
ABSTRACT

Title of dissertation: INFORMATION THEORETIC GENERATION OF
MULTIPLE SECRET KEYS

Chunxuan Ye, Doctor of Philosophy, 2005

Dissertation directed by: Professor Prakash Narayan
Department of Electrical and Computer Engineering
and Institute for System Research

This dissertation studies the problem of secret key generation for encrypted group

communication in a network, based on an information theoretic approach. This approach,

which relies on a provable form of security, also provides suggestions for key constructions.

We examine the problem of the simultaneous generation of multiple keys by different

groups of terminals intended for encrypted group communication, in certain three-terminal

source models, which capture the salient features of general multiterminal models. We

characterize the rates at which two designated pairs of terminals can simultaneously gen-

erate private keys, each of which is effectively concealed from the remaining terminal, and

the rates at which the following two types of keys can be generated simultaneously: (i) all

the three terminals generate a (common) secret key, which is effectively concealed from

an eavesdropper; and (ii) a designated pair of terminals generate a private key, which is

effectively concealed from the remaining terminal as well as the eavesdropper.

Furthermore, we develop an approach for the construction of a new class of prov-

ably secure secret keys by terminals in several simple multiterminal source models, which

exploits innate connections between secret key generation and multiterminal Slepian-Wolf

near-lossless data compression (sans secrecy restrictions). Implementations of these con-



structions using low density parity check (LDPC) channel codes are illustrated.
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Chapter 1

Introduction

1.1 Background

Encryption and Authentication

Encryption refers to the translation of data into an encoded format for the pur-

pose of achieving data security. Reading an encrypted file requires access to a key, which

enables its decryption. The two primary encryption schemes used in most existing cryp-

tographic systems are symmetric encryption and asymmetric encryption, and often occur

in combination to perform complementary functions. In a symmetric cryptosystem, a

single common key (termed secret key) is used for encryption and decryption, while in

an asymmetric cryptosystem, two different keys are employed: a public key for encryp-

tion and a private key for decryption. Examples of widely-used symmetric cryptosystems

include the data encryption standard (DES), the Triple-DES, the advanced encryption

standard (AES), RC4, etc. [47], [48]. Examples of widely-used asymmetric cryptographic

algorithms are the RSA scheme, the ElGamal scheme, etc. [18], [19], [53].

One advantage of an asymmetric cryptosystem is that it provides security in a

wide range of applications (e.g., digital signatures) that cannot be provided by using

only symmetric techniques. However, an asymmetric cryptosystem typically executes

computationally heavy and complex operations which need powerful hardware. Also, large

keys, with sizes ranging from 512 to 4096 bits, are needed for an asymmetric cryptosystem

to achieve sufficient, lasting security. For instance, the current RSA cryptosystem uses

keys of length 1024 bits [30].
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On the other hand, a symmetric cryptosystem typically performs simple, efficiently

executable algorithms which require relatively inexpensive hardware. The secret keys used

in a symmetric cryptosystem are of small size, usually ranging from 40 to 256 bits (e.g., 56

bits for the DES cryptosystem). In addition, a symmetric cryptosystem is well suited for

networks in which communication takes the form of broadcasts, e.g., over a wireless RF

medium. For instance, consider the situation in which a sensor node attempts to securely

broadcast a message to all the other sensor nodes in a sensor network. If a symmetric

cryptosystem is deployed in this sensor network, then the transmitting sensor node could

use its secret key to encrypt the message, which could be decrypted separately by all the

other sensor nodes using the same secret key. Such a simple operation is not feasible in

an asymmetric cryptosystem. On the other hand, of course, even if a single sensor is

compromised along with its secret key, then the security of the entire network is at risk if

this secret key remains in use. (See Section 1.2 below on “Generation of Multiple Secret

Keys in a Symmetric Cryptosystem.”)

Message authentication is the process of using a key or key pair to verify the origin of

a message and its integrity (cf. e.g., [61]). Most existing message authentication schemes

are based on a digital signature which uses a key pair, or based on a message authentication

code (MAC) which uses a single key (cf. e.g., [55]). A MAC is a short piece of information,

which is attached to a message for the purpose of authenticating the message. A MAC

algorithm (sometimes termed a keyed hash function) accepts as input a message as well

as a secret key, and produces a MAC for the message using a suitable hash function; the

authenticity of the message can be verified by using the same secret key.

Network Applications of Symmetric Cryptosystems

The symmetric encryption and authentication technologies mentioned above have a
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wide range of applications in architectures and protocols for network security. For exam-

ple, consider IPSec, which is the security architecture for the Internet protocol (IP). Its

security objectives include data authentication and guaranteeing confidentiality of pack-

ets in their entirety. MACs and symmetric encryption are extensively used in various

protocols of IPSec, e.g., the authentication header (AH) protocol and the encapsulating

security payload (ESP) protocol. Analogously, many link layer security protocols (e.g. the

point-to-point protocol (PPP), the Point-to-point tunneling protocol (PPTP), the layer 2

tunneling protocol (L2TP), etc.) and many transport layer security protocols (e.g., the

secure socket layer (SSL) protocol and the secure shell (SSH) protocol) take advantage

of MACs and symmetric cryptographic algorithms for the purpose of authentication and

encryption.

Wireless communication networks have additional security issues, which are not

present in wired networks. Such issues arise, for instance, in handover, which entails

switching a connection of a mobile phone from one base station to another and which is

a common phenomenon in GSM and CDMA wireless networks (cf. e.g., [28], [46]); MACs

are used in the authentication of mobile phones to base stations during handover.

1.2 Motivation

Secret Key Establishment in a Symmetric Cryptosystem

Although symmetric cryptosystems are feasible in many network settings, the main

difficulty in deploying them in a network lies in secret key establishment among different

communicating terminals. In an asymmetric cryptosystem, only the encryption keys,

or public keys, should be dispersed among different communicating terminals. Since an

encryption key does not need to be kept secret, its distribution is relatively simple. Public-
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key infrastructure (PKI) frameworks, such as X.509 and Pretty Good Privacy (PGP) (cf.

e.g., [8], [59]), are designed for public key distribution to avoid falsification and abuse.

In contrast, secret key establishment in a symmetric cryptosystem among different

communicating terminals is fraught with difficulties, since a secret key must be protected

from eavesdropping. There are two basic types of secret key establishment procedures in

symmetric cryptosystems: secret key distribution and secret key generation (cf. e.g., [59]).

In a secret key distribution protocol, one communicating terminal determines a

secret key and transmits it to all the other terminals. Traditional methods of secret key

distribution depend on a trusted third party, or key distribution center (KDC). Specifically,

the task of a KDC is to securely spread a secret key among communicating terminals.

However, such a KDC is often burdened with extensive key management and can become

a bottleneck. Additionally, a KDC itself is an attractive target for an eavesdropper.

Most existing secret key distribution protocols rely on certain asymmetric cryp-

tographic algorithms (e.g., RSA) (cf. e.g., [55]). Specifically, a secret key is encrypted

with the recipient’s public key before its distribution. This hybrid use of symmetric and

asymmetric cryptographic algorithms (i.e., encrypting a message by a secret key and en-

crypting the secret key by the recipient’s public key) could overcome the inefficiency of

an asymmetric cryptosystem and the difficulty in secret key distribution in a symmetric

cryptosystem.

In a secret key generation protocol, on the other hand, no communicating terminal

knows a secret key in advance, and a secret key is generated as a result of negotiation

by the terminals. Most current secret key generation protocols are based on the Diffie-

Hellman key exchange algorithm (cf. e.g., [55]), which is an asymmetric cryptographic

algorithm.
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Thus, asymmetric cryptographic algorithms play an important role in secret key

establishment for most existing symmetric cryptosystems. However, we shall see from the

discussion below that the security of such asymmetric cryptographic algorithms is based

on the undesirable assumption that an eavesdropper’s computational power is restricted.

In this dissertation, we shall focus on the central problem of secret key generation by

different communicating terminals in a symmetric cryptosystem.

Computational Complexity Theoretic Security and Information Theoretic Se-

curity

If the security of a cryptosystem relies on the difficulty in solving a computational

problem, then this notion of security is called computational complexity theoretic security.

For instance, the security of the RSA cryptosystem is based on the (unproved) difficulty

in factoring large integers, and the security of many other cryptosystems is based on the

(unproved) difficulty in computing discrete logarithms in certain groups [18]. (For more

examples of this notion of security, see [26].)

The notion of computational complexity theoretic security relies on the assumption

that an eavesdropper’s computational power is restricted and that the eavesdropper lacks

“efficient algorithms.” However, with the development of efficient algorithms for factoring

large integers and computing discrete logarithms in certain groups (e.g., quadratic sieve,

elliptic curve method, etc., [8]), as well as advances in fast integer factorization using

quantum computing [7], the difficulty in solving such computational problems might be

significantly reduced.

On the other hand, if the security of a cryptosystem can be rigorously established

without any assumption of limits on an eavesdropper’s computational power, this notion of

security is called information theoretic security or unconditional security. A cryptographic
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model based on the notion of information theoretic security guarantees that legitimate

plaintext messages and secret keys are, in effect, nearly “statistically independent” of the

information of the eavesdropper. This notion is clearly desirable in a cryptosystem, as

it makes no assumption of limited computational power for eavesdropper. However, no

practical cryptosystem based on the notion of information theoretic security has been

designed. In this dissertation, we shall address information theoretic models of secret key

generation in a symmetric cryptosystem.

Generation of Multiple Secret Keys in a Symmetric Cryptosystem

The use of a single secret key by all the communicating terminals in a symmetric

cryptosystem may pose the following security threat: some of these communicating ter-

minals may be compromised or become unauthorized (e.g., when they depart from the

system), along with the (single) secret key, whereby the security of the cryptosystem is

breached. For example, a basic service set (BSS) (cf. e.g., [6], [55]) in a 802.11 wireless

local area network is a set of mobile units using the same radio frequency; a subset of

mobile units in a BSS may cease to be reliable when they are disabled. Hence, the secret

key assigned to them, in effect, is compromised. The remaining authorized mobile units

should then be capable of maintaining security by switching to another secret key which

is concealed from the disabled mobile units.

This leads to a situation in which multiple secret keys must be devised in a coor-

dinated manner by different groups of communicating terminals (with possible overlaps

of groups); such keys need protection from prespecified communicating terminals as also

from the eavesdropper. In the interests of efficiency, the assignment of separate secret keys

to different groups of communicating terminals must be made at the outset of operations

so as to avoid the need for a fresh key generation procedure after a disablement. This
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dissertation will study the problem of simultaneous generation of multiple secret keys for

different groups of communicating terminals.

1.3 Prior Work

Secret Key Generation over Insecure Noisy Channels

A secret key (SK) can be determined at one terminal and transmitted over a secure

channel to other terminals. But in more complex ways, a SK can be generated by using

insecure noisy channels. For example, in Wyner’s “wiretap channel” model [64] which

involves two legitimate terminals, one terminal sends information to the other terminal

over a discrete memoryless channel, subject to a wiretap at the receiver. The wiretapper

sees a noisy version of the receiver’s signal. Wyner proved that in such a setting, a

SK can be generated by the legitimate terminals. Subsequently, Csiszár and Körner

[14] considered SK generation in a discrete memoryless broadcast channel in which a

terminal sends information to another terminal over a discrete memoryless channel, called

the legitimate channel, while a wiretapper observes the transmitted information through

another discrete memoryless channel, called the wiretap channel. Unlike Wyner’s wiretap

channel model, in this setting, the wiretapped signal is not necessarily a degraded version

of the legitimate signal.

Secret Key Generation over Noiseless Public Channels

A SK can be generated by separate terminals, in a different manner from that

above, based on their observations of separate but correlated signals followed by public

communication among themselves. Such a situation can arise, for instance, in a satellite

broadcasting situation, which can provide for correlated signals to be received at different

terminals through separate noisy channels with a common input; these terminals can then
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communicate over a noiseless public channel to generate a SK. Maurer [36], and Ahlswede

and Csiszár [3] considered SK generation in various source models and channel models.

In a source model, two or more terminals initially observe the outputs of an experiment

(e.g., bits broadcast by a satellite) over separate secure noisy channels. Hence, their

observations are correlated, but not necessarily identical. Based on their observations,

these terminals exchange information over a noiseless public channel in order to generate

a SK. In a channel model, a (central) terminal transmits information to the other terminals

through a secure channel with limited capacity. Additionally, these terminals are allowed

to communicate over a noiseless public channel which is observed by an eavesdropper, for

the purpose of SK generation. Subsequently, much work [5], [9], [13], [16]-[17], [37]-[43],

[51], [62] has been devoted to the study of SK generation at two terminals in various source

and channel models.

In the recent work of Csiszár and Narayan [17], the authors consider source models

consisting of an arbitrary number of terminals which respectively observe distinct corre-

lated sources followed by unrestricted public communication among themselves; a subset

of the terminals can also serve as “helpers” for the remaining terminals in generating

secrecy. The notion of helpers can be interpreted in terms of a trusted third party in a

key establishment protocol, which assists “user” terminals in SK generation, by providing

them with additional correlated information. A SK generated by a set of user terminals

with assistance – in the form of additional correlated information – from a set of helper

terminals, requires concealment from an eavesdropper with access to the public commu-

nication, but not from the assisting helper terminals. A private key (PK)1 generated by
1This terminology should not be confused with the decryption key in an asymmetric cryptosystem. The

“private key” used hereafter will refer to a special kind of secret key.
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the user terminals must be additionally protected from the assisting helper terminals. It

is shown in [17] that the SK-capacity, i.e., the largest (entropy) rate at which all the

user terminals can generate a SK, is obtained by subtracting from the maximum rate of

shared common randomness (CR) achievable by these user terminals (i.e., information to

which all the user terminals are privy with probability close to 1), the smallest sum-rate

of the data-compressed interterminal communication which enables each of the terminals

to acquire this maximal CR.

Secret Key Construction2

It should be noted that all of the work mentioned above is aimed at characterizing

the secrecy capacities, of different varieties. In contrast to so many characterizations of

the SK-capacities, few construction schemes for SK generation have yet been proposed.

Two exceptions are the following.

In the recent work of Thangaraj et al [58], the authors propose a new approach to

constructing SKs for Wyner’s wiretap channel model. The authors prove that by using

a channel code which achieves the capacity of the wiretap channel, a SK with rate close

to SK-capacity can be constructed. The other work is due to Muramatsu [45], in which

the author considers the problem of SK construction in a two-terminal source model.

Specifically, it is proved that a SK can be extracted by means of a linear transformation

of the CR shared by the terminals acquired through public discussion.
2The work on secret key construction refers to the explicit construction schemes for secret key genera-

tion.
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1.4 Overview of Dissertation

It should be stressed that in all of the work mentioned in Section 1.3, the terminals are

required to devise only a single key, to be used subsequently for secure encrypted com-

munication. There are, however, situations, arising for instance in group communication,

in which multiple keys must be simultaneously generated by different groups of termi-

nals. The first main problem studied in this dissertation is the simultaneous generation

of multiple keys by different groups of terminals in several source models.

The second main problem studied in this dissertation involves construction schemes

for secrecy generation in several simple source models. These constructions are motivated

by innate connections between secrecy generation by multiple terminals and multitermi-

nal data compression of correlated sources not involving any secrecy constraints, recently

highlighted in [17]. This suggests that techniques for multiterminal Slepian-Wolf (SW)

near-lossless3 data compression could be used for the constructions of SKs. In SW coding,

the existence of linear lossless data compression codes with rates arbitrarily close to the

SW bound has been long known [12]. In particular, when the sequences observed at the

terminals are related to each other through virtual communication channels characterized

by independent additive noises, such linear data compression codes can be obtained in

terms of the cosets of linear error-correction codes for these virtual channels, a fact first

illustrated in [63] for the special case of two terminals connected by a virtual binary sym-

metric channel. This fact, exploited by most known linear constructions of SW codes (cf.

e.g. [10], [23], [32], [50]), can enable us to translate these constructions and other signifi-

cant recent developments in capacity-achieving linear codes into new SK constructions.
3In the interests of avoiding repeated hyphenation, we shall hereafter use “lossless” in lieu of the correct

“near-lossless,” which should not lead to any confusion.
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This dissertation consists of three parts. In the first part (Chapters 2 and 3), we

discuss the problem of simultaneous generation of multiple keys by different groups of

terminals for three-terminal source models. Suppose that terminals X , Y and Z observe,

respectively, the distinct components of a discrete memoryless multiple source (DMMS),

i.e., independent and identically distributed (i.i.d.) repetitions of the generic random

variables (rvs) X , Y , Z with a known joint probability mass function (pmf). Unrestricted

communication among the terminals is allowed over a noiseless public channel, and all the

transmissions are observed by all the terminals. An eavesdropper has access to this public

communication but gathers no additional side information. Furthermore, the eavesdropper

is passive, i.e., unable to corrupt the transmissions4.

In Chapter 2, we examine the problem of characterizing all the rates at which two

designated pairs of terminals can simultaneously generate PKs, each of which is effectively

concealed from the remaining terminal. In the three-terminal source model above, we

assume that terminals X and Y (resp. X and Z) generate a PK with the possible help of

terminal Z (resp. Y) which is concealed from the helper terminal Z (resp. Y) and from

an eavesdropper with access to the public communication among the terminals. Such a

situation can be interpreted in terms of a “central” terminal X establishing individual

PKs with each terminal Y (resp. Z) with the remaining terminal Z (resp. Y) serving as

helper. The set of all rate pairs at which such PK pairs can be generated constitutes the

PK-capacity region. The characterization of the PK-capacity region is given in Chapter

2.

In Chapter 3, we examine the problem of characterizing all the rates at which the
4Throughout this dissertation, we shall only consider cases where the communication has been authen-

ticated, i.e., the eavesdropper is passive.
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following two types of keys can be generated simultaneously: (i) all the three terminals

generate a SK, which is effectively concealed from an eavesdropper; and (ii) a designated

pair of terminals generate a PK, which is effectively concealed from the remaining terminal

as well as the eavesdropper. In the three-terminal source model above, we assume that

terminals X , Y and Z generate a SK. Simultaneously, terminals X and Y generate a PK,

with the possible help of terminal Z . Such a situation can be interpreted in terms of

“core” terminals X and Y establishing a PK with terminal Z serving as helper, and all

the terminals establishing a SK. The set of all rate pairs at which such (SK, PK) pairs

can be generated is called the (SK, PK)-capacity region. The characterization of the (SK,

PK)-capacity region is given in Chapter 3.

In the second part (Chapter 4), we discuss the problem of SK and PK constructions

by multiple terminals. We consider several simple multiterminal source models where the

sources observed at different terminals are connected by virtual additive noise channels.

We show how a new class of SKs and PKs can be constructed, based on the SW data

compression code (i.e., a data compression code with rate close to the SW bound) from

[63]. Explicit procedures for such constructions, and their substantiation, are provided.

In particular, we examine the performance of low density parity check (LDPC) codes,

a class of linear capacity-achieving channel codes, in the SW data compression step of

the procedure, in constructing a new class of SKs with rates arbitrarily close to the SK-

capacity.

In the last part (Chapter 5), we study the relationship between the CR-capacity and

the SK-capacity for source models with rate constraints on the public communication. It

follows from the previous discussion that if unrestricted public communication is allowed

among the terminals in source models, then the CR-capacity, i.e., the largest rate of
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CR that is achieved by the terminals, can be decomposed into the smallest sum-rate of

the communication needed to achieve the CR-capacity, and the SK-capacity. In Chapter

5, we consider several two-terminal source models with rate constraints on the public

communication between these terminals. We study the relationship between the SK-

capacity and the CR-capacity for these models. Specifically, we examine whether the

CR-capacity is equal to the sum of the smallest sum-rate of communication needed to

achieve the CR-capacity and the SK-capacity.

Finally, Chapter 6 summarizes the dissertation and discusses future work.

1.5 Contributions

The main contributions of this dissertation are as follows.

(i). Single-letter inner and outer bounds for the PK-capacity region are derived for

a model with three terminals which observe separate correlated sources, when two pairs

of terminals simultaneously generate PKs after public communication among themselves.

We further prove that under certain special conditions, these bounds coincide to yield

the (exact) PK-capacity region. This is the first work on the simultaneous generation of

multiple PKs. It constitutes a generalization of the work on the generation of a single PK

[3], [16], [17].

(ii). Single-letter inner and outer bounds for the (SK, PK)-capacity region are

derived for a model with three terminals which observe separate correlated sources, when

all the terminals generate a SK, and a designated pair of terminals generate a PK, all in

a simultaneous manner. We further prove that under a certain condition, these bounds

coincide to yield the (exact) (SK, PK)-capacity region. This is the first work on the

simultaneous generation of a SK and a PK. It constitutes a generalization of the work on
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the generation of a single SK or PK [3], [16], [17].

(iii). A new approach is proposed for constructing SKs and PKs by terminals in

several simple multiterminal source models where the sources are connected by virtual

additive noise channels. We prove that the generated SKs and PKs satisfy the requisite

secrecy conditions, and the rates of the generated SKs and PKs approach the correspond-

ing SK-capacities or PK-capacities. Furthermore, implementations of these constructions

schemes using LDPC codes are illustrated.

(iv). For several two-terminal source models with rate constraints on the public

communication between these terminals, it is proved that the CR-capacity equals the sum

of the smallest sum-rate of the communication needed to achieve the CR-capacity, and the

SK-capacity. These initial results suggest that the decomposition of the CR-capacity into

the SK-capacity, and the smallest sum-rate of the communication needed to achieve the

CR-capacity, could hold for a larger class of source models consisting of multiple terminals

with rate constraints on their public communication.
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Chapter 2

The Private Key Capacity Region for Three Terminals

2.1 Introduction

The problem of secret key generation by separate terminals, based on their observations of

distinct correlated sources followed by public communication among themselves, has been

investigated by several authors ([36], [3], [5], [9], [13], [16]–[17], [37]–[43], [51], [62], among

others). It is shown that these terminals can generate common randomness which is kept

secret from an eavesdropper that is privy to the public interterminal communication and

sometimes also to a wiretapped source which is correlated with the previous sources.

In the wake of [36], models for secrecy generation by two terminals have been widely

studied. Of particular interest to us is the recent work in [17], which considers models

consisting of an arbitrary number of terminals which respectively observe the distinct

components of a discrete memoryless multiple source, followed by unrestricted public

communication among themselves; a subset of the terminals can also serve as “helpers”

for the remaining terminals in generating secrecy. Three varieties of secrecy capacity

– the largest rate of secrecy generation – are considered according to the extent of an

eavesdropper’s knowledge: secret key, private key and wiretap secret key capacity. A secret

key (SK) generated by a set of “user” terminals with assistance – in the form of additional

correlated information – from a set of helper terminals (e.g., centralized or trusted servers

in a key establishment protocol), requires concealment from an eavesdropper with access

to the public interterminal communication. A private key (PK) generated by the user

terminals must be additionally protected from the assisting helper terminals. A wiretap
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secret key1 (WSK) must satisfy the even more stringent requirement of being protected

from a resourceful eavesdropper’s access to a wiretapped correlated source. It should

be stressed that in all of the work mentioned above, the user terminals are required to

devise only a single key, of any variety, to be used subsequently for secure encrypted

communication.

There are, however, situations, arising for instance in “group communication,” in

which multiple keys must be simultaneously devised in a coordinated manner by different

groups of terminals (with possible overlaps of groups); such keys need protection from

prespecified terminals as also from an eavesdropper. Such a situation can occur when

certain disabled terminals cease to be authorized or reliable so that the keys assigned

to them, in effect, are compromised; the remaining authorized terminals must then be

capable of maintaining security by switching to another set of keys which are concealed

from the disabled terminals. In the interests of efficiency, all such keys must be devised

at the outset of operations so as to avoid the need for a fresh key generation procedure

after a disablement. These situations produce a rich vein of secrecy generation problems,

the information-theoretic underpinnings of which are substantial enough for investigation

already in the case of just three terminals. Various types of secrecy generation (as in [17])

can then be studied for different subsets of the three terminals.

Considering a model with three terminals, our emphasis in this chapter is on the

problem of characterizing all the rates at which two pairs of terminals can simultaneously

generate PKs, each of which is effectively concealed from the remaining terminal. The gen-

eral problem of PK generation for all three pairs of terminals is briefly addressed towards
1The capacity problem associated with a wiretap secret key is not fully resolved even in the case of two

user terminals, and we do not consider it here.
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the end. Suppose that terminals X , Y and Z observe, respectively, the distinct compo-

nents of a discrete memoryless multiple source (DMMS), i.e., independent and identically

distributed (i.i.d.) repetitions of the (generic) random variables (rvs) X , Y , Z, respec-

tively. For the purposes of secrecy generation, the terminals are permitted unrestricted

communication among themselves over a public channel, and all the transmissions are

observed by all the terminals. An eavesdropper has access to this public communication

but gathers no additional side information; also, the eavesdropper is passive, i.e., unable

to corrupt the transmissions. Terminals X and Y (resp. X and Z) generate a PK with

the possible help of terminal Z (resp. Y) which is concealed from the helper terminal

Z (resp. Y) and from an eavesdropper with access to the public communication among

the terminals. Our main technical results are single-letter inner and outer bounds for the

PK-capacity region, i.e., the set of all rate pairs at which such PK pairs can be generated.

Further, under certain special conditions on the joint probability mass function (pmf) of

X , Y , Z, these bounds are shown to coincide to yield the (exact) PK-capacity region.

All our results for the PK-capacity region hold in a strong sense; specifically, achiev-

ability results are established under a “strong” requirement and converse results under a

“weak” requirement. While the weak and strong definitions of secrecy capacity have been

shown to yield identical results for various models [37], [13], [16], [40], [17], it is worth

mentioning that our technique leads directly to strong achievability.

This chapter is organized as follows. Section 2.2 contains the preliminaries. Our

main results – inner and outer bounds for the PK-capacity region – are provided in Section

2.3. Furthermore, under certain special conditions, these bounds coincide to yield the

(exact) PK-capacity region. Section 2.3 also contains several examples of the PK-capacity

region. The proofs are given in Section 2.4. In Section 2.5, we examine the general problem
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of characterizing all the rates at which all pairs of terminals can simultaneously generate

PKs.

2.2 Preliminaries

Consider a DMMS with three components corresponding to generic rvs X , Y , Z with

finite alphabets X , Y, Z . Let Xn = (X1, · · · , Xn), Y n = (Y1, · · · , Yn), Zn = (Z1, · · · , Zn)

be n i.i.d. repetitions of the rvs X , Y , Z. The terminals X , Y, Z 2 respectively observe

the components Xn, Y n, Zn of the DMMS (Xn, Y n, Zn), where n denotes the observa-

tion length. The terminals can communicate with each other through broadcasts over a

noiseless public channel, possibly interactively in many rounds. Following [17], we assume

without any loss of generality that these transmissions occur in consecutive time slots

in r rounds; the communication is depicted by 3r rvs F1, · · · , F3r, where Ft denotes the

transmission in time slot t, 1 ≤ t ≤ 3r, by a terminal assigned an index i = t mod 3,

1 ≤ i ≤ 3, with terminals X , Y, Z corresponding to indices 1, 2, 3, respectively. In gen-

eral, Ft is allowed to be any function, defined in terms of a mapping ft, of the observations

at the terminal with index i and of the previous transmissions F[1,t−1] = (F1, · · · , Ft−1);

thus, for instance, F1 = f1(Xn), F2 = f2(Y n, F1), F3 = f3(Zn, F1, F2), and so on. We do

not permit any randomization at the terminals; in particular, f1, · · · , f3r are deterministic

mappings. Let F = (F1, · · · , F3r) denote collectively all the transmissions in the 3r time

slots.

Given ε > 0 and the rvs U , V , we say that U is ε-recoverable from V if Pr{U �=

f(V )} ≤ ε for some function f(V ) of V (cf. [17]).
2The use of the same symbol for a terminal as well as for the alphabet of its observations should not

lead to any confusion.
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The rvs KXY and KXZ , which are functions of (Xn, Y n, Zn), with finite ranges KXY

and KXZ , respectively, represent an ε-private key (ε-PK) pair, where KXY (resp. KXZ)

is the PK for terminals X , Y (resp. X , Z) with privacy from the terminal Z (resp. Y),

achievable with communication F, if:

• KXY is ε-recoverable from each of (F, Xn), (F, Y n);

• KXZ is ε-recoverable from each of (F, Xn), (F, Zn);

• KXY satisfies the secrecy condition and the uniformity condition

1
n

I(KXY ∧F, Zn) ≤ ε; (2.1)

1
n

H(KXY) ≥ 1
n

log |KXY| − ε;

and

• KXZ satisfies the secrecy condition and the uniformity condition

1
n

I(KXZ ∧F, Y n) ≤ ε; (2.2)

1
n

H(KXZ) ≥ 1
n

log |KXZ| − ε.

