
University of Maryland College ParkInstitute for Advan
ed Computer Studies TR{2004{84Department of Computer S
ien
e TR{4642
The Gram-S
hmidt Algorithm and Its Variations�G. W. StewartyDe
ember, 2004ABSTRACTThe Gram{S
hmidt algorithm is a widely used method for orthogonaliz-ing a sequen
e of ve
tors. It
omes in two forms:
lassi
al Gram{S
hmidtand modi�ed Gram{S
hmidt, ea
h of whose operations
an be ordered indi�erent ways. This expository paper gives a systemati
 treatment of this
onfusing variety of algorithms. It also treats the numeri
al issue of lossof orthogonality and reorthogonalization as well as the implementation of
olumn pivoting.

�This report is available by anonymous ftp from thales.
s.umd.edu in the dire
tory pub/reportsor on the web at http://www.
s.umd.edu/�stewart/.yDepartment of Computer S
ien
e and Institute for Advan
ed Computer Studies, University of Mary-land, College Park, MD 20742 (stewart�
s.umd.edu). This resear
h was supported in part by theNational S
ien
e Foundation under grant CCR0204084.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Repository at the University of Maryland

https://core.ac.uk/display/56099713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Gram-S
hmidt Algorithm and Its VariationsG. W. StewartABSTRACTThe Gram{S
hmidt algorithm is a widely used method for orthogonaliz-ing a sequen
e of ve
tors. It
omes in two forms:
lassi
al Gram{S
hmidtand modi�ed Gram{S
hmidt, ea
h of whose operations
an be ordered indi�erent ways. This expository paper gives a systemati
 treatment of this
onfusing variety of algorithms. It also treats the numeri
al issue of lossof orthogonality and reorthogonalization as well as the implementation of
olumn pivoting.1. Introdu
tionThe Gram{S
hmidt algorithm is a method for orthogonalizing a sequen
e of linearly in-dependent n-ve
tors x1; x2; : : : . Spe
i�
ally, it produ
es a sequen
e of ve
tors q1; q2; : : : ,with qj a linear
ombination of x1; : : : ; xj that satisfy the orthonormality
onditionskqjk = 1 (j = 1; 2; : : :) and qTi qj = 0 (i 6= j): (1.1)Here qT is the transpose of q, so that qTi qj is the inner or dot produ
t of qi and qj , andthe quantity kqk is the Eu
lidean norm of q, de�ned bykqk2 = qTq:The Gram{S
hmidt orthogonalization pro
edure has many appli
ation. Perhapsthe most important is to approximate ve
tors by linearly
ombinations of the xj , orequivalently of the qj. Spe
i�
ally, given a ve
tor y, letŷ =
1q1 +
2q2 + � � �
kqk;where
j = qTj y; j = 1; : : : ; k: (1.2)then it
an be shown that ŷ approximates y optimally in the sense that of all linear
ombinations of the qi kuk � ky � ŷk2 is minimal. (1.3)We say that ŷ is the least squares approximation to y. The minimality of ky � ŷk2 iseasily established by elementary methods of multivariate
al
ulus.Note the simpli
ity of the formulas (1.2) for the least squares
oeÆ
ients. If we hadtried to write ŷ as a linear
ombination of the ve
tors xi we would have ended up with1

2 The Gram{S
hmidt algorithma linear system of order k for the
oeÆ
ients
alled the normal equations. It is littlewonder, then, that the Gram{S
hmidt algorithm plays an important role least squares
omputations.The basi
 Gram{S
hmidt algorithm is de
eptively simple. But it
omes in a num-ber of variants, of whi
h the main types are
lassi
al Gram{S
hmidt, modi�ed Gram{S
hmidt, and Gram{S
hmidt (
lassi
al or modi�ed) with reorthogonalization. Ea
h ofthe types
an be varied to
ompute the orthogonalization
oeÆ
ients in di�erent orders.All these variants
an be a sour
e of
onfusion for the novi
e|and sometimes for theexpert. This paper provides a guided tour of the world of Gram{S
hmidt. The empha-sis will be primarily on the stru
ture of the various algorithms, although we will alsotou
h on issues of eÆ
ien
y and rounding error. Not mu
h is supposed of the readerex
ept a familiarity with elementary linear algebra and Matlab, whi
h is the algorithmi
language of this paper.In what follows k � k will also denote the spe
tral norm de�ned bykXk = maxkwk=1 kXwk:We will also use the Frobenius norm de�ned bykXk2F =Xi;j x2ij:We will make use of the following fa
t. If Q has orthonormal
olumns, thenkQRk = kRk;and the same is true for the Frobenius norm.When we
ome to talk about the e�e
ts of rounding error, we will have to spe
ifythe pre
ision of
omputation. This is
ommonly summarized in a number �M whoselogarithm approximates the number of digits (in the base of the logarithm)
arried in the
omputation. For IEEE double-pre
ision
oating-point
omputation, �M �= 2:2�10�16.2. Matrix formulationAlthough the Gram{S
hmidt algorithm nominally
omputes a system orthonormal ve
-tors of ve
tors, it a
tually
omputes an important matrix fa
torization. To see this wemust
ast the algorithm in terms of matri
es.Let us begin by assuming the ve
tors qj exist. Sin
e qk is a linear
ombination ofx1; : : : ; xk, we
an write it in the formqk = s1kx1 + s2kx2 + � � �+ skkxk:

The Gram{S
hmidt algorithm 3If we set X(k) = (x1 x2 x3 � � � xk);Q(k) = (q1 q2 q3 � � � qk)and S(k) = 0BBBBB�s11 s12 s13 � � � s1k0 s22 s23 � � � s2k0 0 s33 � � � s3k...0 0 0 � � � skk
1CCCCCA ;then S(k) is upper triangular and Q(k) = X(k)S(k):To get a formula for S(k), we use the fa
t that the orthonormality
onditions (1.1)
anbe written in matrix form as Q(k)TQ(k) = I;where I is the identity matrix of order k (we say that Q(k) is orthonormal). Hen
eS(k)TX(k)TX(k)S(k) = I:Sin
e I is nonsingular, S(k) must also be nonsingular. Hen
e if we writeR(k) = S(k)�1;then Rk is upper triangular andX(k)TX(k) = R(k)TR(k): (2.1)Let us look at equation (2.1) in greater detail. Sin
e the matrix X(k) has linearlyindependent
olumns, the
ross-produ
t matrix X(k)TX(k) is positive de�nite; that is,u 6= 0 =) uT(X(k)TX(k))u > 0:It
an be shown that any positive de�nite matrix
an be fa
tored in the form RTR,where R is a nonsingular upper triangular matrix. (The fa
torization is unique if werequire the diagonal elements of R to be positive.) This fa
torization is
alled theCholesky de
omposition and R is
alled the Cholesky fa
tor.Sin
e the Cholesky de
omposition
an be
omputed by o�-the-shelf software, wehave the following algorithm for
omputing Q(k).1. Compute the Cholesky fa
tor R(k) of X(k)TX(k)2. Q(k) = X(k)R(k)�1 (2.2)Although this algorithm represents a
onstru
tive proof of the existen
e of Q(k), it isseldom, if ever, used. Not only is it more expensive than the alternatives, but it isnumeri
ally less stable. We will now
onsider a better way.

4 The Gram{S
hmidt algorithm3. The QR fa
torization and the
lassi
al Gram{S
hmidt algorithmWe are going to derive the
lassi
al Gram{S
hmidt algorithm by showing that it
om-putes a QR fa
torization. Spe
i�
ally, the QR fa
torization is a fa
torization of a matrixX into the produ
e QR of an orthonormal matrix and an upper triangular matrix. Anexample is the fa
torization X(k) = Q(k)R(k) impli
it in line 2 of (2.2). QR fa
toriza-tions are widely used in numeri
al appli
ations. Let us pause brie
y to examine one ofthe most important.Suppose, as in x1 we wish to approximate a ve
tor y as a linear
ombination of theve
tors x1; : : : ; xk (instead of q1; : : : ; qk) in the least squares sense. We
an write thisproblem in matrix form as: Determine a ve
tor b su
h thatky �X(k)bk2 = min :Then it
an be shown that the ve
tor b is the solution of the the upper triangular systemR(k)b = Q(k)Ty;where X(k) = Q(k)R(k) is the QR fa
torization of X(k). It is a worthwhile exer
ise derivethis from (1.2) and (1.3).There are many ways of
omputing QR de
ompositions, of whi
h the Gram{S
hmidtalgorithm is just one. To derive the
lassi
al Gram{S
hmidt (CGS) algorithm, weassume that we have the QR fa
torizationX(k�1) = Q(k�1)R(k�1); (3.1)and wish to
ompute the fa
torization X(k) = Q(k)R(k), whi
h we will partition in theform (X(k�1) xk) = (Q(k�1) qk)�R(k�1) rk0 �k� :Computing the �rst
olumn of this partition, we get X(k�1) = Q(k�1)R(k�1), whi
h isjust (3.1). But if we
ompute the se
ond
olumn we get something new:xk = Q(k�1)rk + �kqk: (3.2)Sin
e Q(k�1)TQ(k�1) = I, and Q(k�1)Tqk = 0, we have on multiplying the above relationby Q(k�1)T that rk = Q(k�1)Txk: (3.3)Rewriting (3.2) in the form �kqk = xk �Q(k�1)rk � uk (3.4)

The Gram{S
hmidt algorithm 5and re
alling that kqkk = 1, we have �k = kukk: (3.5)Finally, qk = ��1k kukk: (3.6)Equations (3.3), (3.4), (3.5), and (3.6) are e�e
tively an algorithm for
omputing theexpanded de
omposition. We
an start the pro
ess by observing that �1 = kx1k, andq1 = x1=�1. All this leads to the following algorithm.Startup1. �1 = kx1k2. q1 = x1=�1Main loop3. for k = 2; 3; : : :4. rk = Q(k�1)Txk5. uk = xk �Q(k�1)rk6. �k = kukk7. qk = uk=�k8. Q(k) = (Q(k�1) qk)9. R(k) = �R(k�1) rk0 �k�10. end
(3.7)

In x1 we de�ned qk as being a linear
ombination of x1; : : : ; xk. But when we tried to
ompute the
oeÆ
ients of this linear
ombination, we obtained the awkward algorithm(2.2). The CGS algorithm builds qk as a linear
ombination of xk, q1; : : : ; qk�1, whi
ha

ounts for its basi
 simpli
ity. In parti
ular, the R-fa
tor in the QR fa
torization ofX(k) is built up
olumn by
olumn.Note that rk
ontains the
oeÆ
ients for the least-squares approximation to xk[see (1.2)℄. This means that uk is the residual that is left over after the least squaresapproximation is subtra
ted out [see (1.3)℄. If �k = kukk is small, then xk is nearlydependent on x1; : : : ; xk�1. We shall see later that in the presen
e of rounding errorthis results in loss of orthogonality in qk. It
an even happen that uk,
omputed inline 5, is zero. In that
ase our algorithm would die in line 7 with a divide by zero.An industrial strength implementation would
he
k �k and take
orre
tive a
tion if itis zero. Be
ause the algorithms in this paper are for expository purposes only, we willomit su
h tests.In pra
ti
e, we would not de�ne separate matri
es Q1; Q2; : : : . Instead we wouldallo
ate storage for the largest Q and R that we expe
t to en
ounter and build up Q

