View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Digital Repository at the University of Maryland

University of Maryland College Park
Institute for Advanced Computer Studies TR-2004-84
Department of Computer Science TR-4642

The Gram-Schmidt Algorithm and Its Variations*

G. W. Stewart!
December, 2004

ABSTRACT
The Gram-Schmidt algorithm is a widely used method for orthogonaliz-
ing a sequence of vectors. It comes in two forms: classical Gram-Schmidt
and modified Gram—Schmidt, each of whose operations can be ordered in
different ways. This expository paper gives a systematic treatment of this
confusing variety of algorithms. It also treats the numerical issue of loss

of orthogonality and reorthogonalization as well as the implementation of
column pivoting.

*This report is available by anonymous ftp from thales.cs.umd.edu in the directory pub/reports
or on the web at http://www.cs.umd.edu/~stewart/.

tDepartment of Computer Science and Institute for Advanced Computer Studies, University of Mary-
land, College Park, MD 20742 (stewart@cs.umd.edu). This research was supported in part by the
National Science Foundation under grant CCR0204084.

https://core.ac.uk/display/56099713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Gram-Schmidt Algorithm and Its Variations
G. W. Stewart
ABSTRACT

The Gram-Schmidt algorithm is a widely used method for orthogonaliz-
ing a sequence of vectors. It comes in two forms: classical Gram—Schmidt
and modified Gram—Schmidt, each of whose operations can be ordered in
different ways. This expository paper gives a systematic treatment of this
confusing variety of algorithms. It also treats the numerical issue of loss
of orthogonality and reorthogonalization as well as the implementation of
column pivoting.

1. Introduction

The Gram-Schmidt algorithm is a method for orthogonalizing a sequence of linearly in-
dependent n-vectors x1, za,.... Specifically, it produces a sequence of vectors q1, qa, . - .,
with ¢; a linear combination of z1,...,z; that satisfy the orthonormality conditions

lgjl =1 (j=1,2,...) and ¢/ q; =0 (i # 7). (1.1)

Here ¢! is the transpose of g, so that q;-qu is the inner or dot product of ¢; and ¢;, and
the quantity ||¢|| is the Euclidean norm of ¢, defined by

lgl? = ¢"q.

The Gram-Schmidt orthogonalization procedure has many application. Perhaps
the most important is to approximate vectors by linearly combinations of the z;, or
equivalently of the ¢;. Specifically, given a vector y, let

U =ci1q1 + c2q2 + - - Ci Qs

where
g=qy, j=1,... .k (1.2)

then it can be shown that § approximates y optimally in the sense that of all linear
combinations of the g;
|u|| = |ly — 9]/ is minimal. (1.3)

We say that ¢ is the least squares approzimation to y. The minimality of |y — ¢||? is
easily established by elementary methods of multivariate calculus.

Note the simplicity of the formulas (1.2) for the least squares coefficients. If we had
tried to write ¢ as a linear combination of the vectors x; we would have ended up with

2 The Gram—Schmidt algorithm

a linear system of order k for the coefficients called the normal equations. It is little
wonder, then, that the Gram—-Schmidt algorithm plays an important role least squares
computations.

The basic Gram—Schmidt algorithm is deceptively simple. But it comes in a num-
ber of variants, of which the main types are classical Gram—Schmidt, modified Gram—
Schmidt, and Gram-Schmidt (classical or modified) with reorthogonalization. Each of
the types can be varied to compute the orthogonalization coefficients in different orders.
All these variants can be a source of confusion for the novice—and sometimes for the
expert. This paper provides a guided tour of the world of Gram—Schmidt. The empha-
sis will be primarily on the structure of the various algorithms, although we will also
touch on issues of efficiency and rounding error. Not much is supposed of the reader
except a familiarity with elementary linear algebra and Matlab, which is the algorithmic
language of this paper.

In what follows || - || will also denote the spectral norm defined by

[X' = max {| Xwl.
=1

We will also use the Frobenius norm defined by
IXIIE =)).
2

We will make use of the following fact. If () has orthonormal columns, then
QR[] = [[R],

and the same is true for the Frobenius norm.

When we come to talk about the effects of rounding error, we will have to specify
the precision of computation. This is commonly summarized in a number €, whose
logarithm approximates the number of digits (in the base of the logarithm) carried in the
computation. For IEEE double-precision floating-point computation, €,, = 2.2-10716,

2. Matrix formulation

Although the Gram—Schmidt algorithm nominally computes a system orthonormal vec-
tors of vectors, it actually computes an important matrix factorization. To see this we
must cast the algorithm in terms of matrices.

Let us begin by assuming the vectors g; exist. Since g is a linear combination of
ZL1,...,Tk, we can write it in the form

4k = S1k%1 + SopT2 + - - + SkpT.

