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Density-based modeling of visual features is very common in computer vision

research due to the uncertainty of observed data; so accurate and simple density

representation is essential to improve the quality of overall systems. Even though

various methods, either parametric or non-parametric, are proposed for density mod-

eling, there is a significant trade-off between flexibility and computational complex-

ity. Therefore, a new compact and flexible density representation is necessary, and

the dissertation provides a solution to alleviate the problems as follows.

First, we describe a compact and flexible representation of probability density

functions using a mixture of Gaussians which is called Kernel Density Approxima-

tion (KDA). In this framework, the number of Gaussians components as well as the

weight, mean, and covariance of each Gaussian component are determined auto-

matically by mean-shift mode-finding procedure and curvature fitting. An original

density function estimated by kernel density estimation is simplified into a compact

mixture of Gaussians by the proposed method; memory requirements are dramat-

ically reduced while incurring only a small amount of error. In order to adapt to



variations of visual features, sequential kernel density approximation is proposed in

which a sequential update of the density function is performed in linear time.

Second, kernel density approximation is incorporated into a Bayesian filtering

framework, and we design a Kernel-based Bayesian Filter (KBF). Particle filters

have inherent limitations such as degeneracy or loss of diversity which are mainly

caused by sampling from discrete proposal distribution. In kernel-based Bayesian

filtering, every relevant probability density function is continuous and the posterior

is simplified by kernel density approximation so as to propagate a compact form of

the density function from step to step. Since the proposal distribution is continuous

in this framework, the problems in conventional particle filters are alleviated.

The sequential kernel density approximation technique is naturally applied to

background modeling, and target appearance modeling for object tracking. Also,

the kernel-based Bayesian filtering framework is applied to object tracking, which

shows improved performance with a smaller number of samples. We demonstrate

the performance of kernel density approximation and its application through various

simulations and experiments with real videos.
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Chapter 1

Introduction

Recently, the development of computer hardwares and camera devices enable us to

acquire and collect a large volume of video data. A substantial amount of resources

such as CPU, memory and storage is generally required to handle such data, and

efficient algorithms to facilitate processing are crucial. Even though various tech-

niques have been developed and used in the wide range of computer vision problems,

many traditional techniques are designed for batch processing and controlled envi-

ronment. However, a variety of applications such as visual surveillance, driving

assistant systems, vision-based interfaces, virtual reality, and image-based diagnosis

require adaptive control to cope with unexpected variations and achieve real-time

capability. Therefore, adaptive real-time algorithms for video data are becoming

more important.

Typically, in a real-time environment, all the data are not available before the

processing; they are obtained in a sequential manner. Also, it is not usually practical

to store all previous data for later use. Instead, some kind of abstract methodology

is employed to represent the history of data. Therefore, a powerful representation

for data up to the current time step is required; it should be flexible enough to be

updated for new data.
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In the dissertation, we describe an on-line Kernel Density Approximation

(KDA) algorithm which provides a compact and flexible methodology to represent

and update a probability density function, and discuss a wide range of applications

within computer vision area. Object detection and tracking, background modeling

and subtraction, human motion analysis, and dynamic scene modeling are typi-

cal examples with real-time constraints, and we illustrate how our adaptive kernel

density approximation provides a good theoretical and practical model for those

applications.

1.1 Motivation

Visual features such as intensity, color, gradient, texture and motion are commonly

modeled using probability density functions. Moreover, a number of real-time tasks

such as background subtraction and modeling the appearance of a moving target re-

quire sequential density estimation, where new data is incorporated in the model as

it becomes available. Nevertheless, current methods either lack flexibility by fixing

the number of Gaussians in the mixture, or require large memory amounts by main-

taining a non-parametric representation of the density. The underlying probability

density of the feature may be described using a parametric (e.g., one Gaussian),

semi-parametric (mixture of Gaussians) or non-parametric (e.g., histogram or ker-

nel density-based) representation. These representations create a trade-off between

the flexibility of the model and its data summarization property. For example,

parametric and semi-parametric model are simple and easy to handle, but are un-

able or have difficulty to represent multi-modal density effectively. On the other

2



hand, non-parametric models are very flexible and can accommodate arbitrarily

complex densities, but require a large amount of memory and huge computational

cost for their implementation, especially for high-dimensional problems. Therefore,

we need a new strategy to overcome the limitation of conventional parametric and

non-parametric techniques. The following properties are required for a “good” rep-

resentation.

• Accuracy: The density function should be constructed so that it simulates

the true density function with incurring minimal error.

• Flexibility: An arbitrary density function should be representable without

strong assumptions about the true density.

• Compactness: A simple density representation method is preferred to save

memory space and computation time.

• Adaptiveness: For the sequential update of density function, the represen-

tation should provide a methodology to efficiently update the density function

in an on-line manner given new data.

Kernel density approximation is the new technique we develop to approximate the

density function constructed by kernel density estimation with a mixture of Gaus-

sians. In this method, a single Gaussian kernel is assigned to each mode location

automatically detected by mean-shift, and the covariance matrix of each Gaussian

is estimated by curvature fitting around the mode. The accuracy of this technique

3



is comparable to kernel density estimation1, and the density representation is very

compact since it uses a small number of Gaussian components. Also, it provides a

nice framework for sequential density estimation, so is suitable to be applied to real-

time applications. The proposed density representation is memory efficient which is

typical for mixture densities, and it inherits the flexibility of non-parametric meth-

ods by allowing the number of modes to be adaptive.

In this dissertation, we show how kernel density approximation can be applied

effectively and efficiently to various real-time computer vision tasks such as back-

ground modeling and subtraction, target appearance modeling, and object tracking.

The following sections discuss how density functions can be used in computer vi-

sion research and how current techniques can be improved by incorporating kernel

density approximation.

1.1.1 Modeling of Visual Features

A Gaussian distribution has been widely used in computer vision applications, but

it cannot model multi-modal distributions which are frequently observed in data

for visual features. A mixture of Gaussians is a well known approach to describe a

multi-modal density function, but it needs a pre-defined number of components as

a parameter, which is very difficult to determine before observation. An alternative

model, kernel density estimation, has the flexibility to describe the density function

1Since kernel density approximation estimates the covariance matrix using the curvature of

mode location, the accuracy at the point far from every mode is relatively worse. Also, the

approximation error increases when the underlying density function is not based on a Gaussian

mixture.
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with an arbitrary number of modes, but it suffers from huge memory requirements,

especially for high dimensional data.

On the other hand, kernel density approximation is able to preserve all modes

found in kernel density estimate, and has a significant advantage in the memory

requirement since only a single Gaussian is assigned to each mode. Figure 1.1 illus-

trates the comparison of densities constructed by kernel density estimation, kernel

density approximation, and an EM algorithm. The original density function is

created as a mixture of Gaussians, and 200 samples are drawn from it. We re-

constructed density functions using those three methods; three different parameters

for the number of components are also tested for the EM algorithm. As seen in

Figure 1.1, the density constructed by kernel density approximation is very close

to the kernel density estimate as well as the original density. Even though the EM

algorithm [16] is widely used for the implementation of a Gaussian mixture, this

result shows that its performance is sensitive to number of components as well as

the initial location of each component.

1.1.2 Modeling in State Space

Bayesian filtering [35, 36, 46] is a very popular framework for the state estimation

in dynamic systems. Among many variations of Bayesian filtering methods, the

particle filter [19, 31] is widely used in computer vision due to its robustness and

simplicity. In the particle filter framework, the density function is represented with

a set of samples and their weights, but it is difficult to describe the underlying

density function precisely with only a limited number of samples. Moreover, it

5
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Figure 1.1: Comparison between kernel density approximation and other methods.

(a) original density function (top) kernel density estimation (middle) kernel density

approximation (bottom) (b) EM algorithm with 3, 6, and 9 components

often experiences sample depletion caused by the concentration of highly weighted

samples in small areas, which is called the degeneracy problem [2, 18]. Because

of this problem, particle filters generally need many samples or require occasional

resampling steps. However, resampling frequently suffers from the loss of diversity

problem, which also causes the waste of particles.

To overcome this problem, we employ a Gaussian mixture for every relevant

density function in a Bayesian filtering. There have been several attempts to im-

plement a Bayesian filtering for non-linear and non-Gaussian systems based on con-

tinuous density functions — usually Gaussian mixtures, but they could not provide

any principled methodology to avoid the exponential increase of components in the

mixture. In our method, kernel density approximation plays an important role to

propagate the compact posterior density function to the next time step. A Bayesian
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filter based on continuous density functions, which is referred to as a kernel-based

Bayesian filter, has the following advantages.

• In a high dimensional state space, kernel density approximation is more effi-

cient and effective in its ability to simulate true density.

• The number of particles for robust performance is reduced by employing

kernel-based particles and continuous measurement function.

One-step kernel-based Bayesian filtering is illustrated in Figure 1.2 which shows the

density modeling in the state space and its propagation to the next time step.

1.1.3 Sequential Model Update

A special class of learning techniques are needed for real-time processing tasks, where

the data is included in the model as it becomes available in a recursive fashion.

The updating strategy should accommodate gradual variations, while maintaining a

memory efficient representation of the model. For these scenarios, batch processing

is not a solution due to the induced processing delay and large amounts of data

that need to be stored. Typical examples for this case are target model update for

object tracking and adaptive background modeling. As illustrated in Figure 1.3, the

initially constructed model for object tracking can quickly become invalid, because of

the arbitrary transformation of object or changes of the environment. Therefore, for

accurate and reliable modeling, sequential density update is a reasonable solution.

For this purpose, a Gaussian mixture model [34, 73] can be employed, but still has

the flexibility problem especially in real-time applications. The sequential version of
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Figure 1.2: Density functions in one-step of kernel-based Bayesian filter

kernel density estimation, which we call sequential kernel density estimation later,

can be utilized, but the addition of new kernels in the current density function is

not feasible due to the large memory requirement and tremendous processing time.

These problems are alleviated by integrating a sliding window method [23], but it

is not satisfactory solution and only has limited ability for maintaining an accurate

modeling over time. On the other hand, kernel density approximation provides a

convenient methodology to propagate the density over time, and we describe the

use of this technique for sequential model update problems.
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(a) Pose and lighting changes (frame 1 and 200)

(b) Severe scale changes (frame 1 and 400)

Figure 1.3: The requirement of adaptive modeling for object tracking.

1.2 Related Work

The simplest density-based modeling methods – a single Gaussian distribution – is

incorporated for background subtraction and object tracking [83] and the Gaussian

is updated sequentially [25, 52]. However, this method cannot handle multi-modal

density functions effectively so the accuracy of modeling is severely damaged in real

examples.

Mixture models with a fixed number of components have been utilized in

various applications as follows. In [45], the target appearance model based on color

is constructed by a mixture of Gaussians which is replaced in each frame. The same

9



density representation is employed for optical flow estimation by Jepson and Black

[33]. Stauffer and Grimson [74] proposed a recursive update of Gaussian mixture

model for background modeling, A more elaborate target model is described in

[34], where a 3-component mixture for the stable process, the outlier data, and the

wandering term is designed to capture rapid temporal variations in the model. This

appearance model is adapted over time by an on-line EM algorithm.

The EM algorithm [16, 62] is the main statistical tool for learning density

models from incomplete data. Although variants of incremental EM have been

employed in practice to deal with real-time adaptation constraints, only recently

have they received formal justification and many issues are still open [50]. Most of

all, it is generally difficult to add or remove components in the EM framework in a

principled way [61]. Therefore, most real-time applications rely on models with a

fixed number of mixtures or apply ad-hoc strategies to adapt the number of mixtures

in time.

However, all the methods presented above require knowledge of the number

of components, which is generally unknown. Especially, it is not appropriate to

estimate density with a fixed number of components if there are a large number

of modes in the underlying probability density function or the number of modes

changes frequently.

On the other hand, Cham and Rehg [5] introduce a piecewise Gaussian rep-

resentation to specify the modes of the density characterizing a tracker state. The

density at a certain location is determined by the Gaussian component providing

the largest contribution at the location. This idea is applied to multiple hypothesis

10



tracking in a high dimensional space body tracker within the particle filter frame-

work, but the sampling and the posterior computation are not straightforward and

provide only a crude approximation to the density.

Kernel density estimation [22] is one of the most popular non-parametric tech-

niques to model the density for various applications, because it is very flexible to

represent multi-modal densities. But, its very high memory requirements and com-

putational complexity inhibit the use of this method in real-time applications, even

though there have been several attempts to improve the computational cost [21, 84].

1.3 Contribution Overview

1.3.1 Density Approximation

In contrast to previous approaches, this dissertation introduces a density approx-

imation algorithm that is an alternative to kernel density estimation, but compu-

tationally as simple as parametric methods. We first detect local maxima (modes)

based on variable-bandwidth mean-shift [12, 14]. The modes of a density function

represent regions with higher local probability; hence, their preservation is impor-

tant to maintain a low density approximation error. In the proposed algorithm,

the density is represented with a weighted sum of Gaussians where each mode is

represented with a single Gaussian. The number of Gaussians and the parameters

for each Gaussian – weight, and mean – are automatically determined by mode

finding procedure. Also, the covariance of each Gaussian is derived from curvature

fitting using the Hessian matrix computed at the mode location. By this mode-

based representation, the memory requirements are low, similar to all methods that
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use mixture densities, but it is possible to add and delete Gaussian components in

a principled way.

While the initial density approximation is performed based on a batch mode

finding algorithm, where all the data should be processed at a time, we also describe

a more efficient method – an incremental density approximation method. In addi-

tion, sequential kernel density approximation is proposed for on-line learning that

relies on the modeling and propagation of density modes.

Density approximation and mode propagation are tested for the task of back-

ground modeling and subtraction, target appearance modeling, and object tracking.

1.3.2 Background Modeling and Subtraction

Background modeling and subtraction is one of the most critical steps for high-level

vision applications. Most algorithms are based on pixel-wise density modeling even

if there are some other approaches using codebook [38], eigenbackground [55, 77],

subspace method [49], and global probability density function [71].

In order to model the variations caused by illumination changes, shadows and

dynamic background (wave, rain, tree etc), density-based modeling methods are

proposed varying from using a single Gaussian [30, 83], Gaussian mixture [73], to

kernel density estimation [23, 48]. The pattern of visual features presented at each

pixel is quite different, so the assignment of the same number of Gaussian compo-

nents for each pixel either wastes memory resource or fails in modeling complicated

backgrounds effectively. Since our kernel density approximation technique provides

a methodology to determine the proper number of modes by mean-shift mode find-
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ing procedure, the minimal number of Gaussian component is used for modeling a

background by assigning a single Gaussian to each mode location. The estimated

density function by the proposed method is very close to the kernel density estimate.

