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ABSTRACT

Retrograde analysis has been successfully applied to solve Awari (Romein and Bal, 2003), and
construct 6-piece Western chess endgame databases (Thompson, 1996). However, its applica-
tion to Chinese chess is limited because of the special rules about indefinite move sequences.

In (Fang, Hsu, and Hsu, 2004), problems caused by the most influential rule, checking indef-
initely3, were successfully solved in practical cases, with 50 selected endgame databases con-
structed in accord with this rule, where the 60-move-rule was ignored. Other special rules have
much less impact on contaminating the databases, as verified by the rule-tolerant algorithms
(Fang, 2004). For constructing complete endgame databases, we need rigorous algorithms.
There are two rule sets in Chinese chess: Asian rule set and Chinese rule set. In this paper, an
algorithm is successfully developed to construct endgame databases in accord with the Asian
rule set. The graph-theoretical properties are also explored as well.

1. INTRODUCTION

Retrograde analysis is widely applied to construct databases of finite, two-player, zero-sum and perfect
information games (van den Herik, Uiterwijk, and van Rijswijck, 2002). The classical algorithm first de-
termines all terminal positions (e.g., checkmate or stalemate in both Western chess and Chinese chess),
and then iteratively propagates the values back to their predecessors until no propagation is possible. The
remaining undetermined positions are then declared as draws in the final phase.

In Western chess, as in many other games, if a game continues endlessly without reaching a terminal po-
sition, the game ends in a draw. However, in Chinese chess, there are special rules other than checkmate
and stalemate to end a game. The endgame databases of Chinese chess constructed by retrograde analy-
sis may have errors if the special rules are not taken into account. Nevertheless, the endgame databases,
in which only one side has attacking pieces, are not affected by these special rules (Fang, Hsu, and Hsu,
2000). Using this fact, 151 endgame databases with attacking pieces on one side only are correctly con-
structed (Fang et al., 2000; Wu and Beal, 2001).

The most influential special rule is non-mutual checking indefinitely. If only one player checks his4 oppo-
nent continuously without ending, he loses the game. Problems caused by the rule of checking indefinitely
are practically solved (Fang, Hsu, and Hsu, 2002; Fang et al., 2004), with the 50 endgame databases suc-
cessfully constructed in accord with this rule (Fang et al., 2004). These databases are selected potentially

1I began working on Chinese chess endgame databases by retrograde algorithms in mid 1996 under the direction of my master’s
thesis advisor, Shun-Chin Hsu, in National Taiwan University. I noticed the problems caused by the special rules, particularly the rule
of checking indefinitely. A couple of different approaches had been used without success. After graduation, I did not stop thinking
about this problem while I fulfilled military service. One summer evening in 1998, I was tackling this problem again in the office when
everybody else went out for dinner. In a flash, I found the algorithm to compute the maximum move pattern of checking indefinitely,
which was a prelude of all the algorithms and theories developed afterward. The weather in Taiwan is often cloudy, but when I walked
out of my office on that evening, I saw a blood red sky as a prophecy for a big change in the weather.

2Department of Computer Science, University of Maryland, A.V. Williams Building, College Park, Maryland 20742, USA. Email:
hrfang@cs.umd.edu.

3Another name of the concept of checking indefinitely is perpetual checking.
4In this article we use ‘his’ and ‘he’ when both ‘her/his’ and ‘she/he’ are possible.
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contaminated by the special rules. We call a database complete if it is not contaminated by any special
rules. There are two rule sets used in Chinese chess: Asian rule set and Chinese rule set. Out of these
50 databases, 24 are verified complete with the Asian rule set, whereas 21 are verified complete with the
Chinese rule set (Fang, 2004). The next step is to correct the incomplete databases.

The Asian rule set is used generally in the world major tournaments, local competitions other than those
in China, and computer Chinese chess competitions, whereas the Chinese rule set is used only in China.
Therefore, the Asian rule set deserves more attention than the Chinese rule set. In this paper, we focus on
how to build the endgame databases in accord with the Asian rule set.

The organization of this article is as follows. Section 2 describes and abstracts the Chinese-chess special
rules in the Asian rule set. Section 3 discusses the essential move patterns of checking/chasing indefi-
nitely. Section 4 gives an algorithm to build complete win-draw-loss endgame databases of Chinese chess.
Section 5 gives an algorithm to construct infallible endgame databases in accord with the Asian rule set.
Concluding remarks are given in Section 6.

2. SPECIAL RULES IN CHINESE CHESS

Retrograde algorithms are widely used to construct the databases of finite, two-player, zero-sum and perfect-
information games (van den Herik et al., 2002). In Western chess, a non-drawn game ends in checkmate
or by a resignation; a drawn game can be the result of a stalemate, repetition of positions, or insufficient
material to checkmate. In Chinese chess, there are other special rules to end a game.

2.1 A Brief Overview of the Special Rules

In Chinese chess, the two sides are called Red and Black. Each side has one King, two Guards, two
Ministers, two Rooks, two Knights, two Cannons, and five Pawns, which are abbreviated as K, G, M, R,
N, C and P, respectively5. The pieces Rook, Knight, Cannon, and Pawn are called attacking pieces since
they can move across the river, the imaginary stream between the two central horizontal lines of the board.
In contrast, Guards and Ministers are called defending pieces because they are confined in the domestic
region6. A position in Chinese chess is an assignment of a subset of pieces to distinct addresses on the
board with a certain player-to-move.
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Figure 1: Examples of (a) mutual checking indefinitely, (b) non-mutual chasing indefinitely, and (c) mutual
chasing indefinitely.

A game ends in any position of checkmate or stalemate. In addition, there are other end positions determined
by the special rules of indefinite move sequences. All the special rules discussed in this paper refer to the
rule book (Association, 1999). An indefinite move sequence is conceptually an infinite move sequence. In
real games, it is determined by the threefold repetition of positions in a finite move sequence (Association,

5The English translation of the Chinese names differs by author.
6Information on Chinese chess such as notation and basic rules in English can be found in the ICGA web page of

Chinese chess http://www.cs.unimaas.nl/icga/games/chinesechess/, and in FAQ of the Internet news group
rec.games.chinese-chess, which is available at http://www.chessvariants.com/chinfaq.html.
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1999, page 65, rule 3). An indefinite move sequence is composed of two semi-sequences: one consists of
the moves by Red and the other has the moves by Black.

In Chinese chess, a special rule is that if only one player checks his opponent continuously (i.e., without
ending), then he loses. This rule is called non-mutual checking indefinitely. In real games, this means that a
player loses if he cannot prevent his King from being captured without checking his opponent indefinitely.
If both players check each other continuously without ending, the game ends in a draw. This rule is called
mutual checking indefinitely. An example is shown in Figure 1(a) where Red is to move. Both players are
forced to check each other cyclically with the moves Ge1-f2, Ce8-f8, Gf2-e1, Cf8-e8, etc.

There are special rules about chasing indefinitely in Chinese chess. The general concept is that a player
cannot chase some opponent’s piece continuously without ending (Association, 1999, page 64). The term
chase is defined similarly to the term check, but the prospective piece to be captured is not the King but
another piece. A move sequence consists of two semi-sequences: one played by Red and the other by
Black. A semi-sequence of chasing moves is either allowed or forbidden. A forbidden semi-sequence
of chasing moves in the Chinese rule set may be allowed in the Asian rule set. As pointed out in (Fang,
2004), the complicated rules of chasing indefinitely cause the difficulty to adapt the algorithms for checking
indefinitely in (Fang et al., 2004) for chasing indefinitely.

Recall that we address in the Asian rule set in this paper. The Asian rule set is summarized as follows
(Association, 1999, page 64, section 2).

1. If both players check each other indefinitely, the game ends in a draw.

2. If only one player checks the other indefinitely, the player who checks loses the game.

3. Otherwise, if only one player plays a forbidden semi-sequence of chasing moves, he loses the game.

4. Otherwise, the game ends in a draw.

With the above summary, both mutual checking indefinitely and mutual chasing indefinitely result in a
draw. If one player checks indefinitely and the other chases indefinitely, the one who checks loses the
game. In Figure 1(b) is an example of non-mutual chasing indefinitely, where Red is forced to chase the
Black Pawn endlessly with the moves Rb4-c4, Pc0-b0, Rc4-b4, Pb0-c0, etc. In Figure 1(c), if the game
continues indefinitely with the moves Rb4-b5, Nd5-c3, Rb5-c5, Nc3-e4, Rc5-c4, Ne4-d6, Rc4-d4, Nd6-f5,
etc., the game ends in a draw because of mutual chasing indefinitely (Association, 1999, page 89, rule 22).

2.2 Abstracting Special Rules

A two-player, finite and zero-sum with perfect information game such as Western chess and Chinese chess
can be represented as a game graph G = (V, E), which is directed, bipartite and possibly cyclic, where
V is the set of vertices and E is the set of edges. Each vertex indicates a position. Each directed edge
corresponds to a move from one position to another, with the relationship of parent and child respectively.
Positions with out-degree 0 are called terminal positions.

A subgraph G = (V, E) of a graph G′ = (V ′, E′) is called fully-extended if ∀u ∈ V , (u, v) ∈ E ′ =⇒
(v ∈ V ) ∧ ((u, v) ∈ E). Retrograde analysis cannot apply to the whole game graph of Chinese chess on
a physical computer, because the graph is too big. Therefore, the algorithm is applied to a fully-extended
subgraph. In practice, this subgraph is usually split into multiple endgame databases according to the
numbers of different pieces remaining on the board.

In this paper, the 60-move-rule is ignored. We use a boolean function check :E→{true, false} to indicate
whether or not a given move is a checking move. The rules of non-mutual checking and mutual checking
indefinitely are abstracted as follows.

Definition 1 In an infinite sequence of moves (v0, v1), (v1, v2), etc., if

1. ∀ even i ≥ 0, check((vi, vi+1)) = true, and

2. ∀n ≥ 0, ∃ odd j > n, such that check((vj , vj+1)) = false,
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then the first mover loses the game because of the rule of non-mutual checking indefinitely. In addition, the
game results in a draw because of mutual checking indefinitely if,

• ∀i ≥ 0, check((vi, vi+1)) = true.

Recall that chasing moves can be either allowed or forbidden. In some cases, we cannot tell whether a
chasing move is allowed or forbidden without inspecting the other moves in the move sequence. We call
the relevant rules path-dependent. To verify the completeness of the endgame databases, the problems
caused by the path-dependent rules can be solved via the rule-tolerant approach in practical cases (Fang,
2004). In Asian rule set, the only path-dependent rule is (Association, 1999, page 103, rule 32): it is
allowed to endlessly chase one piece on even moves and chase another on odd moves. To comply with
this rule, we define boolean function chase :E × P→{true, false}, where P is the set of Chinese chess
pieces. chase((u, v), p) indicates whether or not (u, v) is a forbidden move to chase p. See (Fang, 2004)
for information about abstracting the chasing moves.

