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Most automatic bandwidth selection procedures for kernel density estimates require estimation
of quantities involving the density derivatives. Estimation of modes and inflexion points of den-
sities also require derivative estimates. The computational complexity of evaluating the density
derivative at M evaluation points given N sample points from the density is O(MN). In this
paper we propose a computationally efficient ε−exact approximation algorithm for the univariate
Gaussian kernel based density derivative estimation that reduces the computational complexity
from O(MN) to linear O(N + M). The constant depends on the desired arbitrary accuracy,
ε. We apply the density derivative evaluation procedure to estimate the optimal bandwidth for
kernel density estimation, a process that is often intractable for large data sets. For example for
N = M = 409, 600 points while the direct evaluation of the density derivative takes around 12.76
hours the fast evaluation requires only 65 seconds with an error of around 10−12. Algorithm de-
tails, error bounds, procedure to choose the parameters and numerical experiments are presented.
We demonstrate the speedup achieved on the bandwidth selection using the solve-the-equation
plug-in method. We also demonstrate that the proposed procedure can be extremely useful for
speeding up exploratory projection pursuit techniques.
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1. INTRODUCTION

Kernel density estimation/regression techniques [Wand and Jones 1995] are widely
used in various inference procedures in machine learning, data mining, pattern
recognition, and computer vision. Efficient use of these methods require the optimal
selection of the smoothing parameter called the bandwidth of the kernel. A plethora
of techniques have been proposed for data-driven bandwidth selection [Jones et al.
1996]. The most successful state of the art methods rely on the estimation of general
integrated squared density derivative functionals. This is the most computationally
intensive task, the computational cost being O(N2), in addition to the O(N2) cost
of computing the kernel density estimate. The core task is to efficiently compute an
estimate of the density derivative. The current most practically successful approach,
solve-the-equation plug-in method [Sheather and Jones 1991] involves the numerical
solution of a non-linear equation. Iterative methods to solve this equation will
involve repeated use of the density functional estimator for different bandwidths
which adds much further to the computational burden. We also point out that
estimation of the density derivatives also comes up in various other applications
like estimation of modes and inflexion points of densities [Fukunaga and Hostetler
1975] and estimation of the derivatives of the projection index in projection pursuit
algorithms [Huber 1985; Jones and Sibson 1987]. A good list of applications which
require the estimation of density derivatives can be found in [Singh 1977a].

The computational complexity of evaluating the density derivative at M eval-
uation points given N sample points from the density is O(MN). In this paper
we propose a computationally efficient ε − exact approximation algorithm for the
univariate Gaussian kernel based density derivative estimation that reduces the
computational complexity from O(MN) to linear O(N + M). The algorithm is
ε− exact in the sense that the constant hidden in O(N + M), depends on the de-
sired accuracy, which can be arbitrary. In fact for machine precision accuracy there
is no difference between the direct and the fast methods. The proposed method
can be viewed as an extension of the improved fast Gauss transform [Yang et al.
2003] proposed to accelerate the kernel density estimate.

The rest of the paper is organized as follows. In § 2 we introduce the kernel
density estimate and discuss the performance of the estimator. The kernel den-
sity derivative estimate is introduced in § 3. § 4 discusses the density functionals
which are used by most of the automatic bandwidth selection strategies. § 5 briefly
describes the different strategies for automatic optimal bandwidth selection. The
solve-the-equation plug-in method is described in detail. Our proposed fast method
is described in detail in § 6. Algorithm details, error bounds, procedure to choose
the parameters, and numerical experiments are presented. In § 7 we show the
speedup achieved for bandwidth estimation both on simulated and real data. In
§ 8 we also show how the proposed procedure can be used for speeding up pro-
jection pursuit techniques. § 9 finally concludes with a brief discussion on further
extensions.

2. KERNEL DENSITY ESTIMATION

A univariate random variable X on R has a density p if, for all Borel sets A of R,∫
A

p(x)dx = Pr[x ∈ A]. The task of density estimation is to estimate p from an
CS-TR-4774/UMIACS-TR-2005-73
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i.i.d. sample x1, . . . , xN drawn from p. The estimate p̂ : R × (R)N → R is called
the density estimate. The parametric approach to density estimation assumes a
functional form for the density, and then estimates the unknown parameters using
techniques like the maximum likelihood estimation. However unless the form of the
density is known a priori, assuming a functional form for a density very often leads
to erroneous inference. On the other hand nonparametric methods do not make any
assumption on the form of the underlying density. This is sometimes referred to as
’letting the data speak for themselves’ [Wand and Jones 1995]. The price to be paid
is a rate of convergence slower than 1/N , which is typical of parametric methods.
Some of the commonly used non-parametric estimators include histograms, kernel
density estimators, and orthogonal series estimators [Izenman 1991]. The histogram
is very sensitive to the placement of the bin edges and the asymptotic convergence
is much slower than kernel density estimators 1.

The most popular non-parametric method for density estimation is the kernel
density estimator (KDE) (also known as the Parzen window estimator [Parzen
1962]) given by

p̂(x) =
1

Nh

N∑

i=1

K

(
x− xi

h

)
, (1)

where K(u) is called kernel function and h = h(N) is called the bandwidth. The
bandwidth h is a scaling factor which goes to zero as N → 0. In order that p̂(x) is
a bona fide density, K(u) is required to satisfy the following two conditions:

K(u) ≥ 0,

∫

R

K(u)du = 1. (2)

The kernel function is essentially spreading a probability mass of 1/N associated
with each point about its neighborhood. The most widely used kernel is the
Gaussian of zero mean and unit variance 2.

K(u) =
1√
2π

e−u2/2. (3)

In this case the kernel density estimate can be written as

p̂(x) =
1

N
√

2πh2

N∑

i=1

e−(x−xi)
2/2h2

. (4)

2.1 Computation complexity

The computational cost of evaluating Eq. 4 at N points is O(N2), making it pro-
hibitively expensive. Different methods have been proposed to accelerate this sum.

If the source points are on an evenly spaced grid then we can evaluate the sum
at an evenly spaced grid exactly in O(N log N) using the fast Fourier transform

1The best rate of convergence of the MISE of kernel density estimate is of order N−4/5 while that
of the histogram is of the order N−2/3.
2The KDE is not very sensitive to the shape of the kernel. While the Epanechnikov kernel is
the optimal kernel, in the sense that it minimizes the MISE, other kernels are not that subop-
timal [Wand and Jones 1995]. The Epanechnikov kernel is not used here because it gives an
estimate having a discontinuous first derivative, because of its finite support.

CS-TR-4774/UMIACS-TR-2005-73
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(FFT). One of the earliest methods, especially proposed for univariate fast kernel
density estimation was based on this idea [Silverman 1982]. For irregularly spaced
data, the space is divided into boxes, and the data is assigned to the closest neigh-
boring grid points to obtain grid counts. The KDE is also evaluated at regular grid
points. For target points not lying on the the grid the value is obtained by doing
some sort of interpolation based on the values at the neighboring grid points. As a
result there is no guaranteed error bound for such kind of methods.

The Fast Gauss Transform(FGT) [Greengard and Strain 1991] is an approxima-
tion algorithm that reduces the computational complexity to O(N), at the expense
of reduced precision. The constant depends on the desired precision, dimensional-
ity of the problem, and the bandwidth. Yang et al. [Yang et al. 2003; Yang et al.
2005] presented an extension of the fast Gauss transform (the improved fast Gauss
transform or IFGT) that was suitable for higher dimensional problems and pro-
vides comparable performance in lower dimensions. The main contribution of the
current paper is the extension of the improved fast Gauss transform to accelerate
the kernel density derivative estimate, and solve the optimal bandwidth problem.

Another class of methods for such problems are dual-tree methods [Gray and
Moore 2001; 2003] which are based on space partitioning trees for both the source
and target points. Using the tree data structure distance bounds between nodes
can be computed. An advantage of the dual-tree methods is that they work for all
common kernel choices, not necessarily Gaussian.

2.2 Performance

In order to understand the performance of the KDE we need a measure of distance
between two densities. The commonly used criteria, which can be easily manipu-
lated is the L2 norm, also called as the integrated square error (ISE) 3. The ISE
between the estimate p̂(x) and the actual density p(x) is given by

ISE(p̂, p) = L2(p̂, p) =
∫

R

[p̂(x)− p(x)]2dx. (5)

The ISE depends on a particular realization of N points. The ISE can be averaged
over these realizations to get the mean integrated squared error (MISE) defined as

MISE(p̂, p) = E[ISE(p̂, p)] = E

[∫

R

[p̂(x)− p(x)]2dx

]

=
∫

R

E[{p̂(x)− p(x)}2]dx = IMSE(p̂, p), (6)

where IMSE is integrated mean squared error. The MISE or IMSE doesn’t depend
on the actual data-set as we take expectation. So this is a measure of the ‘average’
performance of the kernel density estimator, averaged over the support of the den-
sity and different realization of the points. The MISE for the KDE can be shown

3Other distance measures like mean integrated absolute error (based on the L1 distance [Devroye
and Lugosi 2000]), Kullback-Liebler divergence, and Hellinger distance are used. In this paper we
use only the L2 criterion.