This strategy is utilized in a background modeling algorithm, and we show

that the performance of our background subtraction is comparable to the results

obtained by kernel density estimation, but using significantly less memory space.

1.3.3 Target Appearance Modeling for Object Tracking

Intensive research has been performed for the object tracking problem, but adap-

tive target appearance modeling is still a difficult problem. Most trackers employ

a fixed appearance model [3, 6, 15, 21, 29, 54, 58], but this strategy is not appro-

priate for tracking objects over a long term or in conditions when the appearance

of the target changes. Several methods to update the target appearance model are

proposed: template update [44], histogram update [53], Bayesian filtering [37, 52],

on-line EM algorithm [34, 86], incremental subspace update [43], and the adaptation

by background/foreground statistics [10, 51]. However, these methods are heuristic,

or assume uni-modal or multi-modal appearances with fixed number of components,

so they have critical limitations to represent variable multi-modal data. We adopt a

pixel-wise density-based modeling in which a variable number of Gaussian compo-

nents is assigned to each pixel; sequential kernel density approximation is employed

to implement this. Originally, sequential kernel density approximation is a quadratic

algorithm, but it is improved to a linear-time algorithm which is proved by amor-

tized analysis. Also, Haar-like rectangular feature as well as RGB color (or intensity)
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are integrated together for target modeling, and some spatial information around

each pixel is encoded. Our target appearance modeling by sequential kernel density

approximation for color and rectangular feature improves the overall performance

of general trackers, and it is illustrated with various examples.

1.3.4 Bayesian Filtering and Object Tracking

There are two different classes of tracking algorithm; one is deterministic and the

other is probabilistic. Deterministic trackers are generally fast but the tracked object

may be lost once tracking fails temporarily. On the other hand, probabilistic track-

ers consumes more system resources, but tracking can be recovered from the failure

by multiple hypotheses. Markov Chain Monte Carlo (MCMC) [18] is a method to

propagate probability density function to the next step which is usually represented

by samples and their weights in the state space. Many variations have been intro-

duced for many practical applications; the CONDENSATION algorithm [31] is the

most popular in computer vision.

The MCMC method provides a good solution for non-Gaussian/non-linear

model, but it has the following disadvantages. First of all, it suffers from degen-

eracy problem or loss of diversity in particle locations. This fact causes the waste

of particles and requires a large number of samples to obtain reliable performance.

Second, even without the degeneracy and lost of diversity problem, a huge num-

ber of samples is required in high dimensional problems. In order to address these

problems, several methods have been suggested including the improvement of sam-

pling quality [17, 59, 76] or the implementation of the variation of particle filter
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[18, 46, 66]. We propose a more fundamental methodology as a solution, which is

called Kernel-based Bayesian Filtering (KBF). In kernel-based Bayesian filtering,

all the relevant probability density functions are continuous Gaussian mixtures, and

particles are based on Gaussian kernels. By this strategy, we reduce the number

of samples for the same quality of performance as conventional particle filters since

each kernel-based particle has a large coverage in the state space and degeneracy

(or loss of diversity) problems can be alleviated by adopting continuous proposal

distributions.

We demonstrate the performance of our kernel-based Bayesian filtering by

various simulations and object tracking in real videos.

1.4 Organization of Dissertation

The dissertation is organized as follows. In Chapter 2, the formal definition and

properties of kernel density estimation are described and the method to approximate

the density function constructed by kernel density estimation is discussed. Also, the

incremental kernel density approximation method is presented. Chapter 3 and 4

describe background modeling and subtraction, and target appearance modeling for

object tracking by sequential kernel density estimation. The kernel-based Bayesian

filtering framework is described in Chapter 5, and we present how this framework

is applied to visual tracking problems.
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Chapter 2

Density Approximation

2.1 Kernel Density Estimation

2.1.1 Introduction

Density estimation is a fundamental concept in statistics and broadly used in com-

puter vision research. By definition, density estimation is the construction of an

estimate of an unknown density function from observed data, in other words, sam-

ples. One approach to density estimation uses parametric methods, whose objective

is to fit a known probability density model to the data. Since parametric density es-

timation relies on model specification, it requires prior knowledge of the underlying

density function, which is often unknown. Another problem is the flexibility and

accuracy of parametrically estimated density functions. On the other hand, non-

parametric methods, such as kernel density estimation, can represent any arbitrary

density function since the estimated density is mainly dependent on the structure of

data. However, techniques to mitigate the complexity of kernel density estimation

are necessary for real-time processing. In this chapter, we first describe the most

general non-parametric method, kernel density estimation, and then our proposed

method to simulate a density function given by kernel density estimation, kernel

density approximation, is discussed.

16



2.1.2 Kernel Estimator

One of the most general non-parametric density estimation method is kernel density

estimation [72]. For a 1-dimensional random variable x, a kernel function K which

satisfies the condition
∫ ∞

−∞
K(x)dx = 1 (2.1)

is employed for each sample, and the kernel density estimation with kernel K is

defined by

f(x) =
1

nh

n
∑

i=1

K(
x − xi

h
) (2.2)

where h is the window width, also called the smoothing parameter or bandwidth.

Since kernel density estimator asymptotically converges to any density function

[20, 68], this technique is applicable to many problems where the underlying density

function is not known. A variety of kernel functions with different properties have

been used in the literature. Typically kernel functions are symmetric and unimodal

functions that fall off to zero rapidly away from the center. The size of this window

depends on the bandwidth. Table 2.1 shows some of the commonly used kernel

functions for univariate data.

2.1.3 Bandwidth Selection

One of the main issues in using kernel density estimation is the choice of the proper

bandwidth. Small kernel bandwidth results in a ragged density, while wide band-

width yields a smoother density function as shown in Figure 2.1.

While, using a fixed bandwidth for all samples reduce the complexity of the
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Table 2.1: Some examples of kernel functions

Kernel function Equation

Uniform U(−1, 1)

Triangle 1 − |x|
Epanechinikov 3

4
(1 − x2)

Quadratic 15
16

(1 − x2)

Gaussian 1
2π

exp (−1
2
x2)

Cosinus π
4

cos (π
2
x)

problem, this strategy causes spurious noise to appear in the tails of the estimates

and degrades overall performance.

Obviously, the best choice of kernel bandwidth should depend on the number

of samples, and it is reasonable that the bandwidth is inversely proportional to

sample size. As the number of samples approaches infinity, the kernel should be as

delta function and the bandwidth should approach zero.

For pointwise estimation, the classical measure of the similarity between the

estimated density f̂ and true density f is the Mean Squared Error (MSE), equal to

the sum of the variance and squared bias

MSE = E[f̂(x) − f(x)]2

= Var(f̂(x)) + Bias(f̂(x))2 (2.3)

Using the Taylor theorem, the bias and the variance can be approximated [81], and

the trade-off of bias versus variance is observed. The bias is proportional to h2,

which means that smaller bandwidth give a less biased estimator. On the other
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Figure 2.1: Bandwidth selection and density estimates

hand, smaller h implies an increase in the variance which is proportional to n−1h−1.

Thus, for a fixed bandwidth estimator, we should choose h that achieves an optimal

compromise between the bias and variance over all x. Ideally, the optimal choice

of kernel bandwidth can be achieved by minimizing the Mean Integrated Squared

Error (MISE)

MISE = E
(∫

[f̂(x) − f(x)]2dx
)

=
∫

E[f̂(x) − f(x)]2dx (2.4)

where f̂(x) and f(x) are estimated density and true density, respectively. However,
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the resulting bandwidth [72, 81] is of little practical use, since it depends on knowl-

edge of the unknown true density function being estimated. Therefore, several data

driven methods for bandwidth selection have been proposed, such as plug-in rule,

least squares cross validation, and biased cross validation, but there is no generally

good method to choose the optimal bandwidth.

2.2 Kernel Density Approximation

2.2.1 Mean-Shift Mode Finding

Suppose that we are given a density function by kernel density estimation based on

Gaussian kernel. Denote by xi, i = 1 . . . n a set of points in Rd and assume that

a symmetric positive definite d × d bandwidth matrix Pi is associated with each

data point xi. The sample point density estimator with a d-variate normal kernel,

computed at the point x is given by

f̂(x) =
1

n(2π)d/2

n
∑

i=1

1

| Pi |1/2
exp

(

−1

2
D2 (x,xi,Pi)

)

(2.5)

where

D2 (x,xi,Pi) ≡ (x − xi)
>P−1

i (x − xi) (2.6)

is the Mahalanobis distance from x to xi. As one can see, the density at x is obtained

as the average of Gaussian densities centered at each data point xi and having the

covariance Pi.

In this section, we discuss an iterative procedure for mode detection based on

the variable-bandwidth mean shift. Recall the density function f̂(x) made by kernel
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density estimation where i-th kernel has the weight κi.

f̂(x) =
1

n(2π)d/2

n
∑

i=1

κi

| Pi |1/2
exp

(

−1

2
D2 (x,xi,Pi)

)

(2.7)

By taking the estimate of the density gradient as the gradient of the density

estimate, the variable-bandwidth mean shift vector is defined by

m(x) ≡ Ph(x)
n
∑

i=1

ωi(x)P−1
i xi − x

=

(

n
∑

i=1

ωi(x)P−1
i

)−1 ( n
∑

i=1

ωi(x)P−1
i xi

)

− x (2.8)

where

P−1
h (x) =

n
∑

i=1

ωi(x)P−1
i (2.9)

and the weights

ωi(x) =
κi | Pi |−1/2 exp

(

−1
2
D2 (x,xi,Pi)

)

∑n
i=1 κi | Pi |−1/2 exp

(

−1
2
D2 (x,xi,Pi)

) (2.10)

satisfy
∑n

i=1 ωi(x) = 1.

It can be shown that by iteratively computing the mean shift (2.8) and trans-

lating the location x by m(x), a mode seeking algorithm is obtained, which converges

to a stationary point of the density (2.5). There are three kinds of stationary points

in the density function: local maxima, local minima and saddle points. We are

interested in finding mode locations (local maxima) to simplify the original density

function, and a formal check for the maxima involves the computation of the Hessian

matrix

Ĥ(x) ≡ (∇∇
>)f̂(x)

=
1

n(2π)d/2

n
∑

i=1

κi

| Pi |1/2
exp

(

−1

2
D2 (x,xi,Pi)

)

P−1
i

(

(xi − x)(xi − x)> −Pi

)

P−1
i

(2.11)
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which should be negative definite (having all eigenvalues negative) at the mode lo-

cation. If this condition is satisfied, all the sample points converged to a location

should be merged with a single Gaussian centered at the convergence location. Oth-

erwise, they should be left unchanged since density approximation creates too high

error around the location.

Figure 2.2 shows the convergence to the local maximum of each sample by

mode-finding algorithm. In each figure, the contour of a 2D density function con-

structed by KDE with 100 Gaussian kernels – all the weights are equal in this

example – is presented, and white circles in Figure 2.2(a) means the initial location

of each sample. As illustrated in the following figures, each sample is iteratively con-

verged to a associated mode and four modes are finally detected at the 14th time

step. The mean-shift procedure is terminated when the size of mean-shift vector is

less than ε (negligibly small number).

2.2.2 Covariance Estimation

Suppose that the approximate density has m unique modes x̃j (j = 1, . . . , m) with

associated weights κ̃j after mode finding procedure; the weight of each mode κ̃j

is equal to the sum of kernel weights converged to the mode. Then, the covari-

ance matrix associated with each mode P̃j is computed by curvature fitting in the

neighborhood of the mode location.

The Hessian matrix Ĥ(xj) at a mode x̃j of the original density function in

equation (2.7) is computed as in equation (2.11). Also, the Hessian matrix at the

mean of a Gaussian distribution centered at x̃j with weight κ̃j and covariance P̃j is
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Figure 2.2: Convergence by mode-finding algorithm

given by

Hj(xj) = − κ̃j

(2π)d/2 | P̃j |1/2
P̃−1

j . (2.12)

Equalizing Hessian matrices in the original density and in the single Gaussian distri-

bution, we solve for the estimated covariance matrix P̃j. Specifically, suppose that

P̃j is decomposed by Singular Value Decomposition (SVD) as P̃j = UΛU
>

and

that the Hessian matrix at x̃j in equation (2.11) is represented with a similar form,

Ĥ(xj) = VΓV
>

. Then, the following equation is obtained by the equalization of
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two Hessian matrices.

VΓV
>

= − κ̃j

(2π)d/2 | Λ |1/2
U

>

Λ−1U (2.13)

By assuming U = V
>

and from equation (2.13), we can compute | −Γ | which is

given by

| −Γ |= −
κ̃d

j

(2π)d2/2
| Λ |− d+2

2 , (2.14)

and Λ is derived from equation (2.13) and (2.14) as follows.

Λ =
κ̃

2

d+2

j

| 2π(−Γ−1) | 1

d+2

(−Γ−1) (2.15)

Therefore, the estimated covariance matrix is given by

P̃j =
κ̃

2

d+2

j

| 2π(−Ĥ−1
j ) | 1

d+2

(−Ĥ−1
j ), (2.16)

and the approximated density is

f̃(x) =
1

(2π)d/2

m
∑

i=1

κ̃i

| P̃i |1/2
exp

(

−1

2
D2

(

x, x̃i
t+1, P̃

i
t+1

)

)

. (2.17)

where m(� n) is the number of detected modes. The approximation error ||f̂(x)−

f̃(x)|| can be evaluated straightforwardly.

2.3 Incremental Kernel Density Approximation

The density approximation technique described in Section 2.2 is accurate and mem-

ory efficient, but computationally expensive because the mode detection procedure

for n components requires O(n2) time. Moreover, for each sample point, a large

number of mean-shift iterations might be required to converge. To overcome this
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computational costs, we suggest an alternative method, an incremental density ap-

proximation, described below.

Usually, a large number of samples are required to estimate the density cor-

rectly, but there are only several modes in the underlying density function. The

incremental approximation algorithm is an empirical solution exploiting this fact.

Suppose n samples are to be used for the density approximation. We will process

samples, “one at a time.” If a kernel associated with each sample can be merged in-

crementally with others in the same mode, then the time to compute the mean-shift

vector will be decreased dramatically.

The algorithm proceeds as follows. When the Gaussian kernel for the next

sample is added to the current density function, the density will be updated by the

variable-bandwidth mean-shift. For example, if the component for the k-th sample

is added to the current density function f̂(k−1), the density after the insertion is

given by

f̂k(x) =
κk

Kk

1

(2π)d/2 | Pk |1/2
exp

(

−1

2
D2 (x,xk,Pk)

)

+

(1 − κk

Kk
)

nk−1
∑

i=1

κ̂i

(2π)d/2 | P̂i |1/2
exp

(

−1

2
D2

(

x, x̂i, P̂i

)

)

(2.18)

where Kk =
∑k

i=1 κi, κ̂i and P̂i are the weight and the covariance associated with x̂i

in the current density respectively, and nk−1 is the number of modes after the (k−1)-

th component insertion. In each step, the mode detection procedure and covariance

estimation need to be applied, and the new density function f̂k(x) is estimated.