6 The Gram{S
hmidt algorithmand R within that storage. The following Matlab
ode shows how this
an be done. Itis
alled
gs
ol be
ause it builds up the matrix R
olumn by
olumn.1. fun
tion [Q, R℄ =
gs
ol(X)2. [n, p℄ = size(X); % X is nxp3. Q = zeros(n,p); % So is Q4. R = zeros(p); % R is pxp5. for k=1:p6. R(1:k-1,k) = Q(:,1:k-1)'*X(:,k);7. u = X(:,k) - Q(:,1:k-1)*R(1:k-1,k);8. R(k,k) = norm(u);9. Q(:,k) = u/R(k,k);10. end11. return
(3.8)

Note that this
ode
ontains is no equivalent of the startup in (3.7). Instead it takesadvantage of the fa
t that Matlab
an manipulate matri
es with zero dimensions|sometimes
alled null or empty matri
es. Spe
i�
ally, when k=1, R(1:k-1,k) in line 6is a 0x1matrix formed as the produ
t of the 0xnmatrix Q(:,1:k-1)' and the nx1matrixX(:,k). In line 7, the produ
t Q(:,1:k-1)*R(1:k-1,k) is nx1, sin
e Q(:,1:k-1) isnx0 and R(1:k-1,k) 0x1. When a nonnull matrix appears out of thin air, as does thisprodu
t, Matlab initializes it to zero. Thus u is just X(:,k), whi
h is what we wantwhen k = 1.As we have noted, our
lassi
al Gram{S
hmidt algorithm|either (3.7) or (3.8)|builds up Q and R a
olumn at a time. Alternatively, we
an build up Q a
olumn ata time and R a row at a time. Spe
i�
ally, from the relation X = QR, we haveR = QTX:Hen
e if we know qk, we
an generate the kth row rTk of R by the formularTk = qTkX: (3.9)Of
ourse, there is no need to
ompute the �rst k elements of rTk , sin
e they are zero.The following fun
tion implements this idea. In analogy with mgs
ol, whi
h gener-ates R by
olumns, it is
alled mgsrow.

The Gram{S
hmidt algorithm 71. fun
tion [Q, R℄ =
gsrow(X)2. [n,p℄ = (size(X));3. Q = zeros(n,p);4. R = zeros(p,p);5. for k=1:p6. u = X(:,k) - Q(:,1:k-1)*R(1:k-1,k);7. R(k,k) = norm(u);8. Q(:,k) = u/R(k,k);9. R(k,k+1:p) = Q(:,k)'*X(:,k+1:p);10. end11. return
(3.10)

At the beginning of the loop on k is it assumed that we have
omputed the �rst k-1
olumns of Q and rows of R. This means that we
an immediately
ompute u as in line 7in (3.8), and go on to
ompute R(k,k) and Q(:,k) as usual. One then uses Q(:,k) to
ompute R(k,k+1:p) as suggested by (3.9).In some appli
ations xk will not be known until qk�1 has been
omputed. Forexample, in the Lan
zos and Arnoldi algorithms for
omputing eigenpairs of a matrixA, the ve
tor xk is Aqk�1. In this
ase the row algorithm (3.10)
annot be used, sin
eit presupposes that we have all of X available. The
olumn algorithm (3.8) does nota
tually use xk until it is time to form qk, but it still takes the full X as input.A solution to these problems is the following program that performs a single step ofCGS. 1. fun
tion [q, r, rho℄ =
gsin
(Q, x)2. r = Q'*x;3. u = x - Q*r;4. rho = norm(u);5. q = u/rho;6. return (3.11)The following s
ript shows how
gsin
 (in
 for in
remental) is used.1. n = 5; p = 3;2. Q = zeros(n,p);3. X = zeros(n,p);4. R = zeros(p);5. for k=1:p6. X(:,k) = randn(n,1); % Or whatever.7. [Q(:,k), R(1:k-1,k), R(k,k)℄ =
gsin
(Q(:,1:k-1), X(:,k));8. endOf
ourse, the
ode for
gsin
 is so simple that it
ould simply be inlined into theappli
ation program in question, as is often done in pra
ti
e.

8 The Gram{S
hmidt algorithmIn
omparing algorithms it is sometimes useful to know how many
oating-pointoperations the algorithms take. For the fun
tion
gsin
, as the number of
olumnsk of Q in
reases, the bulk of the arithmeti
 is
on
entrated in lines 2 and 3, ea
hrequiring about nk additions and multipli
ations. Thus the total number of additionsand multipli
ations to
ompute the QR fa
torization of an n�p matrix is2 pXk=1nk �= np2:When n = p this
ount is n3, whi
h may be
ompared with a
ount n3 for a matrixmultipli
ation or 13n3 for Gaussian elimination.When the variants of the CGS algorithm are exe
uted with rounding error theybehave similarly. In fa
t, if the requisite matrix and ve
tor operations are implementeda

