
University of Maryland College ParkInstitute for Advaned Computer Studies TR{2004{84Department of Computer Siene TR{4642
The Gram-Shmidt Algorithm and Its Variations�G. W. StewartyDeember, 2004ABSTRACTThe Gram{Shmidt algorithm is a widely used method for orthogonaliz-ing a sequene of vetors. It omes in two forms: lassial Gram{Shmidtand modi�ed Gram{Shmidt, eah of whose operations an be ordered indi�erent ways. This expository paper gives a systemati treatment of thisonfusing variety of algorithms. It also treats the numerial issue of lossof orthogonality and reorthogonalization as well as the implementation ofolumn pivoting.

�This report is available by anonymous ftp from thales.s.umd.edu in the diretory pub/reportsor on the web at http://www.s.umd.edu/�stewart/.yDepartment of Computer Siene and Institute for Advaned Computer Studies, University of Mary-land, College Park, MD 20742 (stewart�s.umd.edu). This researh was supported in part by theNational Siene Foundation under grant CCR0204084.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Repository at the University of Maryland

https://core.ac.uk/display/56099713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Gram-Shmidt Algorithm and Its VariationsG. W. StewartABSTRACTThe Gram{Shmidt algorithm is a widely used method for orthogonaliz-ing a sequene of vetors. It omes in two forms: lassial Gram{Shmidtand modi�ed Gram{Shmidt, eah of whose operations an be ordered indi�erent ways. This expository paper gives a systemati treatment of thisonfusing variety of algorithms. It also treats the numerial issue of lossof orthogonality and reorthogonalization as well as the implementation ofolumn pivoting.1. IntrodutionThe Gram{Shmidt algorithm is a method for orthogonalizing a sequene of linearly in-dependent n-vetors x1; x2; : : : . Spei�ally, it produes a sequene of vetors q1; q2; : : : ,with qj a linear ombination of x1; : : : ; xj that satisfy the orthonormality onditionskqjk = 1 (j = 1; 2; : : :) and qTi qj = 0 (i 6= j): (1.1)Here qT is the transpose of q, so that qTi qj is the inner or dot produt of qi and qj , andthe quantity kqk is the Eulidean norm of q, de�ned bykqk2 = qTq:The Gram{Shmidt orthogonalization proedure has many appliation. Perhapsthe most important is to approximate vetors by linearly ombinations of the xj , orequivalently of the qj. Spei�ally, given a vetor y, letŷ = 1q1 + 2q2 + � � � kqk;where j = qTj y; j = 1; : : : ; k: (1.2)then it an be shown that ŷ approximates y optimally in the sense that of all linearombinations of the qi kuk � ky � ŷk2 is minimal. (1.3)We say that ŷ is the least squares approximation to y. The minimality of ky � ŷk2 iseasily established by elementary methods of multivariate alulus.Note the simpliity of the formulas (1.2) for the least squares oeÆients. If we hadtried to write ŷ as a linear ombination of the vetors xi we would have ended up with1

2 The Gram{Shmidt algorithma linear system of order k for the oeÆients alled the normal equations. It is littlewonder, then, that the Gram{Shmidt algorithm plays an important role least squaresomputations.The basi Gram{Shmidt algorithm is deeptively simple. But it omes in a num-ber of variants, of whih the main types are lassial Gram{Shmidt, modi�ed Gram{Shmidt, and Gram{Shmidt (lassial or modi�ed) with reorthogonalization. Eah ofthe types an be varied to ompute the orthogonalization oeÆients in di�erent orders.All these variants an be a soure of onfusion for the novie|and sometimes for theexpert. This paper provides a guided tour of the world of Gram{Shmidt. The empha-sis will be primarily on the struture of the various algorithms, although we will alsotouh on issues of eÆieny and rounding error. Not muh is supposed of the readerexept a familiarity with elementary linear algebra and Matlab, whih is the algorithmilanguage of this paper.In what follows k � k will also denote the spetral norm de�ned bykXk = maxkwk=1 kXwk:We will also use the Frobenius norm de�ned bykXk2F =Xi;j x2ij:We will make use of the following fat. If Q has orthonormal olumns, thenkQRk = kRk;and the same is true for the Frobenius norm.When we ome to talk about the e�ets of rounding error, we will have to speifythe preision of omputation. This is ommonly summarized in a number �M whoselogarithm approximates the number of digits (in the base of the logarithm) arried in theomputation. For IEEE double-preision oating-point omputation, �M �= 2:2�10�16.2. Matrix formulationAlthough the Gram{Shmidt algorithm nominally omputes a system orthonormal ve-tors of vetors, it atually omputes an important matrix fatorization. To see this wemust ast the algorithm in terms of matries.Let us begin by assuming the vetors qj exist. Sine qk is a linear ombination ofx1; : : : ; xk, we an write it in the formqk = s1kx1 + s2kx2 + � � �+ skkxk:

