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With the global transition to lead-free electronics, the electronic component market 

has seen an increase in the selection of pure tin and tin-rich alloys as lead-free 

component finishes.  The adoption of tin-rich finishes has enhanced a reliability issue 

associated with the formation of electrically conductive whiskers, emanating from tin 

finished surface.  A spontaneous growth of whisker may bridge adjacent conductors, 

leading to current leakage or electrical shorts.

Whiskers tend to grow over many months.  However, due to a lack of the factors 

accelerating whisker growth, prediction of whisker formation is extremely difficult.  

Therefore, the effective mitigation strategies are necessary, particularly for high-

reliability applications, which require a long product operational life. The objective 

of this study is to investigate a method for characterizing whisker growth, which can 

further enable measuring the effectiveness of mitigation strategies.

To achieve this objective, a set of experiments was conducted using matte and 

bright tin platings on copper, Alloy-42, and brass metal coupons.  The plated coupons 
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were subjected to high temperature exposures, including annealing (at 150ºC/one 

hour).  Whisker growth on tin-plated samples was characterized using environmental 

scanning electron microscopy, in terms of the maximum whisker length, length 

distribution, and whisker density, at different time periods up to 24 months.

The experimental results have shown different behaviors of whisker growth 

(length and density) between bright and matte tin, depending on the materials and 

exposure conditions.  It was experimentally demonstrated that bright tin over brass 

could be considered a worst-case scenario for assessing the risks associated with tin 

whiskers.  This work has further revealed that the current industry practice of testing

for 3000 hours for monitoring the propensity of tin whiskers is insufficient to cover a 

saturation of whisker density and capture the temporal nature of whiskers.  In order to 

overcome such insufficiencies, the use of time-based distribution data for whisker

length and whisker density was proposed as an alternative method for characterizing 

whisker growth.  With the application of this proposed method, the effect of 

annealing (150ºC/one hour) and its effect under the presence of electrical current 

were investigated for retarding whisker formation and growth on tin-plating.
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Chapter 1. Introduction

A rapid industrial growth in electronics has given rise to increased awareness 

regarding environmental responsibility.  Various regulatory actions are being 

proposed, which require electronics manufacturers to take responsibilities including 

the use of ‘green’ materials and the recycling of important resources for 

environmental protection.  The most significant international action is the European 

directive on the Restriction of Hazardous Substances (RoHS), which prohibits the 

manufacture and selling of various electronic products containing lead and other 

hazardous substances after July 2006 [1].  Due to the global nature of the electronics 

industry, an expedient transition to lead-free electronics has become necessary for 

most electronics industry sectors.  Although numerous solutions and developments of 

lead-free materials and products are already in place, significant changes in materials, 

design, processes, and supply chain, have prompted reliability concerns pertinent to 

the implementation of lead-free electronics.

1.1 Transition to Lead-free Electronics

In order to enhance the recycling and decrease the negative health impact of 

hazardous substances in electronics, the European Union finalized two directives on 

the Waste Electrical and Electronic Equipment (WEEE) and its supplementary RoHS 

directive in 2003 ([1], [2]).  The RoHS directive requires the elimination of lead, 

mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBBs), and 

polybrominated diphenyl ethers (PBDEs) in electrical and electronic products after 

July 1st 2006.
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Lead has been used in a wide range of electronics applications, including solder 

interconnection, component terminal finishes, solder balls of area-array packages, and 

the surface finish of printed circuit boards (PCB).  However, lead is a toxicant 

substance.  When lead is present in the discarded electronic products in landfills, it 

may cause environmental threats by leaching into and contaminating the ground 

water.

Since the consequences of not meeting the RoHS deadline may translate into 

exclusion from European, and possibly global markets, most electronics industry 

sectors are faced with an expedient transition to lead-free electronics [3].  The 

electronics manufacturers in U.S. are also in the process of lead-free changeover, 

although there is no pending regional legislation mandating the removal of lead.  

Much prior to a ban, proactive developments of lead-free materials and products were 

often observed in Japan and Europe, where many companies had envisioned 

economic rewards from producing lead-free products before the competition [4].

1.2 Lead-free Material Selection

As a result of extensive industry-wide efforts, various lead-free materials, 

products, and systems are in the market.  However there is no single drop-in 

replacement for lead-based materials, which have been in use over the last forty years 

in the electronics industry.  The adoption of lead-free materials and processes has 

often prompted new reliability concerns [5], due to different alloy metallurgies and 

higher process temperatures relative to tin-lead soldering.  In order to ensure 

reliability of lead-free product while maintaining reasonable costs, various lead-free 

materials for the solder joint interconnects (e.g., [6]-[10]), component finishes (e.g., 



3

[11]-[13]), or the surface finish of printed circuit board (e.g., [14]-[16]), have been 

investigated.

1.3 Lead-free Electronic Component

To conform to the RoHS legislation imposing the use of lead-free products, most 

electronic part manufacturers have also sought lead-free finishes to replace the 

traditionally used tin-lead finishes.  The finish selection is important in providing 

corrosion resistance, good solderability, durable solder joints, and an electrically 

conductive pathway through the surface of the component.  For example, 

metallurgical incompatibility between the solder alloy and the terminal finishes 

should be avoided, since it could result in solder joint brittleness, low strength, or lack 

of thermal fatigue resistance [17].

For array components, tin-silver-copper alloy is the leading replacement for the 

conventional Sn-36Pb-2Ag alloys or eutectic tin-lead (Sn-37Pb) solders.  For the 

peripheral components, currently available lead-free finishes are broadly classified 

into two categories, i.e., tin-based finishes and to lesser-extent noble-metal (nickel-

palladium-gold and nickel-gold) platings.  The advantages of tin and tin-alloys 

include excellent corrosion resistance, good electrical conductivity, and ability to 

protect a base metal from oxidation.  The tin-based finishes have been widely selected 

in the electronics industry, while the palladium pre-plated leadframe (PPF) is used in 

approximately 10% of the leadframes in industry (as of May 2005) [18].  The PPF is 

created by plating an entire leadframe with noble metal prior to component 

encapsulation process.  Thus, the advantages of PPF include the shorter cycle time for 

assembly, higher resistance to whisker formation, and improved processability, such 
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as bondability, moldability, and minimization of solder cracking during trim and form 

[19], [20]. However, the adoption of PPF may lead to additional cost of palladium, 

poor adhesion with Alloy-42 substrate, solder joint embrittlement, and creep 

corrosion.  When there exist exposed copper on leads, creep corrosion1 may initiate 

by reacting with corrosive elements in the atmosphere and will be a potential 

reliability risk for the electronic packages, especially when a long-term operation 

period is required [13]. Table 1 provides a comparison of lead-free finishes available 

for the leaded packages.

Table 1: Comparison of various lead-free component finishes [21], [22]

Type of finish, 
(melting point)

Advantages Disadvantages

Pure tin 
(232ºC)

-Lowest cost
-Wide availability
-Least requirement for change 
in existing process/equipment

-Poor resistance to oxidation
-Whiskers

Tin-bismuth 
(212ºC)

-Good solderability
-Relatively easy to control the 
deposit process
-Less costly than palladium-
containing plating

-Toxicity of bismuth
-Difficult process control and 
control of chemical content 
(since Bi content in the solution 
drops rapidly)
-Instability in the presence of 
lead
-Whiskers

Tin-copper
(227ºC)

Good mechanical 
characteristics

-Poor wetting characteristics
-Whiskers
-Plating chemical is very 
difficult to control
Must control copper content
between 0.7~3.0%
-Poor resistance to oxidation

1 Creep corrosion is a mass-transport process during which solid corrosion products migrate over a surface [13]
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Tin-silver
(221ºC)

Good solderability

-High cost due to silver
-Difficult process control-
compositional control
-Corrosion in the case of H2S
-Complexity in waste water 
treatment

Nickel/
palladium/
gold or 
Nickel/gold

-Good resistance to oxidation 
and corrosion
-Experiences in the market for 
ten years

-High cost due to palladium
-Creep corrosion
-More susceptible to surface 
damages
-Limited applicability to Alloy-
42 leadframe

In order to track the type of lead-free finishes, selected by electronic part 

suppliers, a survey was conducted among 121 part suppliers in U.S. during 2003-

2005.  As shown in Figure 1, the electronic component market has clearly seen an 

increase in the selection of pure tin and tin-rich alloys as the preferred finish.  This 

preference mainly stems from the advantages of tin-rich alloys, including low cost, 

good processability, good corrosion resistance, and compatibility with both 

conventional tin-lead and lead-free solders.  A breakdown of selected lead-free 

finishes is given in Figure 2.  It should be noted that the most preferred tin-rich finish 

may vary country-by- country.  For instance, tin-bismuth is the most widely adopted 

lead-free finish for leaded packages in the Japanese electronics industry, as opposed 

to pure tin in U.S. (as this time of writing) [23].
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Figure 1: Increase in tin-rich finished parts

Figure 2: Selection of lead-free finishes

The European Union’s RoHS legislation provides a list of exemptions, 

considering the mission-criticality of the system or applications and the technological 

limitation in the alternative materials and processes [24].  However, regardless of 
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discontinuation (Figure 1) may be inevitable, since the electronic part market is 

typically driven and supported by large-volume industry segments, such as 

telecommunication and computer applications.  Due to lack of lead-based parts and 

increased usage of lead-free components, it will likely be a challenge for smaller 

market segments, such as military/space electronics segments (less than 2% of the 

total electronics market [25]), to control over the part selection, neither driving nor 

resisting the transition to lead-free electronics.  In other words, even when pure tin 

and tin-rich lead-free finishes are undesired, there is a high likelihood that this type of 

finish will end up somewhere in the system [26].

1.4 Tin Whiskers

The reliability concerns associated with the use of pure tin and tin-rich alloys are 

tin whisker formation and to a much lesser extent tin pest [27].  Although both 

physical phenomena have been known for centuries, their occurrence in conventional 

tin-lead soldering and plating finishing materials has been significantly rare.

Tin pest is an allotropic transformation of ordinary white tin (β-tin) into powdery 

gray tin (α-tin) at 13ºC.  Publications ([27], [28]) indicate that increase in volume, 

associated with allotropic transformation of tin, may lead to crack initiation in the 

solder joint, when it is subjected to higher strain.  However, the relevance of this 

metallurgical phenomenon is still doubtful, since there are no reported field failures, 

caused by tin pest, in real engineering applications.

Pure tin and even high tin content (>97%) finished surfaces can potentially form 

electrically conductive whiskers.  Tin whiskers are spontaneous growth of mono-
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crystalline tin [29] (Figure 3, Figure 4), which can be formed during electro-

deposition and sometimes spontaneously during storage or service, after finishing 

[30].  However, tin is the most prevalent metal with relatively high whiskering 

potential in electronic circuits.  Potential sites of tin whisker formation in electronic 

systems include component terminals, the internal and external surface of metal lids, 

PCB surface finishes, mechanical fasteners, electronic connectors, and shielding 

materials.

Figure 3: Whisker growth: needle-like filament

Figure 4: Whisker growths: columnar shape
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The whisker growth is not the same as dendrites.  Dendrites are conductive metal 

filaments, which grow on the surface, provided with the presence of an electrolytic 

solution and a DC voltage bias [31].  Whiskers can be in a variety of shapes including 

needle-like filament, kinked, bent, forked, and lumps [32].

In order for whiskers to form, tin must migrate to the whisker site.  Since the 

original shape and characteristics of surface, which whisker initiated from, are 

maintained at the tip of whisker, whiskers are believed to grow as a result of added tin 

atoms at the base of whiskers, as opposed to at the tip of whiskers [33].  However, it 

is unclear if the tin moves along the surface or from under the surface.  It may very 

well come from both routes.  Due to an absence of local thinning of electroplate at the

base of whisker crystals, Key [34] pointed out that the atom transport mechanism in 

whisker growth is long range.

To date, a wide variation in the growth characteristics, including length (0.3-10 

mm), density (3-500 whiskers/mm2), growth rate, and incubation time (days to years)

[34] have been reported.  Some examples of the reported whisker characteristics are 

given in Table 2.

Table 2: Examples of reported characteristics of tin whisker growth

Reported characteristics of tin whiskers
Reference

Diameter Length
Examined sample

Koonce [32] 0.05-5.8µm Not reported Tin over steel

Fisher [35] 1µm Not reported
Electroplated tin 
over steel

Kehrer [36] 0.4-2.0µm 2000-33000µm Not reported

Franks [37]
Rarely more than 
2µm

Rarely more than 
1000µm, up to 
5000µm observed

Electroplated tin 
over steel

Tu [38] Not reported 0.1mm Not reported
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Cunningham [39]
3.3µm (Filament) 
7.4µm (Nodule)

254µm, up to 1320µm 
(Filament)
17.8µm (Nodule)

Tin (hot tin dip) 
over aluminum

Hada [40] Not reported 4000µm
Electroplated 
bright tin

ASTM B545 [41] 2.5µm up to 10000µm Not reported
Arnold [42] Few µm 100 to 5000µm Not reported

Brusse [43] Not reported 800µm
Electroplated 
matte tin

The rate of growth is not necessarily constant, and whisker growth may stop 

upon reaching a certain length or interrupt itself.  In 1954, Fisher, et al, [35], were the 

first to discuss whisker growth rate as a function of the applied pressure.  He 

concluded that the rate of growth is proportional to the applied pressure.  However, 

values reported in the literature still vary (0.03-9mm/year), as evident from the 

reported whisker growth rate given in Table 3.  Further, whiskers tend to have an 

incubation time2, which could be days to years [44].  Consequently, whisker 

propensity is difficult, if not possible, to predict.