After n steps, the weight of each sample is adjusted to its original weight, and the
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incremental density approximation can be obtained.

During the incremental procedure, two or more modes which are close to each

other in the underlying density may be merged, and some of them may be lost by the

final iteration. This situation should be avoided since it increases the approximation

error. We avoid this problem by using a 2-stage algorithm. In the first stage,

the incremental density approximation technique is used with a small bandwidth.

This may result in several spurious modes which do not exist in the underlying

density. After the final step, let each component in the approximate density be

N(κ̂i, x̂i, P̂i) (i = 1 . . . nn) where N(·) is a Gaussian distribution having a (weight,

mean, covariance) triple. In the second stage, the batch density approximation

algorithm described in 2.2 is performed with the x̂i’s as starting points. The correct

mode locations and their covariance matrices can be computed accurately in the

second stage.

The 2-stage incremental algorithm is very efficient since the intermediate and

the final density function in the first stage have a small number of modes (nk � n)

in most cases.

2.4 Performance of Approximation

The accuracy of these approximations is demonstrated in Figure 2.3. From a one-

dimensional distribution composed of five weighted Gaussians, 200 samples are

drawn. Figure 2.3(a) shows the result of kernel density estimation. For the ap-

proximation, 200 samples are drawn from the original distribution – N(0.2, 10, 2),

N(0.35, 17, 4), N(0.15, 27, 8), N(0.2, 50, 16), and N(0.1, 71, 32). The results of batch
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approximation with variable-bandwidth mean-shift are presented in Figure 2.3(b).

The incremental approximation is presented in Figure 2.3(c) and the number of

modes in each incremental step is shown in Figure 2.3(d).
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Figure 2.3: Comparisons between the kernel density estimation and its approxima-

tions (1D). (a) kernel density estimation (b) batch approximation (c) incremental

approximation (d) number of modes in each incremental step

Table 2.2 compares accuracy and speed of the approximations. Three differ-

ent cases are tested 20 times each, and Mean Integrated Squared Error (MISE)

and execution time speedups are calculated. Denote by Ekde the error between the
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Table 2.2: Performance comparison between batch and incremental approximation

MISE (×10−5) speedup

case Ekde Ebat Einc (batch/incremental)

1 5.0772 1.4512 3.1007 8.3502

2 2.2909 0.5323 1.2463 7.0119

3 1.0138 0.6900 1.7869 6.2597

• case 1: N(0.2, 10, 2), N(0.35, 17, 4), N(0.15, 27, 8), N(0.2, 50, 16),

N(0.1, 71, 32)

• case 2: N(0.15, 12, 5), N(0.1, 50, 4), N(0.35, 70, 8), N(0.25, 90, 16),

N(0.15, 119, 32)

• case 3: N(0.15, 25, 10), N(0.1, 37, 8), N(0.15, 65, 16), N(0.25, 77, 9),

N(0.15, 91, 30), N(0.2, 154, 15)

kernel density estimation and the original distribution, and by Ebat (Einc) the error

between the batch (incremental) approximation and the kernel density estimation.

Both density approximations produce small errors comparable to kernel density es-

timation, and the incremental approximation is much faster with errors comparable

to the batch approximation.

Figure 2.4 shows that both approximation methods are accurate enough to

replace kernel density estimation in the multi-dimensional case. In 2D, the incre-

mental approximation also has comparable accuracy to the batch approximation,

but it is practically much faster (about 11 times) than the batch approximation

when 400 samples are drawn.
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Figure 2.4: Comparison between the kernel density estimation and its approxi-

mations (2D). (a) kernel density estimation (b) batch approximation (MISE =

1.4889 × 10−8) (c) incremental approximation (MISE = 1.2337 × 10−8) (d) num-

ber of modes in each incremental step
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Chapter 3

Background Modeling by Sequential Density

Approximation

Automatic detection of objects is critical for security systems and video surveillance

applications, since subsequent processing such as tracking, recognition, and high-

level estimation techniques depends on the initial detection. In many vision based

systems, such detection is carried out by background subtraction methods. These

methods build a background model from the scene taken by stationary cameras, and

detect the variation of the scene to find foreground regions.

A variety of methods have been proposed, but most of them employ density-

based approaches in which visual features in a pixel or block are modeled by a certain

density function. The performance of algorithms highly depends on the accuracy and

flexibility of the density functions. Also, the management of the density functions

is important to adapt to temporal changes of the background.

In this chapter, we show new kernel density approximation technique can be

used to update the density function in a sequential manner to model the background

adaptively. The proposed method is as flexible as kernel density estimation, and as

compact as parametric methods, i.e. mixture of Gaussians. Background in each pixel

is modeled by proposed method, and the performance of our background subtraction
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is demonstrated.

3.1 Introduction

Stationary cameras are typically used to monitor activities in visual surveillance

systems, and background subtraction is the process to detect moving objects by

comparing each new frame with the constructed background model.

Background subtraction is the first stage for many high level applications, and

it plays a very important roll for the further processing such as object tracking and

event recognition.

Pixel-wise density-based modeling is very common for background subtrac-

tion vision, either by using non-parametric techniques or through representing the

underlying density function as a weighted sum of Gaussians. Like a number of

real-time tasks in computer vision area, background modeling requires sequential

density estimation, where new data is incorporated in the model as it becomes

available. Nevertheless, current methods for updating the density function either

lack flexibility, by fixing the number of Gaussians in the mixture, or require large

memory amounts, by maintaining a non-parametric representation of the density.

This chapter presents an efficient method for recursive density approximation that

relies on the propagation of the density modes. At each time step, the modes of the

density are re-estimated and a Gaussian component is assigned to each mode. The

covariance of each component is derived from the Hessian matrix estimated at the

mode location. To detect the modes we employ the variable-bandwidth mean shift.

While the proposed density representation is memory efficient (which is typical for
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mixture densities), it inherits the flexibility of non-parametric methods, by allowing

the number of modes to adapt in time. We show that the same mode propagation

principle applies for subspaces derived from eigen analysis. Extensive experimental

background modeling results demonstrate the performance of the method.

The chapter is organized as follows. In Section 3.2, various background model-

ing and subtraction methods are reviewed. Section 3.3 introduces the employed den-

sity representation and discusses mode detection using the variable-bandwidth mean

shift. Sequential density approximation using mode propagation is introduced and

tested in Section 3.4. Section 3.5 presents mode propagation in subspaces derived

from eigen analysis. Background modeling experiments are given in Section 3.6.

3.2 Related Work

In most of background subtraction algorithms, pixel-wise modeling of visual features

is most popular. Intensity or color are the most commonly used feature in back-

ground modeling, and a Gaussian distribution is the simplest density model. Wren

et al. [83] models the color of each pixel using a single Gaussian, and Kalman up-

date is attempted to adapt the variation of background [39, 63]. Also, more robust

detection algorithm is proposed in [30].

The challenges of background modeling are often found in outdoor scenes due

to illumination change and dynamic background. Due to variations, background

modeling using a single component is not enough for the accurate estimation, the

learning by multiple components is required. A mixture of Gaussians is proposed

to model intensity or color distribution using a fixed number of components in
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[26, 74]. The adaptation of the Gaussian mixture is achieved by incremental version

of EM algorithm. The EM algorithm [16, 62] is the main statistical tool for learning

the mixture model. Although variants of incremental EM have been employed in

practice to deal with real-time adaptation constraints, it is generally difficult to add

or remove components in the EM framework in a principled way [61]. Therefore,

most real-time applications rely on models with a fixed number of mixtures or apply

ad-hoc strategies to adapt the number of mixtures in time. Therefore, this technique

may not be flexible enough to model complex background.

Non-parametric method is initially proposed by Elgammal [22] for more gen-

eral background modeling, and arbitrary background distribution is simulated by

kernel density estimation. Non-stationary background is directly addressed in kernel

density estimation framework [48, 60]. Optical flow is modeled by kernel density

estimation with color information in [48], and several pixel-wise models based on

intensities and spatio-temporal derivatives are proposed in [60].

Another approach to model pixel-wise variations is to represent these varia-

tions as discrete states corresponding to modes of the environment. Hidden Markov

Model (HMM) is used for this purpose in [64, 75]. In [75], the topology of the

HMM representing global image intensity is learned while learning the background.

Three state HMM is used to model the intensity of a pixel for traffic monitoring

system in which each state corresponds to the background, shadow and foreground,

respectively [64].

Also, there are several approaches to employ spatial coherency of given frame

for background subtraction. A three-component system – pixel, region and frame

33



level – for background modeling is proposed in [78], and region and edge information

is jointly integrated in [32]. On the other hand, several principal components ob-

tained by eigenanalysis are used to model background in [55, 77]. Recently, on-line

auto-regressive model to capture and predict the behavior of dynamic scenes are

proposed in [49, 85].

3.3 Kernel Density Estimation and Mode Detection

In this section, we review kernel density estimation with adaptive bandwidth and

an iterative procedure for mode detection based on the variable-bandwidth mean

shift.

Denote by xi, i = 1 . . . n a set of points in Rd and assume that a symmetric

positive definite d × d bandwidth matrix Pi is associated with each data point xi.

The sample point density estimator with a d-variate normal kernel, computed at

the point x is given by

f̂(x) =
1

n(2π)d/2

n
∑

i=1

1

| Pi |1/2
exp

(

−1

2
D2 (x,xi,Pi)

)

(3.1)

where

D2 (x,xi,Pi) ≡ (x − xi)
>P−1

i (x − xi) (3.2)

is the Mahalanobis distance from x to xi. As one can see, the density at x is obtained

as the average of Gaussian densities centered at each data point xi and having the

covariance Pi.

The mean-shift is a gradient ascent method to find a local maximum from a
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given starting point. The variable-bandwidth mean-shift vector is defined by

m(x) ≡ Ph(x)
n
∑

i=1

ωi(x)P−1
i xi − x

=

(

n
∑

i=1

ωi(x)P−1
i

)−1 ( n
∑

i=1

ωi(x)P−1
i xi

)

− x (3.3)

where

P−1
h (x) =

n
∑

i=1

wi(x)P−1
i (3.4)

and the weights

ωi(x) =
| Pi |−1/2 exp

(

−1
2
D2 (x,xi,Pi)

)

∑n
i=1 | Pi |−1/2 exp

(

−1
2
D2 (x,xi,Pi)

) (3.5)

satisfy
∑n

i=1 ωi(x) = 1.

Mode seeking algorithm is obtained by iteratively translating the current loca-

tion x by mean-shift vector m(x), and each sample point converges to a stationary

point of the density (3.1). Since the maxima of the density are the only stable points

of the iterative procedure, most of the time the convergence occurs at a mode of the

underlying density. A formal check for the maximum involves the computation of

the Hessian matrix

Ĥ(x) ≡ (∇∇
>)f̂(x)

=
1

n(2π)d/2

n
∑

i=1

1

|Pi|1/2
exp

(

−1

2
D2 (x,xi,Pi)

)

×

P−1
i

(

(xi − x)(xi − x)> −Pi

)

P−1
i (3.6)

which should be negative definite (having all eigenvalues negative) at the mode

location.
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Let each Gaussian receive a weight κi, with
∑n

i=1 κi = 1. The density (3.1)

becomes

f̂(x) =
1

(2π)d/2

n
∑

i=1

κi

| Pi |1/2
exp

(

−1

2
D2 (x,xi,Pi)

)

(3.7)

which represents a mixture of Gaussian components. All the equations from above

remain the same except those defining the weights ωi

ωi(x) =
κi | Pi |−1/2 exp

(

−1
2
D2 (x,xi,Pi)

)

∑n
i=1 κi | Pi |−1/2 exp

(

−1
2
D2 (x,xi,Pi)

) (3.8)

where
∑n

i=1 ωi(x) = 1.

Suppose that the approximate density has m unique modes x̃j (j = 1, . . . , m)

with associated weights κ̃j after mode finding procedure; the weight of each mode

κ̃j is equal to the sum of kernel weights converged to the mode. Also, the covariance

for each mode is defined by

P̃j =
κ̃

2

d+2

j

| 2π(−Ĥ−1
j ) | 1

d+2

(−Ĥ−1
j ) (3.9)

as shown in Section 2.2.2.

Then, the approximated density is given by

f̃(x) =
1

(2π)d/2

m
∑

i=1

κ̃i

| P̃i |1/2
exp

(

−1

2
D2

(

x, x̃i
t+1, P̃

i
t+1

)

)

. (3.10)

and m(� n) is the number of detected modes.

In the following section, we will show how to use this framework to propagate

the density modes in time.
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3.4 Sequential Density Approximation

Assume that at time t the underlying density has nt modes and that for each mode

we have allocated a Gaussian N(κi,xi,Pi), according to equation (3.7). For the

moment, select a learning rate α and assume that all incoming data become part

of the model. Let N(α,xt,Pt) be a new measurement. With the integration of the

new measurement the density at time t is written as

f̂t(x) =
α

(2π)d/2

1

| Pt |1/2
exp

(

−1

2
D2 (x,xt,Pt)

)

+

1 − α

(2π)d/2

nt
∑

i=1

κi

| Pi |1/2
exp

(

−1

2
D2 (x,xi,Pi)

)

(3.11)

Starting now from the locations xt and xi with i = 1 . . . nt, we perform mean

shift iterations and let xc
t and xc

i , i = 1 . . . nt be the convergence locations. We select

first the convergence locations at which more than one procedure converged. Let

y be a point in this set and let xij , j = 1 . . .m be the starting locations for which

the mean shift procedure converged to y. If the Hessian Ĥt(y) = (∇∇
>)f̂t(y) is

negative definite we associate with the mode y a Gaussian component defined by

N(uy,y,P(y)) where the weight is

uy =
m
∑

j=1

uij (3.12)

and the covariance is defined by

P(y) = u
2

d+2
y | 2π(−Ĥt(y)−1) |− 1

d+2 (−Ĥt(y)−1) (3.13)

At time t+1 the Gaussian components located at xij , j = 1 . . .m will be substituted

for by the new Gaussian denoted by N(uy,y,P(y)). It is obtained by fitting a
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Gaussian in the neighborhood of the mode y. The detail of the derivation of equation

(3.13) is described in Section 2.2.2.

If the Hessian Ĥt(y) is not negative definite (i.e., the location y is either a

saddle point or a local minimum), all the components associated with xij , j = 1 . . .m

are left unchanged since the Gaussian approximation in the neighborhood y would

yield too high error.