The Gram{Shmidt algorithm 3If we set X(k) = (x1 x2 x3 � � � xk);Q(k) = (q1 q2 q3 � � � qk)and S(k) = 0BBBBB�s11 s12 s13 � � � s1k0 s22 s23 � � � s2k0 0 s33 � � � s3k...0 0 0 � � � skk
1CCCCCA ;then S(k) is upper triangular and Q(k) = X(k)S(k):To get a formula for S(k), we use the fat that the orthonormality onditions (1.1) anbe written in matrix form as Q(k)TQ(k) = I;where I is the identity matrix of order k (we say that Q(k) is orthonormal). HeneS(k)TX(k)TX(k)S(k) = I:Sine I is nonsingular, S(k) must also be nonsingular. Hene if we writeR(k) = S(k)�1;then Rk is upper triangular andX(k)TX(k) = R(k)TR(k): (2.1)Let us look at equation (2.1) in greater detail. Sine the matrix X(k) has linearlyindependent olumns, the ross-produt matrix X(k)TX(k) is positive de�nite; that is,u 6= 0 =) uT(X(k)TX(k))u > 0:It an be shown that any positive de�nite matrix an be fatored in the form RTR,where R is a nonsingular upper triangular matrix. (The fatorization is unique if werequire the diagonal elements of R to be positive.) This fatorization is alled theCholesky deomposition and R is alled the Cholesky fator.Sine the Cholesky deomposition an be omputed by o�-the-shelf software, wehave the following algorithm for omputing Q(k).1. Compute the Cholesky fator R(k) of X(k)TX(k)2. Q(k) = X(k)R(k)�1 (2.2)Although this algorithm represents a onstrutive proof of the existene of Q(k), it isseldom, if ever, used. Not only is it more expensive than the alternatives, but it isnumerially less stable. We will now onsider a better way.

4 The Gram{Shmidt algorithm3. The QR fatorization and the lassial Gram{Shmidt algorithmWe are going to derive the lassial Gram{Shmidt algorithm by showing that it om-putes a QR fatorization. Spei�ally, the QR fatorization is a fatorization of a matrixX into the produe QR of an orthonormal matrix and an upper triangular matrix. Anexample is the fatorization X(k) = Q(k)R(k) impliit in line 2 of (2.2). QR fatoriza-tions are widely used in numerial appliations. Let us pause briey to examine one ofthe most important.Suppose, as in x1 we wish to approximate a vetor y as a linear ombination of thevetors x1; : : : ; xk (instead of q1; : : : ; qk) in the least squares sense. We an write thisproblem in matrix form as: Determine a vetor b suh thatky �X(k)bk2 = min :Then it an be shown that the vetor b is the solution of the the upper triangular systemR(k)b = Q(k)Ty;where X(k) = Q(k)R(k) is the QR fatorization of X(k). It is a worthwhile exerise derivethis from (1.2) and (1.3).There are many ways of omputing QR deompositions, of whih the Gram{Shmidtalgorithm is just one. To derive the lassial Gram{Shmidt (CGS) algorithm, weassume that we have the QR fatorizationX(k�1) = Q(k�1)R(k�1); (3.1)and wish to ompute the fatorization X(k) = Q(k)R(k), whih we will partition in theform (X(k�1) xk) = (Q(k�1) qk)�R(k�1) rk0 �k� :Computing the �rst olumn of this partition, we get X(k�1) = Q(k�1)R(k�1), whih isjust (3.1). But if we ompute the seond olumn we get something new:xk = Q(k�1)rk + �kqk: (3.2)Sine Q(k�1)TQ(k�1) = I, and Q(k�1)Tqk = 0, we have on multiplying the above relationby Q(k�1)T that rk = Q(k�1)Txk: (3.3)Rewriting (3.2) in the form �kqk = xk �Q(k�1)rk � uk (3.4)

The Gram{Shmidt algorithm 5and realling that kqkk = 1, we have �k = kukk: (3.5)Finally, qk = ��1k kukk: (3.6)Equations (3.3), (3.4), (3.5), and (3.6) are e�etively an algorithm for omputing theexpanded deomposition. We an start the proess by observing that �1 = kx1k, andq1 = x1=�1. All this leads to the following algorithm.Startup1. �1 = kx1k2. q1 = x1=�1Main loop3. for k = 2; 3; : : :4. rk = Q(k�1)Txk5. uk = xk �Q(k�1)rk6. �k = kukk7. qk = uk=�k8. Q(k) = (Q(k�1) qk)9. R(k) = �R(k�1) rk0 �k�10. end
(3.7)

In x1 we de�ned qk as being a linear ombination of x1; : : : ; xk. But when we tried toompute the oeÆients of this linear ombination, we obtained the awkward algorithm(2.2). The CGS algorithm builds qk as a linear ombination of xk, q1; : : : ; qk�1, whihaounts for its basi simpliity. In partiular, the R-fator in the QR fatorization ofX(k) is built up olumn by olumn.Note that rk ontains the oeÆients for the least-squares approximation to xk[see (1.2)℄. This means that uk is the residual that is left over after the least squaresapproximation is subtrated out [see (1.3)℄. If �k = kukk is small, then xk is nearlydependent on x1; : : : ; xk�1. We shall see later that in the presene of rounding errorthis results in loss of orthogonality in qk. It an even happen that uk, omputed inline 5, is zero. In that ase our algorithm would die in line 7 with a divide by zero.An industrial strength implementation would hek �k and take orretive ation if itis zero. Beause the algorithms in this paper are for expository purposes only, we willomit suh tests.In pratie, we would not de�ne separate matries Q1; Q2; : : : . Instead we wouldalloate storage for the largest Q and R that we expet to enounter and build up Q