The Gram—Schmidt algorithm 3

If we set
X(k) o (x]_ T9 T3y - xk)7
QW) = (1 @2 a3 -+ ar)
and
S11 S12 813 -t Slk
0 599 893 -+ sy
S’(k) — 0 0 8§33 - S3k ,
0 0 0 - Sk

then S*) is upper triangular and
Q) = x k) gk),
To get a formula for S*)| we use the fact that the orthonormality conditions (1.1) can
be written in matrix form as
Q(k)TQ(k) =1,
where I is the identity matrix of order k (we say that Q¥ is orthonormal). Hence
SET x (KT x (k) gk) — T
Since I is nonsingular, S*) must also be nonsingular. Hence if we write

R®) = gtk)—1
then Ry is upper triangular and
x BT x (k) — p()T pk). (2.1)

Let us look at equation (2.1) in greater detail. Since the matrix X*¥) has linearly
independent columns, the cross-product matriz X ®T X *) ig positive definite; that is,

w0 = uT(X®TXxFE)y > 0.

It can be shown that any positive definite matrix can be factored in the form R'R,
where R is a nonsingular upper triangular matrix. (The factorization is unique if we
require the diagonal elements of R to be positive.) This factorization is called the
Cholesky decomposition and R is called the Cholesky factor.
Since the Cholesky decomposition can be computed by off-the-shelf software, we
have the following algorithm for computing Q).
1. Compute the Cholesky factor R*) of X)T x (k)

2. Q) = x (k) R(k)-1 (2.2)

Although this algorithm represents a constructive proof of the existence of Q®) it is
seldom, if ever, used. Not only is it more expensive than the alternatives, but it is
numerically less stable. We will now consider a better way.

4 The Gram—Schmidt algorithm

3. The QR factorization and the classical Gram—Schmidt algorithm

We are going to derive the classical Gram—Schmidt algorithm by showing that it com-
putes a QR factorization. Specifically, the QR factorization is a factorization of a matrix
X into the produce QR of an orthonormal matrix and an upper triangular matrix. An
example is the factorization X*) = QW) R(*) implicit in line 2 of (2.2). QR factoriza-
tions are widely used in numerical applications. Let us pause briefly to examine one of
the most important.

Suppose, as in §1 we wish to approximate a vector y as a linear combination of the
vectors &1,...,xy (instead of ¢i,...,qx) in the least squares sense. We can write this
problem in matrix form as: Determine a vector b such that

ly = X®b||? = min.
Then it can be shown that the vector b is the solution of the the upper triangular system
RW®p =)Ty,

where X*®) = Q) R(¥) is the QR factorization of X ¥). Tt is a worthwhile exercise derive
this from (1.2) and (1.3).

There are many ways of computing QR decompositions, of which the Gram—Schmidt
algorithm is just one. To derive the classical Gram-Schmidt (CGS) algorithm, we
assume that we have the QR factorization

x k=1 = Qlk—1) plk=1) (3.1)
and wish to compute the factorization X*) = Q%) R¥) which we will partition in the

(k—1)
(XED z) = (QFD g) (R ’“) -
0 pr

form

Computing the first column of this partition, we get X(*~1) = Q¢—DR* -1 " which is
just (3.1). But if we compute the second column we get something new:

zp = Q¥ Vg + prap. (3.2)

Since Q*—DTQE-1) = 1 and Q¥~DT¢, =0, we have on multiplying the above relation
by QDT that
e = QF T, (3.3)

Rewriting (3.2) in the form

o = zp — QF Yy =y (3.4)

The Gram—Schmidt algorithm)

and recalling that ||gx|| = 1, we have

pr = [Juk|- (3.5)

Finally,
ar = py sl (3.6)
Equations (3.3), (3.4), (3.5), and (3.6) are effectively an algorithm for computing the

expanded decomposition. We can start the process by observing that p; = ||z1||, and
q1 = z1/p1. All this leads to the following algorithm.

Startup
L p1 = [z
q =z1/p1
Main loop
3. for k=2,3,...
4. T = Q(k_l)T:Uk
5. Up = Tp — Q(kfl)rk (37)
6. pr = llukll
7. qk = uk/p
8. QW =(Q* D ¢)
k—1
9. Rk — (R() T’“)
0
10. end
In §1 we defined ¢, as being a linear combination of x4, ..., x,. But when we tried to

compute the coefficients of this linear combination, we obtained the awkward algorithm
(2.2). The CGS algorithm builds g; as a linear combination of zg, ¢1,...,qx_1, which
accounts for its basic simplicity. In particular, the R-factor in the QR factorization of
X®) ig built up column by column.

Note that 7, contains the coefficients for the least-squares approximation to zj
[see (1.2)]. This means that uy is the residual that is left over after the least squares
approximation is subtracted out [see (1.3)]. If pp = |lug|| is small, then zj is nearly
dependent on z1,...,x,_1. We shall see later that in the presence of rounding error
this results in loss of orthogonality in gx. It can even happen that ug, computed in
line 5, is zero. In that case our algorithm would die in line 7 with a divide by zero.
An industrial strength implementation would check pg and take corrective action if it
is zero. Because the algorithms in this paper are for expository purposes only, we will
omit such tests.

