper portion of a vertical slice face of a specimen 

evaluated for two-layer vertical inhomogeneity, which is 60 mm.  

hh = Height of vertical slices of a specimen evaluated for radial inhomogeneity, 

which is 50 mm. 

H-SPT = Homogeneous gyratory compacted specimens evaluated for vertical 

homogeneity and subjected to simple performance tests (SPT). 

I-SPT = Inhomogeneous gyratory compacted specimens evaluated for vertical 

homogeneity and subjected to simple performance tests (SPT). 
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L-SST == Homogeneous linear kneading compacted specimens evaluated for 

radial homogeneity and subjected to Superpave shear tests (SST). 

H-SST = Homogeneous gyratory compacted specimens evaluated for radial 

homogeneity and subjected to Superpave shear tests (SST). 

I-SST = Inhomogeneous gyratory compacted specimens evaluated for radial 

homogeneity and subjected to Superpave shear tests (SST). 

MSba = Between mean square as a parameter of total area F statistic.  

MSwa = Within mean square as a parameter of the total area F statistic.  

MSbd = Between mean square as a parameter of the nearest neighbor F statistic.  

MSwd = Within mean square as a parameter of the nearest neighbor F statistic.  

MSbf = Between mean square as a parameter of the frequency F statistic.  

MSwf = Within mean square as a parameter of the frequency F statistic.  

nhl = Number of horizontal slice faces in the lower portion of a specimen 

evaluated for two-layer vertical inhomogeneity, which is six. 

nhu= Number of horizontal slice faces in the upper portion of a specimen 

evaluated for two-layer vertical inhomogeneity, which is six. 

nlv = Number of lower sampling portions on vertical slice faces of a specimen 

evaluated for two-layer vertical inhomogeneity, which is nine. 
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nuv = Number of upper sampling portions on vertical slice faces of a specimen 

evaluated for two-layer vertical inhomogeneity, which is nine. 

np = Number of sampling portions in a specimen evaluated for three-layer vertical 

inhomogeneity, which is three. 

ns = Number of horizontal slices in each of the three portions of a specimen 

evaluated for three-layer vertical inhomogeneity, which is four. 

nvv = Number of vertical slices made in a specimen evaluated for vertical 

inhomogeneity, which is nine. 

nrh= Number of ring portions on horizontal slice faces of a specimen evaluated 

for radial inhomogeneity, which is three. 

nch= Number of core portions on horizontal slice faces of a specimen evaluated 

for radial inhomogeneity, which is three. 

nhh= Number of horizontal slice faces of a specimen evaluated for radial 

inhomogeneity, which is three. 

nrv= Number of ring portions on vertical slice faces of a specimen evaluated for 

radial inhomogeneity, which is nine. 

ncv= Number of core portions on vertical slice faces of a specimen evaluated for 

radial inhomogeneity, which is nine. 
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lP  = Population value of the coarse aggregate frequency proportions in the lower 

portion of a specimen evaluated for two-layer vertical inhomogeneity.  

 uP  = Population value of the coarse aggregate frequency proportions in the upper 

portion of a specimen evaluated for two-layer vertical inhomogeneity.  

rP  = Population value of the coarse aggregate frequency proportions in the ring 

portion of a specimen evaluated for radial inhomogeneity.  

 cP  = Population value of the coarse aggregate frequency proportions in the core 

portion of a specimen evaluated for radial inhomogeneity.  

lvp  = Frequency proportion of the coarse aggregates in the lower portions of the 

nine vertical slices of a specimen for two-layer vertical inhomogeneity.  

uvp  = Frequency proportion of the coarse aggregates in the upper portions of the 

nine vertical slices of a specimen for two-layer vertical inhomogeneity.  

vvp  = Frequency proportion of the coarse aggregates in the lower and upper 

portions of the vertical slice faces in a specimen evaluated for two-layer vertical 

inhomogeneity.  

rhp  = Coarse aggregate frequency proportion from the ring portion of horizontal 

slice faces of a specimen evaluated for radial inhomogeneity.  
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chp  = Coarse aggregate frequency proportion from the core portion of horizontal 

slice faces of a specimen evaluated for radial inhomogeneity.  

hhp  = Proportion of coarse aggregate frequency from the ring and core portions of 

horizontal slice faces of a specimen evaluated for radial inhomogeneity.  

rvp  = Coarse aggregate frequency proportion from the ring portions of nine 

vertical slice faces of a specimen evaluated for radial inhomogeneity.  

cvp  = Coarse aggregate frequency proportion from the core portions of nine 

vertical slice faces of a specimen evaluated for radial inhomogeneity.  

vhp  = Coarse aggregate frequency proportion from the ring and core portions of 

nine vertical slice faces of a specimen evaluated for radial inhomogeneity.  