For the convergence locations at which only one procedure converged, the

weight, mean and covariance of the associated Gaussian component (as given in

equation (3.11)) are also left unchanged.

Following the procedure above, we start from expression (3.11) of the density

function f̂t(x) and derive f̂t+1(x). The number of Gaussians, nt+1, can increase or

decrease with respect to nt, as a function of the increase/decrease in the complexity

of the underlying density at time t + 1, represented by the number of modes.

In Figure 3.1 we show the mode propagation framework applied in one di-

mension. We used 500 measurements from a real video stream and a learning rate

of α = 0.05. We have represented in Figure 3.1(a)-(f) both the standard non-

parametric estimate of the density and the density computed using mode propa-

gation. Observe the very close resemblance of the two graphs in time, even for

very complex density functions. The Mean Integrated Squared Error is drawn in

Figure 3.1(g) while the number of modes is shown in Figure 3.1(h).

A two-dimensional experiment with 100 measurements is shown in Figure 3.3.

Observe again the close resemblance between the standard kernel density estimate

and the density computed through mode propagation, although the later has been
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Figure 3.1: One dimensional mode propagation. (a)-(f) Standard non-parametric

density estimation (above) vs. density computed through mode propagation (be-

low). Steps 0, 60, 120, 180, 240, and 300 are represented.
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Figure 3.2: (a) Mean Integrated Squared Error. (b) Number of modes.

approximated with only 10 modes at the 60th step. The amount of memory required

to represent this density function non-parametrically is much higher than in the case

of mode propagation.

In the next section we extend the mode propagation framework to subspaces

obtained from eigen analysis, while the eigenspace updating is implemented through

Incremental PCA.

3.5 Propagation in Subspace

3.5.1 Batch PCA

Suppose that we have p-dimensional data points, denoted by mi, i = 1, 2, . . . , k,

having mean and covariance m and P. Without loss of generality, we can assume

m = 0. Denote by E the matrix of eigenvectors of P which can be derived by the

Singular Value Decomposition (SVD).

Select the q largest eigenvalues and the corresponding eigenvectors ei, i =
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Figure 3.3: Two dimensional mode propagation. (a) and (c) Standard non-

parametric density estimation. (b) and (d) Density computed through mode prop-

agation. Steps 0 and 60 are represented. (e) Mean Integrated Squared Error. (f)

Number of modes.
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1, 2, . . . , q, reducing the original p dimensional space to q dimensions (q < p). Define

Eq to be a p × q matrix whose columns are eigenvectors, and project the data

from the original space into the q dimensional subspace by the simple matrix-vector

multiplication as mq
i = ET

q mi.

With these projected data mq
i , the mode finding algorithm is performed in the

same fashion as in Section 3.3. Using the Hessian computed at the mode location we

derive the covariance of each mode in the subspace. In the batch method, we need

to perform the same procedure in each time step, so it is computationally expensive

and it is not feasible to store all the history of data due to the limited memory

space. Therefore, we consider incremental PCA algorithms [27, 82]. In this chapter,

we use the method suggested in [82].

3.5.2 Incremental PCA (IPCA)

In the incremental PCA, we just need the small amount of additional information,

the mean m̂i (i = 1, 2, . . . , n) of each mode in the original space, other than the

currently estimated density function and current basis vectors. Since there is not

enough information to re-project all the data into the subspace, we have to formulate

a method to transform the data representation in the current subspace to the next

subspace. The information we have are the old and new eigenvectors (Eq and E′
q,

respectively), mean and covariance for the density in the old subspace, the new data

mk+1, and the mean of each mode m̂i in the original space. Instead of projecting

each mode from the old subspace to the new subspace, we would rather project m̂i

42



into the new subspace as

m
′q
i = E

′T
q m̂i (3.14)

and the new data can be simply projected to the new subspace using

m
′q
k+1 = E

′T
q mk+1. (3.15)

With the means and covariances of re-projected density and the new data, the

sequential density approximation algorithm is performed and the modes are prop-

agated to the next step. At this time, we also have to update m̂i in the original

space with the learning rate α. Figure 3.4 shows the mode propagation result in a

two dimensional subspace.

3.6 Background Modeling

In this section, we describe the background modeling and subtraction application

based on the kernel density approximation and mode propagation. We consider

modeling the background based on each pixel or a fixed size block. The first step

for background subtraction is to estimate the feature density of each unit (pixel or

block); then, the background model of a unit is composed of a mixture of several

Gaussians through the proposed algorithm. The covariance associated with a new

component has been computed according to the method suggested in [22], using the

median of the magnitude of differences between consecutive measurements. Each

dimension is assumed to be independent of each other, and the initial covariance

matrix is diagonal. The density function is updated selectively only if the new data

is classified as background. We consider a unit as foreground if the feature of the unit
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Figure 3.4: Two dimensional mode propagation in the subspace. (a) and (c) Stan-

dard non-parametric density estimation. (b) and (d) Density computed through

mode propagation. Steps 0 and 50 are represented.

is far (e.g. outside 99.9% confidence ellipsoid) from every mode in the underlying

density function. Only when the new data satisfies the background model do we

update the model according to the procedure described in Section 3.4 and 3.5.

Two different sequences are used to test and compare the performance of the

density approximation and mode propagation algorithm. The first one is from a

subway station that contains a lot of pixelwise noise and the second is from a beach

with large structural movements caused by waves. The experiments are performed
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for gray and color images and for 3 × 3 blockwise modeling using the subspace

method [69].

Figure 3.5 shows the result of background subtraction for color images with

the gradual update of background.

Figure 3.5: Background subtraction using mode propagation for the color density

computed in the RGB space.

Figure 3.6 shows that background subtraction using color outperforms the gray

scale image in both detection and false alarm. Also, the blockwise method in the

subspace shows robust performance. Compare these results with those reported in

[56], Figure 1.

A difficult sequence is one taken at the beach, where the waves constitute a
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(a) (b)

(c) (d)

Figure 3.6: Background subtraction comparison. (a) Original frame. (b) Subspace.

(c) Intensity modeling. (d) Color modeling.

dynamic background and the lighting condition changes a lot. Figure 3.7 shows

several images used for initial background modeling containing a lot of movement

due to the ocean waves.

Figure 3.8 shows the results for background subtraction in intensity, color and

subspace. The large movements of the waves are accurately modeled as background,

and the people in the scene are detected correctly.

Another example of dynamic background modeling and subtraction in RGB
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space is presented in Figure 3.9.

3.7 Conclusion

We have introduced in this paper mode propagation as a principled method for

sequential density approximation. We show the correctness and the effectiveness of

this algorithm by various simulations. The new framework has been successfully

applied to background modeling and subtraction. We anticipate that our work will

be useful for other computer vision applications, especially for tasks involving higher

dimensional feature spaces.
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Figure 3.7: Sample frames used for background modeling.
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(a) (b)

(c) (d)

Figure 3.8: Background subtraction comparison. (a) Original frame. (b) Subspace.

(c) Intensity modeling. (d) Color modeling.
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(a) (b)

Figure 3.9: Background subtraction for dynamic background. (a) Original frame.

(b) Background subtraction in RGB space
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Chapter 4

On-Line Density-Based Target Appearance

Modeling

Object tracking is a challenging problems in real-time computer vision due to vari-

ations of lighting condition, pose, scale, and view-point over time. However, it

is exceptionally difficult to model appearance with respect to all of those varia-

tions in advance; instead, on-line update algorithms are employed to adapt to these

changes. We present a new on-line appearance modeling technique which is based

on sequential density approximation. This technique provides accurate and com-

pact representations using Gaussian mixtures, in which the number of Gaussians is

automatically determined. This procedure is performed in linear time at each time

step, which we prove by amortized analysis. Features for each pixel and rectangular

region are modeled together by the proposed sequential density approximation algo-

rithm, and the target model is updated in scale robustly. We show the performance

of our method by simulations and tracking in natural videos.

4.1 Introduction

One of the most critical challenges in creating robust visual trackers is the devel-

opment of adaptive appearance models that can accommodate unstable lighting
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condition, pose variations, scale changes, view-point changes, and camera noise.

Many tracking algorithms [13, 21, 58] are based on a fixed target model, and so are

unable to track over long time intervals.

Some efforts have been made to overcome these problems. In [44], heuristics

regarding the replacement of the target template are suggested; Nummiaro et al. [53]

update the model by taking the weighted average of the current and new histograms.

A view-based subspace model is implemented in EigenTracking [4], but it requires

intensive offline learning before tracking. Recently, Ross et al. [65] propose an

adaptive tracking algorithm that updates the models using an incremental update

of eigenbasis.

Instead of using a template or a histogram for target modeling, parametric

density representations have been used in many tracking algorithms. McKenna et

al. [45] suggest Gaussian mixture models created by an EM algorithm for histogram-

based trackers, but their method requires knowledge of the number of components,

which may not be known in advance. Additionally, it is not appropriate if there

are a large number of modes in the underlying density function or the number of

modes changes frequently. In [25, 52], a pixel-wise target model based on Gaussian

distribution is proposed, and it is updated during tracking. However, this method

cannot model multi-modal density functions accurately. A more elaborate target

model is described in [34], where a 3-component mixture for the stable process, the

outlier data and the wandering term is designed to capture rapid temporal variations

in the model. The implementation of that method allowed only a fixed number of

components, so, for example, it cannot accommodate multiple stable components
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since only one Gaussian is assigned to the stable component.

An important issue in target model update is the balance between adaptiveness

to new observations and resistance to noise. Since the target model may drift away

by undesirable updates, only target pixel observations should be integrated into the

model. From this point of view, a probability density function of visual features is a

good solution for target modeling, because frequently observed data contribute the

most significant part while outliers can have limited effects on the integrity of the

model.

In this chapter, we present an on-line density-based appearance model for ob-

ject tracking which is more flexible than previously published parametric methods.

The density function is composed of a mixture of Gaussians, where all of the parame-

ters such as the number of modes, means, covariances, and weights are determined

by a mean-shift algorithm [11, 12]. The method can represent the density function

very accurately with a small amount of memory. Whenever a new observation is

incorporated into the current model, the density function is updated in an on-line

manner. This procedure is performed in linear time; the time complexity is proved

by amortized analysis. Color features at each pixel are modeled by a Gaussian mix-

ture, and color rectangular features are also integrated in the density function to

encode the local spatial information of a pixel. We also describe a model update

procedure in scale space using density approximation technique, so that the tracker

can deal with scale changes robustly.

This chapter is organized as follows. Section 4.2 introduces the linear time

sequential density approximation technique, and demonstrates its performance by
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intensive simulation. Section 4.3 describes how to construct the appearance model

adaptively, and experiments for object tracking in video are presented in Section

4.4.

4.2 On-line Density Approximation

Gaussian mixtures are frequently used to estimate density functions, and several

heuristics to determine the number of components have been proposed [42, 61, 79].

However, it is extremely difficult to find the number of Gaussians in a principled way

for on-line applications since previous data are not typically available at the current

step due to memory constraint. In this section, we present an iterative procedure for

sequential density approximation to manage a Gaussian mixture density function

adaptively. Then, a more efficient algorithm is presented and its time complexity is

discussed.

Section 4.2.1 presents the naive sequential density approximation method,

while Section 4.2.2 presents a substantially faster algorithm. In Section 4.2.3, the

performance of our sequential density approximation technique is investigated by

various simulations.

4.2.1 Sequential Density Approximation

Assume that at time t the underlying density is a mixture of Gaussians having

nt modes and that for each mode we have allocated a Gaussian N(κi
t,x

i
t,P

i
t), i =

1, . . . , nt, where N(·) is Gaussian distribution with the parameter (weight, mean,

covariance). For the moment, select a learning rate α and assume that all incoming
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data become part of the model. Let N(α,xnt+1
t ,Pnt+1

t ) be a new measurement.

With the integration of the new measurement, the density at time t + 1 is initially

written as

f̂t+1(x) =
(1 − α)

(2π)d/2

nt
∑

i=1

κi
t

| Pi
t |1/2

exp
(

−1

2
D2

(

x,xi
t,P

i
t

)

)

+
α

(2π)d/2 | Pnt+1
t |1/2

exp
(

−1

2
D2

(

x,xnt+1
t ,Pnt+1

t

)

)

(4.1)

where

D2
(

x,xi
t,P

i
t

)

≡ (x − xi
t)

>(Pi
t)

−1(x − xi
t) (4.2)

is the Mahalanobis distance between x and xi
t.

To find the new mode locations in f̂t+1(x), we perform mean-shift iterations

until convergence for each xi
t, i = 1 . . . nt + 1. The variable-bandwidth mean-shift

vector at location x is defined by

m(x) =

(

nt+1
∑

i=1

ωi
t(x)(Pi

t)
−1

)−1(nt+1
∑

i=1

ωi
t(x)(Pi

t)
−1xi

)

− x (4.3)

where the weights

ωi
t(x) =

κi
t | Pi

t |−1/2 exp
(

−1
2
D2 (x,xi

t,P
i
t)
)

∑nt+1
i=1 κi

t | Pi
t |−1/2 exp

(

−1
2
D2 (x,xi

t,P
i
t)
) (4.4)

satisfy
∑nt+1

i=1 ωi
t(x) = 1.

We select first the convergence locations at which more than one procedure

or xnt+1
t converged. Let y be a point in this set and let xj

t , j = 1 . . .m be the

starting locations for which the mean shift procedure converged to y. If the Hessian

Ĥ(y) = (∇∇
>)f̂t+1(y) is negative definite, we associate with the mode y a Gaussian

component defined by N(κy,y,P(y)) where κy is the sum of xj
t ’s weights (j =
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1 . . .m) and the covariance matrix P(y) is given by

P(y) =
κ

2

d+2
y

| 2π(−Ĥ(y)−1) | 1

d+2

(−Ĥ(y)−1) (4.5)

The basic idea of equation (4.5) is to fit the covariance using the curvature in the

neighborhood of the mode. At time t + 1, the Gaussian components located at xj
t

(j = 1 . . .m) will be substituted for by the new Gaussian N(κy,y,P(y)).

If the Hessian Ĥ(y) is not negative definite (i.e., the location y is either a

saddle point or a local minimum), all the components associated with xj
t , j = 1 . . .m

are left unchanged since the Gaussian approximation in the neighborhood of y

would yield too high an error. For the convergence locations at which only one

procedure converged (except the convergence location for xnt+1
t ), the weight, mean

and covariance of the associated Gaussian component are also left unchanged.