In practice, we would not define separate matrices 1, Q2,.... Instead we would
allocate storage for the largest () and R that we expect to encounter and build up @

6 The Gram—Schmidt algorithm

and R within that storage. The following Matlab code shows how this can be done. It
is called cgscol because it builds up the matrix R column by column.

1. function [Q, R] = cgscol(X)

2. [n, p] = size(X); % X is nxp

3. Q = zeros(n,p); % So is

4. R = zeros(p); % R is pxp

d. for k=1:p

6. R(1:k-1,k) = Q(:,1:k-1)’*X(:,k); (3.8)
7. u=X(:,k) - Q(:,1:k-1)*R(1:k-1,k);

8. R(k,k) = norm(u);

9. QC:,k) = u/R(k,k);

10. end

11. return

Note that this code contains is no equivalent of the startup in (3.7). Instead it takes
advantage of the fact that Matlab can manipulate matrices with zero dimensions—
sometimes called null or empty matrices. Specifically, when k=1, R(1:k-1,k) in line 6
is a 0x1 matrix formed as the product of the Oxn matrix Q(:,1:k-1) ’> and the nx1 matrix
X(:,k). In line 7, the product Q(:,1:k-1)*R(1:k-1,k) is nx1, since Q(:,1:k-1) is
nx0 and R(1:k-1,k) 0x1. When a nonnull matrix appears out of thin air, as does this
product, Matlab initializes it to zero. Thus u is just X(:,k), which is what we want
when £ = 1.

As we have noted, our classical Gram—Schmidt algorithm — either (3.7) or (3.8) —
builds up @) and R a column at a time. Alternatively, we can build up @) a column at
a time and R a row at a time. Specifically, from the relation X = QR, we have

R=Q"X.
Hence if we know ¢y, we can generate the kth row r,? of R by the formula
i =gt X. (3.9)

Of course, there is no need to compute the first & elements of r,?, since they are zero.
The following function implements this idea. In analogy with mgscol, which gener-
ates R by columns, it is called mgsrow.

The Gram—Schmidt algorithm 7

1. function [Q, R] = cgsrow(X)

2 [n,p] = (size(X));

3 Q = zeros(n,p);

4. R = zeros(p,p);

o. for k=1:p

6 u=X(,k) - QC:,1:k-1)*R(1:k-1,k); (3.10)
7 R(k,k) = norm(u);

8 QC:,k) = u/R(k,k);

9 R(k,k+1:p) = QC:,k)>*X(:,k+1:p);

10. end

11. return

At the beginning of the loop on k is it assumed that we have computed the first k-1
columns of Q and rows of R. This means that we can immediately compute u as in line 7
in (3.8), and go on to compute R(k,k) and Q(:,k) as usual. One then uses Q(:,k) to
compute R(k,k+1:p) as suggested by (3.9).

In some applications x; will not be known until ¢;_; has been computed. For
example, in the Lanczos and Arnoldi algorithms for computing eigenpairs of a matrix
A, the vector x is Ag_1. In this case the row algorithm (3.10) cannot be used, since
it presupposes that we have all of X available. The column algorithm (3.8) does not
actually use zp until it is time to form g, but it still takes the full X as input.

A solution to these problems is the following program that performs a single step of
CGS.

1. function [q, r, rhol = cgsinc(Q, x)

2. r = Q’*x;

3. u = x - Qxr;

4 rho = norm(u); (3.11)
5 u/rho;

q
6. return

The following script shows how cgsinc (inc for incremental) is used.

1. n=5; p=3;

2. Q = zeros(n,p);

3. X = zeros(n,p);

4. R = zeros(p);

5. for k=1:p

6. X(:,k) = randn(n,1); % Or whatever.

7. [QC:,k), R(1:k-1,k), R(k,k)] = cgsinc(Q(:,1:k-1), X(:,k));

8. end

Of course, the code for cgsinc is so simple that it could simply be inlined into the
application program in question, as is often done in practice.

8 The Gram—Schmidt algorithm

In comparing algorithms it is sometimes useful to know how many floating-point
operations the algorithms take. For the function cgsinc, as the number of columns
k of Q increases, the bulk of the arithmetic is concentrated in lines 2 and 3, each
requiring about nk additions and multiplications. Thus the total number of additions
and multiplications to compute the QR factorization of an nxp matrix is

p

2an >~ np?.

k=1

When n = p this count is n3, which may be compared with a count n® for a matrix
multiplication or %n3 for Gaussian elimination.

When the variants of the CGS algorithm are executed with rounding error they
behave similarly. In fact, if the requisite matrix and vector operations are implemented
according to their ‘natural’ definitions, the algorithms produce exactly the same results.
The reason is that the algorithms consist of independent computational tasks that can
be reordered without changing the rounding errors. For example, in both the row and
column algorithms r;; is computed as qZT zj, although the individual r;; are not computed
in the same order.

We will return to rounding error later when we consider loss of orthogonality. But
first, we shall consider the modified Gram—-Schmidt algorithm.