6 The Gram{Shmidt algorithmand R within that storage. The following Matlab ode shows how this an be done. Itis alled gsol beause it builds up the matrix R olumn by olumn.1. funtion [Q, R℄ = gsol(X)2. [n, p℄ = size(X); % X is nxp3. Q = zeros(n,p); % So is Q4. R = zeros(p); % R is pxp5. for k=1:p6. R(1:k-1,k) = Q(:,1:k-1)'*X(:,k);7. u = X(:,k) - Q(:,1:k-1)*R(1:k-1,k);8. R(k,k) = norm(u);9. Q(:,k) = u/R(k,k);10. end11. return
(3.8)

Note that this ode ontains is no equivalent of the startup in (3.7). Instead it takesadvantage of the fat that Matlab an manipulate matries with zero dimensions|sometimes alled null or empty matries. Spei�ally, when k=1, R(1:k-1,k) in line 6is a 0x1matrix formed as the produt of the 0xnmatrix Q(:,1:k-1)' and the nx1matrixX(:,k). In line 7, the produt Q(:,1:k-1)*R(1:k-1,k) is nx1, sine Q(:,1:k-1) isnx0 and R(1:k-1,k) 0x1. When a nonnull matrix appears out of thin air, as does thisprodut, Matlab initializes it to zero. Thus u is just X(:,k), whih is what we wantwhen k = 1.As we have noted, our lassial Gram{Shmidt algorithm|either (3.7) or (3.8)|builds up Q and R a olumn at a time. Alternatively, we an build up Q a olumn ata time and R a row at a time. Spei�ally, from the relation X = QR, we haveR = QTX:Hene if we know qk, we an generate the kth row rTk of R by the formularTk = qTkX: (3.9)Of ourse, there is no need to ompute the �rst k elements of rTk , sine they are zero.The following funtion implements this idea. In analogy with mgsol, whih gener-ates R by olumns, it is alled mgsrow.

The Gram{Shmidt algorithm 71. funtion [Q, R℄ = gsrow(X)2. [n,p℄ = (size(X));3. Q = zeros(n,p);4. R = zeros(p,p);5. for k=1:p6. u = X(:,k) - Q(:,1:k-1)*R(1:k-1,k);7. R(k,k) = norm(u);8. Q(:,k) = u/R(k,k);9. R(k,k+1:p) = Q(:,k)'*X(:,k+1:p);10. end11. return
(3.10)

At the beginning of the loop on k is it assumed that we have omputed the �rst k-1olumns of Q and rows of R. This means that we an immediately ompute u as in line 7in (3.8), and go on to ompute R(k,k) and Q(:,k) as usual. One then uses Q(:,k) toompute R(k,k+1:p) as suggested by (3.9).In some appliations xk will not be known until qk�1 has been omputed. Forexample, in the Lanzos and Arnoldi algorithms for omputing eigenpairs of a matrixA, the vetor xk is Aqk�1. In this ase the row algorithm (3.10) annot be used, sineit presupposes that we have all of X available. The olumn algorithm (3.8) does notatually use xk until it is time to form qk, but it still takes the full X as input.A solution to these problems is the following program that performs a single step ofCGS. 1. funtion [q, r, rho℄ = gsin(Q, x)2. r = Q'*x;3. u = x - Q*r;4. rho = norm(u);5. q = u/rho;6. return (3.11)The following sript shows how gsin (in for inremental) is used.1. n = 5; p = 3;2. Q = zeros(n,p);3. X = zeros(n,p);4. R = zeros(p);5. for k=1:p6. X(:,k) = randn(n,1); % Or whatever.7. [Q(:,k), R(1:k-1,k), R(k,k)℄ = gsin(Q(:,1:k-1), X(:,k));8. endOf ourse, the ode for gsin is so simple that it ould simply be inlined into theappliation program in question, as is often done in pratie.