Table 3: Examples of reported growth rate of tin whiskers

Reference Reported growth rate of tin whisker

Fisher [35]
10,000Å/sec (linear growth rate: 1 Å/sec)
with an application of pressure up to 7500 Psi

Hasiguti [45]

Growth rate = DP a3/RkT cm/sec
where, D: self diffusion coefficient of tin at temperature T, P: 
Pressure, a: atomic spacing, R: distance between the dislocation 
spiral and the region where the pressure P is maintained

Tu [38] 0.2Å/sec
Key [34] 1.016mm/month
Kadesch [46] 0.13-0.80mm/year
Tu [47] 0.2Å/sec

2 The incubation time is defined as the amount of time for the whisker phenomenon to appear.
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1.5 Problem Statement

The continued adoption of tin-rich lead-free finishes has created a reliability 

issue in the electronics industry, pertaining to the formation of conductive tin 

whiskers, which can cause current leakage or electrical shorts, leading to failure 

between adjacent conductors.  Numerous field failures have been attributed to tin

whiskers as early as in 1940s [48] and resulted in losses of at least a billion dollars to 

date [26].

Despite its 60-year history and recent extensive industry-wide studies on tin 

whiskers, the growth mechanism(s) of tin whiskers are not yet clearly understood.  

Although a test standard now exists and electronic part manufacturers are gaining 

experiences with their selected lead-free finishes, the randomness in whisker growth 

and lack of an acceleration method to induce whiskers continue to nag at the industry.  

None of the proposed tin whisker test methods and conditions have been proven to be 

effective discriminators for safe/unsafe (i.e., whisker-free or not) tin platings in terms 

of whisker propensity, and to be correlated with any particular field use environment

[26].  In other words, there is currently no way to quantitatively predict whisker 

lengths over long time periods based on the lengths measured in the short time test.

This fact also raises questions with respect to the effectiveness of proposed 

mitigation strategies.  There has not yet been established a guaranteed method of 

avoiding whisker growth.  Particularly for products when high reliability and safety 

are critical, the effective strategies to retard the formation or growth of whiskers are 

needed.  Due to limited component availability (coupled with obsolescence of leaded 

materials), avoiding pure tin is not a feasible option.  In addition, redesigning a
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system to incorporate the use of other lead-free finished parts is not a practical option 

for these costly electronic systems.  Further complicating the matter, existing risk 

assessment metrics and electronic part manufacturers’ acceptance criteria for tin 

whiskers are not yet sufficient to assess and quantify the actual risks posed by 

whiskers.

1.6 Objectives and Scope of Study

The objective of this dissertation is to investigate a method for characterizing 

whisker growth, which can further enable measuring the effectiveness of mitigation 

strategies.  Since there exist many factors influencing whisker formation and growth, 

and their interaction and effects on growth are still elusive, it is by no means 

straightforward to generalize the effect of each factor.  A set of experiments was 

conducted and the data on whisker length, density, and their distribution were 

analyzed to characterize the whisker growth under the selected exposure conditions.

This dissertation work attempts to understand several aspects of tin whisker growth 

by answering the following questions:

• Can bright pure tin be used as a worst-case scenario of the growth of tin 

whiskers?

• Does whisker density saturate?

• Is maximum whisker length a sufficient measure to characterize the 

whisker growth and evaluate the effectiveness of annealing (or other 

mitigation strategies)?
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• Can the effectiveness of annealing (150ºC/one hour) in reducing the 

growth of whiskers be maintained in room ambient storage for a long 

duration?

• Can annealing be effective under temperature/humidity exposure at 

50ºC/50%RH to retard the growth of whiskers?

• Does electrical current (48 A/cm2) affect the growth of whiskers?

In this dissertation, the growth of whiskers was examined on electroplated pure-

tin finishes.  Although whiskers have been reported to grow in the solid phase from 

the bulk material [50] and from the vapor deposition [51], electrodeposited finishes 

are most susceptible to whiskers due to the high current densities involved in the 

plating process.  Further, the electrodeposition has been preferred, particularly for 

finishing the electronic components with finer-pitches.

The conventional tin-lead platings were not included in the experiment, since 

whisker lengths, typically reported on tin-lead plating, are known to be much shorter, 

as compared to other tin-based finishes ([39], [52]-[54]).  In fact, Pitt and Henning 

[55] observed a decrease in whisker propensities with increased lead (Pb) content in 

tin-lead plating.

Commonly used tin alloys, including tin-lead, tin-bismuth, and tin-copper also 

have the potential for whisker formation.  Tin-copper finish was reported to have the 

longest whisker in various literatures (e.g., [21], [56]).  For example, Nakadaira [57]

reported a comparison of maximum observed whisker lengths on tin-based finishes, 

which were subjected to 60ºC/95%RH exposure condition:
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Sn-0.7Cu (120µm) > Pure Sn (80µm) > Sn-2Bi (50µm) > Sn-15Pb (40µm)

Mainly due to the high preference for pure tin finishes among electronic part 

suppliers, the scope of this dissertation covers only pure tin.

1.7 Dissertation Overview

Chapter 1 provides an introduction to this dissertation research.  A review of the 

electronic component market is given in order to describe significant material 

changes in the electronic component market, as the result of the global movement to 

lead-free electronics.  Followed by a brief introduction of tin whiskers, the problem 

statement, objectives, and scope of this research are also presented in this chapter.

The second chapter reviews the previous studies on tin whiskers, including 

growth mechanisms, field failure experiences attributed to tin whiskers, and the 

proposed mitigation strategies.  This chapter also encompasses discussions on the 

effects of selected parameters (e.g., type of plating, exposure conditions) with respect 

to relevant previous studies as well as uniqueness of the current study.

Chapter 3 outlines an experimental approach, taken to achieve the objectives of 

this dissertation research.  Test procedures for two sets of experiments are described, 

along with inspection methods adopted in the course of two years experiment.  Some 

of the adopted statistical analysis methods in this study are further described in 

Appendix.

The observation results and associated discussions are presented in Chapter 4, in 

such a way that the answers to the formulated questions are explained in each 
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subsection.  Last of all, conclusions and contributions of this dissertation are provided 

in Chapters 5 and 6, respectively.
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Chapter 2. Previous Studies on Tin Whiskers

2.1 Tin Whisker Growth Mechanisms

Proposed mechanisms for tin whisker growth include diffusion-related 

dislocation model ([58], [59]), crack tin-oxide model [60], and recrystallization model

([47], [61]-[63]).  Although a consensus on a single whisker growth mechanism has 

not yet been agreed, it is widely agreed that compressive stress, generated within the 

tin plating, is a necessary factor influencing tin whisker growth ([64], [65]).

Compressive stress may result from the formation of intermetallic compounds (IMC) 

due to the interaction between the tin plating and the substrate material, or presence 

of residual stress in the tin deposit from electroplating process, mechanical loading, 

surface damage, and mismatches in coefficient of thermal expansion (CTE) of the 

plating and substrate or underlayer [66].

The growth of IMCs is a diffusion-based phenomenon.  The intermetallic layer 

itself will not necessarily lead to compressive stresses in the tin deposit, if the 

intermetallic layer is formed uniformly [67].  However, an irregular, scallop-like IMC 

can be formed, when the dominant diffusion occurs through grain boundaries or 

dislocations [65].  For example, in the case of tin plated copper leadframe, irregular-

shaped intermetallics of Cu6Sn5 is formed at room temperature [64]. (Figure 5

illustrates the presence of irregular shaped Cu6Sn5 IMC in this experiment).  The 

Cu3Sn intermetallic, which is formed subsequently to Cu6Sn5, is believed to prevent 

non-planar Cu6Sn5 IMC from growing further and adding to the compressive stress 

within the deposit.  The different densities of materials (copper, tin, Cu6Sn5, and 



17

Cu3Sn have a density of 8.9, 7.9, 8.3, and 11.3 g/cm3 respectively [68]) also appear to 

be a contributing factor influencing compressive stress.  Furthermore, IMC growth 

will alter the lattice structure especially around grain boundaries, which results in 

compressing the remaining tin layer and applying tension to the substrate [69].  With 

the introduction of an underlayer, such as nickel, it is possible to delay the 

intermetallic growth, because tin-nickel intermetallics (e.g., Ni3Sn4) grow slower than 

tin-copper IMC.  The beneficial influence of a nickel underlayer for retarding whisker 

growth has been reported in various studies ([40], [60], [70]-[72]).

Figure 5: Tin-copper intermetallics

The electroplating chemistry and process, including impurities, organic additives, 

and current density of the plating bath, will affect the level of stress in the deposit.  

Electro-deposited finishes are considered to be more susceptible to whiskering, 

because they induce lattice defects (e.g., dislocations and vacancies) and stacking 

faults, which result in residual stresses [69].  However, mechanically applied extrinsic 

stress after plating has been shown to have much stronger influence on whisker 

formation [54].
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Mechanical loading, such as that introduced in the lead formation process can 

also create localized stress.  For example, high compressive pressure from bolts or 

screws has been shown to produce whiskers in tin deposits [31].  Surface damage and 

imperfections, including scratches and nicks, can also create stress and may act as a 

nucleation point for whisker formation.  In this study, higher whisker propensities 

were observed along areas of surface damage.

Figure 6: Whiskers grown along scratches on bright tin plated copper

The difference in the coefficient of thermal expansion (CTE) between the tin 

finish and the substrate material, or the underlayer is another source of compressive 

stress.  For instance, under thermal cycling conditions, whisker formation has been 

observed to be accelerated for Alloy-42 [73].

When the tin-rich coatings are exposed to thermal excursion, the tin oxide, either 

stannous oxide (brownish-black compound, SnO) or stannic oxide (gray-white 

compound, SnO2), will be formed at the surface.  The higher temperature and longer 
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exposure duration result in the thicker surface oxide.  Schetty [71] reported the 

thickness of oxide layer as 26 Å for as-plated samples, compared to the layer 

thickness of 45 Å for the annealed (150ºC) samples, based on Sequential 

Electrochemical Reduction Analysis.  Zhang [60] measured by X-ray Diffraction that 

the presence of tin oxide layer did not induce stress within the tin plating.  However, 

it could physically prevent the whisker from penetrating through the surface as far as 

the oxide layer covers the tin surface [67].

2.2 Risks from Tin Whiskers

Whisker, particularly the needle-like whisker, is a major concern for the 

electronics industry, since it can bridge adjacent conductors, leading to current 

leakage or electrical shorts.  Numerous electronic field failures have been attributed 

to tin whiskers and resulted in loss of millions of dollars ([26], [43]).

Due to lack of accepted methods for assessing tin whisker growth susceptibility 

and the probability of associated failures, tin whiskers raise considerable reliability 

issues, particularly for the high-reliability product community (e.g., space, military, 

and high-end computer servers and storage).

2.2.1 Failure Mode

The potential risks induced by whiskers include current leakage, electrical shorts, 

metal vapor arcing at low-pressure condition, and a source of debris and 

contamination ([29], [43], [74]).  The potential for failure increases with system 

miniaturization.
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Conductive whiskers can create shorts by bridging two adjacent conductors at 

different potential.  Bridging can occur either when a sufficiently long whisker 

reaches an adjacent conductor from its original growth site, or when an entire whisker 

or a section of it breaks off and is displaced from its original growth site.  Due to its 

extremely small size and weight, broken whiskers may float with an airflow and fall 

onto locations where they can cause bridging.  The weight of whisker can be 

estimated3 as 1.47*e-9 gram, assuming a perfect columnar shape of 50µm-long 

whisker with a diameter of 2µm.  However, the chances of whiskers breaking due to 

vibration or mechanical shock appear to be very low, since the crystalline structure of 

tin whiskers makes it strong in the axial direction [52].  In Okada’s study [75], no 

whiskers (up to the length of 85µm) were observed to break, deform, or fall, under 

the vibration test 4 [76] used in avionics sector and the drop test condition5 for the 

mobile phones [77].  Furthermore, the current practice of limiting forced air-cooling 

and closely packing the boards also reduces the likelihood of moving air breaking off 

the whiskers. Electrical shorts can either be permanent or intermittent, depending on 

the current carrying capability of the whiskers and the applied current.

Catastrophic failures have been reported when a whisker fuses open with a 

current of more than a few amps and a supply voltage over twelve volts in a vacuum 

or low-pressure environment [43].  In such conditions, the vaporized tin may initiate a 

plasma discharge, which can carry currents over 200 amps and may continue until all 

available exposed tin is consumed or the supply current is interrupted ([44], [74]).

3 Density of white tin is 7.31g/cm3, volume of whisker is 6.28*10-7 
4 Conditions for the vibration test: Frequency range of 10-2000Hz, Maximum acceleration of 20G, Maximum amplitude of 
3.0mm, 1 octave/minute, two directions, 10 cycles [76]
5 Drop test condition: Maximum acceleration of 3000G, Acted time of 0.3msec., 6 directions, each 3 times [77].
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Broken whiskers can also be a source of contamination.  For example, they may 

interfere with the operation of micro-electro-mechanical structures (MEMS) or 

contaminate optical surfaces [44].