Three remarks are in order. First, P includes the Red King and Black King, denoted by RK and BK, i.e.,
{RK, BK} ⊂ P . Therefore, check((u, v)) = chase((u, v), RK) ∨ chase((u, v), BK). In other words, a
checking move is considered as a move to chase the King in this paper. Second, if check((u, v)) = true,
then check((w, v)) = true for all (w, v) ∈ E. Using this property, the rule of checking indefinitely in
(Fang et al., 2004) is abstracted via a boolean function inCheck(v) which indicates whether the own King
in the position u is in check or not. However, chase((u, v), p) generally lacks this property. So we use
check(u, v)) instead of inCheck(v), and then checking indefinitely and chasing indefinitely can share the
algorithms, theorems, and lemmas in many cases. Third, it is possible that a move chases multiple pieces at
the same time. The rules of non-mutual chasing and mutual chasing indefinitely are abstracted as follows.

Definition 2 In an infinite sequence of moves (v0, v1), (v1, v2), etc., if

1. ∃p ∈ P − {RK, BK}, such that ∀ even i, chase((vi, vi+1), p) = true, and

2. ∀q ∈ P and ∀n ≥ 0, ∃ odd j > n, such that chase((vj , vj+1), q) = false,

then the first mover loses the game because of the rule of non-mutual chasing indefinitely. In addition, the
game results in a draw because of mutual chasing indefinitely, if

• ∀n ≥ 0, ∃ even i > n and odd j > n, such that check((vi, vi+1)) = false and
check((vj , vj+1)) = false.

• ∃p ∈ P − {RK, BK}, such that ∀ even i ≥ 0, chase((vi, vi+1), p) = true.

• ∃q ∈ P − {RK, BK}, such that ∀ odd j ≥ 0, chase((vj , vj+1), q) = true.

Since a checking move is considered as a move to chase the King in this paper, condition (2) in Definition 2
has excluded the case that the second mover checks the first mover indefinitely.

3. MOVE PATTERNS OF CHECKING/CHASING INDEFINITELY

To build complete endgame databases, we assume that both sides play perfectly and need to foresee whether
or not a move sequence in Definition 1 or 2 is formed. For this purpose, this section introduces various move
patterns of checking/chasing indefinitely.

3.1 Basics

Retrograde analysis is applied to a game graph G = (V, E) which is directed, bipartite, and possibly cyclic.
With the assumption that both players play flawlessly, a position is called a win/draw/loss if the next mover
will win/draw/lose the game at the end, respectively.
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Definition 3 A win-draw-loss-unknown database of a directed, bipartite, and possibly cyclic game graph
G = (V, E) is a function, DB : V −→ {win,draw, loss,unknown}. Each non-terminal position
u ∈ V satisfies the following conditions.

1. If DB(u) = win, then ∃(u, v) ∈ E such that DB(v) = loss.

2. If DB(u) = loss, then ∀(u, v) ∈ E, DB(v) = win.

3. If DB(u) = draw, then ∃(u, v) ∈ E such that DB(v) = draw, and
∀(u, v) ∈ E, (DB(v) = draw) ∨ (DB(v) = win).

A win-draw-loss database DB is a win-draw-loss-unknown database satisfying DB(u) 6= unknown for
all u ∈ V . A win-draw-loss-unknown database DB is called fully-propagated, if ∀u ∈ V with DB(u) =
unknown, ∃(u, v) ∈ E such that DB(v) = unknown, and ∀(u, v) ∈ E, DB(v) 6= loss. A win-
draw-loss-unknown database DB is called semi-fully-propagated, if ∀u ∈ V with DB(u) = unknown,
∃(u, v) ∈ E such that DB(v) = unknown or DB(v) = draw, and ∀(u, v) ∈ E, DB(v) 6= loss.

A fully-propagated database guarantees that all positions are fully propagated. A semi-fully-propagated
database guarantees that all win and loss positions are fully propagated, but draws may not be fully prop-
agated. The algorithms in (Fang et al., 2004) do not have draw positions prior the final phase, so being
semi-fully-propagated is equivalent to being fully-propagated.

The classical retrograde algorithm for constructing the win-draw-loss endgame databases consists of three
phases: initialization, propagation, and the final phase. In the initialization phase, the win and loss terminal
positions (the seeds) are assigned as being win and loss, respectively. They are checkmate or stalemate
positions in Chinese chess7. In the propagation phase, these values are propagated to the other positions,
called propagated positions. The final phase is to deal with the remaining unknown positions. In chess,
when no propagation can be done, the unknown positions are marked as draws. See (Fang et al., 2004,
Algorithm 1) for an example pseudo-code of a classical retrograde algorithm.

The following notation is used in this paper. The union and intersection of two graphs G1 = (V1, E1) and
G2 = (V2, E2) are denoted as

G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2) and G1 ∩G2 = (V1 ∩ V2, E1 ∩ E2),

respectively. If G1 is a subgraph of G2 (i.e., V1 ⊆ V2 and E1 ⊆ E2), it is denoted by G1 ⊆ G2. If G1 is a
proper subgraph of G2 (i.e., G1 ⊆ G2 but G1 6= G2), it is denoted by G1 ⊂ G2. Given G as a subgraph
of Chinese-chess game graph, we use V (G) to denote the vertex set of G, and VR(G)/VB(G) to denote the
sets of vertices in which Red/Black is the next mover, respectively. Note that VR(G) ∩ VB(G) = ∅ and
VR(G) ∪ VB(G) = V (G). Since G is bipartite, for any (u, v) ∈ E, u ∈ VR(G) if and only if v ∈ VB(G).
A null graph is also denoted by ∅, though formally it is (∅, ∅). Hereafter, all the graphs in this paper are
subgraphs of Chinese-chess game graph, unless otherwise noted.

3.2 Checking/Chasing Indefinitely

For convenience of discussion, we assume that one player is attacking, whereas the other is defending.
The attacker tries to win the game by forcing the defender to check or chase indefinitely. We begin with
Definition 4, the move pattern of checking/chasing indefinitely.

Definition 4 Given a win-draw-loss-unknown database DB for graph G = (V, E), a move pattern of
checking/chasing indefinitely is a subgraph of G, denoted by G∗ = (V ∗, E∗). G∗ satisfies the following
conditions, where Red is the attacker and p is the Red piece being chased.

1. ∀u ∈ V ∗, DB(u) = unknown.

2. ∀(u, v) ∈ E∗ with u ∈ VB(G∗), chase((u, v), p) = true.

3. ∀u ∈ VB(G∗), ((u, v) ∈ E) =⇒ (DB(v) = unknown) ∨ (DB(v) = win).

7In Chinese chess, the player being stalemated loses the game, whereas the game ends in a draw in Western chess.
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4. ∀u ∈ VB(G∗), ((u, v) ∈ E) ∧ (DB(v) = unknown)) =⇒ ((u, v) ∈ E∗).

5. ∀u ∈ V ∗, ∃(u, v) ∈ E∗, i.e., out-degree is at least 1.

If p = RK, then G∗ is called a move pattern of checking indefinitely8. If p is any other Red piece, then
G∗ is called a pattern of chasing indefinitely. Replacing p by a Black piece and VB(G∗) by VR(G∗) in
the conditions, we obtain the definition of a move pattern of checking/chasing indefinitely with Black as the
attacker. The set of all move patterns of checking/chasing p indefinitely is denoted by G∗(DB, G, p).

Condition (1) is because we are concerned with only the unknown positions. Condition (2) ensures the
defender plays checking/chasing moves all the time inside the pattern. Conditions (3) and (4) make the
defender unable to quit the pattern in G without losing the game. Condition (5) keeps the pattern indefinite.
Assuming G is fully-extended, the attacker can always force the defender to check or chase indefinitely
(i.e., condition (1) in Definition 1 or Definition 2 is always satisfied). However, we ignore the effect of
mutual check/chasing indefinitely (i.e., condition (2) in Definition 1 or Definition 2 may not be satisfied),
which is discussed in Subsections 3.4 and 3.5.

Note that Definition 4 is relaxed to allow G being a general subgraph of Chinese chess, whereas being
fully-extended is required in (Fang et al., 2004) and (Fang, 2004). The attacker in this pattern can win the
game if,

1. The given graph G is a fully-extended subgraph of Chinese-chess game graph.

2. The win/draw/loss information in DB is correct.

3. The rules of mutual checking/chasing indefinitely do not take effect (i.e., condition (2) in Definition 1
for checking indefinitely or Definition 2 for chasing indefinitely is satisfied).

In this paper, a move pattern is a subgraph of the Chinese-chess game graph. A move pattern is called empty
if it is a null graph. A move pattern G of a certain kind is called maximum, if for any move pattern G of that
kind, G ⊆ G. It is clear that if a maximum move pattern G of a certain kind exists, it is unique9.

Lemma 1 Given a win-draw-loss-unknown endgame database DB for graph G and a piece p, the move
patterns of chasing the piece p indefinitely are closed under the union operation (i.e., ∀G1, G2 ∈ G∗(DB, G, p),
G1 ∪G2 ∈ G∗(DB, G, p)).

Proof The result is obtained directly from verifying all the conditions in Definition 4. 2

Lemma 2 Given a win-draw-loss-unknown endgame database DB for graph G and a chased piece p, there
exists an unique maximum move pattern of chasing p indefinitely, denoted by G∗(DB, G, p). In particular,
if p = RK or p = BK, G∗(DB, G, p) is called a maximum move pattern of checking indefinitely.

Proof The proof is analogous to that of (Fang, 2004, Theorem 1). The game graph of Chinese chess is
finite, so the number of move patterns of checking/chasing indefinitely is finite. We take the union of all
the move patterns of chasing p indefinitely in G∗(DB, G, p), denoted by G∗(DB, G, p). By Lemma 1,
G∗(DB, G, p) is a move pattern of chasing p indefinitely. It is clearly that G∗(DB, G, p) is maximum and
unique. Note that G∗(DB, G, p) can be a null graph. 2

Theorem 1 The maximum move pattern of checking/chasing indefinitely G∗(DB, G, p) is an induced sub-
graph of G, where DB is a win-draw-loss-unknown endgame database of graph G and p is the chased
piece.

Proof The proof is analogous to that of (Fang, 2004, Lemma 3). Denote G = (V, E) and G∗(DB, G, p) =
(V ∗, E∗). Given u, v ∈ V ∗ with (u, v) ∈ E, if the next mover of u is the defender, (u, v) ∈ E∗ because
of conditions (1) and (4) in Definition 4. If the next mover of u is the attacker, then adding (u, v) to E∗

still satisfies Definition 4 and the move pattern G∗(DB, G, p) = (V ∗, E∗) is maximum, so (u, v) ∈ E∗.
Therefore, G∗(DB, G, p) is an induced subgraph of G. 2

8In (Fang et al., 2004), the corresponding move pattern is called of direct checking indefinitely. In this paper, the word ”direct” is
omitted for simplicity of terms.