The new parameters in Gaussian mixture f̂t+1(x) are determined by a mode

finding algorithm based on mean-shift and covariance estimation method, and the

updated density function is then given by

f̂t+1(x) =
1

(2π)d/2

nt+1
∑

i=1

κi
t+1

| Pi
t+1 |1/2

exp
(

−1

2
D2

(

x,xi
t+1,P

i
t+1

)

)

(4.6)

where κi
t+1, xi

t+1, and Pi
t+1 are weight, mean, and covariance of each component at

t + 1, respectively.

4.2.2 Linear Time Algorithm for Sequential Approximation

The sequential density approximation technique described in the previous section

takes O(n2
t ) time in each step, where nt is the number of modes at time step t.

Now, we relax the constraint that the number of Gaussian components is equal to
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the number of modes in the density function, and improve the time complexity to

linear time. As a result, the number of Gaussian components may be slightly more

than the compact representation introduced in Section 4.2.1, but the sequential

density approximation is performed much faster asymptotically.

Recall equation (4.1). The previous algorithm runs the mean-shift procedure

for all of nt + 1 components, and finds convergence points for all of them. Then, it

finds the mode associated with the new data, and updates that mode.1 So, if we

could identify those modes that would merge with the new data efficiently, then the

execution time can be dramatically reduced. This technique is explained next.

Algorithm Description

Given the nt + 1 modes in the t + 1st step, we first search for the convergence

point cnt+1 of xnt+1
t in the density f̂t+1(x) of equation (4.1). Now, we have to

find which other modes converge to cnt+1 and should be merged with xnt+1
t . The

candidates to converge to cnt+1 are determined by mean-shift, and this procedure

is repeated until the candidate does not converge to cnt+1 any more. The first

candidate mode is the convergence point xi
t (i = 1 . . . nt) from xnt+1

t in the density

function f̂ ′
t+1(x) = f̂t+1(x)−N(α,xnt+1

t ,Pnt+1
t ). Note that all the candidates are one

of the components in the previous density function f̂t(x). The mean-shift procedure

is performed for xi
t in f̂t+1(x), and we check if the convergence point of xi

t is equal

to cnt+1. If they are not equal, we conclude that there are no further merges with

1Rarely, some merges which do not include the new data may happen. It hardly affects the

accuracy of the density functions, but leads to a difference in the number of components between

the quadratic and the linear time algorithm.
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xnt+1
t and create a Gaussian for the updated mode; otherwise, we check the next

candidate, which is determined by finding the next convergence point of xnt+1
t in

the density function f̂ ′
t+1(x) = f̂ ′

t+1(x) − N(κi
t,x

i
t,P

i
t).

The covariance matrix and the weight of the merged mode should be also

updated as proposed in Section 4.2.1. The formal description of this algorithm

is given in algorithm 1. In algorithm 1, MeanShiftModeFinding is the function to

detect the convergence location by the mean-shift algorithm from a point (the second

argument) in the density (the first argument).

Algorithm 1 Linear-time sequential density approximation

1: S = {xnt+1
t }, κ = α

2: f̂ ′
t+1(x) = f̂t+1(x)

3: cnt+1 = MeanShiftModeF inding(f̂t+1(x),xnt+1
t )

4: f̂ ′
t+1(x) = f̂ ′

t+1(x) − N(α,xnt+1
t ,Pnt+1

t )

5: while 1 do

6: xi
t = MeanShiftModeF inding(f̂ ′

t+1(x),xnt+1
t )

7: c = MeanShiftModeF inding(f̂t+1(x),xi
t)

8: if cnt+1 6= c then

9: break

10: end if

11: S = S ∪ {xi
t}, κ = κ + κi

t

12: f̂ ′
t+1(x) = f̂ ′

t+1(x) − N(κi
t,x

i
t,P

i
t)

13: end while

14: merge all the modes in the set S and create N(κ, c,Pc) where Pc is derived by

the same method in equation (4.5)
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Analysis of Algorithm

The time complexity of this algorithm is O(nmax) by amortized analysis, where nmax

is the maximum number of modes in all time steps, and a sketch of the proof is as

follows.

Suppose that each of new data has 5nmax + 1 credits, which is defined to be

the reserved number of operations for the Gaussian component corresponding to

the new data. For the search for the convergence point (line 3 in algorithm 1), at

most nmax +1 operations are performed and the new component consumes nmax +1

credits since the function MeanShiftModeFinding takes linear time. 2nmax credits are

required for two mean-shift iterations when the new component fails to merge (the

last iteration of while loop). Also, we need 2nmax operations (line 6 and 7) whenever

the new component is merged with the currently existing mode, but the existing

mode is responsible for this cost. So, the remaining 2nmax credits are supposed to

be used when another mode is merged with it later. After losing all credits, the

mode finally disappears.

For K time steps, K new Gaussian components are entered and sequential

density approximation is performed. Therefore, the number of operations for all

K time steps is at most O(Knmax), and the average time complexity in each step

is O(nmax). The derived complexity is bounded by O(nmax), but practically it is

faster than this since the number of components in each step is less than nmax in

most cases. The number of components is slightly more than the previous quadratic

algorithm, but the improvement of time complexity is the dominating factor for the
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overall speed of algorithm.

4.2.3 Performance of Approximation

The linear time sequential density approximation algorithm, which we will refer to

as the fast approximation algorithm, is a variant of the quadratic time algorithm.

The performance of the fast approximation algorithm was tested through simulation,

and compared with the quadratic algorithm as well as a sequential version of kernel

density estimation.

Starting from the initial density function, a new data element is incorporated at

each step, and Mean Integrated Squared Error (MISE) with sequential kernel density

estimation is employed as a basis of comparison. The weighted Gaussian mixture

– N(0.15, 80, 152), N(0.4, 122, 102), and N(0.45, 122, 1002) – is used as the initial

density function, and the new data is sampled from another Gaussian mixture –

N(0.2, 52, 102), N(0.5, 100, 102), and N(0.15, 175, 102) – plus a uniform distribution

in [0, 255] with weight 0.15. In this experiment, we expect the initial density function

to morph to the new density function from which data samples are drawn.

As seen in Figure 4.1, the fast approximation algorithm accurately simulates

the sequential kernel density estimation; the final density function has three major

modes which closely correspond to the Gaussian centers in the sampling function.

The simulated density function using the quadratic algorithm is very similar to that

of the fast approximation algorithm in most steps, so it is not presented separately

in this figure. Note that the sequential kernel density estimation has more than 300

Gaussian components at the 300th time step, but the fast approximation algorithm
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has only 7 components.

Figure 4.2 shows that the MISE of the fast approximation algorithm is compa-

rable to the quadratic algorithm (and in repeated experiments, the new algorithm

is often better) while the increase of the number of components using the fast algo-

rithm is moderate.

We performed the same experiment using the method suggested in [34] in or-

der to compare the performance of our method with that one. The same initial

density function is used except that the third Gaussian component with the large

variance (1002) is replaced by a uniform distribution in [0, 255]. The first and sec-

ond Gaussians are assumed to be wandering and stable component, respectively.

The sampling density function is identical, and the same input sequence is used.

As mentioned earlier, the method from [34] cannot easily deal with complicated

models because it requires a fixed number of components in the density and only

one Gaussian is assigned to the stable component. During most time steps of the

simulation, the number of modes is actually one, and the wandering component has

negligible weight. In other words, the multi-modality of the density function is not

well preserved, so the 3-component model might not be sufficient on real data. Fig-

ure 4.3 shows the sequence of density functions using the method of [34]; a significant

difference of the estimated density function from Figure 4.1 can be observed.

Multi-dimensional simulations were also performed, and similar results were

observed. Figures 4.4 and 4.5 present the simulation results, showing the compar-

isons of MISE and number of components, respectively.

To compare the speed between the linear and quadratic time algorithms, the
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Figure 4.1: Simulation of fast approximation algorithm and comparison with se-

quential kernel density estimation. (a)-(f) Fast sequential density approximation

(top) vs. sequential kernel density estimation (bottom)
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Figure 4.2: Comparison of MISE and number of components in each step of 1D sim-

ulation between fast approximation algorithm (top) and quadratic time algorithm

(bottom).

CPU time for the one-step sequential density approximation procedure was mea-

sured for density functions with different numbers of components. Since sequential

density estimation contains matrix operations, it is also worthwhile to check the

performance with respect to dimensionality. So, our experiments are performed by

varying the number of modes and the dimensionality. We performed comparisons

for two different dimensionalities (2D and 6D), and the results are presented in Fig-

ure 4.6. We observe that the running time of the fast approximation algorithm is

significantly less than the quadratic algorithm.

Finally, we performed 100-step sequential density estimations in various di-

mensions, and computed the average CPU time and MISE2. Figure 4.7 illustrates

that the fast approximation algorithm is faster and comparable in accuracy.

2The MISE is computed only at sample locations in this case to handle high dimensional

examples.
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Figure 4.3: Simulation of Jepson et al.’s method [34] (a)-(f) Density function at

time 1, 60, 120, 180, 240, and 300.

4.3 On-line Appearance Model

On-line appearance models are important for real-time object tracking, since the

target model can change due to many factors. In this section, we present a density

based target modeling and on-line model update algorithm to deal with changes in

target appearance and size.

4.3.1 Target Modeling

We construct the model of features for each pixel in the target object with a mix-

ture of Gaussians, so the target model is represented as a set of density functions.
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(a) t = 1

(b) t = 100

Figure 4.4: Simulation of fast sequential density approximation (left) and compari-

son with sequential kernel density estimation (right)
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Figure 4.5: Comparison of MISE and number of components in each step of 2D sim-

ulation between fast approximation algorithm (top) and quadratic time algorithm

(bottom).

Our representation can include an arbitrary number of Gaussian components in the

density function, and describes the underlying density accurately.

Using pixel-wise color density modeling has the advantage of describing the

details of target region, but does not capture any structural aspects of an object’s

appearance. So, we also incorporate rectangular features into our target model.

These features are obtained by averaging the intensities of neighbors (e.g., 3 × 3 or

5×5) in each color channel (r, g, b) and are computed efficiently with integral images

[80]. Since rectangular features encode the spatial information around a pixel, they

ameliorate some problems caused by non-rigid motions of objects and pixel mis-

registrations. The performance of such features have previously been investigated

in object tracking [24] and detection [80].

Initially, at time 0, the density function for each pixel (i, j) within a selected
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Figure 4.6: CPU time of fast approximation algorithm and quadratic time algorithm.

target region has a single Gaussian component N(1,x0(i, j),P0(i, j)) whose mean

x0(i, j) is the combination of color at (i, j) and average color of its neighborhood.

In each time step t, the new data xt(i, j) at the pixel location (i, j) is denoted as

xt(i, j) = (r, g, b, r̄, ḡ, b̄) (4.7)

where (r̄, ḡ, b̄) denotes the average intensity of the neighborhood centered at (i, j)

for each color channel. Note that xt(i, j) would be a 2D vector composed of intensity

and average intensity for gray scale images.

Whenever a new observation is integrated into the current density, the den-

sity function is updated as explained in Section 4.2.2. As time progresses, highly

weighted Gaussian components are constructed around frequently observed data,

and several minor modes may also develop. Using exponential updating, old in-

formation is removed gradually if no further observations are around it. So, the

representation maintains a history of feature observations for any given pixel.
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Figure 4.7: CPU time and MISE with respect to dimensionality in sequential den-

sity approximation. (MISE ratio is error ratio of fast approximation algorithm to

quadratic time algorithm.)

4.3.2 Update in Scale Space

The target model so constructed is robust to changes of feature values, but is not

intended to handle scale change. Tracking may fail in sequences containing large

scale changes of target objects, since the observations are severely affected by drastic

up- or down-sampling. So, we update the size of the target model at every β% scale

change as follows: the pixel location in the new target window is projected into

the old target window, and the density function is computed by a weighted sum of

neighborhood density functions as

f̂ ?
x(i, j) =

∑

(u,v)∈N(i,j)

w(u, v)f̂x(u, v) (4.8)

where N(i, j) is a set of pixels adjacent to (i, j)’s projection onto the old target

window, f̂x(u, v) is an estimated density function for feature vector x at (u, v), and

w(u, v) is the normalized weight associated with each density function f̂x(u, v). The
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new density function f̂ ?
x(i, j) is also a mixture of Gaussians, and the batch version of

our density approximation technique is applied to reduce the number of components

for a compact representation.

The modeling error in scale change is fairly small because of the spatial coher-

ence of the target. Also, since the rectangular features for adjacent pixels are based

on highly overlapping areas, they are robust to updates in scale space. This appear-

ance model update in scale space is simple, but performs well in experiments; the

strategy plays an important role in the examples displaying significant scale change.

4.4 Object Tracking

In this section, the criterion to determine the optimal parameters for object tracking

is described, and we present various tracking examples showing the effectiveness of

on-line density-based appearance modeling. Comparisons with other appearance

modeling methods are also performed.

4.4.1 Maximum Likelihood Parameter Optimization

Let M(x;p) denote the parameterized motion of location x, where p = (vx, vy, s) is

a vector for translations and scaling. Denote by d(M(x;p)) the observation at the

image of x under motion p. Now, the tracking problem involves finding the optimal

parameter using the maximum likelihood method.

pt = arg max
p

∑

(i,j)∈R

log(p(d(M(x(i,j);p))|pt−1, A
(i,j)
t )) (4.9)

where (i, j) is the relative location in the target region R, and A
(i,j)
t the current

appearance model at (i, j). A simple gradient-based tracking method is employed
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to find the optimal p, and the target model is updated as explained in Section 4.3.

4.4.2 Experiments

Various sequences are tested to illustrate the performance of our on-line appearance

modeling technique. New data is integrated with the weight of α = 0.05. Also,

the target model is updated in scale space at every β = 10% change of size, and

a slightly higher learning rate α = 0.1 is used at this time. For the rectangular

features, 5 × 5 neighborhood pixels are used.

Figure 4.8 shows the results on the tank sequence, in which the target has

low contrast and changes its orientation during tracking. Our tracking algorithm

succeeds in tracking for 940 frames even with transient severe noise levels due to

dust (e.g., Figure 4.8 (b) and (d)).

The results on a person sequence are presented next. In this sequence, a human

face is tracked with a large change of face orientation and lighting condition; the

results are shown in Figure 4.9. Figure 4.9 (e) illustrates how the appearance of

the face changes over time; Figure 4.9 (f) shows the average intensity of the target

region over time.

In Figure 4.10, the tracking results for the head of a football player are shown.

In this sequence, the target object moves fast in high clutter and is blurred fre-

quently. Also, the changes in orientation and texture of the head make tracking

difficult, so the density function for the target model must be able to accommo-

date those variations for accurate tracking. As shown in Figure 4.10 (f), the average

number of modes per pixel (blue solid line) and the standard deviation (black dotted
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(a) t = 1 (b) t = 590

(c) t = 940 (d) Target appearance changes

Figure 4.8: Tracking result of tank sequence

line) varies up to around 6, which suggests that a density function with a fixed num-

ber of components may produce a high tracking error compared with our method.