2.2.2 Failure Experiences

Particularly in the late 1980s and early 1990s, field failures have been reported in 

a variety of electronic applications, ranging from consumer electronics to space-based 

systems [78] (Table 4).  Whisker-related failures were often experienced in the tin-

plated electronic parts, including electromagnetic relays, transistors, hybrid 

microcircuit packages, terminal lugs, and ceramic chip capacitors [46].

Table 4: Examples of field failures attributed to tin whiskers

Application Failure site
Reported 
year/reference

Spacecraft control processor of 
commercial satellite (Commercial)

Tin-plated latching relay 1998/[79]

Galaxy IV satellite (Commercial) Tin-plated latching relay 1998/[80]

Electric Power Utility Microcircuit leads 2002/[81]

Heart pacemakers (Medical) Crystal can 1986/[31]
Missile program ‘D’ (Military) Terminals 2000/[81]
Telecom equipment (Telecom) RF enclosure 2003/[81]

Despite numerous field failure experiences, identifying tin whiskers as a cause of 

system failures is difficult, since whisker could vaporize when it shorts out.  

Moreover, field returns of inexpensive commercial electronics unlikely to have a 

detailed investigation on the root cause of the failure.
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2.3 Risk Assessment and Management

The uncertainties associated with tin whisker formation makes quantification of 

the failure risks, presented by the use of pure tin and tin-rich lead-free alloys, 

problematic.  In order to limit the whisker-related risks in the electronic products, 

some electronics manufacturers have proposed acceptance levels for whisker growth 

([53], [82]).  The threshold value for the whisker length at a prescribed time is 

generally specified as a criterion for an acceptable and whisker-free finish, in 

conjunction with required test conditions and duration.  However, these acceptance 

level criteria are not sufficient enough to reflect the actual failure risks, induced by tin 

whiskers, since whisker length at the specified time (typically two years or less) is the 

only evaluated item.  Further, it may be misleading if whiskers are missed at non-

observed surface area with exposed tin.

To place a numerical value on the tin whisker risk, a metric has been proposed 

and is being used by some [83].  This risk assessment metric provides an application-

specific risk of tin whisker failure, by assigning the weighted risk index for various 

influencing factors, including conductor spacing, substrate material, presence of an 

underlayer, plating type, plating thickness, and use of conformal coating type.  While 

this risk metric is a useful guide for ranking a potential whisker risk, it could provide 

limited value in assessing and quantifying the actual failure risks.  In summary, these 

measures fail to document the temporal nature of whisker formation and the 

variability in whisker growth.

The impact of failure on product safety and life cycle cost should be considered, 

when assessing the tin whiskers.  For short life products, such as consumer products, 
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the limited data of maximum whisker length or no whisker greater than a prescribed 

length may be sufficient.  However, for moderate life and long life products, more 

information about the growth, as discussed previously, is needed to quantify the risk.  

A tradeoff between the overall cost associated with mitigation methods and system 

level consequence of tin whisker related failures is necessary.  In order to facilitate 

this tradeoff, JEDEC is developing6 a product class classification associated with 

whisker risk tolerance levels (Table 5).

Table 5: Product classes and levels of whisker risk tolerance [84]

Product 
class

System types Tolerance level

Class 3
Mission/life critical applications 
such as military, aerospace and 
medical applications

Pure tin and high tin content alloys are 
not acceptable

Class 2
Business application such as 
telecom infrastructure equipment, 
high-end servers, etc.

Long product lifetimes and minimal 
downtime
Products such as disk drive typically 
fall into this category
Breaking off of a tin whisker is a 
concern

Class 1 Industrial products
Short product lifetimes
No major concern with tin whiskers 
breaking off

Class 
1A

Consumer products
Short product lifetimes
No major concern with tin whiskers

As with most failure mechanisms, there is a desire to perform accelerated testing 

to quantify the failure risk.  As one major objective (goal) of tin whisker studies, 

various industrial sponsored studies have focused on identifying environmental 

loading conditions that will precipitate whisker formation and growth in a 

6 The standard document of JEDEC 201 [84], providing a general guideline for product classes and their risk tolerance level, has 
not passed the ballot as this time of writing.
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controllable manner.  Commonly explored loading conditions include coupled 

temperature and humidity ageing and temperature cycling.  However, there remains 

no accepted accelerated test for whisker formation.  Table 6 provides the examples of 

tin whisker testings, adopted by the electronics part manufacturers.  To standardize 

testing and data collection, JEDEC, the standardization body of the Electronic 

Industries Alliance (EIA), recently issued a standard set of test methods for 

measuring whisker growth [29].  The standard JESD-22A-121, is based on more than 

two years of testing by participants in the iNEMI tin whisker users group [85].  It 

should be pointed out, however, that even JESD-22A-121 makes no claims as to its 

ability to assess whisker formation under field environments.

Table 6: Example of the suppliers’ tin whisker testing

Supplier
Temperature/
humidity exposure

Temperature cycling
Ambient 
exposure

Integrated 
device 
technology

60ºC/90%RH, 
2000 hours

-55ºC to 85º, 
500 cycles

2000 hours

On 
semiconductor

85ºC/85%RH, 
500 hours

-35ºC to 125º, 
500 cycles

1200 hours

Lelon 
electronics

60ºC/90%RH, 
1000 hours

(-55 to -65)ºC to (85 
to95ºC), 
500 cycles

1000 hours

Vishay
55ºC/85%RH, 
1680 hours

-55ºC to 85ºC, 
500 cycles

None

2.4 Mitigation Strategies

As a result of the unpredictable nature of tin whisker formation and the inability 

to accurately quantify the failure risk, many electronics companies and industry-wide 

organizations have focused on establishing the effectiveness of mitigation strategies 

for tin whisker formation ([86]-[88]).  From an equipment manufacturer’s 
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perspective, mitigation strategies for reducing the risk of tin whisker failure fall into 

two categories: Part Selection Strategies and Assembly Process Strategies.  A 

breakdown of several proposed strategies follows:

Part selection strategies:

- Avoiding pure tin and tin-rich lead-free finished parts
- Selecting matte or low-stress tin as the finish material
- Selecting parts with a nickel or silver underlayer
- Selecting annealed parts

Assembly process strategies:

- Solder dipping tin finished parts
- Minimizing compressive loads on the plated surface
- Applying a conformal coating

2.4.1 Part Selection Strategies

Completely avoiding pure tin and tin-rich lead-free finished parts should be 

preferred for high-demand, high reliability applications.  In fact, a number of military

and NASA’s procurement specifications for electrical and electronic parts started to 

prohibit the use of whisker-prone materials [44].  Instead, many specifications, 

including military standard MIL-PRF-49467 for ceramic capacitors [89], specify the 

requirement of a minimum inclusion of 3% lead content.  However, as previously 

mentioned, the use of pure tin and tin-rich lead-free finished parts may be 

unavoidable.  For those going the avoidance route, vigilance over the in-coming parts 

is needed.  Otherwise, the pure tin and tin-rich lead-free finished parts may 

accidentally be included in the end product ([90], [91]).

While it is widely claimed that matte tin finishes are less prone to long whisker 

growth, compared to bright tin finishes [70], matte tin should by no means be 
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considered as whisker-free.  The chief difference between matte and bright tin lies in 

the grain size (1~5µm for matte tin [18]) and the additives used in the plating process.  

Not only the grain size but also the thickness of plating is another parameter to 

consider.  iNEMI Tin Whisker Users Group has recommended in 2005 [18] that the 

thickness of tin-plating for components without a nickel or silver underlayer should 

be 10µm nominal (8µm minimum preferred) to reduce the propensity for tin whisker 

growth and/or a greater incubation time.

Annealing has been investigated as a method for reducing whisker growth, since 

the application of high temperature relieves internal stress and possibly change grain 

size.  With respect to annealing of tin plating deposit, the possible benefits include 

reduction of the compressive stress within a deposit, increase in grain size, release of 

hydrogen entrapped during the electroplating process and formation of uniform 

Cu6Sn5 intermetallics, possibly by introducing Cu3Sn intermetallics between Cu6Sn5

and copper to act as a diffusion layer [64].  Annealing also seems to succeed in 

delaying the onset of whisker formation.

2.4.2 Assembly Process Strategies

Bridging the fence between part selection and assembly process is the application 

of solder dipping.  There have been some discussions of making acquisition of solder-

dipped tin-based lead-free components from the distribution supply chain [92].  The 

solder dipping was first discussed as a possible risk mitigation strategy by Arnold 

[42].  By covering the exposed tin-finished surface with conventional tin-lead 

material, the susceptibility to tin whisker formation can be greatly reduced.  However, 

complete coverage with the dipping material is essential to achieve this goal.   If 
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complete coverage does not occur, then failure may still occur.  Furthermore, the 

possible collateral reliability issues, introduced as a result of additional solder dipping 

process, should be evaluated.  The examples of identified reliability issues include 

package cracking or loss of hermeticity due to thermal shock, popcorning of plastic 

packages, solder bridging between leads on fine-pitch packages, and electrostatic 

discharge.

With regards to assembly or handling, care should be taken so as not to introduce 

any unnecessary mechanical loads and surface damages to tin-finished surfaces.  As 

discussed earlier, surface damage and imperfections, including scratches and nicks, 

were often observed to have a higher propensity for whisker formation.  This higher 

growth is most likely due to localized stress that acts as a nucleation point for whisker 

formation.  In addition to internally developed compressive stress (e.g., due to tin-

copper intermetallics), an externally applied compressive stress favors tin whisker 

formation.

Conformal coating has been proposed as a means to confine whisker growth and 

prevent whiskers from shorting exposed conductors.  For example, a NASA study 

with Uralane coating showed a reduction in whisker growth rate [93].  However, tin 

whiskers were observed to penetrate the conformal coating (e.g., Silicone, Acrylic) 

with a thickness of up to 1.5 mils [94].  As such, the ability to provide sufficient 

coverage over all exposed tin-finished surfaces raises questions as to the protection 

afforded by conformal coats, and reworkability may make conformal coating less 

attractive.
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2.5 Effects of the Selected Parameters

2.5.1 Type of Pure Tin Plating and Substrates

Although all pure tin finishes have the potential for whisker growth, matte tin 

finish is widely claimed to be less prone to long whisker growth, compared to bright 

tin finishes [70].  This difference mainly stems from the larger grain size and lower-

stress of matte tin plating deposits.  Additives in bright tin, including brighteners, 

grain refiners, and carbon, are believed to cause internal stress, which may lead to 

whisker formation.  Exact amount and type of such additives are often proprietary 

matter for the commercial electroplaters.

Matte and bright tin finish are characterized by different grain size and carbon 

content.  Matte tin has a larger grain size of 1-5µm with a smaller amount of carbon 

content of 0.005-0.05 % [18]. Excessive amounts of co-deposited carbon generally 

cause a loss of solderability in tin and tin alloy plating, excessive intermetallic 

formation, excessive oxidation and surface contaminants [95].  The effectiveness of 

matte tin reducing whisker growth may also be strongly influenced by the plating 

process, such as electrolyte.  For instance, Schetty [71] showed that tin deposition 

from methane sulfuric acid (MSA) exhibited compressive stress that increased with 

time and could enhance whisker growth.  On the other hand, tin deposits from non-

MSA displayed tensile stress.  Careful selection of the plating process and chemistries 

can reduce residual stresses and maintain the tensile strength of the tin deposits over 

time.  However, the so-called ‘whisker-free’ proprietary plating techniques and 

chemistries advertised by plating chemical suppliers are still considered with 

skepticism by the electronics industry [18].
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In this study, both bright and matte tin finishes were selected, due to the high 

preference of matte tin finish in the current electronic component market and the 

available data on whisker growths on bright tin in historical reports.  The existing 

literature rarely assesses whisker growth between bright and matt tin over different 

types of substrate, which are subjected to different exposure conditions.  This study, 

discussed further in the later section, implies a wide variation in tin whisker behavior 

between these two platings.

The effect of substrate on tin whisker growth has also been explored, since it is 

widely agreed that major contributors to the compressive stress including IMC 

formation and CTE mismatches are strongly depending on the type of substrate 

material (or underlayer material) and exposure conditions (e.g., [96]-[99]). For 

example, Whitlaw [96] examined twenty-two different tin finishes over brass, copper,

and Alloy-42 substrates.  His results indicated that the use of nickel underlayer was 

effective in reducing whisker formation on brass substrate.  Similar effect was 

observed in Zhang’s study [99].  Dittes [73] studied the effect of temperature cycling 

on tin whisker formation for tin plating over Alloy-42, since the coefficient of thermal 

expansion mismatch between Alloy-42 and tin is larger than that between tin and 

copper. It was observed that tin whisker formation on Alloy-42 increased with the 

number of applied temperature cycles. On the other hand, no discernable whiskers 

were observed on copper-based samples under thermal cycling condition.  Despite

various studies focusing on the effect of substrate on whisker growth, the effect of 

high temperature exposures (e.g., annealing) in retardation of whiskers growth has not 

yet been studied for different types of substrates and exposure conditions.  Since the 
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source of compressive stress may be more than one, the mitigation strategies for tin 

whiskers should be evaluated for each type of substrate material.