9If we are given two maximum move patterns of a certain kind G1 and G2, then G1 ⊆ G2 and G2 ⊆ G1. Therefore, G1 = G2.
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The algorithm to compute G∗(DB, G, p) consists of the initialization phase and the propagation phase. It is
analogous to the algorithm for computing the maximum suspicious move pattern of special rules in (Fang,
2004). The key property needed is Theorem 1: G∗(DB, G, p) is an induced subgraph of G. In the initial-
ization phase, W and L are initialized as sets of win and loss candidates for the vertices in G∗(DB, G, p),
so that the graph induced by W ∪ L is a supergraph of G∗(DB, G, p). In the pruning phase, unqualified
candidates are pruned. The process continues until all candidates satisfy Definition 4. Therefore, the graph
induced by the resulting W ∪ L is G∗(DB, G, p). The pseudo-code is given in Algorithm 1. Note that the
children counting strategy can be applied to improve efficiency, but is excluded here for neat pseudo-code.

Algorithm 1 Computing the Maximum Move Pattern of Checking/Chasing Indefinitely

function G∗(DB as a database, G = (V, E) as a graph, p as a piece of the attacker) as a graph
W ← ∅, L← ∅ . Initialization Phase
for all u ∈ V with DB(u) = unknown and the next mover of u is the defender do

if ∀(u, v) ∈ E, (DB(v) = unknown or win)∧(DB(v) = unknown =⇒ chase((u, v), p) =
true) then
L← L

⋃

{u}
for all (w, u) ∈ E with DB(w) = unknown do

W ←W
⋃

{w}
end for

end if
end for
repeat . Pruning Phase

for all u ∈ L do . Pruning unqualified loss candidates.
if ∃(u, v) ∈ E such that (DB(v) = unknown) ∧ (v /∈ W ) then

L← L− {u}
end if

end for
for all v ∈ W do . Pruning unqualified win candidates.

if ∀(v, u) ∈ E, u /∈ L then
W ←W − {v}

end if
end for

until No more pruning is possible.
Return the graph induced by W ∪ L.

end function

3.3 Mutual Checking/Chasing Indefinitely

Mutual checking indefinitely is unlikely to happen in the endgames of Chinese chess. In (Fang et al.,
2004), an algorithm is given to verify whether or not a given database is contaminated by the rule of mutual
checking indefinitely for practical cases. Mutual chasing indefinitely has similar properties to those of
mutual checking indefinitely. There are three types of problems caused by the rule of mutual checking
indefinitely (Fang et al., 2004). The cases of mutual chasing indefinitely are similar. The three types of
problems are listed below.

1. Both players are intentionally forming the move sequence of mutual checking/chasing indefinitely
regardless of the result of the game.

2. Both players are forced to mutually check/chase each other indefinitely to avoid losing the game (e.g.,
the example in Figure 1(a)).

3. In a move pattern of checking/chasing indefinitely in Definition 4, the attacker may not be able to
force the game staying in this pattern without checking/chasing the defender indefinitely at the same
time (i.e., condition (2) in Definitions 1 and 2 may not be satisfied).
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Type one problems are not of concern, since we assume both players play flawlessly. The discussion in
this section takes care of the type two problems. Subsections 3.4 and 3.5 give a solution to the type three
problems.

Definition 5 Given a win-draw-loss-unknown database DB for graph G = (V, E), a move pattern of
mutual checking/chasing indefinitely is a subgraph of G, denoted by G∗ = (V ∗, E∗). We use p to denote
the Black piece chased by Red, and q to denote the Red piece chased by Black. G∗ satisfies the following
conditions.

1. ∀u ∈ V ∗, DB(u) = unknown.

2. ∀(u, v) ∈ E∗ with u ∈ VR(G∗), chase((u, v), p) = true.

3. ∀(v, u) ∈ E∗ with v ∈ VB(G∗), chase((v, u), q) = true.

4. ∀u ∈ V ∗, ((u, v) ∈ E) =⇒ (DB(v) = unknown) ∨ (DB(v) = win).

5. ∀u ∈ V ∗, ((u, v) ∈ E) ∧ (DB(v) = unknown)) =⇒ ((u, v) ∈ E∗).

6. ∀u ∈ V ∗, ∃(u, v) ∈ E∗, i.e., out-degree is at least 1.

The set of all move patterns of mutual checking/chasing indefinitely is denoted by G∗(DB, G, p, q). It is
also written as G∗(DB, G, q, p) for flexibility.

Condition (1) is because we are concerned with only the unknown positions. Conditions (2) and (3) ensure
both players play checking/chasing moves all the time inside the pattern. Conditions (4) and (5) make both
players unable to quit the pattern in G without losing the game. Condition (6) keeps the pattern indefinite.
Both players in this pattern can force each other to check/chase indefinitely. If p, q are the Kings of the
different sides, any move sequence in this pattern satisfies the condition for mutual checking indefinitely in
Definition 1. If both p and q are not Kings, we need also consider the first condition for mutual chasing
indefinitely in Definition 2.

Lemma 3 Given a win-draw-loss-unknown DB for graph G and two chased pieces p, q of different sides,
any move pattern of mutual checking/chasing indefinitely is an induced subgraph of G.

Proof The result follows directly from conditions (1), (4) and (5) in Definition 5. 2

Lemma 4 Given a win-draw-loss-unknown DB for graph G and two chased pieces p, q of different
sides, the move patterns of mutual checking/chasing indefinitely are closed under the union operation (i.e.,
∀G1, G2 ∈ G∗(DB, G, p, q), G1 ∪G2 ∈ G∗(DB, G, p, q)).

Proof The result follows directly from verifying all the conditions in Definition 4. 2

Lemma 5 Suppose we are given a win-draw-loss-unknown endgame database DB for graph G and two
chased pieces p, q of different sides. There exists a unique maximum move pattern of checking/chasing
indefinitely, denoted by G∗(DB, G, p, q).

Proof The proof is analogous to that of Lemma 2. The number of move patterns of mutual check-
ing/chasing indefinitely is finite. Take the union of all these patterns of mutually chasing p and q, denoted
by G∗(DB, G, p, q). By Lemma 4, G∗(DB, G, p, q) is also a move pattern of mutually chasing p and q,
which is maximum. 2

By Lemma 3 and condition (6) in Definition 5, the maximum move pattern of mutual checking/chasing
indefinitely G∗(DB, G, p, q) consists of one or more separated connected components10. Each component
is a move pattern of mutual checking/chasing indefinitely in G∗(DB, G, p, q). The algorithm to compute
G∗(DB, G, p, q) consists of two phases: initialization phase and pruning phase. The key property needed
is that the maximum move pattern of mutual checking/chasing indefinitely G∗(DB, G, p, q) is an induced
subgraph of G. In the initialization phase, candidates are initialized as a superset of the vertex set of
G∗(DB, G, p, q). In the pruning phase, unqualified candidates are pruned until all candidates satisfy Defi-
nition 5. The graph induced by the remaining candidates is G∗(DB, G, p, q). The pseudo-code is given in
Algorithm 2.

10Here we treat the graph as undirected. Two vertices are connected if there is a path between them. A connected component is a
graph with all vertices in them connected.
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Algorithm 2 Computing the Maximum Move Pattern of Mutual Checking/Chasing Indefinitely

function G∗(DB as a database, G = (V, E) as a graph, p as a Red piece, q as a black piece) as a graph
V1 ← ∅, V2 ← ∅ . Initialization Phase
for all u ∈ VB(G) with DB(u) = unknown do

if ∀(u, v) ∈ E, (DB(v) = unknown or win)∧(DB(v) = unknown =⇒ chase((u, v), p) =
true) then
V1 ← V1

⋃

{u}
end if

end for
for all v ∈ VR(G) with DB(v) = unknown do

if ∀(v, u) ∈ E, (DB(u) = unknown or win)∧(DB(u) = unknown =⇒ chase((v, u), q) =
true) then
V2 ← V2

⋃

{v}
end if

end for
repeat . Pruning Phase

for all u ∈ V1 do . Pruning unqualified Black-to-move candidates.
if ∃(u, v) ∈ E such that (DB(v) = unknown) ∧ (v /∈ V2) then

V1 ← V1 − {u}
end if

end for
for all v ∈ V2 do . Pruning unqualified Red-to-move candidates.

if ∃(v, u) ∈ E such that (DB(u) = unknown) ∧ (u /∈ V1) then
V2 ← V2 − {u}

end if
end for

until No more pruning is possible.
Return the graph induced by V1 ∪ V2.

end function

In practice, the subgraph G of the Chinese chess game graph is fully-extended, the terminal win and loss
positions are correctly marked, and the win-draw-loss-unknown database DB is semi-fully-propagated.
The positions in G∗(DB, G, BK, RK) are of mutual checking indefinitely, so they can be safely marked
as draws. However, G∗(DB, G, BK, RK) is usually empty in the current practical endgame databases.
The only practical endgame databases with non-empty G∗(DB, G, BK, RK) noted so far are KRCGKRC
and KRCKCPG. For p, q /∈ {BK, RK}, the positions in G∗(DB, G, p, q) are of mutual chasing indef-
initely, since both players can force each other to chase all the time. However, we need to make sure
both players cannot force each other to check indefinitely inside G∗(DB, G, p, q). In other words, we
can safely declare the positions in G∗(DB, G, p, q) as draws, if G∗(DB, G∗(DB, G, p, q), RK) = ∅
and G∗(DB, G∗(DB, G, p, q), BK) = ∅. In practice, G∗(DB, G, p, q) is usually empty. For exam-
ple, in the selected 50 endgame databases in (Fang et al., 2004; Fang, 2004), G∗(DB, G, p, q) = ∅ for
p, q /∈ {BK, RK}.

3.4 Non-mutual Checking/Chasing Indefinitely

Now we consider the type three problems caused by mutual checking/chasing indefinitely. Our goal is to
find a move pattern like the maximum move pattern of checking/chasing indefinitely in Lemma 2, and the
condition (2) in Definitions 1 and 2 is also guaranteed. We begin with Definition 6.

Definition 6 Given a win-draw-loss-unknown database DB for graph G and a piece p of the attacker
and another piece q of the defender, in graph G1 ∈ G∗(DB, G, p) it is said that the attacker is free from
being forced to chase q indefinitely, if G∗(DB, G1, q) = ∅. This G1 is called a pattern of non-mutual
checking/chasing indefinitely. We denote the set of all these graphs by G∗

†(DB, G, p, q).

In pattern G1 of Definition 6 satisfies that the attacker can force the defender to chase p all the time, and the
defender cannot force the attacker to chase q indefinitely inside G1. For p = RK and q = BK, it is a move
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pattern of non-mutual checking indefinitely. The attacker can always form a move sequence satisfying both
conditions (1) and (2) in Definition 1, unless the defender quits the pattern and loses the game.