Rv = Radius of the specimen evaluated for two-layer and three-layer vertical 

inhomogeneity, which is 50 mm.  

rhl = Ratio of the area of the horizontal slice faces in the lower portion to the area 

of the slice faces in entire specimen evaluated for two-layer vertical inhomogeneity, 

which is 0.5.  

rhu = Ratio of the area of the horizontal slice faces in the upper portion to the area 

of the slice faces in entire specimen evaluated for two-layer vertical inhomogeneity, 

which is 0.5.  
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rhj = Ratio of the area of four horizontal slices in the jth portion of a specimens to 

the total area of the slices in the three portions of a specimen evaluated for three-layer 

inhomogeneity, which is one-third.  

rlv = Ratio of the area of the lower portions of the nine vertical slice faces to the 

area of both lower and upper portions of  a specimen evaluated for two-layer vertical 

inhomogeneity, which is 0.5.  

ruv= Ratio of the area of the upper portions of the nine vertical slice faces to the 

area of both lower and upper portions of  a specimen evaluated for two-layer vertical 

inhomogeneity, which is 0.5.  

rrh = Ratio of the area of the rings to the area of the rings and cores on horizontal  

slices of a specimen evaluated for radial inhomogeneity, which is 0.5.  

rch = Ratio of the area of the cores to the area of the ring and cores on horizontal  

slices of a specimen evaluated for radial inhomogeneity, which is 0.5.  

rrv = Ratio of the area of the rings to the area of the rings and cores on nine 

vertical slices of a specimen evaluated for radial inhomogeneity.  

rcv = Ratio of the area of the cores to the area of the rings and cores on nine 

vertical  slices of a specimen evaluated for radial inhomogeneity.  

sal = Standard deviation of the total coarse aggregate areas of the six horizontal 

slice faces in the lower portion of a specimen evaluated for two-layer vertical 

inhomogeneity. 
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 sau = Standard deviation of total coarse aggregate areas of the six horizontal slice 

faces in the upper portion of a specimen evaluated for two-layer vertical inhomogeneity.  

sdl = Standard deviation of the mean nearest neighbor distances in six horizontal 

slices in the lower portion of a specimen evaluated for two-layer vertical inhomogeneity.  

sdu = Standard deviation of the mean nearest neighbor distances in six horizontal 

slices in the upper portion of the specimen evaluated for two-layer vertical 

inhomogeneity. 

sfl = Standard deviation of the coarse aggregate frequencies on the six horizontal 

slice faces in the lower portion of a specimen evaluated for two-layer vertical 

inhomogeneity.  

sfu = Standard deviation of the coarse aggregate frequencies on the six horizontal 

slice faces in the upper portion of a specimen evaluated for two-layer vertical 

inhomogeneity.  

sav = Square root of the pooled variance of the total coarse aggregate areas from 

the horizontal slice faces in the lower and upper portions of a specimen evaluated for 

two-layer vertical inhomogeneity.  

sdv = Square root of the pooled variance of the coarse aggregate mean nearest 

neighbor distances from the horizontal slice faces in the lower and upper portions of a 

specimen evaluated for two-layer vertical inhomogeneity.  
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sfv= Square root of the pooled variance of total coarse aggregate frequencies from 

the horizontal slice faces in the lower and upper portions of a specimen evaluated for 

two-layer vertical inhomogeneity.  

sapl = Standard deviation of the total coarse aggregate area proportions from the 

lower portions of the nine vertical slice faces of a specimen evaluated for two-layer 

vertical inhomogeneity.  

sapu = Standard deviation of the total coarse aggregate area proportions from the 

upper portions of the nine vertical slice faces of a specimen evaluated for two-layer 

vertical inhomogeneity.  

sddl= Standard deviation of the mean nearest neighbor distance densities from the 

lower portions of the nine vertical slice faces of a specimen evaluated for two-layer 

vertical inhomogeneity.  

sddu = Standard deviation of the mean nearest neighbor distance densities from the 

upper portions of the nine vertical slice faces of a specimen evaluated for two-layer 

vertical inhomogeneity.  

sfdl = Standard deviation of the coarse aggregate frequency densities from the 

lower portions of the nine vertical slice faces of a specimen evaluated for two-layer 

vertical inhomogeneity.  

sfdu = Standard deviation of the coarse aggregate frequency densities from the 

upper portions of the nine vertical slice faces of a specimen evaluated for two-layer 

vertical inhomogeneity.  
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sapv = Square root of the pooled variance of total coarse aggregate area 

proportions in the lower and upper portions of the vertical slice faces of a specimen 

evaluated for two-layer vertical inhomogeneity.  

sddv = Square root of the pooled variance of the mean nearest neighbor distance 

densities in the lower and upper portions of the vertical slice faces of a specimen 

evaluated for two-layer vertical inhomogeneity.  