2.5.2 High Temperature Exposures

Thermal treatments can often induce a change in the atomic and microstructure 

of a material in the solid state, mainly due to dislocation movement, a change in 

solubility of atoms, and/or a change in grain size.  Annealing treats a metal or alloy 

by heating to a pre-determined temperature (not above its melting point) for a time 

sufficient to allow the necessary changes to occur, followed by relatively slow (at pre-

determined rate) cooling.  In general, the annealing process can soften a cold-worked 

structure by recrystallizing or inducing grain growth, soften certain age-hardenable 

alloys by dissolving the second phase and cooling rapidly enough to obtain a 

supersaturated solution, or relieve an internal stress.  The temperature and duration of 

the annealing process depends on the characteristics of the material and the purpose 

of annealing.

With respect to tin plating deposit, the possible benefits of annealing include 

reduction of the compressive stress within a deposit, increase in grain size, release of 

hydrogen entrapped during the electroplating process and formation of uniform 

Cu6Sn5 intermetallics, possibly by introducing Cu3Sn intermetallics between Cu6Sn5

and copper to act as a diffusion layer [64].

Annealing was historically adopted in the 1960s as a tin whisker mitigation 

practice [86].  For instance, in 1962, Glazunova [100] noted that annealing at 150ºC 

significantly increased an incubation time and decreased tin whisker growth of tin-
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plating on steel substrate.  Other studies of annealing showed similar effects ([101]-

[103]).  Lee [67] showed that the application of annealing for one hour at 150ºC 

changed the structure of the tin deposit from a compressive stress (approximately 

10MPa), shifted to a tensile stress7.  However, it was not documented if the tensile 

stress was maintained or resulted in retarding tin whisker formation.  Furthermore, 

Britton [70] showed that there was no beneficial effect on reducing or eliminating 

whiskers due to same annealing process (150ºC/one hour) for tin over copper 

specimens.  iNEMI Tin Whisker-User’s group also stated that the available data on 

annealing is still insufficient to provide this technique as an effective tin whisker 

mitigation strategy [18].

The optimal application timing for annealing process has yet to be established.  

Philips, Infineon, and STMicroelectronics have suggested that annealing is only 

effective if it is applied immediately after components are plated [64].  IBM indicated 

that matte pure tin over copper, which was annealed at 150ºC for one hour within two 

weeks (24 hours preferred) of plating (where the lead pitch <1mm), could be adopted 

as one of their acceptable pure tin parts for its server and storage system [104].  The 

literature relating to the effect of annealing rarely assesses whisker lengths and 

density achieved after the annealing process.

The solder reflow process has been discussed as a possible whisker mitigator 

([60], [75]).  Although parts may be reflowed more than once in the assembly 

process, the peak temperature remains for only minutes.  Since a peak temperature of 

lead-free reflow (up to 260ºC, which is 40~50ºC higher than conventional tin-lead

7 Data on stress level was measured using x-ray diffraction and reported only for 30 days after annealing.
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reflow) is higher than melting point of pure tin (232ºC), the microstructure of tin 

could be changed.  Studies on the effect of reflow operations are somewhat 

contradicting.  For instance, Cunningham [39] indicated that the effectiveness of 

reflow on reducing whisker growth depends on the mechanical stress conditions.  The 

higher temperature during reflow process was shown to change the grain size of tin 

into regular polygonized grains, which induced less intermetallic growth, resulting in 

less internal stress within the tin deposit [105].  Su’s study [106] focused on 260ºC 

reflow, and also found that reflowing can retard whisker formation based on 

maximum whisker length observations after temperature cycling (-55~85ºC) and 

60ºC/95%RH application.  It was also observed that the variation in whisker length 

among leads was larger than among packages.  On the other hand, it has been 

reported that reflow may not provide a complete mitigation for tin whisker formation

[107].

2.5.3 Bending

Applied mechanical bending is one possible source of compressive stress, 

hypothesized to accelerate tin whisker formation ([65], [66]), although whiskers were 

observed to grow on a tensile region of the tin plating.  In the case of electronic

leaded packages, the trim and form process are applied after lead finishing and will 

cause mechanical bending.  These bent portions of the electronic packages will have 

exposed (tin-) finishes even after board assembly.  Furthermore, additional bending 

can arise due to thermal and power cycling of the assembly in operation.  Thus, it is 

practical to evaluate the effect of bending stress on whisker formation.
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Xu, et al, ([60], [65]) reported that externally applied tensile stress reduced the 

whisker growth, as far as an internally developed compressive stress does not exceed 

the level of tensile stress.  Another study by Lal, et al, [54] showed that mechanically 

applied extrinsic stress after electroplating has much stronger influence on whisker 

formation, although the externally applied stress may not be evenly distributed over 

the plating of concern.

2.5.4 Electrical Current

There exists limited study of the effect of electrical current on the growth of tin 

whiskers.  Some electronic component suppliers, including Texas Instruments (TI) 

and Alcatel, have adopted 5-V bias as part of tin whisker test conditions.  TI 

incorporated tin whisker testing, consisting of pre-conditioning (-40 to 55ºC, 24 

hours), electrical bias (5V), temperature/humidity exposure [108].  TI’s test results 

with the use of assembled tin-plated IC showed a consistent growth of tin whiskers on 

electrically biased samples.  On the other hand, other studies including one by Arnold

[42], Brusse [43], Osenbach [109], and Hilty [110], observed no significant influence 

of voltage bias on the formation of tin whiskers.  For example, in Osenbach’s study

[109], an electrical bias of 3.3 V and 5 V was not observed to negatively affect 

propensity of whisker growth on 15µm thick tin-plated leadframes, which were 

subjected to 60°C/93%RH condition, after annealing at 150°C for one hour.  The 

usage of Ni underlayer was also shown to be effective in retarding whisker growth, 

regardless of electrical bias.

There are only two studies on the role of electrical current on tin whisker growth.  

Hilty [110] conducted experiments on matte tin plated brass using four different 
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levels of current density (0.25 x 102 to 3.12 x 102 A/cm2) under three exposure 

conditions. He concluded that both electrical voltage bias and current flow do not 

affect whisker growth or its orientation. Liu, et al, [111] conducted an accelerated 

electromigration test on tin whiskers using Blech structure of 5000Å (=0.5µm) pure 

tin over 700Å titanium.  In this study, whisker growth was observed at the anode end, 

while tin-grain depletion increased at the cathode end with current stressing time and 

temperature.  It was concluded that whisker growth in order to release a compressive 

stress, generated by tin-atom movements from cathode to anode due to 

electromigration.  The growth rate of tin whiskers was reported as 3Å and 

7.7Å/second at room temperature and 50ºC respectively in the presence of current 

density of 1.5x105 A/cm2.  However, the examined level of current density of 

(1.5x105 or 7.5x104 A/cm2), tin-plating thickness, application method, and base 

material are not representative of real electronic component applications. Table 7

compares the Liu’s and Hilty’s experiments with the present experiment in terms of 

various factors, such as type of plating, type of substrate material, and test duration.

Observations of current experiment are presented in Chapter 4.

Table 7: Comparison of Three Experiments

Liu’s study [111] Hilty’s study [110] My experiment
Type of tin 
plating

Not reported
Matte tin (no 
underlayer)

Matte and bright 
tin (no underlayer)

Thickness (tin) 0.5µm 3µm (one side) 5µm
Plating method Vapor deposition Electroplating Electroplating
Substrate method Ti/SiO2/Si-wafer Brass Copper
Current density 
(A/cm2)

1.5x105, 7.5x104 25, 156, 208, 312 48

Test condition
Room ambient, 
50°C

Room ambient, T/H: 
52°C/90%RH, TC: -
55°C to 85°C

T/H: 50°C/50%RH
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Test duration Up to 280 hours 1000 hours (42 days) Up to 5760 hours

Measured items
Volume of voids, 
whiskers

Whisker density, 
maximum whisker 
lengths

Whisker density, 
maximum whisker 
length, length 
distribution

Sample size Not reported
1 sample per current 
density

3 samples per test 
condition

Major 
observations

Whisker growths at 
anode end, while 
depletion of tin 
grains at cathode 
end.
Higher current 
density or higher 
temperature 
induced longer 
whisker

The electrical fields, 
both bias and current 
flow, do not 
significantly affect 
whisker growth

Whisker growths 
were observed both 
at anode and 
cathode ends.
Reduction in 
whisker density in 
the presence of 
electrical current

This study examines whisker growth under the application of electrical current 

on matte tin plated copper, which represents the most widely used material 

combination for the electronic component.  The effectiveness of annealing was also 

investigated in response to the electrical current flow.  Since actual electronic systems 

experience some levels of electrical current flow in the field, it is necessary to assess 

the effectiveness of mitigation strategies, including annealing, for whisker growth 

under the electrical current stressing.  Experiment was conducted to assess the 

propensity of tin whisker growth on both annealed and non-annealed samples in this 

study, with the current stressing at 0.48 x 102 A/cm2 for an extended period of time up 

to 8 months.
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Chapter 3. Approach: Overview of Experiments

In order to investigate the propensity of tin whisker growth, a set of experiments 

was conducted using matte and bright tin platings on metal coupons.  The plated 

coupons were subjected to high temperature exposures, including annealing 

(150ºC/one hour).  Whisker growth on tin-plated samples was characterized using 

environmental scanning electron microscopy (ESEM), in terms of the maximum 

whisker length, length distribution, and whisker density, at different time periods up 

to 24 months in the case of experiment-1 and up to 8 months for the experiment-2. 

3.1 Experimental Procedure: Experiment-1 

Two types of pure tin platings, matte and bright tin, were commercially 

electroplated with an average thickness of 200 micro inches (= 5µm), over base 

materials of copper (Olin 1948), brass (type 2609) and Alloy-42 (Fe-42Ni).  Test 

samples were 25.4 x 25.4 x 1.56 mm in dimension.  Copper and Alloy-42 substrates 

were chosen as representative substrate material for the surface mount as well as 

through-hole devices.  Since ASTM10-B 545 [112] specifies 5µm as the minimum 

thickness of coating required facilitating the soldering of electrical components (class 

B), the plating thickness of 5µm was selected in this experiment.  In general, 5-12µm 

thick tin-plating is typically used for the outer termination of the chip resistors [113].

Tin electroplating was applied by a commercial process.  Reported parameters 

for the sulfuric acid based tin electroplating process included a range of current 

8 Composition of Olin 194: Cu-2.4Fe-0.03P-0.1Zn (wt%)
9 Composition of type 260 brass: 69-71Cu, 0.05Pb, 0.05Fe, 0.2 Ni, 0.015 P, (wt%) and remainder Zn
10 ASTM: American Society for Testing and Materials
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density (5-20mA/cm2) and a plating bath temperature of 60-70ºC.  Matte and bright 

tin were created based on organic additives.  Sulfuric acid was added for bright tin 

plating.

Ion chromatography was used to examine the contamination level of plating, 

based on ICP-TM- 605 method 2.3.28, with a standard eluent (1.7mM sodium 

bicarbonate/1.8mM sodium carbonate) [114]11.  Ion chromatography showed no 

significant contamination of methane sulfuric acid, which can be created by the 

plating solution and process.  The detected contamination levels were: chloride 

0.37µg/in2, bromide 0.865µg/in2, nitrite 0.72µg/in2, and sulphate 0.493µg/in2.  In 

every case, the concentration level was below the recommended minimum level, such 

as 1.0µg/in2 of chloride [115].  In addition to cleanliness analysis, the surfaces of the 

samples were examined under ESEM prior to any exposures.  Except for a few 

scratches, neither nodules nor whiskers were observed.

The tin plated specimens were divided into four groups for high temperature 

exposures: one for control, one for annealing, and the remaining for two simulated 

reflow processes, where simulated means without actual solder or flux to a board 

(Figure 7).  All of the selected heat treatments were applied one week after 

electroplating.  The reflow temperature profiles included an eutectic tin-lead solder 

profile (melting point of 183ºC, peak reflow temperature of 220ºC) and a lead-free 

solder profile (melting point of 217ºC, peak reflow temperature of 260ºC) (Figure 8).  

A 150ºC (= 0.83 Tm, Tm: melting temperature) for one hour annealing condition was 

11 As per IPC-TM650, samples were placed into clean heat-sealable polyester film and immersed into a mixture of isopropanol 
(75% by volume) and deionized water (25% by volume), followed by heating up the bag up to 80ºC for one hour [114].



38

selected as representative of conditions used by electronics manufacturers ([64], [67], 

[70], [100], [104]).  The annealed samples were then cooled down at room ambient.

Figure 7: Test flow chart

Figure 8: Selected reflow profile

3.2 Experimental Procedure: Experiment-2 

Copper metal coupons (12.7 x 31.7 x 0.15 mm in dimension, Olin 194) were 
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Samples (25.4 25.4 1.56 mm)

Kept at room ambient

Annealing 
(150ºC, 1 hour)

Room ambient 
(control)

Evaluated over 2 years

Simulated     
Sn-Pb 
reflow

Simulated     
Pb-free 
reflow

Samples (25.4 25.4 1.56 mm)

Kept at room ambient

Annealing 
(150ºC, 1 hour)

Room ambient 
(control)

Evaluated over 2 years

Simulated     
Sn-Pb 
reflow

Simulated     
Pb-free 
reflow

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350

Time (sec)

(°C)

Melting point of tin (232°C)

Simulated Sn-Pb reflow

Simulated    
Pb-free reflow

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350

Time (sec)

(°C)

Melting point of tin (232°C)

Simulated Sn-Pb reflow

Simulated    
Pb-free reflow



39

thickness of 5µm (±0.4µm).  The selected electrolyte was the same as the one used in 

experiment-1.  To simulate the trim and form process and bending which can arise 

from lead being in use, the plated samples were bent approximately 90 degree at both 

ends over a plastic fixture (Figure 9). 