ording to their `natural' de�nitions, the algorithms produ
e exa
tly the same results.The reason is that the algorithms
onsist of independent
omputational tasks that
anbe reordered without
hanging the rounding errors. For example, in both the row and
olumn algorithms rij is
omputed as qTi xj , although the individual rij are not
omputedin the same order.We will return to rounding error later when we
onsider loss of orthogonality. But�rst, we shall
onsider the modi�ed Gram{S
hmidt algorithm.4. The modi�ed Gram{S
hmidt algorithmThe three variants of the CGS algorithm are essentially the same in their operation
ounts and numeri
al properties. The modi�ed Gram{S
hmidt (MGS) algorithm hasthe same operation
ount but di�erent numeri
al properties. In this se
tion we will
on
ern ourselves with the algorithm itself, and treat its numeri
al properties in x6.The modi�ed Gram{S
hmidt algorithm
an be derived by
onsidering the
ompu-tation of uk in line 5 in the
olumn algorithm (3.7). Spe
i�
ally, we haveuk = xk � r1kq1 � r2kq2 � � � � � rk�1;kqk�1; (4.1)where rjk is
omputed from the formula rjk = qTj xk (line 4). In the CGS algorithm the
oeÆ
ients rjk are all
omputed in one step (line 4) and then uk is
omputed in thenext (line 5).But by the orthogonality of the q's we have an alternative formula for rjk: namely,rjk = qTj (xk � r1kq1 � r2kq2 � � � � � rj�1;kqj�1)Hen
e we
an alternate the
omputation of the rjk with the subtra
tion of rjkqj asshown below.

The Gram{S
hmidt algorithm 91. uk = xk2. for j = 1 to k�13. rjk = qTj uk4. uk = uk � rjkqj5. endThese ideas lead to the following MGS
olumn
ode.1. fun
tion [Q, R℄ = mgs
ol(X)2. [n,p℄ = (size(X));3. Q = zeros(n,p);4. R = zeros(p,p);5. for k=1:p6. u = X(:,k);7. for j=1:k-18. R(j,k) = Q(:,j)'*u;9. u = u - R(j,k)*Q(:,j);10. end11. R(k,k) = norm(u);12. Q(:,k) = u/R(k,k);13. end14. returnThere is a row version of the MGS algorithm. It is short, sli
k, and not easy toderive. We begin by
onsidering the partitioned QR de
ompositionX = (X(k�1)1 X(k�1)2) = (Q(k�1)1 Q(k�1)2) R(k�1)11 R(k�1)120 R(k�1)22 ! :Here R(k�1)11 is (k�1)�(k�1). Note that our old friends X(k�1), Q(k�1), and R(k�1) havea
quired subs
ripts to indi
ate their positions in the partition.Now suppose we have
omputed Q(k�1) and(R(k�1)11 R(k�1)12);Suppose, in addition, we have
omputedY (k�1)2 � (y(k�1)k � � � y(k�1)p) = X(k�1)2 �Q(k�1)1 R(k�1)12 : (4.2)Now for j � k y(k�1)j = xj � r1jq1 � � � � � rk�1;jqk�1:

10 The Gram{S
hmidt algorithmComparing this with (4.1), we see that y(j)k�1
ontains xj partially redu
ed by q1; : : : ; qk�1.In parti
ular, y(k�1)k is fully redu
ed so that with rkk = ky(k)k�1k we have qk = yk=rkk.Moreover, the last row of R(k)12 isqTk (y(k�1)k+1 � � � y(k�1)p) � r̂T: (4.3)Furthermore, Y (k)2 = (y(k�1)k+1 � � � y(k�1)p)� qkr̂T: (4.4)There is one �nal tri
k. We do not need to maintain Y (k)2 separately. If we startwith Q = X we
an perform all the above manipulations in the array
ontaining Q.Here is the Matlab algorithm.1. fun
tion [Q, R℄ = mgsrow(X)2. [n,p℄ = size(X);3. Q = X;4. R = zeros(p,p);5. for k=1:p6. R(k,k) = norm(Q(:,k));7. Q(:,k) = Q(:,k)/R(k,k);8. R(k,k+1:p) = Q(:,k)'*Q(:,k+1:p); [see (4.3)℄9. Q(:,k+1:p) =Q(:,k+1:p) - Q(:,k)*R(k,k+1:p); [see (4.4)℄10. end
(4.5)

To follow this
ode, note that at the beginning of the kth step, Q(:,1:k-1)
ontainsX(k�1) while Q(:,k:p)
ontains Y (k�1)2 .There is also an in
remental MGS algorithm. Here is the
ode.1. fun
tion [q, r, rho℄ =
gsin
(Q, x)2. p = size(Q, 2);3. r = zeros(p,1);4. u = x;5. for k=1:p6. r(k) = Q(:,k)'*u;7. u = u - r(k)*Q(:,k);8. end9. rho = norm(u);10. q = u/rho;11. return