8 The Gram{Shmidt algorithmIn omparing algorithms it is sometimes useful to know how many oating-pointoperations the algorithms take. For the funtion gsin, as the number of olumnsk of Q inreases, the bulk of the arithmeti is onentrated in lines 2 and 3, eahrequiring about nk additions and multipliations. Thus the total number of additionsand multipliations to ompute the QR fatorization of an n�p matrix is2 pXk=1nk �= np2:When n = p this ount is n3, whih may be ompared with a ount n3 for a matrixmultipliation or 13n3 for Gaussian elimination.When the variants of the CGS algorithm are exeuted with rounding error theybehave similarly. In fat, if the requisite matrix and vetor operations are implementedaording to their `natural' de�nitions, the algorithms produe exatly the same results.The reason is that the algorithms onsist of independent omputational tasks that anbe reordered without hanging the rounding errors. For example, in both the row andolumn algorithms rij is omputed as qTi xj , although the individual rij are not omputedin the same order.We will return to rounding error later when we onsider loss of orthogonality. But�rst, we shall onsider the modi�ed Gram{Shmidt algorithm.4. The modi�ed Gram{Shmidt algorithmThe three variants of the CGS algorithm are essentially the same in their operationounts and numerial properties. The modi�ed Gram{Shmidt (MGS) algorithm hasthe same operation ount but di�erent numerial properties. In this setion we willonern ourselves with the algorithm itself, and treat its numerial properties in x6.The modi�ed Gram{Shmidt algorithm an be derived by onsidering the ompu-tation of uk in line 5 in the olumn algorithm (3.7). Spei�ally, we haveuk = xk � r1kq1 � r2kq2 � � � � � rk�1;kqk�1; (4.1)where rjk is omputed from the formula rjk = qTj xk (line 4). In the CGS algorithm theoeÆients rjk are all omputed in one step (line 4) and then uk is omputed in thenext (line 5).But by the orthogonality of the q's we have an alternative formula for rjk: namely,rjk = qTj (xk � r1kq1 � r2kq2 � � � � � rj�1;kqj�1)Hene we an alternate the omputation of the rjk with the subtration of rjkqj asshown below.

The Gram{Shmidt algorithm 91. uk = xk2. for j = 1 to k�13. rjk = qTj uk4. uk = uk � rjkqj5. endThese ideas lead to the following MGS olumn ode.1. funtion [Q, R℄ = mgsol(X)2. [n,p℄ = (size(X));3. Q = zeros(n,p);4. R = zeros(p,p);5. for k=1:p6. u = X(:,k);7. for j=1:k-18. R(j,k) = Q(:,j)'*u;9. u = u - R(j,k)*Q(:,j);10. end11. R(k,k) = norm(u);12. Q(:,k) = u/R(k,k);13. end14. returnThere is a row version of the MGS algorithm. It is short, slik, and not easy toderive. We begin by onsidering the partitioned QR deompositionX = (X(k�1)1 X(k�1)2) = (Q(k�1)1 Q(k�1)2) R(k�1)11 R(k�1)120 R(k�1)22 ! :Here R(k�1)11 is (k�1)�(k�1). Note that our old friends X(k�1), Q(k�1), and R(k�1) haveaquired subsripts to indiate their positions in the partition.Now suppose we have omputed Q(k�1) and(R(k�1)11 R(k�1)12);Suppose, in addition, we have omputedY (k�1)2 � (y(k�1)k � � � y(k�1)p) = X(k�1)2 �Q(k�1)1 R(k�1)12 : (4.2)Now for j � k y(k�1)j = xj � r1jq1 � � � � � rk�1;jqk�1:

10 The Gram{Shmidt algorithmComparing this with (4.1), we see that y(j)k�1 ontains xj partially redued by q1; : : : ; qk�1.In partiular, y(k�1)k is fully redued so that with rkk = ky(k)k�1k we have qk = yk=rkk.Moreover, the last row of R(k)12 isqTk (y(k�1)k+1 � � � y(k�1)p) � r̂T: (4.3)Furthermore, Y (k)2 = (y(k�1)k+1 � � � y(k�1)p)� qkr̂T: (4.4)There is one �nal trik. We do not need to maintain Y (k)2 separately. If we startwith Q = X we an perform all the above manipulations in the array ontaining Q.Here is the Matlab algorithm.1. funtion [Q, R℄ = mgsrow(X)2. [n,p℄ = size(X);3. Q = X;4. R = zeros(p,p);5. for k=1:p6. R(k,k) = norm(Q(:,k));7. Q(:,k) = Q(:,k)/R(k,k);8. R(k,k+1:p) = Q(:,k)'*Q(:,k+1:p); [see (4.3)℄9. Q(:,k+1:p) =Q(:,k+1:p) - Q(:,k)*R(k,k+1:p); [see (4.4)℄10. end
(4.5)

To follow this ode, note that at the beginning of the kth step, Q(:,1:k-1) ontainsX(k�1) while Q(:,k:p) ontains Y (k�1)2 .There is also an inremental MGS algorithm. Here is the ode.1. funtion [q, r, rho℄ = gsin(Q, x)2. p = size(Q, 2);3. r = zeros(p,1);4. u = x;5. for k=1:p6. r(k) = Q(:,k)'*u;7. u = u - r(k)*Q(:,k);8. end9. rho = norm(u);10. q = u/rho;11. return