4. The modified Gram—Schmidt algorithm

The three variants of the CGS algorithm are essentially the same in their operation
counts and numerical properties. The modified Gram-Schmidt (MGS) algorithm has
the same operation count but different numerical properties. In this section we will
concern ourselves with the algorithm itself, and treat its numerical properties in §6.

The modified Gram—Schmidt algorithm can be derived by considering the compu-
tation of uy in line 5 in the column algorithm (3.7). Specifically, we have

Up = Tp — T1RG1 — T2kG2 — *** — Th—1kqk—1, (4.1)

where 7, is computed from the formula rj;, = qua;k (line 4). In the CGS algorithm the
coefficients 7, are all computed in one step (line 4) and then wuy is computed in the
next (line 5).

But by the orthogonality of the ¢’s we have an alternative formula for r;;: namely,

T
Tik = 4, («’Ek —Tikq1 —Tokq2 — - — ijl,ij—l)

Hence we can alternate the computation of the 7, with the subtraction of rj.q; as
shown below.

The Gram—Schmidt algorithm 9

1. up =

2. for j =1to k-1
3. Tk = q]Tuk

4. Ug = Uk — Tjkqj
5. end

These ideas lead to the following MGS column code.

1. function [Q, R] = mgscol(X)
2 [n,p] = (size(X));

3 Q = zeros(n,p);

4. R = zeros(p,p);

d. for k=1:p

6 u = X(:,k);

7 for j=1:k-1

8 R(j,k) = Q(:,j) *u;
9. u=u- R(G,k)*QC:,j);
10. end

11. R(k,k) = norm(u);

12. QC:,k) = u/R(k,k);

13. end

14. return

There is a row version of the MGS algorithm. It is short, slick, and not easy to
derive. We begin by considering the partitioned QR decomposition

(k—1) (k—1)
_ _ _ _ R R
X = (ka 1) X;k 1)) - (ng 1) ng 1)) 11 %]%71) _

Here Rglifl) is (k—1)x(k—1). Note that our old friends X *=1) Q=1 and R*~Y have
acquired subscripts to indicate their positions in the partition.
Now suppose we have computed Q¥~1) and

k-1 k—1
(= R’Y),
Suppose, in addition, we have computed

k—1 _ — k—1 k—1 k—1
v = Y) = XY - o TR (4.2)

Now for j > k

10 The Gram—Schmidt algorithm

Comparing this with (4.1), we see that y,(gzl contains x; partially reduced by ¢1, ..., gr—1.

In particular, y,(ﬁkfl) is fully reduced so that with ri, = Hyl(cli)lﬂ we have qr = yi/rkk-
Moreover, the last row of Rg? is
T, (k-1 k—1)y — AT
ar (gD gy =T (4.3)
Furthermore,
k k—1 k-1 AT
Y = (D gy - T (4.4)

There is one final trick. We do not need to maintain Y2(k) separately. If we start
with () = X we can perform all the above manipulations in the array containing Q.
Here is the Matlab algorithm.

1. function [Q, R] = mgsrow(X)
2. [n,p] = size(X);
3. Q =1X;
4. R = zeros(p,p);
5. for k=1:p
6. R(k,k) = norm(Q(:,k)); (4.5)
7. QC:,k) = Q(:,k)/R(k,k);
8. R(k,k+1:p) = QC:,k)?*Q(:,k+1:p); [see (4.3)]
9. QC:,k+1:p) =
QC:,k+1:p) - QC:,k)*R(k,k+1:p); [see (4.4)]
10. end
To follow this code, note that at the beginning of the kth step, Q(:,1:k-1) contains

X *=1) while Q(: ,k:p) contains Y;kil).

There is also an incremental MGS algorithm. Here is the code.

function [q, r, rho] = cgsinc(Q, x)
p = size(Q, 2);
r = zeros(p,1);

u = Xx;

1.
2
3
4.
d. for k=1:
6
7
8
9

[}

r(k) = Q(:,k)’*u;
u=u-r&x*Q(:,k);
end
. rho = norm(u);
10. q = u/rho;
11. return

The Gram—Schmidt algorithm 11

5. Some timings

We now have six algorithms: the column, row, and incremental versions of CGS and
MGS. They all require np? floating-point additions and multiplications to compute the
QR factorization of an nxp matrix. In this section we will see how this translates into
timings.

The table below gives the times in seconds required to process a 5000x 200 matrix on
two UltraSPARCs —one at the University Maryland (900 MHz) and the other at NIST
(360 MHz). The Matlab versions were 6.5.0 (UMD) and 6.5.1 (NIST). To indicate the
variability in the timings, two times are given for each combination of algorithm and
machine.