The conditions above thus mean that terminals X and Y generate a PK KXY with the

terminal Z acting as helper (e.g., a “third-party” in a key establishment protocol) by

providing X , Y with additional correlated information; this PK is nearly uniformly dis-

tributed, and is concealed from an eavesdropper that observes the public communication

F as well as from the helper Z (and, hence, “private”). Simultaneously, with the same

public communication, terminals X and Z generate a PK KXZ with the terminal Y acting

as helper; this PK is nearly uniformly distributed, and is concealed from an eavesdropper

as well as from the helper Y. Note that the previous conditions readily imply that KXY

and KXZ are “nearly” statistically independent.
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We remark that this model can be interpreted in terms of a “central” terminal X

establishing individual PKs with each terminal Y (resp. Z) with the remaining terminal Z

(resp. Y) serving as helper. We are interested in the simultaneous generation of individual

PK pairs (KXY, KXZ) as above.

Definition 2.1 A pair of nonnegative numbers (RXY , RXZ) is an achievable PK-rate

pair if εn-PK pairs
(
K

(n)
XY , K

(n)
XZ

)
are achievable with suitable communication (with the

number of rounds possibly depending on n), such that εn → 0, 1
nH

(
K

(n)
XY

)
→ RXY ,

1
nH

(
K

(n)
XZ

)
→ RXZ. The set of all achievable PK-rate pairs is the PK-capacity region

CPK . An achievable PK-rate pair will be called strongly achievable if εn above can be taken

to vanish exponentially in n. A PK-capacity region will be termed strong if all rate pairs

in that region are strongly achievable.

Remarks:

1. Maurer [37] pointed out that the secrecy conditions (2.1), (2.2) were inadequate

for cryptographic purposes, and should be strengthened by omission of the factor 1
n . Note

that the concept of strong achievability above, which is adopted from [16], [17], demands

even more. All our achievability results will be proved as strong achievability results.

2. The (strong) PK-capacity region is a closed convex set. Closedness is obvious

from the definition. Convexity follows from a standard time-sharing argument (cf. [15, p.

242]).

3. If K
(n)
XZ is set equal to a constant in the definition above, i.e., only a single εn-PK

is generated by terminals X and Y with terminal Z serving as a helper terminal, then

the entropy rate of such a PK is called achievable PK-rate, and the largest achievable

PK-rate is the PK-capacity. An achievable PK-rate is called strongly achievable PK-rate

if εn vanishes exponentially in n. A PK-capacity is termed strong if all smaller rates are
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strongly achievable. It is known (cf. [3], [16]) that the (strong) PK-capacity is equal to

I(X ∧ Y |Z).

2.3 Statement of Results

Theorem 2.1 (Outer bound for CPK): Let (RXY , RXZ) be an achievable PK-rate pair.

Then

RXY ≤ I(X ∧ Y |Z), RXZ ≤ I(X ∧ Z|Y ), (2.3)

RXY + RXZ ≤ min
U

I(X ∧ Y, Z|U), (2.4)

where the minimum is over all rvs U that satisfy the Markov conditions

U −◦− Y −◦−XZ, U −◦− Z −◦−XY. (2.5)

Remarks:

1. The bounds in (2.3) on the individual largest achievable PK-rates are already

known from the single PK results in [3], [16].

2. The minimum in (2.4) is attainable, since by a direct application of the Support

Lemma [15, p. 310], the rv U in (2.4) can be assumed, without restricting generality, to

take values in a set U of cardinality |U| ≤ |Y| · |Z|+ 1.

Definition 2.2 A common function of Y and Z is any rv which equals both a function

of Y and a function of Z; a maximal common function Umcf(Y,Z) of Y and Z is such that

every other common function of Y and Z is a function of Umcf(Y,Z) (cf. e.g., [16], [22]).

The rvs Y and Z are deterministically correlated if there exists a common function of Y

and Z which renders them conditionally independent (cf. [15, p. 405]).
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Proposition 2.1 If there exists a common function of Y and Z which renders them

conditionally independent, then that common function is a maximal common function of

Y and Z.

Proof of Proposition 2.1: Let U be a common function of Y and Z such that

I(Y ∧ Z|U) = 0. (2.6)

Let U ′ be an arbitrary common function of Y and Z. Then

I(Y ∧ Z|U) ≥ I(U ′ ∧ Z|U) = H(U ′|U)−H(U ′|U, Z) = H(U ′|U). (2.7)

It follows from (2.6) and (2.7) that U ′ is a function of U , which implies that U is a maximal

common function of Y and Z.

An example of a maximal common function is given below.

Example 2.1: Let Y and Z be {0, 1, 2}-valued rvs with joint pmf

PY Z(0, 0) = PY Z(0, 1) = a,

PY Z(1, 2) = PY Z(2, 2) =
1
2
− a,

for some 0 < a < 1
2 .

A rv U , as a function of Y , is defined as follows:

U =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if Y = 0,

1, if Y ∈ {1, 2}.

Equivalently, U can also be defined as:

U =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if Z ∈ {0, 1},

1, if Z = 2.
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Hence, U is a common function of Y and Z. It is easily seen that Y −◦− U −◦− Z.

Therefore, Y and Z are deterministically correlated. Furthermore, by Proposition 2.1, U

is a maximal common function of Y and Z.

Since Umcf(Y,Z) satisfies the two Markov conditions in (2.5), we have the following

corollary of Theorem 2.1.

Corollary 2.1 (Outer bound for CPK): Any achievable PK-rate pair (RXY , RXZ) satis-

fies (2.3) and

RXY + RXZ ≤ I(X ∧ Y, Z|Umcf(Y,Z)).

Theorem 2.2 (Inner bound for CPK): The (strong) PK-capacity region CPK is inner-

bounded by the convex hull of the union of the regions⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(RXY, RXZ) : RXY ≤ maxU : U−◦−Y −◦−XZ [I(X ∧ Y |U)− I(Y ∧ Z|U)],

RXZ ≤ I(X ∧ Z|Y )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.8)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(RXY, RXZ) : RXY ≤ I(X ∧ Y |Z),

RXZ ≤ maxV : V −◦−Z−◦−XY [I(X ∧ Z|V )− I(Y ∧ Z|V )]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (2.9)

Remarks:

1. The maxima in (2.8) and (2.9) are attainable, since by a direct application

of the Support Lemma [15, p. 310], the rvs U , V in (2.8) and (2.9) can be assumed,

without restricting generality, to take values in sets U , V of cardinalities |U| ≤ |Y|+1 and

|V| ≤ |Z|+ 1.
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2. Although interterminal communication between X , Y, Z is permitted, the regions

in (2.8) and (2.9) are shown to be achieved by a single autonomous transmission from each

terminal based on its own local observation of its component of the DMMS.

Note that U = V = Umcf(Y,Z) are permissible choices in (2.8) and (2.9). Hence, it

follows from (2.8) and (2.9) that

(
I(X ∧ Y |Umcf(Y,Z))− I(Y ∧ Z|Umcf(Y,Z)), I(X ∧ Z|Y )

)
(2.10)

and
(
I(X ∧ Y |Z), I(X ∧ Z|Umcf(Y,Z))− I(Y ∧ Z|Umcf(Y,Z))

)
(2.11)

are two strongly achievable rate pairs. Since the sum of the two coordinates in (2.10) as

well as in (2.11) equals I(X ∧Y, Z|Umcf(Y,Z))−I(Y ∧Z|Umcf(Y,Z)), the following corollary

is obtained from the strong achievability of rate pairs (2.10), (2.11), and the convexity of

the (strong) PK-capacity region.

Corollary 2.2 (Inner bound for CPK): The (strong) PK-capacity region CPK is inner-

bounded by the region⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(RXY, RXZ) : RXY ≤ I(X ∧ Y |Z), RXZ ≤ I(X ∧ Z|Y ),

RXY + RXZ ≤ I(X ∧ Y, Z|Umcf(Y,Z))− I(Y ∧ Z|Umcf(Y,Z))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

The gap between the inner bound in Corollary 2.2 and the outer bound in Corollary

2.1 is I(Y ∧Z|Umcf(Y,Z)) for the sum of two individual PK-rates in a PK-rate pair. Figure

2.1 shows both these inner and outer bounds.

The following notion will be used in describing another inner bound for the PK-

capacity region.
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Figure 2.1: Inner and outer bounds for the PK-capacity region.

Definition 2.3 (cf. [11]): A function of Y is a sufficient statistic for Y with respect to

(w.r.t.) Z if it renders Y and Z conditionally independent; such a sufficient statistic is

a minimal sufficient statistic Umss(Y ) for Y w.r.t. Z if it is a function of every other

sufficient statistic for Y w.r.t. Z.

Theorem 2.3 (Inner bound for CPK): The (strong) PK-capacity region CPK is inner-

bounded by the convex hull of the union of the regions⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(RXY , RXZ) : 0 ≤ RXY ≤ I(X ∧ Y |Umss(Y ), Z), 0 ≤ RXZ ≤ I(X ∧ Z|Y ),

RXY + RXZ ≤ I(X ∧ Y, Z|Umss(Y ))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(2.12)

and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(RXY , RXZ) : 0 ≤ RXY ≤ I(X ∧ Y |Z), 0 ≤ RXZ ≤ I(X ∧ Z|Vmss(Z), Y ),

RXY + RXZ ≤ I(X ∧ Y, Z|Vmss(Z))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

(2.13)
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where Umss(Y ) (resp. Vmss(Z)) is the minimal sufficient statistic for Y (resp. Z) w.r.t. Z

(resp. Y ).

Remark: Although interterminal communication between X , Y, Z is permitted, the re-

gions in (2.12) and (2.13) are shown to be achieved by a single autonomous transmission

from each terminal based on its own local observation of its component of the DMMS.

Next, under a special (sufficient) condition below, the outer bound in Theorem 2.1

coincides with the inner bound in Theorem 2.2, thereby giving a complete characterization

of the PK-capacity region under this condition.

Theorem 2.4 If there exists a rv U such that

U −◦− Y −◦−XZ, U −◦− Z −◦−XY, Y −◦− U −◦− Z, (2.14)

the (strong) PK-capacity region equals the set of pairs (RXY , RXZ) which satisfy (2.3)

and

RXY + RXZ ≤ min
U

I(X ∧ Y, Z|U), (2.15)

where the minimum is w.r.t. U satisfying (2.14).

Remarks:

1. As in Theorem 2.1, the minimum in (2.15) is shown to be attained (cf. Remark

2 following Theorem 2.1).

2. The rv U satisfying all three Markov conditions in (2.14) simultaneously need

not always exist, as shown in Example 2.2 below.

Definition 2.4 (cf. [15, p. 350]): Let (Y, Z) be Y ×Z-valued rvs with a given joint pmf.

The joint pmf of (Y, Z) is called indecomposable if there are no functions f and g with

respective domains Y and Z such that Pr{f(Y ) = g(Z)} = 1 and f(Y ) takes at least two

values with nonzero probability.
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Remark: It should be noted that if Pr{Y = y, Z = z} > 0 for all y ∈ Y and z ∈ Z , then

the joint pmf of (Y, Z) is indecomposable (cf. [2]).

Example 2.2: Let Y and Z be {0, 1}-valued rvs with joint pmf

PY Z(0, 0) = PY Z(1, 1) =
1− p

2
,

PY Z(0, 1) = PY Z(1, 0) =
p

2
,

for some 0 < p < 1, p �= 1
2 .

Suppose that U is an arbitrary rv satisfying the first two Markov conditions in

(2.14), whereby

U −◦− Y −◦− Z, U −◦− Z −◦− Y.

Since PY Z(y, z) > 0, y, z ∈ {0, 1}, the joint pmf of (Y, Z) is indecomposable. Then by [15,

p. 402], U is independent of (Y, Z). Consequently,

I(Y ∧ Z|U) = I(Y ∧ Z) = 1− hb(p) > 0,

where hb(p) = −p log2 p− (1−p) log2(1−p) is the binary entropy function. Thus, the last

Markov condition in (2.14) does not hold. Therefore, in this example, no rv U can satisfy

all three Markov conditions in (2.14).

The special case in which Y and Z are deterministically correlated is of particular

interest as then the bounds for the PK-capacity region in Theorem 2.1, Corollary 2.1,

Theorem 2.2, Corollary 2.2, Theorem 2.3, as well as the characterization in Theorem 2.4,

all coincide to yield a complete characterization, as argued next. By Proposition 2.1,

I(Y ∧Z|Umcf(Y,Z)) = 0, so that the gap disappears between the inner bound in Corollary

2.2 and the outer bound in Corollary 2.1. Hence, all the bounds in Theorem 2.1, Corollary

2.1, Theorem 2.2 and Corollary 2.2 coincide to yield the PK-capacity region. Furthermore,

27



in this special case, the inner bound in Theorem 2.3 also gives the PK-capacity region since

Umss(Y ) = Vmss(Z) = Umcf(Y,Z), (2.16)

which is easily seen as follows. On the one hand,

0 = I(Y ∧ Z|Umss(Y )) ≥ I(Umcf(Y,Z) ∧ Z|Umss(Y )) = H(Umcf(Y,Z)|Umss(Y )),

and

0 = I(Y ∧ Z|Vmss(Z)) ≥ I(Umcf(Y,Z) ∧ Z|Vmss(Z)) = H(Umcf(Y,Z)|Vmss(Z)),

i.e., Umcf(Y,Z) is a common function of Umss(Y ) and Vmss(Z). On the other hand, I(Y ∧

Z|Umcf(Y,Z)) = 0 gives that Umcf(Y,Z) is a sufficient statistic for Y w.r.t. Z as well as for

Z w.r.t. Y , thereby implying that both Umss(Y ) and Vmss(Z) are functions of Umcf(Y,Z).

Thus, (2.16) follows. Lastly, since U = Umcf(Y,Z) satisfies (2.14) and can be easily seen

to achieve the minimum in (2.15), the PK-capacity region of Theorem 2.4 is the same as

that alluded to above. These observations lead to the following summary result.

Theorem 2.5 If the rvs Y and Z are deterministically correlated, the (strong) PK-

capacity region CPK equals the set of pairs (RXY , RXZ) which satisfy (2.3) and

RXY + RXZ ≤ I(X ∧ Y, Z|Umcf(Y,Z)),

where Umcf(Y,Z) is the maximal common function of Y and Z.

Example 2.3: Let Y and Z be independent rvs, each uniformly distributed on {0, 1},

and let X = Y ⊕Z, where ⊕ denotes addition modulo 2. Since Y and Z are independent,

Umcf(Y,Z) is a constant. Further, Y and Z are deterministically correlated. It follows from

Theorem 2.5 that the PK-capacity region is the set of pairs (RXY , RXZ) satisfying

RXY + RXZ ≤ I(X ∧ Y, Z|Umcf(Y,Z)) = 1.
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This PK-capacity region is triangular. The two corner points, (0, 1) and (1, 0), can be

perfectly achieved (i.e., with εn = 0), which implies, from a time-sharing argument, that

all PK-rate pairs in this region could be perfectly achieved. To achieve the corner point

(1, 0), terminal Z transmits F = Zn = zn. Upon receiving zn, terminal X recovers yn

perfectly, which is set to be KXY . It is clear that

I(KXY ∧F, Zn) = I(Y n ∧ Zn) = 0,

and

1
n

H(KXY) =
1
n

H(Y n) = 1.

Therefore, a perfect PK, of rate 1 bit/symbol, is generated by terminals X and Y. By

symmetry, the other corner point (0, 1) can also be perfectly achieved.

Example 2.4: Let Y = (Y1, N ) and Z = (Z1, N ), where Y1, Z1, and N are mutually

independent. Let the joint pmf of (X, Y1, Z1, N ) satisfy

I(Y1 ∧ Z1|X, N ) > 0, (2.17)

and

max{I(X ∧ Z1|N ), I(X ∧ Y1|N )} > 0. (2.18)

Since

I(Y ∧ Z|N ) = I(Y1 ∧ Z1|N ) = I(Y1 ∧ Z1) = 0,

Y and Z are deterministically correlated and N is a maximal common function of Y and

Z. It follows from Theorem 2.5 that the PK-capacity region is the set of pairs (RXY , RXZ)

satisfying

RXY ≤ I(X ∧ Y1|Z1, N ),
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RXZ ≤ I(X ∧ Z1|Y1, N ),

RXY + RXZ ≤ I(X ∧ Y1, Z1|N ).

Then from (2.17) and (2.18),

I(X ∧ Y1, Z1|N ) = I(X ∧ Y1|N ) + I(X ∧ Z1|Y1, N )

= H(Y1|Z1, N )−H(Y1|X, N ) + I(X ∧ Z1|Y1, N )

< H(Y1|Z1, N )−H(Y1|X, Z1, N ) + I(X ∧ Z1|Y1, N )

= I(X ∧ Y1|Z1, N ) + I(X ∧ Z1|Y1, N ),

and

I(X ∧ Y1, Z1|N ) > max {I(X ∧ Y1|Z1, N ), I(X ∧ Z1|Y1, N )} .

Hence, this PK-capacity region is pentagonal.

2.4 Proofs

The technical tool used to prove Theorem 2.1 is supplied by Lemma 2.1 below.

Lemma 2.1 Let (KXY , KXZ) be an ε-PK pair, with values in finite sets KXY and KXZ ,

respectively, achieved with communication F = (F1, · · · , F3r). Let U be an arbitrary rv sat-

isfying the Markov conditions in (2.5). Let Un = (U1, · · · , Un) be n i.i.d. repetitions of the

rv U such that each (Ui, Xi, Yi, Zi), 1 ≤ i ≤ n, has identical joint pmf, and (Ui, Xi, Yi, Zi)

is independent of (Uj, Xj, Yj, Zj), 1 ≤ j �= i ≤ n. Then

1
n

H(KXY, KXZ|F, Un) = H(X, Y, Z|U)−(RX+RY +RZ)+
3 + 3ε log |KXY ||KXZ|

n
(2.19)

for some (RX , RY , RZ) satisfying

RX ≥ H(X |Y, Z), RY + RZ ≥ H(Y, Z|U, X), (2.20)
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RY ≥ H(Y |X, Z), RX + RZ ≥ H(X, Z|Y )− 1
n

H(KXZ), (2.21)

RZ ≥ H(Z|X, Y ), RX + RY ≥ H(X, Y |Z)− 1
n

H(KXY). (2.22)

The proof of Lemma 2.1 is analogous to that of Lemma 2 in [17]. Still, for completeness,

a proof is provided below.

Proof of Lemma 2.1: Since F, KXY and KXZ are functions of (Xn, Y n, Zn),

H(Xn, Y n, Zn|Un) = H(F|Un)+H(KXY, KXZ|F, Un)+H(Xn, Y n, Zn|F, KXY, KXZ, Un).

Setting

RX =
1
n

∑
t:t mod 3≡1

H(Ft|Un, F[1,t−1]) +
1
n

H(Xn|F, KXY, KXZ, Un)

+
1 + ε log |KXY||KXZ|

n
,

RY =
1
n

∑
t:t mod 3≡2

H(Ft|Un, F[1,t−1]) +
1
n

H(Y n|F, KXY, KXZ, Un, Xn),

+
1 + ε log |KXY||KXZ|

n
,

RZ =
1
n

∑
t:t mod 3≡3

H(Ft|Un, F[1,t−1]) +
1
n

H(Zn|F, KXY, KXZ, Un, Xn, Y n),

+
1 + ε log |KXY||KXZ|

n
,

the previous equality gives

1
n

H(KXY, KXZ|F, Un) = H(X, Y, Z|U)− (RX + RY + RZ) +
3 + 3ε log |KXY ||KXZ|

n
.

It remains to show that (RX , RY , RZ) as defined above satisfy (2.20) – (2.22).

Since Un −◦− Y nZn −◦−Xn,

H(Xn|Y n, Zn) = H(F, Xn|Un, Y n, Zn)

=
3r∑

t=1

H(Ft|Un, Y n, Zn, F[1,t−1]) + H(Xn|F, Un, Y n, Zn). (2.23)
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Since for t mod 3 �= 1, Ft is a function of (Y n, Zn, F[1,t−1]),

3r∑
t=1

H(Ft|Un, Y n, Zn, F[1,t−1]) =
∑

t:t mod 3≡1

H(Ft|Un, Y n, Zn, F[1,t−1])

≤
∑

t:t mod 3≡1

H(Ft|Un, F[1,t−1]).

Further,

H(Xn|F, Un, Y n, Zn) ≤ H(KXY, KXZ, Xn|F, Un, Y n, Zn)

≤ H(KXY, KXZ|F, Un, Y n, Zn) + H(Xn|F, KXY, KXZ, Un)

≤ 1 + ε log |KXY||KXZ|+ H(Xn|F, KXY, KXZ, Un),

where the last inequality follows from Fano’s inequality.

Upon bounding the terms on the right side of (2.23) from above, we obtain that

H(Xn|Y n, Zn) ≤ nRX .

Since

H(Y n, Zn|Un, Xn) ≤ H(F, KXY, KXZ, Y n, Zn|Un, Xn)

= H(F|Un, Xn) + H(KXY, KXZ|F, Un, Xn)

+H(Y n|F, KXY, KXZ, Un, Xn) + H(Zn|F, KXY, KXZ, Un, Xn, Y n)

=
∑

t:t mod 3≡2,3

H(Ft|Un, Xn, F[1,t−1]) + H(KXY, KXZ|F, Un, Xn)

+H(Y n|F, KXY, KXZ, Un, Xn) + H(Zn|F, KXY, KXZ, Un, Xn, Y n)

≤ n(RY + RZ),

(RX , RY , RZ) satisfy (2.20). Since

H(Y n|Xn, Zn) ≤ H(F, KXY, KXZ, Y n|Un, Xn, Zn)

=
∑

t:t mod 3≡2

H(Ft|Un, Xn, Zn, F[1,t−1]) + H(KXY, KXZ|F, Un, Xn, Zn)
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H(Y n|F, KXY, KXZ, Un, Xn, Zn)

≤ nRY ,

and

H(Xn, Zn|Y n) ≤ H(F, KXY, KXZ, Xn, Zn|Un, Y n)

≤ H(F|Un, Y n) + H(KXY|F, Un, Y n) + H(KXZ|F, KXY, Un, Y n)

+H(Xn|F, KXY, KXZ, Un) + H(Zn|F, Un, Xn, Y n)

≤ n(RX + RZ) + H(KXZ),

(RX , RY , RZ) also satisfy (2.21). Similarly, it can be shown that (RX , RY , RZ) satisfy

(2.22), completing the proof.

Proof of Theorem 2.1: We only show (2.4), as (2.3) is from [17]. Suppose that
(
K

(n)
XY , K

(n)
XZ

)
represent an εn-PK pair, with values in finite sets K(n)

XY and K(n)
XZ , respec-

tively, achieved with communication F = (F1, · · · , F3r), where εn → 0 (see Definition 2.1).

Let U be an arbitrary rv satisfying the Markov conditions in (2.5). Let Un = (U1, · · · , Un)

be n i.i.d. repetitions of the rv U such that each (Ui, Xi, Yi, Zi), 1 ≤ i ≤ n, has identical

joint pmf, and (Ui, Xi, Yi, Zi) is independent of (Uj, Xj, Yj, Zj), 1 ≤ j �= i ≤ n. Then

Un −◦− Y n −◦−XnZn, Un −◦− Zn −◦−XnY n,

which implies that

Un −◦− FY n −◦−XnZn, Un −◦− FZn −◦−XnY n.

Hence,

I
(
K

(n)
XZ ∧F, Un

)
≤ I

(
K

(n)
XZ ∧F, Un, Y n

)

= I
(
K

(n)
XZ ∧F, Y n

)
+ I

(
K

(n)
XZ ∧ Un|F, Y n

)
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≤ nεn + I
(
K

(n)
XZ , Xn ∧ Un|F, Y n

)

≤ nεn + H
(
K

(n)
XZ |F, Xn

)

≤ nεn + 1 + εn log
∣∣∣K(n)

XY

∣∣∣ ∣∣∣K(n)
XZ

∣∣∣ . (2.24)

Similarly, we have

I
(
K

(n)
XY ∧F, K

(n)
XZ, Un

)
≤ nεn + 2 + 2εn log

∣∣∣K(n)
XY

∣∣∣ ∣∣∣K(n)
XZ

∣∣∣ . (2.25)

On the other hand, it follows from (2.19) and (2.20) that

1
n

H
(
K

(n)
XY , K

(n)
XZ|F, Un

)
≤ H(X, Y, Z|U)− [H(X |Y, Z)+ H(Y, Z|U, X)]

+
3 + 3εn log

∣∣∣K(n)
XY

∣∣∣ ∣∣∣K(n)
XZ

∣∣∣
n

= I(X ∧ Y, Z|U) +
3 + 3εn log

∣∣∣K(n)
XY

∣∣∣ ∣∣∣K(n)
XZ

∣∣∣
n

. (2.26)

Finally, it follows from (2.24) – (2.26) that

1
n

H
(
K

(n)
XY

)
+

1
n

H
(
K

(n)
XZ

)

=
1
n

H
(
K

(n)
XY , K

(n)
XZ

)
+

1
n

I
(
K

(n)
XY ∧K

(n)
XZ

)

=
1
n

H
(
K

(n)
XY , K

(n)
XZ|F, Un

)
+

1
n

I
(
K

(n)
XZ ∧F, Un

)
+

1
n

I
(
K

(n)
XY ∧F, K

(n)
XZ, Un

)

≤ I(X ∧ Y, Z|U) + 2εn +
6 + 6εn log

∣∣∣K(n)
XY

∣∣∣ ∣∣∣K(n)
XZ

∣∣∣
n

.

This completes the proof.

The proof of Theorem 2.2 is based on Lemma 2.2 below, which is implied by [16]

(Theorem 2.6). Since the models considered in [16] involve rate constraints on the public

communication F between user terminals, the full force of the results in [16] is not needed

here. We provide below a version of the model and the corresponding lemma of direct use

here.
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Consider a DMMS with three components corresponding to generic rvs X , Y , Z with

finite alphabets X , Y, Z . Let Xn = (X1, · · · , Xn), Y n = (Y1, · · · , Yn), Zn = (Z1, · · · , Zn)

be n i.i.d. repetitions of the rvs X , Y , Z. Terminals X and Y respectively observe the

components Xn and Y n of the DMMS, where n denotes the observation length. Here, ter-

minals X and Y represent the two users who wish to generate a wiretap secret key (WSK),

which should be concealed from a wiretapper Z that observes the component Zn of the

DMMS. The user terminals can communicate with each other through broadcasts over a

noiseless public channel, possibly interactively in many rounds. Again, we assume without

any loss of generality that these transmissions occur in consecutive time slots in r rounds;

the communication is depicted by 2r rvs F1, · · · , F2r, where Ft denotes the transmission

in time slot t, 1 ≤ t ≤ 2r, by terminal X (resp. Y) if t is odd (resp. even). In general, Ft

is allowed to be any function, defined in terms of a mapping ft, of the local observations

at the user terminal and of the previous transmissions F[1,t−1] = (F1, · · · , Ft−1). No ran-

domization is permitted at the user terminals; in particular, f1, · · · , f2r are deterministic

mappings. Let F = (F1, · · · , F2r) denote collectively all the transmissions in the 2r time

slots.

The rv KXY , which is a function of (Xn, Y n), with finite range KXY, represents an

ε-wiretap secret key (ε-WSK) for terminals X and Y and concealed from the wiretapper

Z , achievable with communication F, if:

• KXY is ε-recoverable from each of (F, Xn), (F, Y n);

• KXY satisfies the wiretap secrecy condition

1
n

I(KXY ∧F, Zn) ≤ ε;

and
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• KXY satisfies the uniformity condition

1
n

H(KXY) ≥ 1
n

log |KXY| − ε.

Definition 2.5 A nonnegative number RXY is an achievable WSK-rate if an εn-WSK

K
(n)
XY is achievable with suitable communication (with the number of rounds possibly de-

pending on n), such that εn → 0 and 1
nH

(
K

(n)
XY

)
→ RXY . The largest achievable WSK-

rate is the WSK-capacity CWSK . An achievable WSK-rate will be said to be strongly

achievable if εn above can be taken to vanish exponentially in n. A WSK-capacity will be

termed strong if all smaller rates are strongly achievable.