sfdv = Square root of the pooled variance of the coarse aggregate frequency 

densities from the lower and upper portions of vertical slice faces of a specimen 

evaluated for two-layer vertical inhomogeneity.  

spvv  = Square root of the pooled variance of the coarse aggregate frequency 

proportions in the lower and upper portions of the vertical slice faces of a specimen 

evaluated for two-layer vertical inhomogeneity.  

sar = Standard deviation of total coarse aggregate areas on the ring portions of the 

three horizontal slices of a specimen evaluated for radial inhomogeneity.  

sac = Standard deviation of total coarse aggregate areas on the core portions of the 

three horizontal slices of a specimen evaluated for radial inhomogeneity.  

sfr = Standard deviation of the coarse aggregate frequencies in the ring portions of 

the three horizontal slice faces of a specimen evaluated for radial inhomogeneity.  

sfc = Standard deviation of the coarse aggregate frequencies in the core portions of 

the three horizontal slice faces of a specimen evaluated for radial inhomogeneity.  
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sahh = Square root of the pooled variance of the total coarse aggregate areas from 

the horizontal slice faces of a specimen evaluated for radial inhomogeneity.  

sfhh= Square root of the pooled variance of total coarse aggregate frequencies 

from the horizontal slice faces of a specimen evaluated for radial inhomogeneity.  

sphh = Square root of the pooled variance of the coarse aggregate frequency 

proportions from the horizontal slice faces of a specimen evaluated for radial 

inhomogeneity.  

sapr = Standard deviation of the total coarse aggregate area proportion on the ring 

portions of the nine vertical slices of a specimen evaluated for radial inhomogeneity. 

sapc = Standard deviation of the total coarse aggregate area proportion on the core 

portions of the nine vertical slices of a specimen evaluated for radial inhomogeneity.  

sfdr = Standard deviation of the coarse aggregate frequency densities in the ring 

portions of the nine vertical slice faces of a specimen evaluated for radial inhomogeneity.  

sfdc = Standard deviation of the coarse aggregate frequency densities in the core 

portions of the nine vertical slice faces of a specimen evaluated for radial inhomogeneity.  

saph = Square root of the pooled variance of the total coarse aggregate area 

proportion from the ring and core portions of the nine vertical slice faces of a specimen 

evaluated for radial inhomogeneity.  
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sfdh= Square root of the pooled variance of coarse aggregate frequency density 

from the ring and core portions of the nine vertical slice faces of a specimen evaluated for 

radial inhomogeneity.  

spvh = Square root of the pooled variance of the coarse aggregate frequency 

proportions from the ring and core portions of the nine vertical slice faces of a specimen 

evaluated for radial inhomogeneity.  

tav = t statistic on the total coarse aggregate area from the horizontal slice faces, as 

an index of homogeneity of a specimen evaluated for two-layer vertical inhomogeneity.  

tdv = t statistic on the mean nearest neighbor distance from the horizontal slice 

faces, as the index of homogeneity of a specimen evaluated for two-layer vertical 

inhomogeneity.  

tfv = t statistic on the coarse aggregate frequency from the horizontal slice faces, 

as the index of homogeneity of a specimen evaluated for two-layer vertical 

inhomogeneity.  

tavα = Critical tav value, which separates homogeneous from two-layer vertically 

inhomogeneous specimens.  

tdvα = Critical tdv  value, which separates homogeneous from two-layer vertically 

inhomogeneous specimens. 

tfvα = Critical tfv value, which separates homogeneous from two-layer vertically 

inhomogeneous specimens. 
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tapv = t statistic on the total area proportion measured from vertical slice faces of a 

specimen evaluated for two-layer vertical inhomogeneity.  

tddv = t statistic on the nearest neighbor distance density from the vertical slice 

faces of a specimen evaluated for two-layer vertical inhomogeneity.  

tfdv = t statistic on the coarse aggregate frequency density from the vertical slice 

faces of  a two-layer vertical inhomogeneity.  

tapα = Critical tap value, which separates homogeneous specimens from the two-

layer vertically inhomogeneous specimens.  

tfdvα = Critical tfd value, which separates homogeneous specimens from the two-

layer vertically inhomogeneous specimens.  

tddvα = Critical tdd value, which separates homogeneous specimens from the two-

layer vertically inhomogeneous specimens.  

tah= t statistic on the total coarse aggregate area from the horizontal slice faces, as 

an index of homogeneity of a specimen evaluated for radial inhomogeneity.  

tfh = t statistic on the coarse aggregate frequency from the horizontal slice faces, 

as the index of homogeneity of a specimen evaluated for radial inhomogeneity.  

tahα = Critical tah value, which separates homogeneous from radially 

inhomogeneous specimens.  
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tfhα = Critical tfh value, which separates homogeneous from radially 

inhomogeneous specimens. 

taph = t statistic on the total coarse aggregate area proportion from the vertical slice 

faces, as an index of homogeneity of a specimen evaluated for radial inhomogeneity. 

tfdh = t statistic on the coarse aggregate frequency density from the vertical slice 

faces, as the index of homogeneity of a specimen evaluated for radial inhomogeneity.  

taphα = Critical taph value, which separates homogeneous from radially 

inhomogeneous specimens.  

tfdhα = Critical tfdh value, which separates homogeneous from radially 

inhomogeneous specimens. 