The Gram{S
hmidt algorithm 115. Some timingsWe now have six algorithms: the
olumn, row, and in
remental versions of CGS andMGS. They all require np2
oating-point additions and multipli
ations to
ompute theQR fa
torization of an n�p matrix. In this se
tion we will see how this translates intotimings.The table below gives the times in se
onds required to pro
ess a 5000�200 matrix ontwo UltraSPARCs|one at the University Maryland (900MHz) and the other at NIST(360MHz). The Matlab versions were 6.5.0 (UMD) and 6.5.1 (NIST). To indi
ate thevariability in the timings, two times are given for ea
h
ombination of algorithm andma
hine. UMD NIST
gs mgs
gs mgs
ol 9.9/10.8 5.2/ 5.0
ol 9.1/ 9.4 10.6/10.8row 9.7/ 9.5 16.8/16.4 row 10.1/12.2 29.0/28.0in
 7.1/ 6.0 9.7/10.3 in
 6.9/ 7.9 12.7/13.6The numbers seem to re
e
t more the vagaries of Matlab than the properties of thealgorithm. They are all in the same ball park, but are not
onsistent in ranking thealgorithms. At UMD mgs
ol beats
gs
ol, but at NIST they are approximately equal.On both ma
hines
gsin
 is good, but the disparity with mgsin
 is greater at NISTthan at UMD. At both pla
es mgsrow is the big loser.The numbers do not re
e
t the optimum speedup of 2.5,
orresponding to the ratio ofthe
lo
k rates at UMD and NIST. To see if su
h speedups are possible, the statementsti
, [Q, R℄ = qr(X, 0), to
were exe
uted on both ma
hines. This times the
omputation of a QR fa
torization byan LAPACK routine that, properly supported, should run at
lose to peak speed. Thetimes in se
onds were 4.8 (NIST) and 2.0 (UMD), whose ratio of 2.4 is
omfortably nearthe optimum speedup.6. Loss of orthogonalityThe
urse of Gram{S
hmidt orthogonalization|either
lassi
al or modi�ed| is that itmay not produ
e orthogonal ve
tors in the presen
e of rounding error. Figure 6.1 showsa simple example of dramati
 loss of orthogonality. The results of ea
h statement wererounded to �ve de
imal digits before assignment using a utility fun
tion rnd|e.g., thea
tual statement that produ
ed q1 wasq1 = rnd(x1/r11, 5)

12 The Gram{S
hmidt algorithm1. n = 42. X =
ondgen(n, 2, 4)1.4370e-01 -1.5931e-011.4545e-01 -1.6144e-01-6.3207e-01 7.0098e-018.4332e-02 -9.3573e-023. x1 = X(:,1); x2 = X(:,2);4. r11 = norm(x1)6.6965e-015. q1 = x1/r112.1459e-012.1720e-01-9.4388e-011.2593e-016. r12 = q1'*x2-7.4268e-017. r12q1 = r12*q1-1.5937e-01-1.6131e-017.0100e-01-9.3526e-028. u = x2 - r12q16.0000e-05-1.3000e-04-2.0000e-05-4.7000e-059. r22 = norm(u)1.5202e-0410. q2 = u/r223.9468e-01-8.5515e-01-1.3156e-01-3.0917e-0111. q1'*q2 =-1.5801e-02Figure 6.1: Loss of orthogonality in the Gram{S
hmidt algorithm

The Gram{S
hmidt algorithm 13This rounding means that we
annot expe
t q1'*q2 to be mu
h less than 10�5.The statementX =
ondgen(n, 2, 4)generates a random n�2 matrix with singular values of 1 and 10�4 (more on singularvalues later). The orthogonalization pro
eeds without apparent ex
eption up to the
omputation of u. The ve
tors x2 and r12q1 agree to about three de
imal digits,and
onsequently there is
an
ellation of signi�
ant digits in the
omputation of u, aseviden
ed by the small size of u and the zero digits in its
omponents. The normalizedq2 has a dot produ
t with q1 that is three orders of magnitude greater than the desiredvalue of 10�5.It is sometimes asserted that the
an
ellation in line 8 is responsible for the loss oforthogonality. But it is easy to verify that the
omputation of u entails no roundingerror. If the entire
omputation were exa
t, the zero digits in u would have had nonzerovalues. But the information required to
ompute those values was lost when we roundedr12q1 to �ve digits. That, not the
an
ellation, is what
auses the loss of orthogonality.The brevity of the
omputation also makes it
lear that a

umulation of round-ing error over a period of time is not the
ause of loss of orthogonality. In fa
t, the�ve rounding errors made in rounding r12p1 are alone suÆ
ient to
ause the loss oforthogonality.We have observed that kukk is small if and only if xk is nearly dependent onx1; : : : ; xk�1 [see the dis
ussion following (3.7)℄. When it is small, its
omputationwill naturally involve
an
ellation. Consequently, there is an asso
iation between lineardependen
e among the
olumns of X and loss of orthogonality.To develop this idea we must introdu
e singular values and their asso
iated ve
tors.Spe
i�
ally, for any n�p matrix x with n � p, there are two systems of orthonormalve
tors u1; u2; : : : ; up and v1; v2; : : : ; vp su
h thatXvj = �juj and XTuj = �jvj ; j = 1; : : : ; p; (6.1)where �1 � �2 � � � � � �p � 0:The s
alars �j are the singular values of X and the ve
tors uj and vj are the left andright singular ve
tors of X.The
onne
tion of singular values with linear dependen
e is
ontained in the followingresult. Let E = ��pupvTp . Then kEk = �p and (X+E)vp = 0. [This fa
t
an be veri�eddire
tly from (6.1).℄ Writing this relation in the formv(p)1 (x1 + e1) + v(p)2 (x2 + e2) + � � � v(p)p (xp1 + ep) = 0;