Lemma 6 Given a win-draw-loss-unknown endgame database DB for graph G, a piece p of the attacker
and a piece q of the defender, the move patterns of non-mutual checking/chasing indefinitely are closed
under the union operation (i.e., ∀G1, G2 ∈ G∗

†(DB, G, p, q), G1 ∪G2 ∈ G∗
†(DB, G, p, q)).

Proof By Definition 6, G1, G2 ∈ G∗(DB, G, p) for any given G1, G2 ∈ G∗
†(DB, G, p, q). By Lemma 1,

G1 ∪ G2 ∈ G∗(DB, G, p). Let G0 = G∗(DB, G1 ∪ G2, q). The rest of the proof is to show G0 = ∅
by contradiction. Suppose G0 6= ∅. Since G0 ⊆ G1 ∪ G2, either G0 ∩ G1 6= ∅ or G0 ∩ G2 6= ∅.
Without loss of generality, we assume G0 ∩ G1 6= ∅. Now we claim G0 ∩ G1 ∈ G∗(DB, G1, q). Since
G0 = G∗(DB, G1 ∪ G2, q), G0 ∩ G1 satisfies the first four conditions in Definition 4 for being a move
pattern in G∗(DB, G1, q). The investigation of the last condition is as follows. Denote G = (V, E),
G0 = (V0, E0), G1 = (V1, E1) and G0 ∩ G1 = (V , E). Given a vertex u ∈ V , if the next mover
in u ∈ V1 is the defender in G1, then ∀(u, v) ∈ E with DB(v) = unknown, (u, v) ∈ E1. Since
u ∈ V0, there exists (u, w) ∈ E0 with DB(w) = unknown. Note that (u, w) ∈ E1 and therefore
(u, w) ∈ E. If the next mover in u is the attacker in G1 (defender in G0), for all edges (u, v) in the
edge set of G1 ∪ G2, (u, v) ∈ E0, since G0 = G∗(DB, G1 ∪ G2, q). There exists (u, w) ∈ E1 since
u ∈ V1. Note that (u, w) ∈ E0 and therefore (u, w) ∈ E. We conclude that for any u ∈ V , there
exists (u, w) ∈ E, no matter whether the next mover in u is the attacker or the defender. G0 ∩ G1 also
satisfies the the last condition in Definition 4 for being a move pattern in G∗(DB, G1, q). Therefore,
G0 ∩ G1 ∈ G∗(DB, G1, q). However, G∗(DB, G1, q) = ∅ since G1 ∈ G∗

†(DB, G, p, q). This is a

contradiction. Therefore, G0 = G∗(DB, G1 ∪G2, q) = ∅, so that G1 ∪G2 ∈ G∗
†(DB, G, p, q).

Lemma 7 Given a win-draw-loss-unknown endgame database DB for graph G and a chased piece p of the
attacker and another chased piece q of the defender, there exists an unique maximum move pattern of non-
mutual checking/chasing indefinitely, denoted by G∗

†(DB, G, p, q). In particular, G∗
†(DB, G, RK, BK)

and G∗
†(DB, G, BK, RK) are called maximum move patterns of mutual checking indefinitely.

Proof The proof is analogous to that of Lemma 2. The game graph of Chinese chess is finite, so the number
of move patterns of non-mutual checking/chasing indefinitely is finite. We take the union of all the move
patterns of mutual checking/chasing indefinitely in G∗

†(DB, G, p, q), denoted by G∗
†(DB, G, p, q). By

Lemma 6, G∗
†(DB, G, p, q) ∈ G∗

†(DB, G, p, q). It is clear that G∗
†(DB, G, p, q) is maximum and unique.

Theorem 2 G∗
†(DB, G, p, q) is an induced subgraph of G, where DB is a win-draw-loss-unknown endgame

database for graph G, and p, q are the chased pieces of different sides.

Proof Denote G = (V, E) and G∗
†(DB, G, p, q) = (V ∗, E∗). Note that G∗

†(DB, G, p, q) ∈ G∗(DB, G, p).
Given u, v ∈ V ∗ with (u, v) ∈ E with the next mover in u being the defender. Then (u, v) ∈ E∗ because
of conditions (1) and (4) in Definition 4. Suppose there are v, u ∈ V ∗ with (v, u) ∈ E but (v, u) /∈ E∗,
where the next mover in v is the attacker. Denote the move pattern G∗

†(DB, G, p, q) after adding (v, u)
to E∗ by G1. Now we claim that G1 ∈ G∗

†(DB, G, p, q). First, G1 ∈ G∗(DB, G, p), since adding a

move of the attacker still satisfies Definition 4. Suppose G∗(DB, G1, q) 6= ∅, G∗(DB, G1, q) contains
the added edge (v, u), since G∗(DB, G∗

†(DB, G, p, q), q) = ∅. The vertex v must have another out-going

edge denoted by (v, w) other than (v, u) in G∗
†(DB, G, p, q), because G∗

†(DB, G, p, q) ∈ G∗(DB, G, p)

satisfies condition (5) in Definition 4. G∗(DB, G1, q) contains the edge (v, w) because of conditions
(1) and (4) in Definition 4. Denote the move pattern G∗(DB, G1, q) after removing the edge (u, v) by
G2. Then G2 ∈ G∗(DB, G∗

†(DB, G, p, q), q). G2 is non-empty since it contains (v, w). However,

G∗(DB, G∗
†(DB, G, p, q), q) = ∅ by Definition 6. A contradiction. Therefore, G∗(DB, G1, q) = ∅ and

G1 ∈ G∗
†(DB, G, p, q). However, G∗

†(DB, G, p, q) is maximum but G∗
†(DB, G, p, q) ⊂ G1. We conclude

that such a move (v, u) does not exist. As a result, G∗
†(DB, G, p, q) is an induced subgraph of G. 2

The algorithm to compute G∗
†(DB, G, p, q) consists of the initialization phase and the pruning phase. The

sketch is described as follows. In the initialization phase, an induced subgraph of G is initialized as a
supergraph of G∗

†(DB, G, p, q), e.g., G∗(DB, G, p). In the pruning phase, all the unqualified vertices are
pruned, until the graph induced by the remaining vertices satisfies Definition 6. By Theorem 2, the resulting
graph is G∗

†(DB, G, p, q).
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How to prune the unqualified vertices is described as follows. First, the vertices in the move pattern
G∗(DB, G∗(DB, G, p), q) do not satisfy Definition 6, where the defender can force the attacker to chase q
indefinitely inside G∗(DB, G, p). For non-mutual checking indefinitely, these positions do not satisfy con-
dition (2) in Definition 1. For non-mutual chasing indefinitely, these positions do not satisfy condition (2)
in Definition 2. Therefore, they may be draws. We call them potential draws, whereas the other attacker-to-
move and defender-to-move positions in G∗(DB, G, p) are potential wins and potential losses, respectively.
These potential draws in G∗(DB, G∗(DB, G, p), q) can be propagated back to the predecessors. If a po-
tential loss has a child as a potential draw, it is updated to be a potential draw. If a potential win has no child
as a potential loss, it is updated to be a potential draw. The pseudo-code is given in Algorithm 3.

Algorithm 3 Algorithm to Exclude Mutual Checking/Chasing Indefinitely

Require: G1 ∈ G∗(DB, G, p) and G1 is an induced subgraph of G.
Ensure: G†(DB, G1, q) ∈ G∗(DB, G, p) and G†(DB, G1, q) is an induced subgraph of G.

function G†(DB as a database, G1 as a graph, q as a piece of defender) as a graph
Denote the vertex set of G1 by W ∪L. The next mover in W /L is the attacker/defender, respectively.
Compute the vertex set W ∗ ∪ L∗ of G∗(DB, G1, q) by Algorithm 1. . Initialization Phase
L← L−W ∗

W ←W − L∗

while W ∗ ∪ L∗ 6= ∅ do . Pruning Phase
while W ∗ 6= ∅ do . Pruning unqualified win candidates.

Pop any u ∈ W ∗ and set W ∗ ←W ∗−{u}.
for all (v, u) ∈ E with v ∈W do

if ∀(v, w) ∈ E, w /∈ L then
W ←W − {v}; L∗ ← L∗ ∪ {v} . (*)

end if
end for

end while
while L∗ 6= ∅ do . Pruning unqualified loss candidates.

Pop any v ∈ L∗ and set L∗ ← L∗−{v}.
for all (u, v) ∈ E with u ∈ L do

L← L− {u}; W ∗ ←W ∗ ∪ {u} . (**)
end for

end while
end while
Return the graph induced by W ∪ L.

end function

Three remarks for Algorithm 3 are given as follows. First, the next mover in W and L∗ is the attacker,
whereas the next mover in L and W ∗ is the defender. Second, the defender in W ∗ can force the attacker
also to check/chase at the same time in G∗(DB, G, p), so the status of the game cannot yet be determined.
Third, the children counting strategy can be applied to improve efficiency, but is excluded here for sim-
plicity. Lemma 8 ensures that G†(DB, G1, q) remains a move pattern of checking/chasing indefinitely in
G∗(DB, G, p), assuming G1 is also a move pattern of checking/chasing indefinitely in G∗(DB, G, p) and
an induced graph of G, where p, q are the chased pieces of the attacker and defender, respectively.

Lemma 8 Given a win-draw-loss-unknown database DB for graph G = (V, E) and two pieces p, q of
different sides and an induced subgraph G1 of G,

G1 ∈ G∗(DB, G, p) =⇒ G†(DB, G1, q) ∈ G∗(DB, G, p).

Proof Suppose G1 ∈ G∗(DB, G, p). Since G†(DB, G1, q) ⊆ G1, G†(DB, G1, q) satisfies Conditions
(1), (2) and (3) in Definition 4. The operation (**) in Algorithm 3 guarantees that Condition (4) holds. The
operations (*) and (**) ensures Condition (5). Therefore, G†(DB, G1, q) ∈ G∗(DB, G, p). 2

Suppose we are given a win-draw-loss-unknown database DB for graph G, and pieces p, q of different
sides. To get the maximum move pattern of non-mutual checking/chasing indefinitely G∗

†(DB, G, p, q),

we first compute G∗(DB, G, p), then get the reduced graph G†(DB, G∗(DB, G, p), q) after pruning some
unqualified vertices. The operation is repeated until the graph cannot be trimmed any more. As a result,
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the defender has no chance to force the attacker to chase q indefinitely at the same time in the pattern.
Therefore, Definition 6 is satisfied and the move pattern obtained is G∗

†(DB, G, p, q). The pseudo-code is
given in Algorithm 4.

Algorithm 4 Computing G∗
†(DB, G, p, q) of Non-Mutual Checking/Chasing Indefinitely

function G∗
†(DB as a database, G as a graph, p as a piece of attacker, q is a piece of the defender) as a

graph
G1 ← G∗(DB, G, p), computed by Algorithm 1. . Initialization Phase
repeat . Propagation Phase

G1 ← G†(DB, G1, q), computed by Algorithm 3.
until G1 = G†(DB, G1, q).
return G1

end function

3.5 Totally Non-Mutual Checking/Chasing Indefinitely

In a move pattern of chasing indefinitely, we need to consider that the defender may try to force the attacker
to chase any possible piece indefinitely (i.e., condition (2) in Definition 2 needs to be satisfied). Therefore,
the move pattern of totally non-mutual checking/chasing indefinitely is defined as follows.