CS-TR-4774/UMIACS-TR-2005-73
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to be ( see § 10 for a derivation)

MISE(p̂, p) =
1
N

∫

R

[
(K2

h ∗ p)(x)− (Kh ∗ p)2(x)
]
dx +

∫

R

[(Kh ∗ p)(x)− p(x)]2 dx,

(7)

where ∗ is the convolution operator and Kh(x) = (1/h)K(x/h). The dependence
of the MISE on the bandwidth h is not very explicit in the above expression. This
makes it difficult to interpret the influence of the bandwidth on the performance
of the estimator. An asymptotic large sample approximation for this expression is
usually derived via the Taylor’s series called as the AMISE, the A is for asymptotic.
Based on a certain assumptions4, the AMISE between the actual density and the
estimate can be shown to be

AMISE(p̂, p) =
1

Nh
R(K) +

1
4
h4µ2(K)2R(p

′′
), (8)

where

R(g) =
∫

R

g(x)2dx, , µ2(g) =
∫

R

x2g(x)dx, (9)

and p
′′

is the second derivative of the density p (See § 11 for a complete derivation.).
The first term in the expression 8 is the integrated variance and the second term is
the integrated squared bias. The bias is proportional to h4 whereas the variance is
proportional to 1/Nh, which leads to the well known bias-variance tradeoff.

Based on the AMISE expression the optimal bandwidth hAMISE can be obtained
by differentiating Eq. 8 w.r.t. bandwidth h and setting it to zero.

hAMISE =
[

R(K)
µ2(K)2R(p′′)N

]1/5

. (10)

However this expression cannot be used directly since R(p
′′
) depends on the second

derivative of the density p, which we are trying to estimate in the first place. We
need to use an estimate of R(p

′′
).

Substituting Eq. 10 in Eq. 8 the minimum AMISE that can be attained is

inf
h

AMISE(p̂, p) =
5
4

[
µ2(K)2R(K)4R(p

′′
)
]1/5

N−4/5. (11)

This expression shows that the best rate of convergence of the MISE of KDE is of
order N−4/5.

3. KERNEL DENSITY DERIVATIVE ESTIMATION

In order to estimate R(p
′′
) we will need an estimate of the density derivative. A

simple estimator for the density derivative can be obtained by taking the derivative
of the kernel density estimate p̂(x) defined earlier [Bhattacharya 1967; Schuster

4The second derivative p
′′
(x) is continuous, square integrable and ultimately monotone.

limN→∞ h = 0 and limN→∞Nh = ∞, i.e., as the number of samples N is increased h ap-
proaches zero at a rate slower than 1/N .The kernel function is assumed to be symmetric about
the origin (

R
R zK(z)dz = 0) and has finite second moment (

R
R z2K(z)dz < ∞).
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1969] 5. If the kernel K is differentiable r times then the rth density derivative
estimate p̂(r)(x) can be written as

p̂(r)(x) =
1

Nhr+1

N∑

i=1

K(r)

(
x− xi

h

)
, (12)

where K(r) is the rth derivative of the kernel K. The rth derivative of the Gaussian
kernel k(u) is given by

K(r)(u) = (−1)rHr(u)K(u) (13)

where Hr(u) is the rth Hermite polynomial. The Hermite polynomials are set of
orthogonal polynomials [Abramowitz and Stegun 1972] . The first few Hermite
polynomials are

H0(u) = 1, H1(u) = u, and H2(u) = u2 − 1.

Hence the density derivative estimate with the Gaussian kernel can be written as

p̂(r)(x) =
(−1)r

√
2πNhr+1

N∑

i=1

Hr

(
x− xi

h

)
e−(x−xi)

2/2h2
. (14)

3.1 Computational complexity

The computational complexity of evaluating the rth derivative of the density esti-
mate due to N points at M target locations is O(rNM).

3.2 Performance

Similar to the analysis done for KDE the AMISE for the kernel density derivative
estimate, under certain assumptions 6, can be shown to be (See § 12 for a complete
derivation)

AMISE(p̂(r), p(r)) =
R(K(r))
Nh2r+1

+
h4

4
µ2(K)2R(p(r+2)). (15)

It can be observed that the AMISE for estimating the rth derivative depends upon
the the (r + 2)th derivative of the true density. Differentiating Eq. 15 w.r.t. band-
width h and setting it to zero we obtain the optimal bandwidth hr

AMISE to estimate
the rth density derivative.

hr
AMISE =

[
R(K(r))(2r + 1)

µ2(K)2R(p(r+2))N

]1/2r+5

. (16)

Substituting Eq. 16 in the equation for AMISE, the minimum AMISE that can be
attained is

inf
h

AMISE(p̂(r), p(r)) = C
[
µ2(K)2R(K)4(2r+1)R(p

′′
)
]2r+1/2r+5

N−4/2r+5.

5Some better estimators which are not necessarily the pth order derivatives of the KDE have been
proposed [Singh 1977b].
6The (r + 2)th derivative p(r+2)(x) is continuous, square integrable and ultimately monotone.
limN→∞ h = 0 and limN→∞Nh2r+1 = ∞, i.e., as the number of samples N is increased h
approaches zero at a rate slower than 1/N2r+1. The kernel function is assumed to be symmetric
about the origin (

R
R zK(z)dz = 0) and has finite second moment (

R
R z2K(z)dz < ∞) .
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where C is a constant depending on r. This expression shows that the best rate of
convergence of the MISE of KDE of the derivative is of order N−4/2r+5. The rate
becomes slower for higher values of r, which says that estimating the derivative is
more difficult than estimating the density.

4. ESTIMATION OF DENSITY FUNCTIONALS

Rather than the actual density derivative methods for automatic bandwidth selec-
tion require the estimation of what are known as density functionals. The general
integrated squared density derivative functional is defined as

R(p(s)) =
∫

R

[
p(s)(x)

]2

dx. (17)

Using integration by parts, this can be written in the following form,

R(p(s)) = (−1)s

∫

R

p(2s)(x)p(x)dx. (18)

More specifically for even s we are interested in estimating density functionals of
the form,

Φr =
∫

R

p(r)(x)p(x)dx = E
[
p(r)(X)

]
. (19)

An estimator for Φr is,

Φ̂r =
1
N

N∑

i=1

p̂(r)(xi). (20)

where p̂(r)(xi) is the estimate of the rth derivative of the density p(x) at x = xi.
Using a kernel density derivative estimate for p̂(r)(xi) (Eq. 12) we have

Φ̂r =
1

N2hr+1

N∑

i=1

N∑

j=1

K(r)(
xi − xj

h
). (21)

It should be noted that computation of Φ̂r is O(rN2) and hence can be very
expensive if a direct algorithm is used.

4.1 Performance

The asymptotic MSE for the density functional estimator under certain assumptions
7 is as follows. ( See § 13 for a complete derivation.)

AMSE(Φ̂r,Φr) =
[

1
Nhr+1

K(r)(0) +
1
2
h2µ2(K)Φr+2

]2

+
2

N2h2r+1
Φ0R(K(r))

+
4
N

[∫
p(r)(y)2p(y)dy − Φ2

r

]
(22)

7The density p had k > 2 continuous derivatives which are ultimately monotone. The (r + 2)th

derivative p(r+2)(x) is continuous, square integrable and ultimately monotone. limN→∞ h = 0
and limN→∞Nh2r+1 = ∞, i.e., as the number of samples N is increased h approaches zero at
a rate slower than 1/N2r+1. The kernel function is assumed to be symmetric about the origin
(
R
R zK(z)dz = 0) and has finite second moment (

R
R z2K(z)dz < ∞) .
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The optimal bandwidth for estimating the density functional is chosen the make
the bias term zero. The optimal bandwidth is given by [Wand and Jones 1995]

gMSE =
[ −2K(r)(0)
µ2(K)Φr+2N

]1/r+3

. (23)

5. AMISE OPTIMAL BANDWIDTH SELECTION

For a practical implementation of KDE the choice of the bandwidth h is very
important. Small h leads to an estimator with small bias and large variance. Large
h leads to a small variance at the expense of increase in bias. The bandwidth h
has to be chosen optimally. Various techniques have been proposed for optimal
bandwidth selection. A brief survey can be found in [Jones et al. 1996] and [Wand
and Jones 1995]. The best known of these include rules of thumb, oversmoothing,
least squares cross-validation, biased cross-validation, direct plug-in methods, solve-
the-equation plug-in method, and the smoothed bootstrap.