In Figure 4.11, a gray scale image sequence involving a large scale and illumi-

nation change is presented, and our appearance model update strategy adapts to

this well.

In the last sequence, the appearance of the car changes frequently because of

the shadow and its red lights. Also, a person passes in front of the car and the image
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(a) t = 1 (b) t = 36

(c) t = 150 (d) t = 205
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(e) Target appearance changes (f) Intensity changes

Figure 4.9: Tracking results of person sequence
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(a) t = 1 (b) t = 22

(c) t = 47 (d) t = 67
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(e) Target appearance changes (f) Num. of components

Figure 4.10: Tracking result of football sequence
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(a) t = 1 (b) t = 270

(c) t = 500 (d) Target appearance changes

Figure 4.11: Tracking result of car1 sequence

is severely shaken several times by camera movement. Figure 4.12 shows that our

on-line density-based modeling is successful in spite of occlusion and appearance

change.

4.4.3 Comparison with Other Methods

Two different appearance modeling methods are implemented for comparison; one

is fixed modeling with a Gaussian distribution and the other is 3-component mix-

ture model based on [34]. For each algorithm, two different feature sets – color

only and color with rectangular feature for each pixel – are employed. Using the
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(a) t = 1 (b) t = 18

(c) t = 192 (d) Target appearance changes

Figure 4.12: Tracking result of car2 sequence

same gradient-based tracking, six different cases including two for our algorithm are

tested, and the results are summarized in table 4.1. Also, some examples of failures

are illustrated in Figure 4.13.

As table 4.1 illustrates, our on-line density approximation shows good per-

formance compared with other parametric techniques. The only algorithm able to

successfully track through both sequences was our method using both pixel-wise and

rectangular features.
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Table 4.1: Comparison of tracking results

Modeling method
person football

(205 frames) (80 frames)

Fixed Ca fail fail

Gaussian C+Rb fail fail

3-component C succeed fail

mixture [34] C+R succeed fail

Our C succeed fail

method C+R succeed succeed

acolor feature
bcolor rectangular feature

4.5 Conclusions

We described a sequential density approximation algorithm in which the density

function is represented with a mixture of Gaussians whose number, mean, covariance

and weight are automatically determined. This algorithm has linear time complexity,

and can be used in many real-time applications. We apply this technique to the

adaptive target appearance modeling using pixel-wise and rectangular features for

object tracking. The effectiveness of the fast approximation algorithm and combined

feature is presented by various simulations and tracking results in natural videos.
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Figure 4.13: Examples of tracking failure. Tracking for person sequence with the

fixed Gaussian modeling (C+R, t = 120) (left) and for football sequence with the

3-component mixture modeling (C, t = 59) (right)
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Chapter 5

Kernel-Based Bayesian Filtering

Particle filtering provides a general framework for propagating probability density

functions in non-linear and non-Gaussian systems. However, the algorithm is based

on a Monte Carlo approach and sampling is a problematic issue, especially for high

dimensional problems. This chapter presents a new kernel-based Bayesian filtering

framework, which adopts an analytic approach to better approximate and propagate

density functions. In this framework, the techniques of density interpolation and

density approximation are introduced to represent the likelihood and the posterior

densities by Gaussian mixtures, where all parameters such as the number of mixands,

their weight, mean, and covariance are automatically determined. The proposed

analytic approach is shown to perform sampling more efficiently in high dimensional

space. We apply our algorithm to real-time tracking problems, and demonstrate its

performance on real video sequences as well as synthetic examples.

5.1 Introduction

Particle filtering is a Monte Carlo approach to solve the recursive Bayesian filtering

problem. Although it provides tractable solutions to non-linear and non-Gaussian

systems, it is faced with practical issues such as sample degeneracy and sample
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impoverishment [2]. Moreover, to achieve reliable filtering, the sample size can grow

exponentially as the dimension of the state space increases. To overcome these issues,

we explore an analytic approach to approximate density functions and introduce a

new kernel-based filtering scheme. The main idea of this work is to maintain an

analytic representation of relevant density functions and propagate them over time.

In this chapter, kernel-based density representation is adopted.

5.1.1 Related Work

There have been many parametric density representations proposed for various ap-

plications. In [45, 74], the authors suggest Gaussian mixture models, but their

method requires knowledge of the number of components, which is difficult to know

in advance. A more elaborate density representation is described in [34], where a 3-

component mixture is used for target modeling in object tracking, but this approach

cannot overcome the drawback of parametric methods. Kernel density estimation

[22] is a widely used non-parametric approach in computer vision. Its major ad-

vantage is the flexibility to represent very complicated densities effectively. But its

very high memory requirements and computational complexity inhibit the use of

this method.

For Bayesian filtering, Cham and Rehg [5] introduce a piecewise Gaussian

function to specify the tracker state, in which the selected Gaussian components

characterize the neighborhoods around the modes. This idea is applied to multiple

hypothesis tracking in a high dimensional space body tracker, but the sampling

and the posterior computation are not straightforward. The closest work to ours is
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[40] where the posterior is represented with a Gaussian mixture in a particle filter

framework. However, this solution may not provide a compact representation for

the posterior, and the prediction and the update steps are oversimplified.

5.1.2 Our Approach

In this chapter , we extend our previous work [28] which provides the framework

of Kernel-based Bayesian filtering. We introduce density approximation and den-

sity interpolation to represent density functions efficiently and effectively. In both

techniques, the density function is represented by a Gaussian mixture, where the

number of mixands, their weights, means and covariances are automatically deter-

mined. The density approximation is based on a mode finding algorithm [12, 14]

derived from variable-bandwidth mean-shift which provides the methodology to con-

struct a compact representation with a small number of Gaussian kernels. A density

interpolation technique is introduced to obtain a continuous representation of the

measurement likelihood function. Unscented transformation (UT) [35, 46] is also

adopted to deal with non-linear state transition models. These techniques are in-

tegrated into the Bayesian filtering framework. In the new kernel-based Bayesian

filtering algorithm, the continuous representations of density functions are propa-

gated over time.

The advantage of maintaining an analytic representation of density functions

lies in efficient sampling. This is important for solving high dimensional problems.

A multi-stage sampling strategy is introduced in density interpolation for accurate

approximation of the measurement likelihood function. The new algorithm is applied
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to real-time object tracking, and its performance is demonstrated through various

experiments.

This chapter is organized as follows. Section 5.2 introduces the new density

propagation technique in the Bayesian filtering framework. Section 5.3 and 5.4 ex-

plain the density approximation and the density interpolation method, respectively.

Section 5.5 demonstrates its performance by various simulation results with syn-

thetic examples. Finally, it is demonstrated in Section 5.6 how our algorithm can

be applied to object tracking in real videos.

5.2 Bayesian Filtering

In this section, we introduce the new Bayesian filtering framework, where the rele-

vant density functions are approximated by kernel-based representations and prop-

agated over time.

5.2.1 Overview

In a dynamic system, the process and measurement model are given by

xt = g(xt−1,ut) (5.1)

zt = h(xt,vt) (5.2)

where vt and ut are the process and the measurement noise, respectively. The

state variable xt (t = 0, . . . , n) is characterized by its probability density function

estimated from the sequence of measurements zt (t = 1, . . . , n). In the sequential

Bayesian filtering framework, the conditional density of the state variable given the
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measurements is propagated through prediction and update stages,

p(xt|z1:t−1) =
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (5.3)

p(xt|z1:t) =
1

k
p(zt|xt)p(xt|z1:t−1) (5.4)

where k =
∫

p(zt|xt)p(xt|z1:t−1)dxt is a normalization constant independent of xt.

p(xt−1|z1:t−1) is the prior probability density function (pdf), p(xt|z1:t−1) is the pre-

dicted pdf and p(zt|xt) is the measurement likelihood function. The posterior pdf

at time step t, p(xt|z1:t), is used as the prior pdf in time step t + 1.

At each time step, the conditional distribution of the state variable x given

a sequence of measurements z is represented by a Gaussian mixture. Our goal is

to retain such a representation through the stages of prediction and update, and

to represent the posterior probability in the following step with the same mixture

form.

The proposed filtering framework is described as follows. First, unscented

transformation (UT) [35, 46] is used to derive a mixture representation of the pre-

dicted pdf p(xt|z1:t−1). Second, the density interpolation technique with multi-stage

sampling is introduced to approximate the likelihood function with a mixture form.

By multiplying two mixture functions, the posterior pdf is obtained through equa-

tion (5.4). To prevent the number of mixands from growing too large, an algorithm

of density approximation based on mode finding is applied to derive a compact

representation for the posterior pdf.
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5.2.2 Prediction by Unscented Transform

Denote by xi
t (i = 1, . . . , nt) a set of means in Rd and by Pi

t the corresponding covari-

ance matrices at time step t. Let each Gaussian have a weight κi
t with

∑nt

i=1 κi
t = 1,

and let the prior density function be given by

p(xt−1|z1:t−1) =
1

(2π)d/2

nt−1
∑

i=1

κi
t−1

| Pi
t−1 |1/2

exp
(

−1

2
D2

(

x,xi
t−1,P

i
t−1

)

)

(5.5)

The unscented transformation [35, 46] is a method for calculating the statistics

of a random variable which undergoes a non-linear transformation.

X (i,0)
t−1 = xi

t−1

X (i,j)
t−1 = xi

t−1 − (
√

(d + λ)Pi
t−1)j j = 1, . . . , d

X (i,j)
t−1 = xi

t−1 + (
√

(d + λ)Pi
t−1)j−d j = d + 1, . . . , 2d

W(i,0) = λ/(d + λ)

W(i,j) = 1/2(d + λ) j = 1, . . . , 2d (5.6)

where λ is a scaling parameter and (
√

(d + λ)Pi
t−1)j is the ith row or column of

the matrix square root of (d + λ)Pi
t−1. W(i,j) is the weight associated with the j-th

sigma point where
∑2d

j=0 W(i,j) = 1. These sigma vectors are propagated through the

non-linear function,

X (i,j)
t = g(X (i,j)

t−1 ) i = 0, . . . , 2d (5.7)

and the mean and covariance for x̄i
t are approximated using a weighted sample mean

and covariance of the posterior sigma points,

x̄i
t =

2d
∑

i=0

W(i,j)X (i,j)
t
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P̄i
t =

2d
∑

i=0

W(i,j)(X (i,j)
t − x̄i

t)(X
(i,j)
t − x̄i

t)
>

+ Q (5.8)

where Q is the covariance matrix for the process noise.

For each mode in the prior, UT is applied independently and the density after

prediction is as follows.

p(xt|z1:t−1) =
1

(2π)d/2

nt−1
∑

i=1

κ̄i
t

| P̄i
t |1/2

exp
(

−1

2
D2

(

x, x̄i
t, P̄

i
t

)

)

(5.9)

where κ̄i
t = κi

t−1. This non-linear transformation is guaranteed to be accurate up to

the second order of the Taylor expansion.

5.2.3 Multi-stage Sampling and Interpolation of Measurement Likeli-

hood

In contrast to various particle filters, we represent the measurement likelihood func-

tion in an analytic form. A continuous approximation of the likelihood function is

interpolated from discrete samples. A multi-stage sampling scheme is introduced to

improve the approximation progressively. The advantage of the analytic represen-

tation is that it provides a global view of the landscape of the likelihood function

and thus enables efficient sample placement.

Multi-stage sampling

Unlike the SIR algorithm [31] which uses the predicted pdf as the proposal distri-

bution, we employ the multi-stage sampling strategy and progressively update the

proposal function based on observations. The predicted pdf is used as the initial

proposal distribution q0.

q0(xt) = p(xt|z1:t−1) (5.10)
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Assume that, in total, N samples are to be drawn to obtain measurement data. In

our multi-stage sampling scheme, N/m samples are drawn in the first stage from the

initial proposal distribution (5.10), where m is the number of sampling stages. An

initial approximation of the likelihood function p1(zt|xt) is obtained through surface

interpolation with Gaussian kernels. Details of the density interpolation algorithm

are provided in Section 5.4. The proposal function is then updated by a linear

combination of the initial proposal distribution and the current approximation of

the likelihood function p1(zt|xt). We repeatedly approximate the likelihood function

from available samples and update the proposal distribution.

pj(zt|xt) =
∑

τi 6=0

τ i
t exp

(

−1

2
D2

(

xt,x
i
t,R

i
t

)

)

(5.11)

qj(xt) = (1 − αj)qj−1(xt) + αj
pj(zt|xt)

∫

pj(zt|xt)dxt
(5.12)

where i = 1, . . . , j
m

N , j = 1, . . . , m, and αj ∈ [0, 1] is the adaptation rate.

Since the information of the observation is incorporated into the proposal dis-

tribution to guide sampling, the multi-stage sampling strategy explores the likeli-

hood surface more efficiently than conventional particle filters. Thus, it is especially

advantageous in dealing with a high dimensional state space.

Approximation of likelihood function

As discussed previously, the measurement likelihood is estimated through multi-

stage sampling. With samples drawn from the improved proposal distributions,

intermediate likelihood functions are constructed and used to update the proposal

distributions. After m-step repetition of this procedure, the final measurement
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distribution is obtained.

Algorithm 2 Measurement Step

1: St = φ

2: q0(xt) = p(xt|z1:t−1)

3: for i = 1 to m do

4: draw sample s from proposal distribution

Si
t = {s(j)

i |s(j)
i ∼ qi−1(xt), j = 1, . . . , N/m}

5: St = St ∪ Si
t

6: assign mean and covariance for the element in Si
t

m(i−1)N
m

+j = s
(j)
i

Q(i−1)N
m

+j = c diag(KNN1(k) . . .KNNd(k))2 I (5.25)

7: compute likelihood of each new sample

l(i−1)N
m

+j = h(m(i−1)N
m

+j,vt)

8: compute A and b for every element in St

9: w = nnls(A,b) (5.27)

10: pi(zt|xt) =
∑

τj
t 6=0 N(τ j

t ,xj
t ,R

j
t)

where τt = w, xt = m, and Rt = Q

11: qi(xt) = (1 − αi)qi−1(xt) + αj
pi(zt|xt)

∫

pi(zt|xt)dxt
(5.12)

12: end for

13: p(zt|xt) = pm(zt|xt)

Algorithm 2 presents the complete procedure to compute the likelihood func-

tion, and the final measurement function with mt Gaussians at time t is given by

p(zt|xt) =
1

(2π)d/2

mt
∑

i=1

τ i
t

| Ri
t |1/2

exp
(

−1

2
D2

(

xt,x
i
t,R

i
t

)

)

(5.13)

where τ i
t , xi

t and Ri
t are the weight, mean and covariance matrix of the i-th kernel.
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5.2.4 Update

Since both the predicted pdf and the measurement functions are represented by

Gaussian mixtures, the posterior pdf, as the product of two Gaussian mixtures, can

also be represented by a Gaussian mixture. Denote the Gaussian components of

the predicted pdf and the likelihood function by N(κ̄i
t, x̄

i
t, P̄

i
t) (i = 1, . . . , nt−1) and

N(τ j
t ,xj

t ,R
j
t ) (j = 1, . . . , mt) respectively, the product of the two distributions is as

follows.