Definition 7 Given a win-draw-loss-unknown database DB for graph G and a piece p of the attacker, in
graph G1 ∈ G∗(DB, G, p) it is said that the attacker is free from being forced to check/chase the defender
indefinitely if G∗(DB, G1, q) = ∅ for all pieces of the defender q including the King. This G1 is called
a pattern of totally non-mutual checking/chasing indefinitely. We denote the set of all these graphs by
G∗

†(DB, G, p).

In the pattern G1 of Definition 7, the attacker can force the defender to chase p all the time, and the defender
cannot force the attacker to chase any pieces indefinitely inside G1. Assuming that p is not the King, the
attacker in G1 can always form a move sequence satisfying both conditions (1) and (2) in Definition 2,
unless the defender quits the pattern and loses the game.

The move pattern of totally non-mutual checking/chasing indefinitely has the properties similar to those of
Lemmas 6 and 7 and Theorem 2 for the move pattern of non-mutual checking/chasing indefinitely, described
as follows. The proofs are omitted, since they are similar to those of Lemmas 6 and 7 and Theorem 2.

Lemma 9 Given a win-draw-loss-unknown endgame database DB for graph G and a piece p of attacker,
the move patterns of totally non-mutual checking/chasing indefinitely are closed under the union operation
(i.e., ∀G1, G2 ∈ G∗

†(DB, G, p), G1 ∪G2 ∈ G∗
†(DB, G, p)).

Lemma 10 Given a win-draw-loss-unknown endgame database DB for graph G and a chased piece p of
the attacker, there exists an unique maximum move pattern of totally non-mutual checking/chasing indefi-
nitely, denoted by G∗

†(DB, G, p).

Theorem 3 G∗
†(DB, G, p) is an induced subgraph of G, where DB is a win-draw-loss-unknown endgame

database of graph G, and p is the chased piece of the attacker.

Given a win-draw-loss-unknown endgame database DB for graph G and a piece p of the attacker, the
algorithm to compute G∗

†(DB, G, p) is similar to Algorithm 4. The key property needed is Theorem 3:

G∗
†(DB, G, p) is an induced subgraph of G. The algorithm consists of the initialization phase and the

pruning phase. In the initialization phase, G1 is initialized as a supergraph of G∗
†(DB, G, p). In the pruning

phase, unqualified vertices in G1 are repeatedly pruned, until Definition 7 is satisfied. The pseudo-code is
given in Algorithm 5.

In Algorithm 5, G1 is initialized as a supergraph of G∗
†(DB, G, p). In the pruning phase, all the vertices

pruned are unqualified no matter what the order of the defending pieces in the loop (*) is. When no
pruning is possible, G1 satisfies Definition 7 and is therefore maximum. By Lemma 10, G∗

†(DB, G, p) is
unique. Therefore, no matter what the order of the defending pieces in the loop (*) is, we obtain the same
G∗

†(DB, G, p) by Algorithm 5.
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Algorithm 5 Computing G∗
†(DB, G, p) of Totally Non-Mutual Checking/Chasing Indefinitely

function G∗
†(DB as a database, G as a graph, p as a piece of attacker) as a graph

G1 ← G∗(DB, G, p), computed by Algorithm 1. . Initialization Phase
repeat . Pruning Phase

for each piece q of the defender, including the King do
G1 ← G†(DB, G1, q), computed by Algorithm 3. . (*)

end for
until G1 cannot be further reduced.
return G1

end function

By Definitions 6 and 7, given a database DB for graph G and two chased pieces p, q of different sides,
G∗

†(DB, G, p, q) ∈ G∗(DB, G, p) and G∗
†(DB, G, p) ∈ G∗(DB, G, p). In Algorithms 4 and 5 which

invoke Algorithm 3, this property is also confirmed by iteratively applying Lemma 8.

Two final remarks of this section are given as follows. First, Algorithms 1, 2, 4 and 5 respectively to compute
G∗(DB, G, p), G∗(DB, G, p, q), G∗

†(DB, G, p, q) and G∗
†(DB, G, p) do not require the given graph G to

be fully-extended. In practice, they are applied to the fully-extended subgraphs of Chinese-chess game
graph. Second, all Algorithms 1, 2, 3, 4 and 5 do not require the given database DB to be fully-propagated
or semi-fully-propagated. In practice, they are applied to the semi-fully-propagated databases.

4. BUILDING COMPLETE WIN-DRAW-LOSS DATABASES

Given a fully-extended subgraph G of Chinese chess, the goal in this section is to build a complete win-
draw-loss database DB for graph G (i.e., complying with all the rules in the Asian rule set). Section 3
has built the essential tools for this purpose. Subsection 4.1 gives an algorithm to build the complete a
win-draw-loss database. Subsection 4.2 discusses how one may optionally deal with draws prior to the final
phase to improve the efficiency.

4.1 The Algorithm

Given a game graph, a classical retrograde algorithm first determines the win and loss information of the
terminal vertices, checkmate and stalemate positions, and then iteratively propagates the information back
to their predecessors until no propagation is possible. In the final phase, all unknown positions are marked
as draws, assuming that moving among these positions without reaching a terminal position results in a
draw. In Chinese chess, however, some positions marked as draws in the final phase result in Red win or
Black win because of the rules of non-mutual checking indefinitely or non-mutual chasing indefinitely. For
building complete win-draw-loss endgame databases of Chinese chess, these positions have to be taken into
account.

The algorithm is described as follows. After the regular initialization phase and propagation phase, we com-
pute the maximum move patterns of non-mutual checking indefinitely. If they are empty, then the maximum
move patterns of totally non-mutual chasing indefinitely are computed. After marking the win and loss po-
sitions in these patterns, the database is generally neither fully-propagated nor semi-fully-propagated. So it
follows a propagation phase. After each propagation phase, the database is changed, so the new maximum
move patterns of non-mutual checking or non-mutual chasing indefinitely may exist, and therefore the pro-
cedure is repeated. We say that positions propagated in different phases are of different levels. The process
continues until all the new maximum move patterns of non-mutual checking and totally non-mutual chasing
indefinitely are empty. Therefore, both players cannot force each other to violate the rules of non-mutual
checking indefinitely and non-mutual chasing indefinitely. So the remaining unknown positions can be cor-
rectly marked as draws in the final phase. Since the database keeps being semi-fully-propagated after each
propagation phase, the database with the draws marked in the final phase is a sound win-draw-loss database.
We may ignore the positions of mutual checking indefinitely and mutual chasing indefinitely, since they are
eventually correctly marked as draws in the final phase. The draws because of mutual checking indefinitely



14

or mutual chasing indefinitely can also be marked prior the final phase as discussed in Subsection 4.2. The
pseudo-code for building a complete win-draw-loss database of a fully-extended subgraph of Chinese chess
is given in Algorithm 6.

Algorithm 6 Building a Complete Win-Draw-Loss Database DB for G = (V, E)

for all v ∈ V do . Initialization Phase
DB(v)← unknown

end for
W ← {terminal win positions}
L← {terminal loss positions}
repeat

repeat . Propagation Phase
for all u ∈ L do . propagating loss positions

DB(u)← loss

for all (v, u) ∈ E with DB(v) = unknown do
W ←W ∪ {v}

end for
end for
L← ∅
for all v ∈ W do . propagating win positions

DB(v)← win

for all (u, v) ∈ E with DB(u) = unknown do
If ∀(u, w) ∈ E, DB(w) = loss, then L← L ∪ {u}.

end for
end for
W ← ∅

until W = ∅ and L = ∅ . DB is semi-fully-propagated when quitting the loop.
{In the first iteration, optionally marking terminal draw positions with propagation here.}
{Optionally marking positions of mutual checking indefinitely with propagation here.}
if G∗

†(DB, G, RK, BK) ∪G∗
†(DB, G, BK, RK) 6= ∅ then . non-mutual checking indefinitely

L← {loss positions in G∗
†(DB, G, RK, BK) ∪G∗

†(DB, G, BK, RK)}
else
{Optionally marking positions of mutual chasing indefinitely with propagation here.}
G1 ← union of all G∗

†(DB, G, p) with p as a Red piece other than the King

G2 ← union of all G∗
†(DB, G, q) with q as a Black piece other than the King

if G1 ∪G2 6= ∅ then . non-mutual chasing indefinitely
L← {loss positions in G1 ∪G2}

else
Break the repeat loop. . (*)

end if
end if

until the repeat loop breaks in (*).
for all v ∈ V with DB(v) = unknown do . Final Phase

DB(v)← draw

end for

In Algorithm 6, if G∗
†(DB, G, RK, BK) ∩ G∗

†(DB, G, BK, RK) 6= ∅, then problems occur. In other
words, if a position is a win in a maximum move pattern of non-mutual checking indefinitely and also a
loss in the other, then it is not only a win but also a loss and results in inconsistency. Similarly, the positions
in G1 ∩G2 in Algorithm 6 are wins in a maximum move pattern of totally non-mutual chasing indefinitely
and also losses in another. If G1 ∩ G2 6= ∅, then it also results in inconsistency. Theorem 4, proved via
Lemma 11, is developed to show that the inconsistency cannot happen.

Lemma 11 Given a win-draw-loss-unknown database DB for graph G and two chased pieces p, q of
different sides,

G∗(DB, G, p, q) ⊆ (G∗(DB, G, p) ∩G∗(DB, G, q)) ⊆ G∗(DB, G∗(DB, G, p), q).
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Proof By Definition 5, G∗(DB, G, p, q) ∈ G∗(DB, G, p). Since G∗(DB, G, p) is the maximum move
pattern in G∗(DB, G, p), G∗(DB, G, p, q) ⊆ G∗(DB, G, p). Similarly, we obtain G∗(DB, G, p, q) ⊆
G∗(DB, G, q). Therefore, G∗(DB, G, p, q) ⊆ G∗(DB, G, p) ∩G∗(DB, G, q).