5.1 Brief review of different methods

Based on the AMISE expression the optimal bandwidth hAMISE has the following
form,

hAMISE =
[

R(K)
µ2(K)2R(p′′)N

]1/5

. (24)

However this expression cannot be used directly since R(p
′′
) depends on the second

derivative of the density p, which we are trying to estimate in the first place.
The rules of thumb use an estimate of R(p

′′
) assuming that the data is generated

by some parametric form of the density (typically a normal distribution).
The oversmoothing methods rely on the fact that there is a simple upper bound

for the AMISE-optimal bandwidth for estimation of densities with a fixed value of
a particular scale measure. The least squares cross-validation directly minimize the
MISE based on a ”leave-one-out” kernel density estimator. The problem is that
the function to be minimized has fairly large number of local minima and also the
practical performance of this method is somewhat disappointing.

The biased cross-validation uses the AMISE instead of using the exact MISE
formula. This is more stable than the least squares cross-validation but has a large
bias.

The plug-in methods use an estimate of the density functional R(p
′′
) in Eq. 24.

However this is not completely automatic since estimation of R(p
′′
) requires the

specification of another pilot bandwidth g. This bandwidth for estimation of the
density functional is quite different from the the bandwidth h used for the kernel
density estimate. As discussed in Section 4 we can find an expression for the
AMISE-optimal bandwidth for the estimation of R(p

′′
). However this bandwidth

will depend on an unknown density functional R(p
′′′

). This problem will continue
since the optimal bandwidth for estimating R(p(s)) will depend on R(p(s+1)). The
usual strategy used by the direct plug-in methods is to estimate R(p(l)) for some
l, with bandwidth chosen with reference to a parametric family, usually a normal
density. This method is usually referred to as the l-stage direct plug-in method. As
the the number of stages l increases the bias of the bandwidth decreases, since the
CS-TR-4774/UMIACS-TR-2005-73
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dependence on the assumption of some parametric family decreases. However this
comes at the price of the estimate being more variable. There is no good method
for the choice of l, the most common choice being l = 2.

5.2 Solve-the-equation plug-in method

The most successful among all the current methods, both empirically and theoret-
ically, is the solve-the-equation plug-in method [Jones et al. 1996]. This method
differs from the direct plug-in approach in that the pilot bandwidth used to esti-
mate R(p

′′
) is written as a function of the kernel bandwidth h. We use the following

version as described in [Sheather and Jones 1991]. The AMISE optimal bandwidth
is the solution to the equation

h =

[
R(K)

µ2(K)2Φ̂4[γ(h)]N

]1/5

, (25)

where Φ̂4[γ(h)] is an estimate of Φ4 = R(p
′′
) using the pilot bandwidth γ(h), which

depends on the kernel bandwidth h. The bandwidth is chosen such that it minimizes
the asymptotic MSE for the estimation of Φ4 and is given by

gMSE =
[ −2K(4)(0)
µ2(K)Φ6N

]1/7

. (26)

Substituting for N from Eq. 24 gMSE can be written as a function of h as follows

gMSE =
[−2K(4)(0)µ2(K)Φ4

R(K)Φ6

]1/7

h
5/7
AMISE. (27)

This suggest that we set

γ(h) =

[
−2K(4)(0)µ2(K)Φ̂4(g1)

R(K)Φ̂6(g2)

]1/7

h5/7, (28)

where Φ̂4(g1) and Φ̂6(g2) are estimates of Φ4 and Φ6 using bandwidths g1 and g2

respectively.

Φ̂4(g1) =
1

N(N − 1)g5
1

N∑

i=1

N∑

j=1

K(4)(
xi − xj

g1
). (29)

Φ̂6(g2) =
1

N(N − 1)g7
2

N∑

i=1

N∑

j=1

K(6)(
xi − xj

g2
). (30)

The bandwidths g1 and g2 are chosen such that it minimizes the asymptotic MSE.

g1 =

[
−2K(4)(0)

µ2(K)Φ̂6N

]1/7

g2 =

[
−2K(6)(0)

µ2(K)Φ̂8N

]1/9

, (31)

where Φ̂6 and Φ̂8 are estimators for Φ6 and Φ8 respectively. We can use a similar
strategy for estimation of Φ6 and Φ8. However this problem will continue since the
optimal bandwidth for estimating Φr will depend on Φr+2. The usual strategy is

CS-TR-4774/UMIACS-TR-2005-73
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to estimate a Φr at some stage, using a quick and simple estimate of bandwidth
chosen with reference to a parametric family, usually a normal density. It has been
observed that as the the number of stages increases the variance of the bandwidth
increases. The most common choice is to use only two stages.

If p is a normal density with variance σ2 then for even r we can compute Φr

exactly [Wand and Jones 1995].

Φr =
(−1)r/2r!

(2σ)r+1(r/2)!π1/2
. (32)

An estimator of Φr will use an estimate σ̂2 of the variance. Based on this we can
write an estimator for Φ6 and Φ8 as follows.

Φ̂6 =
−15
16
√

π
σ̂−7, Φ̂8 =

105
32
√

π
σ̂−9. (33)

The two stage solve-the-equation method using the Gaussian kernel can be sum-
marized as follows.

(1) Compute an estimate σ̂ of the standard deviation σ.
(2) Estimate the density functionals Φ6 and Φ8 using the normal scale rule.

Φ̂6 =
−15
16
√

π
σ̂−7, Φ̂8 =

105
32
√

π
σ̂−9.

(3) Estimate the density functionals Φ4 and Φ6 using the kernel density estimators
with the optimal bandwidth based on the asymptotic MSE.

g1 =
[ −6√

2πΦ̂6N

]1/7

g2 =
[

30√
2πΦ̂8N

]1/9

Φ̂4(g1) =
1

N(N − 1)
√

2πg5
1

N∑

i=1

N∑

j=1

H4

(
xi − xj

g1

)
e−(xi−xj)

2/2g2
1 .

Φ̂6(g2) =
1

N(N − 1)
√

2πg7
2

N∑

i=1

N∑

j=1

H6

(
xi − xj

g2

)
e−(xi−xj)

2/2g2
2 .

(4) The bandwidth is the solution to the equation

h−
[

1

2
√

πΦ̂4[γ(h)]N

]1/5

= 0,

where

Φ̂4[γ(h)] =
1

N(N − 1)
√

2πγ(h)5

N∑

i=1

N∑

j=1

H4

(
xi − xj

γ(h)

)
e−(xi−xj)

2/2γ(h)2 ,

and

γ(h) =

[
−6
√

2Φ̂4(g1)

Φ̂6(g2)

]1/7

h5/7.
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This equation can be solved using any numerical routine like the Newton-
Raphson method.

The main computational bottleneck is the estimation of Φ which is of O(N2).

6. FAST DENSITY DERIVATIVE ESTIMATION

The rth kernel density derivative estimate using the Gaussian kernel of bandwidth
h is given by

p̂(r)(x) =
(−1)r

√
2πNhr+1

N∑

i=1

Hr

(
x− xi

h

)
e−(x−xi)

2/2h2
. (34)

Let us say we have to estimate the density derivative at M target points, {yj ∈
R}M

j=1. More generally we need to evaluate the following sum,

Gr(yj) =
N∑

i=1

qiHr

(
yj − xi

h1

)
e−(yj−xi)

2/h2
2 j = 1, . . . , M, (35)

where {qi ∈ R}N
i=1 will be referred to as the source weights, h1 ∈ R+ is the

bandwidth of the Gaussian and h2 ∈ R+ is the bandwidth of the Hermite. The
computational complexity of evaluating Eq. 35 is O(rNM). The fast algorithm
is based on separating the xi and yj in the Gaussian via the factorization of the
Gaussian by Taylor series and retaining only the first few terms so that the error
due to truncation is less than the desired error. The Hermite function is factor-
ized via the binomial theorem. For any given ε > 0 the algorithm computes an
approximation Ĝr(yj) such that

∣∣∣∣∣
Ĝr(yj)−Gr(yj)

Q

∣∣∣∣∣ ≤ ε, (36)

where Q =
∑N

i=1 |qi|. We call Ĝr(yj) an ε− exact approximation to Gr(yj).

6.1 Factorization of the Gaussian

For any point x∗ ∈ R the Gaussian can be written as,

e−‖yj−xi‖2/h2
2 = e−‖(yj−x∗)−(xi−x∗)‖2/h2

2

= e−‖xi−x∗‖2/h2
2e−‖yj−x∗‖2/h2

2e2(xi−x∗)(yj−x∗)/h2
2 . (37)

In Eq. 37 the first exponential e−‖xi−x∗‖2/h2
depends only on the source coordinates

xi. The second exponential e−‖yj−x∗‖2/h2
depends only on the target coordinates

yj . However for the third exponential e2(yj−x∗)(xi−x∗)/h2
the source and target are

entangled. This entanglement is separated using the Taylor’s series expansion.
The factorization of the Gaussian and the evaluation of the error bounds are

based on the Taylor’s series and Lagrange’s evaluation of the remainder which we
state here without the proof.