UMD
cgs mgs
col 9.9/10.8 5.2/ 5.0
row 9.7/ 9.5 16.8/16.4

NIST
cgs mes
col 9.1/ 9.4 10.6/10.8
row 10.1/12.2 29.0/28.0

inc 7.1/6.0 9.7/10.3 inc 6.9/ 79 12.7/13.6

The numbers seem to reflect more the vagaries of Matlab than the properties of the
algorithm. They are all in the same ball park, but are not consistent in ranking the
algorithms. At UMD mgscol beats cgscol, but at NIST they are approximately equal.
On both machines cgsinc is good, but the disparity with mgsinc is greater at NIST
than at UMD. At both places mgsrow is the big loser.

The numbers do not reflect the optimum speedup of 2.5, corresponding to the ratio of
the clock rates at UMD and NIST. To see if such speedups are possible, the statements

tic, [Q, R] = qr(X, 0), toc

were executed on both machines. This times the computation of a QR factorization by
an LAPACK routine that, properly supported, should run at close to peak speed. The
times in seconds were 4.8 (NIST) and 2.0 (UMD), whose ratio of 2.4 is comfortably near
the optimum speedup.

6. Loss of orthogonality

The curse of Gram—Schmidt orthogonalization — either classical or modified —is that it
may not produce orthogonal vectors in the presence of rounding error. Figure 6.1 shows
a simple example of dramatic loss of orthogonality. The results of each statement were
rounded to five decimal digits before assignment using a utility function rnd —e.g., the
actual statement that produced ql1 was

gl = rnd(x1/r11, 5)

12

10.

11.

4

condgen(n,
1.4370e-01
1.4545e-01
-6.3207e-01
8.4332e-02

>~ B
o

2, 4)

-1.5931e-01
-1.6144e-01
7.0098e-01
-9.3573e-02

x1 = X(:,1); x2 = X(:,2);

ril = norm(x1)
6.6965e-01
ql = x1/r11
2.1459e-01
2.1720e-01
-9.4388e-01
1.2593e-01
r12 = ql1’*x2
-7.4268e-01
r12ql = ri2xql
-1.5937e-01
-1.6131e-01
7.0100e-01
-9.3526e-02
u = x2 - ri2ql
6.0000e-05
-1.3000e-04
-2.0000e-05
-4.7000e-05
r22 = norm(u)
1.5202e-04
92 = u/r22
3.9468e-01
-8.5515e-01
-1.3156e-01
-3.0917e-01
ql’*q2 =
-1.5801e-02

The Gram—Schmidt algorithm

Figure 6.1: Loss of orthogonality in the Gram-Schmidt algorithm

The Gram—Schmidt algorithm 13

This rounding means that we cannot expect q1’*q2 to be much less than 1075,
The statement

X = condgen(n, 2, 4)

generates a random nx2 matrix with singular values of 1 and 10~% (more on singular
values later). The orthogonalization proceeds without apparent exception up to the
computation of u. The vectors x2 and r12ql agree to about three decimal digits,
and consequently there is cancellation of significant digits in the computation of u, as
evidenced by the small size of u and the zero digits in its components. The normalized
g2 has a dot product with q1 that is three orders of magnitude greater than the desired
value of 107°.

It is sometimes asserted that the cancellation in line 8 is responsible for the loss of
orthogonality. But it is easy to verify that the computation of u entails no rounding
error. If the entire computation were exact, the zero digits in u would have had nonzero
values. But the information required to compute those values was lost when we rounded
r12q1 to five digits. That, not the cancellation, is what causes the loss of orthogonality.

The brevity of the computation also makes it clear that accumulation of round-
ing error over a period of time is not the cause of loss of orthogonality. In fact, the
five rounding errors made in rounding r12pl are alone sufficient to cause the loss of
orthogonality.

We have observed that |lug| is small if and only if zj is nearly dependent on
x1,...,Tk—1 [see the discussion following (3.7)]. When it is small, its computation
will naturally involve cancellation. Consequently, there is an association between linear
dependence among the columns of X and loss of orthogonality.

To develop this idea we must introduce singular values and their associated vectors.
Specifically, for any nxp matrix « with n > p, there are two systems of orthonormal
vectors ui, ug, ..., u, and vi,v,...,v, such that

Xvj =oju; and XTUj = o,vy, J=1...,p, (6.1)

where
oL >092>-2>0,2>0.

The scalars o; are the singular values of X and the vectors u; and v; are the left and
right singular vectors of X.

The connection of singular values with linear dependence is contained in the following
result. Let £ = —opu,v, . Then ||E|| = 0, and (X 4 E)v, = 0. [This fact can be verified
directly from (6.1).] Writing this relation in the form

ng)(.m +e1) + Uép)(!m +e)+- ”;(;p) (zp1 + €p) =0,

14 The Gram—Schmidt algorithm

*=CGS
+=MGS ki

loss of orthogonality

-10f 4

—15L L L L 1 1

log10(cond(X))

Figure 6.2: Loss of orthogonality in 50x20 matrices of incresing condition number.

we see that the columns of X + E are linearly dependent. Thus if 0y, is small, X is near
in norm to a rank-degenerate matrix.

In practice we must qualify the term ‘small’ in the preceding sentence. If X is
multiplied by a constant «, then the singular values of X are multiplied by «. Thus o,
can be made as small as we like simply by scaling X by a constant. But such scaling
should not affect the independence of the columns of X.