Lemma 2.2 [16] The (strong) WSK-capacity is bounded below according to

CWSK ≥ max
U

[I(X ∧ Y |U)− I(X ∧ Z|U)] , (2.27)

where the maximum is over all rvs U that satisfy the Markov condition U −◦−X −◦−Y Z.

Furthermore, the right side of (2.27) is a WSK-rate that can be achieved by a single

transmission from terminal X .

Remarks:

1. The right side of (2.27) was first proved to be a lower bound for the “weak”

WSK-capacity in [3]. If randomization is allowed at terminals X and Y, the right side of

(2.27) was also proved to be a lower bound for the strong WSK-capacity in [13].

2. It follows from the proof of Lemma 2.2 that upon receiving the transmission

from terminal X , terminal Y recovers the observation Xn = xn at terminal X , with error

probability decaying to 0 exponentially with n.

Proof of Theorem 2.2: We prove here only the strong achievability of the region (2.8).

The strong achievability of the region (2.9) follows by symmetry. Thanks to a time-sharing
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argument, to finish the proof of this theorem, it suffices to show the strong achievability

of the rate pair

(
max

U : U−◦−Y −◦−XZ
[I(X ∧ Y |U)− I(Y ∧ Z|U)] , I(X ∧ Z|Y )

)
.

The scheme to achieve a PK pair with the rates as above is as follows. Let Xn = xn, Y n =

yn, Zn = zn be the respective observations at the terminals X , Y, Z . Terminal X does

not transmit in the first time slot. In the second time slot, terminal Y transmits f2(yn), in

order to establish a WSK with terminal X by regarding terminal Z as a wiretapper. By

Lemma 2.2, after this transmission, terminals X and Y generate an εn-WSK K
(n)
XY , with

εn decaying to 0 exponentially, and

1
n

H
(
K

(n)
XY

)
≥ max

U : U−◦−Y −◦−XZ
[I(X ∧ Y |U)− I(Y ∧ Z|U)] .

Furthermore, upon receiving the transmission f2(yn), terminal X recovers yn with error

probability decaying exponentially 0 with n.

In the third time slot, terminal Z transmits f3(zn), in order to establish a WSK

with terminal X by regarding terminal Y as a wiretapper. Again, by Lemma 2.2, after

this transmission, terminals X and Z generate an εn-WSK K
(n)
XZ, with εn decaying to 0

exponentially, and

1
n

H
(
K

(n)
XZ

)
≥ max

V : V −◦−Z−◦−XY
[I(Z ∧X, Y |V )− I(Z ∧ Y |V )]

≥ I(X ∧ Z|Y ).

The last inequality follows by choosing V to be a constant. In this scheme, F = (F2, F3),

where F2 = f2(Y n) and F3 = f3(Zn). Now,

1
n

I
(
K

(n)
XZ ∧ F, Y n

)
=

1
n

I
(
K

(n)
XZ ∧ F3, Y

n
)
≤ εn,
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where the inequality follows since K
(n)
XZ is an εn-WSK. Similarly,

1
n

I
(
K

(n)
XY ∧F, Zn

)
≤ εn.

Therefore, the two εn-WSK K
(n)
XY , K

(n)
XZ, with individual rates no less than

max
U : U−◦−Y −◦−XZ

[I(X ∧ Y |U)− I(Y ∧ Z|U)]

and

I(X ∧ Z|Y ),

respectively, constitute an εn-PK pair. This completes the proof.

In the proof of Theorem 2.3, we shall use the notations and properties of typical

sequences, which are given in Appendix A.2, as well as the following lemma, which is

proved in [17].

Lemma 2.3 [17] Given the finite sets U , V, a function f : Un → {1, · · · , 2nR}, and a

positive number H , there exists a mapping g : Un → {1, · · · , 2nH} such that for i.i.d.

repetitions of any rvs (U, V ) with

H(U |V ) > R + H + δ,

where δ > 0 is arbitrarily small but fixed, the probabilities that g(Un) is uniformly dis-

tributed and g(Un) is independent of (f(Un), V n) go exponentially to 0.

Proof of Theorem 2.3: We prove here only the strong achievability of the region (2.12).

The strong achievability of the region (2.13) follows by symmetry.

Denote by Umss(Yi) the minimal sufficient statistic for Yi w.r.t. Zi, 1 ≤ i ≤ n. Let

Un
mss(Y ) =

(
Umss(Y1), · · · , Umss(Y2)

)
. Terminal Y obtains the sequence Un

mss(Y ) = un from

its local observation yn, and transmits the sequence un.
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Consider random partitions of Yn and Zn into b1 and b2 bins, respectively, where

b1 = b1(n) and b2 = b2(n) are two integers to be specified later. For each yn ∈ Yn

(resp. zn ∈ Zn), let FY(yn) (resp. FZ (zn)) be the random index of the bin containing yn

(resp. zn), where FY(yn) (resp. FZ (zn)) is uniformly distributed on the set of integers

{1, · · · , b1} (resp. {1, · · · , b2}). Then, clearly FY(yn), yn ∈ Yn are mutually independent,

as are FZ (zn), zn ∈ Zn. Furthermore, assume that (FY(yn), yn ∈ Yn), (FZ(zn), zn ∈ Zn)

and (Xn, Y n, Zn) are mutually independent.

Terminals Y and Z , with respective observations yn and zn, transmit random indices

FY (yn) = JY and FZ (zn) = JZ , where JY and JZ are uniformly distributed on {1, · · · , b1}

and {1, · · · , b2}, respectively.

The decoding at terminal X is performed as follows. Fix ξ > 0. Terminal X , upon

observing xn ∈ X n as well as receiving the sequence un and the integers jY , jZ , decodes

according to the decoding rule φ, defined by

φ(un, xn, jY, jZ) = (ŷn, ẑn),

iff (ŷn, ẑn) is the unique element in Yn × Zn such that

• (un, xn, ŷn, ẑn) ∈ T n
Umss(Y )XY Z,ξ and

• FY(ŷn) = jY , FZ(ẑn) = jZ .

If no such (ŷn, ẑn) exists, an error is declared. The probability of decoding error at terminal

X is then

P (n)
e = Pr

{
φ(Un

mss(Y ), X
n, FY(Y n), FZ(Zn)) �= (Y n, Zn)

}
.

Define the events

E0 =
{
(Un

mss(Y ), X
n, Y n, Zn) �∈ T n

Umss(Y )XY Z,ξ

}
,

E1 =
{
∃ỹn ∈ Yn : Y n �= ỹn; FY(Y n) = FY (ỹn); (Un

mss(Y ), X
n, ỹn, Zn) ∈ T n

Umss(Y )XY Z,ξ

}
,
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E2 =
{
∃z̃n ∈ Zn : Zn �= z̃n; FZ(Zn) = FZ(z̃n); (Un

mss(Y ), X
n, Y n, z̃n) ∈ T n

Umss(Y )XY Z,ξ

}
,

E3 = {∃(ỹn, z̃n) ∈ Yn ×Zn : Y n �= ỹn; Zn �= z̃n; FY(Y n) = FY(ỹn); FZ(Zn) = FZ (z̃n);

(Un
mss(Y ), X

n, ỹn, z̃n) ∈ T n
Umss(Y )XY Z,ξ},

Clearly,

P (n)
e = Pr

{
3⋃

i=0

Ei

}
≤

3∑
i=0

Pr {Ei} . (2.28)

It follows from Proposition A.1 in Appendix A.2 that for some ε = ε(ξ) > 0, and all

sufficiently large n,

Pr {E0} < 2−nε (2.29)

To bound Pr{E1}, we have

Pr {E1}

=
∑

(un,xn,yn,zn)∈T n
Umss(Y )XY Z,ξ

Pr
{
(Un

mss(Y ), X
n, Y n, Zn) = (un, xn, yn, zn)

}

·
∑

ỹn �=yn :(un,xn,ỹn,zn)∈T n
Umss(Y )XY Z,ξ

Pr
{
FY (ỹn) = FY (yn)|(Un

mss(Y ), X
n, Y n, Zn) = (un, xn, yn, zn)

}

=
∑

(un,xn,yn,zn)∈T n
Umss(Y )XY Z,ξ

Pr
{
(Un

mss(Y ), X
n, Y n, Zn) = (un, xn, yn, zn)

}
∑

ỹn �=yn :(un,xn,ỹn,zn)∈T n
Umss(Y )XY Z,ξ

b−1
1

≤
∑

(un,xn,yn,zn)∈T n
Umss(Y )XY Z,ξ

Pr
{
(Un

mss(Y ), X
n, Y n, Zn) = (un, xn, yn, zn)

}

·b−1
1 · 2n[H(Y |Umss(Y ),X,Z)+2ξ]

≤ 2−n[ 1
n

log b1−H(Y |Umss(Y ),X,Z)−2ξ]. (2.30)

Similarly, we have

Pr{E2} ≤ 2−n[ 1
n

log b2−H(Z|Umss(Y ),X,Y )−2ξ], (2.31)

and

Pr{E3} ≤ 2−n[ 1
n

log b1b2−H(Y,Z|Umss(Y ),X)−2ξ]. (2.32)

40



Upon picking the integers b1, b2 so as to satisfy

1
n

log b1 ≥ H(Y |Umss(Y ), X, Z) + 3ξ, (2.33)

1
n

log b2 ≥ H(Z|Umss(Y ), X, Y ) + 3ξ, (2.34)

and

1
n

log b1b2 ≥ H(Y, Z|Umss(Y ), X) + 3ξ, (2.35)

it follows from (2.28) – (2.32) that for some η = η(ε, ξ) > 0 and all sufficiently large n,

P (n)
e ≤ 2−nη.

It then follows that there exists a pair of (deterministic) mappings fY = fY (Y n) and

fZ = fZ(Zn) satisfying

Pr
{
φ
(
Un

mss(Y ), X
n, fY(Y n), fZ(Zn)

)
�= (Y n, Zn)

}
≤ 2−nη .

Next, apply Lemma 2.3 with Y , (Umss(Y ), Z) and fY in the roles of U , V and f ,

with R = 1
n log b1 and H = H(Y |Umss(Y ), Z)− 1

n log b1 − ξ = H(Y |Umss(Y )) − 1
n log b1 −

ξ, respectively. The following holds with probability exponentially tending to 1 in n:

there exists a mapping gY : Yn → {1, · · · , 2n[H(Y |Umss(Y ))− 1
n

log b1−ξ]} such that gY(Y n) is

uniformly distributed and gY(Y n) is independent of (fY(Y n), Un
mss(Y ), Z

n).

Apply Lemma 2.3 again with Z, Y and fZ in the roles of U , V and f , with R =

1
n log b2 and H = H(Z|Y )− 1

n log b2−ξ, respectively. The following holds with probability

exponentially tending to 1: there exists a mapping gZ : Zn → {1, · · · , 2n[H(Z|Y )− 1
n

log b2−ξ]}

such that gZ(Zn) is uniformly distributed and gZ(Zn) is independent of (fZ(Zn), Y n)

If no error is declared by terminal X , the PK K
(n)
XY is set as gY(Y n), and the PK

K
(n)
XZ is set as gZ(Zn). Otherwise, K

(n)
XY and K

(n)
XZ are respectively set to be uniformly
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distributed on
{
1, · · · , 2n[H(Y |Umss(Y ))− 1

n
log b1−ξ]

}
,

and
{
1, · · · , 2n[H(Z|Y )− 1

n
log b2−ξ]

}
,

independent of (Xn, Y n, Zn).

Clearly, K
(n)
XY and K

(n)
XZ are εn-recoverable at terminal X , with εn exponentially

decaying to 0.

The uniformity of gY(Y n) and gZ(Zn) gives that

1
n

H
(
K

(n)
XY

)
= H(Y |Umss(Y ))−

1
n

log b1 − ξ,

1
n

H
(
K

(n)
XZ

)
= H(Z|Y )− 1

n
log b2 − ξ.

The lower bounds (2.33) – (2.35) on 1
n log b1, 1

n log b2 and 1
n log b1b2 imply that

1
n

H
(
K

(n)
XY

)
≤ H(Y |Umss(Y ))−H(Y |Umss(Y ), X, Z)− 4ξ = I(X ∧ Y |Umss(Y ), Z)− 4ξ,

1
n

H
(
K

(n)
XZ

)
≤ H(Z|Y )−H(Z|X, Y )− 4ξ = I(X ∧ Z|Y )− 4ξ,

1
n

H
(
K

(n)
XY

)
+

1
n

H
(
K

(n)
XZ

)
≤ H(Y |Umss(Y )) + H(Z|Y )−H(Y, Z|Umss(Y ), X)− 5ξ

= I(X ∧ Y, Z|Umss(Y ))− 5ξ.

Note that

I
(
K

(n)
XY ∧ F, Zn

)
= I(gY(Y n) ∧ fY (Y n), Un

mss(Y ), Z
n)

and

I
(
K

(n)
XZ ∧F, Y n

)
= I(gZ(Zn) ∧ fZ(Zn), Y n).

It follows from the independence of gY(Y n) and (fY(Y n), Un
mss(Y ), Z

n), as well as of gZ(Zn)

and (fZ(Zn), Y n), that
(
K

(n)
XY , K

(n)
XZ

)
constitutes a (strongly) achievable PK pair. This

completes the proof.
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Proof of Theorem 2.4: The converse part follows from Theorem 2.1. The achievability

part is seen as follows. Let U be an arbitrary rv satisfying all three Markov conditions in

(2.14). Theorem 2.2 implies that

(I(X ∧ Y |U), I(X ∧ Z|Y ))

and

(I(X ∧ Y |Z), I(X ∧ Z|U))

are two strongly achievable PK-rate pairs. Note that

I(X ∧ Y |U) + I(X ∧ Z|Y ) = I(X ∧ Y |Z) + I(X ∧ Z|U)

= I(X ∧ Y, Z|U).

Hence, the strong PK-capacity region is inner bounded by the region⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(RXY, RXZ) : RXY ≤ I(X ∧ Y |Z) RXZ ≤ I(X ∧ Z|Y ),

RXY + RXZ ≤ maxU I(X ∧ Y, Z|U)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

where the maximum is w.r.t. U satisfying (2.14). This completes the proof.

2.5 Generalizations

The model considered in this section is an obvious generalization of the previous model,

in that after r rounds of communication, a PK must be generated by each of the three

pairs of terminals (i.e., terminals X and Y, X and Z , Y and Z). We shall define the

PK-capacity region for this model and derive an outer bound for the PK-capacity region.

Also, we shall provide an example in which this outer bound for the PK-capacity region

is tight.

Consider a DMMS with three components corresponding to generic rvs X , Y , Z with

finite alphabets X , Y, Z . Let Xn = (X1, · · · , Xn), Y n = (Y1, · · · , Yn), Zn = (Z1, · · · , Zn)
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be n i.i.d. repetitions of the rvs X , Y , Z. The terminals X , Y, Z respectively observe

the components Xn, Y n, Zn of the DMMS (Xn, Y n, Zn), where n denotes the observa-

tion length. The terminals can communicate with each other through broadcasts over a

noiseless public channel, possibly interactively in many rounds. We assume without any

loss of generality that these transmissions occur in consecutive time slots in r rounds; the

communication is depicted by 3r rvs F1, · · · , F3r, where Ft denotes the transmission in

time slot t, 1 ≤ t ≤ 3r, by a terminal assigned an index i = t mod 3, 1 ≤ i ≤ 3, with

terminals X , Y, Z corresponding to indices 1, 2, 3, respectively. In general, Ft is allowed

to be any function, defined in terms of a mapping ft, of the observations at the terminal

with index i and of the previous transmissions F[1,t−1] = (F1, · · · , Ft−1); thus, for instance,

F1 = f1(Xn), F2 = f2(Y n, F1), F3 = f3(Zn, F1, F2), and so on. We do not permit any

randomization at the terminals; in particular, f1, · · · , f3r are deterministic mappings. Let

F = (F1, · · · , F3r) denote collectively all the transmissions in the 3r time slots.

The rvs KXY, KXZ and KYZ , which are functions of (Xn, Y n, Zn), with finite ranges

KXY , KXZ and KYZ , respectively, represent an ε-private key (ε-PK) triple, where KXY

(resp. KXZ ; KYZ) is the PK for terminals X , Y (resp. X , Z ; Y, X ) with privacy from

the terminal Z (resp. Y; Z), achievable with communication F, if:

• KXY is ε-recoverable from each of (F, Xn), (F, Y n);

• KXZ is ε-recoverable from each of (F, Xn), (F, Zn);

• KYZ is ε-recoverable from each of (F, Y n), (F, Zn);

• KXY satisfies the secrecy condition and the uniformity condition

1
n

I(KXY ∧F, Zn) ≤ ε;

1
n

H(KXY) ≥ 1
n

log |KXY| − ε;
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• KXZ satisfies the secrecy condition and the uniformity condition

1
n

I(KXZ ∧F, Y n) ≤ ε;

1
n

H(KXZ) ≥ 1
n

log |KXZ| − ε.

and

• KYZ satisfies the secrecy condition and the uniformity condition

1
n

I(KYZ ∧F, Xn) ≤ ε;

1
n

H(KYZ) ≥ 1
n

log |KYZ| − ε.

Definition 2.6 A triple of nonnegative numbers (RXY, RXZ, RYZ) is an achievable PK-

rate triple if an εn-PK triple
(
K

(n)
XY, K

(n)
XZ, K

(n)
YZ

)
is achievable with suitable communica-

tion, such that εn → 0, 1
nH

(
K

(n)
XY

)
→ RXY , 1

nH
(
K

(n)
XZ

)
→ RXZ , 1

nH
(
K

(n)
YZ

)
→ RYZ .

The set of all achievable PK-rate triples is the PK-capacity region CPK . An achievable

PK-rate triple will be called strongly achievable if εn above can be taken to vanish expo-

nentially in n. A PK-capacity region will be termed strong if all rate triples in that region

are strongly achievable.

Remark: The (strong) PK-capacity region is also a closed convex set.

Theorem 2.6 (Outer bound for CPK): Let (RXY, RXZ , RYZ) be an achievable PK-rate

triple. Then

RXY ≤ I(X ∧ Y |Z), RXZ + RYZ ≤ I(Z ∧X, Y |Umcf(X,Y )), (2.36)

RXZ ≤ I(X ∧ Z|Y ), RXY + RYZ ≤ I(Y ∧X, Z|Umcf(X,Z)), (2.37)

RYZ ≤ I(Y ∧ Z|X), RXY + RXZ ≤ I(X ∧ Y, Z|Umcf(Y,Z)), (2.38)
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RXY + RXZ + RYZ ≤ 2H(X, Y, Z|Umcf(X,Y,Z))−H(X, Y |Z)−H(X, Z|Y )−H(Y, Z|X),

(2.39)

where Umcf(X,Y ) (resp. Umcf(X,Z), Umcf(Y,Z)) is a maximal common function of X and Y

(resp. X and Z, Y and Z), and Umcf(X,Y,Z) is a maximal common function of X , Y and

Z.

The technical tool used to prove Theorem 2.6 is supplied by Lemma 2.4 below.

Lemma 2.4 Let (KXY , KXZ, KYZ) be an ε-PK triple, with values in finite sets KXY ,

KXZ , KYZ , respectively, achieved with communication F = (F1, · · · , F3r). Then

1
n

H(KXY, KXZ, KYZ|F, Un
mcf(X,Y,Z)) = H(X, Y, Z|Umcf(X,Y,Z))− (RX + RY + RZ)

+
3 + 3ε log |KXY ||KXZ||KXY|

n
(2.40)

for some (RX , RY , RZ) satisfying

RX ≥ H(X |Y, Z), RY + RZ ≥ H(Y, Z|X)− 1
n

H(KYZ),

RY ≥ H(Y |X, Z), RX + RZ ≥ H(X, Z|Y )− 1
n

H(KXZ),

RZ ≥ H(Z|X, Y ), RX + RY ≥ H(X, Y |Z)− 1
n

H(KXY).

Proof of Lemma 2.4: Set

RX =
1
n

∑
t:t mod 3≡1

H(Ft|Un
mcf(X,Y,Z), F[1,t−1]) +

1
n

H(Xn|F, Un
mcf(X,Y,Z), KXY, KXZ)

+
1 + ε log |KXY||KXZ||KYZ |

n
,

RY =
1
n

∑
t:t mod 3≡2

H(Ft|Un
mcf(X,Y,Z), F[1,t−1]) +

1
n

H(Y n|F, Xn),

+
1 + ε log |KXY||KXZ||KYZ |

n
,
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RZ =
1
n

∑
t:t mod 3≡3

H(Ft|Un
mcf(X,Y,Z), F[1,t−1]) +

1
n

H(Zn|F, Xn, Y n),

+
1 + ε log |KXY||KXZ||KYZ |

n
.

The remaining proof is analogous to that of Lemma 2.1, and omitted here.

Proof of Theorem 2.6: We only show (2.39), as the bounds in (2.36) – (2.38) are already

known from Theorem 2.1.

Suppose that
(
K

(n)
XY , K

(n)
XZ, K

(n)
YZ

)
represent an εn-PK triple, with values in finite sets

K(n)
XY , K(n)

XZ, K(n)
YZ , respectively, achieved with communication F = (F1, · · · , F3r), where

εn → 0 (see Definition 2.6). Then

1
n

H
(
K

(n)
XY

)
+

1
n

H
(
K

(n)
XZ

)
+

1
n

H
(
K

(n)
YZ

)

=
1
n

H
(
K

(n)
XY, K

(n)
XZ, K

(n)
YZ

)
+

1
n

I
(
K

(n)
XY ∧K

(n)
XZ

)
+

1
n

I
(
K

(n)
YZ ∧K

(n)
XY , K

(n)
XZ

)

=
1
n

H
(
K

(n)
XY, K

(n)
XZ, K

(n)
YZ|F, Un

mcf(X,Y,Z)

)
+

1
n

I
(
K

(n)
XY ∧ F, Un

mcf(X,Y,Z)

)

+
1
n

I
(
K

(n)
XZ ∧F, Un

mcf(X,Y,Z), K
(n)
XY

)
+

1
n

I
(
K

(n)
YZ ∧ F, Un

mcf(X,Y,Z), K
(n)
XY, K

(n)
XZ

)

≤ 1
n

H
(
K

(n)
XY, K

(n)
XZ, K

(n)
YZ|F, Un

mcf(X,Y,Z)

)
+ 3εn, (2.41)

where the inequality follows since
(
K

(n)
XY , K

(n)
XZ, K

(n)
YZ

)
represent an εn-PK triple. Now,

(2.40) and the latter inequalities in (2.37) – (2.39) imply that

1
n

H
(
K

(n)
XY , K

(n)
XZ, K

(n)
YZ|F, Un

mcf(X,Y,Z)

)

≤ H(X, Y, Z|Umcf(X,Y,Z))−
1
2

[H(X, Y |Z) + H(X, Z|Y ) + H(Y, Z|X)]

+
1
2n

[
H
(
K

(n)
XY

)
+ H

(
K

(n)
XZ

)
+ H

(
K

(n)
YZ

)]
+

3 + 3εn log
∣∣∣K(n)

XY

∣∣∣ ∣∣∣K(n)
XZ

∣∣∣ ∣∣∣K(n)
YZ

∣∣∣
n

.(2.42)

Putting (2.42) into (2.41), we finish the proof of the theorem.

Example 2.5: Let X and Y be {0, 1}-valued rvs with joint pmf

PXY (0, 0) = PXY (1, 1) =
1− p

2
,
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PXY (0, 1) = PXY (1, 0) =
p

2
,

for some 0 < p < 1. Let Z = X ⊕ Y . As in Example 2.2, the joint pmf of (X, Y ) is

indecomposable, and Umcf(X,Y ) is independent of (X, Y ), which implies that Umcf(X,Y ) is

a constant. Consequently, Umcf(X,Y,Z) is a constant. Since I(X∧Y |Umcf(X,Y )) = 1−hb(p),

X and Y are deterministically correlated iff p = 1
2 .

It is easily seen that Z is independent of X (resp. Y ), which implies that Umcf(X,Z)

(resp. Umcf(Y,Z)) is a constant. Thus,

I(X ∧ Y |Z) = 1, I(X ∧ Z|Y ) = I(Y ∧ Z|X) = hb(p),

I(X ∧ Y, Z|Umcf(Y,Z)) = I(Y ∧X, Z|Umcf(X,Z)) = 1,

I(Z ∧X, Y |Umcf(X,Y )) = hb(p),

and

2H(X, Y, Z|Umcf(X,Y,Z))−H(X, Y |Z)−H(X, Z|Y )−H(Y, Z|X) = 1.

The outer bound for CPK is, hence, given by (2.36) – (2.39). Figure 2.2 shows this outer

bound for CPK .

Next, the tightness of this outer bound is easily seen. It is clear that (1, 0, 0),

(0, hb(p), 0) and (0, 0, hb(p)) are perfectly achievable PK-rate triples (i.e., with εn =

0). From Theorem 2.5 and the fact that Y and Z are deterministically correlated,

(1− hb(p), hb(p), 0) is also a perfectly achievable PK-rate triple. Similarly, (1− hb(p), 0, hb(p))

is another perfectly achievable PK-rate triple. Therefore, by means of a time-sharing ar-

gument, every PK-rate triple in the region of Figure 2.2 is also perfectly achievable.
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Figure 2.2: The PK-capacity region for Example 2.5.
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Chapter 3

The Secret Key–Private Key Capacity Region for Three Terminals

3.1 Introduction

As has already been mentioned in Chapter 2 that there are situations, arising for instance

in “group communication,” in which multiple keys must be simultaneously devised in a

coordinated manner by different groups of terminals (with possible overlaps of groups);

such keys need protection from prespecified terminals as also from an eavesdropper. For

instance, in group communication, different groups of terminals (with possible overlaps of

groups) must generate different keys for encrypted communication within those groups.

A key devised for a group must be concealed from terminals outside that group as well

as from an eavesdropper. Such “group-wide” keys can be simultaneously devised in a

coordinated manner by different groups of terminals. Separate keys for different groups

are also needed when certain disabled terminals become unauthorized or unreliable so that

the keys assigned to them, in effect, are compromised; to maintain security, the remaining

authorized terminals must then switch to another set of keys which are concealed from

the disabled terminals. In the interests of efficiency, all such keys must be devised at the

outset of operations so as to avoid the need for a fresh key generation procedure after a

disablement.

In general, in a network with m terminals, we could have one (common) secret key

(SK) for all the terminals, and private keys (PK) for every proper subset of the m terminals.

These situations produce a rich vein of secrecy generation problems, the information-

theoretic underpinnings of which are substantial enough for investigation already in the
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case of just three terminals.

In this chapter, we consider a simple model with three terminals and examine the

problem of characterizing all the rates at which the following two types of keys can be

generated simultaneously: (i) all the three terminals generate a SK, which is effectively

concealed from an eavesdropper; and (ii) a designated pair of terminals generate a PK,

which is effectively concealed from the remaining terminal as well as the eavesdropper.

Suppose that terminals X , Y and Z observe, respectively, the distinct components of a

discrete memoryless multiple source (DMMS), i.e., independent and identically distributed

(i.i.d.) repetitions of the generic random variables (rvs) X , Y , Z, respectively. The termi-

nals are permitted unrestricted communication among themselves over a public channel,

and all the transmissions are observed by all the terminals. An eavesdropper has access to

this public communication too, but gathers no additional (wiretapped) side-information;

also, the eavesdropper is passive, i.e., unable to corrupt the transmissions. Terminals X , Y

and Z generate a SK, which is concealed from the eavesdropper with access to the public

communication among the terminals. Also, terminals X and Y generate a PK, with the

possible help of terminal Z , which is concealed from the helper terminal Z and from the

eavesdropper. The set of all rate pairs at which such (SK, PK) pairs can be generated is

called the (SK, PK)-capacity region. Our main technical results are single-letter inner and

outer bounds for the (SK, PK)-capacity region. Further, under a certain special condition,

these bounds are shown to coincide to yield the (exact) (SK, PK)-capacity region.

This chapter is organized as follows. Section 3.2 contains the preliminaries. Our

main results – an outer bound and an inner bound for the (SK, PK)-capacity region – are

provided in Section 3.3. Furthermore, under a certain condition, these bounds coincide

to yield the (exact) (SK, PK)-capacity region. The proofs are given in Section 3.4. In
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Section 3.5, we discuss the tightness of the outer bound.