Theorem 6.1. [Taylor’s Series] For any point x∗ ∈ R, let I ⊂ R be an open set
containing the point x∗. Let f : I → R be a function which is n times differentiable
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on I. Then for any x ∈ I, there is a θ ∈ R with 0 < θ < 1 such that

f(x) =
n−1∑

k=0

1
k!

(x− x∗)kf (k)(x∗) +
1
n!

(x− x∗)nf (n)(x∗ + θ(x− x∗)), (38)

where f (k) is the kth derivative of the function f .

Based on the above theorem we have the following corollary.

Corollary 6.1. Let Brx
(x∗) be a open interval of radius rx with center x∗ ∈ R,

i.e., Brx
(x∗) = {x : ‖x− x∗‖ < rx}. Let h ∈ R+ be a positive constant and y ∈ R

be a fixed point such that ‖y−x∗‖ < ry. For any x ∈ Brx(x∗) and any non-negative
integer p the function f(x) = e2(x−x∗)(y−x∗)/h2

can be written as

f(x) = e2(x−x∗)(y−x∗)/h2
=

p−1∑

k=0

2k

k!

(
x− x∗

h

)k (
y − x∗

h

)k

+ Rp(x), (39)

and the residual

Rp(x) ≤ 2p

p!

(‖x− x∗‖
h

)p (‖y − x∗‖
h

)p

e2‖x−x∗‖‖y−x∗‖/h2
.

<
2p

p!

(rxry

h2

)p

e2rxry/h2
. (40)

Proof. Let us define a new function g(x) = e2[x(y−x∗)]/h2
. Using the result

g(k)(x∗) =
2k

hk
e2[x∗(y−x∗)]/h2

(
y − x∗

h

)k

(41)

and Theorem 6.1, we have for any x ∈ Brx(x∗) there is a θ ∈ R with 0 < θ < 1
such that

g(x) = e2[x∗(y−x∗)]/h2

{
p−1∑

k=0

2k

k!

(
x− x∗

h

)k (
y − x∗

h

)k

+
2p

p!

(
x− x∗

h

)p (
y − x∗

h

)p

e2θ[(x−x∗).(y−x∗)]/h2
}

.

Hence

f(x) = e2(x−x∗)(y−x∗)/h2
=

p−1∑

k=0

2k

k!

(
x− x∗

h

)k (
y − x∗

h

)k

+ Rp(x),

where,

Rp(x) =
2p

p!

(
x− x∗

h

)p (
y − x∗

h

)p

e2θ[(x−x∗)(y−x∗)]/h2
.
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The remainder is bounded as follows.

Rp(x) ≤ 2p

p!

(‖x− x∗‖
h

)p (‖y − x∗‖
h

)p

e2θ‖x−x∗‖‖y−x∗‖/h2
,

≤ 2p

p!

(‖x− x∗‖
h

)p (‖y − x∗‖
h

)p

e2‖x−x∗‖‖y−x∗‖/h2
[Since 0 < θ < 1],

<
2p

p!

(rxry

h2

)p

e2rxry/h2
[Since ‖x− x∗‖ < rx and ‖y − x∗‖ < ry].

Using Corollary 6.1 the Gaussian can now be factorized as

e−‖yj−xi‖2/h2
2 =

p−1∑

k=0

2k

k!

[
e−‖xi−x∗‖2/h2

2

(
xi − x∗

h2

)k
][

e−‖yj−x∗‖2/h2
2

(
yj − x∗

h2

)k
]

+ errorp.

(42)

where,

errorp ≤ 2p

p!

(‖xi − x∗‖
h2

)p (‖yj − x∗‖
h2

)p

e−(‖xi−x∗‖−‖yj−x∗‖)2/h2
2 . (43)

6.2 Factorization of the Hermite polynomial

The rth Hermite polynomial can be written as [Wand and Jones 1995]

Hr(x) =
br/2c∑

l=0

alx
r−2l,where al =

(−1)lr!
2ll!(r − 2l)!

.

Hence,

Hr

(
yj − xi

h1

)
=
br/2c∑

l=0

al

(
yj − x∗

h1
− xi − x∗

h1

)r−2l

.

Using the binomial theorem (a + b)n =
∑n

m=0

(
n
m

)
ambn−m, the xi and yj can be

separated as follows.

(
yj − x∗

h1
− xi − x∗

h1

)r−2l

=
r−2l∑
m=0

(−1)m

(
r − 2l

m

)(
xi − x∗

h1

)m (
yj − x∗

h1

)r−2l−m

.

Substituting in the previous equation we have

Hr

(
yj − xi

h1

)
=
br/2c∑

l=0

r−2l∑
m=0

alm

(
xi − x∗

h1

)m (
yj − x∗

h1

)r−2l−m

(44)

where,

alm =
(−1)l+mr!

2ll!m!(r − 2l −m)!
. (45)
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6.3 Regrouping of the terms

Using Eq. 42 and 44, Gr(yj) after ignoring the error terms can be approximated
as

Ĝr(yj) =
p−1∑

k=0

br/2c∑

l=0

r−2l∑
m=0

alm

[
2k

k!

N∑

i=1

qie
−‖xi−x∗‖2/h2

2

(
xi − x∗

h2

)k (
xi − x∗

h1

)m
]

[
e−‖yj−x∗‖2/h2

2

(
yj − x∗

h2

)k (
yj − x∗

h1

)r−2l−m
]

=
p−1∑

k=0

br/2c∑

l=0

r−2l∑
m=0

almBkme−‖yj−x∗‖2/h2
2

(
yj − x∗

h2

)k (
yj − x∗

h1

)r−2l−m

where

Bkm =
2k

k!

N∑

i=1

qie
−‖xi−x∗‖2/h2

2

(
xi − x∗

h2

)k (
xi − x∗

h1

)m

.

The coefficients Bkm can be evaluated separately in O(prN). Evaluation of Ĝr(yj)
at M points is O(pr2M). Hence the computational complexity has reduced from
the quadratic O(rNM) to the linear O(prN + pr2M).

6.4 Space subdivision

Thus far, we have used the Taylor’s series expansion about a certain point x∗.
However if we use the same x∗ for all the points we typically would require very
high truncation number p since the Taylor’s series gives good approximation only
in a small open interval around x∗. We uniformly sub-divide the space into K
intervals of length 2rx. The N source points are assigned into K clusters, Sn for
n = 1, . . . , K with cn being the center of each cluster. The aggregated coefficients
are now computed for each cluster and the total contribution from all the clusters
is summed up.

Ĝr(yj) =
K∑

n=1

p−1∑

k=0

br/2c∑

l=0

r−2l∑
m=0

almBn
kme−‖yj−cn‖2/h2

2

(
yj − cn

h2

)k (
yj − cn

h1

)r−2l−m

(46)

where,

Bn
km =

2k

k!

∑

xi∈Sn

qie
−‖xi−x∗‖2/h2

2

(
xi − x∗

h2

)k (
xi − x∗

h1

)m

. (47)

6.5 Decay of the Gaussian

Since the Gaussian decays very rapidly a further speedup is achieved if we ignore
all the sources belonging to a cluster if the cluster is greater than a certain distance
from the target point, i.e., ‖yj − cn‖ > ry. The cluster cutoff radius ry depends on
the desired error ε. Substituting h1 = h and h2 =

√
2h we have

Ĝr(yj) =
∑

‖yj−cn‖≤ry

p−1∑

k=0

br/2c∑

l=0

r−2l∑
m=0

almBn
kme−‖yj−cn‖2/2h2

(
yj − cn

h

)k+r−2l−m

(48)
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where,

Bn
km =

1
k!

∑

xi∈Sn

qie
−‖xi−x∗‖2/2h2

(
xi − x∗

h

)k+m

. (49)

6.6 Computational and space complexity

Computing the coefficients Bn
km for all the clusters is O(prN). Evaluation of Ĝr(yj)

at M points is O(npr2M), where n if the maximum number of neighbor clusters
which influence yj . Hence the total computational complexity is O(prN +npr2M).
Assuming N = M the total computational complexity is O(cN) where the constant
c = pr + npr2 depends on the desired error, the bandwidth, and r. For each
cluster we need to store all the pr coefficients. Hence the storage needed is of
O(prK + N + M).

6.7 Error bounds and choosing the parameters

Given any ε > 0, we want to choose the following parameters, K (the number of
intervals), ry (the cut off radius for each cluster), and p (the truncation number)
such that for any target point yj∣∣∣∣∣

Ĝr(yj)−Gr(yj)
Q

∣∣∣∣∣ ≤ ε, (50)

where Q =
∑N

i=1 |qi|. Let us define ∆ij to be the point wise error in Ĝr(yj)
contributed by the ith source xi. We now require that

|Ĝr(yj)−Gr(yj)| =
∣∣∣∣∣

N∑

i=1

∆ij

∣∣∣∣∣ ≤
N∑

i=1

|∆ij | ≤
N∑

i=1

|qi|ε. (51)

One way to achieve this is to let

|∆ij | ≤ |qi|ε ∀i = 1, . . . , N.

