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Abstract. The Lie transfer map method may be applied to orbit propagation problems in celes-
tial mechanics. This method, described in another paper, is a perturbation method applicable to
Hamiltonian systems. In this paper, it is used to calculate orbits for zonal perturbations to the Kepler
(two-body) problem, in both expansion in the eccentricity and closed form. In contrast with a normal
form method like that of Deprit, the Lie transformations here are used to effect a propagation of
phase space in time, and not to transform one Hamiltonian into another.
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1. Introduction

The Lie transfer map (LTM) method was described in Healy (2001) as a way
of computing the perturbation map given a known perturbed Hamiltonian and a
solution to the unperturbed problem, with a perturbed harmonic oscillator as an
illustration. In this paper, the technique is applied to zonal perturbations of the
Kepler (two-body) problem.

The general zonal Hamiltonian is written
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with φ the latitude of the satellite, and P� the Legendre polynomials. Transforming
the argument of the Legendre polynomial to the more familiar Delaunay variables
and writing the first few terms explicitly,
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(Coffey et al., 1994) where the canonical variables are the Delaunay variables: the
mean anomaly l, the argument of perigee g, the right ascension of the ascending
node h, and the conjugate momenta, the Delaunay momentum L, the angular mo-
mentum G, and the third (z) component of angular momentum H . Other variables
are the sine of the inclination s = √

1− (H/G)2, the gravitational constant µ, the
radius of the earth α, and the perturbation parameters Jn for n� 2.

In the Lie transformation method, time evolution of the system under the
Hamiltonian may be represented by the unperturbed solution U and a sequence
of polynomials in the perturbation parameter(s) f1, f2, etc.,

M = · · · e:f2:e:f1:U, (3)

where the colon notation represents a Lie operator: f :g = [f, g] and the exponen-
tial is represented by its Taylor series.

In the Hamiltonian under consideration here, the unperturbed part is expressed
in Delaunay variables (specifically, L), but the perturbation part is more naturally
expressed in Cartesian variables, specifically the true anomaly f and the radius r.
Historically, this has presented a formidable obstacle in propagating orbits for this
problem. The two sets are related through Kepler’s equation,

l = E − e sinE, (4)

where E is the eccentric anomaly,

tan
f

2
=

√
1+ e
1− e tan

E

2
(5)

and e is the eccentricity. From the true anomaly, the radius may be defined as
r = p/(1 + e cos f ). Because finding the true anomaly f (l) requires solving a
transcendental equation, it is difficult to solve problems directly in closed form;
one way around that is to do an eccentricity expansion. The Lie transfer map
method can indeed work without an explicit solution in the canonical variables
for the unperturbed problem, because we need only the partial derivatives of the
various quantities which are not difficult to come by, and the definite time integrals,
which sometimes are. In order to do this, it is necessary to be more precise about
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the meaning of ‘mean anomaly’ and ‘true anomaly’ with regard to the time of
evaluation; these terms are elucidated in Section 2.

A particular algebraic expression can usually be put in a number of different
forms. In computing an integral, our goals in deciding on a form are threefold:

1. ease of numerical evaluation,
2. ability to confirm the result by differentiation,
3. closed form under computation of higher orders.

The last quality is the hardest to achieve. It means that the result of integration
should in the same algebraic class as the integrand. For example, a polynomial∑
cnx

n for n� 0 and a Fourier series
∑

n a cos(nx)+ b sin(mx) for a, b constants
meet this requirement, but xn for any n does not, because the integral for n = −1
is log(x), not in the set of polynomials.

Celestial mechanics and astrodynamics have a long history of use of canon-
ical transformations to solve orbit propagation problems. In the last 30 years, Lie
algebraic techniques, such as those introduced by Hori (1966) and Deprit (1969)
have become popular. In these methods, a normal form (Meyer, 1974), or, loosely,
an averaged Hamiltonian, is computed from the actual Hamiltonian. There can be
computed, at the same time, transformations that take coordinates in the actual
space to those of the idealized Hamiltonian, and back. These coordinate trans-
formations are near-identity, the deviation from identity being dependent on the
perturbation, and the new Hamiltonian is simpler, usually by being cyclic in sev-
eral or all coordinates, and dependent on the momentum only. In contrast, the Lie
transfer map method applied here produces a map from phase space at the initial
time to phase space at the final time, and not to transform one Hamiltonian into
another; that is, it is a direct propagation.