Now we claim that (G∗(DB, G, p) ∩ G∗(DB, G, q)) ∈ G∗(DB, G∗(DB, G, p), q). Denote the patterns
G∗(DB, G, p) and G∗(DB, G, q) by G1 = (V1, E1) and G2 = (V2, E2), respectively. Since G1 =
G∗(DB, G, p) and G2 = G∗(DB, G, q) satisfy the conditions in Definition 4 as being the maximum
move patterns, G1 ∩ G2 satisfies all the first four conditions in Definition 4 for being a move pattern in
G∗(DB, G1, q). Now we investigate the last condition in Definition 4. Without loss of generality, we let
Red/Black be the attacker in G1/G2, respectively. Given u ∈ V1∩V2, if u is as Red to move, then ∃(u, v) ∈
E1 since Red is the attacker in G1. Besides, (u, v) ∈ E2 since Red is the defender in G2. Therefore, (u, v) ∈
E1∩E2 and v ∈ V1∩V2. Similarly, if the next mover in u is Black, then ∃v ∈ V1∩V2 and (u, v) ∈ E1∩E2.
As a result, the graph does not have any terminal vertex (i.e., all vertices with out-degrees at least 1). So the
last condition in Definition 4 also holds. Since G∗(DB, G∗(DB, G, p), q) is the maximum move pattern in
G∗(DB, G∗(DB, G, p), q), (G∗(DB, G, p) ∩G∗(DB, G, q)) ⊆ G∗(DB, G∗(DB, G, p), q). 2

p p pp

qp

q

q*

q

q

Figure 2: Example to illustrate the relationships of the move patterns in Lemma 11.

Figure 2 illustrates an example of the relationships of the move patterns in Lemma 11, where p indicates a
move to chase the piece p (i.e., check((u, v), p) = true) and q indicates a move to chase the piece q (i.e.,
chase((u, v), q) = true). Then G∗(DB, G, p) is the graph induced by the left eight vertices, whereas
G∗(DB, G, q) is the graph induced by the right eight vertices. Therefore, the intersection is the graph
induced by the middle four vertices. Besides, G∗(DB, G∗(DB, G, p), q) is also the graph induced by the
middle four vertices and G∗(DB, G, p, q) = ∅. We obtain

G∗(DB, G, p, q) ⊂ (G∗(DB, G, p) ∩G∗(DB, G, q)) = G∗(DB, G∗(DB, G, p), q).

If the move with q∗ is not a chasing move (i.e., chase((u, v), q) = false), then G∗(DB, G, q) becomes
the subgraph induced by the right four vertices, and therefore the intersection with G∗(DB, G, p) is empty.
The pattern G∗(DB, G∗(DB, G, p), q) remains the graph induced by the middle four vertices. Therefore,

G∗(DB, G, p, q) = (G∗(DB, G, p) ∩G∗(DB, G, q)) ⊂ G∗(DB, G∗(DB, G, p), q).

Theorem 4 Given a database DB for graph G and two pieces p, q of different sides,

G∗
†(DB, G, p, q) ∩G∗

†(DB, G, q, p) = ∅

and
G∗

†(DB, G, p) ∩G∗
†(DB, G, q) = ∅.

Proof Since G∗
†(DB, G, p, q) ⊆ G∗(DB, G, p) and G∗

†(DB, G, q, p) ⊆ G∗(DB, G, q),

(G∗
†(DB, G, p, q) ∩G∗

†(DB, G, q, p)) ⊆ (G∗(DB, G, p) ∩G∗(DB, G, q)).

In Algorithm 4 which invokes Algorithm 3, G∗(DB, G∗(DB, G, p), q) is removed from G∗(DB, G, p)
while computing G∗

†(DB, G, p, q). By Lemma 11, G∗
†(DB, G, p, q)∩ (G∗

† (DB, G, p)∩G∗
† (DB, G, q)) =



16

∅. Similarly, G∗
†(DB, G, q, p) ∩ (G∗

†(DB, G, p) ∩ G∗
†(DB, G, q)) = ∅. Therefore, G∗

†(DB, G, p, q) ∩

G∗
†(DB, G, q, p) = ∅. Since G∗

†(DB, G, p) ⊆ G∗
†(DB, G, p, q) and G∗

†(DB, G, q) ⊆ G∗
†(DB, G, q, p),

G∗
†(DB, G, p) ∩G∗

†(DB, G, q) = ∅. 2

By Theorem 4, it is always true that G∗
†(DB, G, RK, BK)∩G∗

†(DB, G, BK, RK) = ∅ and G1∩G2 = ∅
without conflicts in Algorithm 6. Recall that if there are no draw positions in a win-draw-loss-unknown
database, being fully-propagated and being semi-fully-propagated are equivalent. Therefore, if no draws
are marked prior the final phase, the database is fully-propagated after each propagated phase during the
construction by Algorithm 6.

4.2 The Draws

In Algorithm 6, after each propagation phase, the positions in the maximum move pattern of mutual check-
ing indefinitely G∗(DB, G, RK, BK) can be safely declared as draws. Marking these as draws in DB
before the final phase does not affect the correctness of the database. However, it can improve the efficiency
for computing G∗

†(DB, G, RK, BK) and G∗
†(DB, G, BK, RK) by Algorithm 4 in the later iterations.

Note that the positions in G∗(DB, G, RK, BK) are always initialized as the candidates while computing
G∗(DB, G, RK) and G∗(DB, G, BK) by Algorithm 1 invoked by Algorithm 4 where these positions are
pruned.

Lemma 12 Given a win-draw-loss-unknown database DB for graph G and two pieces p, q of different
sides,

G∗(DB, G, p, q) ∩G∗
†(DB, G, p, q) = ∅.

Proof By Lemma 11, G∗(DB, G, p, q) ⊆ G∗(DB, G∗(DB, G, p), q). In Algorithm 4 which invokes Al-
gorithm 3, G∗(DB, G∗(DB, G, p), q) is removed from G∗(DB, G, p) while computing G∗

†(DB, G, p, q).

Therefore, G∗(DB, G, p, q) ∩G∗
†(DB, G, p, q) = ∅.

By Theorem 4 and Lemma 12, the maximum move patterns of mutual and non-mutual checking indefinitely
are all disjoint (i.e., G∗(DB, G, RK, BK), G∗

†(DB, G, RK, BK) and G∗
†(DB, G, BK, RK) are all dis-

joint). Therefore, the win-draw-loss information of the positions in them can be correctly marked without
conflicts.

For a maximum move pattern of mutual chasing indefinitely G∗(DB, G, p, q), where p and q are two pieces
of different sides other than the Kings, some player may be able to force the other to check indefinitely in-
side G∗(DB, G, p, q). Therefore, the positions in G∗(DB, G, p, q) may not be safely marked as draws
since the first condition for mutual chasing indefinitely in Definition 2 may not be satisfied. Neverthe-
less, if G∗(DB, G∗(DB, G, p, q), RK) and G∗(DB, G∗(DB, G, p, q), BK) are empty, then both play-
ers cannot force each other to check indefinitely inside G∗(DB, G, p, q) and therefore the positions in
G∗(DB, G, p, q) can be safely declared as draws.

Lemma 13 Given a win-draw-loss-unknown database DB for graph G and a subgraph G1 = (V1, E1) of
G with no terminal vertices and ∀v ∈ V1, DB(v) = unknown,

G1 ∩G2 ∈ G∗(DB, G1, p, q),

where G2 = (V2, E2) ∈ G∗(DB, G, p, q) and p, q are two pieces of different sides.

Proof By Lemma 3, G2 is an induced subgraph of G. Therefore, G1 ∩ G2 is an induced subgraph of G1.
Since G2 ∈ G∗(DB, G, p, q), G1 ∩ G2 satisfies the first five conditions in Definition 5 for being a move
pattern in G∗(DB, G1, p, q). Now we investigate the last condition. Denote G1 ∩ G2 = (V , E). Given
u ∈ V ⊆ V1, there exists (u, v) ∈ E1 with DB(v) = unknown, since G1 has no terminal vertices. By
conditions (1), (4) and (5) in Definition 5, (u, v) ∈ E2. Therefore, (u, v) ∈ E, which implies that the
graph G1 ∩ G2 does not have terminal vertices. The last condition in Definition 5 also holds. As a result,
G1 ∩G2 ∈ G∗(DB, G1, p, q). 2

Theorem 5 Given a win-draw-loss-unknown database DB for a game graph G and two pieces p, q of
different sides,

G∗(DB, G, p, q) ∩G∗
†(DB, G, r) = ∅
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for any piece r.

Proof Without loss of generality, we assume that the two pieces q and r are of the same player. G∗
†(DB, G, r)

and G∗(DB, G, p, q) satisfy the requirements for being G1 and G2 in Lemma 13. Therefore, we obtain
G∗(DB, G, p, q)∩G∗

†(DB, G, r) ∈ G∗(DB, G∗
†(DB, G, r), p, q) ⊆ G∗(DB, G∗

†(DB, G, r), p). By Def-

inition 7, G∗(DB, G∗
†(DB, G, r), p) = ∅. Therefore, G∗(DB, G, p, q) ∩G∗

†(DB, G, r) = ∅. 2

Given a win-draw-loss-unknown database DB for graph G, we use G0 to denote the union of the maxi-
mum move patterns of totally non-mutual chasing indefinitely G∗(DB, G, p, q) satisfying the conditions
G∗(DB, G∗(DB, G, p, q), RK) = ∅ and G∗(DB, G∗(DB, G, p, q), BK) = ∅ for all pairs of pieces p,
q of different sides other than the Kings. By Theorems 4 and 5, G1, G2 in Algorithm 6 and G0 are all
disjoint. Therefore, the positions in them can be correctly marked with their win-draw-loss information
without conflicts.

Draw positions can be propagated. In Western chess, it has zero practical value, since the draw positions
are eventually all marked in the final phase. In Chinese chess, it may improve the efficiency for computing
the maximum move patterns, since the number of candidates initialized for computing the maximum move
patterns in the later iterations may be reduced.

Given a database DB for graph G = (V, E), a set of seed draw positions D ⊆ V is called valid if all
vertices in D are unknown or draw positions in DB, and after marking all these vertices as draws in DB,
DB remains a sound win-draw-loss database (i.e., satisfying all the conditions in Definition 3). Given a set
of valid seed draw positions, the draw information is iteratively propagated back to the predecessors until
no propagation is possible. The pseudo-code is given in Algorithm 7.

Algorithm 7 Set Draws With Propagation
Require: D is a valid set of seed draw positions.
Ensure: DB remains a sound win-draw-loss-unknown database when job done.

procedure SETDRAWS(DB as a database, G = (V, E) as a graph, D ⊆ V as a set of seed draws)
for all u ∈ D do . Initialization Phase

DB ← draw

end for
while D 6= ∅ do . Propagation Phase

Pop any u ∈ D and set D ← D − {u}.
for all (v, u) ∈ E with DB(v) = unknown do

if ∀(v, w) ∈ E, (DB(w) = draw) ∨ (DB(w) = win) then
D ← D ∪ {v}
DB(v)← draw

end if
end for
D ← D − {u}

end while
end procedure

Four remarks for the propagation of draws are given below. First, given a database DB for graph G, any
move pattern of mutual checking/chasing indefinitely in G∗(DB, G, p, q) for two pieces p, q of different
sides is a valid set of seed draw positions. Second, during the propagation, the DB keeps being a sound win-
draw-loss-unknown database. Third, the property that DB is semi-fully-propagated is preserved, because
updating the draw positions does not affect being semi-fully-propagated. Fourth, the propagation of draws
and the propagation of wins and losses are independent. An unknown position is marked as a win if it has
a child as a loss. An unknown position is marked as a loss if its children are all wins. An unknown position
is marked as a draw if it has a draw child and its children are all draws or wins.