 

Figure 9: Bending method

A constant electrical current was then applied to half of the annealed and half of 

the non-annealed samples.  A 10-V power supply was attached to a set of tin-plated 

copper samples, which were connected in parallel, coupled with a 10 resistor 

(Figure 10).  Based on measured voltage and resistance across each tin-plated sample, 

the current density was found to be 0.48 x 102A/cm2.  This is in line with current 

density of power electronics, such as power converters for wireless network access 

and microprocessor powered applications [116].  Three samples per test condition

were then placed in a temperature/humidity chamber at 50ºC/50%RH for 8 months.  

This exposure condition was chosen to accelerate the whisker formation, based on

studies, which reported the higher whisker propensity at these conditions ([44], [94],

[117]). 

 

Plastic 
fixture
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Figure 10: Circuit diagram

For each sample, surface observations were conducted at three observation sites, 

the flat, inner-curved, and outer-curved area, as shown in Figure 11.

Figure 11: Observation sites

3.3 Adopted Inspection Methods

This section explains inspection methods, adopted in the course of experiment-I 

and experiment-2.  Surface observation was first attempted using optical microscopy, 

followed by ESEM in order to count and characterize the whisker growth.  Due to 

various orientations of whiskers and the possible presence of other inclusions at the 

surface, it was found that it is not recommendable to identify the whiskers only using 

optical microscopy.  ESEM was used for surface observation throughout the 

environment, coupled with energy dispersive spectroscopy (EDS) for elemental 

analysis.
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As expected, different shapes of whiskers were observed to grow on the tin-

plated surface in this experiment.  JEDEC has defined whiskers as a spontaneous 

columnar or cylindrical filament, usually of mono-crystalline metal, emanating from 

the surface of a finish [29].  However, since whisker-related risks vary depending on 

the shapes and sizes of the growth, a more clear differentiation of growth 

characteristics may be necessary for a proper evaluation of tin whisker propensity and 

associated risks.  Since any shapes of whiskers of a certain length can cause an 

electrical short, the maximum length of whiskers is a factor, regardless of shape.  In 

this work, all types of growth will be referred as whiskers, unless otherwise specified.  

The practical limit for the minimum whisker length was approximately 2µm in this

experiment.

Surface observation consisted of two steps.  First of all, an entire surface of 

concern was scanned to identify the longest whisker and obtain the representative 

sites under ESEM with lower magnification (approximately x200-x400).  Identified 

longest whisker was further inspected using a higher magnification (up to x20,000) to 

facilitate the length measurement.  In some cases, the stage (of the ESEM) was tilted 

to some angle for optimum observation. Based on surface observations of fifteen

randomly selected sites from an entire surface, the lengths of whiskers were recorded 

for distributional analysis.

The axial length of whisker, measured from the electroplated surface to the 

whisker tip, was recorded as a whisker length in this experiment [29].  For bent

whiskers, the total axial length was estimated by adding all of the straight sub-

divisions of a whisker.  For instance, the axial length of whisker, shown in Figure 12,
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was recorded as (A+B+C) µm.  Since this study focuses on the length of tin 

extrusions, various shapes and types of whiskers were not generally noted.

Figure 12: Total axial length of whisker

Whisker density can be defined as the number of whiskers per unit area.  In this 

study, fifteen areas of 725x615µm (approximately x360 under ESEM, total area of 

6.7mm2) were randomly chosen as fixed observation points.  Whisker density was 

calculated as an average number of whiskers per total inspected area.

3.3.1 Sample Method and Verification

In order to verify our sampling technique, a number of sites (one site: 725µm x 

625µm) were first selected along the diagonal of the square sample and ESEM 

observations were conducted with the same magnification.  Figure 13 shows the 

number of whiskers observed at each inspection.  The changes in average number of 

whiskers per site were examined (i.e., moving average), while increasing the number 

of inspected sites.  Since data converged after ten measurements, fifteen sites from 
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each sample were randomly selected from an entire surface to obtain a representative 

value for the sample (Figure 14).

Figure 13: Number of whiskers observed at each inspection

Figure 14: Average number of whisker growth, with increase in inspection sites

3.3.2 Data Analysis of Whisker Length and Whisker Density

To date, the growth of whiskers is typically measured only at the specified time 

and characterized in terms of the maximum (observed) whisker length and the 

categorization of density (i.e., high, medium, and low), based on inspection of the 

limited area of tin-plated surface of concern.  This current industry practice in 

whisker measurement implies a limitation in identifying the actual maximum whisker 
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length and growth rate of whiskers.  A longer whisker (than maximum observed 

whisker) could be present at the non-observed surface area.  Since the same whisker 

may not necessarily be identified as the ‘maximum observed whisker’ at different 

observation periods, the growth rate of whisker cannot be obtained.

The only way of being certain about the exact percentage of whiskers with a 

certain length on the surface is to accurately count every whisker growths and 

calculate the percentage.  However, this is too time and resource-intensive to be a 

viable option, so a way of estimating the percentage of whiskers in a certain length on 

the surface is necessary.  To do this end, the underlying distribution of a measurement 

data set was assessed using statistical procedures, such as Kolmogorov-Smirnov (K-

S) and Anderson-Darling (A-S) goodness of fit tests [118].  These K-S and A-S tests, 

based on cumulative distribution function, are superior in the case of small sample 

sizes, as compared to the Chi-square goodness of fit test [119].  The A-S test was 

specifically selected in order to test the goodness of fit at the tails of distribution.  The 

fitting at the tails of distribution is of most importance in distributional analysis of 

whiskers, since it directly affects the estimated maximum length of whiskers, which 

has the highest potential of bridging between adjacent conductors.

For each test condition, measurement of whisker lengths was collected at fifteen 

sites, randomly selected from an entire surface of concern.  Based on these sample 

data, it was hypothesized that the lognormal distribution is a specific distribution type 

(population), which the collected measurement data comes from.  This hypothesis 

was made based on parametric analysis of distribution fitting.  An example result for

bright tin over brass is given in Table 8.
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Table 8: Example of parametric analysis of distribution fitting

Distribution 
type

Modified 
K-S test

Average plotted 
value fit

Likelihood 
value

Weighted 
value

Rank (of 
best fit)

Exponential-1 99.99 23.87 -121.8 430 5
Exponential-2 27.58 5.65 -95.9 250 2
Normal 19.56 5.85 -101.0 280 3
Lognormal 0.083 3.28 -97.1 160 1

Distribution parameters, such as mean and standard deviation, were also

estimated accordingly.  In order to evaluate the hypothesis, the theoretical (i.e., based 

on hypothesized distribution type and parameters) and empirical step function of 

cumulative distributions were compared in terms of their closeness.  The closeness 

can be evaluated using the test-statistics value and critical value, as provided in Table 

9.  The hypothesized type of distribution can be accepted when the test-statistics 

value is smaller than the critical value in each goodness-of-fit test.

Table 9: Test-statistics and critical values for the goodness-of-fit test ([118], [120])

Test type Test-statistics value Critical value

K-S test

A-D test

Note
n= sample size, Zi= i-th sorted sample value, F= standard normal 
cumulative distribution function.  The listed test were applied to log-
transformed original data, with a significance level (α)=0.05

In every observation sites, acceptance criterion was satisfied.  Furthermore, the 

hypothesis of lognormal distribution was accepted in all types of samples.  The 

probability plot, given in Figure 15, facilitates graphical observation of the closeness 

between plotted points and the fitted distribution line, as a result of Anderson-Darling 
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test12.  The given P-value describes the probability of obtaining such results, when the 

hypothesized log-normality of the data is true [120].

Figure 15: Example of A-D test result (probability plot)

The fitting of lognormal distribution to the measurement data on whisker length 

was further supported using one of the non-parametric methods, Kernel Gaussian 

estimate.  Kernel Gaussian estimate, characterized by the equation13
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)(ˆ , is known as a better density estimator [121] and can be used to 

check whether parametric methods have results in over-fitting or over-smoothening 

the data.  As shown in Figure 16, lognormal distribution appears to be the best fit to 

the whisker length data, by using the non-parametric method.  As a result of this 

distribution fitting, it was determined to characterize the whisker growth by 

parameters of a fitted distribution, such as mean whisker length, and 99-percentile 

12 Anderson-Darling test was performed using Minitab® statistical analysis software package.
13 xi..xn, n: independent observations
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value.  The maximum whisker length was defined as the 99-percentile value of the 

fitted lognormal distribution.

Figure 16: Kernel density plot

Whisker density can be determined as the number of whiskers per unit area.  The 

number of whiskers was first counted at randomly selected fifteen observation sites 

(one site: 725x625µm) from the entire surface of concern for each sample (similar as 

experiment-1).  Each data set consisted of fifteen measurement data per sample, three

samples per test condition.  In order to enable analyzing the data statistically, a single 

factor analysis of variance (ANOVA) was conducted.  ANOVA can answer the 

questions whether data collected from three samples can be treated as one set of data 

(i.e., 45 measurements/condition).  In this ANOVA analysis, F-statistics value 

provides a measure to compare the amount of variance between groups (treated 

differently) to the amount of variance within groups (treated the same).  Detailed

procedure for a single factor of analysis of variance is explained in Appendix A.
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With an alpha level of 0.05, all results from ANOVA were found to satisfy the 

criterion of [(F-obtained value) < (F-critical value)], which is required to support the 

null hypothesis.  The null hypothesis was defined as that the mean whisker density of 

each group is the same.  Table 10 and 11 provide the examples of result from 

ANOVA, which resulted in accepting the null hypothesis.  This example is based on 

density measurement, taken at the flat surface of annealed-bright tin samples, with no 

current applied.

Table 10: Example of inputs to ANOVA

Sample
Number of 
measurement

Average Variance

Sample 1 15 21 28.28
Sample 2 15 17 20
Sample 3 15 19 31.85

Table 11: Example results from ANOVA

Degree 
of 
freedom

Mean 
square

F-
obtained

P-value F-critical Results

Between 
the group

2 60 2.245 0.118 3.219
Accepted 
(2.245<3.219)

Within 
the group

42 26.714 N/A

Total 44 N/A

These ANOVA results enabled to treat forty-five measurements as one set of 

data per condition.  Whisker density, D, was calculated as follows:

1.20
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where i is the sample size, j is the observation site, Nij is the number of observed 

whiskers, 20.1 is the total observed surface area (mm2)

All sets of whisker density data, when 45 measurements consisted of a set, were 

found to be best fitted by a lognormal distribution.  Levene test [122] was used to 

evaluate the change in the variances of the observations, due to the selected condition.

Observation results of experiment-2, presented in the Chapter 4, are all based on

Levene’s test with a significance level of 0.01, unless otherwise specified.
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Chapter 4. Observations and Discussions

Observations presented in this chapter are based on ESEM observations taken 

over 24 months of room ambient storage, after the selected high temperature 

exposures (experiment-1) and 8 months of 50°C/50%RH temperature/humidity 

exposure.

4.1 Bright Tin versus Matte Tin

Historical reports have primarily focused on whisker growths on bright in 

plating.  In fact, electronics industry has a previous experience of using bright tin in 

1970’s, until when soldering issues after burn-in were raised [95].  iNEMI provides 

classification of bright and matte tin finishes as shown in Table 12 [18].  Bright tin 

with smaller grain size is often claimed to be more prone to tin whiskers than mate tin 

with larger grain size, due to higher internal stress.

Table 12: Definition of bright tin and matte tin finishes

Bright tin Matte tin
Grain size (µm) 0.5-0.8 1-5 
Carbon content (%) 0.2-0.8 0.005-0.05

Grain size of each type of pure tin plating (as-received samples) was first 

confirmed to be an average of 4.6µm for matte tin and 0.9µm for bright tin, as per 

iNEMI’s definition (Figure 17).  Similarly, as-received samples for experiment-2, 

which included the annealed samples, were examined in terms of their grain sizes 

under ESEM.  The grain size of each type was observed to be within the iNEMI 
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specification for bright and matte tin (Table 13).  The columnar shaped grains were 

observed in the case of matte tin plating.

Figure 17: Grain size of pure tin finish (experiment-1)

Table 13: Comparison of grain size (experiment -2)

Measured grain size
Annealed 0.56

Bright tin
Non-annealed 0.58
Annealed 3.03

Matte tin
Non-annealed 4.35

Another major difference in whisker growth on matte and bright tin surface is a 

presence of depletion of tin surface.  Figure 18 shows a depletion of tin surface at the 

base of whisker on the bright tin surface.  This depletion is believed to indicate tin 

atom diffusion, which may also explain how tin atoms are added to whiskers in an 

orderly manner [61].  On the contrary, no clear depletion could be observed at the 

base of whisker on matte tin plated samples (Figure 19).  The surface of bright tin 

was found to be more flat than that of matte tin, as far as the electroplating chemistry 

in this experiment is considered.  In addition, a majority of whiskers on matte tin 

initiated from one original grain, and maintained its shape and size of the grain during 

Bright tin Matte tinBright tin Matte tin
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growth.  On the other hand, whisker growths on bright-tin plated surface was 

independent from the grain structure (i.e., whiskers did not initiate from one grain).

