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Abstract.

We consider the LBLT factorization of a symmetric matrix where L is unit lower triangular and
B is block diagonal with diagonal blocks of order 1 or 2. This is a generalization of the Cholesky fac-
torization, and pivoting is incorporated for stability. However, the reliability of the Bunch-Kaufman
pivoting strategy and Bunch’s pivoting method for symmetric tridiagonal matrices could be ques-
tioned, because they may result in unbounded L. In this paper, we give a condition under which
LBLT factorization will run to completion in inexact arithmetic with inertia preserved. In addition,
we present a new proof of the componentwise backward stability of the factorization using the inner
product formulation, giving a slight improvement of the bounds in Higham’s proofs, which relied on
the outer product formulation and normwise analysis.

We also analyze the stability of rank estimation of symmetric indefinite matrices by LBLT

factorization incorporated with the Bunch-Parlett pivoting strategy, generalizing results of Higham
for the symmetric semidefinite case.

We call a matrix triadic if it has no more than two non-zero off-diagonal elements in any column.
A symmetric tridiagonal matrix is a special case. In this paper, we display the improvement in
stability bounds when the matrix is triadic.

1. Introduction. A symmetric matrix A ∈ Rn×n can be factored into LBLT ,
where L is unit lower triangular and B is block diagonal with each block of order
1 or 2. The process is described as follows. Assuming A is non-zero, there exists a
permutation matrix Π such that

ΠAΠT =
s n−s

s
n−s

[
A11 AT

21

A21 A22

]
,

where A11 is nonsingular, and s = 1 or 2 denoting that A11 is a 1×1 or 2×2 pivot.
The decomposition is

[
A11 AT

21

A21 A22

]
=

[
Is 0

A21A
−1
11 In−s

] [
A11 0
0 Ā

] [
Is A−T

11 AT
21

0 In−s

]
,

where Ā = A22 − A21A
−1
11 AT

21 ∈ R(n−s)×(n−s) is the Schur complement. Iteratively
applying the reduction to the Schur complement, we obtain the factorization in the
form PAPT = LBLT , where P is a permutation matrix, L is unit lower triangular,
and B is block diagonal with each block of order 1 or 2.

Choosing the permutation matrix Π and pivot size s at each step is called diag-
onal pivoting. In the literature, there are four major pivoting methods for general
symmetric matrices: Bunch-Parlett [4], Bunch-Kaufman [3], bounded Bunch-Parlett
and fast Bunch-Kaufman [1] pivoting strategies. They correspond to the complete
pivoting, partial pivoting, and rook pivoting for LU factorization, respectively. In
addition, there is a pivoting strategy specifically for symmetric tridiagonal matrices
by Bunch [2].
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2 2. COMPONENTWISE ANALYSIS

The Bunch-Kaufman pivoting strategy and Bunch’s method may lead to un-
bounded L. Therefore, the reliability could be questioned. Nevertheless, Higham
proved the stability of Bunch-Kaufman pivoting strategy [9] and Bunch’s method
[10]. His proofs consist of componentwise backward error analysis using an outer
product formulation and normwise analysis. In this paper, we present a new proof of
componentwise backward stability using an inner product formulation. In addition,
we give a sufficient condition under which the LBLT factorization of a symmetric
matrix is guaranteed to run to completion numerically and preserve inertia.

With complete pivoting, LU factorization and Cholesky factorization can be ap-
plied to rank estimation. The stability is analyzed in [8]. Given A ∈ Rn×n of rank r,
the LU factorization needs 2(3n−2r)r2/3 flops, whereas Cholesky factorization needs
(3n−2r)r2/3 flops but requires symmetric positive semidefiniteness. To estimate the
rank of a symmetric indefinite matrix, we can use LBLT factorization with Bunch-
Parlett pivoting strategy (complete pivoting), which needs (3n−2r)r2/3 flops. The
stability is analyzed in this paper.

A matrix A is called triadic if the number of non-zero off-diagonal elements in
each column is bounded by 2. Tridiagonal matrices are a special case of these. The
triadic structure is preserved in LBLT factorization, so the sparsity is sustained [7].
In this paper, we show the improvement in backward error bounds for matrices with
triadic structure.

This paper is organized as follows. Section 2 and Section 3 give the componentwise
backward error analysis of LBLT factorization and the application to solve symmetric
linear systems, respectively. In Section 4 we discuss the stability using normwise anal-
ysis. Section 5 analyzes rank estimation for symmetric indefinite matrices by LBLT

factorization with Bunch-Parlett pivoting, as well as rank estimation for positive def-
inite or diagonally dominant matrices by LDLT factorization with complete pivoting.
Section 6 gives the concluding remarks.

Throughout the paper, without loss of generality, we assume the required in-
terchanges for any diagonal pivoting are done prior to the factorization, so that
A := PAPT , where P is the permutation matrix for pivoting. We denote the identity
matrix of dimension 2 by I2.

2. Componentwise Analysis. The stability of Cholesky factorization in LLT

form, which requires a positive definite or semidefinite matrix, is well studied in [8]
and [11, Chapter 10]. In this paper, we focus on LDLT factorization and LBLT

factorization. The improvement of the stability because of the triadic structure is
also discussed. We begin with basics for rounding error analysis.

2.1. Basics. We use fl(·) to denote the computed value of a given expression,
and follow the standard model

fl(x op y) = (x op y)(1 + δ), for |δ| ≤ u and op = +,−,×, /,

where u is the unit roundoff. This model holds in most computers, including those
using IEEE standard arithmetic. Lemma 2.1 gives the basic tool for rounding error
analysis [11, Lemma 3.1].

Lemma 2.1. If |δi| ≤ u and σi = ±1 for i = 1, . . . , k then if ku < 1,

k∏
i=1

(1 + δi)σi = 1 + θk, |θk| ≤ εk,
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where

εk =
ku

1 − ku
for k > 0.

The function εk defined in Lemma 2.1 has two useful properties1:

εm + εn + 2εmεn ≤ εm+n for m, n ≥ 0,

and

cεn ≤ εcn for c ≥ 1.

Since we assume ku < 1 for all practical k,

εk = ku + kuεk = ku + O(u2).

These properties are used frequently to derive inequalities in this paper.

2.2. LDLT Factorization. We now investigate the stability of LDLT factor-
ization for symmetric matrices. The factorization is denoted by A = LDLT ∈ Rn×n,
where D = diag(d1, d2, . . . , dn) and the (i, j) entries of A and L are aij and lij , re-
spectively. Note that aij = aji and lij = 0 for all 1 ≤ i < j ≤ n, and lii = 1 for
1 ≤ i ≤ n. Algorithm 1 is computationally equivalent to the LDLT factorization in
inner product form.

Algorithm 1 LDLT factorization in inner product form
for i = 1, . . . , n do

for j = 1, . . . , i − 1 do
(∗) lij = (aij −

∑j−1
k=1 dklikljk)/dj

end for
(∗∗) di = aii −

∑i−1
k=1 dkl 2

ik

end for

For a positive definite symmetric matrix A = LLT ∈ Rn×n,

|A − L̂L̂T | ≤ εn+1|L̂||L̂T |,

where L̂ is the computed version of L [11, Theorem 10.3]. Here and throughout this
paper, we use a hat to denote computed quantities, and inequality and absolute value
for matrices are defined elementwise. We begin with developing a bound for LDLT

factorization given in Theorem 2.3 with proof via Lemma 2.2. The result is extended
to LBLT factorization in Subsection 2.3.

Lemma 2.2. Let y = (s − ∑n−1
k=1 akbkck)/d. No matter what the order of evalua-

tion, the computed ŷ satisfies

ŷd +
n−1∑
k=1

akbkck = s + ∆s,

1The two properties were listed in [9] and [11, Lemma 3.3], but with “2εmεn” replaced by “εmεn”.
Here we give a slightly tighter inequality.
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where

|∆s| ≤ εn(|ŷd| +
n−1∑
k=1

|akbkck|).