In Algorithm 6, there are three types of valid sets of seed draw positions: maximum move patterns of
mutual checking indefinitely, maximum move patterns of mutual chasing indefinitely, and the terminal
draw positions. In Western chess, the terminal draw positions are stalemate positions. In Chinese chess,
there are no terminal draw positions, unless the game graph is split. When the game graph is split, the
terminal draw positions are those propagated from the supporting databases.
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Lemma 14 Given a database DB for graph G = (V, E) and a valid set of seed draw positions D, we
denote DB1 as the database of DB after marking all vertices in D as draws, and DB2 as the database
after propagating draws by Algorithm 7, then

G∗(DB1, G, p) = G∗(DB2, G, p) and G∗(DB1, G, p, q) = G∗(DB2, G, p, q)

for any pieces p and q of different sides. In other words, the propagation of draws do not affect the move
patterns of (mutual) checking/chasing indefinitely.

Proof Both players in the propagated draw positions can force each other to some positions in D or some
draw position in DB. Given any position u with DB1(u) = unknown and DB2(u) = draw, no
matter the next mover in u is the attacker or defender, u cannot be a position in G∗(DB1, G, p, q), because
both players can force each other to lead the game to some position in D or some draw position in DB,
so condition (5) in Definition 4 cannot hold. Therefore, G∗(DB1, G, p) = G∗(DB2, G, p). A similar
discussion gets G∗(DB1, G, p, q) = G∗(DB2, G, p, q). 2

The consequent products of Lemma 14 are as follows. First, because G∗(DB1, G, p, q) = G∗(DB2, G, p, q),
G∗(DB1, G, p, q) = G∗(DB2, G, p, q). Second, G∗(DB1, G, p) = G∗(DB2, G, p), so G∗(DB1, G, p) =
G∗(DB2, G, p). Third, G∗

†(DB1, G, p, q) = G∗
†(DB2, G, p, q), because G∗(DB1, G, p) = G∗(DB2, G, p)

and therefore reductions in Algorithm 4 are the same. Fourth, G∗
†(DB1, G, p) = G∗

†(DB2, G, q) is obtained
similarly. As a result, the propagations of draws in Algorithm 6 do not change the resulting built database.
However, it can reduce the cost for computing the maximum move patterns because there may be fewer
candidates in the initialization phase. Whether it is worthwhile to trade the cost of computing and prop-
agating draws for the saving of computing maximum move patterns of checking/chasing indefinitely may
depend on the endgame databases and the implementations.

In the selected 50 endgame databases in (Fang et al., 2004; Fang, 2004), the maximum move patterns of
mutual checking/chasing indefinitely computed in Algorithm 6 are empty. Therefore, the only seed draws
are the terminal draws propagated from the supporting databases when the graph is split. At this stage,
the dealing with draws from the maximum move patterns of mutual checking/chasing indefinitely is of
theoretical interest only.

Theorem 6 The database constructed by Algorithm 6 is a sound win-draw-loss database (i.e., satisfying
all conditions in Definition 3).

Proof To verify the soundness of the win-draw-loss database constructed by Algorithm 6, we inspect the
three types of positions: non-draw seeds, propagated non-draw positions, and the draws.

1. There are three types of non-draw seeds: terminal positions, loss positions in maximum move patterns
of non-mutual checking indefinitely, and loss positions in maximum move patterns of non-mutual
chasing indefinitely. For each win position of non-mutual checking (or chasing) indefinitely, it must
has a child as a loss position in the same pattern. During propagation of checking (or chasing)
indefinitely, they are all correctly marked as wins. Therefore, they satisfy conditions (1) and (2) in
Definition 3.

2. Inspecting the propagation phase in Algorithm 6, each propagated win position must have at least one
loss child. Each propagated loss position must have all children as win positions. Both conditions (1)
and (2) in Definition 3 are satisfied.

3. When no propagation is possible, each unknown non-terminal position must have at least one un-
known or draw child and no loss children. Therefore, the draws marked in the final phase satisfy
the condition (3) in Definition 3. The draws in the maximum move patterns of mutual checking (or
chasing) indefinitely marked prior to the final phase still satisfy condition (3) in Definition 3, and so
do the propagated draws. 2

5. INFALLIBLE COMPLETE CHINESE CHESS ENDGAME DATABASES

The complete Chinese-chess endgame databases constructed by Algorithm 6 contains the win-draw-loss
information in accord with the Asian rule set. However, with only this win-draw-loss information available,
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one player may rove in the win states but never win the game by checkmate, stalemate, or forcing his
opponent to check or chase indefinitely. How infallibility is achieved with the complete endgame databases
is described as follows. Subsection 5.1 gives an algorithm to build endgame databases in the distance-to-
mate/check/chase metric. Subsection 5.2 describes the infallibility playing strategy. Subsection 5.3 adapts
the algorithm for endgame databases in the distance-to-conversion/check/chase metric. Subsection 5.4
describes how to verify the endgame databases to ensure that there are no hardware and software errors.

5.1 Distance-to-mate/check/chase Endgame Databases

In the endgame databases of Chinese chess in the distance-to-mate metric, each position value is represented
as the distance to the checkmate or stalemate positions measured in plies. We note that checkmate and
stalemate positions are the loss positions with distance 0. All win/loss positions have odd/even distance
values, respectively. With the rules of checking and chasing indefinitely, the shortest win can hardly be
defined. Hence we concentrate on the infallibility.

In (Fang et al., 2002; Fang et al., 2004), the concept of distance-to-check was introduced, which is de-
fined as the distance measured in plies to the loss positions of checking indefinitely (i.e., the loss po-
sitions in G∗(DB, G, RK) and G∗(DB, G, BK)). In this paper, it is revised to be the distance to the
loss positions of non-mutual checking indefinitely11 (i.e., the loss positions in G∗

†(DB, G, RK, BK) and

G∗
†(DB, G, BK, RK)). Similarly, the term distance-to-chase is defined as the distance to the loss positions

in the maximum move pattern of totally non-mutual chasing indefinitely measured in plies12 (i.e., the loss
positions in G∗

†(DB, G, p), where p is not a King ).

The propagation phase for non-mutual checking (or chasing) indefinitely positions is similar to that in the
distance-to-mate metric. Note that all odd/even distance values in distance-to-check and distance-to-chase
metrics also represent the win/loss positions, respectively. In the resulting database, some positions are
in distance-to-mate metric, some others are in distance-to-check metric, and some others are in distance-
to-chase metric. Therefore, the database is in distance-to-mate/check/chase metric. As discussed in Sub-
section 4.1, non-mutual checking indefinitely and non-mutual chasing indefinitely have their levels. This
suggests the definition of a position value as follows.

Definition 8 For the complete endgame databases of Chinese chess in the distance-to-mate/check/chase
metric, a position value consists of two integers, denoted by (r, d), where r is the level and d is the distance
measured in plies. When r = 0, d stands for distance-to-mate. When r > 0, d stands for distance-to-
check or distance-to-chase. Draw and unknown positions have their specific position values other than any
possible position values in distance-to-mate, distance-to-check and distance-to-chase in practice. Moreover,
function f is to map position values to {win,draw, loss,unknown} defined by:

f((r, d)) =















win if r ≥ 0 and d is odd.
loss if r ≥ 0 and d is even.
draw if (r, d) represents a draw.
unknown if (r, d) represents an unknown.

Algorithm 8, modified from Algorithm 6, is to build endgame databases in distance-to-mate/check/chase
metric. The win-draw-loss information is identical to that of the databases built by Algorithm 6 as stated in
the following theorem.

Theorem 7 Let DB be a database in distance-to-mate/check/chase metric constructed by Algorithm 8.
f(DB) is identical to the database constructed by Algorithm 6.

Proof Comparing Algorithm 8 with Algorithm 6, it is not hard to see the identical property after a little
thought. 2

11In practical cases, they are usually identical. For example, in the selected 50 endgame databases in (Fang et al., 2004; Fang,
2004), the set of the move patterns of checking indefinitely is the same as that of non-mutual checking indefinitely.

12Another definition of distance-to-check (distance-to-chase) is the distance to the win positions of non-mutual chasing (totally
non-mutual checking) indefinitely. It also results in the infallible endgame databases by a similar algorithm.
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Algorithm 8 Building DB in distance-to-mate/check/chase metric for G = (V, E)

for all v ∈ V do . Initialization Phase
Set DB(v) so that f(DB(v)) = unknown.

end for
W ← {terminal win positions}
L← {terminal loss positions}
r ← 0
repeat

d← 0
repeat . Propagation Phase

if d is even then . propagating loss positions
for all u ∈ L do

DB(u)← (r, d)
for all (v, u) ∈ E with f(DB(v)) = unknown do

W ←W ∪ {v}
end for

end for
L← ∅

else[d is odd] . propagating win positions
for all v ∈W do

DB(v)← (r, d)
for all (u, v) ∈ E with f(DB(u)) = unknown do

If ∀(u, w) ∈ E, f(DB(w)) = loss, then L← L ∪ {u}.
end for

end for
W ← ∅

end if
d← d + 1

until W = ∅ and L = ∅
r ← r + 1 . DB is semi-fully-propagated here.
{In the first iteration, optionally marking terminal seed draws with propagation here.}
{Optionally marking positions of mutual checking indefinitely with propagation here.}
if G∗

†(f(DB), G, RK, BK) ∪G∗
†(f(DB), G, BK, RK) 6= ∅ then . non-mutual checking

indefinitely
L← {loss positions in G∗

†(f(DB), G, RK, BK) ∪G∗
†(f(DB), G, BK, RK)}

else
{Optionally marking positions of mutual chasing indefinitely with propagation here.}
G1 ← union of all G∗

†(f(DB), G, p) with p as a Red piece other than the King

G2 ← union of all G∗
†(f(DB), G, q) with q as a Black piece other than the King

if G1 ∪G2 6= ∅ then . non-mutual chasing indefinitely
L← {loss positions in G1 ∪G2}

else
Break the repeat loop. . (*)

end if
end if

until the repeat loop breaks in (*).
for all v ∈ V with f(DB(v)) = unknown do . Final Phase

Set DB(v) so that f(DB(v)) = draw.
end for

5.2 Infallible Playing Scheme

The infallible playing scheme and the relative theorems and lemmas are analogous to those in (Fang et al.,
2004) with the databases in distance-to-mate/check metric. The order of win-draw-loss information is
defined by win > draw > loss. For win/loss positions in the distance-to-mate/check/chase metric, the
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lower the level, the better/worse the position, respectively. For win/loss positions at the same level, the
shorter the distance, the better/worse the position, respectively. The precise definition is as follows.

Definition 9 Given two position values (r1, d1) and (r2, d2) in distance-to-mate/check/chase metric, their
order is defined by the following rules.