3.2 Preliminaries

Consider a DMMS with three components, and with corresponding generic rvs X , Y , Z

taking values in finite alphabets X , Y, Z , respectively. Let Xn = (X1, · · · , Xn), Y n =

(Y1, · · · , Yn), Zn = (Z1, · · · , Zn) be n i.i.d. repetitions of the rvs X , Y , Z. The terminalsX ,

Y, Z respectively observe the components Xn, Y n, Zn of the DMMS (Xn, Y n, Zn), where

n denotes the observation length. The terminals can communicate with each other through

broadcasts over a noiseless public channel, possibly interactively in many rounds. We

assume, without any loss of generality, that these transmissions occur in consecutive time

slots in r rounds; the communication is depicted by 3r rvs F1, · · · , F3r, where Ft denotes

the transmission in time slot t, 1 ≤ t ≤ 3r, by a terminal assigned an index i = t mod 3,

1 ≤ i ≤ 3, with terminals X , Y, Z corresponding to indices 1, 2, 3, respectively. In general,

Ft is allowed to be any function, defined in terms of a mapping ft, of the observations

at the terminal with index i, i = t mod 3, and of the previous transmissions F[1,t−1] =

(F1, · · · , Ft−1). We do not permit any randomization at the terminals; in particular,

f1, · · · , f3r are deterministic mappings. Let F = (F1, · · · , F3r) denote collectively all the

transmissions in the 3r time slots.

The rvs KXYZ and KXY , which are functions of (Xn, Y n, Zn), with finite ranges

KXYZ and KXY , respectively, represent an ε-secret key-private key (ε-(SK, PK)) pair,

where the SK KXYZ is for all the terminals and the PK KXY is for terminals X , Y with

privacy from the terminal Z , achievable with communication F, if:

• KXYZ is ε-recoverable from each of (F, Xn), (F, Y n), (F, Zn);

• KXY is ε-recoverable from each of (F, Xn), (F, Y n);
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• KXYZ satisfies the secrecy condition and the uniformity condition

1
n

I(KXYZ ∧F) ≤ ε; (3.1)

1
n

H(KXYZ) ≥ 1
n

log |KXYZ| − ε; (3.2)

and

• KXY satisfies the secrecy condition and the uniformity condition

1
n

I(KXY ∧F, Zn) ≤ ε; (3.3)

1
n

H(KXY) ≥ 1
n

log |KXY| − ε. (3.4)

The conditions above thus mean that terminals X , Y and Z generate a nearly uniformly

distributed SK KXYZ which is concealed from an eavesdropper that observes the public

communication F. Simultaneously, based on the same public communication, terminals X

and Y generate a PK KXY with the terminal Z acting as helper (e.g., a “third-party” in a

key establishment protocol) by providing X , Y with additional correlated information; this

private key is nearly uniformly distributed, and is concealed from an eavesdropper that

observes the public communication F as well as from the helper Z (hence, “private”). Note

that the previous conditions readily imply that KXYZ and KXY are “nearly” statistically

independent.

Definition 3.1 A pair of nonnegative numbers (RXYZ, RXY) constitute an achievable

(SK, PK)-rate pair if for every ε > 0 and all sufficiently large n, ε-(SK, PK) pairs

(KXYZ , KXY) are achievable with suitable communication (with the number of rounds

possibly depending on n), such that 1
nH (KXYZ) ≥ RXYZ −ε, 1

nH (KXY) ≥ RXY−ε. The

set of all achievable (SK, PK)-rate pairs is the (SK, PK)-capacity region, denoted by CSP .
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Remarks:

1. Maurer [37] pointed out that the secrecy conditions (3.1) and (3.3) were inade-

quate for cryptographic purposes, and should be strengthened by omission of the factor

1
n . While all our achievability results below are presented in the “weak sense,” they can

be established in the stronger sense of [37] by using the techniques developed in [40].

2. The (SK, PK)-capacity region CSP is a closed convex set. Closedness is obvious

from the definition, while convexity follows from a time-sharing argument (cf. [15, p.

242]).

3. If KXY is set equal to a constant in the definition above, i.e., only a (single) ε-SK

is generated by terminals X , Y and Z , then the entropy rate of such a secret key is called

an achievable SK-rate, and the largest achievable SK-rate is the SK-capacity. It is known

[17] that the SK-capacity is equal to

min
{

I(X ∧ Y, Z), I(Y ∧X, Z), I(Z ∧X, Y ),
1
2

[H(X) + H(Y ) + H(Z)−H(X, Y, Z)]
}

.

(3.5)

4. If KXYZ is set equal to a constant in the definition above, i.e., only a (single)

ε-PK is generated by terminals X and Y with terminal Z serving as a helper terminal,

then the entropy rate of such a private key is called an achievable PK-rate, and the largest

achievable PK-rate is the PK-capacity. It is known (cf. [3], [16]) that the PK-capacity is

equal to

I(X ∧ Y |Z). (3.6)

Example 3.1: Let X and Y be independent rvs, each uniformly distributed on {0, 1}, and

let Z = X ⊕ Y , where ⊕ denotes addition modulo 2.

It is easily seen from (3.5) that the SK-capacity for the terminals X , Y, Z equals 1
2

bit/symbol, and from (3.6) that the PK-capacity for the terminals X , Y, with privacy
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from Z , equals 1 bit/symbol. We claim in this elementary example that 1 bit of perfect

SK (i.e., ε-SK with ε = 0) is achievable for all the terminals, with observation length n = 2,

using the following scheme. Terminals X , Y, Z , with respective observations (X1, X2),

(Y1, Y2), (Z1, Z2), transmit X1, Y2 and Z1 ⊕ Z2, respectively. Then each terminal can

perfectly recover all the observations of the other terminals. The secret key KXYZ is set

to be X2 (or Y1 or Z1 or Z2). It can be shown that

I(KXYZ ∧ F) = I(X2 ∧X1, Y2, Z1 ⊕ Z2) = 0,

and

H(KXYZ) = 1.

On the other hand, it is shown in Example 2.3 that a perfect PK KXY with rate 1

bit/symbol is achievable for terminals X and Y, with privacy from Z . By a time-sharing

argument, every (SK, PK)-rate pair (RXYZ , RXY) satisfying

2RXYZ + RXY ≤ 1 (3.7)

is perfectly achievable. The results in this chapter (cf. Theorem 3.1 below) will show that

the secret key-private key capacity region CSP for this example cannot be larger than the

region in (3.7), so that (3.7) characterizes the capacity region CSP in this example.

3.3 Statement of Results

For notational simplicity, we set

A
�
= I(Z ∧X, Y ),

B
�= min{I(X ∧ Y, Z), I(Y ∧X, Z)} ,

C
�
=

1
2
[H(X) + H(Y ) + H(Z)−H(X, Y, Z)],
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Thus, the SK-capacity (3.5) for the terminals X , Y, Z is equal to min{A, B, C}.

Theorem 3.1 (Outer bound for CSP ): Let (RXYZ, RXY) be an achievable (SK, PK)-rate

pair. Then

RXYZ ≤ min{A, B, C}, (3.8)

RXY ≤ I(X ∧ Y |Z), (3.9)

RXYZ + RXY ≤ B, (3.10)

2RXYZ + RXY ≤ 2C. (3.11)

Remark: The bounds (3.8), (3.9) on the individual largest achievable SK- and PK-rates

are directly from (3.5) and (3.6). Also, while (3.5) implies

RXYZ ≤ B, RXYZ ≤ C,

note that the conditions (3.10), (3.11) above are more stringent than (3.5).

Theorem 3.2 (Inner bound for CSP ): The (SK, PK)-capacity region CSP is inner-bounded

by the region⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(RXYZ, RXY) : min{A,B,C}−min{I(X∧Z),I(Y∧Z)}
I(X∧Y |Z) · RXY + RXYZ ≤ min{A, B, C},

RXY ≤ I(X ∧ Y |Z)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(3.12)

Remark: The proof of Theorem 3.2 is based on the following idea: a modified version of the

random binning technique developed in [17] is first used to generate the needed “common

randomness.” A SK and a PK, of rate pair (min{I(X ∧ Z), I(Y ∧ Z)} , I(X ∧ Y |Z)), are
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then extracted from this common randomness, by a means from [17]. The achievability

of the rate pair above means that besides a PK generated by terminals X and Y, which

approaches the PK-capacity, a SK, of rate min{I(X ∧ Z), I(Y ∧ Z)}, can simultaneously

be generated by terminals X , Y and Z . An application of the time-sharing technique then

leads to the achievability of the region in (3.12). Although interterminal communication

between X , Y, Z is permitted, the region in (3.12) is shown to be achieved by a single

autonomous transmission from each terminal based on its own local observation of its

component of the DMMS.

Under a certain condition, the outer bound in Theorem 3.1 coincides with the inner

bound in Theorem 3.2, which provides a characterization of the (SK, PK)-capacity region

CSP .

Theorem 3.3 If min{A, B, C} = B, then CSP equals the set of pairs (RXYZ , RXY) sat-

isfying (3.9) and (3.10).

Example 3.2: Let X , Y and Z be rvs, each uniformly distributed on {0, 1}, and satisfying

the Markov condition Y −◦−X −◦− Z. Further, suppose that

PXY (0, 0) = PXY (1, 1) =
1− p

2
, PXY (0, 1) = PXY (1, 0) =

p

2
,

PXZ(0, 0) = PXZ(1, 1) =
1− q

2
, PXZ(0, 1) = PXZ(1, 0) =

q

2
,

where 0 < q < p < 1
2 .

Straightforward calculations show that

A = I(Z ∧X, Y ) = 1− hb(q),

B = min{I(X ∧ Y, Z), I(Y ∧X, Z)} = 1− hb(p),
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1−h  (p+q−2pq)b

h   (p+q−2pq)−h   (p)b

RXYZ

b

1−h  (p)b

RXY

Figure 3.1: CSP for Example 3.2.

and

C =
1
2
[H(X) + H(Y ) + H(Z)−H(X, Y, Z)] = 1− hb(p) + hb(q)

2
,

where hb(p) = −p log2 p − (1 − p) log2(1 − p). Since 0 < q < p < 1
2 , we have that

min{A, B, C} = B. It follows from Theorem 3.3 that CSP is the set of pairs (RXYZ, RXY)

satisfying

RXY ≤ hb(p + q − 2pq)− hb(p),

RXYZ + RXY ≤ 1− hb(p).

This region is depicted in Figure 3.1.

3.4 Proofs

The technical tool used to prove Theorem 3.1 is supplied by Lemma 3.1 below.

Lemma 3.1 Let (KXYZ , KXY) be an ε-(SK, PK) pair (with values in finite sets KXYZ
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and KXY , respectively), achieved with communication F = (F1, · · · , F3r). Then

1
n

H(KXYZ, KXY|F) = H(X, Y, Z)− (RX + RY + RZ) +
3 + 3ε log |KXYZ ||KXY|

n
(3.13)

for some (RX , RY , RZ) satisfying

RX ≥ H(X |Y, Z), RY + RZ ≥ H(Y, Z|X), (3.14)

RY ≥ H(Y |X, Z), RX + RZ ≥ H(X, Z|Y ), (3.15)

RZ ≥ H(Z|X, Y ), RX + RY ≥ H(X, Y |Z)− 1
n

H(KXY). (3.16)

The proof of Lemma 3.1 is analogous to that of Lemma 2.1. Still, for completeness, a

proof is provided below.

Proof of Lemma 3.1: Since F, KXYZ and KXY are functions of (Xn, Y n, Zn),

H(Xn, Y n, Zn) = H(F, KXYZ, KXY, Xn, Y n, Zn)

=
3r∑

t=1

H(Ft|F[1,t−1]) + H(KXYZ, KXY|F) + H(Xn, Y n, Zn|F, KXYZ, KXY).

Setting

RX =
1
n

∑
t:t mod 3≡1

H(Ft|F[1,t−1]) +
1
n

H(Xn|F, KXYZ, KXY)

+
1 + ε log |KXYZ ||KXY|

n
,

RY =
1
n

∑
t:t mod 3≡2

H(Ft|F[1,t−1]) +
1
n

H(Y n|F, KXYZ, KXY, Xn)

+
1 + ε log |KXYZ ||KXY|

n
,

RZ =
1
n

∑
t:t mod 3≡3

H(Ft|F[1,t−1]) +
1
n

H(Zn|F, KXYZ, KXY, Xn, Y n)

+
1 + ε log |KXYZ ||KXY|

n
,

the previous equality gives

1
n

H(KXYZ, KXY|F) = H(X, Y, Z)− (RX + RY + RZ) +
3 + 3ε log |KXYZ||KXY |

n
.
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It remains to show that (RX , RY , RZ) as defined above satisfy (3.14) – (3.16). To this

end,

H(Xn|Y n, Zn) ≤ H(F, KXYZ, KXY, Xn|Y n, Zn)

≤
3r∑
t=1

H(Ft|Y n, Zn, F[1,t−1]) + H(KXYZ , KXY|F, Y n, Zn)

+H(Xn|F, KXYZ, KXY), (3.17)

Since t mod 3 �= 1, Ft is a function of (Y n, Zn, F[1,t−1]),

3r∑
t=1

H(Ft|Y n, Zn, F[1,t−1]) =
∑

t:t mod 3≡1

H(Ft|Y n, Zn, F[1,t−1])

≤
∑

t:t mod 3≡1

H(Ft|F[1,t−1]).

Further, it follows from Fano’s inequality that

H(KXYZ, KXY|F, Y n, Zn) ≤ 1 + ε log |KXYZ||KXY|.

Upon bounding those terms on the right side of (3.17) from above, we obtain that

H(Xn|Y n, Zn) ≤ nRX .

Again, from Fano’s inequality, we show the latter part of (3.14) below.

H(Y n, Zn|Xn) ≤ H(F, KXYZ, KXY, Y n, Zn|Xn)

=
∑

t:t mod 3≡2,3

H(Ft|Xn, F[1,t−1]) + H(KXYZ, KXY|F, Xn)

+H(Y n|F, KXYZ, KXY, Xn) + H(Zn|F, KXYZ, KXY, Xn, Y n)

≤ n(RY + RZ).

By means of similar arguments used in the proof of (3.14), we can show (3.15) and (3.16)

as follows:

H(Y n|Xn, Zn) ≤
∑

t:t mod 3≡2

H(Ft|Xn, Zn, F[1,t−1]) + H(KXYZ, KXY|F, Xn, Zn)
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+H(Y n|F, KXYZ, KXY, Xn, Zn)

≤ nRY ,

H(Xn, Zn|Y n) ≤ H(F|Y n) + H(KXYZ , KXY|F, Y n) + H(Xn|F, KXYZ, KXY, Y n)

+H(Zn|F, KXYZ, KXY , Xn, Y n)

≤ n(RX + RZ),

H(Zn|Xn, Y n) ≤
∑

t:t mod 3≡3

H(Ft|Xn, Y n, F[1,t−1]) + H(KXYZ, KXY|F, Xn, Y n)

+H(Zn|F, KXYZ, KXY, Xn, Y n)

≤ nRZ ,

H(Xn, Y n|Zn) ≤ H(F|Zn) + H(KXYZ|F, Zn) + H(KXY|F, KXYZ, Zn)

+H(Xn|F, KXYZ, KXY, Zn) + H(Y n|F, KXYZ, KXY, Xn, Zn)

≤ n(RX + RY ) + H(KXY).

This completes the proof of the lemma.

Proof of Theorem 3.1: We only show (3.10) and (3.11), as (3.8) and (3.9) are from

(3.6) and (3.7). Given an (arbitrary) ε > 0, suppose that (KXYZ , KXY) represent an

ε-(SK, PK) pair (with values in finite sets KXYZ and KXY , respectively), achieved with

communication F = (F1, · · · , F3r). Then

1
n

H (KXYZ) +
1
n

H (KXY)

=
1
n

H (KXYZ, KXY) +
1
n

I (KXYZ ∧KXY)

=
1
n

H (KXYZ, KXY|F) +
1
n

I (KXYZ ∧ F) +
1
n

I (KXY ∧F, KXYZ)

≤ 1
n

H (KXYZ, KXY|F) +
1
n

I (KXYZ ∧ F) +
1
n

I (KXY ∧F, Zn) +
1
n

H (KXYZ |F, Zn)

≤ 1
n

H (KXYZ, KXY|F) + 2ε +
1 + ε log |KXYZ |

n
, (3.18)
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where (3.18) follows from secrecy conditions (3.1), (3.3) and Fano’s inequality.

Next, we shall bound 1
nH (KXYZ , KXY|F) from above using Lemma 3.1. It is implied

by (3.13) and (3.14) that

1
n

H (KXYZ, KXY |F)

≤ H(X, Y, Z)− [H(X |Y, Z)+ H(Y, Z|X)]+
3 + 3ε log |KXYZ| |KXY |

n

= I(X ∧ Y, Z) +
3 + 3ε log |KXYZ | |KXY |

n
. (3.19)

Putting (3.19) into (3.18), we obtain that

1
n

H (KXYZ) +
1
n

H (KXY) ≤ I(X ∧ Y, Z) + 2ε +
4 + 4ε log |KXYZ| |KXY |

n
.

Similarly, it follows from (3.13), (3.15) and (3.18) that

1
n

H (KXYZ) +
1
n

H (KXY) ≤ I(Y ∧X, Z) + 2ε +
4 + 4ε log |KXYZ | |KXY |

n
,

which leads to (3.10).

Finally, from the latter inequalities of (3.14) – (3.16), we have

RX + RY + RZ ≥
1
2

[
H(X, Y |Z) + H(X, Z|Y ) + H(Y, Z|X)− 1

n
H (KXY)

]
. (3.20)

A comparison of (3.13), (3.18) and (3.20) shows that

2
n

H (KXYZ)+
1
n

H (KXY) ≤ H(X)+H(Y )+H(Z)−H(X, Y, Z)+4ε+
8+ 8ε log |KXYZ | |KXY |

n
,

proving (3.11).

In order to prove Theorem 3.2, we first show the achievability of a (SK,PK) pair, of

rate

(min{I(X ∧ Z), I(Y ∧ Z)}, I(X ∧ Y |Z)),

which is Lemma 3.2. The following proposition is a technical tool used to prove Lemma

3.2.
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Proposition 3.1 Let Xn = (X1, · · · , Xn), Y n = (Y1, · · · , Yn) and Zn = (Z1, · · · , Zn) be

n i.i.d. repetitions of rvs X , Y and Z with (known) joint pmf PXY Z. For every ε > 0,

ν > 0, and all sufficiently large n, there exists a source code (fX , fZ , φ), where fX :

X n → {1, · · · , b1(n)}, fZ : Zn → {1, · · · , b2(n)}, φ : Yn×{1, · · · , b1(n)}×{1, · · · , b2(n)} →

X n ×Zn, such that

Pr{φ(Y n, fX (Xn), fZ(Zn)) = (Xn, Zn)} ≥ 1− ε, (3.21)

1
n

log ||fX (Xn)|| ≤ H(X |Y, Z)+ ν. (3.22)

Further, for every such source code,

1
n

I(fX (Xn) ∧ Y n, Zn) ≤ ν + ε log |X |+ 1
n

hb(ε).

Proof of Proposition 3.1: The existence part in (3.21), (3.22) follows directly from the

Slepian-Wolf Theorem (cf. [15, Theorem 3.1.14], [65]). Next, let

(fX (Xn), fZ(Zn), φ(Y n, fX (Xn), fZ(Zn)))

be a source code satisfying (3.21) and (3.22). Then, it follows from Fano’s inequality that

H(Xn|fX (Xn), fZ(Zn), Y n) ≤ hb(ε) + nε log |X |.

From (3.22) and the inequality above, we have

H(fX (Xn)) ≤ nH(X |Y, Z)+ nν

= H(Xn, fX (Xn)|Y n, Zn) + nν

= H(fX (Xn)|Y n, Zn) + H(Xn|fX (Xn), Y n, Zn) + nν

≤ H(fX (Xn)|Y n, Zn) + nν + nε log |X |+ hb(ε).
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Therefore,

1
n

I(fX (Xn) ∧ Y n, Zn) ≤ ν + ε log |X |+ 1
n

hb(ε).

Lemma 3.2 It holds that

(min{I(X ∧ Z), I(Y ∧ Z)} , I(X ∧ Y |Z)) (3.23)

is an achievable (SK, PK)-rate pair.

Proof of Lemma 3.2: The idea underlying the proof is as follows. First, terminal Z

helps terminals X and Y generate a PK at rate I(X ∧ Y |Z), by not revealing “all” of Zn

at rate H(Z), but at rate max{H(Z|X),H(Z|Y )}. Then, the “remainder” of Zn, of rate

min{I(X ∧Z), I(Y ∧Z)}, can be used for simultaneous SK-generation by terminals X , Y

and Z .

We now provide a formal proof. Without loss of generality, assume that I(X ∧Z) ≤

I(Y ∧ Z). Then (3.23) becomes

(I(X ∧ Z), I(X ∧ Y |Z)) .

Consider random partitions of Xn and Zn into b1 and b2 bins, where b1 = b1(n)

and b2 = b2(n) are two integers to be specified later. For each xn ∈ X n (resp. zn ∈ Zn),

let FX (xn) (resp. FZ(zn)) be the random index of the bin containing xn (resp. zn),

where FX (xn) (resp. FZ (zn)) is uniformly distributed on the set of integers {1, · · · , b1}

(resp. {1, · · · , b2}). Then, clearly FX (xn), xn ∈ X n are mutually independent, as are

FZ(zn), zn ∈ Zn. Furthermore, assume that (FX (xn), xn ∈ X n), (FZ(zn), zn ∈ Zn) and

(Xn, Y n, Zn) are mutually independent.
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TerminalsX and Z , with respective observations xn and zn, transmit random indices

FX (xn) = JX and FZ (zn) = JZ , where JX and JZ are uniformly distributed on {1, · · · , b1}

and {1, · · · , b2}, respectively.

The decoding at terminal X is performed as follows. Fix ξ > 0. Terminal X , upon

observing xn ∈ X n as well as receiving the integer jZ , decodes according to the decoding

rule φX , defined by

φX (xn, jZ) = ẑn,

iff ẑn is the unique element in Zn such that

• (xn, ẑn) ∈ T n
XZ,ξ; and

• FZ(zn) = jZ .

If no such ẑn exists, an error is declared.

The probability of decoding error at terminal X is then

P
(n)
e,X = Pr {φX (Xn, FZ(Zn)) �= Zn} .

Define the events

E0 = {(Xn, Zn) �∈ T n
XZ,ξ},

E1 = {∃z̃n ∈ Zn : Zn �= z̃n; FZ(Zn) = FZ(z̃n); (Xn, z̃n), (Xn, Zn) ∈ T n
XZ,ξ}.

Clearly,

P
(n)
e,X = Pr{E0}+ Pr{E1},

noting that the events E0 and E1 are disjoint. By the Asymptotic Equipartition Property

(AEP) (cf. e.g. [11, p. 51]), for every ε > 0 and all sufficiently large n, Pr{E0} < ε
6 . To

bound Pr{E1}, we have

Pr{E1} =
∑

(xn,zn)∈T n
XZ,ξ

Pr{(Xn, Zn) = (xn, zn)}
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·
∑

z̃n �=zn:(xn,z̃n)∈T n
XZ,ξ

Pr {FZ(z̃n) = FZ(zn)|(Xn, Zn) = (xn, zn)}

=
∑

(xn,zn)∈T n
XZ,ξ

Pr{(Xn, Zn) = (xn, zn)}
∑

z̃n �=zn :(xn,z̃n)∈T n
XZ,ξ

b−1
2 (3.24)

≤
∑

(xn,zn)∈T n
XZ,ξ

Pr{(Xn, Zn) = (xn, zn)} · 2n[H(Z|X)+2ξ] · b−1
2 (3.25)

≤ 2−n[ 1
n

log b2−H(Z|X)−2ξ], (3.26)

where (3.24) follows from the independence of FZ(zn) and (Xn, Zn), and (3.25) follows

from (A.1).

The decoding at terminal Y is performed as follows. Terminal Y, upon observing

yn ∈ Yn as well as receiving the integers jX and jZ , decodes according to the decoding

rule φY , defined by

φY(yn, jX , jZ) = (x̂n, ẑn),

iff (x̂n, ẑn) is the unique element in X n × Zn such that

• (x̂n, yn, ẑn) ∈ T n
XY Z,ξ; and

• FX (xn) = jX , FZ(zn) = jZ .

If no such (x̂n, ẑn) exists, an error is declared.

The probability of decoding error at terminal Y is then

P
(n)
e,Y = Pr {φY(Y n, FX (Xn), FZ(Zn)) �= (Xn, Zn)} .

Define the events

E2 = {(Xn, Y n, Zn) �∈ T n
XY Z,ξ},

E3 = {∃x̃n ∈ X n : Xn �= x̃n; FX (Xn) = FX (x̃n); (x̃n, Y n, Zn), (Xn, Y n, Zn) ∈ T n
XY Z,ξ},

E4 = {∃z̃n ∈ Zn : Zn �= z̃n; FZ(Zn) = FZ (z̃n); (Xn, Y n, z̃n), (Xn, Y n, Zn) ∈ T n
XY Z,ξ},

and

E5 = {∃(x̃n, z̃n) ∈ X n × Zn : Xn �= x̃n; Zn �= z̃n; FX (Xn) = FX (x̃n);
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FZ (Zn) = FZ (z̃n); (x̃n, Y n, z̃n), (Xn, Y n, Zn) ∈ T n
XY Z,ξ}.

Clearly,

P
(n)
e,Y = Pr

{
5⋃

i=2

Ei

}
≤

5∑
i=2

Pr{Ei}.

By the AEP, for all sufficiently large n, Pr{E2} < ε
6 . To bound Pr{E3}, we have

Pr{E3}

=
∑

(xn,yn,zn)∈T n
XY Z,ξ

Pr{(Xn, Y n, Zn) = (xn, yn, zn)}

·
∑

x̃n �=xn:(x̃n,yn,zn)∈T n
XY Z,ξ

Pr {FX (x̃n) = FX (xn)|(Xn, Y n, Zn) = (xn, yn, zn)}

=
∑

(xn,yn,zn)∈T n
XY Z,ξ

Pr{(Xn, Y n, Zn) = (xn, yn, zn)}
∑

x̃n �=xn:(x̃n,yn,zn)∈T n
XY Z,ξ

b−1
1

≤
∑

(xn,yn,zn)∈T n
XY Z,ξ

Pr{(Xn, Y n, Zn) = (xn, yn, zn)} · 2n[H(X |Y,Z)+2ξ] · b−1
1

≤ 2−n[ 1
n

log b1−H(X |Y,Z)−2ξ]. (3.27)

Similarly, we have

Pr{E4} ≤ 2−n[ 1
n

log b2−H(Z|X,Y )−2ξ], (3.28)

and

Pr{E5} ≤ 2−n[ 1
n

log b1b2−H(X,Z|Y )−2ξ]. (3.29)

Upon picking the integers b1, b2 so as to satisfy

1
n

log b1 ≥ H(X |Y, Z)+ 3ξ, (3.30)

1
n

log b2 ≥ H(Z|X) + 3ξ, (3.31)

it follows from (3.26) – (3.29) that for all sufficiently large n, Pr{Ei} is less than ε
6 ,

i ∈ {1, 3, 4, 5}. Hence, there exists of a pair of (deterministic) mappings fX = fX (Xn)

and fZ = fZ (Zn) satisfying

Pr {φX (Xn, fZ(Zn)) �= Zn}+ Pr {φY (Y n, fX (Xn), fZ(Zn)) �= (Xn, Zn)} ≤ ε. (3.32)
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Next, apply Lemma 2.3 with X , Z and fX in the roles of U , V and f , with R =

1
n log b1 and H = H(X |Z)− 1

n log b1−ξ, respectively. The following holds with probability

exponentially tending to 1 in n. There exists a mapping gX : X n → {1, · · · , 2n[H(X |Z)−1
n

log b1−ξ]}

such that gX (Xn) is uniformly distributed and gX (Xn) is independent of (fX (Xn), Zn).

Apply Lemma 2.3 again with Z, a constant and fZ in the roles of U , V and f ,

with R = 1
n log b2 and H = H(Z) − 1

n log b2 − ξ, respectively. The following holds

with probability exponentially tending to 1 in n. There exists a mapping gZ : Zn →

{1, · · · , 2n[H(Z)− 1
n

logb2−ξ]} such that gZ(Zn) is uniformly distributed and gZ(Zn) is inde-

pendent of fZ(Zn).