Proof. The proof is analogous to that of [11, Lemma 8.4]. Using Lemma 2.1, one
may obtain

ŷd(1 + θ(0)
n ) = s −

n−1∑
k=1

akbkck(1 + θ(k)
n ),

where |θ(k)
n | ≤ εn for k = 0, 1, . . . , n−1. The result follows immediately.

Theorem 2.3. If the LDLT factorization of a symmetric matrix A ∈ Rn×n runs
to completion, then the computed L̂D̂L̂T satisfies

|A − L̂D̂L̂T | ≤ εn|L̂||D̂||L̂T |.

Proof. By Lemma 2.2, no matter what the order of evaluation in (∗) and (∗∗) in
Algorithm 1,

|aij −
j∑

k=1

d̂k l̂ik l̂jk| ≤ εj

j∑
k=1

|d̂k l̂ik l̂jk|(2.1)

for 1 ≤ j ≤ i ≤ n, where we define l̂ii = 1 for i = 1, . . . , n to simplify the notation.
The rest of the proof is by collecting all (2.1) into one matrix presentation.

Theorem 2.3 shows that an LDLT factorization is stable if |L̂||D̂||L̂T | is suitably
bounded. However, even with pivoting, the LDLT factorization of a given symmetric
matrix may not exist, and |L̂||D̂||L̂T | could be catastrophically large. See Subsec-
tion 4.1 for a sufficient condition for the stability of LDLT factorization.

The LDLT factorization of a symmetric triadic matrix has L triadic, but the last
row in L can be full [7]. Therefore, the bounding coefficient εn in Theorem 2.3 cannot
be reduced with the triadic structure. Instead, we write the bound as

|A − L̂D̂L̂T | ≤ C ◦ (|L̂||D̂||L̂T |).(2.2)

Here and throughout this paper, ◦ denotes Hadamard (elementwise) product. Let
‖C‖S =

∑
i,j |cij |, where cij denotes the (i, j) entry of C. To show the improvement

of stability because of the triadic structure, we compare ‖C‖S for a general symmetric
matrix with that for a triadic symmetric matrix.

By (2.1), we obtain cij = cji = εj for 1 ≤ j ≤ i ≤ n. Therefore,

|A − L̂D̂L̂T | ≤




ε1 ε1 ε1 · · · ε1
ε1 ε2 ε2 · · · ε2
ε1 ε2 ε3 · · · ε3
...

...
...

. . .
...

ε1 ε2 ε3 · · · εn



◦ (|L̂||D̂||L̂T |).(2.3)
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Then

‖C‖S =
n∑

i=1

n∑
j=1

cij =
n−1∑
i=0

(2i + 1)εn−i

≤
n−1∑
i=0

ε(2i+1)(n−i) ≤ ε∑n−1

i=0
(2i+1)(n−i)

= ε 1
6n(n+1)(2n+1) =

1
6
(2n3 + 3n2 + n)u + O(u2).(2.4)

Note that (2.3) is approximately tight allowing any order of evaluation in (∗) and (∗∗)
in Algorithm 1. Before investigating the case of A as a triadic symmetric matrix, we
introduce the following lemma.

Lemma 2.4. For any triadic and lower triangular matrix L ∈ Rn×n, LLT has
at most 7n − 14 non-zero elements for n ≥ 4. The bound, 7n − 14, is attained by
L = Z3 + Z + I, where Z ∈ Rn×n is the shift-down matrix.

Proof. Let L = L̃ + D̃, where L̃ and D̃ are the off-diagonal and the diagonal part
of L, respectively. Then LLT = (L̃ + D̃)(L̃ + D̃)T = L̃L̃T + D̃L̃T + L̃D̃ + D̃2, in
which L̃D̃ contributes at most 2n− 3 non-zero elements in the lower triangular part.
Now we inspect L̃L̃T , in which each column of L̃ multiplying L̃T may contribute one
off-diagonal element in the lower triangular part, except the last two columns of L̃.
Therefore, L̃L̃T contributes at most n− 2 non-zero off-diagonal elements in the lower
triangular part. There are at most (2n−3)+(n−2) = 3n−5 off-diagonal terms in the
lower triangular part. However, the two non-zero off-diagonal elements contributed
by the third to last and fourth to last columns in L̃ must be in the bottom-right most
3×3 block of LLT , which have collisions if the bottom-right most 3×3 block of L̃
is full. As a result, there are at most (3n − 5) − 2 = 3n − 7 non-zero off-diagonal
elements in the lower triangular part for n ≥ 4. Along with the n diagonal elements,
there are at most 2(3n − 7) + n = 7n − 14 non-zero elements for n ≥ 4. Note that
D̃2 and L̃L̃T can contribute n and 2n − 3 non-zero terms to the diagonal of LLT ,
respectively. Overall, there are at most 2(3n− 5)+ (3n− 3) = 9n− 13 non-zero terms
for n ≥ 4.

If A ∈ Rn×n is symmetric triadic, then A has at most 3n non-zero elements. and
so does its factorization LDLT (or LLT ). However, because of rounding errors, the
computed L̂D̂L̂T (or L̂L̂T ) may have more non-zero elements than A. Nevertheless,
by Lemma 2.4, the number of non-zero elements in L̂L̂T or L̂D̂L̂T is bounded by
7n − 14 for n ≥ 4.

For 1 ≤ j ≤ i ≤ n, cij depends on the number of non-zero terms d̂k l̂ik l̂jk in (2.1).
By the proof of Lemma 2.4, there are at most 9n − 13 non-zero terms in L̂D̂L̂T for
n ≥ 4. Therefore,

‖C‖S =
n∑

i=1

n∑
j=1

cij ≤ ε9n−13 = 9nu + O(u2).(2.5)

Comparing (2.5) with (2.4), we see the improvement of componentwise backward
error because of the triadic structure. Note that the analysis is independent of the
order of evaluation in (∗) and (∗∗) in Algorithm 1.

2.3. LBLT Factorization. Now we analyze the LBLT factorization of a sym-
metric indefinite A ∈ Rn×n. The factorization is denoted by A = LBLT ∈ Rn×n,
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where B =




B1

B2

. . .
Bm


 and L =




L11

L21 L22

...
. . .

Lm1 Lm2 · · · Lmm


 for i =

1, . . . , m. Each Bi is a 1×1 or 2×2 block, with Lii = 1 or Lii = I2, respectively. The
rest of L is partitioned accordingly. Algorithm 2 is computationally equivalent to the
LBLT factorization in inner product form.

Algorithm 2 LBLT factorization in inner product form
for i = 1, . . . , m do

for j = 1, . . . , i − 1 do
(∗) Lij = (Aij −

∑j−1
k=1 LikBkLT

jk)B−1
j

end for
(∗∗) Bi = Aii −

∑i−1
k=1 LikBkLT

ik

end for

In Algorithm 2, each multiplication by B−1
j in (∗) with Bj ∈ R2×2 can be com-

puted by solving a 2×2 linear system, denoted by Ey = z. We assume the linear
system is solved successfully with computed ŷ satisfying

|∆E| ≤ εc|E|, where (E + ∆E)ŷ = z(2.6)

for some constant εc. In [9], Higham showed that with Bunch-Kaufman pivoting with
pivoting argument α = 1+

√
17

8 ≈ 0.64, if the system is solved by GEPP, then εc = ε12;
if it is solved by explicit inverse of E with scaling (as implemented in both LAPACK
and LINPACK), εc = ε180. In a similar vein, the assumption (2.6) also holds with the
other suggested pivoting argument α = 0.5 to minimize the elements in magnitude
in L and α =

√
5−1
2 ≈ 0.62 for triadic matrices [7]. Since Bunch-Parlett, bounded

Bunch-Parlett and fast Bunch-Kaufman pivoting strategies satisfy stronger conditions
than the Bunch-Kaufman, condition (2.6) still holds. In [10], Higham showed that
with Bunch’s pivoting strategy for symmetric tridiagonal matrices [2], if a 2×2 linear
system is solved by GEPP, then εc = ε6

√
5. A constant εc for the 2×2 linear system

solved by explicit inverse with scaling can also be obtained. We conclude that all
pivoting strategies in the literature [1, 2, 3, 4, 7] satisfy condition (2.6).