We choose this strategy because it helps us to get tighter bounds. Let cn be the
center of the cluster to which xi belongs. There are two different ways in which a
source can contribute to the error. The first is due to ignoring the cluster Sn if it
is outside a given radius ry from the target point yj . In this case,

∆ij = qiHr

(
yj − xi

h

)
e−‖yj−xi‖2/2h2

. (52)

For all clusters which are within a distance ry from the target point the error is due
to the truncation of the Taylor’s series after order p − 1. From Eqs. 43 and using
the fact that h1 = h and h2 =

√
2h we have,

∆ij ≤ qi

p!
Hr

(
yj − xi

h

)(‖xi − cn‖
h

)p (‖yj − cn‖
h

)p

e−(‖xi−cn‖−‖yj−cn‖)2/2h2
.

(53)

6.7.1 Choosing the cut off radius. From Eq. 52 we have∣∣∣∣Hr

(
yj − xi

h

)∣∣∣∣ e−‖yj−xi‖2/2h2 ≤ ε (54)
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Fig. 1. The error at yj due to source xi, i.e., ∆ij [Eq. 62] as a function of ‖yj − cn‖ for different
values of p and for h = 0.1 and r = 4. The error increases as a function of ‖yj − cn‖, reaches a
maximum and then starts decreasing. The maximum is marked as ’*’. qi = 1 and ‖xi−cn‖ = 0.1.

We use the following inequality to bound the Hermite polynomial [Baxter and
Roussos 2002].

∣∣∣∣Hr

(
yj − xi

h

)∣∣∣∣ ≤
√

r!e‖yj−xi‖2/4h2
. (55)

Substituting this bound in Eq. 54 we have

e−‖yj−xi‖2/4h2 ≤ ε/
√

r!. (56)

This implies that ‖yj −xi‖ > 2h
√

ln (
√

r!/ε). Using the reverse triangle inequality,
‖a− b‖ ≥

∣∣‖a‖−‖b‖
∣∣, and the fact that ‖yj − cn‖ > ry and ‖xi− cn‖ ≤ rx, we have

‖yj − xi‖ = ‖(yj − cn)− (xi − cn)‖
≥ ∣∣‖(yj − cn)‖ − ‖(xi − cn)‖∣∣
>

∣∣ry − rx

∣∣ (57)

So in order that the error due to ignoring the faraway clusters is less than |qi|ε we
have to choose ry such that

∣∣ry − rx

∣∣ > 2h

√
ln (
√

r!/ε). (58)

If we choose ry > rx then,

ry > rx + 2h

√
ln (
√

r!/ε). (59)

Let R be the maximum distance between any source and target point. The we
choose the cutoff radius as

ry > rx + min
(

R, 2h

√
ln (
√

r!/ε)
)

. (60)
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6.7.2 Choosing the truncation number. For all sources for which ‖yj − ck‖ ≤ ry

we have

∆ij ≤ qi

p!
Hr

(
yj − xi

h

)(‖xi − cn‖
h

)p (‖yj − cn‖
h

)p

e−(‖xi−cn‖−‖yj−cn‖)2/2h2
.

(61)

Using the bound on the Hermite polynomial (Eq. 55) this can be written as

|∆ij | ≤ |qi|
√

r!
p!

(‖xi − cn‖
h

)p (‖yj − cn‖
h

)p

e−(‖xi−cn‖−‖yj−cn‖)2/4h2
.

(62)

For a given source xi we have to choose p such that |∆ij | ≤ |qi|ε. ∆ij depends
both on distance between the source and the cluster center, i.e., ‖xi − cn‖ and the
distance between the target and the cluster center, i.e., ‖yj − cn‖. The speedup
is achieved because at each cluster Sn we sum up the effect of all the sources. As
a result we do not have a knowledge of ‖yj − cn‖. So we will have to bound the
right hand side of Eq. 62, such that it is independent of ‖yj − cn‖. Fig. 1 shows
the error at yj due to source xi, i.e., |∆ij | [Eq. 62] as a function of ‖yj − cn‖ for
different values of p and for h = 0.1 and r = 4. The error increases as a function
of ‖yj − cn‖, reaches a maximum and then starts decreasing. The maximum is
attained at (obtained by taking the first derivative of the R.H.S. of Eq. 62 and
setting it to zero),

‖yj − cn‖∗ =
‖xi − cn‖+

√
‖xi − cn‖2 + 8ph2

2
(63)

Hence we choose p such that,

|∆ij |
∣∣
[‖yj−cn‖=‖yj−cn‖∗] ≤ |qi|ε. (64)

In case ‖yj − cn‖∗ > ry we need to choose p based on ry, since ∆ij will be much
lower there. Hence out strategy for choosing p is (we choose rx = h/2.),

|∆ij |
∣∣
[‖yj−cn‖=min (‖yj−cn‖∗,ry), ‖xi−cn‖=h/2] ≤ |qi|ε, (65)

6.8 Numerical experiments

In this section we present some numerical studies of the speedup and error as a
function of the number of data points, the bandwidth h, the order r, and the
desired error ε. The algorithms were programmed in C++ and was run on a 1.6
GHz Pentium M processor with 512Mb of RAM.

Figure 2 shows the running time and the maximum absolute error relative to Q for
both the direct and the fast methods as a function of N = M . The bandwidth was
h = 0.1 and the order of the derivative was r = 4. The source and the target points
were uniformly distributed in the unit interval. We see that the running time of the
fast method grows linearly as the number of sources and targets increases, while
that of the direct evaluation grows quadratically. We also observe that the error is
way below the desired error thus validating our bound. However the bound is not
very tight. Figure 3 shows the tradeoff between precision and speedup. An increase
in speedup is obtained at the cost of reduced accuracy. Figure 4 shows the results
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Fig. 2. (a) The running time in seconds and (b) maximum absolute error relative to Q for the direct
and the fast methods as a function of N . N = M source and the target points were uniformly
distributed in the unit interval. For N > 25600 the timing results for the direct evaluation were
obtained by evaluating the result at M = 100 points and then extrapolating. [h = 0.1, r = 4, and
ε = 10−6.]

as a function of bandwidth h. Better speedup is obtained at larger bandwidths.
Figure 5 shows the results for different orders of the density derivatives.

7. SPEEDUP ACHIEVED FOR BANDWIDTH ESTIMATION

The solve-the-equation plug-in method of [Jones et al. 1996] was implemented in
MATLAB with the core computational task of computing the density derivative
written in C++.

7.1 Synthetic data

We demonstrate the speedup achieved on the mixture of normal densities used by
Marron and Wand [Marron and Wand 1992]. The family of normal mixture densities
is extremely rich and, in fact any density can be approximated arbitrarily well by
a member of this family. Fig. 6 shows the fifteen densities which were used by
the authors in [Marron and Wand 1992] as a typical representative of the densities
likely to be encountered in real data situations. We sampled N = 50, 000 points
from each density. The AMISE optimal bandwidth was estimated both using the
direct methods and the proposed fast method. Table I shows the speedup achieved
and the absolute relative error. Fig. 6 shows the actual density and the estimated
density using the optimal bandwidth estimated using the fast method.

7.2 Real data

We used the Adult database from the UCI machine learning repository [Newman
et al. 1998]. The database extracted from the census bureau database contains
32,561 training instances with 14 attributes per instance. Of the 14 attributes
6 are continuous and 8 nominal. Table II shows the speedup achieved and the
absolute relative error for two of the continuous attributes.
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Fig. 3. (a) The speedup achieved and (b) maximum absolute error relative to Q for the direct and
the fast methods as a function of ε. N = M = 50, 000 source and the target points were uniformly
distributed in the unit interval. [h = 0.1 and r = 4]
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Fig. 4. (a) The running time in seconds and (b) maximum absolute error relative to Q for the
direct and the fast methods as a function of h. N = M = 50, 000 source and the target points
were uniformly distributed in the unit interval. [ε = 10−6 and r = 4]

8. PROJECTION PURSUIT

Projection Pursuit (PP) is an exploratory technique for visualizing and analyzing
large multivariate data-sets [Friedman and Tukey 1974; Huber 1985; Jones and
Sibson 1987]. The idea of projection pursuit is to search for projections from high-
to low-dimensional space that are most interesting. These projections can then be
used for other nonparametric fitting and other data-analytic purposes The conven-
tional dimension reduction techniques like principal component analysis looks for
a projection that maximizes the variance. The idea of PP is to look for projections
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Fig. 5. (a) The running time in seconds and (b) maximum absolute error relative to Q for the
direct and the fast methods as a function of r. N = M = 50, 000 source and the target points
were uniformly distributed in the unit interval. [ε = 10−6 and h = 0.1]

Table I. The bandwidth estimated using the solve-the-equation plug-in method for the fifteen
normal mixture densities of Marron and Wand. hdirect and hfast are the bandwidths estimated
using the direct and the fast methods respectively. The running time in seconds for the direct
and the fast methods are shown.The absolute relative error is defined as |hdirect−hfast/hdirect|.
In the study N = 10, 000 points were sampled from the corresponding densities. For the fast
method we used ε = 10−3.