If no decoding error is declared by terminals X or Y, the SK KXYZ is set as gZ(Zn)

and the PK KXY is set as gX (Xn). Otherwise, the SK is set to be uniformly distributed

on {1, · · · , 2n[H(Z)− 1
n

log b2−ξ]} and the PK is set to be uniformly distributed on

{1, · · · , 2n[H(X |Z)−1
n

log b1−ξ]},

independent of (Xn, Y n, Zn).

Since the sum of the decoding errors at terminals X and Y is less than ε by (3.32),

KXYZ is ε-recoverable from the data available at terminals X , Y, Z , and KXY is ε-

recoverable from the data available at terminals X and Y.

Clearly, if a decoding error is declared by terminal X or Y, KXYZ and KXY satisfy

the secrecy conditions (3.1), (3.3), and the uniformity conditions (3.2), (3.4). Further, the

lower bounds on 1
n log b1 and 1

n log b2 in (3.30), (3.32) imply that

1
n

H(KXYZ) = H(Z)− 1
n

log b2 − ξ ≤ I(X ∧ Z)− 4ξ, (3.33)

1
n

H(KXY) = H(X |Z)− 1
n

log b1 − ξ ≤ I(X ∧ Y |Z)− 4ξ. (3.34)
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If no decoding error is declared by both X and Y, KXYZ and KXY also satisfy the

uniformity conditions (3.2), (3.4), with respective rates satisfying (3.33) and (3.34). It

remains to show in this case that KXYZ and KXY satisfy the secrecy conditions (3.1) and

(3.3). With F = (fX (Xn), fZ(Zn)), it is clear that

I(KXY ∧ F, Zn) = I(gX (Xn) ∧ fX (Xn), Zn) ≤ ε,

for all sufficiently large n. Also,

I(KXYZ ∧F) = I(gZ(Zn) ∧ fX (Xn), fZ(Zn))

≤ I(gZ(Zn) ∧ fZ(Zn)) + I(fX (Xn) ∧ fZ (Zn), gZ(Zn))

≤ I(gZ(Zn) ∧ fZ(Zn)) + I(fX (Xn) ∧ Zn).

It is clear that

I(gZ(Zn) ∧ fZ(Zn)) ≤ ε,

for all sufficiently large n. Since

Pr {φY (Y n, fX (Xn), fZ(Zn)) �= (Xn, Zn)} ≤ ε

by (3.32), and 1
n log ||fX (Xn)|| is arbitrarily close to H(X |Y, Z) by (3.30), it follows from

Proposition 1 that

I(fX (Xn) ∧ Zn) ≤ nε.

This completes the proof of Lemma 3.2.

Remark: Note that the (SK, PK)-rate pair (3.23) is shown to be achieved by a single

autonomous transmission from each terminal based on its own local observation of its

component of the DMMS.

Proof of Theorem 3.2: Since (min{A, B, C}, 0), (0, I(X ∧ Y |Z)) and

(min{I(X ∧ Z), I(Y ∧ Z)} , I(X ∧ Y |Z))
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are achievable (SK, PK)-rate pairs, it follows from a time-sharing argument that any (SK,

PK)-rate pair inside the region (3.12) is achievable. Further, it is known [17] that there is

no need for interactive communication to achieve (SK, PK)-rate pairs (min{A, B, C}, 0)

and (0, I(X ∧ Y |Z)). Hence, one round of transmission (in any order) is sufficient to

achieve any (SK, PK)-rate pair in this region.

Proof of Theorem 3.3: Consider the outer bound for CSP in Theorem 3.1. Under the

condition min{A, B, C} = B, the constraints (3.8) and (3.11) are implied by the constraint

(3.10). Hence, the outer bound for CSP is determined by (3.9) and (3.10).

On the other hand, considering that

min{A, B, C} = B = I(X ∧ Y |Z) + min{I(X ∧ Z), I(Y ∧ Z)},

the region (3.12) reduces to the constraints (3.9) and (3.10).

3.5 Discussion

Although we have shown the tightness of the outer bound for CSP under the condition

min{A, B, C} = B, it remains open as to whether this outer bound is tight in general. To

prove its tightness, it would suffice to show the tightness of the outer bound under the

condition min{A, B, C} = min{A, C}.

Case 1: min{A, B, C} = C:

Under this condition, the constraint (3.8) is implied by the constraint (3.11). Thus,

the outer bound for the (SK, PK)-capacity region is given by the constraints (3.9), (3.10)

and (3.11), and is depicted in Figure 3.2. By a time-sharing argument, to show the

achievability of this region, it suffices to show that (SK, PK)-rate pairs (0, I(X ∧ Y |Z)),

(C, 0),

(min{I(X ∧ Z), I(Y ∧ Z)} , I(X ∧ Y |Z)) ,
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Figure 3.2: Inner and outer bounds for CSP for Case 1.

and

(max{I(X ∧ Z), I(Y ∧ Z)}, B −max{I(X ∧ Z), I(Y ∧ Z)}) (3.35)

are all achievable. While the first three (SK, PK)-rate pairs are known to be achievable,

it is unclear if the achievability of the (SK, PK)-rate pair (3.35) holds.

Case 2: A < B < C:

Upon writing C as

1
2
[I(X ∧ Z) + I(Y ∧X, Z)]

or

1
2
[I(Y ∧ Z) + I(X ∧ Y, Z)],
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we obtain from B < C that

I(X ∧ Z) > I(Y ∧X, Z), (3.36)

or

I(Y ∧ Z) > I(X ∧ Y, Z). (3.37)

On the other hand, upon writing C as

1
2
[I(X ∧ Y ) + I(Z ∧X, Y )],

we obtain from A < C that

I(X ∧ Y ) > I(Z ∧X, Y ). (3.38)

A contradiction arises when comparing (3.36), (3.38) or (3.37), (3.38). Therefore, the

condition C > max(A, B) is not true.

Case 3: A < C ≤ B:

The outer bound for the (SK, PK)-capacity region under this condition is depicted

in Figure 3.3. To show that this region is achievable, it suffices to show the achievability

of (SK, PK)-rate pairs (0, I(X ∧ Y |Z)), (A, 0),

(min{I(X ∧ Z), I(Y ∧ Z)} , I(X ∧ Y |Z)) ,

(max{I(X ∧ Z), I(Y ∧ Z)}, B−max{I(X ∧ Z), I(Y ∧ Z)}), (3.39)

and

(I(Z ∧X, Y ), I(X ∧ Y )− I(Z ∧X, Y )) . (3.40)

While the achievability of the first three (SK, PK)-rate pairs can be shown, it remains

unclear whether (SK, PK)-rate pairs (3.39) and (3.40) are achievable.
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Chapter 4

Secret Key and Private Key Constructions for Simple Multiterminal Source Models

4.1 Introduction

This part of the dissertation is motivated by recent results of Csiszár and Narayan [17],

which highlight innate connections between secrecy generation by multiple terminals and

multiterminal Slepian-Wolf near-lossless data compression (sans secrecy restrictions). We

propose a new approach for constructing secret and private keys based on the long-known

Slepian-Wolf code for sources connected by a virtual additive noise channel, due to Wyner

[63]. Explicit procedures for such constructions, and their substantiation, are provided.

In particular, we use low density parity check (LDPC) channel codes to construct a new

class of secret keys.

Of particular relevance to the contents of this chapter are recent results in [17] for

models with an arbitrary number of terminals, each of which observes a distinct component

of a discrete memoryless multiple source (DMMS). Unrestricted public communication is

allowed between these terminals. All the transmissions are observed by all the terminals

and by the eavesdropper. Two models considered in [17] are directly relevant to our work,

and these are first briefly described below.

(i) Suppose that m ≥ 2 terminals X1, · · · ,Xm
1 observe n independent and identically

distributed (i.i.d.) repetitions of the random variables (rvs) X1, · · ·Xm, denoted by

Xn
1 , · · · , Xn

m, respectively. A SK generated by these terminals consists of “common ran-

1Since we shall consider the models with an arbitrary number of terminals hereafter, we shall use

X1, · · · ,Xm in lieu of X ,Y ,Z , · · · to denote the terminals.
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domness,” based on public communication which is concealed from an eavesdropper with

access to this communication. The largest (entropy) rate of such a SK is termed the

SK-capacity, denoted by CS , and is shown in [17] to equal

CS = H(X1, · · · , Xm)−Rmin, (4.1)

where

Rmin = min
(R1,···,Rm)∈R

m∑
i=1

Ri,

with

R =

⎧⎨
⎩(R1, · · · , Rm) :

∑
i: Xi∈B

Ri ≥ H(XB|XBc),B ⊂ {X1, · · · ,Xm}

⎫⎬
⎭ ,

where XB = {Xi,Xi ∈ B} and Bc = {X1, · · · ,Xm}\B.

(ii) For a given subset of the terminals A ⊂ {X1, · · · ,Xm}, a private key (PK) for the

terminals in A, private from the terminals in Ac, is a SK generated by the terminals in A

(with the possible help of the terminals in Ac), which is concealed from an eavesdropper

with access to the public communication and also from the “helper” terminals in Ac (and,

hence, private). The largest (entropy) rate of such a PK is termed the PK-capacity,

denoted by CP (A). It is shown in [17] that

CP (A) = H(XA|XAc)− Rmin(A), (4.2)

where

Rmin(A) = min
{Ri, Xi∈A}∈R(A)

∑
i: Xi∈A

Ri,

with

R(A) =

⎧⎨
⎩{Ri, Xi ∈ A} :

∑
i: Xi∈B

Ri ≥ H(XB|XBc),B ⊂ A

⎫⎬
⎭ .

The results above afford the following interpretation. The SK-capacity CS , i.e.,

largest rate at which all the m terminals can generate a SK, is obtained by subtract-

ing from the maximum rate of shared common randomness (CR) achievable by these
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terminals, viz. H(X1, · · · , Xm), the smallest sum-rate Rmin of the data-compressed in-

terterminal communication which enables each of the terminals to acquire this maximal

CR. A similar interpretation holds for the PK-capacity CP (A) as well, with the differ-

ence that the terminals in Ac, which act as helpers but must not be privy to the secrecy

generated, can simply “reveal” their observations. Hence, the entropy terms in (4.1) are

now replaced in (4.2) with additional conditioning on XAc . It should be noted that Rmin

and Rmin(A) are obtained as solutions to Slepian-Wolf (SW) multiterminal near-lossless

data compression problems not involving any secrecy constraints. This characterization

of the SK-capacity and PK-capacity in terms of the decompositions above also mirrors

the consecutive stages in the random coding arguments used in establishing these results.

For instance, and loosely speaking, to generate a SK, the m terminals first generate CR

(without any secrecy restrictions), say a rv L of entropy rate 1
nH(L) > 0, through SW-

compressed interterminal communication F. This means that all the m terminals acquire

the rv L with probability∼= 1. The next step entails an extraction from L of a SK K = g(L)

of entropy rate 1
nH(L|F), by means of a suitable operation performed identically at each

terminal on the acquired CR L. When the CR first acquired by the m terminals is max-

imal, i.e., L = (Xn
1 , · · · , Xn

m) with probability ∼= 1, then the corresponding SK K = g(L)

has the best rate CS given by (4.1). A similar approach is used to generate a PK of rate

given by (4.2). Recent independent work [45] for the special case of m = 2 terminals

shows that the mentioned identical operation by the m terminals, to extract a SK from

the previously acquired CR, can be accomplished by means of a linear transformation.

The discussion above suggests that techniques for multiterminal SW data compres-

sion could be used for the constructions of SKs and PKs. Next, in SW coding, the existence

of linear data compression codes with rates arbitrarily close to the SW bound has been
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long known [12]. In particular, when the i.i.d. sequences observed at the terminals are

related to each other through virtual communication channels characterized by indepen-

dent additive noises, such linear data compression codes can be obtained in terms of the

cosets of linear error-correction codes for these virtual channels, a fact first illustrated

in [63] for the special case of m = 2 terminals connected by a virtual binary symmetric

channel (BSC). This fact, exploited by most known linear constructions of SW codes (cf.

e.g., [1], [10], [23], [24], [27], [29], [31]–[33], [44], [50], [56]), can enable us to translate such

constructions and other significant recent developments in capacity-achieving linear codes

into new constructions of SKs and PKs.

Motivated by these considerations, we seek to devise new construction schemes for

secrecy generation. The main technical contribution of this work is the following: we

consider four simple models of secrecy generation and show how a new class of SKs and

PKs can be constructed, based on the SW data compression code from [63]. Additionally,

we study the use of LDPC codes, a class of linear capacity-achieving channel codes, in the

SW data compression step of the procedure to construct a new class of SKs with rates

arbitrarily close to SK-capacity.

The rest of this chapter is organized as follows. Preliminaries are contained in

Section 4.2. In Section 4.3, we consider four simple models for which we illustrate the

constructions of appropriate SKs or PKs, which rely on suitable SW data compression

codes. The SKs or PKs generated by these schemes are shown to satisfy the requisite

secrecy conditions in Section 4.4. Implementations of these constructions using LDPC

codes are illustrated in Section 4.5, and simulation results are also reported in Section 4.5.
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4.2 Preliminaries

4.2.1 The Secret Key Capacity and the Private Key Capacity

Consider a DMMS with m ≥ 2 components, and with corresponding generic rvs X1, · · · , Xm

taking values in finite alphabets X1, · · · ,Xm, respectively. Let Xn
i = (Xi,1, · · · , Xi,n) be n

i.i.d. repetitions of rv Xi, 1 ≤ i ≤ m. Terminals X1, · · · ,Xm, with respective observations

Xn
1 , · · · , Xn

m, represent the m users that wish to generate a SK by means of public com-

munication. These terminals can communicate with each other through broadcasts over

a noiseless public channel, possibly interactively in many rounds. In general, a transmis-

sion from a terminal is allowed to be any function of its observations, and of all previous

transmissions. Let F denote collectively all the public transmissions.

Given ε > 0, the rv KM, with finite range KM, represents an ε-secret key (ε-SK)

for the terminals inM = {X1, · · · ,Xm}, achieved with communication F, if KM satisfies

• the common randomness condition: KM is ε-recoverable from each of (F, Xn
i ),

1 ≤ i ≤ m;

• the secrecy condition:

1
n

I(KM ∧F) ≤ ε;

and

• the uniformity condition:

1
n

H(KM) ≥ 1
n

log |KM| − ε.

Let A ⊂ {X1, · · · ,Xm} be an arbitrary subset of the terminals. The rv KA, with

finite range KP (A), represents an ε-private key (ε-PK) for the terminals in A, private

from the terminals in Ac =M\A, achieved with communication F, if KA satisfies

• the common randomness condition: KA is ε-recoverable from each of (F, Xn
i ), for
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Xi ∈ A;

• the secrecy condition:

1
n

I (KA ∧F, Xn
Ac) ≤ ε;

and

• the uniformity condition:

1
n

H(KA) ≥ 1
n

log |KP(A)| − ε.

Definition 4.1 [17]: A nonnegative number R is called an achievable SK rate if εn-

SKs K
(n)
M are achievable with suitable communication (with the number of rounds possibly

depending on n), such that εn → 0 and 1
nH

(
K

(n)
M

)
→ R. The largest achievable SK

rate is called the SK-capacity, denoted by CS . The PK-capacity for the terminals in A,

denoted by CP (A), is similarly defined. An achievable SK rate (resp. PK rate) will be

called strongly achievable if εn above can be taken to vanish exponentially in n. The

corresponding capacities are termed strong capacities.

Single-letter characterizations have been obtained for CS in the case of m = 2 ter-

minals in [3], [36] and for m ≥ 2 terminals in [17], given by (4.1); and for CP (A) in the

case of m = 3 terminals in [3] and for m ≥ 3 terminals in [17], given by (4.2). The proofs

of the achievability parts exploit the close connection between secrecy generation and SW

data compression. Loosely speaking, CR sans any secrecy restrictions, is first generated

through SW-compressed interterminal communication, whereby all the m terminals ac-

quire a (common) rv with probability ∼= 1. In the next step, secrecy is then extracted by

means of a suitable identical operation performed at each terminal on the acquired CR.

When the CR initially acquired by the m terminals is maximal, the corresponding SK has

the best rate CS given by (4.1).
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In this chapter, we consider four simple models for which we illustrate the construc-

tions of appropriate strong SKs or PKs.

4.2.2 Linear Codes for the Binary Symmetric Channel

The SW codes of interest will rely on the following result concerning the existence of

“good” linear channel codes for a binary symmetric channel (BSC).

Hereafter, a BSC with crossover probability p, 0 < p < 1
2 , will be denoted by

BSC(p). Let hb(.) denote the binary entropy function.

Lemma 4.1 [20] For every ε > 0, 0 < p < 1
2 , and for all n sufficiently large, there exists

a binary linear (n, n− u) code for a BSC(p), with u < n[hb(p) + ε], such that the average

error probability of maximum likelihood decoding is less than 2−nη , for some η > 0.

4.3 Statement of Results

We now describe our main results on secrecy generation for four specific models.

Model 4.1: Let the terminals X1 and X2 observe, respectively, n i.i.d. repetitions of

the correlated rvs X1 and X2, where X1, X2 are binary rvs with joint probability mass

function (pmf)

PX1X2(0, 0) = PX1X2(1, 1) =
1− p

2
, PX1X2(0, 1) = PX1X2(1, 0) =

p

2
, (4.3)

with 0 < p < 1
2 . These terminals wish to generate a strong SK of maximal rate.

The SK-capacity for this model is [3], [17], [36]

CS = I(X1 ∧X2) = 1− hb(p) bit/symbol.

We show a simple scheme for the terminals to generate a SK with rate close to 1− hb(p)

bit/symbol, which relies on Wyner’s well-known method for SW data compression [63].
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The SW problem of interest entails terminal X2 reconstructing the observed sequence xn
1

at terminal X1 from the SW codeword for xn
1 and its own observed sequence xn

2 .

Observe that under the given joint pmf (4.3), Xn
2 can be considered as an input to

a virtual BSC(p), while Xn
1 is the corresponding output, i.e., we can write

Xn
1 = Xn

2 ⊕ V n, (4.4)

where V n = (V1, · · · , Vn) is an i.i.d. sequence of {0, 1}-valued rvs, independent of Xn
2 ,

with Pr{Vi = 1} = p, 1 ≤ i ≤ n.

(i) SW data compression [63]:

Let C be a linear (n, n−u) code as in Lemma 4.1 with parity check matrix P. Both

terminals know C (and P).

Terminal X1 transmits the syndrome Pxn
1

2 to terminalX2. The maximum likelihood

estimate of xn
1 at terminal X2 is:

x̂n
2 (1) = xn

2 ⊕ fP(Pxn
1 ⊕Pxn

2 ),

where fP(Pxn
1 ⊕Pxn

2 ) is the most likely sequence vn (under the pmf of V n as above) with

syndrome Pvn = Pxn
1⊕Pxn

2 , with ⊕ denoting addition modulo 2. Note that in a standard

array corresponding to the code C above, fP(Pxn
1 ⊕Pxn

2 ) is simply the coset leader of the

coset with syndrome Pxn
1 ⊕Pxn

2 . Also, xn
1 and x̂2(1) lie in the same coset.

The probability of decoding error at terminal X2 is given by

Pr{X̂n
2 (1) �= Xn

1 } = Pr{Xn
2 ⊕ fP(PXn

1 ⊕PXn
2 ) �= Xn

1 }.

It readily follows from (4.4) that

Pr{X̂n
2 (1) �= Xn

1 } = Pr{fP(PV n) �= V n}.
2In the interests of avoiding repeated superscript, we shall hereafter use Pxn

1 in lieu of the correct

P(xn
1 )t, which should not cause any confusion.
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By Lemma 4.1, Pr{fP(PV n) �= V n} < 2−nη for some η > 0 and for all n sufficiently large,

so that

Pr{X̂n
2 (1) = Xn

1 } ≥ 1− 2−nη .

(ii) SK construction:

Consider a (common) standard array for C known to both terminals. Denote by

an
i,j the element of the ith row and the jth column in the standard array, 1 ≤ i ≤ 2u,

1 ≤ j ≤ 2n−u.

Terminal X1 sets K1 = j1 if Xn
1 equals an

i,j1
in its coset i in the standard array.

Terminal X2 sets K2 = j2 if X̂n
2 (1) equals an

i,j2
in the coset i of same standard array.

(iii) SK criteria:

The following theorem shows that K1 constitutes a strongly achievable SK with rate

approaching the SK-capacity.

Theorem 4.1 For some η > 0 and for all n sufficiently large, the pair of rvs (K1, K2)

generated above, with (common) range K1 (say), satisfy

Pr{K1 = K2} ≥ 1− 2−nη; (4.5)

I(K1 ∧ F) = 0; (4.6)

H(K1) = log |K1|. (4.7)

Furthermore,

1
n

H(K1) > 1− hb(p)− ε. (4.8)

Remark: The probability of K1 being different from K2 equals exactly the average error

probability of maximum likelihood decoding when C is used on a BSC(p). Furthermore,
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the gap between the rate of the generated SK and the SK-capacity is as wide as the gap

between the rate of C and the channel capacity. Therefore, if a “better” channel code

for a BSC(p), in the sense that the rate of this code is closer to the channel capacity

and the average error probability of maximum likelihood decoding is smaller, is applied,

then a “better” SK can be generated at both terminals, in the sense that the rate of this

SK is closer to the SK-capacity and the probability is smaller that the keys generated at

different terminals do not agree with each other.

Model 4.2: Let the terminals X1 and X2 observe, respectively, n i.i.d. repetitions of the

correlated rvs X1 and X2, where X1, X2 are binary rvs with joint pmf

PX1X2(0, 0) = (1− p)(1− q), PX1X2(0, 1) = pq,

PX1X2(1, 0) = p(1− q), PX1X2(1, 1) = q(1− p), (4.9)

with 0 < p < 1
2 and 0 < q < 1. These terminals wish to generate a strong SK of maximal

rate.

Note that Model 4.1 is a special case of Model 4.2 for q = 1
2 . We show below a

scheme for the terminals to generate a SK with rate close to the SK-capacity for this

model [3], [17],[36], which is

CS = I(X1 ∧X2) = hb(p + q − 2pq)− hb(p) bit/symbol.

(i) SW data compression:

This step is identical to step (i) for Model 4.1. Note that under the given joint pmf

(4.9), Xn
1 and Xn

2 can be written as in (4.4). It follows in the same manner as for Model

4.1 that for some η > 0 and for all sufficiently large n,

Pr{X̂n
2 (1) = Xn

1 } ≥ 1− 2−nη .
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(ii) SK construction:

Both terminals know the linear (n, n − u) code C specified in Lemma 4.1, and a

(common) standard array for C. Let {en
i : 1 ≤ i ≤ 2u} denote the set of coset leaders for

all the cosets of C.

Denote by Ai the set of T n
X1,ξ sequences in the coset of C with coset leader en

i ,

1 ≤ i ≤ 2u. If the number of sequences of the same type in Ai is more than 2n[I(X1∧X2)−ε′],

where ε′ > ξ + ε with ε being the parameter satisfying u < n[hb(p) + ε] in Lemma 4.1,

then collect arbitrarily 2n[I(X1∧X2)−ε′] such sequences to compose a subset, which we call a

regular subset (as it consists of sequences of the same type). Continue this procedure until

the number of sequences of every type in Ai is less than 2n[I(X1∧X2)−ε′]. Let Ni denote

the number of distinct regular subsets of Ai.

Enumerate (in any way) the sequences in each regular subset. Let bn
i,j,k, where

1 ≤ i ≤ 2u, 1 ≤ j ≤ Ni, 1 ≤ k ≤ 2n[I(X1∧X2)−ε′], denote the kth sequence of the jth regular

subset in the ith coset (i.e., the coset with coset leader en
i ).

Terminal X1 sets K1 = k1 if Xn
1 equals bn

i,j1,k1
. Otherwise, K1 is set to be uni-

formly distributed on
{
1, · · · , 2n[I(X1∧X2)−ε′]

}
, independent of (Xn

1 , Xn
2 ). Terminal X2 sets

K2 = k2 if X̂n
2 (1) equals bn

i,j2,k2
. Otherwise, K2 is set to be uniformly distributed on

{
1, · · · , 2n[I(X1∧X2)−ε′]

}
, independent of (Xn

1 , Xn
2 , K1).

(iii) SK criteria:

The following theorem shows that K1 constitutes a strongly achievable SK with rate

approaching the SK-capacity.

Theorem 4.2 For some η′ = η′(η, ξ, ε, ε′) > 0 and for all n sufficiently large, the pair of

rvs (K1, K2) generated above, with range K1 (say), satisfy

Pr{K1 = K2} ≥ 1− 2−nη′
; (4.10)
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I(K1 ∧ F) = 0; (4.11)

H(K1) = log |K1|. (4.12)

Furthermore,

1
n

H(K1) = I(X1 ∧X2)− ε′. (4.13)

The next model is an instance of a Markov chain on a tree (cf. [25], [17]), which

considers a tree T with vertex set V (T ) = {1, · · · , m} and edge set E(T ). For (i, j) ∈

E(T ), let B(i ← j) denote the set of all vertices connected with j by a path containing

the edge (i, j). The rvs X1, · · · , Xm form a Markov chain on the tree T if for each (i, j) ∈

E(T ), the conditional pmf of Xj given {Xl, l ∈ B(i ← j)} depends only on Xi (i.e., is

conditionally independent of {Xl, l ∈ B(i ← j)}\{Xi}, conditioned on Xi. Note that

when T is a chain, this concept reduces to that of a standard Markov chain.

Model 4.3: Let the terminals X1, · · · ,Xm observe, respectively, n i.i.d. repetitions of

{0, 1}-valued rvs X1, · · · , Xm which form a Markov chain on the tree T , and have a joint

pmf PX1···Xm described in the following manner: for (i, j) ∈ E(T ),

PXiXj(xi, xj) =
1
2
(1− p(i,j))δxixj +

1
2
p(i,j) (1− δxixj), 0 < p(i,j) <

1
2
,

for xi ∈ {0, 1}, xj ∈ {0, 1}. These m terminals wish to generate a strong SK of maximal

rate.

Note that Model 4.1 is a special case of Model 4.3 for m = 2. Without any loss of

generality, let

pmax = p(i∗,j∗) = max
(i,j)∈E(T )

p(i,j).
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Then, the SK-capacity for this model is [17]

CSK = I(Xi∗ ∧Xj∗) = 1− hb(pmax) bit/symbol. (4.14)

We show below how to extract a SK with rate close to 1−hb(pmax) by using an extension of

the SW data compression scheme of Model 4.1 for reconstructing xn
i∗ at all the terminals.

(i) SW data compression:

Let C be a linear (n, n − u) code as in Lemma 4.1 for a BSC(pmax), with parity

check matrix P. Each terminal Xi transmits the syndrome Pxn
i , 1 ≤ i ≤ m.

Let x̂n
i (j) denote the maximum likelihood estimate at terminal Xi of xn

j , 1 ≤ i �=

j ≤ m. For a terminal Xi, i �= i∗, denote by (i0, i1, · · · , ir) the (only) path in the tree

T from i to i∗, where i0 = i and ir = i∗; this terminal Xi, with the knowledge of (xn
i ,

Pxn
i1

, · · · , Pxn
ir−1

, Pxn
i∗), forms its estimate x̂n

i (i∗) of xn
i∗ through the following successive

maximum likelihood estimates of xn
i1

, · · · , xn
ir−1

:

x̂n
i (i1) = xn

i ⊕ fP(Pxn
i ⊕Pxn

i1
),

x̂n
i (i2) = x̂n

i (i1)⊕ fP(Pxn
i1 ⊕Pxn

i2),

...
...

...

x̂n
i (ir−1) = x̂n

i (ir−2)⊕ fP(Pxn
ir−2
⊕Pxn

ir−1
)

and finally,

x̂n
i (i∗) = x̂n

i (ir−1)⊕ fP(Pxn
ir−1
⊕Pxn

i∗).

Proposition 4.1 By the successive maximum likelihood estimates above, the estimate

X̂n
i (i∗) at terminal Xi, i �= i∗, satisfies

Pr{X̂n
i (i∗) = Xn

i∗} ≥ 1−m · 2−nη , (4.15)

for some η > 0 and for all n sufficiently large.
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Proof of Proposition 4.1: See Appendix B.