Lemma 2.5. Let Y = (S−∑m−1
k=1 AkBkCk)E−1, where E and each Bk are either

1×1 or 2×2, such that the matrix operations are well-defined. If E is a 2×2 matrix,
we assume condition (2.6) holds. Then

|∆S| ≤ max{εc, ε4m−3}(|S| + |Ŷ ||E| +
m−1∑
k=1

|Ak||Bk||Ck|),

where

Ŷ E +
m−1∑
k=1

AkBkCk = S + ∆S.

If E is an identity, then max{εc, ε4m−3} can be replaced by ε4m−3, since εc = 0.
Proof. Let

Z = S −
m−1∑
k=1

AkBkCk and therefore Y = ZE−1.
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If Bk is a 2×2 matrix, then each element in AkBkCk can be represented in the form∑4
i=1 aibici. Therefore, each element in

∑m−1
k=1 AkBkCk sums at most 4(m−1) terms.

By Lemma 2.2,

|∆Z| ≤ ε4m−3(|S| +
m−1∑
k=1

|Ak||Bk||Ck|), where Ẑ = Z + ∆Z.(2.7)

If E is a 2×2 matrix, then applying (2.6) by substituting y = Y (i : i, 1 : 2)T and
z = Ẑ(i : i, 1 : 2)T , we obtain Ŷ (i : i, 1 : 2)(E + ∆Ei) = Ẑ(i : i, 1 : 2) with |∆Ei| ≤ εc|E|
for i = 1 and i = 2 (if any). To simplify the notation, we write

Ŷ (E + ∆E) = Ẑ, where |∆E| ≤ εc|E|.(2.8)

In the rest of the proof, keep in mind that ∆E can be ∆E1 or ∆E2 for the first or
second rows of Ŷ and Ẑ, respectively. By (2.7) and (2.8),

|∆S| = |Ŷ E − (S −
m−1∑
k=1

AkBkCk)| = |Ŷ E − Ẑ + Ẑ − Z|

= | − Ŷ ∆E + ∆Z| ≤ |Ŷ ||∆E| + |∆Z|

≤ εc|Ŷ ||E| + ε4m−3(|S| +
m−1∑
k=1

|Ak||Bk||Ck|)

≤ max{εc, ε4m−3}(|S| + |Ŷ ||E| +
m−1∑
k=1

|Ak||Bk||Ck|).

If E is a 1×1 matrix, then we apply Lemma 2.2 and obtain |∆S| ≤ ε4m−3(|Ŷ ||E|+∑m−1
k=1 |Ak||Bk||Ck|).
Theorem 2.6. If the LBLT factorization of a symmetric matrix A ∈ Rn×n runs

to completion, then the computed L̂B̂L̂T satisfies

|A − L̂B̂L̂T | ≤ max{εc, ε4m−3}(|A| + |L̂||B̂||L̂T |),

where we assume condition (2.6) holds for all linear systems involving 2×2 pivots,
and m is the number of blocks in B, m ≤ n.

Proof. Applying Lemma 2.5 to (∗) and (∗∗) in Algorithm 2, we obtain

|Aij −
j∑

k=1

L̂ikB̂kL̂T
jk| ≤ max{εc, ε4j−3}(|Aij | +

i∑
k=1

|L̂ik||B̂k||L̂T
jk|)(2.9)

for 1 ≤ j ≤ i ≤ m, where L̂ii = 1 or I2, depending on whether Bi is 1× 1 or
2×2 for i = 1, . . . , m. The result is obtained by collecting all (2.9) into one matrix
presentation.

Similar to the coefficient εn in Theorem 2.3 for LDLT factorization, the bound-
ing coefficient max{εc, ε4m−3} in Theorem 2.6 for LBLT factorization can hardly be
reduced because of the triadic structure. Instead, we bound ‖C‖S, where

|A − L̂B̂L̂T | ≤ C ◦ (|A| + |L̂||B̂||L̂T |).(2.10)
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Each cij depends on the number of blocks before itself, which is at most j − 1 for
1 ≤ j ≤ i ≤ n. By (2.9), cij ≤ max{εc, ε4j−3} for 1 ≤ j ≤ i ≤ n. Therefore,

‖C‖S ≤
n∑

i=1

n∑
j=1

cij = n2εc +
n−1∑
i=0

(2i + 1)ε4(n−i)−3 + O(u2)

≤ n2εc + ε 1
3 n(4n2−3n+2) + O(u2) =

1
3
(4n3 + 3(c − 1)n2 + 2n)u + O(u2).(2.11)

Because of the rounding errors, the computed L̂B̂L̂T of a symmetric triadic matrix
may have more non-zero elements than LBLT . The triadic structure is preserved in
the L [7]. By Lemma 2.4, the number of non-zero blocks in L̂B̂L̂T is bounded by
7m− 14, and the proof shows that there are at most 9m− 13 block terms for m ≥ 4,
where m is the number of blocks in B. By (2.9), for m ≥ 4,

‖C‖S ≤ 4((7m− 14)εc + ε4(9m−13)) ≤ 4(7c + 36)nu + O(u2).(2.12)

Therefore, L̂B̂L̂T will still be sparse, but not necessarily triadic.
Comparing (2.12) with (2.11), we see the improvement of componentwise back-

ward error because of the triadic structure. Note that the analysis is independent of
the order of evaluation in (∗) and (∗∗) in Algorithm 2.

3. Solving Symmetric Linear Systems. In this section we use LBLT fac-
torization to solve a symmetric linear system Ax = b. After a possible permutation,
which is omitted for notational convenience, we obtain LBLT x = b. Then we may
solve three simplified systems, Ly = b for y, Bz = y for z, and LT x = z for x.

If A is triadic, then each column of L has at most two off-diagonal elements and
we can solve Ly = b and LT x = z, traversing columns of L.

3.1. LDLT Factorization. The computed solution x̂ to an n×n symmetric
positive definite system Ax = b using LLT factorization satisfies [11, Theorem 10.4],

(A + ∆A)x̂ = b, |∆A| ≤ ε3n+1|L̂||L̂T |.
Theorem 3.3 gives this bound for LDLT factorization, with proof via Lemmas 3.1 and
3.2. The result is extended to LBLT factorization in Subsection 3.2.

Lemma 3.1. Let ŷ be the computed solution to the lower triangular system Ly = b
by forward substitution with any ordering of arithmetic operations, where L ∈ Rn×n

is nonsingular. Then

(L + ∆L)ŷ = b, |∆L| ≤ εn|L|.
If L is unit lower triangular, then there is no division so |∆L| ≤ εn−1|L|. The bounds
for upper triangular systems are the same.

Proof. Similar to the derivation leading to [11, Theorem 8.5].
Lemma 3.2. ∀m, n, k > 0 with m + n + k < 1/u,

εm + εn + εk + εmεn + εnεk + εmεk + εmεnεk ≤ εm+n+k.