Density hdirect hfast Tdirect (sec) Tfast (sec) Speedup Abs. Relative Error

1 0.122213 0.122215 4182.29 64.28 65.06 1.37e-005
2 0.082591 0.082592 5061.42 77.30 65.48 1.38e-005
3 0.020543 0.020543 8523.26 101.62 83.87 1.53e-006
4 0.020621 0.020621 7825.72 105.88 73.91 1.81e-006
5 0.012881 0.012881 6543.52 91.11 71.82 5.34e-006
6 0.098301 0.098303 5023.06 76.18 65.93 1.62e-005
7 0.092240 0.092240 5918.19 88.61 66.79 6.34e-006
8 0.074698 0.074699 5912.97 90.74 65.16 1.40e-005
9 0.081301 0.081302 6440.66 89.91 71.63 1.17e-005
10 0.024326 0.024326 7186.07 106.17 67.69 1.84e-006
11 0.086831 0.086832 5912.23 90.45 65.36 1.71e-005
12 0.032492 0.032493 8310.90 119.02 69.83 3.83e-006
13 0.045797 0.045797 6824.59 104.79 65.13 4.41e-006
14 0.027573 0.027573 10485.48 111.54 94.01 1.18e-006
15 0.023096 0.023096 11797.34 112.57 104.80 7.05e-007

that maximize other measures of interestingness, like non-normality, entropy etc.
The PP algorithm for finding the most interesting one-dimensional subspace is as
follows.

(1) Given N data points in a d dimensional space (centered and scaled), {xi ∈
Rd}N

i=1, project each data point onto the direction vector a ∈ Rd, i.e., zi =
aT xi.
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Fig. 6. The fifteen normal mixture densities of Marron and Wand. The solid line corresponds
to the actual density while the dotted line is the estimated density using the optimal bandwidth
estimated using the fast method.
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Table II. Optimal bandwidth estimation for five continuous attributes for the Adult database
from the UCI machine learning repository. The database contains 32561 training instances. The
bandwidth was estimated using the solve-the-equation plug-in method. hdirect and hfast are the
bandwidths estimated using the direct and the fast methods respectively. The running time in
seconds for the direct and the fast methods are shown. The absolute relative error is defined as
|hdirect − hfast/hdirect|. For the fast method we used ε = 10−3.

Attribute hdirect hfast Tdirect (sec) Tfast (sec) Speedup Error

Age 0.860846 0.860856 4679.03 66.42 70.45 1.17e-005
fnlwgt 4099.564359 4099.581141 4637.09 68.83 67.37 4.09e-006

(2) Compute the univariate nonparametric kernel density estimate, p̂, of the pro-
jected points zi.

(3) Compute the projection index I(a) based on the density estimate.
(4) Locally optimize over the the choice of a, to get the most interesting projection

of the data.
(5) Repeat from a new initial projection to get a different view.

The projection index is designed to reveal specific structure in the data, like clusters,
outliers, or smooth manifolds. Some of the commonly used projection indices are
the Friedman-Tukey index [Friedman and Tukey 1974], the entropy index [Jones
and Sibson 1987], and the moment index. The entropy index based on Rényi’s
order-1 entropy is given by

I(a) =
∫

p(z) log p(z)dz. (66)

The density of zero mean and unit variance which uniquely minimizes this is the
standard normal density. Thus the projection index finds the direction which is
most non-normal.In practice we need to use an estimate p̂ of the the true density p,
for example the kernel density estimate using the Gaussian kernel. Thus we have
an estimate of the entropy index as follows.

Î(a) =
∫

log p̂(z)p(z)dz = E [log p̂(z)]

=
1
N

N∑

i=1

log p̂(zi) =
1
N

N∑

i=1

log p̂(aT xi). (67)

The entropy index Î(a) has to be optimized over the d-dimensional vector a subject
to the constraint that ‖a‖ = 1. The optimization function will require the gradient
of the objective function. For the index defined above the gradient can be written
as

d

da
[Î(a)] =

1
N

N∑

i=1

p̂′(aT xi)
p̂(aT xi)

xi. (68)

For the PP the computational burden is greatly reduced if we use the proposed fast
method. The computational burden is reduced in the following three instances.

(1) Computation of the kernel density estimate.
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Fig. 7. The estimated density using the optimal bandwidth estimated using the fast method, for
two of the continuous attributes in the Adult database from the UCI machine learning repository.
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Fig. 8. (a) The original image. (b) The centered and scaled RGB space. Each pixel in the image
is a point in the RGB space. (c) KDE of the projection of the pixels on the most interesting
direction found by projection pursuit. (d) The assignment of the pixels to the three modes in the
KDE.

(2) Estimation of the optimal bandwidth.
(3) Computation of the first derivative of the kernel density estimate, which is

required in the optimization procedure.

Fig. 8 shows an example of the PP algorithm on a image. Fig. 8(a) shows the
original image of the hand with a ring against a background. Perceptually the
image has three distinct regions, the hand, the ring, and the background. Each
pixel is represented as a point in a three dimensional RGB space. Fig. 8(b) shows
the the presence of three clusters in the RGB space. We ran the PP algorithm on
this space. Fig. 8(c) shows the KDE of the points projected on the most interesting
direction. This direction is clearly able to distinguish the three clusters. Fig. 8(d)
shows the segmentation where each pixel is assigned to the mode nearest to it.

9. CONCLUSIONS

We proposed an fast ε − exact algorithm for kernel density derivative estimation
which reduced the computational complexity from O(N2) to O(N). We demon-
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strated the speedup achieved for optimal bandwidth estimation both on simulated
as well as real data. As an example we demonstrated how to potentially speedup
the projection pursuit algorithm. We focussed on the univariate case in the cur-
rent paper since the bandwidth selection procedures for the univariate case are
pretty mature. Bandwidth selection for the multivariate case is a field of very ac-
tive research [Wand and Jones 1994]. Our future work would include the relatively
straightforward but more involved extension of the current procedure to handle
higher dimensions. As pointed out earlier many applications other than bandwidth
estimation require derivative estimates. We hope that our fast computation scheme
should benefit all the related applications. The C++ code is available for academic
use by contacting the first author.
10. APPENDIX 1 : MISE FOR KERNEL DENSITY ESTIMATORS

First note that MISE=IMSE.

MISE(p̂, p) = E

[∫

R

[p̂(x)− p(x)]2dx

]
=

∫

R

E[p̂(x)− p(x)]2dx = IMSE(p̂, p).

(69)

The mean square error (MSE) can be decomposed into variance and squared bias
of the estimator.

MSE(p̂, p, x) = E[p̂(x)− p(x)]2 = V ar[p̂(x)] + (E[p̂(x)]− p(x))2. (70)

The kernel density estimate p̂(x) is given by

p̂(x) =
1

Nh

N∑

i=1

K(
x− xi

h
) =

1
N

N∑

i=1

Kh(x− xi),

where Kh(x) = (1/h)K(x/h).

10.1 Bias

The mean of the estimator can be written as

E[p̂(x)] =
1
N

N∑

i=1

E[Kh(x− xi)] = E[Kh(x−X)] =
∫

R

Kh(x− y)p(y)dy. (71)

Using the convolution operator ∗ we have

E[p̂(x)]− p(x) = (Kh ∗ p)(x)− p(x). (72)

The bias is the difference between the smoothed version (using the kernel) of the
density and the actual density.

10.2 Variance

The variance of the estimator can be written as

V ar[p̂(x)] =
1
N

V ar[Kh(x−X)] =
1
N

(E[K2
h(x−X)]− E[Kh(x−X)]2). (73)

Using Eq. 71 we have the following expression for the variance.

V ar[p̂(x)] =
1
N

[(K2
h ∗ p)(x)− (Kh ∗ p)2(x)]. (74)
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10.3 MSE

Using Eq. 72 and Eq. 74 the MSE at a point x can be written as,

MSE(p̂, p, x) =
1
N

[
(K2

h ∗ p)(x)− (Kh ∗ p)2(x)
]
+ [(Kh ∗ p)(x)− p(x)]2 . (75)

10.4 MISE

Since MISE=IMSE we have,

MISE(p̂, p) =
1
N

∫

R

[
(K2

h ∗ p)(x)− (Kh ∗ p)2(x)
]
dx +

∫

R

[(Kh ∗ p)(x)− p(x)]2 dx.

(76)

The dependence of the MISE on the bandwidth h is not very explicit in the above
expression. This makes it difficult to interpret the influence of the bandwidth on
the performance of the estimator. An asymptotic approximation for this expression
is usually derived called as the AMISE.