It follows directly from (4.15) that for some η′ = η′(η, m) > 0 and for all n sufficiently

large,

Pr{X̂n
i (i∗) = Xn

i∗ , 1 ≤ i �= i∗ ≤ m} ≥ 1− 2−nη′
.

(ii) SK construction:

Consider a (common) standard array for C known to all the terminals. Denote by

an
l,k the element of the lth row and the kth column in the standard array, 1 ≤ l ≤ 2u,

1 ≤ k ≤ 2n−u.

Terminal Xi∗ sets Ki∗ = ki∗ if Xn
i∗ equals an

l,ki∗ in the standard array. Terminals Xi,

1 ≤ i �= i∗ ≤ m, set Ki = ki if X̂n
i (i∗) equals an

l,ki
in the same standard array.

(iii) SK criteria:

The following theorem shows that Ki∗ constitutes a strongly achievable SK with

rate approaching the SK-capacity.

Theorem 4.3 For some η′ = η′(η, m) > 0 and for all sufficiently large n, the set of rvs

(K1, · · · , Km) generated above, with range Ki∗ (say), satisfy

Pr{K1 = · · · = Km} ≥ 1− 2−nη′
; (4.16)

I(Ki∗ ∧F) = 0; (4.17)

H(Ki∗) = log |Ki∗|. (4.18)

Furthermore,

1
n

H(Ki∗) > 1− hb(pmax)− ε. (4.19)
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Model 4.4: Let the terminals X1, X2 and X3 observe, respectively, n i.i.d. repetitions

of the {0, 1}-valued correlated rvs X1, X2, X3, with joint pmf PX1X2X3 given by:

PX1X2X3(0, 0, 0) = PX1X2X3(0, 1, 1) =
(1− p)(1− q)

2
,

PX1X2X3(0, 0, 1) = PX1X2X3(0, 1, 0) =
pq

2
,

PX1X2X3(1, 0, 0) = PX1X2X3(1, 1, 1) =
p(1− q)

2
,

PX1X2X3(1, 0, 1) = PX1X2X3(1, 1, 0) =
q(1− p)

2
, (4.20)

with 0 < p < 1
2 and 0 < q < 1. Terminals X1 and X2 wish to generate a strong PK of

maximal rate, which is concealed from the helper terminal X3.

Note that under the joint pmf of X1, X2, X3 above, we can write

Xn
1 = Xn

2 ⊕Xn
3 ⊕ V n, (4.21)

where V n = (V1, · · · , Vn) is an i.i.d. sequence of {0, 1}-valued rvs, independent of (Xn
2 , Xn

3 ),

with Pr{Vi = 1} = p, 1 ≤ i ≤ n.

We show below a scheme for terminals X1 and X2 to generate a PK with rate close

to the PK-capacity for this model [3], [16], [17]

CP ({X1,X2}) = I(X1 ∧X2|X3) = hb(p + q − 2pq)− hb(p) bit/symbol.

The first step of this scheme entails terminal X3 simply revealing its observations xn
3

to both terminals X1 and X2. Then, Wyner’s SW data compression scheme is used for

reconstructing xn
1 at terminal X2 from the SW codeword for xn

1 and its own knowledge of

xn
2 ⊕ xn

3 .

(i) SW data compression:

This step is identical to step (i) for Model 4.1, as seen with the help of (4.21).

Obviously,

Pr{X̂n
2 (1) = Xn

1 } ≥ 1− 2−nη ,
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for some η > 0 and for all sufficiently large n.

(ii) SK construction:

Suppose that terminals X1 and X2 know a linear (n, n − u) code C as in Lemma

4.1, and a (common) standard array for C. Let {en
i : 1 ≤ i ≤ 2u} denote the set of coset

leaders for all the cosets of C.

For a sequence xn
3 ∈ {0, 1}n, denote by Ai(xn

3 ) the set of T n
X1|X3,ξ(x

n
3 ) sequences

in the coset of C with coset leader en
i , 1 ≤ i ≤ 2u. If the number of sequences of the

same joint type with xn
3 in Ai(xn

3 ) is more than 2n[I(X1∧X2|X3)−ε′], where ε′ > 2ξ + ε and

ε satisfies u < n[hb(p) + ε] (as in Lemma 4.1), then collect arbitrarily 2n[I(X1∧X2|X3)−ε′]

such sequences to compose a regular subset. Continue this procedure until the number of

sequences of every joint type with xn
3 in Ai(xn

3 ) is less than 2n[I(X1∧X2|X3)−ε′]. Let Ni(xn
3 )

denote the number of distinct regular subsets of Ai(xn
3 ).

For a given sequence xn
3 , enumerate (in any way) the sequences in each regular

subset. Let bn
i,j,k(x

n
3 ), where 1 ≤ i ≤ 2u, 1 ≤ j ≤ Ni(xn

3 ), 1 ≤ k ≤ 2n[I(X1∧X2|X3)−ε′],

denote the kth sequence of the jth regular subset in the ith coset.

Terminal X1 sets K1 = k1 if Xn
1 equals bn

i,j1,k1
(xn

3 ). Otherwise, K1 is set to be

uniformly distributed on
{
1, · · · , 2n[I(X1∧X2|X3)−ε′]

}
, independent of (Xn

1 , Xn
2 , Xn

3 ). Ter-

minal X2 sets K2 = k2 if X̂n
2 (1) equals bn

i,j2,k2
(xn

3 ). Otherwise, K2 is set to be uniformly

distributed on
{
1, · · · , 2n[I(X1∧X2|X3)−ε′]

}
, independent of (Xn

1 , Xn
2 , Xn

3 , K1).

(iii) SK criteria:

The following theorem shows that K1 constitutes a strongly achievable PK with rate

approaching the PK-capacity.

Theorem 4.4 For some η′ = η′(η, ξ, ε, ε′) > 0 and for all sufficiently large n, the pair of
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rvs (K1, K2) generated above, with range K1 (say), satisfy

Pr{K1 = K2} ≥ 1− 2−nη′
; (4.22)

I(K1 ∧Xn
3 , F) = 0; (4.23)

H(K1) = log |K1|. (4.24)

Furthermore,

1
n

H(K1) = I(X1 ∧X2|X3)− ε′. (4.25)

Remark: The PK construction scheme above applies for any joint pmf of X1, X2, X3,

satisfying (4.21), and is not restricted to the given joint pmf of X1, X2, X3 in (4.20).

4.4 Proofs

Proof of Theorem 4.1: It follows from the SK construction scheme that

Pr{K1 �= K2} = Pr{X̂n
2 (1) �= Xn

1 } < 2−nη,

which is (4.5). Since the rv X1 is uniformly distributed on {0, 1}, for 1 ≤ i ≤ 2u, 1 ≤ j ≤

2n−u,

Pr{Xn
1 = an

i,j} = 2−n.

Hence,

Pr{K1 = j} =
2u∑
i=1

Pr{Xn
1 = an

i,j} = 2−(n−u), 1 ≤ j ≤ 2n−u,

i.e., K1 is uniformly distributed on {1, · · · , 2n−u}, and so

H(K1) = log 2n−u = n − u = log |K1|,

which is (4.7). Therefore, (4.8) holds since u < n[hb(p) + ε].
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It remains to show that K1 satisfies the secrecy condition (4.6), with F = PXn
1 .

Let {en
i , 1 ≤ i ≤ 2u} be the set of coset leaders for all the cosets of C. For 1 ≤ i ≤ 2u,

1 ≤ j ≤ 2n−u,

Pr{K1 = j|PXn
1 = Pen

i } =
Pr{K1 = j, PXn

1 = Pen
i }

Pr{PXn
1 = Pen

i }

=
Pr{Xn

1 = an
i,j}∑2n−u

j′=1 Pr{Xn
1 = an

i,j′}

= 2−(n−u)

= Pr{K1 = j}.

Therefore, K1 is independent of F, and I(K1 ∧F) = 0, establishing (4.6).

Proof of Theorem 4.2: Let F denote the union of all regular subsets in
⋃2u

i=1 Ai. Clearly,

F ⊆ T n
X1,ξ, so that

Pr{Xn
1 ∈ F} = Pr{Xn

1 ∈ T n
X1,ξ, X

n
1 ∈ F} = Pr{Xn

1 ∈ T n
X1,ξ}−Pr{Xn

1 ∈ T n
X1,ξ\F}. (4.26)

By Proposition A.1, Pr{Xn
1 ∈ T n

X1,ξ} goes to 1 exponentially rapidly in n. We show below

that Pr{Xn
1 ∈ T n

X1,ξ\F} goes to 0 exponentially rapidly in n.

Recall from Appendix A.1 that the number of different types of sequences in {0, 1}n does

not exceed (n + 1)2. Thus,

∣∣∣{xn
1 : xn

1 ∈ T n
X1,ξ\F}

∣∣∣ ≤ 2u · (n + 1)2 · 2n[I(X1∧X2)−ε′]

< (n + 1)2 · 2n[H(X1)+ε−ε′],

where the previous inequality is from u < n[hb(p) + ε] = n[H(X1|X2) + ε].

Since Pn
X1

(xn
1 ) ≤ 2−n[H(X1)−ξ], xn

1 ∈ T n
X1,ξ, we get

Pr{Xn
1 ∈ T n

X1,ξ\F} < (n + 1)2 · 2−n(ε′−ξ−ε).

Choosing ε′ > ξ + ε, Pr{Xn
1 ∈ T n

X1,ξ\F} goes to 0 exponentially rapidly. Therefore, it
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follows from (4.26) that Pr{Xn
1 ∈ F} goes to 1 exponentially rapidly in n, with exponent

depending on (ξ, ε, ε′).

By the SK construction scheme,

Pr{K1 �= K2} = Pr{K1 �= K2, X
n
1 ∈ F}+ Pr{K1 �= K2, X

n
1 �∈ F}

≤ Pr{X̂n
2 (1) �= Xn

1 , Xn
1 ∈ F}+ Pr{Xn

1 �∈ F}

≤ Pr{X̂n
2 (1) �= Xn

1 }+ Pr{Xn
1 �∈ F}.

Since Pr{X̂n
2 (1) �= Xn

1 } < 2−nη, by the observation in the previous paragraph, we have

Pr{K1 �= K2} < 2−nη′
,

for some η′ = η′(η, ξ, ε, ε′) > 0 and for all sufficiently large n, which is (4.10).

Next, we shall show that K1 satisfies the uniformity condition (4.12). For 1 ≤ k ≤

2n[I(X1∧X2)−ε′], it is clear by choice that

Pr{K1 = k|Xn
1 �∈ F} = 2−n[I(X1∧X2)−ε′], (4.27)

and that

Pr{K1 = k|Xn
1 ∈ F} =

Pr{K1 = k, Xn
1 ∈ F}

Pr{Xn
1 ∈ F}

=
∑2u

i=1

∑Ni
j=1 Pr{Xn

1 = bn
i,j,k}∑2u

i=1

∑Ni
j=1 2n[I(X1∧X2)−ε′] Pr{Xn

1 = bn
i,j,k}

(4.28)

= 2−n[I(X1∧X2)−ε′], (4.29)

where (4.28) is due to every regular subset consisting of sequences of the same type. From

(4.27) and (4.29),

Pr{K1 = k} = 2−n[I(X1∧X2)−ε′], (4.30)

i.e., K1 is uniformly distributed on
{
1, · · · , 2n[I(X1∧X2)−ε′]

}
, with

1
n

H(K1) = I(X1 ∧X2)− ε′,
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which is (4.13).

It remains to show that K1 satisfies the secrecy condition (4.11), with F = PXn
1 .

For 1 ≤ i ≤ 2u and 1 ≤ k ≤ 2n[I(X1∧X2)−ε′], we have

Pr{K1 = k|PXn
1 = Pen

i , Xn
1 �∈ F} = 2−n[I(X1∧X2)−ε′],

by choice, and

Pr{K1 = k|PXn
1 = Pen

i , Xn
1 ∈ F} =

Pr{K1 = k, PXn
1 = Pen

i , Xn
1 ∈ F}

Pr{PXn
1 = Pen

i , Xn
1 ∈ F}

=
∑Ni

j=1 Pr{Xn
1 = bn

i,j,k}∑Ni
j=1 2n[I(X1∧X2)−ε′] Pr{Xn

1 = bn
i,j,k}

= 2−n[I(X1∧X2)−ε′].

Hence,

Pr{K1 = k|PXn
1 = Pen

i } = Pr{K1 = k|PXn
1 = Pen

i , Xn
1 ∈ F} · Pr{Xn

1 ∈ F|PXn
1 = Pen

i }

+ Pr{K1 = k|PXn
1 = Pen

i , Xn
1 �∈ F} · Pr{Xn

1 �∈ F|PXn
1 = Pen

i }

= 2−n[I(X1∧X2)−ε′]

= Pr{K1 = k},

where the previous equality follows from (4.30). In other words, K1 is independent of F,

establishing (4.11).

Proof of Theorem 4.3: Applying the same arguments used in Theorem 4.1, we can

show that the set of rvs (K1, · · · , Km) satisfy (4.16), (4.18) and (4.19). It then remains to

show that Ki∗ satisfies the secrecy condition (4.17), with F = (PXn
1 , · · · , PXn

m).

Under the given joint pmf PX1···Xm, for each i �= i∗, we can write

Xn
i = Xn

i∗ ⊕ V n
i ,

where V n
i = (Vi,1, · · · , Vi,n) is an i.i.d. sequence of {0, 1}-valued rvs. Further, V n

i , 1 ≤ i �=
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i∗ ≤ m, and Xn
i∗ are mutually independent. Then,

I(Ki∗ ∧F) = I(Ki∗ ∧ {PXn
i , 1 ≤ i ≤ m})

≤ I(Ki∗ ∧PXn
i∗ , {PV n

i , 1 ≤ i �= i∗ ≤ m})

≤ I(Ki∗ ∧PXn
i∗) + I(Ki∗, PXn

i∗ ∧ {PV n
i , 1 ≤ i �= i∗ ≤ m}). (4.31)

Clearly, the first term on the right side of (4.31) is zero. Since for a fixed P, (Ki∗ , PXn
i∗)

are functions of Xn
i∗,

I(Ki∗, PXn
i∗ ∧ {PV n

i , 1 ≤ i �= i∗ ≤ m}) ≤ I(Xn
i∗ ∧ {V n

i , 1 ≤ i �= i∗ ≤ m}) = 0,

i.e., Ki∗ is independent of F, establishing (4.17).

Proof of Theorem 4.4: For every xn
3 ∈ {0, 1}n, let F (xn

3) denote the union of all regular

subsets in
⋃2u

i=1 Ai(xn
3 ). Since F (xn

3 ) ⊆ T n
X1|X3,ξ(x

n
3 ),

Pr{Xn
1 ∈ F(Xn

3 )} = Pr{Xn
1 ∈ T n

X1|X3,ξ(X
n
3 )} − Pr{Xn

1 ∈ T n
X1|X3,ξ(X

n
3 )\F (Xn

3 )}. (4.32)

It follows from Proposition A.1 that Pr{Xn
1 ∈ T n

X1|X3,ξ(X
n
3 )} goes to 1 exponentially

rapidly in n. We shall show below that Pr{Xn
1 ∈ T n

X1|X3,ξ(X
n
3 )\F (Xn

3 )} goes to 0 expo-

nentially rapidly in n.

Recall from Appendix A.1 that the number of different joint types of pairs in

{0, 1}n× {0, 1}n does not exceed (n + 1)4. Thus,

∣∣∣{xn
1 : xn

1 ∈ T n
X1|X3,ξ(x

n
3 )\F (xn

3)}
∣∣∣ ≤ 2u · (n + 1)4 · 2n[I(X1∧X2|X3)−ε′]

< (n + 1)4 · 2n[H(X1|X3)+ε−ε′],

where the previous inequality is from u < n[hb(p) + ε] = n[H(X1|X2, X3) + ε].

Since Pn
X1|X3

(xn
1 |xn

3 ) ≤ 2−n[H(X1|X3)−2ξ], (xn
1 , xn

3 ) ∈ T n
X1X3,ξ, we get

Pr{Xn
1 ∈ T n

X1|X3,ξ(X
n
3 )\F (Xn

3 )} < (n + 1)4 · 2−n(ε′−2ξ−ε).
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Choosing ε′ > 2ξ + ε, Pr{Xn
1 ∈ T n

X1|X3,ξ(X
n
3 )\F (Xn

3 )} goes to 0 exponentially rapidly.

Therefore, it follows from (4.32) that Pr{Xn
1 ∈ F(Xn

3 )} goes to 1 exponentially rapidly in

n, with an exponent depending on (ξ, ε, ε′).

By the PK construction scheme,

Pr{K1 �= K2} = Pr{K1 �= K2, X
n
1 ∈ F(xn

3 )}+ Pr{K1 �= K2, X
n
1 �∈ F(xn

3)}

≤ Pr{X̂n
2 (1) �= Xn

1 , Xn
1 ∈ F(xn

3 )}+ Pr{Xn
1 �∈ F(xn

3 )}

≤ Pr{X̂n
2 (1) �= Xn

1 ) + Pr(Xn
1 �∈ F(Xn

3 )}.

Since Pr{X̂n
2 (1) �= Xn

1 } < 2−nη, by the observation in the previous paragraph, we have

Pr{K1 �= K2} < 2−nη′
,

for some η′ = η′(η, ξ, ε, ε′) > 0 and for all sufficiently large n, which is (4.22).

Next, we shall show that K1 satisfies the uniformity condition (4.24). For xn
3 ∈

{0, 1}n and 1 ≤ k ≤ 2n[I(X1∧X2|X3)−ε′], it is clear by choice that

Pr{K1 = k|Xn
1 �∈ F(xn

3), Xn
3 = xn

3} = 2−n[I(X1∧X2|X3)−ε′],

and that

Pr{K1 = k|Xn
1 ∈ F(xn

3), Xn
3 = xn

3}

=
Pr{K1 = k, Xn

1 ∈ F(xn
3)|Xn

3 = xn
3}

Pr{Xn
1 ∈ F(xn

3)|Xn
3 = xn

3}

=
∑2u

i=1

∑Ni(x
n
3 )

j=1 Pr{Xn
1 = bn

i,j,k(x
n
3 )|Xn

3 = xn
3}∑2u

i=1

∑Ni(x
n
3 )

j=1 2n[I(X1∧X2|X3)−ε′] Pr{Xn
1 = bn

i,j,k(x
n
3 )|Xn

3 = xn
3}

(4.33)

= 2−n[I(X1∧X2|X3)−ε′],

where (4.33) is due to every regular subset consisting of sequences of the same joint type

with xn
3 . Therefore,

Pr{K1 = k} =
∑

xn
3∈{0,1}n

Pr{K1 = k, Xn
3 = xn

3}
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=
∑

xn
3∈{0,1}n

[Pr{Xn
1 ∈ F(xn

3 ), Xn
3 = xn

3} · Pr{K1 = k|Xn
1 ∈ F(xn

3), Xn
3 = xn

3}

+ Pr{Xn
1 �∈ F(xn

3 ), Xn
3 = xn

3} · Pr{K1 = k|Xn
1 �∈ F(xn

3), Xn
3 = xn

3}]

= 2−n[I(X1∧X2|X3)−ε′], (4.34)

i.e., K1 is uniformly distributed on
{
1, · · · , 2n[I(X1∧X2|X3)−ε′]

}
, with

1
n

H(K1) = I(X1 ∧X2|X3)− ε′,

which is (4.25).

It remains to show that K1 satisfies the secrecy condition (4.23), with (Xn
3 , F) =

(Xn
3 , PXn

1 ). For xn
3 ∈ {0, 1}n, 1 ≤ i ≤ 2u and 1 ≤ k ≤ 2n[I(X1∧X2|X3)−ε′], we have

Pr{K1 = k|PXn
1 = Pen

i , Xn
1 �∈ F(xn

3), Xn
3 = xn

3} = 2−n[I(X1∧X2|X3)−ε′],

by choice, and

Pr{K1 = k|PXn
1 = Pen

i , Xn
1 ∈ F(xn

3 ), Xn
3 = xn

3}

=
Pr{K1 = k, PXn

1 = Pen
i , Xn

1 ∈ F(xn
3)|Xn

3 = xn
3}

Pr{PXn
1 = Pen

i , Xn
1 ∈ F(xn

3)|Xn
3 = xn

3}

=
∑Ni(xn

3 )
j=1 Pr{Xn

1 = bn
i,j,k(x

n
3 )|Xn

3 = xn
3}∑Ni(xn

3 )
j=1 2n[I(X1∧X2|X3)−ε′] Pr{Xn

1 = bn
i,j,k(x

n
3 )|Xn

3 = xn
3}

= 2−n[I(X1∧X2|X3)−ε′].

Hence,

Pr{K1 = k|PXn
1 = Pen

i , Xn
3 = xn

3} = 2−n[I(X1∧X2|X3)−ε′] = Pr{K1 = k},

where the previous equality follows from (4.34). In other words, K1 is independent of

(Xn
3 , F), establishing (4.23).
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4.5 Implementation Using LDPC Codes

4.5.1 Preliminaries Concerning LDPC Codes

The following standard definitions on LDPC codes can be found, for instance, in [57], [34],

[52], [60].

A linear code is associated with a graphical representation, by means of a bipartite

graph whose left (or variable) nodes correspond to coordinates of a codeword and right (or

check) nodes correspond to the set of parity check constraints satisfied by codewords of

this code. The bipartite graph representing a linear (n, n− u) code has n variable nodes

and u check nodes. A variable node is connected with a check node if the coordinate

corresponding to that variable node is involved in the parity check constraint corresponding

to that check node.

Binary LDPC codes are binary linear codes with low density parity check matrices

in the sense that the parity check matrices contain relatively few 1s. In a parity check

matrix for a (l, r)-regular LDPC code, every row has r 1s and every column has l 1s. Thus,

a (l, r)-regular LDPC code is represented by a bipartite graph in which the degree of every

variable node is l and the degree of every check node is r.

An irregular LDPC code with degree distribution pair (λ(x), ρ(x)) is represented by

a bipartite graph, in which the degrees of variable nodes (resp. check nodes) are chosen

according to the distribution λ(x) =
∑

i λix
i−1 (resp. ρ(x) =

∑
i ρix

i−1), with λi (resp.

ρi) denoting the fraction of edges connecting variable (resp. check) nodes of degree i.

The rate of a (l, r)-regular LDPC code is 1− l
r and the rate of an irregular LDPC

code with degree distribution pair (λ(x), ρ(x)) is given by 1−
∫ 1

0
ρ(x)dx∫ 1

0
λ(x)dx

.
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4.5.2 Implementation for Model 4.1

The implementation of the SK construction scheme for Model 4.1 is illustrated below by

using binary LDPC codes.

(i) LDPC code:

Since every linear code is equivalent to a systematic code (cf. e.g., [49, p. 46]),

without loss of generality, we consider a systematic (n, n−u) LDPC code C with generator

matrix G = [In−u A], where In−u is an (n − u) × (n − u) identity matrix and A is an

(n − u) × u matrix. Then, the parity check matrix for C is P = [At Iu], where Iu is an

u× u identity matrix.

The first n − u bits of every codeword in C, which are called information bits, are

pairwise distinct. Further, since the coset of C with coset leader en
i , 1 ≤ i ≤ 2u, must

contain the sequence bn
i = [0n−u en

i P
t], with 0n−u denoting a sequence of n− u zeros, the

first n− u bits of every sequence in this coset {bn
i ⊕ cn, cn ∈ C} are pairwise distinct.

(ii) SW data compression:

The following scheme is known from [32].

Terminal X1 transmits the syndrome Pxn
1 . Terminal X2, with the knowledge of xn

2 ,

Pxn
1 , and (the crossover probability) p, applies the following belief-propagation algorithm

[32] to estimate x̂n
2 (1).

Let (v1, · · · , vn) and (w1, · · · , wu) denote variable-node sets and check-node sets in

the bipartite graph representing C. Depict by vi ∼ wj (or equivalently, wj ∼ vi), if the

variable node vi is connected with the check node wj. The decoding algorithm will proceed

in iterations. Each iteration starts by propagating messages from variable nodes to check

nodes and ends by sending messages from check nodes back to variable nodes. Messages

are propagated only between the connected nodes.
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Let M
(k)
vi→wj denote the message propagated from the variable node vi to the check

node wj in the kth iteration, k ≥ 1. Let M
(k)
wj→vi denote the message propagated from the

check node wj to the variable node vi in the kth iteration. Then, set

M (k)
vi→wj

= (1− 2x2,i) log
1− p

p
+

∑
l:l �=j,wl∼vi

M (k−1)
wl→vi

,

and

M (k)
wj→vi

= 2 tanh−1

⎡
⎣(1− 2sj)

∏
l:l �=i,vl∼wj

tanh

⎛
⎝M

(k)
vl→wj

2

⎞
⎠
⎤
⎦ ,

where x2,i denotes the ith bit of xn
2 and sj denotes the jth bit of Pxn

1 . By definition,

M
(0)
wl→vi = 0.

At the end of the kth iteration, estimate x̂n
2 (1) = (x̂2(1, 1), · · · , x̂2(1, n)) as

x̂2(1, i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if (1− 2x2,i) log 1−p
p +

∑
j:wj∼vi

M
(k)
wj→vi ≥ 0,

1, if (1− 2x2,i) log 1−p
p +

∑
j:wj∼vi

M
(k)
wj→vi < 0.

This procedure is terminated if either Px̂n
2 (1) = Pxn

1 or a designated number of iterations

has been reached.

(iii) SK construction:

Since the first n − u bits of every sequence in each coset of C are pairwise distinct,

these n − u bits can serve as the index of the sequence in its coset. Therefore, terminal

X1 (resp. X2) could simply set K1 (resp. K2) as the first n− u bits of xn
1 (resp. x̂n

2 (1)).

The same implementation of the SW data compression scheme above applies for

Models 4.2 and 4.4. They can also be applied repeatedly for the successive estimates in

Model 4.3.

In Model 4.3, Ki∗ (resp. Ki, i �= i∗) is simply set as the first n− u bits of xn
i∗ (resp.

x̂n
i (i∗)). However, the current complexity of generating regular subsets for Models 4.2 and

4.4 poses a hurdle in explicit constructions of SKs or PKs for these models.
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4.5.3 Simulation Results

In this subsection, we provide simulation results on the tradeoff between the relative

secrecy rate (i.e., the difference between the rate of the generated SK and the SK-capacity)

and the rate of generating unequal SKs at different terminals, when LDPC codes are used

in the SK construction problem for Model 4.1.

For the purposes of comparison, three different kinds of LDPC codes are used:

• a (3, 4)-regular LDPC code;

• a (3, 6)-regular LDPC code;

and

• an irregular LDPC code with degree distribution pair (cf. [32])

λ(x) = 0.234029x + 0.212425x2 + 0.146898x5 + 0.102840x6 + 0.303808x19,

ρ(x) = 0.71875x7 + 0.28125x8.

The codeword lengths of all the three LDPC codes are 103 bits. The rate of the first LDPC

code is 1
4 bit/channel use, while the rate of the other two LDPC codes is 1

2 bit/channel use.

Sixty iterations of the belief-propagation algorithm are allowed. More than 103 blocks are

transmitted from terminal X1.

Simulation results are shown in Figures 4.1 and 4.2, where conditional entropy (i.e.,

H(X1|X2) = hb(p)) is plotted against key bit error rate (KBER). We remark that in this

work, SKs are generated at fixed rates, which are equal to the rates of LDPC codes used.

Since the SK-capacity is given by 1 − hb(p), the conditional entropy hb(p) can serve as

an indicator of the gap between the rate of the generated SK and the SK-capacity. On

the other hand, the KBER is related to the rate of generating unequal SKs at different

terminals
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Figure 4.1: Simulation results for the (3, 6)-regular and the irregular LDPC codes.

Figure 4.1 shows the performance of the (3, 6)-regular and the irregular LDPC codes;

figure 4.2 shows the performance of the (3, 4)-regular LDPC code. It is seen in both figures

that KBER increases with hb(p). Since the SK-capacity decreases with hb(p), the increase

of hb(p) narrows the gap between the rate of the generated SK and the SK-capacity, but

raises the possibility of generating unequal SKs at different terminals. In contrast, the

decrease of hb(p) widens the gap between the rate of the generated SK and the SK-capacity,

but reduces the possibility of generating unequal SKs at different terminals.