• If (r1 = r2) ∧ (d1 = d2), then (r1, d1) = (r2, d2).

• If f((r1, d1)) > f((r2, d2)), then (r1, d1) > (r2, d2).

• If (f((r1, d1)) = f((r2, d2)) = win) ∧ (r1 < r2), then (r1, d1) > (r2, d2).

• If (f((r1, d1)) = f((r2, d2)) = win) ∧ (r1 = r2) ∧ (d1 < d2), then (r1, d1) > (r2, d2).

• If (f((r1, d1)) = f((r2, d2)) = loss) ∧ (r1 > r2), then (r1, d1) > (r2, d2).

• If (f((r1, d1)) = f((r2, d2)) = loss) ∧ (r1 = r2) ∧ (d1 > d2), then (r1, d1) > (r2, d2).

• Otherwise, (r1, d1) < (r2, d2).

This order is well-defined since ((r1, d1) > (r2, d2)) ∧ ((r2, d2) > (r3, d3)) =⇒ ((r1, d1) > (r3, d3)). In
addition, we call (r1, d1) ≥ (r2, d2) if ((r1, d1) > (r2, d2))∨ ((r1, d1) = (r2, d2)), and (r1, d1) ≤ (r2, d2)
if ((r1, d1) < (r2, d2)) ∨ ((r1, d1) = (r2, d2)).

Theorem 8 In the database DB in distance-to-mate/check/chase metric constructed by Algorithm 8 of a
fully-extended subgraph G = (V, E) of Chinese chess,

• ∀ propagated u ∈ V with DB(u) denoted by (r, d) with d > 0, ∃(u, v) ∈ E such that DB(v) =
(r, d− 1). In addition, ∀(u, w) ∈ E, DB(w) ≥ (r, d− 1).

• ∀ u ∈ V satisfying DB(u) = (r, 0) with r > 0, ∃(u, v) ∈ E such that DB(v) = (r, 1). In addition,
∀(u, w) ∈ E, DB(w) ≥ (r, 1).

Proof The proof is much the same as that of (Fang et al., 2004, Theorem 3). In Algorithm 8, a propagated
u ∈ V is either win or loss. If u is a win position, DB(u) is set whenever a loss child, denoted by v, is
found and added into L in the previous iteration, so that DB(v) = (r, d − 1). Since other loss children
are determined in the same or later iteration, they are either at a higher level, or at the same level with a
longer distance. By Definition 9, they are (r, d− 1) or better. If u is a loss position, DB(u) is set whenever
all children are known as win positions. The latest known child, denoted by v, is added into W in the
previous iteration, so that DB(v) = (r, d − 1). All other children are loss and determined in the same or
later iteration, they are either at a lower level, or at the same level with a shorter distance. By Definition 9,
they are equal to or better than (r, d− 1).

Each position u satisfying DB(u) = (r, 0) for some r > 0 is a loss position in some maximum pattern
of checking (or chasing) indefinitely, so that one of its children is a win position in this pattern. Besides,
all the win positions in the same pattern are propagated as (r, 1), since they must have a loss child with
position value (r, 0). All other children of u are win positions at the lower level determined in the previous
iterations, which is greater than (r, 1) by Definition 9. As a result, ∀(u, w) ∈ E, DB(w) ≥ (r, 1). 2

The infallible playing scheme with the complete endgame databases in distance-to-mate/check/chase metric
for a winning player is similar to that in (Fang et al., 2004). Starting from a win position v with DB(v)
denoted by (r, d) where d is odd, always move to some child u satisfying DB(u) = (r, d − 1). By
Theorem 8, if d > 2, all the moves of the opponent lead to win positions (r, d − 2) or better (i.e., either
the level is lower than r or it is the same level but the distance is no longer than d − 2). As a result, the
winning player can always force his opponent to be in a position (r′, 0) for some r′ satisfying 0 ≤ r′ ≤ r.
If r′ = 0, the winning player checkmates or stalemates his opponent. For r′ > 0, the losing player is forced
to check (or chase) the winning side indefinitely, if he always moves to the position (r′, 1). Otherwise, the
losing player is forced to move to some position at a level lower than r′ and the winning player keeps in a
win position. Note that if the level r′ > 0 is of non-mutual chasing indefinitely, problems may occur while
game continues in the positions of (r′, 0) and (r′, 1). Without loss of generality, we assume that Red is the
attacker. The defender may chase a piece p1 every other move and chase another piece p2 every the other
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move, and therefore the game results in a draw (Association, 1999, page 103, rule 32). This is because in
Algorithm 8, at level r′, G1 ⊆ G∗

†(DB, G, p1)∪G∗
†(DB, G, p2), but G∗

†(DB, G, p1)∩G∗
†(DB, G, p2) 6=

∅. One way to avoid this problem is by adding an attribute to each position of (r′, 1) indicating which
maximum move pattern(s) of totally non-mutual chasing indefinitely it belongs to. Since both level and
distance are bounded below, the winning side can always win the game by checkmate, stalemate, or forcing
his opponent to check or chase indefinitely.

5.3 Distance-to-Conversion/Check/Chase Metric

The game graph of Western chess or Chinese chess is usually split according to the numbers of different
pieces on the board into multiple endgame databases. The distance-to-conversion metric was introduced to
shorten the maximal distance. Conceptually, it is the distance to the supporting databases measured in plies.
The resulting endgame databases are also infallible.

In (Fang et al., 2004), the distance-to-conversion strategy is also incorporated into the algorithm to con-
struct the endgame databases in the distance-to-conversion/check metric. For databases with complete in-
formation, endgame databases in the distance-to-conversion/check/chase metric can be built as follows.
In addition to checkmate and stalemate positions, the loss terminal positions are re-defined to include
those with all children being loss positions in the supporting databases. The win terminal positions are
re-defined to be those with a loss child in the supporting databases. This scheme results in distance-to-
conversion/check/chase metric. It can also be applied to Algorithm 6 for complete win-draw-loss endgame
databases, and all the theorems and lemmas in Sections 3 and 4 remain sound.

For databases in distance-to-conversion/check/chase metric, the following definitions (see 1, below) and
algorithm (see 2, below) are the same, and the theorems (see 3, below) remain sound, except that each
”-mate” is replaced by ”-conversion”, and the terminal win and loss positions are re-defined as above.

1. The position values and their order in Definitions 8 and 9, respectively.

2. Algorithm 8 to build an endgame database.

3. Theorem 7 for the relationship with the win-draw-loss database built by Algorithm 6, and Theorem 8
for infallible playing strategy.

The playing strategy with the endgame databases in distance-to-conversion/check/chase metric remains
infallible. Through a similar discussion in Subsection 5.2, starting from a win position v with DB(v)
denoted by (r, d) in distance-to-conversion/check metric, the winning player can always either force the
game to fall into some supporting database and keep himself as the winning side, or win the game by
checkmate, stalemate, or forcing his opponent to check or chase indefinitely. Since falling into a supporting
database cannot be repeated endlessly, the winning side is guaranteed to win the game infallibly.

5.4 Verification Algorithm

Constructing endgame databases is a time-consuming computational task. Verification is required to ensure
the correctness without hardware or software errors. Given a database DB for a fully-extended subgraph of
the Chinese chess game graph in the distance-to-mate/check/chase or the distance-to-conversion/check/chase
metric, the verification consists of confirming three types of positions: the non-draw seeds, the propagated
non-draw positions, and the draws.

1. The non-draw seeds are verified by the same methods used to determine them. Seeds at the zero-
th level are verified by confirming that they are the right terminal positions. Seeds for non-mutual
checking (or chasing) indefinitely are verified by confirming that they are the loss positions in the
maximum patterns of non-mutual checking (or chasing) indefinitely at their levels.

2. Propagated win and loss positions in DB are verified by Theorem 8.

3. Draw positions are verified with f(DB) by Definition 3, where function f is defined in Definition 8.
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6. CONCLUDING REMARKS

Retrograde analysis has been widely used and successfully applied to construct endgame databases of
Western chess. In Chinese chess, its application is limited because of the special rules. After tackling
the problems caused by the special rules, an algorithm is successfully developed for building the complete
Chinese-chess endgame databases in accord with the Asian rule set. The concluding remarks are as follows.

1. To verify the completeness of the endgame databases, the rule-tolerant approach works well in prac-
tice for both the Asian rule set and the Chinese rule set (Fang, 2004). To build complete endgame
databases, we need rigorous algorithms. To comply with the path-dependent rule (Association, 1999,
page 103, rule 32) in the Asian rule set, the function chase((u, v), p) is defined to indicate whether
(u, v) is a move to chase p or not. However, this rule does not exist in the Chinese rule set. Besides,
the Chinese rule set has different path-dependent rules. Therefore, this approach does not work for
the Chinese rule set.

2. Given a win-draw-loss-unknown database DB for graph G and pieces p, q of different sides, the
maximum move patterns G∗(DB, G, p), G∗(DB, G, p, q), G∗

†(DB, G, p, q) and G∗
†(DB, G, p) are

all induced subgraphs of G. Using this fact, the algorithms to compute these maximum move patterns
consist of an initialization phase and a pruning phase. In the initialization phase, a supergraph is
computed. In the pruning phase, unqualified vertices are pruned, until the graph induced by the
remaining vertices is the maximum move pattern.

3. The children counting strategy can be applied to not only Algorithms 6 and 8, but also Algorithms 1
and 3, which are invoked by Algorithms 4 and 5. With the children counting strategy applied, each
edge is visited at most once during the propagation phases or the pruning phase.

4. In Algorithm 6 for building the complete win-draw-loss endgame databases, the database DB keeps
being a sound win-draw-loss-unknown endgame database. The DB is semi-fully-propagated after
each propagation phase. If no draw positions are marked prior the final phase, then being semi-fully-
propagated is equivalent to being fully-propagated.

5. By Theorem 4, the maximum move patterns of non-mutual checking indefinitely and mutual checking
indefinitely are disjoint, and maximum move patterns of totally non-mutual chasing indefinitely and
mutual chasing indefinitely are disjoint in Algorithms 6 and 8. Therefore, the positions in them can
be marked with their win-draw-loss information without conflicts.

6. In Algorithms 6 and 8, the draw positions in the maximum move patterns of mutual checking/chasing
indefinitely do not need to be taken care of, since they are eventually marked as draws in the final
phase. The draws can be iteratively propagated by Algorithm 7. Marking these draws may improve
the efficiency for computing the maximum move patterns, since there may be fewer candidates ini-
tialized.

7. For infallible playing strategy, the databases in the distance-to-mate/check/chase metric are intro-
duced. It is similar to the strategy for the databases in the distance-to-mate/check metric in (Fang et al.,
2004). While the game graph is split, the databases are in the distance-to-conversion/check/chase
metric. The theorems and lemmas remain sound with the terminal vertices re-defined. The verifica-
tion algorithm to ensure the correctness is similar to that in (Fang et al., 2004) for databases in the
distance-to-mate/check metric or the distance-to-conversion/check metric.
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