(nt−1
∑

i=1

N(κ̄i
t, x̄

i
t, P̄

i
t)

)





mt
∑

j=1

N(τ j
t ,xj

t ,R
j
t)



 =
nt−1
∑

i=1

mt
∑

j=1

N(κ̄i
tτ

j
t ,mij

t ,Σij
t ) (5.14)

where

mij
t = Σij

t ((P̄i
t)

−1xi
t + (Rj

t)
−1xj

t ) (5.15)

Σij
t = ((P̄i

t)
−1 + (Rj

t)
−1)−1 (5.16)

The resulting density function in (5.14) is a weighted Gaussian mixture. How-

ever, the exponential increase in the number of components over time could make

the whole procedure intractable. In order to avoid this situation, a density approx-

imation technique is proposed to maintain a compact yet accurate density repre-

sentation even after density propagation through many time steps. Details of the

density approximation algorithm is given in Section 5.3.

After the update step, the final posterior distribution is given by

p(xt|z1:t) =
1

(2π)d/2

nt
∑

i=1

κi
t

| Pi
t |1/2

exp
(

−1

2
D2

(

x,xi
t,P

i
t

)

)

(5.17)

where nt is the number of components at time step t.
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5.3 Density Approximation

In this section, we review an iterative procedure of mode detection derived from

variable-bandwidth mean-shift [14], and density approximation using the mode de-

tection technique [28].

5.3.1 Mode Detection and Density Approximation

Suppose that N(κi,xi,Pi) (i = 1 . . . n) is a Gaussian kernel with weight κi, mean

xi, and covariance Pi in the d-dimensional state space, where
∑n

i=1 κi = 1. Then,

we define the sample point density estimator computed at point x by

f̂(x) =
1

(2π)d/2

n
∑

i=1

κi

| Pi |1/2
exp

(

−1

2
D2 (x,xi,Pi)

)

(5.18)

where

D2 (x,xi,Pi) ≡ (x − xi)
>P−1

i (x − xi). (5.19)

Our purpose is to obtain a compact representation of the density function

which is a Gaussian mixture. The mode location and its weight are found by a mean-

shift algorithm, and the covariance matrix associated with each mode is computed

using the Hessian matrix.

To find the gradient ascent direction at x, the variable-bandwidth mean-shift

vector at x is given by

m(x) =

(

n
∑

i=1

ωi(x)P−1
i

)−1 ( n
∑

i=1

ωi(x)P−1
i xi

)

− x (5.20)

where the weights

ωi(x) =
κi | Pi |−1/2 exp

(

−1
2
D2 (x,xi,Pi)

)

∑n
i=1 κi | Pi |−1/2 exp

(

−1
2
D2 (x,xi,Pi)

) (5.21)
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satisfy
∑n

i=1 ωi(x) = 1. By computing the mean-shift vector m(x) and translating

the location x by m(x) iteratively, a local maximum of the underlying density

function is detected. A formal check for the maximum involves the computation of

the Hessian matrix

Ĥ(x) =
1

(2π)d/2

n
∑

i=1

κi

| Pi|1/2
exp

(

−1

2
D2 (x,xi,Pi)

)

×

P−1
i

(

(xi − x)(xi − x)> −Pi

)

P−1
i (5.22)

which should be negative definite. If it is not negative definite, the convergence

point might be a saddle point or a local minimum. In this case, kernels associated

with such modes should be restored and considered as separate modes for further

processing.

The approximate density is obtained by detecting the mode location for every

sample point xi and assigning a single Gaussian kernel for each mode. Suppose that

the approximate density has n′ unique modes of x̃j (j = 1 . . . n′) with associated

weight κ̃j which is equal to the sum of the kernel weights converged to x̃j . The

Hessian matrix Ĥj of each mode is used for the computation of P̃j as follows.

P̃j =
κ̃

2

d+2

j

| 2π(−Ĥ−1
j ) | 1

d+2

(−Ĥ−1
j ) (5.23)

The basic idea of equation (5.23) is to fit the covariance using the curvature in the

neighborhood of the mode. The final density approximation is then given by

f̃(x) =
1

(2π)d/2

n′

∑

i=1

κ̃i

| P̃i |1/2
exp

(

−1

2
D2

(

x, x̃i
t+1, P̃

i
t+1

)

)

(5.24)

and n′ � n is satisfied in most cases. The approximation error ||f̂(x) − f̃(x)|| can

be evaluated straightforwardly.
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5.3.2 Performance of Approximation

The accuracy of the density approximation is demonstrated in Figure 5.1. From a

one-dimensional distribution composed of five weighted Gaussians, 200 samples are

drawn, and the scale parameter is assigned as discussed in Section 5.4.1. Mean Inte-

grated Squared Error (MISE) between the original and the approximated densities

is calculated for the error estimation.
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Figure 5.1: Comparisons between kernel density estimation and density approx-

imation (1D). For the approximation, 200 samples are drawn from the original

distribution – N(0.2, 10, 22), N(0.35, 17, 42), N(0.15, 27, 82), N(0.2, 50, 162), and

N(0.1, 71, 322). (a) kernel density estimation (b) density approximation (MISE =

5.3234 × 10−5)

The result in Figure 5.1 shows that the mode finding based on mean-shift and

the covariance estimation using the Hessian are very accurate.

Figure 5.2 shows the performance of the density approximation which is ac-

curate enough to replace kernel density estimation in the multi-dimensional case.
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Figure 5.2: Comparison between kernel density estimation and density approxima-

tions (2D). (a) kernel density estimation (b) density approximation (400 samples,

MISE = 1.5237 × 10−8)

5.4 Density Interpolation

The density approximation presented in Section 5.3 is an algorithm to find a compact

representation when the mean, the covariance and the weight for each kernel are

given. In the measurement step of Bayesian filtering, the likelihood values are known

for a set of samples. In this case, the likelihood surface can be interpolated from

sample likelihood. In this section, we describe the density interpolate algorithm.

5.4.1 Initial Scale Selection

One of the limitations of kernel-based algorithms is that they involve the specifica-

tion of a scale parameter. Various research has been performed for the scale selection

problem [1, 57, 70], but it is very difficult to find the optimal scale in general. Below,

we explain a strategy to determine the scale parameter for the density estimation

based on nearest neighbors.
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The basic idea of this method is very simple, and similar approaches are dis-

cussed in [8, 9]. Each sample is intended to cover the local region around itself in

the d-dimensional state space with its scale. For this purpose, k-nearest neighbors

(KNN) is used, and the kernel bandwidth (scale) is determined by the distance to

the k-th nearest neighbor of a sample. Define KNNi
j(k) (1 ≤ j ≤ d) to be the

distance to k-th nearest neighbor from sample i in the j-th dimension, and then the

covariance matrix Pi for i-th sample is given by

Pi = c diag(KNNi
1(k) KNNi

2(k) . . .KNNi
d(k))2 I (5.25)

where c is a constant dependent upon the number of samples and the dimensionality,

and I is a d-dimensional identity matrix.

By this method, samples in dense areas have small scales and the density will

be represented accurately, but sparse areas convey only relatively rough information

about the density function.

5.4.2 Interpolation

A Gaussian kernel is assigned to each sample for which mean and covariance corre-

sponds to the sample location and the scale is initialized by the method in Section

5.4.1, respectively. When the likelihood value on each sample is given, the weight

for each kernel can be computed by the Non-Negative Least Square (NNLS) method

[41].

Denote xi as the mean location and Pi as the covariance matrix for the i-th

sample (i = 1, . . . , n). Also, suppose that li is the likelihood value of the i-th sample.
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The likelihood at xj induced by the i-th kernel is given by

pi(xj) =
1

(2π)d/2 | Pi |1/2
exp

(

−1

2
D2(xj,xi,Pi)

)

. (5.26)

Define an n × n matrix A having an entry pi(xj) in (i, j), and an n × 1 vector b

having li in its i-th row. Then, the weight vector w can be computed by solving the

following constrained least square problem,

min
w

||Aw − b||2 (5.27)

subject to wi ≥ 0 for i = 1, . . . , n,

and it is denoted by w = nnls(A,b). The size of matrix A is determined by the

number of samples. When the sample size is large, sparse matrix operation methods

can be used to solve w efficiently.

Usually, many of the weights will be zero and the final density function will be

a mixture of Gaussians with a small number of components. The density interpo-

lation simulates the heavy-tailed density function more accurately than the density

approximation introduced in Section 5.3, while the density approximation generally

produces a more compact representation.

5.4.3 Performance of Interpolation

Figure 5.3 shows one-dimensional density interpolation results. For each case,

100 samples are drawn and the initial scale for each sample is given as explained

in Section 5.4.1. The estimated density function approximates the original den-

sity very accurately as seen in Figure 5.3. Two different Gaussian mixtures –
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N(0.2, 10, 22) N(0.35, 17, 42) N(0.15, 27, 82) N(0.2, 50, 162) N(0.1, 71, 322) in exam-

ple 1, and N(0.15, 12, 52) N(0.1, 15, 42) N(0.35, 60, 82) N(0.25, 75, 162) N(0.15, 90, 322)

in example 2 – are tested for the interpolation.
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Figure 5.3: Two examples of original density functions and their interpolations.

In the interpolation graphs (right), black stars represent the sample locations (100

samples). In case (a) and (b), 22 and 24 components have non-zero weights, respec-

tively.

When 50 independent realizations are performed, MISE and its variance are

very small for both examples as shown in Table 5.1.
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Table 5.1: Error of density interpolation

MISE VAR

example 1 3.9479 × 10−5 2.5613 × 10−9

example 2 2.6871 × 10−5 9.5103 × 10−10

Also, a multi-dimensional density function is interpolated in the same manner,

and its performance is discussed next. In Figure 5.4, the density interpolation

produces a very accurate and stable result when 200 samples are drawn from the

original density function (MISE = 4.5467× 10−9, VAR = 7.3182× 10−18 on average

over 50 runs).
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Figure 5.4: Comparison between original density function and density interpolation

(2D). (a) original density function (b) density interpolation with 30 non-zero weight

components

These results show that surface interpolation is a sufficiently accurate method

to approximate density function given samples and their corresponding likelihoods.
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5.5 Simulation

In this section, synthetic tracking examples are simulated, and the performance of

the kernel-based Bayesian filtering is compared with the SIR algorithm [31]. Two

different process models – one linear and the other non-linear – are selected, and

simulations are performed for various dimensions such as 2D, 3D, 5D, 10D, 12D

and 15D. The accumulated Mean Squared Error (MSE) through 50 time steps is

calculated in each run, and 50 identical experiments are made based on the same

data for accurate error estimation.

The first process model is given by the following equation,

xt =
xt−1

2
+

25xt−1

1 + xT
t−1xt−1

+ 8 cos(1.2(t − 1))1 + ut (5.28)

where 1 is the vector whose elements are all ones. The process noise ut is drawn

from a Gaussian distribution N(1, 0, (
√

2I)2) where I is the identity matrix. The

measurement model is given by a non-linear function

zt =
1

2
xT

t xt + vt (5.29)

where vt is drawn from a Gaussian distribution N(1, 0, I2). For the estimation of

the measurement function, fifty particles (10 particles × 5 stages) are drawn, and

the posterior is estimated and propagated through the time step t (1 ≤ t ≤ 50).

Figure 5.5 demonstrates simulation results by comparing MSE’s and variances

of both algorithms. According to our experiment with the first model, the SIR filter

shows better or equivalent performance in low dimensions such as 2D and 3D, but

our method starts to outperform in high dimensions – more than 5D.
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Figure 5.5: MSE. Kernel-based Bayesian filtering with 50 particles (blue star), SIR

with 50 particles (red circle), and SIR filter with 500 particles (black square) for

model 1.

The second process model is a simple linear model given by

xt =
xt−1

2
+ 2 cos(2(t − 1))1 + ut (5.30)

where ut ∼ N(1, 0, (
√

2I)2). The same observation model as equation (5.29) is

employed, and fifty samples are drawn for every simulation.

Kernel-based Bayesian filtering yields smaller error in the high dimension as

in the previous case, and the detailed results are presented in Figure 5.6.

Two different process models produce almost similar results, and kernel-based

Bayesian filtering shows better performance in high dimensional cases as expected.

In order to demonstrate the benefit of kernel-based particles, we run the SIR al-

gorithm with 500 samples, and compare the performance with our kernel-based

Bayesian filtering with 50 samples. Surprisingly, the MSE’s of the two cases are

almost the same, and our algorithm has smaller variance of MSE than the SIR
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Figure 5.6: MSE and variance of for MSE kernel-based Bayesian filtering with 50

samples (blue star), SIR filter with 50 particles (red circle), and SIR filter with 500

particles (black square) for model 2.

algorithm.

This result suggests that kernel-based Bayesian filtering can be applied ef-

fectively to high dimensional applications, especially when many samples are not

available and the observation process is very time-consuming.

5.6 Applications to Tracking

Particle filtering provides a convenient method for estimating and propagating the

density of state variables regardless of the underlying distribution and the given

system in the Bayesian framework. Additionally, our kernel-based Bayesian filtering

has an advantage of managing multi-modal density functions with a relatively small

number of samples. In this section, we demonstrate the performance of the kernel-

based Bayesian filtering by tracking objects in real videos.
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5.6.1 1D Simulation

For this experiment, the process model is given by the following equation,

xt = 1 + sin(wπ(t− 1)) + φ1xt−1 + ut (5.31)

where w = 4e − 2, φ1 = 0.5, and ut ∼ N(1, 0, 2) is the random variable for the

process noise. The measurement model is given by a non-linear function

zt = φ2(x
2
t + xt) + vt (5.32)

where φ2 = 0.5 and the observation noise vt is drawn from a Gaussian distrib-

ution N(1, 0, 0.1). One hundred particles are drawn by the quasi-random sam-

pling method, and the density is estimated and propagated for each time step t

(1 ≤ t ≤ 150).