It is seen from Figure 4.1 that the irregular LDPC code outperforms the (3, 6)-

regular LDPC code. For instance, for a fixed crossover probability p = 0.068, say, and

hb(p) ≈ 0.3584, the KBER with the use of the irregular LDPC code is as low as 10−5,

while the KBER with the use of the (3, 6)-regular LDPC code is only about 4× 10−3.
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Figure 4.2: Simulation results for the (3, 4)-regular LDPC code.
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Chapter 5

The Relationship Between the Common Randomness Capacity and the Secret Key

Capacity for Source Models with Rate Constraints

5.1 Introduction

It has been described in Chapter 4 that for a source model consisting of an arbitrary num-

ber of terminals which respectively observe the distinct components of a DMMS followed

by unrestricted public communication among themselves, the CR-capacity, i.e., the largest

rate of CR that is achieved by the terminals, can be decomposed into the smallest sum-

rate of the communication needed to achieve the CR-capacity, and the SK-capacity (i.e.,

the largest rate at which all the terminals can generate a SK). This leads to the following

question: what is the relationship between the CR-capacity and the SK-capacity for a

given source model with rate constraints on the public communication?

Ahlswede and Csiszár [4] have determined the CR-capacities for several two-terminal

source models with rate constraints on the public communication. On the other hand,

the SK-capacities for these two-terminal source models are given in [16]. However, the

relationship between the CR-capacities and the SK-capacities for these models has not yet

been examined. In this chapter, we shall discuss this relationship for several two-terminal

source models1 with rate constraints on the public communication.

The rest of this chapter is organized as follows. Section 5.2 contains the prelim-
1The CR-capacities are still unknown, in general, for source models consisting of more than two termi-

nals, and with rate constraints on the public communication. We do not discuss the relationship between

the CR-capacities and the SK-capacities for source models consisting of more than two terminals here.
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inaries. In Section 5.3, we shall consider three simple two-terminal source models, the

first two of which have known CR-capacities and SK-capacities. Our main results – the

CR-capacity and the SK-capacity for the third model, as well as the smallest sum-rate

of the communication needed to achieve the CR-capacity for each of the three models

– are provided in Section 5.4. We observe that in each of the three models, the SK-

capacity is equal to the difference between the CR-capacity and the smallest sum-rate of

the communication needed to achieve the CR-capacity. The proofs are given in Section

5.5.

5.2 Preliminaries

Consider a DMMS with m ≥ 2 components, with corresponding generic rvs X1, · · · , Xm

taking values in finite alphabets X1, · · · ,Xm, respectively. Let Xn
i = (Xi,1, · · · , Xi,n),

1 ≤ i ≤ m, be n i.i.d. repetitions of the rv Xi. Terminals X1, · · · ,Xm, with respective

observations Xn
1 , · · · , Xn

m, represent the m users who wish to generate CR or a SK by

public communication.

Each terminal can communicate with every other terminal through noiseless broad-

casts. The transmissions can be assumed, without any loss of generality, to occur in rm

(r ≥ 1) consecutive time slots in r rounds. The communication can be depicted by rm

rvs F1, · · · , Frm, where Ft denotes the transmission in time slot t, 1 ≤ t ≤ rm, by the

terminal Xi, i = t mod m. In general, Ft is allowed to be any function, defined in terms

of a mapping ft, of the observations at the terminal Xi and of the previous transmis-

sions F[1,t−1] = (F1, · · · , Ft−1). No other resources are available to these m terminals; in

particular, additional randomization is not permitted at the terminals.

Denote by Fi, 1 ≤ i ≤ m, all the transmissions from terminal Xi. Since the transmis-
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sions from terminal Xi occur in time slots i, · · · , i+(r−1)m, Fi = {Fi+jm, 0 ≤ j ≤ r−1}.

Suppose that Fi, 1 ≤ i ≤ m, is subject to the rate constraint Ri, i.e.,

1
n

log ||Fi||
�
=

1
n

r−1∑
j=0

log ||Fi+jm|| ≤ Ri, 1 ≤ i ≤ m, (5.1)

where ||Fi+jm|| denotes the cardinality of the range of Fi+jm. Such rate constraints im-

posed on transmissions depict bandwidth limitations associated with the use of shared

public channels. The notation Ri = ∞ will be used to denote the fact that constraint

(5.1) is not imposed for that i.

The rv K, as a function of (Xn
1 , · · · , Xn

m) and with finite range K, represents ε-

common randomness (ε-CR), achievable with communication F = (F1, · · · , Fm), if K is

ε-recoverable from (F, Xn
i ) for each 1 ≤ i ≤ m.

Definition 5.1 A nonnegative number R is an achievable CR rate if for every ε > 0 and

all sufficiently large n, there exists ε-CR K, achieved with F = (F1, · · · , Fm) satisfying

the rate constraints (5.1), such that

1
n

H(K) > R− ε.

The largest achievable CR rate is called the CR-capacity, denoted by CCR(R1, · · · , Rm).

Definition 5.2 A nonnegative number R is an achievable sum-rate of “communication

for largest common randomness” (CLCR sum-rate) if for every ε > 0 and all sufficiently

large n, ε-CR with rate larger than CCR(R1, · · · , Rm)−ε is achievable with communication

F = (F1, · · · , Fm) satisfying the rate constraints (5.1), such that for every ξ > 0,

1
n

m∑
i=1

log ||Fi|| =
1
n

m∑
i=1

r−1∑
j=0

log ||Fi+jm|| < R + ξ.

The smallest achievable CLCR sum-rate is denoted by Rmin(R1, · · · , Rm).
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Remark: It follows directly from the definitions above that

CCR(R1, · · · , Rm) ≤ H(X1, · · · , Xm),

and

Rmin(R1, · · · , Rm) ≤
m∑

i=1

Ri.

The rv KM, with finite range KM, represents an ε-secret key (ε-SK), achieved with

communication F, if KM is ε-CR and KM satisfies the secrecy condition

1
n

I(KM ∧F) < ε,

and the uniformity condition

1
n

H(KM) ≥ 1
n

log |KM| − ε.

Definition 5.3 A nonnegative number R is called an achievable SK rate if for every

ε > 0 and all sufficiently large n, there exist ε-SKs KM, achieved with F satisfying the

rate constraints (5.1), such that

1
n

H(KM) > R− ε.

The largest achievable SK rate is called the SK-capacity, denoted by CS(R1, · · · , Rm).

Remark: Note that the definitions of the CR-capacity and the SK-capacity are in the “weak

sense.” (cf. e.g, [3], [17]) While all our results below are presented in the “weak sense,”

they can be established in the stronger sense of [37] by using the techniques developed in

[40].

Let CCR(∞, · · · ,∞), Rmin(∞, · · · ,∞), and CS(∞, · · · ,∞) 2 respectively denote the

CR-capacity, the smallest achievable CLCR sum-rate, and the SK-capacity, when there
2These notations are in effect, identical to Rmin and CS in Chapter 4.
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are no rate constraints (5.1), i.e., Ri =∞, 1 ≤ i ≤ m. Clearly,

CCR(∞, · · · ,∞) = H(X1, · · · , Xm),

Rmin(∞, · · · ,∞) = min
(r1,···,rm)∈R

m∑
i=1

ri,

with

R =

⎧⎨
⎩(r1, · · · , rm) :

∑
i: Xi∈B

ri ≥ H(XB|XBc),B ⊂ {X1, · · · ,Xm}

⎫⎬
⎭ ,

and

CS(∞, · · · ,∞) = H(X1, · · · , Xm)−Rmin(∞, · · · ,∞).

This suggests that under unrestricted public communication, the CR-capacity CCR(∞, · · · ,∞)

can be decomposed into the smallest achievable CLCR sum-rate Rmin(∞, · · · ,∞) and the

SK-capacity CS(∞, · · · ,∞).

In this chapter, we study the relationship between CCR(R1, · · · , Rm), Rmin(R1, · · · , Rm)

and CS(R1, · · · , Rm) in the presence of rate constraints (5.1); in particular, we examine

whether and in which situations the relation

CS(R1, · · · , Rm) = CCR(R1, · · · , Rm)−Rmin(R1, · · · , Rm)

holds.

5.3 Previous Results

Model 5.1: Let the terminals X1 and X2 observe, respectively, n i.i.d. repetitions of the

correlated rvs X1 and X2. These terminals wish to generate CR or a SK by means of a

single transmission from terminal X1, which is subject to the rate constraint R1.

Note that Model 5.1 is a special case of the general source model in Section 5.1

for m = 2, r = 1, R1 > 0, and R2 = 0. The CR-capacity for this model, denoted by
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CCR(R1, 0), is [4]

CCR(R1, 0) = max
U

I(U ∧X1),

where the maximum is over all rvs U that satisfy the Markov condition

U −◦−X1 −◦−X2, (5.2)

and the rate condition

I(U ∧X1|X2) ≤ R1. (5.3)

Furthermore, the maximum is attained by a rv U taking values in set U of cardinality

|U| ≤ |X1|.

The SK-capacity for this model, denoted by CS(R1, 0), is [16]

CS(R1, 0) = max
U

I(U ∧X2),

where the rv U satisfies (5.2) – (5.3). Also, it is known [3], [36] that if R1 ≥ H(X1|X2),

CCR(R1, 0) = H(X1),

and

CS(R1, 0) = I(X1 ∧X2).

Model 5.2: Let the terminals X1 and X2 observe, respectively, n i.i.d. repetitions of the

correlated rvs X1 and X2. These terminals wish to generate CR or a SK by means of two

transmissions: one from terminal X1, which is subject to the rate constraint R1; the other

from terminal X2, which is subject to the rate constraint R2.

Note that Model 5.1 is a special case of the general source model in Section 5.1

for m = 2, r = 1, R1 > 0, and R2 > 0. The CR-capacity for this model, denoted by

CCR(R1, R2), is [4]

CCR(R1, R2) = max
U,V

I(U, V ∧X1, X2),
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where the maximum is over all pairs of rvs (U, V ) that satisfy the Markov conditions

U −◦−X1 −◦−X2, V −◦−X2, U −◦−X1, (5.4)

and the rate conditions

I(U ∧X1|X2) ≤ R1, I(V ∧X2|X1, U) ≤ R2. (5.5)

Furthermore, the maximum is attained by a pair of rvs (U, V ) taking values in sets (U , V)

of cardinalities |U| ≤ |X1|+ 3, |V| ≤ |X2|.

The SK-capacity for this model, denoted by CS(R1, R2), is [16]

CS(R1, R2) = max
U,V

[I(U ∧X2) + I(V ∧X1|U)],

where the rvs U , V satisfy (5.4) – (5.5). Also, it is known [3], [17], [36] that if either

R1 ≥ H(X1|X2) or R2 ≥ H(X2|X1),

CS(R1, R2) = I(X1 ∧X2),

and

CCR(R1, R2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

H(X1, X2), if R1 ≥ H(X1|X2) and R2 ≥ H(X2|X1),

R2 + H(X1), if R1 ≥ H(X1|X2) and R2 < H(X2|X1),

R1 + H(X2), if R1 < H(X1|X2) and R2 ≥ H(X2|X1).

Model 5.3: Let the terminals X1 and X2 observe, respectively, n i.i.d. repetitions of the

correlated rvs X1 and X2. These terminals wish to generate CR or a SK by means of two-

way multiple rounds (say r rounds) of transmissions. The transmissions from terminal

X1 (resp. X2) are subject to the rate constraint R1 (resp. R2).

Note that Model 5.1 is a special case of the general source model in Section 5.1 for

m = 2, R1 > 0, and R2 > 0.
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5.4 Statement of Results

The following theorem characterizes the smallest achievable CLCR sum-rate for Model 5.1.

Further, the CR-capacity for Model 5.1 is found to be equal to the sum of the SK-capacity

and the smallest achievable CLCR sum-rate.

Theorem 5.1 The smallest achievable CLCR sum-rate for Model 5.1 is

Rmin(R1, 0) = min{R1, H(X1|X2)}.

Further,

CS(R1, 0) = CCR(R1, 0)− Rmin(R1, 0).

Remark: It readily follows from the Slepian-Wolf theorem that if R1 ≥ H(X1|X2),

Rmin(R1, 0) = H(X1|X2). Further, it is clear from the characterizations of CCR(R1, 0),

Rmin(R1, 0) and CS(R1, 0) that if R1 ≥ H(X1|X2), CS(R1, 0) is equal to the difference

between CCR(R1, 0) and Rmin(R1, 0).

The following theorem characterizes the smallest achievable CLCR sum-rate for

Model 5.2. Further, the CR-capacity for Model 5.2 is found to be equal to the sum of the

SK-capacity and the smallest achievable CLCR sum-rate.

Theorem 5.2 The smallest achievable CLCR sum-rate for Model 5.2 is

Rmin(R1, R2) = min{R1, H(X1|X2)}+ min{R2, H(X2|X1)}.

Further,

CS(R1, R2) = CCR(R1, R2)− Rmin(R1, R2).
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Remark: It follows from the Slepian-Wolf theorem that if R1 ≥ H(X1|X2) and R2 ≥

H(X2|X1),

Rmin(R1, R2) = H(X1|X2) + H(X2|X1).

Further, it is clear from the characterizations of CCR(R1, R2), Rmin(R1, R2) and CS(R1, R2)

that if either R1 ≥ H(X1|X2) or R2 ≥ H(X2|X1), CCR(R1, R2) is equal to the sum of

CS(R1, R2) and Rmin(R1, R2).

The following three theorems characterize CCR(R1, R2), CS(R1, R2), and Rmin(R1, R2)

for Model 5.3, respectively. Further, the CR-capacity for Model 5.3 is found to be equal

to the sum of the SK-capacity and the smallest achievable CLCR sum-rate.

Theorem 5.3 The CR-capacity CCR(R1, R2) for Model 5.3 is

CCR(R1, R2) = max
U1,···,Ur,V1,···,Vr

I(U1, · · · , Ur, V1, · · · , Vr ∧X1, X2),

where the rvs U1, · · · , Ur, V1, · · · , Vr satisfy the Markov conditions

Ui −◦−X1, U1, · · · , Ui−1, V1, · · · , Vi−1 −◦−X2, 1 ≤ i ≤ r, (5.6)

Vi −◦−X2, U1, · · · , Ui, V1, · · · , Vi−1 −◦−X1, 1 ≤ i ≤ r, (5.7)

and the rate conditions

r∑
i=1

I(Ui ∧X1|X2, U1, · · · , Ui−1, V1, · · · , Vi−1) ≤ R1, (5.8)

r∑
i=1

I(Vi ∧X2|X1, U1, · · · , Ui, V1, · · · , Vi−1) ≤ R2. (5.9)

Theorem 5.4 The SK-capacity CS(R1, R2) for Model 5.3 is

CS(R1, R2) = max
U1,···,Ur,V1,···,Vr

r∑
i=1

[I(Ui ∧X2|U1, · · · , Ui−1, V1, · · · , Vi−1)

+I(Vi ∧X1|U1, · · · , Ui, V1, · · · , Vi−1)],
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where the rvs U1, · · · , Ur, V1, · · · , Vr satisfy (5.6) – (5.9).

Remark: The maxima in Theorems 5.3 and 5.4 are attainable, since by a direct application

of the Support Lemma [15, p. 310], the rvs U1, · · · , Ur, V1, · · · , Vr can be assumed, without

restricting generality, to take values in finite sets.

Theorem 5.5 The smallest achievable CLCR sum-rate for Model 5.3 is

Rmin(R1, R2) = min{R1, H(X1|X2)}+ min{R2, H(X2|X1)}.

Further,

CS(R1, R2) = CCR(R1, R2)− Rmin(R1, R2).

5.5 Proofs

The technical tools used to prove Theorem 5.1 are supplied by Lemmas 5.1 and 5.2 below.

For a given joint probability mass function (pmf) PX1X2, define

S(R1)
�
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

PUX1X2 : PUX1X2 = PU |X1
PX1X2,

∑
u,x1,x2

PUX1X2 log
PUX1|X2

PU |X2
PX1|X2

≤ R1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (5.10)

Note that the CR-capacity for Model 5.1 is

CCR(R1, 0) = max
U :PUX1X2

∈S(R1)
I(U ∧X1).

Lemma 5.1 Let X1 and X2 be X1- and X2-valued rvs with joint pmf PX1X2 = PX1PX2|X1
,

where PX1 is fixed. Then, I(X1 ∧ X2) is a convex function of PX2|X1
. Furthermore,

I(X1 ∧ X2) is a strictly convex function of PX2|X1
, iff PX2|X1

�= PX2, i.e., X1 is not

independent of X2.
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Proof of Lemma 5.1: Fix PX1 . Consider the conditional pmfs PX2|X1
and PX ′

2|X1
, and

let the corresponding joint pmfs on X1 ×X2 be PX1X2 and PX1X ′
2
, respectively, and their

respective marginals on X2 be PX2 and PX ′
2
. Let

PXλ
2 |X1

= λPX2|X1
+ λ̄PX ′

2|X1
,

where 0 ≤ λ ≤ 1 and λ̄ = 1− λ. Clearly, for a given PX1,

PX1Xλ
2

= λPX1X2 + λ̄PX1X ′
2
,

and

PXλ
2

= λPX2 + λ̄PX ′
2
.

Then,

I(X1 ∧Xλ
2 ) =

∑
x1,x2

PX1Xλ
2

log
PX1Xλ

2

PX1PXλ
2

=
∑

x1,x2

(λPX1X2 + λ̄PX1X ′
2
) log

λPX1X2 + λ̄PX1X ′
2

λPX1PX2 + λ̄PX1PX ′
2

≤
∑

x1,x2

[
λPX1X2 log

PX1X2

PX1PX2

+ λ̄PX1X ′
2
log

PX1X ′
2

PX1PX ′
2

]
(5.11)

= λI(X1 ∧X2) + λ̄I(X1 ∧X ′
2),

where (5.11) follows from the log-sum inequality (cf. e.g., [11, p. 29]). Hence, I(X1 ∧X2)

is a convex function of PX2|X1
for fixed PX1. According to the log-sum inequality, equality

in (5.11) holds iff PX1X2 = PX1PX2 and PX1X ′
2

= PX1PX ′
2
, proving strict convexity. This

completes the proof.

Lemma 5.2 [3]: For arbitrary rvs U , V and sequences of rvs Y = (Y1, · · · , Yn), Z =

(Z1, · · · , Zn),

I(U ∧Y|V )− I(U ∧ Z|V ) =
n∑

i=1

[I(U ∧ Yi|Y1, · · · , Yi−1, Zi+1, · · · , Zn, V )

−I(U ∧ Zi|Y1, · · · , Yi−1, Zi+1, · · · , Zn, V )].
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Proof of Theorem 5.1: To prove the first part of this theorem, it suffices to show that

Rmin(R1, 0) ≥ R1 for R1 < H(X1|X2).

Let K (with values in K) be arbitrary ε-CR with rate

1
n

H(K) ≥ CCR(R1, 0)− ε,

achieved by a single transmission F = F1 = f1(Xn
1 ). We shall show below that for every

ξ > 0 and for all sufficiently large n,

1
n

log ||F|| ≥ R1 − ξ.

Since K is ε-recoverable from Xn
1 , there exists a rv K ′, as a function of Xn

1 and

taking values in K, such that

Pr{K ′ �= K} ≤ ε.

It follows from Fano’s inequality that

1
n

H(K ′) ≥ 1
n

H(K)− ε log |K|+ 1
n

≥ CCR(R1, 0)− ε− ε log |K|+ 1
n

.

Let Ũ = K ′X1,1 · · ·X1,J−1X2,J+1 · · ·X2,nJ, where J is a rv independent of (Xn
1 , Xn

2 ) and

uniformly distributed on {1, · · · , n}. It is easily seen that

Ũ −◦−X1,J −◦−X2,J .

By applying Lemma 5.2 and the fact that (X1,i, X2,i) is independent of (X1,1, · · · , X1,i−1, X2,i+1, · · · , X2,n),

we have

I(K ′ ∧Xn
1 )− I(K ′ ∧Xn

2 ) = n
[
I(Ũ ∧X1,J)− I(Ũ ∧X2,J)

]
.

Considering that

I(K ′ ∧Xn
1 )− I(K ′ ∧Xn

2 ) = H(K ′|Xn
2 )
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= I(K ′ ∧F|Xn
2 ) + H(K ′|Xn

2 , F)

≤ H(F) + 2ε log |K|+ 1 (5.12)

≤ nR1 + 2ε log |K|+ 1,

where (5.12) follows from Fano’s inequality, with K ′ being 2ε-recoverable from (Xn
2 , F),

we have

I(Ũ ∧X1,J)− I(Ũ ∧X2,J) ≤ R1 +
2ε log |K|+ 1

n
.

As X1,J , X2,J can be identified with the rvs X1, X2 of the DMMS, the rv Ũ satisfies the

Markov condition (5.2) and the rate condition (5.3). Note that

H(K ′) = I(K ′ ∧Xn
1 ) =

n∑
i=1

I(K ′ ∧X1,i|X1,1, · · · , X1,i−1) ≤ nI(Ũ ∧X1,J).

Hence,

I(Ũ ∧X1) ≥
1
n

H(K ′)

≥ CCR(R1, 0)− ε− ε log |K|+ 1
n

= max
U :PUX1X2

∈S(R1)
I(U ∧X1)− ε− ε log |K|+ 1

n
, (5.13)

i.e., I(Ũ ∧X1) is arbitrarily close to the maximum of I(U ∧X1) on S(R1).

Note that for every PUX1X2 ∈ S(R1), we can write

I(U ∧X1) = I(U ∧X1, X2) = I(U ∧X1|X2) + I(U ∧X2),

where I(U ∧X1|X2) can be chosen to equal R1, provided R1 < H(X1|X2). Hence,

max
U :PUX1X2

∈S(R1)
I(U ∧X1) = R1 + max

U :PUX1X2
∈S(R1)

I(U ∧X2)

is achieved with

I(U ∧X1|X2) = R1. (5.14)
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Furthermore, by Lemma 5.1, I(U ∧X1) is a convex function of PU |X1
for fixed PX1, where

the convexity is not strict iff U is independent of X1, which corresponds to the minimum

of I(U ∧X1). Considering that I(U ∧X1) is a continuous function of PUX1, with the rv

Ũ defined above satisfying (5.13), we have for every δ > 0,

I(Ũ ∧X1)− I(Ũ ∧X2) = I(Ũ ∧X1|X2) ≥ R1 − δ.

It readily follows from (5.12) that

1
n

log ||F|| ≥ 1
n

H(F) ≥ I(Ũ ∧X1)− I(Ũ ∧X2)−
2ε log |K|+ 1

n
≥ R1 − δ − 2ε log |K|+ 1

n
,

completing the proof of the first part of this theorem.

Next, we show that

CS(R1, 0) = CCR(R1, 0)− Rmin(R1, 0),

for R1 < H(X1|X2). Let

U∗ = argmax
U

I(U ∧X1),

where the maximum is over all the rvs U satisfying (5.2) – (5.3). Since by definition,

PU∗X1X2 ∈ S(R1) and

I(U∗ ∧X1) = max
U :PUX1X2

∈S(R1)
I(U ∧X1),

it follows from (5.14) that

I(U∗ ∧X1) = I(U∗ ∧X2) + R1.

Hence,

CCR(R1, 0) = I(U∗ ∧X2) + R1 ≤ CS(R1, 0) + Rmin(R1, 0).

By symmetry, it is easily seen that

CS(R1, 0) ≤ CCR(R1, 0)− Rmin(R1, 0).
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For a given joint pmf PX1X2, define

S(R1, R2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PUV X1X2 : PUX1X2 = PU |X1
PX1X2 ,

PUV X1X2 = PV |UX2
PUX1X2,

∑
u,x1,x2

PUX1X2 log
PUX1|X2

PU |X2
PX1|X2

≤ R1,

∑
u,v,x1,x2

PUV X1X2 log
PV X2|UX1

PV |UX1
PX2|UX1

≤ R2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.15)

Note that the CR-capacity for Model 5.2 is

CCR(R1, R2) = max
(U,V ):PUV X1X2

∈S(R1,R2)
I(U, V ∧X1, X2).

Proof of Theorem 5.2: To prove the first part of this theorem, it suffices to show

that Rmin(R1, R2) ≥ min{R1, H(X1|X2)} + min{R2, H(X2|X1)}, for R1 < H(X1|X2) or

R2 < H(X2|X1). We now discuss it for three cases.

Case 1: R1 < H(X1|X2) and R2 < H(X2|X1):

Let K (with values in K) be arbitrary ε-CR with rate

1
n

H(K) ≥ CCR(R1, R2)− ε,

achieved by transmissions F = (F1, F2), where F1 = f1(Xn
1 ) and F2 = f2(Xn

2 , F1).

Since K is ε-recoverable from (Xn
2 , F), there exists a rv K ′, as a function of (Xn

2 , F)

and taking values in K, such that Pr{K ′ �= K} ≤ ε. It follows from Fano’s inequality that

1
n

H(K ′) ≥ CCR(R1, R2)− ε− ε log |K|+ 1
n

.

Let Ũ = F1X1,1 · · ·X1,J−1X2,J+1 · · ·X2,nJ and Ṽ = K ′, where J is a rv independent of

(Xn
1 , Xn

2 ) and uniformly distributed on {1, · · · , n}. It is easily seen that

Ũ −◦−X1,J −◦−X2,J
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and

Ṽ −◦−X2,J , Ũ −◦−X1,J.

By applying Lemma 5.2 and the fact that (X1,i, X2,i) is independent of (X1,1, · · · , X1,i−1, X2,i+1, · · · , X2,n),

we have

I(F1 ∧Xn
1 )− I(F1 ∧Xn

2 ) = n
[
I(Ũ ∧X1,J)− I(Ũ ∧X2,J)

]
,

and

I(Ṽ ∧Xn
1 |F1)− I(Ṽ ∧Xn

2 |F1) = n
[
I(Ṽ ∧X1,J |Ũ)− I(Ṽ ∧X2,J|Ũ)

]
.

Thus,

I(Ũ ∧X1,J)− I(Ũ ∧X2,J) =
1
n

[I(F1 ∧Xn
1 )− I(F1 ∧Xn

2 )] ≤ 1
n

H(F1) ≤ R1. (5.16)

Also,

I(Ṽ ∧X2,J|Ũ)− I(Ṽ ∧X1,J|Ũ) =
1
n

[
I(Ṽ ∧Xn

2 |F1)− I(Ṽ ∧Xn
1 |F1)

]

=
1
n

H(K ′|Xn
1 )

=
1
n

[
I(K ′ ∧ F2|Xn

1 ) + H(K ′|Xn
1 , F2)

]

≤ 1
n

H(F2|F1) +
2ε log |K|+ 1

n
(5.17)

≤ R2 +
2ε log |K|+ 1

n
.

As X1,J, X2,J can be identified with the rvs X1, X2 of the DMMS, the rvs Ũ , Ṽ satisfy

(5.4) – (5.5). Note that

I(K ′ ∧Xn
1 ) =

n∑
i=1

I(K ′ ∧X1,i|X1,1, · · · , X1,i−1) ≤ nI(Ũ, Ṽ ∧X1,J).

Hence,

I(Ũ, Ṽ ∧X1, X2) = I(Ũ , Ṽ ∧X1) + I(Ṽ ∧X2|Ũ)− I(Ṽ ∧X1|Ũ)

≥ 1
n

I(K ′ ∧Xn
1 ) +

1
n

H(K ′|Xn
1 )
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=
1
n

H(K ′)

≥ CCR(R1, R2)− ε− ε log |K|+ 1
n

= max
(U,V ):PUV X1X2

∈S(R1,R2)
I(U, V ∧X1, X2)− ε− ε log |K|+ 1

n
,(5.18)

i.e., I(Ũ , Ṽ ∧X1, X2) is arbitrarily close to the maximum of I(U, V ∧X1, X2) on S(R1, R2).