The Gram{Shmidt algorithm 115. Some timingsWe now have six algorithms: the olumn, row, and inremental versions of CGS andMGS. They all require np2 oating-point additions and multipliations to ompute theQR fatorization of an n�p matrix. In this setion we will see how this translates intotimings.The table below gives the times in seonds required to proess a 5000�200 matrix ontwo UltraSPARCs|one at the University Maryland (900MHz) and the other at NIST(360MHz). The Matlab versions were 6.5.0 (UMD) and 6.5.1 (NIST). To indiate thevariability in the timings, two times are given for eah ombination of algorithm andmahine. UMD NISTgs mgs gs mgsol 9.9/10.8 5.2/ 5.0 ol 9.1/ 9.4 10.6/10.8row 9.7/ 9.5 16.8/16.4 row 10.1/12.2 29.0/28.0in 7.1/ 6.0 9.7/10.3 in 6.9/ 7.9 12.7/13.6The numbers seem to reet more the vagaries of Matlab than the properties of thealgorithm. They are all in the same ball park, but are not onsistent in ranking thealgorithms. At UMD mgsol beats gsol, but at NIST they are approximately equal.On both mahines gsin is good, but the disparity with mgsin is greater at NISTthan at UMD. At both plaes mgsrow is the big loser.The numbers do not reet the optimum speedup of 2.5, orresponding to the ratio ofthe lok rates at UMD and NIST. To see if suh speedups are possible, the statementsti, [Q, R℄ = qr(X, 0), towere exeuted on both mahines. This times the omputation of a QR fatorization byan LAPACK routine that, properly supported, should run at lose to peak speed. Thetimes in seonds were 4.8 (NIST) and 2.0 (UMD), whose ratio of 2.4 is omfortably nearthe optimum speedup.6. Loss of orthogonalityThe urse of Gram{Shmidt orthogonalization|either lassial or modi�ed| is that itmay not produe orthogonal vetors in the presene of rounding error. Figure 6.1 showsa simple example of dramati loss of orthogonality. The results of eah statement wererounded to �ve deimal digits before assignment using a utility funtion rnd|e.g., theatual statement that produed q1 wasq1 = rnd(x1/r11, 5)

12 The Gram{Shmidt algorithm1. n = 42. X = ondgen(n, 2, 4)1.4370e-01 -1.5931e-011.4545e-01 -1.6144e-01-6.3207e-01 7.0098e-018.4332e-02 -9.3573e-023. x1 = X(:,1); x2 = X(:,2);4. r11 = norm(x1)6.6965e-015. q1 = x1/r112.1459e-012.1720e-01-9.4388e-011.2593e-016. r12 = q1'*x2-7.4268e-017. r12q1 = r12*q1-1.5937e-01-1.6131e-017.0100e-01-9.3526e-028. u = x2 - r12q16.0000e-05-1.3000e-04-2.0000e-05-4.7000e-059. r22 = norm(u)1.5202e-0410. q2 = u/r223.9468e-01-8.5515e-01-1.3156e-01-3.0917e-0111. q1'*q2 =-1.5801e-02Figure 6.1: Loss of orthogonality in the Gram{Shmidt algorithm

The Gram{Shmidt algorithm 13This rounding means that we annot expet q1'*q2 to be muh less than 10�5.The statementX = ondgen(n, 2, 4)generates a random n�2 matrix with singular values of 1 and 10�4 (more on singularvalues later). The orthogonalization proeeds without apparent exeption up to theomputation of u. The vetors x2 and r12q1 agree to about three deimal digits,and onsequently there is anellation of signi�ant digits in the omputation of u, asevidened by the small size of u and the zero digits in its omponents. The normalizedq2 has a dot produt with q1 that is three orders of magnitude greater than the desiredvalue of 10�5.It is sometimes asserted that the anellation in line 8 is responsible for the loss oforthogonality. But it is easy to verify that the omputation of u entails no roundingerror. If the entire omputation were exat, the zero digits in u would have had nonzerovalues. But the information required to ompute those values was lost when we roundedr12q1 to �ve digits. That, not the anellation, is what auses the loss of orthogonality.The brevity of the omputation also makes it lear that aumulation of round-ing error over a period of time is not the ause of loss of orthogonality. In fat, the�ve rounding errors made in rounding r12p1 are alone suÆient to ause the loss oforthogonality.We have observed that kukk is small if and only if xk is nearly dependent onx1; : : : ; xk�1 [see the disussion following (3.7)℄. When it is small, its omputationwill naturally involve anellation. Consequently, there is an assoiation between lineardependene among the olumns of X and loss of orthogonality.To develop this idea we must introdue singular values and their assoiated vetors.Spei�ally, for any n�p matrix x with n � p, there are two systems of orthonormalvetors u1; u2; : : : ; up and v1; v2; : : : ; vp suh thatXvj = �juj and XTuj = �jvj ; j = 1; : : : ; p; (6.1)where �1 � �2 � � � � � �p � 0:The salars �j are the singular values of X and the vetors uj and vj are the left andright singular vetors of X.The onnetion of singular values with linear dependene is ontained in the followingresult. Let E = ��pupvTp . Then kEk = �p and (X+E)vp = 0. [This fat an be veri�eddiretly from (6.1).℄ Writing this relation in the formv(p)1 (x1 + e1) + v(p)2 (x2 + e2) + � � � v(p)p (xp1 + ep) = 0;