Figure 18: Whisker growth and depletion of tin surface on bright tin

Figure 19: Whisker growth on matte tin

Whisker growth was observed in every type and exposure conditions, and the 

length increased with time.  However, the rate of increase varied significantly among 

the different types of samples.  The longest whisker of all samples was 200µm, 

DepletionDepletion

20 µm20 µm
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observed on the bright tin plated brass sample.  Needle-like whisker, shown in Figure 

20, grew from nodule-type eruption.  This implies that a difference in the interfacial 

energy may play a role in inducing whisker formation.  Nodule-type eruption 

underneath a whisker has higher surface energy due to its complex top surface.  In 

order to minimize this surface free energy, needle-like whisker can emanate from the 

nodule-structure.  Compressive stress, a major suspected driving factor, is also 

directly related to atoms having high potential energy.

The interfacial energy can also be changed by grain structure of the deposit.  For 

instance, a plating layer with a smaller grain size has a larger number of grain 

boundaries, which results in having a higher potential energy.  In this study, 

isothermal annealing at 150ºC was observed to result in coarsening of microstructure 

of the deposit overtime, but no discernable change in grain size/structure of the 

surface morphology.  As described earlier, columnar type whiskers on matte tin 

plated samples are highly dependent on the grain size of the surface.  This could be 

the reason why the effect of annealing on whisker growth on matte tin has not been 

clearly identified, as compared to the case of bright tin.
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Figure 20: Needle-like whiskers

Figure 21 provides a relative whisker length comparison between bright and 

matte tin finishes with respect to different substrate materials (data is normalized 

based on the longest observed whisker, namely whisker on bright tin over brass).  The 

data is based on measurement on non-annealed samples, at 18 months of room 

ambient exposure.  It was observed that bright tin does not necessarily induce the 

longer whisker growth, as compared to matte tin.

Figure 21: Whisker length comparison with respect to substrate material
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The effect of selected exposure conditions (e.g., annealing) on whisker length is 

shown in Figure 22.  Similar as previous plot, data is normalized based on the longest 

observed whisker, in other words, whisker on bright tin over brass in this case.  For 

the samples with Alloy-42 substrate, annealing provided reduction in whisker length.  

However, annealing induced longer whiskers on matte tin plated brass samples.  

Given the same substrate material, the effect of selected exposure condition on 

whisker length may differ between bright and matte tin.

Figure 22: Whisker length comparison with respect to annealing

With regards to whisker density, the trend in change of whisker density with time 

varied between bright and matte tin especially in the case of samples with copper 

substrate (Figure 23).  Whisker growth behavior (in terms of length and density) of 

bright and matte tin differs depending on the substrate materials and exposure 

conditions.
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Figure 23: Change in whisker density with time (bright and matte tin)

However, the highest whisker density and longest whiskers were observed on 

bright tin over brass.  Regardless of the selected high temperature exposures, this 

combination generated twice as long whiskers as all other types of specimens, 

including one whisker measured to be 200 µm.  Thus, bright tin over brass can be 

used as a worst-case scenario for risk assessment of tin whisker formation.

4.2 Saturation in Whisker Density

Tin whisker growth was observed on all specimens, within three months at room 

ambient storage after selected high temperature exposures in this experiment.  

0

1000

2000

3000

4000

5000

6000

0 2 4 6 8

W
h

is
ke

r 
de

ns
it

y 
(#

/s
qc

m
) Alloy-42 Brass Copper

Bright tin

0

1000

2000

3000

4000

5000

0 2 4 6 8

W
hi

sk
er

 d
en

si
ty

 (#
/s

qc
m

) Alloy 42 Brass Copper

Matte tin

Time (months)

Time (months)

0

1000

2000

3000

4000

5000

6000

0 2 4 6 8

W
h

is
ke

r 
de

ns
ity

 (#
/s

qc
m

) Alloy-42 Brass Copper

Bright tin

0

1000

2000

3000

4000

5000

0 2 4 6 8

W
hi

sk
er

 d
en

si
ty

 (#
/s

qc
m

) Alloy 42 Brass Copper

Matte tin

Time (months)

Time (months)



57

Saturation in whisker density was further assessed for tin whiskers using the density 

of whiskers.  Whisker growth was considered to be saturated, when the measured 

whisker density value becomes stabilized and no new whisker will initiate.

Figure 24 presents changes in whisker density on matte tin over copper, with 

time up to 24 months of room ambient exposure.  The least number of whiskers were 

observed on annealed sample at 3 months observation.  However, at 8 months after 

high temperature exposures, almost the same number of whisker growth was 

identified on every type of matte tin over copper samples (i.e., regardless of selected 

high temperature exposures).  In other words, the rate of change in whisker density 

can differ with time and in response to selected high temperature exposures.  In fact, 

annealed samples achieved the highest change rate in whisker density between 3-8 

months, as compared to samples, subjected to other selected exposures.  Whisker 

density was observed to saturate, since there observed only a slight change in whisker 

density after 8 months, and increase rate continued to slow down afterwards. Due to 

the different change rate in whisker density, it is misleading to characterize the 

whisker growth before saturation in whisker density.  Further, the test duration of any 

qualification test or whisker characterization method should exceed the saturation of 

whisker growth.
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Figure 24: Saturation in whisker density (matte tin over copper)

4.3 Effect of High Temperature Exposures

Figure 25 illustrates a relative whisker length comparison observed on mate tin.  

Based on the maximum length of whiskers at 18 months observation, the 

conventional tin-lead simulated reflow temperature exposure generated longer 

whiskers than the lead-free reflow temperature profile in every case.  The peak 

temperature involved in the simulated lead-free reflow temperature exposure, which 

is higher than melting point of tin (232ºC), may have played a role in mitigating the 

tin whisker growth.

Time (months)

W
hi

sk
er

 d
en

si
ty

 (
#/

sq
cm

)

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 6 12 18 24

Simulated Sn-Pb reflow

Simulated Pb-free reflow

Annealed

Control

Time (months)

W
hi

sk
er

 d
en

si
ty

 (
#/

sq
cm

)

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 6 12 18 24

Simulated Sn-Pb reflow

Simulated Pb-free reflow

Annealed

Control



59

Figure 25: Relative comparison of whisker length on matte tin

The effect of high temperature exposures varied widely among the different 
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temperature exposures.  Since annealing process generated more whiskers in the 

category of 25-40µm, as compared to other samples, distributional analysis was 

further performed.  The length distribution data was found to provide a best fit to a 

lognormal probability density function (the goodness of fit value was at least 0.98).

As shown in Figure 26 and Figure 27, distribution data on whisker length can be used 

to characterize the growth of tin whiskers, coupled with the maximum observed 

whisker length.  Change in mean whisker length (obtained as an average change per 

month) continuously decreased in both non-annealed and annealed samples (Table 

14), while increasing the standard deviation at 24 months observation period in the 

case of non-annealed samples.  For the matte tin plated copper samples, annealing 

provided 79% reduction in estimated growth rate, which was based on change in 

mean whisker length.  Furthermore, after two years of room ambient storage, 72% 

reduction in maximum whisker length was achieved by the application of annealing at 

150ºC/one hour.
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Figure 26: Change in whisker length (non-annealed, matte tin over copper)

Figure 27: Change in whisker length (annealed, matte tin over copper)

Table 14: Change in mean whisker length on matte tin over copper

Change in mean whisker length 
(µm)

Estimated growth rate (µm/month)
Duration 
(months)

Non-annealed Annealed Non-annealed Annealed
14-15 1.57 1.17 1.57 1.17
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15-18 1.50 0.49 0.5 0.16
18-24 2.28 0.48 0.38 0.08

Annealing, however, did not reduce whisker length for matte tin samples, having 

the brass substrate (Figure 25).  Brass contains alloying quantities of copper and zinc.  

The Energy Dispersive Analysis (EDS) of the surface of matte tin over brass showed 

the presence of zinc at the surface (Figure 28).  This implies that zinc atoms diffuse

into the tin film and migrate to the surface.  The zinc atom, which reached at the 

outermost surface, can bind with oxygen and generate the zinc oxide.  It has been 

discussed that volume change associated with the formation of oxide layer can result 

in generating a compressive stress within the tin layer.  Such compressive stress can 

further contribute to the growth of whiskers.  Since the zinc oxide is known to form 

faster than tin oxide [123], this could be the reason why whiskers grew more on 

samples with brass substrate, compared to copper-based samples.  It appears to be 

that annealing could not remove the source of compressive stress, resulted from the 

oxide-layer formation.

Figure 28: EDS analysis for matte tin over brass sample
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4.4 Effect of Electrical Current

Whisker growths were observed in all types of samples, with the longest whisker 

of 66.7µm after 8 months under 50ºC/50% RH temperature/humidity exposures.  

Whisker growths were observed to initiate approximately after 3-5 weeks of 

electroplating, based on weekly surface observation up to 11 weeks.  In the absence 

of electrical current, initiation of whisker growth at the bend area was about 2 weeks 

shorter, compared to those at the flat surface area.

Contrary to Liu’s study [111], whisker growth was observed at both the anode 

and cathode ends of the tin plated samples.  Figure 29 shows examples of whiskers at 

each end.  Further, no discernable voids or depletion of tin grains at the cathode end, 

under ESEM observation were observed.  This could be due to much lower level of 

current density, adopted in this experiment, as compared to Liu’s experiment focused

on electromigration phenomenon with the current density of 1.5x105 or 7.5x104

A/cm2.

Observed whiskers mainly have striations along the outer surface, regardless of 

application of electrical current.  Surface cracks and imperfections, induced by 

bending procedure, were observed at the outer-bent surface.  These surface 

discontinuations could be a path for the whiskers to initiate, since the built-up 

compressive stress can be released through such discontinuations.  However, whisker 

did not necessarily grow at these surface discontinuation spots in this study.
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Figure 29: Whisker growths on bright tin in the presence of electrical current

4.4.1 Whisker Density

Figure 30 and 31 show the comparison of whisker density observed at 8 months.  

This graph shows the mean whisker density with one standard deviation on both 

sides, observed at the flat area.  Compared to the control samples (i.e., non-annealed 

and no current applied), annealing, application of electrical current, and a 

combination of electrical current and annealing, resulted in a significantly lower 

whisker density both on matte and bright tin.  The same effect was observed at the 

bend areas, in addition to the flat surface areas.  Bright tin always induced more 

whiskers than matte tin.

Anode end Cathode endAnode end Cathode end



65

Figure 30: Whisker density comparison for bright tin

Figure 31: Whisker density comparison for matte tin

4.4.2 Whisker Length

For each test condition, the observed maximum whisker length as well as the 

estimated maximum whisker length with one standard error on both sides were 

determined.  The maximum whisker length was defined as the 99 percentile value of 

the fitted lognormal distribution.  A standard error, SE, was obtained as ,/ nSDSE =

where SD is a standard deviation and n is the number of measurement.  It was also 
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found that the application of electrical current increased the estimated maximum 

whisker length at the flat surface of bright and matte tin.

Figure 32: Whisker length comparison for bright tin

Figure 33: Whisker length comparison for matte tin
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With respect to bright tin, in the absence of electrical current, annealing at 

150ºC/one hour reduced the whisker length, as compared to non-annealed samples 

(under 50ºC/50%RH exposure condition).  As described earlier, such effect of 

annealing on retarding the whisker growth has been discussed since 1960s [86] and 

some electronics manufacturers ([67], [70], [86]) have adopted condition of 150ºC for 

one-hour in their practices.  The recognized benefits of annealing include: reduction 

of the compressive stress within a deposit, increase in grain size, release of hydrogen 

entrapped during the electroplating process and formation of uniform Cu6Sn5

intermetallics, possibly by introducing Cu3Sn intermetallics between Cu6Sn5 and 

copper to act as a diffusion layer [64].  However, as stated earlier, the effect of 

electrical current was observed to have a stronger influence on the length of whiskers, 

compared to the application of annealing.

On matte tin-plated copper samples, which were subjected to 50ºC/50%RH for 

up to 8 months, annealing (at 150ºC/one hour) did not reduce the whisker length in 

the presence or absence of electrical current (Figure 33).  However, at 2 months 

observation period, annealed samples provided shorter whisker growths than those of

the non-annealed samples (Figure 34).  This result suggests that relying on the 

whisker growth characteristics observed within short test duration (such as 3000-4000 

hours, proposed in the test standard) could be misleading when evaluating the 

effectiveness of whisker growth mitigation strategies.
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Figure 34: Effect of annealing on whisker length on matte tin

For the non-annealed samples (both bright and matte tin) in the absence of 

electrical current, whiskers tended to be longer at the inner-curved area, compared to 

the flat surface area (Figure 35, Figure 36).  This is expected because the applied 

mechanical bending can cause compressive stress at the inner-curved surfaces ([65], 

[66]).  However, whiskers were also observed to grow on the tensile (outer-curved 

surface) region of the tin-plating at a reduced density and length.