Note that for every PUV X1X2 ∈ S(R1, R2), we can write

I(U, V ∧X1, X2) = I(U ∧X1, X2) + I(V ∧X1, X2|U)

= I(U ∧X1|X2) + I(U ∧X2) + I(V ∧X2|X1, U) + I(V ∧X1|U),

where I(U ∧ X1|X2) can be chosen to equal R1, provided R1 < H(X1|X2), and I(V ∧

X2|X1, U) can be chosen to equal R2, provided R2 < H(X2|X1). Hence,

max
(U,V ):PUV X1X2

∈S(R1,R2)
I(U, V∧X1, X2) = R1+R2+ max

(U,V ):PUV X1X2
∈S(R1,R2)

[I(U ∧X2) + I(V ∧X1|U)]

is achieved with

I(U ∧X1|X2) = R1, (5.19)

and

I(V ∧X2|X1, U) = R2. (5.20)

Furthermore, by Lemma 5.1, I(U, V ∧X1, X2) is a convex function of PUV |X1X2
for fixed

PX1X2 , where the convexity is not strict iff (U, V ) is independent of (X1, X2), which

corresponds to the minimum of I(U, V ∧ X1, X2). Considering that I(U, V ∧ X1, X2) is

a continuous function of PUV X1X2, with the rvs Ũ , Ṽ defined above satisfying (5.18), we

have for every δ1 > 0 and δ2 > 0,

I(Ũ ∧X1)− I(Ũ ∧X2) = I(Ũ ∧X1|X2) ≥ R1 − δ1,

and

I(Ṽ ∧X2|Ũ)− I(Ṽ ∧X1|Ũ) = I(Ṽ ∧X2|X1, Ũ) ≥ R2 − δ2.
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It readily follows from (5.16) and (5.17) that

1
n

H(F1) ≥ R1 − δ1,

and

1
n

H(F2|F1) ≥ R2 − δ2 −
2ε log |K|+ 1

n
.

Therefore,

1
n

log ||F|| ≥ 1
n

H(F1) +
1
n

H(F2|F1) ≥ R1 + R2 − δ1 − δ2 −
2ε log |K|+ 1

n
.

Case 2: R1 < H(X1|X2) and R2 ≥ H(X2|X1):

Let K be arbitrary ε-CR with rate

1
n

H(K) ≥ CCR(R1, R2)− ε = R1 + H(X2)− ε,

achieved by transmissions F = (F1, F2). Then,

1
n

H(F1) ≥
1
n

H(Xn
2 , F1)−

1
n

H(Xn
2 )

≥ 1
n

H(K)− ε log |K|+ 1
n

−H(X2)

≥ R1 − ε− ε log |K|+ 1
n

.

Also,

1
n

H(F2|F1) ≥
1
n

I(F2 ∧Xn
2 |Xn

1 )

=
1
n

[H(Xn
2 |Xn

1 )−H(Xn
2 |Xn

1 , F2)]

≥ H(X2|X1)−
ε log |X2|+ 1

n
,

where the last inequality follows since in this case, Xn
2 is ε-recoverable from (Xn

1 , F2).

Therefore,

1
n

log ||F|| ≥ R1 + H(X2|X1)− ε− ε log |K|+ ε log |X2|+ 2
n

.
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Case 3: R1 ≥ H(X1|X2) and R2 < H(X2|X1):

The same arguments used for Case 2 apply here.

Next, we show that if R1 < H(X1|X2) and R2 < H(X2|X1),

CS(R1, R2) = CCR(R1, R2)− Rmin(R1, R2).

Let

(U∗, V ∗) = argmax
U,V

I(U, V ∧X1, X2),

where the maximum is for all the pairs of rvs (U, V ) satisfying (5.4) – (5.5). Since by

definition, PU∗V ∗X1X2 ∈ S(R1, R2) and

I(U∗, V ∗ ∧X1, X2) = max
(U,V ):PUV X1X2

∈S(R1,R2)
I(U, V ∧X1, X2),

it follows from (5.19) and (5.20) that

I(U∗ ∧X1) = I(U∗ ∧X2) + R1,

and

I(V ∗ ∧X2|U∗) = I(V ∗ ∧X1|U∗) + R2.

Hence,

CCR(R1, R2) = I(U∗ ∧X2) + I(V ∗ ∧X1|U∗) + R1 + R2 ≤ CS(R1, R2) + Rmin(R1, R2).

The counterpart follows by symmetry.

Proof of Theorems 5.3 and 5.4:

Converse part of Theorem 5.3: For every ε > 0, let K (with values in K) be an ar-

bitrary ε-CR, achieved by transmissions F = (F1, F2) = (F1, F2, · · · , F2r−1, F2r) satisfying

(5.1). Since K is ε-recoverable from (Xn
2 , F), there exists a rv K ′, as a function of (Xn

2 , F)
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and taking values in K, such that Pr{K ′ �= K} ≤ ε. Let

Ũi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F1X1,1 · · ·X1,J−1X2,J+1 · · ·X2,nJ, i = 1,

F2i−1, 2 ≤ i ≤ r,

(5.21)

and

Ṽi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F2i, 1 ≤ i ≤ r− 1,

K ′, i = r.

(5.22)

It is shown in Appendix C.1 that {(Ũi, Ṽi), 1 ≤ i ≤ r} satisfy the Markov conditions (5.6)

– (5.7). By applying Lemma 5.2, we have

I(Ũ1 ∧X1,J)− I(Ũ1 ∧X2,J) =
1
n

[I(F1 ∧Xn
1 )− I(F1 ∧Xn

2 )] ≤ 1
n

H(F1),

and for 2 ≤ i ≤ r,

I(Ũi ∧X1,J |Ũ1, · · · , Ũi−1, Ṽ1, · · · , Ṽi−1)− I(Ũi ∧X2,J|X2,J, Ũ1, · · · , Ũi−1, Ṽ1, · · · , Ṽi−1)

=
1
n

[I(F2i−1 ∧Xn
1 |F[1,2i−2])− I(F2i−1 ∧Xn

2 |F[1,2i−2])]

≤ 1
n

H(F2i−1|F1, F3, · · · , F2i−3).

As X1,J , X2,J can be identified with the rvs X1, X2,

R1 ≥
1
n

H(F1) ≥
r∑

i=1

I(Ũi ∧X1|X2, Ũ1, · · · , Ũi−1, Ṽ1, · · · , Ṽi−1). (5.23)

Also, it can be shown that

H(Ṽ1, · · · , Ṽr|Xn
1 ) =

r∑
i=1

H(Ṽi|Xn
1 , Ũ1, · · · , Ũi, Ṽ1, · · · , Ṽi−1)

= n
r∑

i=1

I(Ṽi ∧X2|X1, Ũ1, · · · , Ũi, Ṽ1, · · · , Ṽi−1). (5.24)

Hence,

R2 ≥ 1
n

H(F2|F1) ≥
1
n

H(F2|Xn
1 )

≥ 1
n

H(Ṽ1, · · · , Ṽr|Xn
1 )− 1

n
H(K ′|Xn

1 , F2)

≥
r∑

i=1

I(Ṽi ∧X2|X1, Ũ1, · · · , Ũi, Ṽ1, · · · , Ṽi−1)−
2ε log |K|+ 1

n
. (5.25)
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Therefore, {(Ũi, Ṽi), 1 ≤ i ≤ r} satisfy the rate conditions (5.8) – (5.9).

It follows from (5.24) and

I(Ṽ1, · · · , Ṽr ∧Xn
1 ) = nI(Ṽ1, · · · , Ṽr, X1,1, · · · , X1,J−1 ∧X1,J)

≤ n
r∑

i=1

I(Ũi, Ṽi ∧X1|Ũ1, · · · , Ũi−1, Ṽ1, · · · , Ṽi−1),

that

1
n

H(K) ≤ 1
n

H(K ′) +
ε log |K|+ 1

n

≤ 1
n

H(Ṽ1, · · · , Ṽr) +
ε log |K|+ 1

n

≤ I(Ũ1, · · · , Ũr, Ṽ1, · · · , Ṽr ∧X1, X2) +
ε log |K|+ 1

n
.

Converse part of Theorem 5.4: For every ε > 0, let K (with values in K) be an

arbitrary ε-SK, achieved by transmissions F = (F1, F2) satisfying (5.1). Let L = (K, F).

Clearly, L represents an ε-CR. Hence,

1
n

H(L) ≤ I(Ũ1, · · · , Ũr, Ṽ1, · · · , Ṽr ∧X1, X2), (5.26)

where the rvs {(Ũi, Ṽi), 1 ≤ i ≤ r} are given by (5.21) – (5.22) (with K ′ replaced by a

suitable L′ = L′(Xn
2 , F)). Since K is an ε-SK,

H(L) ≥ H(K, F) = H(K) + H(F)− I(K ∧ F) ≥ H(K) + H(F)− nε.

Therefore, it follows from (5.23), (5.25) and (5.26) that

1
n

H(K) ≤ 1
n

H(L)−H(F) + ε

≤
r∑

i=1

[I(Ũi ∧X2|Ũ1, · · · , Ũi−1, Ṽ1, · · · , Ṽi−1)

+I(Ṽi ∧X1|Ũ1, · · · , Ũi, Ṽ1, · · · , Ṽi−1)] + ε +
2ε log |K|+ 1

n
.

Achievability Parts of Theorems 5.3 and 5.4: The proof is analogous to that of [4,

Theorem 4.4], with a direct extension from one round of transmissions to r rounds of
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transmissions. The details of the proof are omitted here, but the idea behind the proof is

given in Appendix C.2.

Proof of Theorem 5.5:

The proof is analogous to that of Theorem 5.2, with the setting of {(Ũi, Ṽi), 1 ≤

i ≤ r} as in (5.21) – (5.22).
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

In this dissertation, we discussed the problems of

(i). the simultaneous generation of multiple keys by different groups of terminals;

(ii). the constructions of SKs and PKs by multiple terminals; and

(iii). the examination of the relationship between the CR-capacity and the SK-

capacity for source models with rate constraints on the public communication.

In part (i), we considered three-terminal source models. We determined in Chapter

2 the inner and outer bounds for the PK-capacity region. Under certain special conditions,

these bounds coincide to yield the exact PK-capacity region. We determined in Chapter 3

the inner and outer bounds for the (SK, PK)-capacity region. Under a certain condition,

these bounds coincide to yield the exact (SK, PK)-capacity region.

In part (ii), we considered several simple secrecy generation models involving multi-

ple terminals, and proposed a new approach for constructing SKs and PKs. This approach

is based on Wyner’s well-known SW data compression scheme for sources connected by

virtual channels with additive independent noise. It has been shown that the generated

SKs and PKs satisfy the desired common randomness, secrecy and uniformity conditions.

In part (iii), we considered several two-terminal source models with rate constraints

on the public communication between these terminals. It has been shown that for each

of these models, the CR-capacity is equal to the sum of the SK-capacity and the smallest

achievable CLCR sum-rate.
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6.2 Future Research

There are many opportunities to expand beyond the research presented here.

For part (i), it would be of interest to seek the exact PK-capacity region and the

exact (SK, PK)-capacity region. A potential approach is to characterize the PK-capacity

region and the (SK, PK)-capacity region in terms of suitable decompositions of the overall

CR, a la the SK-capacity and the PK-capacity when a single key is generated [17]. It is

known in the case of a single key that the SK-capacity is obtained by subtracting from

the maximum rate of shared CR achievable by these terminals the smallest sum-rate of

the data-compressed interterminal communication which enables each of the terminals to

acquire this maximal CR. For counterpart problem involving the PK-capacity region, it is

open whether the largest sum of two individual PK rates is obtained by subtracting from

the maximum rate of shared CR the smallest sum-rate of the data-compressed interter-

minal communication which enables each of the terminals to acquire the randomness used

for the PK generation at that terminal. It is also open whether a similar decomposition

holds for the (SK,PK)-capacity region.

Furthermore, an obvious generalization of the three-terminal source models consid-

ered in Chapters 2 and 3 is the one in which a SK is generated by all three terminals,

and – simultaneously – all three pairs of terminals generate distinct PKs, each of which is

effectively concealed from the remaining terminal. Entropy rates of these simultaneously

generated SK and PKs constitute a (SK, 3-PK)-rate quadruple. The set of all achievable

(SK, 3-PK)-rate quadruples is called (SK, 3-PK)-capacity region. Following arguments

similar to those used in the proof of Theorem 3.1, we can easily obtain an outer bound

for this (SK, 3-PK)-capacity region. Achievability proofs leading to inner bounds for this

(SK, 3-PK)-capacity region are still open.
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For part (ii), in all of the multiterminal source models considered in Chapter 4,

the i.i.d. sequences observed at different terminals are related to each other through

virtual communication channels characterized by additive independent noises. Consider

the model in which terminals X1 and X2, which respectively observe i.i.d. repetitions of

the correlated {0, 1}-valued rvs. X1 and X2 with joint pmf PX1X2 , wish to generate a

SK of maximal rate. The observations at terminal X2 can be considered as inputs to a

virtual binary symmetric channel (BSC), while the observations at terminal X1 are the

corresponding outputs. Thus, this channel has the transition probability matrix PX1|X2
.

There are two steps in the SK construction schemes in Chapter 4. The first step

constitutes SW data compression for the purpose of CR generation at the terminals.

Although the existence of linear data compression codes with rate arbitrarily close to

the SW bound has been long known for arbitrarily correlated sources [12], constructions

of such linear data compression codes are understood in terms of the cosets of linear

error-correction codes for the virtual channel PX1|X2
only when this virtual channel is

characterized by (independent) additive noise [63]. For instance, when the two sources are

connected by a BSC from X2 to X1, a linear data compression code, which attains the SW

rate H(X1|X2) for terminal X2 to reconstruct the observations at X1, is then provided by

a linear channel code which achieves the capacity of the BSC PX1|X2
.

However, if the i.i.d. sequences observed at terminals X1 and X2 are arbitrarily

correlated, the virtual communication channel PX1|X2
involved in the data compression

problem is no longer symmetric. It is shown in [21] that linear codes could not achieve the

capacity of a nonsymmetric channel in general. Therefore, it is not clear if the linear data

compression codes that achieve the SW bound can be provided by the linear capacity-

achieving channel codes anymore.
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The second step in the SK construction schemes involves SK extraction from the

previously acquired CR. Recent work [45] shows that for the special case of two-terminal

source model, this extraction can be accomplished by means of a linear transformation.

However, it is still unknown whether such a result holds for a general source model with

more than two terminals.

Next, as mentioned in Section 4.3, for the situation in which the marginal pmfs

at the two terminals differ from the uniform, the extraction of a SK or a PK from the

previously acquired CR involves regular subsets. Loosely speaking, a SK or a PK is set as

the index of a sequence in a regular subset containing that sequence. Since by definition,

each regular subset consists of sequences of the same type or the same joint type with

regard to a given sequence, the generation of regular subsets is based on the procedure of

collecting a large number of sequences of the same type or of the same joint type relative

to a given sequence. However, the current complexity of such a collection poses a hurdle

in the generation of regular subsets, and subsequently, the explicit implementation of SK

or PK extraction.

Furthermore, the simultaneous construction of multiple keys by different groups of

terminals is an interesting new topic, which is completely unexplored.

For part (iii), the examination of the relationship between the SK-capacity and

the CR-capacity for a given source model, with more than two terminals and with rate

constraints on the public communication between the terminals, is an interesting challenge

for future research. The first step of the overall effort is to characterize the CR-capacity

for such a model.
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Appendix A

Types and Typical Sequences

The following standard results on types and typical sequences can be found, for instance,

in [15], [11].

A.1 Types

The type of a sequence xn ∈ X n, X a finite set, is the probability mass function (pmf)

Pxn on X given by

Pxn(a) =
1
n
|{i : xi = a}|, a ∈ X .

The joint type of a pair of sequences (xn, yn) ∈ X n ×Yn is the joint pmf Pxnyn on X × Y

given by

Pxnyn(a, b) =
1
n
|{i : xi = a, yi = b}|, a ∈ X , b ∈ Y.

The number of different types of sequences in X n does not exceed (n + 1)|X |, and the

number of different joint types of pairs of sequences in X n ×Yn is less than (n + 1)|X ||Y|.

A.2 Typical Sequences

Given generic rvs X , Y (taking values in the finite sets X , Y), with joint pmf PXY on

X × Y, the set of sequences in X n which are X-typical with constant ξ, denoted by T n
X,ξ,

is defined as

T n
X,ξ

�
=
{
xn ∈ X n : 2−n[H(X)+ξ] ≤ Pn

X(xn) ≤ 2−n[H(X)−ξ]
}

,
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where Pn
X(xn)

�
= Pr{Xn = xn}, xn ∈ X n; and the set of pairs of sequences in X n × Yn

which are XY -typical with constant ξ, denoted by T n
XY,ξ, is defined as

T n
XY,ξ

�
=
{
(xn, yn) ∈ X n × Yn : xn ∈ T n

X,ξ, yn ∈ T n
Y,ξ, 2−n[H(X,Y )+ξ] ≤ Pn

XY (xn, yn) ≤ 2−n[H(X,Y )−ξ]
}

,

where Pn
XY (xn, yn)

�
= Pr{Xn = xn, Y n = yn}, xn ∈ X n, yn ∈ Yn.

It readily follows that for every (xn, yn) ∈ T n
XY,ξ,

2−n[H(X |Y )+2ξ] ≤ Pn
X |Y (xn|yn) ≤ 2−n[H(X |Y )−2ξ],

where Pn
X |Y (xn|yn)

�
= Pr{Xn = xn|Y n = yn}, xn ∈ X n, yn ∈ Yn.

For every yn ∈ Yn, the set of sequences in X n which are X |Y -typical with respect to

yn with constant ξ, denoted by T n
X |Y,ξ(y

n), is defined as

T n
X |Y,ξ(y

n)
�
=
{
xn ∈ X n : (xn, yn) ∈ T n

XY,ξ

}
;

note that T n
X |Y,ξ(y

n) is an empty set if yn �∈ T n
Y,ξ.

For every yn ∈ T n
Y,ξ,

∣∣∣T n
X |Y,ξ(y

n)
∣∣∣ ≤ 2n[H(X |Y )+2ξ]. (A.1)

Proposition A.1 Given a joint pmf PXY on X × Y with PXY (x, y) > 0, x ∈ X , y ∈ Y,

for each ξ > 0,

∑
xn∈T n

X,ξ

Pn
X(xn) ≥ 1− (n + 1)|X | · 2

−n ξ2

2 ln 2

[∑
a∈X log 1

PX (a)

]2
, (A.2)

and

∑
(xn,yn)∈T n

XY,ξ

Pn
XY (xn, yn) ≥ 1− (n + 1)|X ||Y| · 2

−n ξ2

2 ln 2

[∑
(a,b)∈X×Y log 1

PXY (a,b)

]2
, (A.3)

for all n ≥ 1.
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Proof of Proposition A.1: We shall prove (A.2) here. The proof of (A.3), which is

similar, is omitted. Fix δ > 0 and consider the set T n
[PX ]δ

of sequences in X n which are

PX -typical with constant δ (cf. [15, p. 33]), i.e.,

T n
[PX ]δ

= {xn ∈ X n : max
a∈X
|Pxn(a)− PX(a)| ≤ δ}.

Since T n
[P ]δ

is the union of the sets of these types P̃ of sequences in X n which satisfy

max
a∈X
|P̃ (a)− PX(a)| ≤ δ, (A.4)

we have

∑
xn∈
(

T n
[PX ]δ

)c

Pn
X(xn) =

∑
P̃ :maxa∈X |P̃ (a)−PX(a)|>δ

Pn
X

(
{xn : Pxn = P̃}

)

≤ (n + 1)|X | · 2−nminP̃ :mina∈X |P̃ (a)−PX (a)|>δ D(P̃ ||PX)
, (A.5)

using the fact that Pn
X({xn : Pxn = P̃}) ≤ 2−nD(P̃ ||P ) (cf. [15, Lemma 2.6]).

Next, by Pinsker’s inequality (cf. e.g., [15, p. 58]),

D(P̃ ||P ) ≥ 1
2ln2

(
min
a∈X
|P̃ (a)− PX(a)|

)2

≥ δ2

2ln2
, (A.6)

with the previous inequality holding for every P̃ in (A.4). It follows from (A.5) and (A.6)

that

∑
xn∈T n

[P ]δ

Pn
X(xn) ≥ 1− (n + 1)|X | · 2−n δ2

2ln2 (A.7)

for all n ≥ 1.

Finally, observe that

T n
[PX ]δ

⊆ T n
X,ξ, if ξ = δ

[∑
a∈X

log
1

PX(a)

]
, (A.8)
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which is readily seen from the fact that for each xn ∈ X n,

−1
n

logPn
X(xn)−H(PX) = −1

n
log
(
2−n[H(Pxn )+D(Pxn ||PX)]

)
−H(PX)

= H(Pxn) + D(Pxn ||PX)−H(PX)

= H(Pxn)−H(Pxn) +
∑
a∈X

Pxn(a) log
1

PX(a)
−H(PX)

=
∑
a∈X

[Pxn(a)− PX(a)] log
1

PX(a)
.

Clearly, (A.7) and (A.8) imply (A.2).
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Appendix B

Proof of Proposition 4.1

The proof of Proposition 4.1 relies on the lemma below concerning the average error

probability of maximum likelihood decoding.

A sequence un ∈ {0, 1}n is called a descendent of a sequence vn ∈ {0, 1}n if ui = 1

implies that vi = 1, 1 ≤ i ≤ n. A subset Ω ⊂ {0, 1}n is called quasiadmissible if the

conditions that un ∈ Ω and un is a descendent of vn together imply that vn ∈ Ω.

Lemma B.1 [35] If Ω is a quasiadmissible subset of {0, 1}n, then for 0 ≤ p ≤ 1,

dµp(Ω)
dp

> 0,

where

µp(Ω) =
∑

xn∈Ω

pwt(xn)(1− p)n−wt(xn),

with wt(xn) denoting the weight of xn.

For a binary linear code, let E denote the set of coset leaders. It is known (cf. [49,

Theorem 3.11]) that ω = {0, 1}n\E is a quasiadmissible subset of {0, 1}n. If a binary linear

code is used on BSC(p), the average error probability of maximum likelihood decoding is

given by (cf. [54, Theorem 5.3.3])

µp(ω) =
∑

xn∈ω

pwt(xn)(1− p)n−wt(xn).

It follows from Lemma B.1 that this average error probability increases with the crossover

probability p. In other words, if the same binary linear code is used on two binary

symmetric channels with different crossover probabilities, say, 0 < p1 < p2 < 1
2 , then the
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average error probability of maximum likelihood decoding for a BSC(p1) is strictly less

than that for a BSC(p2). This can also be interpreted since a BSC(p2) is equivalent to a

cascade of a BSC(p1) and a BSC(p2−p1
1−2p1

).

We now return to the proof of Proposition 4.1. It follows from Lemma 4.1 that for

some η > 0 and for all sufficiently large n,

Pr{X̂n
j∗(i

∗) �= Xn
i∗} < 2−nη .

Recall that p(i∗,j∗) = max(i,j)∈E(T ) p(i,j) and (i = i0, i1, · · · , ir = i∗) is the path from i to

i∗. It is readily seen from Lemma B.1 that

Pr{X̂n
i (i1) �= Xn

i1} < Pr{X̂n
j∗(i

∗) �= Xn
i∗} < 2−nη .

Subsequently,

Pr{X̂n
i (i2) �= Xn

i2} ≤ Pr{X̂n
i (i2) �= Xn

i2, X̂
n
i (i1) �= Xn

i1}

+ Pr{X̂n
i (i2) �= Xn

i2, X̂
n
i (i1) = Xn

i1}

< 2 · 2−nη.

Continue this procedure, and finally we have

Pr{X̂n
i (i∗) �= Xn

i∗} < r · 2−nη < m · 2−nη.
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Appendix C

Supplemental Proofs for Theorems 5.3 and 5.4

For notational simplicity, we shall use A[i,j] to denote (Ai, · · · , Aj) in this appendix.

C.1 Proof of the Markov Conditions

We shall show that {(Ũi, Ṽi), 1 ≤ i ≤ r} defined in (5.21) and (5.22) satisfy the Markov

conditions in (5.6) and (5.7).

It is easily seen that

Ũ1 −◦−X1,J −◦−X2,J.

To show that for 2 ≤ i ≤ r, Ũ[1,r] and Ṽ[1,r] satisfy (5.6), it suffices to show that

X1,[J+1,n] −◦−X1,[1,J], X2,[J+1,n], F[1,2i−2], J −◦−X2,J, (C.1)

which implies that

F2i−1 −◦−X1,[1,J], X2,[J+1,n], F[1,2i−2], J −◦−X2,J .

In order to establish (C.1), it suffices to show that

PX2,J |X1,[1,n] ,X2,[J+1,n] ,F[1,2i−2] ,J = PX2,J |X1,[1,J] ,X2,[J+1,n] ,F[1,2i−2] ,J . (C.2)

Recalling that F2i−1 is a function of (Xn
1 , F[1,2i−2]), the left hand side of (C.2) can be

written as

PX2,J |X1,J ,J

i−1∏
l=1

PF2l |X1,[1,n] ,X2,[J,n] ,F[1,2l−1] ,J

PF2l |X1,[1,n] ,X2,[J+1,n] ,F[1,2l−1],J
,

or equivalently,

PX2,J |X1,J ,J

i−1∏
l=1

PF2l|X1,[1,J−1] ,X2,[J,n],F[1,2l−1] ,J

PF2l |X1,[1,J] ,X2,[J+1,n] ,F[1,2l−1] ,J
, (C.3)
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since F2l is a function of (Xn
2 , F[1,2l−1]). It is clear that the right hand side of (C.2) can

also be written as (C.3), proving (5.6).

Following the similar arguments used to show (C.1), we have for 1 ≤ i ≤ r − 1,

X2,[1,J−1] −◦−X1,[1,J−1], X2,[J,n], F[1,2i−1], J −◦−X1,J ,

which implies that

F2i −◦−X1,[1,J−1], X2,[J,n], F[1,2i−1], J −◦−X1,J.

Further, it is easily seen that

Ṽr −◦−X2,J , Ũ[1,r], Ṽ[1,r−1]−◦−X1,J.

Hence, (5.7) is proved.

C.2 Idea of the Achievability Proofs

Given a DMMS with two components corresponding to generic rvs X1, X2, and auxiliary

rvs U[1,r], V[1,r] satisfying (5.6) – (5.9), for every δ > 0 and 1 ≤ i ≤ r, set

N1,i = 2n[I(Ui∧X1|X2,U[1,i−1],V[1,i−1])+2δ],

N2,i = 2n[I(Vi∧X2|X1,U[1,i] ,V[1,i−1])+2δ],

M1,i = 2n[I(Ui∧X2|U[1,i−1],V[1,i−1])−δ],

M2,i = 2n[I(Vi∧X1|U[1,i],V[1,i−1])−δ].

In the ith round, 1 ≤ i ≤ r, sequences un
i ji,ki

, 1 ≤ ji ≤ N1,i, 1 ≤ ki ≤ M1,i, which are

jointly typical (cf. [11], [15]) with

(un
1 j1,k1

, · · · , un
i−1ji−1,ki−1

, vn
1 p1,q1

, · · · , vn
i−1pi−1,qi−1

)
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are selected at random. Then, with probability close to 1, there exists a un
i ji,ki

jointly

typical with

(xn
1 , un

1 j1,k1
, · · · , un

i−1ji−1,ki−1
, vn

1 p1,q1
, · · · , vn

i−1pi−1,qi−1
),

such that if terminal X1 transmits the index ji to terminal X2, the latter can reconstruct

ki by the joint typicality of un
i ji,ki

with

(xn
2 , un

1 j1,k1
, · · · , un

i−1ji−1,ki−1
, vn

1 p1,q1
, · · · , vn

i−1pi−1,qi−1
).

Next, sequences vn
i pi,qi

, 1 ≤ pi ≤ N2,i, 1 ≤ qi ≤M2,i, which are jointly typical with

(un
1 j1,k1

, · · · , un
i ji,ki

, vn
1 p1,q1

, · · · , vn
i−1pi−1,qi−1

)

are selected at random. Then, with probability close to 1, there exists a vn
i pi,qi

jointly

typical with

(xn
2 , un

1 j1,k1
, · · · , un

i ji,ki
, vn

1 p1,q1
, · · · , vn

i−1pi−1,qi−1
),

such that if terminal X2 transmits the index pi to terminal X1, the latter can reconstruct

qi by the joint typicality of vn
i pi,qi

with

(xn
1 , un

1 j1,k1
, · · · , un

i ji,ki
, vn

1 p1,q1
, · · · , vn

i−1pi−1,qi−1
).

It can be shown that the entropy of the set of random integers {(ji, ki, pi, qi), 1 ≤ i ≤ r}

is close to log(
∏r

i=1 N1,iN2,iM1,iM2,i). Hence, this set of random integers will represent

CR of rate close to 1
n log(

∏r
i=1 N1,iN2,iM1,iM2,i). The subset of the random integers,

{(ki, qi), 1 ≤ i ≤ r}, will represent the SK of rate close to 1
n log(

∏r
i=1 N2,iM2,i).
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