Proof. Without loss of generality, let k ≤ m. Then

εm + εn + εk + εmεn + εnεk + εmεk + εmεnεk

≤ (εm + εn + 2εmεn) + εk + εmεk + εmεnεk

≤ εm+n + εk + εm+nεk + εm+nεk ≤ εm+n+k.
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Theorem 3.3. Suppose the LDLT factorization of a symmetric matrix A ∈ Rn×n

runs to completion and produces a computed solution x̂ to Ax = b. Then

(A + ∆A)x̂ = b, |∆A| ≤ ε3n−1|L̂||D̂||L̂T |.

Proof. By Theorem 2.3, A + ∆A1 = L̂D̂L̂T with |∆A1| ≤ εn|L̂||D̂||L̂T |. By
Lemma 3.1,

(L̂ + ∆L)ŷ = b, |∆L| ≤ εn−1|L̂|,
(D̂ + ∆D)ẑ = ŷ, |∆D| ≤ ε1|D̂|,(3.1)

(L̂T + ∆R)x̂ = ẑ, |∆R| ≤ εn−1|L̂T |.(3.2)

Then

b = (L̂ + ∆L)(D̂ + ∆D)(L̂T + ∆R)x̂
= (L̂D̂L̂T + ∆LD̂L̂T + L̂∆DL̂T + L̂D̂∆R +

+L̂∆D∆R + ∆LD̂∆R + ∆L∆DL̂T + ∆L∆D∆R)x̂.

Since L̂D̂L̂T = A + ∆A1,

|∆A| = |∆A1 + ∆LD̂L̂T + L̂∆DL̂T + L̂D̂∆R +
+L̂∆D∆R + ∆LD̂∆R + ∆L∆DL̂T + ∆L∆D∆R|

≤ |∆A1| + |∆L||D̂||L̂T | + |L̂||∆D||L̂T | + |L̂||D̂||∆R|
+|L̂||∆D||∆R| + |∆L||D̂||∆R| + |∆L||∆D||L̂T | + |∆L||∆D||∆R|

≤ (εn + εn−1 + ε1 + εn−1 + 2ε1εn−1 + εn−1εn−1 + ε1εn−1εn−1)|L̂||D̂||L̂T |
≤ (εn + ε2n−1)|L̂||D̂||L̂T | ≤ ε3n−1|L̂||D̂||L̂T |.

The second to last inequality is derived by invoking Lemma 3.2.
Now we define C by

(A + ∆A)x̂ = b, |∆A| ≤ C ◦ |L̂||D̂||L̂T |.(3.3)

We follow the notation in the proof of Theorem 3.3. By (2.2) and (2.4),

|∆A1| ≤ C1 ◦ (|L̂||D̂||L̂T |), ‖C1‖S ≤ 1
6
(2n3 + 3n2 + n)u + O(u2).

In the unit lower triangular system L̂y = b, L̂(1 :k, 1:k)y(1 :k) = b(1 :k) is a k×k unit
lower triangular system for k = 1, . . . , n. Repeatedly applying Lemma 3.1, we obtain

(L̂ + ∆L)ŷ = b, |∆L| ≤ diag(ε0, ε1, . . . , εn−1)|L̂|.

Therefore,

|∆A| = |∆A1 + ∆LD̂L̂T + L̂∆DL̂T + L̂D̂∆R| + O(u2)
≤ |∆A1| + |∆L||D̂||L̂T | + |L̂||∆D||L̂T | + |L̂||D̂||∆R| + O(u2)
≤ (C1 + diag(ε0, ε1, . . . , εn−1)eeT + (ε1 + εn−1)eeT ) ◦ (|L̂||D̂||L̂T |) + O(u2).
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Finally,

‖C‖S ≤ ‖C1‖S + ‖diag(ε0, ε1, . . . , εn−1)eeT ‖S + εn‖eeT‖S + O(u2)

=
1
6
(11n3 + n)u + O(u2).(3.4)

Now suppose that A ∈ Rn×n is symmetric triadic. Following the notation in
the proof of Theorem 3.3, the bound (3.2) can be reduced to be |∆R| ≤ ε2|L̂T |,
and therefore the bound in Theorem 3.3 becomes (A + ∆A)x̂ = b with |∆A| ≤
ε2n+2|L̂||D̂||L̂T |. The bound on ‖C‖S in (3.3) can be tightened with the triadic
structure as follows.

|∆A| ≤ |∆A1| + |∆L||D̂||L̂T | + |L̂||∆D||L̂T | + |L̂||D̂||∆R| + O(u2)
≤ |∆A1| + εn−1|L̂||D̂||L̂T | + ε1|L̂||D̂||L̂T | + ε2|L̂||D̂||L̂T | + O(u2)
≤ C1 ◦ |L̂||D̂||L̂T | + εn+2|L̂||D̂||L̂T | + O(u2).

By (2.5), ‖C1‖S ≤ 9nu + O(u2). By Lemma 2.4, there are at most 7n − 14 non-zero
elements in L̂D̂L̂T for n ≥ 4. Therefore,

‖C‖S ≤ ‖C1‖S + (7n − 14)εn+2 + O(u2) ≤ (7n2 + 9n)u + O(u2)(3.5)

Comparing (3.5) with (3.4), we see the improvement of componentwise backward
error because of the triadic structure. The analysis is independent of the order of
evaluation in (∗) and (∗∗) in Algorithm 1 and the order of substitution to solve the
unit triangular systems.

3.2. LBLT Factorization. Now we extend Theorem 3.3 for LDLT factorization
to Theorem 3.4 for LBLT factorization.

Theorem 3.4. Suppose the LBLT factorization of a symmetric matrix A ∈ Rn×n

runs to completion and produces a computed solution x̂ to Ax = b. Then

(A + ∆A)x̂ = b, |∆A| ≤ (max{εc, ε4n−3} + ε2n+c−2)(|A| + |L̂||B̂||L̂T |),
where we assume condition (2.6) holds for all linear systems involving 2×2 pivots.

Proof. The proof is analogous to that of Theorem 3.3 but with two differences.
First, since condition (2.6) holds, (3.1) is replaced by

(B̂ + ∆B)ẑ = ŷ, |∆B| ≤ εc|B̂|.
Second, we invoke Theorem 2.6 instead of Theorem 2.3 and obtain

|∆A1| ≤ max{εc, ε4n−3}(|A| + |L̂||B̂||L̂T |).
The result is not difficult to see after a little thought.

Theorem 2.6 and Theorem 3.4 coincide with a theorem by Higham [9, Theorem
4.1][11, Theorem 11.3] described as follows.

Theorem 3.5 (Higham). Suppose the LBLT factorization of symmetric A ∈
Rn×n runs to completion and produces a computed solution to Ax = b. Without
loss of generality, we assume all the interchanges are done with Bunch-Kaufman piv-
oting strategy (i.e., A := PAPT , where P is the permutation matrix for pivoting).
Let L̂B̂L̂T be the computed factorization and x̂ be the computed solution. Assuming
condition (2.6) holds for all linear systems involving 2×2 pivots, then

(A + ∆A1) = L̂B̂L̂T and (A + ∆A2)x̂ = b,
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where

|∆Ai| ≤ p(n)u(|A| + |L̂||B̂||L̂T |) + O(u2), i = 1, 2,

with p(n) a linear polynomial.
Three remarks are in order. First, Higham’s proof is via the LBLT factorization

in outer product form [9], whereas our proof uses inner product form. Second, we
give a precise bounding coefficient. Third, Lemma 3.2 eliminates the O(u2) terms.
The result is also true for the Bunch-Parlett, fast Bunch-Parlett, and bounded Bunch-
Kaufman pivoting strategies, because they satisfy stronger conditions than the Bunch-
Kaufman.