It is possible to summarize the LTM algorithm as follows. First, one must decide
on a phase space and time integration method. In the case of the Kepler problem,
the choices to be made are not obvious; they are discussed later. Starting with the
Hamiltonian (2) and the solution of the unperturbed problem U acting on a phase
space ζ , compute an interaction Hamiltonian, H int

R (ζ ) = HR(Uζ ) is the perturbed
interaction Hamiltonian. From this, compute a series of rest maps, initially just
the negative of the interaction Hamiltonian, C0 = −H int

R . Then compute the first
polynomial f1 =

∫
P1(C0) dt , where Pn selects terms of rank n in the perturbation.

Then the next rest map is C1 = C0 − iex(:f1:)f1, with iex the integrated expo-
nential explained in Section 4.3, and the next polynomial is computed from this,
f2 =

∫
P2(C1) dt . The procedure goes on until the desired rank of perturbation is

obtained. For more details, consult (Healy, 2001); in the language of that paper, the
bracket grade # here is zero.

While this procedure is straightforward for some problems, like the perturbed
harmonic oscillator, the Kepler problem is difficult. We can ease into this by start-
ing with an eccentricity expansion; in a later section, we will treat the closed form
problem.
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2. Mean Anomaly and True Anomaly at Particular Times

Before computing the maps, we shall investigate closer the true anomaly and mean
anomaly. Since we will be concerned with integration over a time interval, we will
use the symbol f to indicate the true anomaly and l to indicate the mean anomaly
at the beginning of the interval, and the Greek equivalents φ and λ to indicate the
change in the corresponding quantities over the time interval (or to the ‘current’
time if time is changing, e.g. in an integral) of interest, so that the true and mean
anomalies at the end of the time interval are f +φ and l+λ respectively.1 The true
and mean anomalies at the ends of the intervals can be summarized as follows:

Angle Beginning End

Mean anomaly l l + λ
True anomaly f f + φ

This means that with respect to time integrals and derivatives, f and l are constants,
but φ and λ are dependent on time. On the other hand, with respect to the partial
derivatives of the Delaunay variables, all except l are non-zero (Appendix A).

The time dependence of the mean anomaly is given by the solution to the
unperturbed problem

l(t) = l + nt, (6)

where n = µ2/L3 is the mean motion, and the function l(t) is to be distinguished
from the quantity l. The time derivative is simple, dl(t)/dt = n. Thus λ = nt .

The time dependence of the true anomaly at an arbitrary time is

F(l(t), L,G), (7)

where F is an unspecified function. In fact, because of Kepler’s equation, F is
transcendental and cannot be specified in closed form. That is not a problem for
us, however; all we really care about are the partial derivatives of this function,
and they are known. The partial derivatives of φ (as opposed to f ) must take into
account the dependence on the first argument of the true anomaly function (7). See
Appendix A for more details.

3. Eccentricity Expansion

One approach to the problem of mixed variables in the Kepler problem and its
perturbation is to do a formal expansion in the eccentricity in the perturbation.

1 The usage of φ here differs from the more common meaning in the literature of the ‘equation of
center’ f − l, and differs from the meaning as satellite latitude used earlier.
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This eliminates the true anomaly and puts everything in the Hamiltonian in terms of
canonical variables. It has some validity for orbits of small eccentricity; however,
see the caution at the end of this section on treating the e series like a perturbation
series. The true anomaly and radial terms sin f , cos f , f , and a/r are handled with
Fourier–Bessel expansions (Battin, 1987, Section 5.3),

cos f = −e + 2(1− e2)

e

∞∑
k=1

Jk(ke) cos kl, (8a)

sin f = 2
√

1− e2
∞∑
k=1

1

k
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de
sin kl, (8b)

a

r
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Jk(ke) cos kl, (8c)

f = l + 2
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k=1

1

k

[ ∞∑
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Jn(−ke)β |k+n|
]

sin kl, (8d)

where β = (1 − η)/e, and Jn here are Bessel functions of the first kind. Note that
the expression for the secular f is particularly inconvenient to compute because
of the double summation. The expansion to O(e2) for these quantities is readily
computed,

cos f = cos l + e(−1+ cos 2l)+ e2
(− 9

8 cos l + 9
8 cos 3l

)
, (9a)

sin f = sin l + e sin 2l + e2(− 7
8 sin l + 9

8 sin 3l
)
, (9b)

a

r
= 1+ e cos l + e2 cos 2l, (9c)

f = l + 2e sin l + 5
4e

2 sin 2l. (9d)