11. APPENDIX 2 : ASYMPTOTIC MISE FOR KERNEL DENSITY ESTIMATORS

In order to derive an large sample approximation to MISE we make the following
assumptions on the density p, the bandwidth h, and the kernel K.

(1) The second derivative p
′′
(x) is continuous, square integrable and ultimately

monotone 8.

(2) limN→∞ h = 0 and limN→∞Nh = ∞, i.e., as the number of samples N is
increased h approaches zero at a rate slower than 1/N .

(3) In order that p̂(x) is a valid density we assume K(z) ≥ 0 and
∫
R

K(z)dz = 1.
The kernel function is assumed to be symmetric about the origin (

∫
R

zK(z)dz =
0) and has finite second moment (

∫
R

z2K(z)dz < ∞) .

11.1 Bias

From Eq. 71 and a change of variables we have

E[p̂(x)] = (Kh ∗ p)(x) =
∫

R

Kh(x− y)p(y)dy =
∫

R

K(z)p(x− hz)dz. (77)

Using Taylor’s series p(x− hz) can be expanded as

p(x− hz) = p(x)− hzp
′
(x) +

1
2
h2z2p

′′
(x) + o(h2). (78)

Hence

E[p̂(x)] = p(x)
∫

R

K(z)dz − hp
′
(x)

∫

R

zK(z)dz +
1
2
h2p

′′
(x)

∫

R

z2K(z)dz + o(h2).

(79)

8An ultimately monotone function is one that is monotone over both (−∞,−M) and (M,∞) for
some M > 0.

CS-TR-4774/UMIACS-TR-2005-73



26 · Raykar and Duraiswami

From Assumption 3 we have,
∫

R

K(z)dz = 1
∫

R

zK(z)dz = 0

µ2(K) =
∫

R

z2K(z)dz < ∞ (80)

Hence

E[p̂(x)]− p(x) =
1
2
h2µ2(K)p

′′
(x) + o(h2). (81)

The KDE is asymptotically unbiased. The bias is directly proportional to the value
of the second derivative of the density function, i.e., the curvature of the density
function.

11.2 Variance

From Eq. 74 and a change of variables we have

V ar[p̂(x)] =
1
N

[(K2
h ∗ p)(x)− (Kh ∗ p)2(x)]

=
1
N

[∫

R

K2
h(x− y)p(y)dy

]
− 1

N

[∫

R

Kh(x− y)p(y)dy

]2

=
1

Nh

[∫

R

K2(z)p(x− hz)dz

]
− 1

N

[∫

R

K(z)p(x− hz)dz

]2

(82)

Using Taylor’s series p(x− hz) can be expanded as

p(x− hz) = p(x) + o(1). (83)

We need only the first term because of the factor 1/N . Hence

V ar[p̂(x)] =
1

Nh
[p(x) + o(1)]

∫

R

K2(z)dz − 1
N

[p(x) + o(1)]2

=
1

Nh
p(x)

∫

R

K2(z)dz + o(1/Nh)

(84)

Based on Assumption 2 limN→∞Nh = ∞, the variable asymptotically converges
to zero.

11.3 MSE

The MSE at a point x can be written as (using Eqs. 81 and 84),

MSE(p̂, p, x) =
1

Nh
p(x)R(K) +

1
4
h4µ2(K)2p

′′
(x)2 + o(h4 + 1/Nh). (85)

where R(K) =
∫
R

K2(z)dz.
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11.4 MISE

Since MISE=IMSE we have,

MISE(p̂, p) =
1

Nh
R(K)

∫

R

p(x)dx +
1
4
h4µ2(K)2

∫

R

p
′′
(x)2dx + o(h4 + 1/Nh)

= AMISE(p̂, p) + o(h4 + 1/Nh), (86)

where

AMISE(p̂, p) =
1

Nh
R(K) +

1
4
h4µ2(K)2R(p

′′
). (87)

12. APPENDIX 3 : AMISE FOR KERNEL DENSITY DERIVATIVE ESTIMATORS

First note that MISE=IMSE.

MISE(p̂(r), p(r)) = E

[∫

R

[p̂(r)(x)− p(r)(x)]2dx

]

=
∫

R

E[p̂(r)(x)− p(r)(x)]2dx

= IMSE(p̂(r), p(r)). (88)

The mean square error (MSE) can be decomposed into variance and squared bias
of the estimator.

MSE(p̂(r), p(r), x) = E[p̂(r)(x)− p(r)(x)]2

= Var[p̂(r)(x)] + (E[p̂(r)(x)]− p(r)(x))2. (89)

An simple estimator for the density derivative can be obtained by taking the deriv-
ative of the kernel density estimate p̂(x) [Bhattacharya 1967; Schuster 1969]. If the
kernel K is differentiable r times then the rth density derivative estimate p̂(r)(x)
can be written as

p̂(r)(x) =
1

Nhr+1

N∑

i=1

K(r)

(
x− xi

h

)

=
1
N

N∑

i=1

K
(r)
h (x− xi) (90)

where K(r) is the rth derivative of the kernel K and K
(r)
h (x) = (1/hr+1)K(r)(x/h).

In order to derive an large sample approximation to MISE we make the following
assumptions on the density p, the bandwidth h, and the kernel K.

(1) The (r+2)th derivative p(r+2)(x) is continuous, square integrable and ultimately
monotone 9.

(2) limN→∞ h = 0 and limN→∞Nh2r+1 = ∞, i.e., as the number of samples N is
increased h approaches zero at a rate slower than 1/N2r+1.

9An ultimately monotone function is one that is monotone over both (−∞,−M) and (M,∞) for
some M > 0.
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(3) In order that p̂(x) is a valid density we assume K(z) ≥ 0 and
∫
R

K(z)dz = 1.
The kernel function is assumed to be symmetric about the origin (

∫
R

zK(z)dz =
0) and has finite second moment (

∫
R

z2K(z)dz < ∞) .

12.1 Bias

The mean of the estimator can be written as

E[p̂(r)(x)] =
1
N

N∑

i=1

E[K(r)
h (x− xi)]

= E[K(r)
h (x−X)]

=
∫

R

K
(r)
h (x− y)p(y)dy. (91)

Using the convolution operator ∗ we have

E[p̂(r)(x)] = (K(r)
h ∗ p)(x) = (Kh ∗ p(r))(x). (92)

where we have used the relation K
(r)
h ∗p = Kh ∗p(r). We now derive a large sample

approximation to the mean. Using a change of variables the mean can be written
as follows.

E[p̂(r)(x)] = (Kh ∗ p(r))(x) =
∫

R

Kh(x− y)p(r)(y)dy

=
∫

R

K(z)p(r)(x− hz)dz. (93)

Using Taylor’s series p(r)(x− hz) can be expanded as

p(r)(x− hz) = p(r)(x)− hzp(r+1)(x) +
1
2
h2z2p(r+2)(x) + o(h2). (94)

Hence

E[p̂(r)(x)] = p(r)(x)
[∫

R

K(z)dz

]
− hp(r+1)(x)

[∫

R

zK(z)dz

]

+
1
2
h2p(r+2)(x)

[∫

R

z2K(z)dz

]
+ o(h2). (95)

From Assumption 3 we have,∫

R

K(z)dz = 1
∫

R

zK(z)dz = 0

µ2(K) =
∫

R

z2K(z)dz < ∞ (96)

Hence the bias can be written as

E[p̂(r)(x)]− p(r)(x) =
1
2
h2µ2(K)p(r+2)(x) + o(h2). (97)

The estimate is asymptotically unbiased. The bias is estimating the rth derivative is
directly proportional to the value of the (r+2)th derivative of the density function.
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12.2 Variance

The variance of the estimator can be written as

V ar[p̂(r)(x)] =
1
N

V ar[K(r)
h (x−X)]

=
1
N

(E[K(r)
h (x−X)2]− E[K(r)

h (x−X)]2). (98)

Using Eq. 91 we have the following expression for the variance.

V ar[p̂(r)(x)] =
1
N

[(
K

(r)
h ∗ p

)
(x)2 −

(
K

(r)
h ∗ p

)2

(x)
]

. (99)

Using a change of variables we have

V ar[p̂(r)(x)] =
1
N

[∫

R

K
(r)
h (x− y)2p(y)dy

]
− 1

N

[∫

R

K
(r)
h (x− y)p(y)dy

]2

=
1

Nh2r+1

[∫

R

K(r)(z)2p(x− hz)dz

]
− 1

Nh2r

[∫

R

K(r)(z)p(x− hz)dz

]2

.