We may also bound ‖C‖S , where C defined by

(A + ∆A)x̂ = b, |∆A| ≤ C ◦ (|A| + |L̂||B̂||L̂T |).(3.6)

By (2.11), ‖C1‖S ≤ 1
3 (4n3 + 3(c − 1)n2 + 2n)u + O(u2), where |A − L̂B̂L̂T | ≤ C1 ◦

(|A| + |L̂||B̂||L̂T |). Similar to (3.4), we find that

‖C‖S ≤ ‖C1‖S + ‖diag(ε0, ε1, . . . , εn−1)eeT ‖S + (εc + εn−1)‖eeT‖S + O(u2)

= (
17
6

n3 +
4c − 5

2
n2 + 2n)u + O(u2).(3.7)

Now suppose that A ∈ Rn×n is symmetric triadic. By (2.12), ‖C1‖S = 4(7c +
36)nu + O(u2). By Lemma 2.4, there are at most 7n − 14 non-zero blocks in L̂D̂L̂T

for n ≥ 4. Each block has at most 4 elements. In the similar vein as (3.5),

‖C‖S ≤ ‖C1‖S + 4(7n− 14)εn+c+1 + O(u2)
≤ (28n2 + 56cn + 144n)u + O(u2).(3.8)

Comparing (3.8) with (3.7), we see the improvement of componentwise backward
error because of the triadic structure. Note that the analysis is independent of the
order of evaluation in (∗) and (∗∗) in Algorithm 2 and the order of substitution for
solving each unit triangular system.

4. Normwise Analysis. In this section, we focus on bounding ‖|L||D||LT |‖
and ‖|L||B||LT |‖ in terms of ‖A‖ to analyze the stability of LDLT factorization and
LBLT factorization, respectively. We also give a sufficient condition for the success
of LBLT factorization with inertia preserved.

4.1. LDLT Factorization. Theorem 2.3 and Theorem 3.3 imply that the LDLT

factorization of a symmetric matrix A ∈ Rn×n and its application to solve Ax = b are
stable, if ‖|L̂||D̂||L̂T |‖ is suitably bounded relative to ‖A‖. We begin with bounding
‖|L||D||LT |‖ instead of ‖|L̂||D̂||L̂T |‖ for simplicity.

If A ∈ Rn×n is symmetric positive definite, its LLT factorization shares the
properties with LDLT factorization, including

‖|L||D||LT |‖2 = ‖|LD
1
2 ||D 1

2 LT |‖2 = ‖|LD
1
2 |‖2

2 ≤ n‖LD
1
2 ‖2

2 = n‖A‖2.(4.1)

If A ∈ Rn×n is symmetric and diagonally dominant, its LDLT factorization
inherits the properties of LU factorization of a diagonally dominant matrix. Diagonal
dominance guarantees that |L| is diagonally dominant by columns, which implies
‖|L−T ||LT |‖∞ ≤ 2n − 1 [11, Lemma 8.8]. Therefore,

‖|L||D||LT |‖∞ = ‖|LD||LT |‖∞ = ‖|AL−T ||LT |‖∞
≤ ‖|A|‖∞‖|L−T ||LT |‖∞ ≤ (2n − 1)‖A‖∞.
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The derivation is adapted from that for LU factorization of a diagonally dominant
matrix.

We conclude that if A is positive definite or diagonally dominant, its LDLT fac-
torization and the application to solve linear system are stable even without pivoting.
A weaker condition for the stability of LDLT factorization can be obtained by [11,
Theorem 9.5] described as follows.

Theorem 4.1. The LU factorization of A ∈ Rn×n satisfies

‖|L||U |‖∞ ≤ (1 + 2(n2−n)ρn)‖A‖∞,

where ρn is the growth factor (the largest element in magnitude in all Schur comple-
ments divided by the largest element in |A|). This statement is independent of the
pivoting strategy applied, if any.

Proof. The proof is similar to that of a theorem by Wilkinson. See the discussion
of [11, Theorem 9.5] for details.

When A is symmetric, DLT in its LDLT factorization plays the role of U in the
LU factorization. Therefore, Theorem 4.1 is applicable to bound ‖|L||D||LT |‖∞, be-
cause |L||D||LT | = |L||DLT | = |LU |. As a result, the stability of LDLT factorization
is achieved as long as the growth factor ρn is modest. By Theorems 2.3 and 4.1,

‖|L̂||D̂||L̂T |‖∞ ≤ 1 + 2(n2−n)ρn

1 − (1 + 2(n2−n)ρn)εn
‖A‖∞.

From this point of view, both positive definiteness and diagonal dominance guar-
antee the stability, because their growth factors are bounded by 1 and 2, respectively.
Unfortunately, |L||D||LT | could be catastrophically large for general matrices. For

example, if A =
[

ε 1
1 0

]
, then the corresponding |L||D||LT | =

[
ε 1
1 2/ε

]
is un-

bounded as ε → 0. This is an illustration of the well-known fact that LDLT factor-
ization is not generally stable.

4.2. LBLT Factorization. Theorems 2.6 and 3.4 imply that the LBLT fac-
torization of a symmetric matrix A ∈ Rn×n and its application to solving Ax = b
are stable, if all linear 2×2 systems are solved with condition (2.6) satisfied and
‖|L̂||B̂||L̂T |‖ is suitably bounded relative to ‖A‖. For simplicity, we begin with bound-
ing ‖|L||B||LT |‖ instead of ‖|L̂||B̂||L̂T |‖. In other words, our objective is to find a
modest cn such that

‖|L||B||LT |‖ ≤ cn‖LBLT‖(4.2)

in some proper norm. Using the ∞-norm, we obtain

‖|L||B||LT |‖∞ ≤ ‖|L|‖∞‖|B|‖∞‖|LT |‖∞ = ‖L‖∞‖B‖∞‖LT ‖∞.

Therefore, if ‖L‖∞‖B‖∞‖LT ‖∞ is modest relative to ‖A‖∞ and condition (2.6) holds,
then the corresponding LBLT factorization is normwise backward stable. The same
statement can also be obtained from a suitable modification of error analysis for
block LU factorization in [5]. For Bunch-Parlett, fast Bunch-Parlett, and bounded
Bunch-Kaufman pivoting strategies, the element growth of B is well-controlled and
the elements in L are bounded, so they are normwise backward stable methods.

Bunch-Kaufman pivoting strategy for symmetric matrices [3] and Bunch’s pivot-
ing strategy for symmetric tridiagonal matrices [2] may result in unbounded L, so we
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cannot prove the stability by bounding ‖L‖∞‖B‖∞‖LT‖∞. Both strategies do have
growth factors well-controlled. However, unlike LU factorization and LDLT factor-
ization, ‖|L||B||LT |‖ cannot be bounded in terms of the growth factor and ‖A‖. For
example, without pivoting, we have

A =


 1 1

1 1+ε2 −ε
−ε 2


 =


 1

1
1
ε − 1

ε 1





 1 1

1 1+ε2

1





 1 1

ε
1 − 1

ε
1


 = LBLT .

The factorization has modest ‖A‖ for small ε 6= 0 and no element growth, but
‖|L||B||LT |‖ is unbounded when ε → 0.