Figure 35: Comparison of whisker length due to bending (bright tin)
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Figure 36: Comparison of whisker length due to bending (matte tin)
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Chapter 5. Conclusions

Tin whisker formation poses a reliability risk in electronic systems, which are 

used, for extended periods of time.  Due to a continued increase in the selection of 

tin-rich component finishes, a high likelihood of having an electronic product 

containing pure tin or tin-rich component finishes is expected.  Especially, the low-

volume electronics industry segment (e.g., military and space) has limited control 

over the part selection, neither driving nor resisting the transition to lead-free 

electronics.

Due to a lack of acceleration factors for whisker growth, the effective mitigation 

strategies are necessary and should be evaluated when high reliability and safety are 

critical.  The existing whisker characterization method, relying on the maximum 

observed whisker length at the specified time, tends to fail in characterizing and 

capturing the temporal nature of whisker growth.  The maximum observed whisker 

length is necessary, but not a sufficient means to characterize the growth of tin 

whiskers and further evaluate the effectiveness of possible mitigation strategies for tin 

whisker.

In this study, whisker growth on various types of samples was examined in terms 

of its maximum whisker length, length distribution, and whisker density and 

distribution analysis of whisker length was used.

The experimental results showed the different behaviors of whisker growth (e.g., 

length and density) between bright tin and matte tin finishes, depending on the 

substrate materials and exposure conditions.  It was concluded that bright tin should 
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not be used simply as a representative or comparison of matte tin for characterizing 

tin whisker growth.  However, bright tin over brass was found to be used as a worst-

case scenario for risk assessment of tin whisker formation.

For the matte tin over copper specimens, saturation in whisker density (i.e., end 

of incubation period) was observed after approximately 8 months of room ambient 

storage.  This result suggests that the currently recommended test duration (e.g., a 

minimum of 3000 hours in the JEDEC test standard [29]) could be insufficient to 

cover saturation of whisker growth.  The test duration of any qualification test should 

exceed the saturation period.  To capture a saturation in growth, the detailed number 

of whisker per given area should be measured, other than simply classifying the 

whisker density in ranges (e.g., classification of high, medium, and low density).

The effect of high temperature exposures of tin whisker formation was evaluated 

in terms of reduction in the maximum whisker length, whisker growth rate, and 

whisker density.  Tin-lead simulated reflow temperature exposure was observed to 

generate the higher mean value (of lognormal distribution for the whisker length) and 

the longer whiskers, regardless of the substrate materials.  In the case of matte tin 

over copper sample, annealing (150ºC for one hour) provided 72% reduction in 

maximum whisker length, as compared to control (non-annealed) after two years of 

room ambient storage in this experiment.  Time-based distribution data for whisker 

length was beneficial to characterize whisker growth.

It was also observed that annealing process did not always offer a positive effect 

on whisker formation.  Annealing did not reduce whisker length for matte tin over 

brass.  In the case of copper-based sample, annealing could form uniform 
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intermetallics, which can help releasing a compressive stress, developed by irregular 

tin-copper intermetallics at room ambient.  Irregular tin-copper intermetallics are 

believed to be a major driving factor for whisker formation in the case of copper-

based samples.  However, annealing did not help reducing other possible source of 

compressive stress.  Accordingly, it is critical to develop, evaluate, and adopt 

mitigation strategies for tin whisker formation, depending on the factors influencing 

compressive stress within the tin deposit under the given environmental conditions.

The role of electrical current of tin whisker formation was evaluated in terms of 

whisker density and whisker length under 50°C/50%RH temperature/humidity 

exposure.  For both bright and matte tin, the application of electrical current 

significantly reduced the whisker density.  Annealing at 150°C for a hour also 

resulted in lower whisker density, compared to the control sample (non-annealed, no 

current applied), with or without the electrical current stressing.  This trend was 

observed in all observation sites.

On the other hand, the application of electrical current increased the maximum 

whisker length at the flat surface of bright and matte tin samples, subjected to 

50ºC/50%RH temperature/humidity condition for 8 months.  In addition, the 

electrical current was observed to have much stronger influence of whisker formation, 

compared to annealing.  In the case of bright tin, annealed samples generated much 

shorter length of whiskers than those on non-annealed sample, in the absence of 

electrical current.  However, after application of electrical current, both annealed and 

non-annealed samples induced as long whiskers as that on control samples.  On matte 

tin-plated copper samples, which were subjected to 50ºC/50%RH for up to 8 months, 
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annealing (at 150ºC/one hour) did not reduce the whisker length in the presence or 

absence of electrical current.  Finally, as expected, whiskers tended to be longer at the 

inner-curved area, compared to the flat surface area for the non-annealed bright and 

matte tin samples in the absence of electrical current.
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Chapter 6. Contributions

This dissertation work provides an experimental investigation on a method for 

characterizing whisker growth on surfaces electro-deposited with pure tin.  Whiskers 

were inspected and characterized for an extended period of time, which rarely 

performed in industry.

The contributions of this work can be summarized:

• Experimentally demonstrated that bright tin over brass can be considered a 

worst-case scenario for a risk assessment for tin whisker growth

• Experimentally showed that the industry practice of testing for 3000 hours for 

monitoring the propensity of tin whiskers is insufficient to cover whisker 

growth saturation

o Whisker density saturation was observed on matte tin plated copper 

after 8 months of room ambient storage

o Maximum whisker length has increased throughout observation 

period of this study

• Experimentally demonstrated in a two year study that annealing can reduce

maximum whisker length on matte tin plated copper in room ambient storage.  

However, annealing did not reduce whisker length for matte tin over brass.

• Experimentally showed that application of constant electrical current reduced 

the whisker density for bright and matte tin plated copper at 50°C/50%RH.  
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However, whisker length was observed to increase in the presence of 

electrical current

o For bright tin, application of electrical current has been observed to 

have stronger influence of whisker length, than annealing.
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Appendices

Appendix A: A Single Factor Analysis of Variance (ANOVA)

This appendix A explains the procedure for a single factor Analysis of Variance.  

ANOVA was selected due to its ability to test the difference in means between 

groups.  In all cases, null hypothesis, H0, was set as:

H0: The mean whisker density (or length) of each group is the same.

ANOVA test was conducted using a source of variance shown in Table 15 [122].

Table 15: Source of Variances, ANOVA

Source of 
variance

Sum of the 
square

Degree of 
freedom

Mean square F-obtained

Between groups SSB DFB MSB FO

Within groups SSw DFW MSW

Total SST DFT

Firstly, based on the sum of the squares, which is a measure of variability, are 

calculated as 

( )∑ ∑−=
N

x
xSS

T

T

2

2
, 

( ) ( )∑ ∑∑ −=
N

x

n

x
SS

T

B

22

, BTw SSSSSS −=

Degree of freedom is defined as follows:

DFB = (number of groups) –1,

DFw = (total number of measurement)- (number of groups),

DFT = (total number of measurement)-1,
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By using the values of SS and DF, the mean square is determined to characterize 

the average amount of variance per degree of freedom, as:

B

B
B DF

SS
MS = , 

W

W

W DF

SS
MS = ,

Last of all, the test statistics in ANOVA, the F-obtained value, is derived as:

FO = 
W

B

MS

MS
,

The F-obtained value will be compared with F-critical value in order to 

determine whether the null hypothesis should be accepted or rejected.  F-critical value 

can be found in F-table (provided in common statistics book), using the selected alpha 

level (i.e., P-value) and values of DFB and DFw.  P-value is a measure of the 

likelihood of the observed value of the statistic under the null hypothesis.  In this 

work, P-value of 0.05 was used in ANOVA. If [(F-obtained) < (F-critical)], then all 

groups can be regarded as the same.  Namely, the null hypothesis is supported.  

Otherwise, the null hypothesis will be rejected.
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Appendix B: Research on Tin Whiskers

Authors, year, 
reference

Reported items

Compton, 
Mendizza, and 
Arnold, 1951, 
[50]

Spontaneous growth of whisker was first reported on tin 
electroplating.

Herring and 
Galt, 1952, 
[124]

Whisker was inferred as a single crystal, based on mechanical 
properties of tin whiskers.

Peach, 1952, 
[125]

Dislocation mechanism for whisker growth was first proposed.

Koonce and 
Arnold, 1953,
[33]

Whisker was reported to grow from the whisker base, based on 
electron microscopy micrographs.

Eshelby, 1953, 
[58]

Eshelby dislocation mechanism involved Frank-Reed dislocation 
sources emitting loops that expanded by climb to a boundary.

Frank, 1953, 
[59]

It was proposed that whisker grew from dislocations located at the 
whisker base operated through a diffusion-limited mechanism.

Koonce, 1954, 
[32]

Whisker was observed to form kinked.

Fisher, Darken, 
and Carroll, 
1954, [35]

Whisker growth rate was first reported for tin-plated steel, under 
the application of pressure, up to 7,500 psi.
Compressive stress was first discussed as the driving force for 
whisker growth.

Hisiguti, 1955, 
[45]

It was pointed out that growth rate reported by Fisher in 1954 
could not be predicted based on thermodynamic approach

Franks, 1956, 
[37]

Dislocation glide mechanism, which depends on self-diffusion on 
tin, was first described.

Amelinckx, 
1957, [126]

Helical dislocation model for whisker formation and growth was 
discussed.

Baker, 1957, 
[127]

Angular bends in whiskers for tin coatings were studied, but 
observations were not compatible with dislocation mechanism.

Glazunova, 
1962, [100]

Whisker growth rate was observed through experiments for tin-
coated brass and steel.  However, there observed a large 
difference in growth rate between Fisher’s data and his data.

Pitt and Hening, 
1964, [55]

Decrease in whisker densities was observed due to increase in 
lead content in the clamp-pressure experiment.

Arnold, 1956, 
59, 66, [42]

Mitigation strategies were first discussed.  Strategies include
- Alloying tin plating with lead
- Use of fused and hot-dipped tin coatings
- Use under low relative humidity and ambient temperature
- Electric and magnetic fields
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Ellis, Gibbons, 
and Treuting, 
1958, [62]

Recrystallization was first discussed as a factor for the whisker 
formation.

Glazunova and 
Kudryavtsev, 
1963, [128]

Various substrate materials (copper, nickel, zinc, brass, aluminum, 
silver, steel, and tin) were investigated.
Whisker density and growth rates were reported to be high for 2-
5µm thick tin plating over copper substrate.
Heat treatment study (100-180ºC, 1-24 hours) were first 
investigated and showed a significant reduction in whisker 
formation.

Britton and 
Clarke, 1964, 
[129]

It was observed that copper underlayer was effective to mitigate 
some whiskers on bright tin over brass, but less effective in the case 
of matte tin.
No whiskers were observed for 28 months at room ambient and 
50ºC on bright tin over brass.

Ellis, 1966, 
[130]

Growth directions for spontaneously grown whiskers were reported 
to be small crystallographic indices, which were glide plane 
indices.

Furuta and 
Hamamura, 
1969, [63]

Whisker growth rate was formulated as a function of the vacancy 
energy, independent of the film thickness.  However, unusual 
sample preparation and alloy were pointed out.

Rozen, 1968, 
[101]

Mitigation strategies for tin whiskers on bright tin plating (stannate 
bath based) were proposed, including:
Use of tin plating with minimum thickness of 5µm
Bake after electroplating, at 191-218ºC for 4 hours

Rozen, 1970, 
[131]

Metallographic cross-section of bright tin plated parts was first 
shown.

Key, 1970, [34]
Morphology of tin whiskers was observed to be similar as that of 
zinc and cadmium whiskers and not dependent on plating 
conditions and substrate material.

Keher, 1970, 
[36]

It was concluded that material transport in the direction normal to 
the substrate took place during whisker formation, but there was 
little diffusion in the plane of substrate.

Leidheiser, 
1971, [132]

A review of whisker research up to 1970 was provided as a chapter 
in the book.

Jafri, 1972, 
[133]

Ultrasonic agitation of the electrolyte plating bath was proposed as 
an effective mitigation method for matte tin whisker growth.

Tu, 1973, [38]

Stress associated with Cu6Sn5 intermetallics was first considered as 
a key-driving factor of whisker formation.
The formations of Cu6Sn5 at room temperature and the formation of 
Cu3Sn at temperatures higher than 60ºC were identified.
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Britton, 1974, 
[70]

The recommendations for tin whisker mitigation were provided:
- Use of nickel or copper underlayer for electrodeposited tin over 
brass
- Avoidance of bright in plating directly over brass
- Use of plating thicker than 8µm
- Application of heat treatment at 180-200ºC for one hour
- Use of hot-dipped tin plating
- Use of tin-lead deposits, containing more than 1% of lead

Lindborg, 
1975, [134]

Internal stress within the deposited film was first measured by X-
ray diffraction method.
Whisker formation was reported to be related to the magnitude of 
internal stress, but did not appear to be associated with microscopic 
stress.

Dunn, 1975, 
1976, [135], 
[136]

It was first reported that whisker has capacity of current carrying.
It was recommended that tin, cadmium, and zinc should be 
excluded from the spacecraft design.

Lindborg, 
1976, [137]

Two-stage dislocation model for the tin, cadmium, and zinc 
whiskers was proposed.

Zakraysek, 
1977, [138]

The rate of whisker growth on the bright tin plated leadframe was 
observed as 1-20µm/hour.

Hada, 1978, 
[40]

Annealing at 140ºC for 0.5-3 hours was observed to be effective for 
bright tin plated electromagnetic relays, when the plating thickness 
is thicker than 10µm or thinner than 2µm.