14 The Gram{Shmidt algorithm

1 2 3 4 5 6 7
−15

−10

−5

0

log10(cond(X))

lo
ss

 o
f o

rt
ho

go
na

lit
y

* = CGS
+ = MGS

Figure 6.2: Loss of orthogonality in 50�20 matries of inresing ondition number.we see that the olumns of X +E are linearly dependent. Thus if �p is small, X is nearin norm to a rank-degenerate matrix.In pratie we must qualify the term `small' in the preeding sentene. If X ismultiplied by a onstant �, then the singular values of X are multiplied by �. Thus �pan be made as small as we like simply by saling X by a onstant. But suh salingshould not a�et the independene of the olumns of X.To get around this problem it is ustomary to work with the quantity�(X) = �1=�p;whih is easily seen to be independent of the saling of X. It is alled the onditionnumber of X, and if it is large, then the olumns of X are nearly dependent. (Atually,this statement needs further quali�ation. For the ondition number to be meaning-ful, the olumns of X must all be of the same order of magnitude. Unfortunately, adisussion of this fasinating topi would lead us too far astray.)The major di�erene between the CGS and MGS methods is the rate at whih theyloose orthogonality. This fat is illustrated by the graphs in Figure (6.2). It plots theommon logarithm of the loss of orthogonality as measured by kI �QTQk against theommon logarithm of the ondition number for a sequene of 50�20 matries. For boththe CGS and the MGS algorithms the relations are approximately linear, but the slope

The Gram{Shmidt algorithm 15of the line for the CGS method is approximately two, whereas for the MGS method itis approximately one. Sine the slope of a log-log plot indiates a power relation, in thisexample the loss of orthogonality in the MGS method is proportional to the onditionnumber, whereas in the CGS method is proportional to the square of the onditionnumber.This result an be proved rigorously, provided that �(X)�M is suÆiently less thanone (`suÆiently' depends on the dimensions of the matrix X). This means that in ap-pliations where it is desired to retain orthogonality, the MGS method is to be preferredto the CGS method.7. ReorthogonalizationFor the prie of doubling the work in the Gram{Shmidt algorithm one an obtain aQ that is orthogonal to working auray. The idea is to repeat the orthogonalization.The following ode gives the CGS olumn version.1. funtion [Q, R℄ = gsrool(X)2. [n,p℄ = (size(X));3. Q = zeros(n,p);4. R = zeros(p,p);5. for k=1:p6. r1 = Q(:,1:k-1)'*X(:,k);7. u1 = X(:,k) - Q(:,1:k-1)*r1;8. r2 = Q(:,1:k-1)'*u1;9. u2 = u1 - Q(:,1:k-1)*r2;10. R(1:k-1,k) = r1 + r2;11. R(k,k) = norm(u2);12. Q(:,k) = u2/R(k,k);13. end14. returnFrom this it is seen that having omputed u1 (whih is u in our other algorithms), oneorthogonalizes it against Q. The result u2 is aepted as the unnormalized Q(:,k). Topreserve the relation X = QR, it is neessary to ombine the two sets of orthogonaliza-tion oeÆients, as is done in line 10.The remarkable fat about this algorithm is that if �(X)�M is suÆiently less thanone then the omputed Q is orthogonal to working auray in the sense that kI�QTQkis near �M. What makes this fat remarkable is that only one reorthogonalization isrequired to produe this degree of orthogonality. However, if the hypothesis on theondition number of X is violated, then u1 or u2 in the algorithm may be zero or

16 The Gram{Shmidt algorithmu2 may also su�er loss of orthogonality. A omplete implementation would take theseproblems into aount.The reorthogonalization an be skipped if there is no anellation in omputing u1in line 7. This will be true if norm(u1)/norm(X(:,k)) > 0.5. If p is even moderatelylarge large, say greater than 10, the extra norm omputation in this test will be aninsigni�ant part of the alulation.Reorthogonalization is appliable to all our six of our CGS and MGS algorithms.Thus we have an is an ensemble twelve variants of the Gram{Shmidt algorithm. How-ever, with reorthogonalization, the MGS algorithm has no numerial advantages overthe CGS algorithm. Sine the CGS algorithm is simpler, it is often preferred in thisontext.8. Redued-rank approximations and pivotingCaution: This setion is more diÆult that its predeessors and may beskipped with out loss of ontinuity.In many appliations it is neessary to approximate an n�p matrix X by a matrixof lower rank, say rank k. Suh an approximation an be written in the formX �=WZT;where W is n�k Z and is p�k, eah having rank k. Suh an approximation an saveboth storage and omputations. For example, it requires (n+ p)k oating-point wordsto store W and Z as opposed to np for X. Likewise, the operation ount for omputingthe matrix-vetor produt WZTa is (n + p)k is (n + p)k additions and multipliation,as opposed to np to form Xa. If a satisfatory approximation an be found for small k,the savings an be impressive.The QR fatorization furnishes a redued-rank approximation. To see this, let uspartition the QR deomposition of X in the formX = (X(k)1 X(k)2) = (Q(k)1 Q(k)2) R(k)11 R(k)120 R(k)22 ! : (8.1)Multiplying out this deomposition, we haveX = Q(k)1 (R(k)11 R(k)12) +Q(k)2 (0 R(k)22):Dropping the seond term in this sum, we obtain our approximationX �= Q(k)1 (R(k)11 R(k)12)