Higham [9] showed that using Bunch-Kaufman pivoting strategy with the pivoting
argument α = 1+

√
17

8 ≈ 0.64, the LBLT factorization of symmetric A ∈ Rn×n satisfies

‖|L||B||LT |‖M ≤ max{ 1
α

,
(3 + α2)(3 + α)

(1 − α2)2
}nρn‖A‖M

≈ 35.674nρn‖A‖M < 36nρn‖A‖M ,(4.3)

where ρn is the growth factor and ‖ · ‖M is the largest magnitude element in the
given matrix. These bounds also hold for the other suggested pivoting arguments
α =

√
5−1
2 ≈ 0.62 (for triadic matrices) and α = 0.5 (to minimize the element bound

on L) [7], as well as a variant by Sorensen and Van Loan [6, section 5.3.2]. The
Bunch-Parlett, fast Bunch-Parlett and bounded Bunch-Kaufman pivoting strategies
satisfy a stronger condition than the Bunch-Kaufman, so they also satisfy (4.3). By
Theorem 2.6 and (4.3),

‖|L̂||B̂||L̂T |‖M ≤ 36nρn
1 + max{εc, ε4n−3}

1 − 36nρn max{εc, ε4n−3}‖A‖M .(4.4)

Higham showed that with Bunch’s pivoting strategy, ‖|L||B||LT |‖M ≤ 42‖A‖M ,
where A is symmetric tridiagonal [10]. So a bound on ‖|L̂||B̂||L̂T |‖M in terms of
‖A‖M can be obtained similarly.

In summary, all pivoting strategies for LBLT factorization in the literature [1, 2,
3, 4, 7] are stable methods. Wilkinson [14] showed that the Cholesky factorization of
a symmetric positive definite matrix A ∈ Rn×n is guaranteed to run to completion if
20n3/2κ2(A)u ≤ 1. We give a sufficient condition for the success of LBLT factorization
with inertia preserved in Theorem 4.3, with proof invoking a theorem by Weyl.

Theorem 4.2 (Weyl [13, Corollary 4.9]). Let A, B be two n×n Hermitian
matrices and λk(A), λk(B), λk(A+B) be the eigenvalues of A, B, and A+B arranged
in increasing order for k = 1, . . . , n. Then for k = 1, . . . , n, we have

λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B).

Theorem 4.3. With the Bunch-Parlett, Bunch-Kaufman, bounded Bunch-Parlett
or fast Bunch-Kaufman pivoting strategy, the LBLT factorization of symmetric A ∈
Rn×n succeeds with inertia preserved if f(n)κn(A) < 1 (i.e., A is not too ill condi-
tioned), where

f(n) = 36n2ρn max{εc, ε4n−3} 1 + max{εc, ε4n−3}
1 − 36nρn max{εc, ε4n−3} = 144n3ρnu + O(u2).
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Proof. The proof is by finite induction. Consider Algorithm 2. Let Ak = A(1 :
k, 1 : k), ∆Ak = ∆A(1 : k, 1 : k) and Âk = Ak + ∆Ak, where A + ∆A = L̂B̂L̂T . The
process of LBLT factorization is to iteratively factor Ak, increasing k from 1 to n.
Obviously, the first stage succeeds. Suppose the factorization of Ak is successfully
completed with inertia preserved (i.e., the inertia of Âk is the same as that of Ak).
Let s = 1 or 2 denote whether the next pivot is 1×1 or 2×2. Since the inertia of Âk

is preserved, all the pivots in Âk are full rank, so the factorization of Ak+s succeeds
(i.e., with no division by zero). By Theorem 2.6, (4.3) and (4.4), the componentwise
backward error satisfies

‖∆Ak‖2 ≤ 36k2ρk max{εc, ε4k−3} 1 + max{εc, ε4k−3}
1 − 36kρk max{εc, ε4k−3}‖Ak‖2 =: f(k)‖Ak‖2

for all possible 1 ≤ k ≤ n. Note that f(k) = 144k3ρku + O(u2). Let

λ∗(Ak) := min
1≤i≤k

|λi(Ak)|.

Assume f(n)κ2(An) < 1. By Theorem 4.2, if λi(Ak) > 0,

λi(Ak + ∆Ak) ≥ λi(Ak) − ‖∆Ak‖2 ≥ λ∗(Ak) − f(k)‖Ak‖2

≥ λ∗(Ak)(1 − f(k)κ2(Ak)) ≥ λ∗(An)(1 − f(n)κ2(An)) > 0.

Similarly, if λi(Ak) < 0,

λi(Ak + ∆Ak) ≤ λi(Ak) + ‖∆Ak‖2 ≤ −λ∗(Ak) + f(k)‖Ak‖2 < 0.

Therefore, λi(Ak + ∆Ak) and λi(Ak) have the same sign for i = 1, . . . , k. So the
pivoting guarantees that the inertia of Âk is preserved. By induction, the factorization
is guaranteed running to completion with inertia preserved.

5. Rank Estimation. Cholesky factorization for symmetric positive semidefi-
nite matrices with complete pivoting can be used for rank estimation. The stability is
well studied in [8]. In this section, we discuss the stability of Bunch-Parlett pivoting
strategy applied to the rank estimation of symmetric indefinite matrices.

5.1. LDLT Factorization. Given a symmetric matrix A ∈ Rn×n of rank r < n,
we assume the necessary interchanges are done so that A(1 : r, 1 : r) is nonsingular.
If A is positive semi-definite or diagonally dominant, such a permutation exists. The

LDLT factorization has L =
[

L11

L21

]
, where L11 ∈ Rn×n is unit lower triangular,

L21 ∈ R(n−r)×r, and D ∈ Rr×r is diagonal.The factorization is computationally
equivalent to Algorithm 3.

Algorithm 3 LDLT factorization of a symmetric matrix of rank r < n

for j = 1, . . . , r do
(∗) dj = ajj −

∑j−1
k=1 dkl 2

jk

for i = j + 1, . . . , n do
(∗∗) lij = (aij −

∑j−1
k=1 dklikljk)/dj

end for
end for
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Assuming the factorization in Algorithm 3 runs to completion, we define the
backward error ∆A by

A + ∆A = L̂D̂L̂T + Â(r+1),

where

Â(r+1) =
r n−r

r
n−r

[
0 0
0 Ŝr+1

]
,

with Ŝr+1 the computed Schur complement. Denote the (i, j) entry of Â(r+1) by
â
(r+1)
ij . To simplify the notation, we define l̂jj = 1 for j = 1, . . . , r. By Lemma 2.2,

|aij −
j∑

k=1

d̂k l̂jk l̂ik| ≤ εj

j∑
k=1

|d̂k l̂ik l̂jk|(5.1)

for j = 1, . . . , r and i = j, . . . , n.

|aij − â
(r+1)
ij −

r∑
k=1

d̂k l̂ik l̂jk| ≤ εr+1(|â(r+1)
ij | +

r∑
k=1

|d̂k l̂ik l̂jk|)(5.2)

for j = r + 1, . . . , n and i = j, . . . , n.
Collecting all (5.1)–(5.2) into one matrix representation, we obtain

|∆A| ≤ C ◦ (|L̂||D̂||L̂T | + |Â(r+1)|),(5.3)

where cij = cji = εmin{j,r+1} for 1 ≤ j ≤ i ≤ n, or simply

|∆A| ≤ εr+1(|L̂||D̂||L̂T | + |Â(r+1)|).(5.4)

Applying (2.4) to bound ‖C(1 :r, 1:r)‖S ,

‖C‖S =
n∑

i=1

n∑
j=1

cij =
r∑

i=1

r∑
i=1

cij + 2
n∑

i=r+1

r∑
j=1

cij +
n∑

i=r+1

n∑
j=r+1

cij

≤ 1
6
(2r3 + 3r2 + r)u + 2(n − r)

r∑
j=1

εj + (n − r)2εr+1 + O(u2)

≤ (n(n − r)(r + 1) +
1
3
r3 +

1
2
r2 +

1
6
r)u + O(u2)(5.5)

Lemma 5.1. For any triadic matrix T ∈ Rn×r, TT T has at most 6r non-zero
off-diagonal elements/terms and min{n, 3r} diagonal elements/terms. The bounds,
6r and max{n, 3r}, are attained with L = (Z3 +Z + I)(1 :n, 1:r) for n− r ≥ 3, where
Z ∈ Rn×n is the shift-down matrix.