To get around this problem it is customary to work with the quantity

K(X) = o1/0y,

which is easily seen to be independent of the scaling of X. It is called the condition
number of X, and if it is large, then the columns of X are nearly dependent. (Actually,
this statement needs further qualification. For the condition number to be meaning-
ful, the columns of X must all be of the same order of magnitude. Unfortunately, a
discussion of this fascinating topic would lead us too far astray.)

The major difference between the CGS and MGS methods is the rate at which they
loose orthogonality. This fact is illustrated by the graphs in Figure (6.2). It plots the
common logarithm of the loss of orthogonality as measured by ||[I — Q" Q|| against the
common logarithm of the condition number for a sequence of 50x 20 matrices. For both
the CGS and the MGS algorithins the relations are approximately linear, but the slope

The Gram—Schmidt algorithm 15

of the line for the CGS method is approximately two, whereas for the MGS method it
is approximately one. Since the slope of a log-log plot indicates a power relation, in this
example the loss of orthogonality in the MGS method is proportional to the condition
number, whereas in the CGS method is proportional to the square of the condition
number.

This result can be proved rigorously, provided that x(X)e,, is sufficiently less than
one (‘sufficiently’ depends on the dimensions of the matrix X). This means that in ap-
plications where it is desired to retain orthogonality, the MGS method is to be preferred
to the CGS method.

7. Reorthogonalization

For the price of doubling the work in the Gram-Schmidt algorithm one can obtain a
@ that is orthogonal to working accuracy. The idea is to repeat the orthogonalization.
The following code gives the CGS column version.

1. function [Q, R] = cgsrocol(X)

2 [n,p] = (size(X));

3 Q = zeros(n,p);

4. R = zeros(p,p);

o. for k=1:p

6 rl = QC:,1:k-1)’*X(:,k);
7 ul = X(:,k) - QC:,1:k-1)*r1;
8 r2 = Q(:,1:k-1)’*ul;

9. u2 = ul - Q(:,1:k-1)*r2;
10. R(1:k-1,k) = rl + r2;

11. R(k,k) = norm(u2);

12. QC:,k) = u2/R(k,k);

13. end

14. return

From this it is seen that having computed ul (which is u in our other algorithms), one
orthogonalizes it against Q. The result u2 is accepted as the unnormalized Q(:,k). To
preserve the relation X = @R, it is necessary to combine the two sets of orthogonaliza-
tion coefficients, as is done in line 10.

The remarkable fact about this algorithm is that if k(X)e,; is sufficiently less than
one then the computed @ is orthogonal to working accuracy in the sense that ||[I —Q'Q||
is near e€y. What makes this fact remarkable is that only one reorthogonalization is
required to produce this degree of orthogonality. However, if the hypothesis on the
condition number of X is violated, then ul or u2 in the algorithm may be zero or

16 The Gram—Schmidt algorithm

u2 may also suffer loss of orthogonality. A complete implementation would take these
problems into account.

The reorthogonalization can be skipped if there is no cancellation in computing ul
in line 7. This will be true if norm(ul) /norm(X(:,k)) > 0.5. If p is even moderately
large large, say greater than 10, the extra norm computation in this test will be an
insignificant part of the calculation.

Reorthogonalization is applicable to all our six of our CGS and MGS algorithms.
Thus we have an is an ensemble twelve variants of the Gram—Schmidt algorithm. How-
ever, with reorthogonalization, the MGS algorithm has no numerical advantages over
the CGS algorithm. Since the CGS algorithm is simpler, it is often preferred in this
context.

8. Reduced-rank approximations and pivoting

Caution: This section is more difficult that its predecessors and may be
skipped with out loss of continuity.

In many applications it is necessary to approximate an nxp matrix X by a matrix
of lower rank, say rank k. Such an approximation can be written in the form

X=wz',

where W is nxk Z and is pxk, each having rank k. Such an approximation can save
both storage and computations. For example, it requires (n + p)k floating-point words
to store W and Z as opposed to np for X. Likewise, the operation count for computing
the matrix-vector product WZ%a is (n + p)k is (n + p)k additions and multiplication,
as opposed to np to form Xa. If a satisfactory approximation can be found for small &,
the savings can be impressive.

The QR factorization furnishes a reduced-rank approximation. To see this, let us
partition the QR decomposition of X in the form

R¥) pk)
X = (ka) Xék)) - (ng) ng)) 11 %]%) ‘ (8.1)
Multiplying out this decomposition, we have
k k
X =@ BE)+ 00 BY).

Dropping the second term in this sum, we obtain our approximation

~ k
x = QR rY)

The Gram—Schmidt algorithm 17

The error in the approximation is the norm of the term we have ignored:
k k k
187 R Il = 1B .