The Gram{Shmidt algorithm 17The error in the approximation is the norm of the term we have ignored:kQ(k)2 R(k)22 k = kR(k)22 k:We an use either gsrow or mgsrow to ompute this deomposition. However, onlymgsrow provides the wherewithal to alulate kR(22)k k. To see this, note that from (4.2)and (8.1) we have Y (k)2 = X(k)2 �Q(k)1 R(k)12 = Q(k)2 R(k)22 ;It follows that kR(k)22 kF = kY (k)2 kF:Sine mgsrow omputes Y (k)2 in line 9 of (4.5), we an ompute its norm and hek ifthe urrent approximation is suÆiently aurate.Unfortunately, the partiular order in whih the olumns of X appear may not givea good redued-rank approximation to X. For example, onsider the matrixXbad = 0�1:0000 1:0000 0:00001:0000 1:0010 0:00000:0000 0:0000 1:00001A (8.2)The R-fator omputed by Matlab isR_bad =-1.4142e+00 -1.4149e+00 00 7.0711e-04 00 0 1.0000e+00 (8.3)From this we see that a rank two approximation toX obtained from the QR fatorizationwill have a error norm of one|orresponding to the element in the southeast orner ofR_bad. On the other hand, if we interhange the seond and third olumns of Xbad togive Xgood =0�1:0000 0:0000 1:00001:0000 0:0000 1:00100:0000 1:0000 0:00001Awe get the R-fatorR_good =-1.4142e+00 0 -1.4149e+000 -1.0000e+00 00 0 -7.0711e-04

18 The Gram{Shmidt algorithmThus a rank two approximation based on R_good will have an error norm of about7�10�4. If we interhange the seond and third olumns of this approximation, we getan equally good approximation to Xbad.Thus we wish to adaptively interhange olumns as the QR deomposition is om-puted to enhane the rank of X(k). The most ommon strategy for seleting a olumnis the following. Suppose that we have omputed X(k�1)1 and Y (k�1)2 . Then hoose theolumn for whih ky(k�1)j k (j = k; : : : ; p) is maximal. When this olumn is interhangedwith the kth olumn of Y (k�1)2 , the diagonal element will be rkk as large as possible, andthis tends to make R(k)11 well onditioned. In partiular, it would not allow the smallelement to appear as the seond diagonal element of R_bad in (8.3). Note that when weinterhange the olumns of Y (k�1)2 , we must also interhange the orresponding olumnsof R(k�1)12 .The funtion mgsp (p for `olumn pivoting') in Figure 8.1 implements this pivotingstrategy. The funtion takes as input the matrix X and a error tolerane, whih is usedto determine the rank of the approximation. Returned are the Q- and R-fators andthe rank of the approximation, along with an array of pivot olumns.The basi loop is the one in the funtion mgsrow but with two additions at the frontend. In the �rst the norms of the olumns of Y (k�1)2 are omputed and stored in thearray normy. From this the Frobenius norm of R22 is omputed and used to determineif the rank k-1 approximation already omputed is adequate. If it is, Q, R, and pvt aretrimmed, and the funtion returns.The seond addition determines the pivot olumn. Note that pvt(k) ontains theindex of the olumn that was swapped with olumn k. The swapping is atually doneon both Y (k�1)2 and R(k�1)22 , as mentioned above.The MGS step is unaltered. It ould easily be expanded to inlude reorthogonaliza-tion, and for most appliations probably should be. The main reason we have not doneso here, is to allow the ode to �t on a single page.When this algorithm is applied to Xbad in (8.2), with err = 0:01 the output isQ =7.0675e-01 07.0746e-01 00 1.0000e+00R =1.4149e+00 0 1.4142e+000 1.0000e+00 0rank =2pvt =

The Gram{Shmidt algorithm 191. funtion [Q, R, rank, pvt℄ = mgsp(X, err)2. [n,p℄ = size(X);3. Q = X;4. R = zeros(p,p);5. normy = zeros(1,p);6. pvt = zeros(1,p);7. for k=1:p%% Compute the norms of y and test for onvergene.%8. for j=k:p9. normy(j) = norm(Q(:,j));10. end11. if norm(normy(k:n)) <= err % same as norm(R22) <= err12. rank = k-1;13. Q = Q(:,1:rank); R = R(1:rank,:); pvt = pvt(1:rank);14. return;15. end%% Determine the pivot olumn and exhange.%16. [maxnormy, pvt(k)℄ = max(normy(k:p));17. pvt(k) = pvt(k) + k - 1;18. temp=Q(:,k); Q(:,k)=Q(:,pvt(k)); Q(:,pvt(k))=temp;19. temp=R(1:k-1,k); R(1:k-1,k)=R(1:k-1,pvt(k)); ...R(1:k-1,pvt(k))=temp;%% MGS step.%20. R(k,k) = norm(Q(:,k));21. Q(:,k) = Q(:,k)/R(k,k);22. R(k,k+1:p) = Q(:,k)'*Q(:,k+1:p);23. Q(:,k+1:p) = Q(:,k+1:p) - Q(:,k)*R(k,k+1:p);24. end25. rank = p;26. return Figure 8.1: MGS with olumn pivoting