(100)

Using Taylor’s series p(x− hz) can be expanded as

p(x− hz) = p(x) + o(1). (101)

We need only the first term because of the factor 1/N . Hence

V ar[p̂(r)(x)] =
1

Nh2r+1
[p(x) + o(1)]

∫

R

K(r)(z)2dz − 1
Nh2r

[p(x) + o(1)]2
[∫

R

K(r)(z)
]2

dz

=
1

Nh2r+1
p(x)

∫

R

K(r)(z)2dz + o(1/Nh2r+1). (102)

Based on Assumption 2 limN→∞Nh2r+1 = ∞, the variable asymptotically con-
verges to zero.

12.3 MSE

The MSE at a point x can be written as (using Eqs. 97 and 102),

MSE(p̂(r), p(r), x) =
1

Nh2r+1
p(x)R(K(r)) +

1
4
h4µ2(K)2p(r+2)(x)2

+ o(h4 + 1/Nh2r+1). (103)

where R(K(r)) =
∫
R

K(r)(z)2dz.

12.4 MISE

Since MISE=IMSE we have,

MISE(p̂(r), p(r)) =
1

Nh2r+1
R(K(r))

∫

R

p(x)dx +
1
4
h4µ2(K)2

∫

R

p(r+2)(x)2dx

+o(h4 + 1/Nh2r+1)
= AMISE(p̂(r), p(r)) + o(h4 + 1/Nh2r+1) (104)
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where

AMISE(p̂(r), p(r)) =
1

Nh2r+1
R(K(r)) +

1
4
h4µ2(K)2R(p(r+2)). (105)

13. APPENDIX 4 : ASYMPTOTIC MSE FOR DENSITY FUNCTIONAL ESTIMA-
TORS

We want to estimate the density functional Φr.

Φr =
∫

R

p(r)(x)p(x)dx = E
[
p(r)(X)

]
. (106)

An estimator for Φr is,

Φ̂r =
1
N

N∑

i=1

p̂(r)(xi). (107)

where p̂(r)(xi) is the estimate of the rth derivative of the density p(x) as x = xi.
Using a kernel density derivative estimate for p̂(r)(xi) (Eq. 12) we have

Φ̂r =
1

N2hr+1

N∑

i=1

N∑

j=1

K(r)(
xi − xj

h
)

=
1

N2

N∑

i=1

N∑

j=1

K
(r)
h (xi − xj). (108)

The mean square error (MSE) can be decomposed into variance and squared bias
of the estimator.

MSE(Φ̂r, Φr) = E[Φ̂r − Φr]2 = V ar[Φ̂r] + (E[Φ̂r]− Φr)2. (109)

In order to derive an large sample approximation to MSE we make the following
assumptions on the density p, the bandwidth h, and the kernel K.

(1) The density p had k > 2 continuous derivatives which are ultimately monotone.
The (r+2)th derivative p(r+2)(x) is continuous, square integrable and ultimately
monotone 10.

(2) limN→∞ h = 0 and limN→∞Nh2r+1 = ∞, i.e., as the number of samples N is
increased h approaches zero at a rate slower than 1/N2r+1.

(3) In order that p̂(x) is a valid density we assume K(z) ≥ 0 and
∫
R

K(z)dz = 1.
The kernel function is assumed to be symmetric about the origin (

∫
R

zK(z)dz =
0) and has finite second moment (

∫
R

z2K(z)dz < ∞) .

We write Φ̂r as follows

Φ̂r =
1

N2

N∑

i=1

N∑

j=1

K
(r)
h (xi − xj)

=
1
N

K
(r)
h (0) +

1
N2

∑∑

i6=j

K
(r)
h (xi − xj). (110)

10An ultimately monotone function is one that is monotone over both (−∞,−M) and (M,∞) for
some M > 0.
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The first term is a constant independent of the data.

13.1 Bias

The expected value of the estimator can be written as

E[Φ̂r] =
1
N

K
(r)
h (0) +

(
1− 1

N

)
E[K(r)

h (X1 −X2)]. (111)

The term E[K(r)
h (X1 −X2)] can be simplified as follows

E[K(r)
h (X1 −X2)] =

∫ ∫
K

(r)
h (x− y)p(x)p(y)dxdy

Using the relation K
(r)
h ∗ p = Kh ∗ p(r) we have

E[K(r)
h (X1 −X2)] =

∫ ∫
Kh(x− y)p(x)p(r)(y)dxdy

(112)

By a change of variables we have

E[K(r)
h (X1 −X2)] =

∫ ∫
K(u)p(y + hu)p(r)(y)dudy

(113)

Using Taylor’s series p(y + hu) can be expanded as

p(y + hu) = p(y) + hup
′
(y) +

1
2
h2u2p

′′
(y) + O(h3). (114)

Hence

E[K(r)
h (X1 −X2)] =

(∫
K(u)du

)(∫
p(r)(y)p(y)dy

)

+ h

(∫
uK(u)du

)(∫
p(r)(y)p

′
(y)dy

)

+
1
2
h2

(∫
u2K(u)du

)(∫
p(r)(y)p

′′
(y)dy

)
+ O(h3).

From Assumption 3 we have,
∫

K(u)du = 1
∫

uK(u)du = 0

µ2(K) =
∫

u2K(u)du < ∞ (115)

Substituting we have

E[K(r)
h (X1 −X2)] = Φr +

1
2
h2µ2(K)

(∫
p(r)(y)p

′′
(y)dy

)
+ O(h3). (116)
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Using the assumption that the density derivatives are ultimately monotone this can
be simplifies using integration by parts as follows.

E[K(r)
h (X1 −X2)] = Φr +

1
2
h2µ2(K)Φr+2 + O(h3).

Hence substituting in Eq. 111 the bias of the estimator can be written as

E[Φ̂r]− Φr =
1

Nhr+1
K(r)(0) +

1
2
h2µ2(K)Φr+2 + O(h3)− 1

N
Φr − 1

2N
h2µ2(K)Φr+2.

(117)

The bias after ignoring the 1/N terms can be written as

E[Φ̂r]− Φr =
1

Nhr+1
K(r)(0) +

1
2
h2µ2(K)Φr+2 + O(h3).

13.2 Variance

If r is even then the variance can be shown to be

V ar[Φ̂r] =
2(N − 1)

N3
V ar[K(r)

h (X1 −X2)]

+
4(N − 1)(N − 2)

N3
Cov[K(r)

h (X1 −X2),K
(r)
h (X2 −X3)]. (118)

First we will compute

E[K(r)
h (X1 −X2)2] =

∫ ∫
K

(r)
h (x− y)2p(x)p(y)dxdy

Using a change of variables we have

E[K(r)
h (X1 −X2)2] =

1
h2r+1

∫ ∫
K(r)(u)2p(y + hu)p(y)dudy

Using Taylor’s series p(y + hu) can be expanded as

p(y + hu) = p(y) + o(1). (119)

Hence

E[K(r)
h (X1 −X2)2] =

1
h2r+1

Φ0R(K(r)) + o(1/h2r+1).

Also we have

E[K(r)
h (X1 −X2)] = Φr + o(1). (120)

From the above two equations the variance can be written as

V ar[K(r)
h (X1 −X2)] = E[K(r)

h (X1 −X2)2]− E[K(r)
h (X1 −X2)]2

=
1

h2r+1
Φ0R(K(r))− Φ2

r + o(1/h2r+1).

The covariance term can be written as

Cov[K(r)
h (X1 −X2),K

(r)
h (X2 −X3)] = E[K(r)

h (X1 −X2)K
(r)
h (X2 −X3)]

−E[K(r)
h (X1 −X2)]E[K(r)

h (X2 −X3)]
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The first term can be simplified as follows

E[K(r)
h (X1 −X2)K

(r)
h (X2 −X3)]

=
∫ ∫ ∫

K
(r)
h (x− y)K(r)

h (y − z)p(x)p(y)p(z) dx dy dz

=
∫ ∫ ∫

Kh(x− y)Kh(y − z)p(r)(x)p(y)p(r)(z) dx dy dz

=
∫ ∫ ∫

K(u)K(v)p(r)(y + hu)p(y)p(r)(y − hv) du dv dy

=
∫

p(r)(y)2p(y)dy + o(1).

Hence

Cov[K(r)
h (X1 −X2),K

(r)
h (X2 −X3)] =

∫
p(r)(y)2p(y)dy − Φ2

r + o(1).

Using these approximations the variance can be written as

V ar[Φ̂r] =
2

N2h2r+1
Φ0R(K(r)) +

4
N

[∫
p(r)(y)2p(y)dy − Φ2

r

]

+o(1/N2h2r+1 + 1/N). (121)

13.3 MSE

The asymptotic MSE can be written as

MSE(Φ̂r, Φr) = E[Φ̂r − Φr]2

= V ar[Φ̂r] + (E[Φ̂r]− Φr)2

=
[

1
Nhr+1

K(r)(0) +
1
2
h2µ2(K)Φr+2

]2

+
2

N2h2r+1
Φ0R(K(r)) +

4
N

[∫
p(r)(y)2p(y)dy − Φ2

r

]

+O(h6) + o(1/N2h2r+1 + 1/N). (122)
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