14 The Gram{S
hmidt algorithm

1 2 3 4 5 6 7
−15

−10

−5

0

log10(cond(X))

lo
ss

 o
f o

rt
ho

go
na

lit
y

* = CGS
+ = MGS

Figure 6.2: Loss of orthogonality in 50�20 matri
es of in
resing
ondition number.we see that the
olumns of X +E are linearly dependent. Thus if �p is small, X is nearin norm to a rank-degenerate matrix.In pra
ti
e we must qualify the term `small' in the pre
eding senten
e. If X ismultiplied by a
onstant �, then the singular values of X are multiplied by �. Thus �p
an be made as small as we like simply by s
aling X by a
onstant. But su
h s
alingshould not a�e
t the independen
e of the
olumns of X.To get around this problem it is
ustomary to work with the quantity�(X) = �1=�p;whi
h is easily seen to be independent of the s
aling of X. It is
alled the
onditionnumber of X, and if it is large, then the
olumns of X are nearly dependent. (A
tually,this statement needs further quali�
ation. For the
ondition number to be meaning-ful, the
olumns of X must all be of the same order of magnitude. Unfortunately, adis
ussion of this fas
inating topi
 would lead us too far astray.)The major di�eren
e between the CGS and MGS methods is the rate at whi
h theyloose orthogonality. This fa
t is illustrated by the graphs in Figure (6.2). It plots the
ommon logarithm of the loss of orthogonality as measured by kI �QTQk against the
ommon logarithm of the
ondition number for a sequen
e of 50�20 matri
es. For boththe CGS and the MGS algorithms the relations are approximately linear, but the slope

The Gram{S
hmidt algorithm 15of the line for the CGS method is approximately two, whereas for the MGS method itis approximately one. Sin
e the slope of a log-log plot indi
ates a power relation, in thisexample the loss of orthogonality in the MGS method is proportional to the
onditionnumber, whereas in the CGS method is proportional to the square of the
onditionnumber.This result
an be proved rigorously, provided that �(X)�M is suÆ
iently less thanone (`suÆ
iently' depends on the dimensions of the matrix X). This means that in ap-pli
ations where it is desired to retain orthogonality, the MGS method is to be preferredto the CGS method.7. ReorthogonalizationFor the pri
e of doubling the work in the Gram{S
hmidt algorithm one
an obtain aQ that is orthogonal to working a

ura
y. The idea is to repeat the orthogonalization.The following
ode gives the CGS
olumn version.1. fun
tion [Q, R℄ =
gsro
ol(X)2. [n,p℄ = (size(X));3. Q = zeros(n,p);4. R = zeros(p,p);5. for k=1:p6. r1 = Q(:,1:k-1)'*X(:,k);7. u1 = X(:,k) - Q(:,1:k-1)*r1;8. r2 = Q(:,1:k-1)'*u1;9. u2 = u1 - Q(:,1:k-1)*r2;10. R(1:k-1,k) = r1 + r2;11. R(k,k) = norm(u2);12. Q(:,k) = u2/R(k,k);13. end14. returnFrom this it is seen that having
omputed u1 (whi
h is u in our other algorithms), oneorthogonalizes it against Q. The result u2 is a

epted as the unnormalized Q(:,k). Topreserve the relation X = QR, it is ne
essary to
ombine the two sets of orthogonaliza-tion
oeÆ
ients, as is done in line 10.The remarkable fa
t about this algorithm is that if �(X)�M is suÆ
iently less thanone then the
omputed Q is orthogonal to working a

ura
y in the sense that kI�QTQkis near �M. What makes this fa
t remarkable is that only one reorthogonalization isrequired to produ
e this degree of orthogonality. However, if the hypothesis on the
ondition number of X is violated, then u1 or u2 in the algorithm may be zero or

16 The Gram{S
hmidt algorithmu2 may also su�er loss of orthogonality. A
omplete implementation would take theseproblems into a

ount.The reorthogonalization
an be skipped if there is no
an
ellation in
omputing u1in line 7. This will be true if norm(u1)/norm(X(:,k)) > 0.5. If p is even moderatelylarge large, say greater than 10, the extra norm
omputation in this test will be aninsigni�
ant part of the
al
ulation.Reorthogonalization is appli
able to all our six of our CGS and MGS algorithms.Thus we have an is an ensemble twelve variants of the Gram{S
hmidt algorithm. How-ever, with reorthogonalization, the MGS algorithm has no numeri
al advantages overthe CGS algorithm. Sin
e the CGS algorithm is simpler, it is often preferred in this
ontext.8. Redu
ed-rank approximations and pivotingCaution: This se
tion is more diÆ
ult that its prede
essors and may beskipped with out loss of
ontinuity.In many appli
ations it is ne
essary to approximate an n�p matrix X by a matrixof lower rank, say rank k. Su
h an approximation
an be written in the formX �=WZT;where W is n�k Z and is p�k, ea
h having rank k. Su
h an approximation
an saveboth storage and
omputations. For example, it requires (n+ p)k
oating-point wordsto store W and Z as opposed to np for X. Likewise, the operation
ount for
omputingthe matrix-ve
tor produ
t WZTa is (n + p)k is (n + p)k additions and multipli
ation,as opposed to np to form Xa. If a satisfa
tory approximation
an be found for small k,the savings
an be impressive.The QR fa
torization furnishes a redu
ed-rank approximation. To see this, let uspartition the QR de
omposition of X in the formX = (X(k)1 X(k)2) = (Q(k)1 Q(k)2) R(k)11 R(k)120 R(k)22 ! : (8.1)Multiplying out this de
omposition, we haveX = Q(k)1 (R(k)11 R(k)12) +Q(k)2 (0 R(k)22):Dropping the se
ond term in this sum, we obtain our approximationX �= Q(k)1 (R(k)11 R(k)12)