20 The Gram{Shmidt algorithm2 3 0Note that to get Xgood in our example, we exhanged olumns 2 and 3 of Xbad. Thealgorithm msgp, on the other hand, makes two interhanges: �rst between olumns 1and 2 and then between olumns 2 and 3. The reason for the �rst interhange is thatolumn 2 is slightly larger than olumn 3. But in the end, the result is an approximationwith essentially the same error.The omputation of the norms inreases the operation ount by 12np2 additions andmultipliations over np2 for the basi algorithm without reorthogonalization or 2np2with reorthogonalization. Alternatively, the formulaky(k)j k2 = ky(k�1)j k2 � r2jkould be used to update the norms as the omputation proeeds. But this formula istriky to use in the presene of rounding error.We should stress that the pivoting strategy adopted here is not foolproof| thereare ounterexamples where it fails to �nd approximations of suitably low rank|eventhough suh exist. But these failures are very rare, and the alternatives are very om-pliated.9. EnvoiWe have seen that that there are twelve version of the Gram{Shmidt algorithm: las-sial and modi�ed versions that ompute R by rows, olumns, or inrementally, with orwithout reorthogonalization. The hoie of whih to use in a given situation will dependon the problem at hand|espeially on how the vetors xj are generated and what partsof R are needed at any given time. If no reorthogonalization is to be performed, thenMGS will help ontrol the loss of orthogonality. With reorthogonalization the balaneshifts to CGS.The alternative to Gram{Shmidt is orthogonal triangularization, whih forms Q asthe initial p olumns of a produt of ertain elementary orthogonal matries|eitherHouseholder transformations or plane rotations. In the ase of Householder transfor-mations, the produt is not expliitly omputed. Instead vetors from whih the trans-formations an be reovered are stored. Orthogonality to working auray is guaran-teed. Plane rotations are generally used on strutured matries where full Householdertransformations or Gram{Shmidt algorithms are inappropriate. Hene any omparisonomes down to Householder vs. Gram{Shmidt.For an n�p matrix X, the ratio of operations ounts of Householder to Gram-Shmidt is 1 � 13 pn . Thus when p = n, Householder triangularization has 23 the ountof Gram{Shmidt. But as n inreases, the ratio quikly approahes one. To guaranteeorthogonality with Gram{Shmidt, however, one must reorthogonalize, whih inreases

The Gram{Shmidt algorithm 21the ratio to two. Given these ratios and guaranteed orthogonality, one an ask why useGram{Shmidt methods at all. There are several answers.First, although it is easy to ode an inremental version of Householder triangular-ization (if you know how), none of the major linear algebra pakages provide softwareto do it. Consequently, Gram{Shmidt is preferred in orthogonalizing Krylov sequenesand their relatives.Seond, Householder triangularization represents Q in a oded form that is noteasy to manipulate. In fat, there are tasks that annot be done eÆiently, or even atall, without generating Q. Examples are omputing the diagonal elements of QQT orreomputing the fatorization after a row is appended to X. In these ases, Q must begenerated expliitly from the Householder transformations, whih puts it on a par withCGS with reorthogonalization.Third, Householder redution is subjet to subtle instabilities when the rows of Xvary widely in magnitude| instabilities that do not a�et the Gram{Shmidt algorithm.Finally, we have on�ned ourselves to the Eulidean inner produt uTv. The Gram-Shmidt an easily be adapted to oblique inner produts. Although there exist gener-alizations of Householder transformations to vetor spaes with oblique inner produts,there is no o�-the-shelf software supporting them.These reasons oupled with the basi simpliity of the Gram{Shmidt proess insurethat Gram{Shmidt in its several versions will remain a part of the general toolkit formatrix omputations.10. BibliographyBoth Gram and Shmidt were onerned with the orthogonalization of funtions ratherthan vetors. Gram [3℄ developed determinantal expressions for the orthogonalized se-quene and made the onnetion with least squares. Shmidt's algorithm [5℄ is essentiallylassial the lassial Gram{Shmidt algorithm in the ontext of integral equations.There is a large orpus on Gram{Shmidt. Fortunately, muh of it has been in-orporated, with historial omments, in general texts on numerial linear algebra; e.g.[1, 2, 6℄. These texts also disuss pivoting, orthogonal triangularization, and other topistouhed on in this paper.For more on oblique Householder transformations see [4℄.AknowledgementI am grateful to the Mathematial and Computational Sienes Division for their sup-port.

22 The Gram{Shmidt algorithmReferenes[1℄ �A. Bj�ork. Numerial Methods for Least Squares Problems. SIAM, Philadelphia,1996.[2℄ G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins UniversityPress, Baltimore, MD, seond edition, 1989.[3℄ J. P. Gram. �Uber die Entwiklung reeller Funtionen in Reihen mittelst der Methodeder kleinsten Quadrate. Journal f�ur die reine und angewandte Mathematik, 94:41{73,1883.[4℄ D. S. Makey, N. Makey, and F. Tisseur. G-reetors in salar produt spaes.Numerial Analysis Report 420, Manhester Center for Computational Mathematis,2003.[5℄ E. Shmidt. Zur Theorie der linearen und nihtlinearen Integralgleihungen. I Teil.Entwiklung willk�urlihen Funktionen nah System vorgeshriebener. Mathematis-he Annalen, 63:433{476, 1907.[6℄ G. W. Stewart. Matrix Algorithms I: Basi Deompositions. SIAM, Philadelphia,1998.