We can use either cgsrow or mgsrow to compute this decomposition. However, only
mgsrow provides the wherewithal to calculate ||R,(€22>||. To see this, note that from (4.2)
and (8.1) we have

k k k k k k
v - X - oY - o)

It follows that i)
IR 1p = (1Y)

Since mgsrow computes YZ(k) in line 9 of (4.5), we can compute its norm and check if
the current approximation is sufficiently accurate.

Unfortunately, the particular order in which the columns of X appear may not give
a good reduced-rank approximation to X. For example, consider the matrix

1.0000 1.0000 0.0000
Xpag = | 1.0000 1.0010 0.0000 (8.2)
0.0000 0.0000 1.0000

The R-factor computed by Matlab is

R_bad =
-1.4142e+00 -1.4149e+00 0 (8.3)
0 7.0711e-04 0
0 0 1.0000e+00

From this we see that a rank two approximation to X obtained from the QR factorization
will have a error norm of one — corresponding to the element in the southeast corner of
R_bad. On the other hand, if we interchange the second and third columns of Xp,q to
give
1.0000 0.0000 1.0000
Xgooa = | 1.0000 0.0000 1.0010
0.0000 1.0000 0.0000

we get the R-factor

R_good =
-1.4142e+00 0 -1.4149e+00
0 -1.0000e+00 0
0 0 -7.0711e-04

18 The Gram—Schmidt algorithm

Thus a rank two approximation based on R_good will have an error norm of about
7.10~%. If we interchange the second and third columns of this approximation, we get
an equally good approximation to Xpaq-

Thus we wish to adaptively interchange columns as the QR decomposition is com-
puted to enhance the rank of X(¥). The most common strategy for selecting a column

is the following. Suppose that we have computed X fk_l) and YQ(k_l). Then choose the

column for which ||y§-k_1) | (j =k,...,p) is maximal. When this column is interchanged

with the kth column of YQ(k_l), the diagonal element will be 7y as large as possible, and

this tends to make Rgli) well conditioned. In particular, it would not allow the small
element to appear as the second diagonal element of R_bad in (8.3). Note that when we
interchange the columns of YQ(k_l), we must also interchange the corresponding columns
of R%_l).

The function mgscp (cp for ‘column pivoting’) in Figure 8.1 implements this pivoting
strategy. The function takes as input the matrix X and a error tolerance, which is used
to determine the rank of the approximation. Returned are the Q- and R-factors and
the rank of the approximation, along with an array of pivot columus.

The basic loop is the one in the function mgsrow but with two additions at the front
end. In the first the norms of the columns of YQ(kfl) are computed and stored in the
array normy. From this the Frobenius norm of Rgs is computed and used to determine
if the rank k-1 approximation already computed is adequate. If it is, Q, R, and pvt are
trimmed, and the function returns.

The second addition determines the pivot column. Note that pvt (k) contains the
index of the column that was swapped with column k. The swapping is actually done
on both Y;kil) and Rg’;fl), as mentioned above.

The MGS step is unaltered. It could easily be expanded to include reorthogonaliza-
tion, and for most applications probably should be. The main reason we have not done
so here, is to allow the code to fit on a single page.

When this algorithm is applied to Xpaq in (8.2), with err = 0.01 the output is

Q =
7.0675e-01 0
7.0746e-01 0
0 1.0000e+00
R =
1.4149e+00 0 1.4142e+00
0 1.0000e+00 0
rank =

pvt =

The Gram—Schmidt algorithm 19

1. function [Q, R, rank, pvt] = mgscp(X, err)
2. [n,p] = size(X);
3. Q = X;
4. R = zeros(p,p);
o. normy = zeros(1l,p);
6. pvt = zeros(1l,p);
7. for k=1:p
b
YA Compute the norms of y and test for convergence.
b
8. for j=k:p
9. normy(j) = norm(Q(:,j));
10. end
11. if norm(normy(k:n)) <= err % same as norm(R22) <= err
12. rank = k-1;
13. Q = Q(:,1:rank); R = R(1l:rank,:); pvt = pvt(l:rank);
14. return;
15. end
b
yA Determine the pivot column and exchange.
b
16. [maxnormy, pvt(k)] = max(normy(k:p));
17. pvt(k) = pvt(k) + k - 1;
18. temp=Q(:,k); QC:,k)=QC:,pvt(k)); QC:,pvt(k))=temp;
19. temp=R(1:k-1,k); R(1:k-1,k)=R(1:k-1,pvt(k)); ...
R(1:k-1,pvt(k))=temp;
b
YA MGS step.
A
20. R(k,k) = norm(Q(:,k));
21. QC:,k) = QC:,k)/R(k,k);
22. R(k,k+1:p) = QC:,k)’>*Q(:,k+1:p);
23. QC:,k+1:p) = Q(:,k+1:p) - QC:,k)*R(k,k+1:p);
24. end
25. rank = p;

26. return

Figure 8.1: MGS with column pivoting

20 The Gram—Schmidt algorithm

2 3 0

Note that to get Xgooq in our example, we exchanged columns 2 and 3 of Xpaq. The
algorithm msgcp, on the other hand, makes two interchanges: first between columns 1
and 2 and then between columns 2 and 3. The reason for the first interchange is that
column 2 is slightly larger than column 3. But in the end, the result is an approximation
with essentially the same error.