In order to compute Poisson brackets, partial derivatives will be needed,
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which may be found in the literature (e.g. Brouwer, 1959) or derived.
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With the above expansions carried to e2, the Hamiltonian (2) may be written
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with J2, J3, J4 now the zonal coefficients. The unperturbed solution maps all
Delaunay variables unchanged except the mean anomaly; if the initial mean an-
omaly is l, at the end of the time interval t (Section 2) it is l + λ. The interaction
Hamiltonian is therefore computed by transforming the Hamiltonian by the unper-
turbed solution, that is, substituting l + λ for l. The perturbation transfer map at
first rank is then computed (Healy, 2001) as the time integral of the interaction
Hamiltonian,
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The author has computed the map to second order and checked that the result solves
Hamilton’s equations of motion for the map (see Appendix B for the procedure).
The Lie polynomial has 897 terms at this order. The third order polynomial has
18541 terms.

A note of caution is in order. While a formal expansion in a small parameter is
sensible, one cannot assume that derivatives of that parameter are small. Indeed,
derivatives such as ∂e/∂L have a factor e−1, so that the smaller e gets, the larger its
derivative gets. Therefore thinking of the series as being like the Taylor series in the
perturbation is potentially hazardous: the series may not be cut off arbitrarily in the
course of the calculation. Starting with the Hamiltonian expanded through a given
order in e, one must maintain all resulting terms in e until the end, because Poisson
brackets may ‘pull down’ the e order and thus make significant a term that would
have been cut off. This does not happen in the case of perturbation expansions
because satisfying the perturbation transformation axioms insure map expansions
can be made consistently (Healy, 2001).

4. Closed Form

The specific zonal Hamiltonian used for the closed form factorization is given
above (2). As with the e expansion form of the map, the map computation is
essentially an application of the procedure described in Healy (2001). The difficulty
here is that the partial derivatives and time integral, because of the implicit form of
the expressions, are not straightforward. We thus begin by turning our attention to
these operators.

4.1. TIME INTEGRATION

Because everything is explicit in the e-expanded form, time integration is not dif-
ficult: the mean anomaly is a straightforward proxy for time. In the closed form
development, where dependence on canonical variables is implicit through the true
anomaly, it is more difficult. Prior to developing the closed form results, this section
will elaborate the time integration considerations.

We will integrate in terms of the true anomaly using the relation

dF = 1

η3

p2

r2
dl = µ2

L3η3

p2

r2
dt = G

r2
dt, (13)

or dt = (r2/G) dF (Brouwer, 1959). Notice that there is a factor of r2 which if
expressed in terms of the true anomaly would produce (1 + e cos(f + φ))2 in the
denominator; thus a time integration does not close in the algebra of Fourier series
in the true anomaly. If we insist that the integrand have a factor of rm for m� − 2,
integration will then close in that algebra. In fact, the requirement is more stringent
than this, as we shall see.
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Because the partial derivative ∂φ/∂L produces explicit time terms, that is, secu-
lar terms in λ (35), and thus explicit mean anomaly terms (Section 2), we must be
prepared to handle mixed mean and true anomaly expressions. Specifically, we
must be able to integrate a term like ln trigmφ where m,n� 0 are integers and
‘trig’ is shorthand for sine or cosine.

The integration algorithm treats terms differently depending on the coefficients
and exponents of the true and mean anomalies, and the exponent of r. If the true
anomaly does not occur and the exponent of r is zero, the only time-dependent
terms are in the mean anomaly, and integration is straightforward. If the mean
anomaly does not occur and the exponent of r is no greater than −2, the integration
can proceed via the change of variables (13); the bound on the exponent of r insures
that an integrable term remains. The remaining cases are more difficult. As we
shall see (14), we need to treat terms with a linear secular component in the mean
anomaly, harmonic in the true anomaly, and r−ν . In computing the map at second
order in the perturbation, ν = m+ 1 for the zonal harmonic Jm.

An alternative to this approach is to integrate the individual terms, with a goal
of reducing the expression to a minimal set of non-integrable functions (Jefferys,
1971). The integral has mixed linear secular mean anomaly and a trigonometric
function of the true anomaly,

I =
∫

λ

rν
trigmφ dt = n

∫
t

rν
trigmφ dt. (14)

Integrating by parts, we evaluate a new quantity J ,

J =
∫

trigmφ

rν
dt = 1

G

∫
trigmφ

rν−2
dφ

= 1

Gpν−2

∫
trigmφ(1+ e cos(f + φ))ν−2 dφ, (15)

and this integral over φ is easy to do, provided ν� 2. For the second term, we
must perform a time integral of J . The terms involving the true anomaly must
be synchronized before being integrated; this issue is addressed below. The terms
m �= 0 in the integrand of (15) can be categorized as r0 cosmφ and r0 sinmφ which
can be recast in a canonical form (Healy, 2000): r0 cosmF can be written as the
sum of terms of the form r0 cos 0F , r0 cosF , and (p2/r2) cosmF , for integers m,
and r0 cosmF can be written as the sum of terms of the form r0 sinF , r0 sin 2F ,
and (p2/r2) sinmF .