Proof. The proof is analogous to that of Lemma 2.4 and omitted here.
Suppose A ∈ Rn×n is symmetric triadic of rank r < n and has an LDLT factor-

ization. By Lemma 5.1, there are at most 9r terms in L̂D̂L̂T . By (5.1)–(5.2),

‖C‖S =
n∑

i=1

n∑
j=1

cij ≤ ε2·9r = 18ru + O(u2).(5.6)

Comparing (5.6) with (5.5), we see the improvement of componentwise backward
error because of the triadic structure. Note that the analysis is independent of the
order of evaluation in (∗) and (∗∗) in Algorithm 3.



16 5. RANK ESTIMATION

5.2. LBLT Factorization. Now we investigate the LBLT factorization of sym-
metric A ∈ Rn×n of rank r < n. Assume that the necessary interchanges are done so
that A(1 : r, 1 : r) has rank r, as they would be with Bunch-Parlett pivoting. Denote
the factorization by A = LBLT , where B = diag(B1, B2, . . . , Bm−1) ∈ Rr×r, and

L =




L11

L21 L22

...
. . .

Lm−1,1 Lm−1,2 · · · Lm−1,m−1

Lm1 Lm2 · · · Lm,m−1



∈ Rn×r. Each Bi is either 1× 1 or 2× 2

for i = 1, . . . , m − 1, with L partitioned accordingly. Each Lmj has n − r rows for
j = 1, . . . , m. The factorization is computationally equivalent to Algorithm 4.

Algorithm 4 LBLT factorization of a matrix of rank r < n

for j = 1, . . . , m − 1 do
(∗) Bj = Ajj −

∑j−1
k=1 LjkBkLT

jk

for i = j + 1, . . . , m do
(∗∗) Lij = (Aij −

∑j−1
k=1 LikBkLT

jk)B−1
j

end for
end for

Assuming the factorization in Algorithm 4 runs to completion, the backward error
∆A of LBLT factorization is defined by

A + ∆A = L̂B̂L̂T + Â(r+1),(5.7)

where

Â(r+1) =
r n−r

r
n−r

[
0 0
0 Ŝr+1

]
,

with Ŝr+1 the computed Schur complement. To simplify the notation, we let L̂ii = 1
or I2 depending on whether Bi is 1×1 or 2×2 for i = 1, . . . , m − 1. We assume
condition (2.6) holds. By Lemma 2.5,

|Aij −
j∑

k=1

L̂ikB̂kL̂T
jk| ≤ max{εc, ε4j−3}(|Aij | +

j∑
k=1

|L̂ik||B̂k||L̂T
jk|),(5.8)

for j = 1, . . . , m−1 and i = j, . . . , m. Note that though Amm can be larger than 2×2,
the error analysis in Lemma 2.5 for Ŝr+1 is still valid. Therefore,

|Amm−Ŝr+1+
m−1∑
k=1

L̂mkB̂kL̂T
mk| ≤ ε4m−3(|Amm|+|Ŝr+1|+

m−1∑
k=1

|L̂mk||B̂k||L̂T
mk|).(5.9)

Collecting all (5.8) and (5.9) into one matrix representation, we obtain

|∆A| ≤ C ◦ (|A| + |L̂||B̂||L̂T | + |Â(r+1)|),(5.10)

where the elements in (i, j) block entry of C is max{εc, ε4j−3} for 1 ≤ j ≤ i ≤ m.
Since m ≤ r + 1, we may simply write

|∆A| ≤ max{εc, ε4r+1}(|A| + |L̂||B̂||L̂T | + |Â(r+1)|).(5.11)
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Applying (2.11) to bound ‖C(1 :r, 1:r)‖S ,

‖C‖S =
n∑

i=1

n∑
j=1

cij =
r∑

i=1

r∑
j=1

cij + 2
n∑

i=r+1

r∑
j=1

cij +
n∑

i=r+1

n∑
j=r+1

cij

≤ cn2u +
1
3
(4r3 − 3r2 + 2r)u + 2(n − r)

r∑
j=1

ε4j−3 + (n − r)2ε4r+1 + O(u2)

= (cn2 + (4nr + n − 3r)(n − r) +
4
3
r3 − r2 +

2
3
r)u + O(u2).(5.12)

By Lemma 5.1, if A is triadic of rank r, there are at most 9r block terms in the
LBLT factorization. Each has at most 4 elements. By (5.8) and (5.9),

‖C‖S ≤ 4(9rεc + ε9(4r+1)) ≤ 36(cr + 4r + 1)u + O(u2).(5.13)

Comparing (5.13) with (5.12), we see the improvement of componentwise back-
ward error because of the triadic structure. Note that the analysis is independent of
the order of evaluation in (∗) and (∗∗) in Algorithm 4.

5.3. Normwise Analysis. In this subsection we bound ‖A− L̂B̂L̂T ‖F for ana-
lyzing the stability of Bunch-Parlett pivoting strategy applied to rank estimation for
symmetric indefinite matrices. We also bound ‖A− L̂D̂L̂T ‖2 and ‖A− L̂D̂L̂T ‖∞ for
positive semidefinite matrices and diagonal dominance matrices, respectively.

Theorem 5.2. With Bunch-Parlett pivoting on a symmetric indefinite matrix
A,

‖A − L̂B̂L̂T ‖F ≤ max{c, 4r+1}(τ(A) + 1)((‖W‖F +1)2 + 1)u‖A‖F + O(u2),

where W = A(1 : r, 1 : r)−1A(1 : r, r+1 :n), τ(A) = ‖|L̂||B̂||L̂T |‖F /‖L̂B̂L̂T ‖F and c is
from condition (2.6).

Proof. Since (2.6) holds, so does (5.11). The growth factor and τ(A) are well-
controlled, so that ∆A = O(u). Note that L̂B̂L̂T is the partial LBLT factorization
of A + ∆A with Â(r+1) the Schur complement. The perturbation theory in [7] gives

‖Â(r+1)‖F ≤ (‖W‖F + 1)2‖∆A‖F + O(u2),(5.14)

where W = A(1 :r, 1:r)−1A(1 :r, r+1:n). By (5.7), L̂B̂L̂T = A + O(u). Therefore,

‖∆A‖F ≤ max{εc, ε4r+1}(‖|L̂||B̂||L̂T |‖F + ‖|A|‖F + ‖|Â(r+1)|‖F )
≤ max{c, 4r+1}(τ(A) + 1)u‖A‖F + O(u2).(5.15)

Substituting (5.15) into (5.14), we obtain

‖Â(r+1)‖F ≤ max{c, 4r+1}(τ(A) + 1)(‖W‖F + 1)2u‖A‖F + O(u2).(5.16)

The result is concluded from (5.7), (5.15) and (5.16).
Now we consider the Bunch-Parlett pivoting strategy incorporated into the LBLT

factorization. By Theorem 5.2, the bound on ‖A − L̂B̂L̂T‖F /‖A‖F is governed by
‖W‖F and τ(A). For any general singular symmetric A ∈ Rn×n,

‖W‖2,F ≤
√

γ

γ+2
(n−r)((1+γ)2r − 1),(5.17)
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where γ = max{ 1
α , 1

1−α} is the element bound of L [7]. With the suggested pivoting

argument α = 1+
√

17
8 ≈ 0.64, γ = 1+

√
17

4 ≈ 2.56. Applying the analysis for (4.3) to
bound τ(A), we obtain

τ(A) ≤ 36n(r + 1)ρr+1(5.18)

for symmetric A ∈ Rn×n of rank r < n, where ρr+1 is the growth factor.
If all the non-zero eigenvalues are positive, then the matrix is semidefinite. and

the LBLT factorization with Bunch-Parlett pivoting strategy is equivalent to the
LDLT factorization with complete pivoting. With an argument similar to that used
in obtaining (4.1), the bound on τ(A) is reduced to τ(A) ≤ r, where we use the
2-norm instead of the Frobenius norm. Following the proof of Theorem 5.2 but using
(5.4) instead of (5.11), we find that

‖A − L̂D̂L̂T ‖2 ≤ r(r + 1)((‖W‖2+1)2 + 1)u‖A‖2 + O(u2).