The Gram{S
hmidt algorithm 17The error in the approximation is the norm of the term we have ignored:kQ(k)2 R(k)22 k = kR(k)22 k:We
an use either
gsrow or mgsrow to
ompute this de
omposition. However, onlymgsrow provides the wherewithal to
al
ulate kR(22)k k. To see this, note that from (4.2)and (8.1) we have Y (k)2 = X(k)2 �Q(k)1 R(k)12 = Q(k)2 R(k)22 ;It follows that kR(k)22 kF = kY (k)2 kF:Sin
e mgsrow
omputes Y (k)2 in line 9 of (4.5), we
an
ompute its norm and
he
k ifthe
urrent approximation is suÆ
iently a

urate.Unfortunately, the parti
ular order in whi
h the
olumns of X appear may not givea good redu
ed-rank approximation to X. For example,
onsider the matrixXbad = 0�1:0000 1:0000 0:00001:0000 1:0010 0:00000:0000 0:0000 1:00001A (8.2)The R-fa
tor
omputed by Matlab isR_bad =-1.4142e+00 -1.4149e+00 00 7.0711e-04 00 0 1.0000e+00 (8.3)From this we see that a rank two approximation toX obtained from the QR fa
torizationwill have a error norm of one|
orresponding to the element in the southeast
orner ofR_bad. On the other hand, if we inter
hange the se
ond and third
olumns of Xbad togive Xgood =0�1:0000 0:0000 1:00001:0000 0:0000 1:00100:0000 1:0000 0:00001Awe get the R-fa
torR_good =-1.4142e+00 0 -1.4149e+000 -1.0000e+00 00 0 -7.0711e-04

18 The Gram{S
hmidt algorithmThus a rank two approximation based on R_good will have an error norm of about7�10�4. If we inter
hange the se
ond and third
olumns of this approximation, we getan equally good approximation to Xbad.Thus we wish to adaptively inter
hange
olumns as the QR de
omposition is
om-puted to enhan
e the rank of X(k). The most
ommon strategy for sele
ting a
olumnis the following. Suppose that we have
omputed X(k�1)1 and Y (k�1)2 . Then
hoose the
olumn for whi
h ky(k�1)j k (j = k; : : : ; p) is maximal. When this
olumn is inter
hangedwith the kth
olumn of Y (k�1)2 , the diagonal element will be rkk as large as possible, andthis tends to make R(k)11 well
onditioned. In parti
ular, it would not allow the smallelement to appear as the se
ond diagonal element of R_bad in (8.3). Note that when weinter
hange the
olumns of Y (k�1)2 , we must also inter
hange the
orresponding
olumnsof R(k�1)12 .The fun
tion mgs
p (
p for `
olumn pivoting') in Figure 8.1 implements this pivotingstrategy. The fun
tion takes as input the matrix X and a error toleran
e, whi
h is usedto determine the rank of the approximation. Returned are the Q- and R-fa
tors andthe rank of the approximation, along with an array of pivot
olumns.The basi
 loop is the one in the fun
tion mgsrow but with two additions at the frontend. In the �rst the norms of the
olumns of Y (k�1)2 are
omputed and stored in thearray normy. From this the Frobenius norm of R22 is
omputed and used to determineif the rank k-1 approximation already
omputed is adequate. If it is, Q, R, and pvt aretrimmed, and the fun
tion returns.The se
ond addition determines the pivot
olumn. Note that pvt(k)
ontains theindex of the
olumn that was swapped with
olumn k. The swapping is a
tually doneon both Y (k�1)2 and R(k�1)22 , as mentioned above.The MGS step is unaltered. It
ould easily be expanded to in
lude reorthogonaliza-tion, and for most appli
ations probably should be. The main reason we have not doneso here, is to allow the
ode to �t on a single page.When this algorithm is applied to Xbad in (8.2), with err = 0:01 the output isQ =7.0675e-01 07.0746e-01 00 1.0000e+00R =1.4149e+00 0 1.4142e+000 1.0000e+00 0rank =2pvt =

The Gram{S
hmidt algorithm 191. fun
tion [Q, R, rank, pvt℄ = mgs
p(X, err)2. [n,p℄ = size(X);3. Q = X;4. R = zeros(p,p);5. normy = zeros(1,p);6. pvt = zeros(1,p);7. for k=1:p%% Compute the norms of y and test for
onvergen
e.%8. for j=k:p9. normy(j) = norm(Q(:,j));10. end11. if norm(normy(k:n)) <= err % same as norm(R22) <= err12. rank = k-1;13. Q = Q(:,1:rank); R = R(1:rank,:); pvt = pvt(1:rank);14. return;15. end%% Determine the pivot
olumn and ex
hange.%16. [maxnormy, pvt(k)℄ = max(normy(k:p));17. pvt(k) = pvt(k) + k - 1;18. temp=Q(:,k); Q(:,k)=Q(:,pvt(k)); Q(:,pvt(k))=temp;19. temp=R(1:k-1,k); R(1:k-1,k)=R(1:k-1,pvt(k)); ...R(1:k-1,pvt(k))=temp;%% MGS step.%20. R(k,k) = norm(Q(:,k));21. Q(:,k) = Q(:,k)/R(k,k);22. R(k,k+1:p) = Q(:,k)'*Q(:,k+1:p);23. Q(:,k+1:p) = Q(:,k+1:p) - Q(:,k)*R(k,k+1:p);24. end25. rank = p;26. return Figure 8.1: MGS with
olumn pivoting