ν3x= Degree of freedom for the 2
3vhχ  test for evaluation of three-layer vertical 

inhomogeneity using horizontal slice faces, which is the number of sampling portions 

minus 1, which is .   3 1 2− =

ν2x= Degree of freedom for the 2
2vhχ  test for evaluation of two-layer vertical 

inhomogeneity using horizontal slice faces, which is number of sampling portions minus 

1, which is . 2 1 1− =

wvi = Width of the ith vertical slice face of a specimen evaluated for two-layer and 

three-layer vertical inhomogeneity, which is also the width of the corresponding sampling 

portion on the ith vertical slice faces.  
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whi = Width of the ith vertical slice face of a specimen evaluated for radial 

inhomogeneity.  

wci = Width of the core strip of the ith vertical slice face of a specimen evaluated 

for radial inhomogeneity.  

wri = Width of one of the two ring strips of the ith vertical slice face of a specimen 

evaluated for radial inhomogeneity.  

wti = Width of one of the two transition strips on the ith vertical slice face of a 

specimen evaluated for radial inhomogeneity. 

2
hvχ = Chi-square frequency statistic from the horizontal slices, as the index of 

homogeneity of a specimen evaluated for two-layer vertical inhomogeneity.  

2
hvαχ =  Critical 2

hvχ  value, which separates homogeneous specimens from 

two-layer vertically inhomogeneous specimens.  

2
3hχ = Chi-square frequency statistic for evaluating three-layer vertical 

inhomogeneity using horizontal slice faces.  

2
3hαχ =  Critical 2

3hχ  value, which separates homogeneous specimens from the 

three-layered inhomogeneous specimens for the selected level of significance.  

2
vvχ = Chi-square frequency statistic measured from the vertical slice faces of a 

specimen evaluated for two-layer vertical inhomogeneity.  
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2
vvαχ =  Critical 2

vvχ  value, which separates homogeneous specimens from 

two-layer vertically inhomogeneous specimens. 

2
hhχ = Chi-square frequency statistic from the horizontal slice faces, as the index 

of homogeneity of a specimen evaluated for radial inhomogeneity.  

2
hhαχ = Critical 2

hhχ  value, which separates homogeneous specimens from radially 

inhomogeneous specimens.  

2
vhχ = Chi-square frequency statistic from the vertical slice faces, as the index of 

homogeneity of a specimen evaluated for radial inhomogeneity.  

2
vhαχ = Critical 2

vhχ  value, which separates homogeneous specimens from radially 

inhomogeneous specimens.  

xlv= Expected maximum frequency on the lower portions of the nine vertical slice 

faces of a specimen evaluated for two-layer vertical inhomogeneity.  

xuv = Expected maximum frequency on the upper portions of nine vertical slice 

faces of a specimen evaluated for two-layer vertical inhomogeneity.  

xrh = Expected maximum coarse aggregate frequency on the three ring portions of 

horizontal slice faces of a specimen evaluated for radial inhomogeneity.  

xch = Expected maximum coarse aggregate frequency on the three core portions of 

horizontal slice faces of a specimen evaluated for radial inhomogeneity.  
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xrv = Expected maximum coarse aggregate frequency on the ring portions of nine 

vertical slice faces of a specimen evaluated for radial inhomogeneity.  

xcv = Expected maximum coarse aggregate frequency on the core portions of nine 

vertical slice faces of a specimen evaluated for radial inhomogeneity.  

zvv = Frequency proportion index measured from vertical slice faces of a specimen 

evaluated for two-layer vertical inhomogeneity, which has standard normal distribution.  

zvvα = Critical zvv value, which separates homogeneous specimens from two-layer 

vertically inhomogeneous specimens.   

zhh = Frequency proportion index from horizontal slice faces of a specimen 

evaluated for radial inhomogeneity, which has standard normal distribution.  

zhhα = Critical zhh value, which separates homogeneous specimens from radially 

inhomogeneous specimens.  

zvh = Frequency proportion index from vertical slice faces of a specimen evaluated 

for radial inhomogeneity, which has standard normal distribution.  

zvhα = Critical zvh value, which separates homogeneous specimens from radially 

inhomogeneous specimens.  
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