The integrals of quantities that result from this canonical form may all be com-
puted. Of course, the (p2/r2) sin kF and (p2/r2) cos kF terms are easy to integ-
rate with respect to time by making the change of variables (13). The integral of
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constant terms
∫
r0 cos 0F dl = l gives a secular mean anomaly (time) term. The

three remaining integrals are (Kelly, 1989):∫
cosF dl = −el + r

p
η3 sinF, (16a)

∫
sinF dl = − r

p
η(e + cosF), (16b)

∫
sin 2F dl = 2η

e2

[
− η2 log

(
p

r

)
+ r

p
e(e + cosF)

]
. (16c)

In order to compute the map, it will be necessary to take Poisson brackets, and thus
partial derivatives, of the Lie polynomials, and thus of these quantities for higher
ranks.

Calculating higher ranks of the map presents a problem however: the expression
r/p which occurs in all three is 1/(1 + e cosF), and we thus no longer have a
Fourier series in the true anomaly f . In addition, the sin 2F integration has log(1+
e cosF) which is even more difficult to integrate.

The case m = 0 (with trig = cos) is treated separately. In this case, J will
have a secular term in φ. Thus the time integral of J will require the evaluation of
the integral - = ∫

φ dt . There is no representation for - in terms of elementary
functions.

Any expression where all angles correspond to a particular time will be called
synchronous. Specifically, an expression is synchronous either at the beginning of
the time interval, with the multipliers of φ and λ zero, or at the end of the interval
with the multipliers of f and φ equal and the multipliers of l and λ equal. For
example, (l+λ) cos(2f + 2φ) is synchronous at the end of the interval. Using ele-
mentary rules of trigonometry, it is possible to factor trigonometric functions into
the sum of products of synchronous terms. For example, cos(f − 5φ) = cos(5f +
5φ) cos 6f +sin(5f +5φ) sin 6f . We may integrate a non-synchronous expression
by factoring into a synchronous-beginning and synchronous-end and integrating
the latter; because the synchronous-beginning terms are not time-dependent, they
may be treated as constants.

One may proceed with integration in two steps. First, the expression is factor-
ized synchronously as described in the previous paragraph. Before recombining,
the terms synchronous at the end of the interval are integrated. This integration is
performed by putting the expression in the canonical form (Healy, 2000, Section 7);
cosines of the true anomaly can be expressed as a linear combination of a constant
term, cos f , and p2/r2 times cosines of the true anomaly, and sines of the true
anomaly can be expressed as a linear combination of sin f , sin 2f and p2/r2 times
cosines of the true anomaly. Once in this form, the constant term gives a secular
mean anomaly, the straight sines and cosines are treated as above (16), and any
terms with p2/r2 are easily integrated with the relation (13).
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4.2. PARTIAL DERIVATIVES

Unlike the eccentricity expansion case, the partial derivatives have a subtlety be-
cause of the implicit time dependence (Section 2). The derivatives of the true
anomaly depend on what true anomaly is the subject of discussion: the true an-
omaly at the start of the interval f , or the change in true anomaly over the interval
φ. The latter has an explicit dependence on time via the mean anomaly (7); see
Appendix A. With true and mean anomaly, the time of evaluation has been ad-
equately addressed so that confusion should be reduced. Problems arise, however,
in quantities like the radial distance r whose time of evaluation is ambiguous. The
distance r0 at the beginning of an interval, p/r0 = 1 + e cos f , is clearly distin-
guished from the distance r1 at the end, p/r1 = 1+e cos(f +φ), but also, the time
derivatives of the latter will need to take account of the explicit time dependence
of φ.

The set of partial derivatives used depends on the context of the differentiation.
For a time differentiation, we will need derivatives of - with respect to time and
its partial derivatives with respect to L, G, and H . Also of course ∂λ/∂t = n, and
∂φ/∂t = G/r2 where r is evaluated at the end of the interval.