20 The Gram{S
hmidt algorithm2 3 0Note that to get Xgood in our example, we ex
hanged
olumns 2 and 3 of Xbad. Thealgorithm msg
p, on the other hand, makes two inter
hanges: �rst between
olumns 1and 2 and then between
olumns 2 and 3. The reason for the �rst inter
hange is that
olumn 2 is slightly larger than
olumn 3. But in the end, the result is an approximationwith essentially the same error.The
omputation of the norms in
reases the operation
ount by 12np2 additions andmultipli
ations over np2 for the basi
 algorithm without reorthogonalization or 2np2with reorthogonalization. Alternatively, the formulaky(k)j k2 = ky(k�1)j k2 � r2jk
ould be used to update the norms as the
omputation pro
eeds. But this formula istri
ky to use in the presen
e of rounding error.We should stress that the pivoting strategy adopted here is not foolproof| thereare
ounterexamples where it fails to �nd approximations of suitably low rank|eventhough su
h exist. But these failures are very rare, and the alternatives are very
om-pli
ated.9. EnvoiWe have seen that that there are twelve version of the Gram{S
hmidt algorithm:
las-si
al and modi�ed versions that
ompute R by rows,
olumns, or in
rementally, with orwithout reorthogonalization. The
hoi
e of whi
h to use in a given situation will dependon the problem at hand|espe
ially on how the ve
tors xj are generated and what partsof R are needed at any given time. If no reorthogonalization is to be performed, thenMGS will help
ontrol the loss of orthogonality. With reorthogonalization the balan
eshifts to CGS.The alternative to Gram{S
hmidt is orthogonal triangularization, whi
h forms Q asthe initial p
olumns of a produ
t of
ertain elementary orthogonal matri
es|eitherHouseholder transformations or plane rotations. In the
ase of Householder transfor-mations, the produ
t is not expli
itly
omputed. Instead ve
tors from whi
h the trans-formations
an be re
overed are stored. Orthogonality to working a

ura
y is guaran-teed. Plane rotations are generally used on stru
tured matri
es where full Householdertransformations or Gram{S
hmidt algorithms are inappropriate. Hen
e any
omparison
omes down to Householder vs. Gram{S
hmidt.For an n�p matrix X, the ratio of operations
ounts of Householder to Gram-S
hmidt is 1 � 13 pn . Thus when p = n, Householder triangularization has 23 the
ountof Gram{S
hmidt. But as n in
reases, the ratio qui
kly approa
hes one. To guaranteeorthogonality with Gram{S
hmidt, however, one must reorthogonalize, whi
h in
reases

The Gram{S
hmidt algorithm 21the ratio to two. Given these ratios and guaranteed orthogonality, one
an ask why useGram{S
hmidt methods at all. There are several answers.First, although it is easy to
ode an in
remental version of Householder triangular-ization (if you know how), none of the major linear algebra pa
kages provide softwareto do it. Consequently, Gram{S
hmidt is preferred in orthogonalizing Krylov sequen
esand their relatives.Se
ond, Householder triangularization represents Q in a
oded form that is noteasy to manipulate. In fa
t, there are tasks that
annot be done eÆ
iently, or even atall, without generating Q. Examples are
omputing the diagonal elements of QQT orre
omputing the fa
torization after a row is appended to X. In these
ases, Q must begenerated expli
itly from the Householder transformations, whi
h puts it on a par withCGS with reorthogonalization.Third, Householder redu
tion is subje
t to subtle instabilities when the rows of Xvary widely in magnitude| instabilities that do not a�e
t the Gram{S
hmidt algorithm.Finally, we have
on�ned ourselves to the Eu
lidean inner produ
t uTv. The Gram-S
hmidt
an easily be adapted to oblique inner produ
ts. Although there exist gener-alizations of Householder transformations to ve
tor spa
es with oblique inner produ
ts,there is no o�-the-shelf software supporting them.These reasons
oupled with the basi
 simpli
ity of the Gram{S
hmidt pro
ess insurethat Gram{S
hmidt in its several versions will remain a part of the general toolkit formatrix
omputations.10. BibliographyBoth Gram and S
hmidt were
on
erned with the orthogonalization of fun
tions ratherthan ve
tors. Gram [3℄ developed determinantal expressions for the orthogonalized se-quen
e and made the
onne
tion with least squares. S
hmidt's algorithm [5℄ is essentially
lassi
al the
lassi
al Gram{S
hmidt algorithm in the
ontext of integral equations.There is a large
orpus on Gram{S
hmidt. Fortunately, mu
h of it has been in-
orporated, with histori
al
omments, in general texts on numeri
al linear algebra; e.g.[1, 2, 6℄. These texts also dis
uss pivoting, orthogonal triangularization, and other topi
stou
hed on in this paper.For more on oblique Householder transformations see [4℄.A
knowledgementI am grateful to the Mathemati
al and Computational S
ien
es Division for their sup-port.

22 The Gram{S
hmidt algorithmReferen
es[1℄ �A. Bj�or
k. Numeri
al Methods for Least Squares Problems. SIAM, Philadelphia,1996.[2℄ G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins UniversityPress, Baltimore, MD, se
ond edition, 1989.[3℄ J. P. Gram. �Uber die Entwi
klung reeller Fun
tionen in Reihen mittelst der Methodeder kleinsten Quadrate. Journal f�ur die reine und angewandte Mathematik, 94:41{73,1883.[4℄ D. S. Ma
key, N. Ma
key, and F. Tisseur. G-re
e
tors in s
alar produ
t spa
es.Numeri
al Analysis Report 420, Man
hester Center for Computational Mathemati
s,2003.[5℄ E. S
hmidt. Zur Theorie der linearen und ni
htlinearen Integralglei
hungen. I Teil.Entwi
klung willk�urli
hen Funktionen na
h System vorges
hriebener. Mathematis-
he Annalen, 63:433{476, 1907.[6℄ G. W. Stewart. Matrix Algorithms I: Basi
 De
ompositions. SIAM, Philadelphia,1998.