The computation of the norms increases the operation count by %an additions and
multiplications over np? for the basic algorithm without reorthogonalization or 2np?
with reorthogonalization. Alternatively, the formula

O = Ny NP - v

||y](- = ||y§ jk

could be used to update the norms as the computation proceeds. But this formula is
tricky to use in the presence of rounding error.

We should stress that the pivoting strategy adopted here is not foolproof — there
are counterexamples where it fails to find approximations of suitably low rank —even
though such exist. But these failures are very rare, and the alternatives are very com-
plicated.

9. Envoi

We have seen that that there are twelve version of the Gram—Schmidt algorithm: clas-
sical and modified versions that compute R by rows, columns, or incrementally, with or
without reorthogonalization. The choice of which to use in a given situation will depend
on the problem at hand — especially on how the vectors z; are generated and what parts
of R are needed at any given time. If no reorthogonalization is to be performed, then
MGS will help control the loss of orthogonality. With reorthogonalization the balance
shifts to CGS.

The alternative to Gram-Schmidt is orthogonal triangularization, which forms () as
the initial p columns of a product of certain elementary orthogonal matrices —either
Householder transformations or plane rotations. In the case of Householder transfor-
mations, the product is not explicitly computed. Instead vectors from which the trans-
formations can be recovered are stored. Orthogonality to working accuracy is guaran-
teed. Plane rotations are generally used on structured matrices where full Householder
transformations or Gram—Schmidt algorithms are inappropriate. Hence any comparison
comes down to Householder vs. Gram—Schmidt.

For an nxp matrix X, the ratio of operations counts of Householder to Gram-
Schmidt is 1 — %% Thus when p = n, Householder triangularization has % the count
of Gram—Schmidt. But as n increases, the ratio quickly approaches one. To guarantee
orthogonality with Gram-Schmidt, however, one must reorthogonalize, which increases

The Gram—Schmidt algorithm 21

the ratio to two. Given these ratios and guaranteed orthogonality, one can ask why use
Gram-Schmidt methods at all. There are several answers.

First, although it is easy to code an incremental version of Householder triangular-
ization (if you know how), none of the major linear algebra packages provide software
to do it. Consequently, Gram—Schmidt is preferred in orthogonalizing Krylov sequences
and their relatives.

Second, Householder triangularization represents) in a coded form that is not
easy to manipulate. In fact, there are tasks that cannot be done efficiently, or even at
all, without generating). Examples are computing the diagonal elements of QQT or
recomputing the factorization after a row is appended to X. In these cases,) must be
generated explicitly from the Householder transformations, which puts it on a par with
CGS with reorthogonalization.

Third, Householder reduction is subject to subtle instabilities when the rows of X
vary widely in magnitude — instabilities that do not affect the Gram—Schmidt algorithm.

Finally, we have confined ourselves to the Euclidean inner product u'v. The Gram-
Schmidt can easily be adapted to oblique inner products. Although there exist gener-
alizations of Householder transformations to vector spaces with oblique inner products,
there is no off-the-shelf software supporting them.

These reasons coupled with the basic simplicity of the Gram—Schmidt process insure
that Gram—Schmidt in its several versions will remain a part of the general toolkit for
matrix computations.

10. Bibliography

Both Gram and Schmidt were concerned with the orthogonalization of functions rather
than vectors. Gram [3] developed determinantal expressions for the orthogonalized se-
quence and made the connection with least squares. Schmidt’s algorithm [5] is essentially
classical the classical Gram—Schmidt algorithm in the context of integral equations.

There is a large corpus on Gram-Schmidt. Fortunately, much of it has been in-
corporated, with historical comments, in general texts on numerical linear algebra; e.g.
[1,2, 6]. These texts also discuss pivoting, orthogonal triangularization, and other topics
touched on in this paper.

For more on oblique Householder transformations see [4].

Acknowledgement

I am grateful to the Mathematical and Computational Sciences Division for their sup-
port.

22 The Gram—Schmidt algorithm
References
1] A. Bjorck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia,

2]

1996.

G. H. Golub and C. F. Van Loan. Matriz Computations. Johns Hopkins University
Press, Baltimore, MD, second edition, 1989.

J. P. Gram. Uber die Entwicklung reeller Functionen in Reihen mittelst der Methode
der kleinsten Quadrate. Journal fur die reine und angewandte Mathematik, 94:41-73,
1883.

D. S. Mackey, N. Mackey, and F. Tisseur. G-reflectors in scalar product spaces.
Numerical Analysis Report 420, Manchester Center for Computational Mathematics,
2003.

E. Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen. I Teil.
Entwicklung willkiirlichen Funktionen nach System vorgeschriebener. Mathematis-
che Annalen, 63:433-476, 1907.

G. W. Stewart. Matriz Algorithms I: Basic Decompositions. SIAM, Philadelphia,
1998.