As seen in Figure 5.7, the multi-modal densities are effectively represented

with the mixture of Gaussians, and the state density is propagated through the

measurement and update stages. The same experiment was repeated 100 times,

and the Mean Squared Error (MSE) between the true and the estimated target

location was computed. The MSE and the variance of our algorithm are 0.284 and

0.136 respectively, which are better than the classical particle filter (MSE = 0.340,

variance = 0.294).

5.6.2 Visual Tracking

The overall tracking procedure is equivalent to what is described in Section 5.5, and

we explain the process and the measurement models briefly.
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Figure 5.7: The sequence of 1D tracking simulation. The top of each figure shows

the prior probability, the second is the measurement function, and the last one is

the posterior probability. In the posterior pdf, the (red) vertical bar denotes the

true location of target.
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A random walk is assumed for the process model since it is very difficult to

describe the motion before the observation, even though our algorithm can accom-

modate the general non-linear function by unscented transformation described in

Section 5.2.2. This assumption is natural for the motion of objects in video, and

simple to manage because it is linear. So, the process model equation (5.1) can be

rewritten as follows.

xt = xt−1 + vt (5.33)

where vt is a zero mean Gaussian random variable.

5-stage sampling is incorporated as introduced in Section 5.2.3, and the like-

lihood of each particle is computed by comparing the target and the candidate

histograms as suggested in [58]. Supposed that the histogram of the target is de-

noted by c?(i) (i = 1 . . . N), where N is the number of bins in the histogram and

∑N
i=1 c?(i) = 1. The Bhattacharyya distance in equation (5.34) is used to measure

the similarity between two histograms

D[c?, c(xt)] =

(

1 −
N
∑

i=1

√

c?(i)c(xt; i)

)1/2

(5.34)

and the measurement function at time t is given by

p(zt|xt) ∝ exp
(

−λD2[c?, c(xt)]
)

(5.35)

Based on the likelihood of each particle and the initial covariance matrix derived

by the method in Section 5.4.1, the measurement density is constructed by density

interpolation.

Two sequences are tested in our experiment. In the first sequence, two objects

– a hand carrying a can – are tracked with 200 samples (40 samples × 5 stages).
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The state space is described by a 10 dimensional vector, which is the concatenation

of two 5 dimensional vectors representing two independent ellipses as follows.

(x1, y1, lx1, ly1, r1, x2, y2, lx1, ly2, r2) (5.36)

where xi and yi (i = 1, 2) are the location of ellipses, lxi is the length of x-axis, lyi is

the length of y-axis, and ri is the rotation variable. The tracking result is shown in

Figure 5.8, and our algorithm successfully tracks two objects for the whole sequence

except the period that the side of the can is completely occluded around the 470th

frame.

(a) t = 43 (b) t = 304 (c) t = 387

(d) t = 456 (e) t = 570 (c) t = 898

Figure 5.8: Object tracking result of can sequence.

The bodies of two persons are tracked in the second sequence, in which one

occludes the other completely several times. The state vector is constructed by the

same method as in the can sequence, but two rectangles are used instead of ellipses.

102



A 8 dimensional vector – (x, y, w, h) for each rectangle – is used to describe the

state, and 50 samples (25 samples × 2 stages) are used. Figure 5.9 (a) demonstrates

the tracking results, and our algorithm shows good performance in spite of severe

occlusions.

The tracker based on the SIR filter was also implemented, and compared

with our algorithm. As seen in Figure 5.9 (b), the SIR algorithm shows unstable

performance for the same sequence. According to experiments, one would need to

run the SIR algorithm using about 200 particles to obtain a comparable result with

our algorithm using 50 samples.

5.7 Discussion and Conclusion

In this chapter, we proposed a new Bayesian filtering framework where analytic rep-

resentations are used to approximate relevant density functions. Density approxi-

mation and interpolation technique are introduced for density propagation. Various

simulations and tests on object tracking in real videos show the effectiveness of our

density approximation methods and the kernel-based Bayesian filtering. By main-

taining analytic representations of the density functions, we can sample in the state

space more effectively and more efficiently. This advantage is significant for high

dimensional problems. In addition, the approximation error can be monitored and

analyzed. Our future work is focused on analyzing the approximation error in the

posterior distribution and its propagation over time.
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(a) Result by our method

(b) Result by the SIR filter

Figure 5.9: Object tracking result of person sequence at t = 1, 94, 140, 192, 236, 300.
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Appendix A

Robust Observations for Object Tracking

It is a difficult task to find an observation model that will perform well for long-term

visual tracking. In this chapter, we propose an adaptive observation enhancement

technique based on likelihood images which are derived from multiple visual fea-

tures. The most discriminative likelihood image is extracted by Principal Compo-

nent Analysis (PCA) and incrementally updated frame by frame to reduce tempo-

ral tracking error. In the particle filter framework, the feasibility of each sample

is computed using this most discriminative likelihood image before the observation

process. Integral image is employed for efficient computation of the feasibility of

each sample. We illustrate how our enhancement technique contributes to more

robust observations through demonstrations.

A.1 Introduction

Trackers are based on the some measurement of similarity between the target to be

tracked and observations, and various observation methods are used to define this

similarity. Intensity or color is natural to use in object tracking, and approaches

based on templates [44] and histograms [13, 45, 53, 58] are very common. Also, edges

[31] and filter responses [34, 51] are important features for object tracking. Various
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observation strategies have been proposed, but there is no generally superior obser-

vation method for visual tracking algorithms. So, we instead propose an observation

enhancement technique based on likelihood images, which can be incorporated into

many tracking algorithms.

A likelihood image represents the contrast information between foreground

(target region) and background (its surrounding); it is created by comparing his-

tograms of both areas with respect to some features. It was originally suggested in

[10] for tracking problems; there, the most discriminative feature selected from a set

of likelihood images is directly used for mean-shift tracking. However, this approach

may exhibit poor performance in clutter and can lose the target in spite of its visual

salience. Also, the likelihood image can be significantly contaminated by temporary

tracking errors. There have been some closely related works [7, 51], but they do not

provide an adequate solution to these problems.

In this chapter, we present an observation enhancement technique using like-

lihood images obtained from two different feature spaces – RGB and normalized

RGB (rgb). Six likelihood images are created, and a most discriminative likelihood

image is extracted by PCA. In order to avoid pollution of the extracted likelihood

image by tracking error, we update the subspace incrementally on the assumption

that the scene around the target changes smoothly. The “brightness” in the most

discriminative likelihood image delivers prior information about the target region,

and it is employed to compute the feasibility of a sample (to be defined rigorously

below) before the measurement step in the particle filter. The feasibility is obtained

by the summation of values inside the region in the most discriminative likelihood
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image, and an integral image [80] is employed for efficient computation. The final

weight of each particle is determined by the product of the feasibility and the likeli-

hood in observation. As a result, several independent features are merged through

the likelihood images and the merged features are utilized for robust observation via

the feasibility computation.

This chapter is organized as follows. We describe the likelihood images and

the feature extraction in Section A.2 and A.3, respectively. In Section A.4, tracking

in a particle filter framework and experimental results are demonstrated.

A.2 Likelihood Images

Likelihood images represent the distinctiveness of a target object from background

with respect to a given feature or set of features. For the construction of likeli-

hood images, log-likelihood ratios are obtained first from histograms of foreground

and background pixels. Then, the salient region in foreground can be detected by

identifying high likelihood ratios.

In detail, suppose the foreground is given and the background is regarded as

a rectangular region surrounding the foreground. For a given feature, let φfg(i) and

φbg(i) be the frequency of pixels with value i in the foreground and the background,

respectively. The log-likelihood ratio for a feature value i is given by

L(i) = max

(

−1, min

(

1, log
max (φfg(i), δ)

max (φbg(i), δ)

))

(A.1)

where δ is a very small number. The likelihood image for each feature is created by

backprojecting the ratio into each pixel in the image.
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We construct a likelihood image for each color channel in the RGB and rgb color

spaces, so that 6 different likelihood images are generated for feature extraction.

Figure A.1 shows example likelihood images derived from each color channel.

A.3 Feature Extraction by PCA

A.3.1 Batch Method

Our objective is to identify the most discriminative likelihood image and measure

the feasibility of each particle to improve the observation quality.

There are various feature extraction methods; here, PCA is employed to gen-

erate the most discriminative likelihood image. The linear discriminant method

may not be appropriate since the histograms of the foreground and the background

regions are often multi-modal in the original color image. However, the transformed

likelihood image is likely to have positive value pixels in the foreground region while

negative value pixels tend to be frequently observed in the background region. Even

though the foreground and the background cannot be perfectly separated by a linear

hyper-plane, we can expect that most pixels would be classified correctly by it. Also,

linear methods are much faster than their non-linear counterparts such as Kernel

LDA [47] and Kernel PCA [67].

Suppose that Sfg and Sbg are the set of n-dimensional vectors sampled from

the foreground and background area of n likelihood images, and that m and V are

the n × 1 mean vector and n × n covariance matrix of these data, respectively. Let

ei (i = 1, . . . , n) be the eigenvectors associated with the eigenvalues λi which are

sorted in non-increasing order. Once ei are obtained, the value y projected from the
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Figure A.1: Likelihood images in RGB (left) and rgb (right) color channel. For this

image, the target in rgb space is more distinctive.
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original vector x to the most discriminative feature space is given by y = eT
1 (x−m).

The following figure shows an example of the most discriminative likelihood image

extracted by PCA.

(a) original image (b) extracted image

Figure A.2: Comparison between original image and the most discriminative likeli-

hood image

The most discriminative likelihood image for the first frame is created by batch

processing, but the subsequent ones are constructed by the following incremental

method to include previous information.

A.3.2 Incremental Subspace Update

As described above, the distinctiveness information of the target in likelihood im-

ages can be significantly reduced by tracking errors. We alleviate this problem by

updating the subspace incrementally rather than using a completely new subspace

in each frame.

Since the data added in each frame has as many samples from the foreground

or from the background region and the number of dimension is moderate in our
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application, the standard incremental PCA [27, 82] is not required and a simpler

(but accurate) method can be used. Instead of computing eigenvectors without

consideration of the full covariance matrix and the matrix decomposition, we just

compute the updated mean and covariance with new observations in the current

frame and perform SVD to obtain eigenvectors.

Denote by (mold,Vold) and (m,V) pairs of mean and covariance in the pre-

vious and current time step, respectively. Then, the updated mean and covariance

(mnew,Vnew) including the new observations are as follows.

mnew = (1 − α)mold + αm (A.2)

Vnew = (1 − α)Vold + αV +

α(1 − α)(mold − m)(mold −m)T (A.3)

where α is the learning rate whose value is between 0 and 1. The derivations of the

above equations are shown in equation (7) and (8) in [27].

In each time step, an incremental subspace update is performed to obtain the

most discriminative likelihood image. This method is more efficient than the batch

method since we do not need to store the data from the previous frames; instead,

we only need the mean and covariance matrix.

A.4 Tracking by Particle Filtering

In this section we will show how to incorporate feature extraction technique for

robust observations into the particle filter framework.

The particle filter [31] is a stochastic framework to propagate the conditional
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density to the next step. The state variable xt (t = 0 . . . n) is characterized by its

probability density function estimated from the sequence of measurements zt (t =

0 . . . n). The density function is represented with a set of samples and their weights

which enable us to describe an arbitrary probability density function effectively.

In our experiments, the state variable is a 3-dimensional vector (x, y, s) where

(x, y) is 2D location of an object and s is a scale parameter, and the target is

represented with a rectangular region. A random walk is assumed for the process

model since it is not desirable to assign any specific motion model before observation.

Since we employ SIR filter, the weights of particles are equal until the prediction

step; then they are updated twice by the feasibility and the likelihood in observation.

A.4.1 Feasibility for Particle

Feasibility is meant to capture how the region represented by a sample is salient

with respect to the background, and it is computed by the summation of values

inside the region in the most discriminative likelihood image.

Formally, suppose that the value at (x, y) in the most discriminative likeli-

hood image is MD(x, y). Since we use rectangular regions for the observation, the

feasibility wf is

wf(xi, yi, si) =
∑

xi≤x≤xi+wi,yi≤y≤yi+hi

MD(x, y) (A.4)

where xi ≤ x ≤ xi +wi, yi ≤ y ≤ yi +hi is the area associated with the i-th particle.

The integral image (II) proposed in [80] is defined to be

II(x, y) =
∑

x′≤x,y′≤y

MD(x′, y′), (A.5)
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so that the feasibility can be computed by only 4 table look-up operations using the

integral image. After computing the feasibility, the sample weight is updated with

this value.

This strategy is reasonable since the regions containing many high likelihood-

ratio pixels are selected target candidates based on multiple visual cues and the

observation process described below can compensate for the disadvantage of likeli-

hood images – poor performance in clutter.

A.4.2 Observation

Color-based tracking is employed in our experiments. The likelihood of each step is

based on the similarity of the RGB histogram between the target and the candidates.

The histogram of the target is denoted by c?(i) (i = 1 . . . N), where N is the number

of bins in the histogram and
∑N

i=1 c?(i) = 1. The Bhattacharyya distance in equation

(A.6) is used to measure the similarity between two histograms

D[c?, c(xt)] =

(

1 −
N
∑

i=1

√

c?(i)c(xt; i)

)1/2

(A.6)

and the final measurement function including feasibility at time t is given by

p(zt|xt) ∝ wf(xt)exp
(

−λD2[c?, c(xt)]
)

(A.7)

where λ is a constant.

A.4.3 Results

Two different video sequences were used to test the performance of our tracker –

people and vehicle sequence. In the people sequence, the target is not so distinctive
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in likelihood images due to clutter, so tracking only with likelihood images is not

successful. However, the combination of feasibility and likelihood in observation can

track a person for the whole sequence with 100 particles. The tracking results are

shown in Figure A.3.

(a) t = 1 (b) t = 100

(c) t = 210 (d) t = 300

Figure A.3: Tracking results with people sequence

A car is moving in the severe fog in the second video, which is downloaded from

Universität Kahlsruhe homepage (http://i21www.ira.uka.de/image sequences).

Even with white pixels due to the fog in the background, the white car in the

foreground is identified clearly in the most discriminative feature space as seen in
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Figure A.2, and tracking was also successful with 100 particles.

(a) t = 1 (b) t = 25

(c) t = 67 (d) t = 95

Figure A.4: Tracking results with vehicle sequence

A.5 Discussion

We described a method to improve the robustness of observations for object tracking

using the most discriminative likelihood image. This likelihood image is obtained

from the combination of multiple independent features and updated incrementally.

This technique is incorporated into a particle filter, and tracking is performed based

on the original image as well as the combined likelihood image.

In particle filter tracking , the quality of sampling is critical to its overall
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performance. So, we can achieve better results with a small number of samples if

the particles with low feasibility are rejected and new samples are used. Currently,

only color information is used, and other visual features should be tested in our

framework.
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