A comparable bound for Cholesky factorization of a positive semidefinite matrix was
given in [8] by Higham. Note that the bound on ‖W‖2 is also reduced because γ = 1.
A similar analysis for diagonal dominant matrices gives

‖A − L̂D̂L̂T‖∞ ≤ (2n − r)(r + 1)((‖W‖∞+1)2 + 1)u‖A‖∞ + O(u2).

Note that W = L−T
11 LT

21, where L11 = L(1 : r, 1 : r) and L21 = L(r+1 : n, 1 : r).
Diagonal dominance guarantees that L−T

11 has all elements bounded by 1. Therefore,
‖W‖∞ = ‖L−T

11 LT
21e‖∞ ≤ ‖L−T

11 e‖∞ ≤ r, which implies the potential of high stability.

5.4. Experiments. For rank estimation, the important practical issue is when
to stop the factorization. In (5.16), the bound on ‖Â(r+1)‖F /‖A‖F is governed by
‖W‖F and τ(A). However, both bounds (5.17) and (5.18) are pessimistic. To investi-
gate the typical ranges of ‖W‖F and τ(A) in practice, we used the random matrices
described as follows.

Each indefinite matrix was constructed as QΛQT ∈ Rn×n, where Q is a random
unitary matrix generated by the method in [12] (different for each matrix) and Λ =
diag(λi) of rank r. The following three test sets were used.

|λ1| = |λ2| = · · · = |λr−1| = 1, λr = σ,

|λ1| = |λ2| = · · · = |λr−1| = σ, λr = 1,

|λi| = βi, i = 1, . . . , r − 1, λr = 1,

where 0 < σ ≤ 1, and βr−1 = σ for r > 1. We assign the sign of λi randomly for
i = 1, . . . , r − 1, and let t denote the number of negative eigenvalues. For each test
set, we experimented with all combinations of n = 10, 20, . . . , 100, r = 2, 3, . . . , n,
t = 1, 2, . . . , r−1, and σ = 1, 10−3, . . . , 10−12, for a total of 94, 875 indefinite matrices
for each set. Among all the indefinite matrices, the largest ‖W‖F and τ(A) were
34.054 and 3.173, respectively. Both numbers are modest. Note that the bounds
(5.17) and (5.18) depend on r more than n, as does (5.16). Experimenting with
several different stopping criteria, we suggest

‖Âk+1‖F ≤ (k + 1)3/2u‖A‖F ,(5.19)

which gave the best accuracy of the estimated ranks, or the less expensive

‖B̂i‖F ≤ (k + 1)3/2u‖B1‖F ,(5.20)
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where B̂i is the computed ith block pivot. With the Bunch-Parlett pivoting strategy,
‖A‖M ≈ ‖B1‖M and ‖Âk+1‖M ≈ ‖Bi‖M , where diag(B1, B2, . . . , Bi−1) ∈ Rk×k.
Therefore, (5.19) and (5.20) are related.

One potential problem is that continuing the factorization on Ŝr+1 could be unsta-
ble for rank estimation. However, the element growth is well-controlled by pivoting.
The dimensions of Schur complements are reduced, whereas the upper bounds in
(5.19) and (5.20) are increased during factorization. These properties safeguard the
stability of rank estimation.

Our experiments were on a laptop with a Intel Celeron 2.8GHz CPU using IEEE
standard arithmetic with machine epsilon 2−52 ≈ 2.22 × 10−16. The estimated ranks
were all correct. We further experimented with σ = 10−15, and instability occurred
in the second and third test sets, since the conditioning of the non-singular part of a
matrix affects the stability of rank estimation.

Forcing all the non-zero eigenvalues to be positive in the three test sets, we also
experimented with rank estimation of positive semidefinite matrices by LDLT fac-
torization. With stopping criteria (5.19) and (5.20), all the estimated ranks were
accurate for σ = 1, 10−3, . . . , 10−12, and similar instability occurred with σ = 10−15.
The criteria suggested in [8] were for rank estimation of positive semidefinite matrices
by Cholesky factorization. They result in less accuracy than (5.19) and (5.20) for
indefinite matrices.

Both stopping criteria (5.19) and (5.20) work very well in our experiments except
when σ = 10−15. However, they may not be the best for all matrices. A priori
information about the matrix, such as the size of ‖W‖, growth factor and distribution
of non-zero eigenvalues, may help adjust the stopping criterion.

6. Concluding Remarks. Table 6.1 lists the highest order terms of the bounds
on ‖C‖S for symmetric matrices and symmetric triadic matrices, where n is the matrix
size. The references to their definitions and bounds are also included. For LBLT

factorization, the constant c is from (2.6). For singular matrices, r denotes the rank.
It shows the improvement of bounds on backward errors because of triadic structure.

Table 6.1

Bounds on ‖C‖S for LDLT and LBLT factorizations

Bounds on ‖C‖S Def. General Triadic
Nonsingular (2.2) 1

3n3u (2.4) 9nu (2.5)
LDLT Solving Ax=b (3.3) 11

6 n3u (3.4) 7n2u (3.5)
Singular (5.3) (nr(n−r)+ 1

3r3)u (5.5) 18ru (5.6)
Nonsingular (2.10) 4

3n3u (2.11) 4(7c+36)nu (2.12)
LBLT Solving Ax=b (3.6) 17

6 n3u (3.7) 28n2u (3.8)
Singular (5.10) (4nr(n−r)+ 4

3r3)u (5.12) 36(cr+4r+1)u (5.13)

We have studied the componentwise backward error analysis and normwise anal-
ysis for LBLT factorization and its applications to solving linear systems and rank
estimation. Our concluding remarks are listed below.

1. LDLT factorization and its application to solve linear systems are stable if the
growth factor is modest. Both positive definiteness and diagonal dominance
guarantee the stability, because the growth factors are bounded by 1 and
2, respectively. A modest growth factor does not guarantee a stable LBLT

factorization. Nevertheless, LBLT factorization and its application to solve
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symmetric linear systems are stable if conditions (2.6) and (4.2) hold. All the
pivoting strategies in the literature [1, 2, 3, 4, 7] satisfy both conditions.

2. In [9] and [10], Higham proved the stability of the Bunch-Kaufman pivoting
strategy [3] and Bunch’s pivoting method [2], respectively. His componentwise
backward error analysis is based on the LBLT factorization in outer product
form. In this paper, we presented a new proof of the componentwise backward
stability using inner product formulation. We also gave a sufficient condition
such that an LBLT factorization is guaranteed to run to completion with
inertia preserved in Theorem 4.3.

3. We also analyzed the rank estimation of symmetric indefinite matrices using
LBLT factorization with Bunch-Parlett pivoting. In our experiments, both
stopping criteria (5.19) and (5.20) give accurate estimated ranks except when
σ = 10−15 (i.e., the non-singular part is ill-conditioned). We recommend
(5.20) because the cost is negligible. Both criteria can be also used for rank
estimation of symmetric semidefinite matrices by LDLT factorization with
complete pivoting, and give better results than the stopping criteria of [8] for
indefinite matrices.

4. Due to the sparsity, the stability of LDLT and LBLT factorizations is im-
proved for symmetric triadic matrices, as shown in Table 6.1.
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