Tu, 1982, [139]
A linear growth rate of Cu6Sn5 intermetallics was reported.  It was 
also reported that the growth rate is slower in the case of thicker tin 
film.

Kakeshita, 
Fujiwara, 1982, 
[105]

It was surmised that whisker grows on recrystallized grains.
It was also described that dislocation rings were more prevalent on 
fine-grained tin plating than on larger-grain tin plates.

Nordwell, 
1986, [140]

Tin-whisker related failure on the 12-year old radar systems was 
reported.

Dunn, 1987, 
[69]

Mechanical and electrical characteristics of whiskers were 
presented.
For instance, Young’s modulus of whiskers were in the range of 8-
85GPA, with a ultimate tensile strengths of 8 MPa.
Whiskers with diameters of 3µm can carry a 32mA current without 
fusing.

Corbid, 1989, 
[141]

Fusing (reflowing) was not observed to prevent whisker formation 
and growth
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Cunningham, 
Donahoe, 1990, 
[39]

Four types of samples, including pure tin, Sn-10Pb, Sn40Pb with 
and without reflowing, were subjected to mechanical stress at 
elevated temperature.
It was concluded that Sn-40Pb with reflow would be an optimum 
process.

Selcuker, 
Johnson, 1990, 
[142]

A network of polygonized grains with distinct grain boundaries was 
revealed.
Annealing at 150ºC for at least 45 minutes in air was shown to 
double the average grain sizes up to 5-10µm.

Tu, 1994, [47]

Cracked oxide theory (A weak point and/or crack of oxide layer 
enables a localized relief of internal stresses by permitting whisker 
growth to emerge through this weak point) was first introduced.
Model for whisker growth was proposed, including the growth rate 
characterized by stress level in the film, temperature, and whisker 
spacing.

Harris, 1994, 
[143]

Various mitigation strategies for tin whiskers were recommended.  
For example, addition of 1-2 % copper to a tin film may not be 
effective in reducing whisker growth.

Tu, 1996, [144]
The difference in layer structure of intermetallic formation was 
described in relation with tin whisker growth.

Lee, 1998, [67]

Direct measurement of residual stresses in tin electroplating was 
presented.  Major findings include
- Initial as-deposited stress in tensile (11 MPa) and disappears to 
zero quickly, but increases to a compressive stress (-8 MPa).
- Annealed samples (at 150ºC) had zero stress and remained stable 
over time.
- Whisker grains were found to orient differently in comparison to 
the immediately surrounded as-plated tin- grains.

Ewell, 1998, 
[145]

It was reported that whiskers may be effectively mitigated by using 
the nickel underlayer, applying heat treatments, or adding alloying 
elements for passive components.

Yanada, 1998, 
[146]

No discernable changes in surface morphology were observed 
between Sn-10Bi and Sn-5Ag finishes, after 3 months of storage at 
50ºC.

Schetty, 2000, 
[147]

Sn, Sn-Bi, Sn-Cu, and Sn-Pb plating on brass and copper with and 
without Ni underlayer were examined at 50ºC for a minimum of 3 
months.  Major observations include:
- The observed whiskers (25µm) on Sn-Bi (10µm-thick) were 
longer than those on pure Sn.
Whiskers grown after aging at 50ºC were scarce and short
A nickel underlayer was effective in mitigating whisker formation 
for Sn-Cu alloys.
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Zhang, 2000, 
[148]

Bright tin, satin bright tin, matte tin, and Sn-10Pb, plated over 
copper were investigated, at both room temperature and 50ºC.
No whisker growth was observed at the reflowed specimen.

Schetty, 2001, 
[149]

Effectiveness of tin plating thickness and Ni underlayer on 
mitigation of tin whisker formation was investigated.
- As thin as 0.1µm of Ni underlayer was effective for the samples 
with copper substrate.
- It was reported that thicker tin coating is less prone to whiskers.
- Increase in copper content in the plating bath (0-6.4%) promoted 
whisker growth.

Schetty, 2-
2001, [150]

Tin-platings deposited over brass using standard methane sulfonic 
acid (MSA) and non-MSA plating baths were investigated in terms 
of preferred orientation.
- The preferred orientation for tin deposition from MSA was found 
to be (211), while that for tin deposition from non-MSA was (220).
- It was also shown that MSA deposited plating exhibited 
compressive stress that increased with time.

Zhang, 2001, 
[151]

Based on XRD stress measurement, internal stresses were reported 
to be a key factor for the whisker growth.

Xu, 2001, 
[152]

Focused ion beam (FIB) analysis was used for the first time to 
characterize tin whiskers.
The compressive stress, developed over time within tinplated on 
copper substrate, was indicated as an attribute to copper diffusion 
into the tin coating, while tensile stress was attributed to the nickel 
underlayer’s ability to block copper diffusion.

Baundry, 2001, 
[153]

FIB cross-section showed that whisker was in contact with tin-
copper intermetallics, emanating from the coating-substrate 
interface.

Vo, 2001, 
2002, [57]

Tin-bismuth and tin-copper plating with or without nickel 
underlayer were evaluated for whisker formation.
The experiment showed that temperature cycling (-55 to 85ºC) 
accelerated whisker growth even with the use of a nickel 
underlayer.
It was also shown that Sn-0.7Cu samples developed both longer 
and a larger number of whiskers, compared to pure tin plated 
samples.

Williams, 
2001, [56]

It was reported that plating bath impurities may highly affect tin 
whisker formation.
He proposed that internal compressive stress could be reduced by 
eliminating the formation of intermetallic compound at the tin 
plating/copper substrate interface.

Choi, 2002, 
[154]

The application of micro-diffractometry by synchrotron radiation to 
whisker characterization was reported for the first time.
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Tu, 2002, [155]

Eutectic Sn-Cu plating on leadframe material was evaluated using 
focused ion beam and transmission electron microscopy.  Major 
observation include:
Pure tin deposit does not have any grain precipitate of Cu6Sn5.

The equation determining the diameter of whisker was proposed.

Sheng, 2002, 
[156]

Continuous copper diffusion from substrate was observed to 
maintain the internal stress level, based on experiment using 15µm-
thick Sn-Cu and pure tin platings.
Whiskers showed numerous dislocations in the vicinity of whisker 
kinks

Xu, 2002, [65]

Whiskers were observed to grow only externally, not within the 
coating.
Ni underlayer poses a tensile stress on tin plating.
Compressively-bent and non-bent samples had more whiskers than 
tensile-bent samples.

Zhang, 2002, 
[60]

Tin plating over copper with/without Ni was evaluated, along with 
90degree bent and 260°C reflow.  Major findings include:
Tensile stress retards whisker formation, while compressive stress 
accelerates the growth.
Reflow at 260ºC and the use of Ni underlayer significantly 
mitigated whisker formation.
Thicker plating (>10µm) was recommended as a possible 
mitigation strategy.

Egli, 2002, 
[157]

A model to predict the risk of whisker growth in tin deposit was 
proposed.  Growth risk factors were correlated with the differences 
in crystallographic orientation of adjacent grains.

Lau, 2002, 
[158]

3-D non-linear stress analysis of tin whisker formation was first 
described.  This analysis was based on the findings that whisker 
formation is an extrusion process where compressed tin plating was 
forced through some weak spots in the oxide layer.

Brusse, 2002, 
[43]

Tin whisker study on multi-layer ceramic chip capacitors.  It was 
suggested that end user need to check the incoming parts, even 
though pure tin is prohibited by design and procurement practices.

Elmgren, 2002, 
[159]

Tin finishes over copper underlayer were observed to have 
significantly higher whisker growth, as compared to the tin finishes 
with Ni underlayer.

Schetty, 2002, 
[98]

Standard Methane Sulfuric Acid (MSA) electrolyte was observed to 
have preferred orientation of [211].
Non-MSA pure tin plating was observed to maintain the tensile 
stress at various storage conditions.
Substrate material (e.g., C194, 7025, 151) was found to be an 
important factor influencing the stress state of tin plating.
Different pre-treatment methods were observed to affect the stress 
within the substrate.
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Whitlaw, 2002, 
[72]

Twenty-two different tin finishes over brass, copper, and Alloy-42 
were examined.  Major observations include:
Nickel underlayer was effective in whisker mitigation on brass 
substrate.
Thicker coating (10µm) can help reducing whisker formation.

Osterman, 
2002, [87]

Standard set of mitigation strategies, such as conformal coating and 
heat treatment for tin whiskers were reviewed, along with pros and 
cons of each strategy.

Vo, 2002, 
[160]

Pure tin, Sn-Bi, Sn-Cu, and Sn over Ni on the copper substrate were 
evaluated.  It was shown that nickel underlayer was not effective 
under temperature cycling (-55 to 85ºC) and temperature/humidity 
(55ºC/95%RH) condition.

Boguslavsky, 
2003, [61]

Recrystallization principles were discussed as a whisker growth 
mechanism.  The driving force for recrystallization was identified 
to be stress fields due to dislocations.  The driving force for 
secondary grain growth was identified to be grain boundary 
network stresses.

LeBret, 2003, 
[161]

Tin film sputtered deposit on brass substrate was investigated at 
room temperature, 50ºC, and 150ºC.  No evidence of dislocations in 
the whiskers or the underlying grains were found.  Intermetallic 
formation and temperature dependence of whisker growth was 
pointed out as a key factor in the recrystallization process.

Whitlaw, 2003, 
[162]

It was recommended that substrate materials should be etched to a 
minimum depth of 2.5µm prior to plating.
Annealing at 150ºC for one hour or the use of underlayer (e.g., Ni 
or Cu) was recommended as possible mitigation strategies.

Dittes, 2003, 
[53]

Pure tin platings (1.5 to 15µm thick) over typical leadframe 
materials were evaluated.  Major observations include:
Annealing at 150ºC for one hour was effective to retard tin whisker 
formation.
For ambient storage, no whiskers longer than 50µm in length were 
observed on any samples with either Ni or Ag underlayer.
All the whiskers were arrested growth after about 150days.

Romm, 2003, 
[163]

A variety of commercial matte tin over various leadframe materials 
was evaluated at a 5-V electrical bias.  Electrically biased samples 
generated consistent whiskers.

Xu, 2003, 
[164]

Various Ni underlayer and reflow condition were evaluated in terms 
of the effectiveness of tin whisker mitigation.  Major observations:
Ni underlayer was helpful to generate a tensile stress over time.
For both room ambient and 50ºC, tin whiskers were not observed 
on any of the samples with Ni underlayer for 6 months.
Temperature cycling produced whiskers smaller than 50µm on the 
samples with Ni underlayer.
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Tsuji, 2003, 
[165]

Role of grain boundary and surface free energy on whisker growth 
were discussed.
It was indicated that minimization of surface free energies can be 
achieved by growing in specific directions and growing facets on 
the lateral surfaces.

Madra, 2003, 
[166]

The effect of molding on the stress state of tin-coated leadframes 
was modeled.

Dittes-2, 2003, 
[73]

Temperature cycling effect for tin plating over Alloy-42 was 
discussed.  Major observations include:
Tin whisker formation on Alloy-42 is strongly dependent on the 
number of applied temperature cycling, as opposed to copper 
substrate.
Whisker length has a linear relationship with delta T (temperature).
Growth rate appears to decay as a function of number of cycles or 
whisker length.

Choi, 2003, 
[167]

Whisker growth on eutectic Sn-Cu finishes was studied using X-ray 
diffraction.
Whisker was observed to grow in [011] direction.
Stress at whisker root was nearly zero and the surrounding regions 
were more compressively stressed.

Okada, 
Higuchi, and 
Ando, 2003, 
[75]

Stress analysis on whisker formation was conducted, as well as 
field reliability estimation of tin whiskers generated by thermal 
cycling stress.
Whisker growth is not simply proportional to a fixed temperature 
for thermal cycling; is also related to the upper and lower 
temperature.
Reflow seemed to retard whisker growth for thermal cycling and 
the growth arrested after 2200 cycles of 40 to 85ºC.
All the whiskers observed were smaller than 50µm in length.

Pinsky and 
Lambert, 2004, 
[83]

A level of 1-5 classification was proposed to correlate the potential 
risk to the mitigation for tin and zinc whisker issue.
Algorithm was created to evaluate the application-specific risks, 
posed by whiskers.

Zhang, 2004, 
[99]

Tin whisker growths were examined with respect to the effect of 
substrate in order to differentiate the source of compressive stress

Barsoum, 
2004, [168]

Driving for and mechanism for whisker growth was discussed with 
a focus on intermetallic growth between tin and substrate material.
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Vo, 2005, 
[169]

Discussions on iNEMI tin whisker test standardization activities 
including test results were reported.

Xu, 2005, 
[170]

Correlation between the rate of whisker formation and the 
amplitude of the applied compressive stress was discussed.

Su, 2005, [106]

Lead-free reflow process generated the uniform intensities of 
crystal orientations.
Reflowed tin finish on singulated components tends to have much 
more uneven distribution on the leads, especially for small 
packages and shorter leads (resulting in thinner tin finish near the 
body of the package, which has a higher propensity of tin whiskers.

Ding, 2005,
[171]

Before forming and trimming process, tin plating over leadframe 
material has relatively uniform grain size.  At the deformed area of 
leads as a result of the trimming process, grain size increased.  
Whisker growth propensity was 
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