An important aspect of computing in the simplest terms and checking the valid-
ity of a result analytically is to put expressions into a canonical form, that is, have a
single representation for any of a set of equivalent expressions. The Poisson brack-
ets in this computation have the canonical form as follows. First, the expression
is reduced to having a common factor of L, G, and H by insertion of factors of
η = G/L = √1− e2 and 1 − s2 = H/G. Although this is not a canonical form,
it helps to simplify the form and allow terms to cancel. Second, the factors of e
and η are reduced to a canonical form where the exponents of η are non-negative
and e has an exponent no higher than 1 (Healy, 2000). Finally, we reduce to the
minimum exponent of L by extracting an appropriate factor of η.

4.3. THE MAP

With the definitions above, we have the tools at hand to compute the map in
closed form, that is, with no eccentricity expansion, to first order in J2. The map is
computed by the procedure outlined in Section 1; the first step is to transform the
Hamiltonian (2) using the unperturbed solution which maps the mean anomaly to
l + λ and the true anomaly to f + φ to get the interaction Hamiltonian,

H int = − µ
2

2L2
+ δ

(
J2α

2µ
1

r3

(
3

4
s2 − 1

2
− 3

4
s2 cos(2f + 2φ + 2g)

)
+

+ J3α
3µ

1

r4

((
15

8
s3 − 3

2
s

)
sin(f + φ + g)− 5

8
s3 ×

× sin(3f + 3φ + 3g)

)
+ J4α

4µ
1

r5

(
105

64
s4 − 15

8
s2 + 3

8
+
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+
(
− 35

16
s4 + 15

8
s2

)
cos(2f + 2φ + 2g)+

+ 35

64
s4 cos(4f + 4φ + 4g)

))
+O(δ3). (17)

Because of the transcendental relation between the mean and true anomalies, it
is useful to keep both in an extended phase space, that is, f, l, g, h, L,G,H . Of
course, the real phase space is only the latter six variables, but with the correct
derivatives, maps for f as well can be computed.

From the interaction Hamiltonian, computation of the time integral (Section
4.1) gives the map as a factored product expansion to first order

f1 = δ

(
J2α

2µ2 1

G3

(
φ

(
− 3

4
s2 + 1

2

)
+ e

(
3

4
s2 − 1

2

)
sin f −

−3

8
s2e sin(f + 2g)+ e

(
− 3

4
s2 + 1

2

)
sin(f + φ)+

+ 3

8
s2e sin(f + φ + 2g)− 3

8
s2 sin(2f + 2g)+

+ 3

8
s2 sin(2f + 2φ + 2g)− 1

8
s2e sin(3f + 2g)+

+ 1

8
s2e sin(3f + 3φ + 2g)

)
+

+ J3α
3µ3 1

G5

(
φe

(
− 15

8
s3 + 3

2
s

)
sin g +

+ e2

(
15

32
s3 − 3

8
s

)
cos(f − g)+

(
e2

(
− 15

16
s3 + 3

4
s

)
−

− 15

8
s3 + 3

2
s

)
cos(f + g)+ 5

32
s3e2 cos(f + 3g)+

+ e2

(
− 15

32
s3 + 3

8
s

)
cos(f + φ − g)+

(
e2

(
15

16
s3 − 3

4
s

)
+

+ 15

8
s3 − 3

2
s

)
cos(f + φ + g)− 5

32
s3e2 cos(f + φ + 3g)+

+ e
(
− 15

16
s3 + 3

4
s

)
cos(2f + g)+ 5

16
s3e cos(2f + 3g)+

+ e
(

15

16
s3 − 3

4
s

)
cos(2f + 2φ + g)−

− 5

16
s3e cos(2f + 2φ + 3g)+ e2

(
− 5

32
s3 1

8
s

)
×
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× cos(3f + g)+
(

5

48
s3e2 + 5

24
s3

)
×

× cos(3f + 3g)+ e2

(
5

32
s3 − 1

8
s

)
cos(3f + 3φ + g)+

+
(
− 5

48
s3e2 − 5

24
s3

)
cos(3f + 3φ + 3g)+

+ 5

32
s3e cos(4f + 3g)− 5

32
s3e cos(4f + 4φ + 3g)+

+ 1

32
s3e2 cos(5f + 3g)− 1

32
s3e2 cos(5f + 5φ + 3g)

)
+

+ J4α
4µ4 1

G7

(
φ

(
e2

(
− 315

128
s4 + 45

16
s2 − 9

16

)
−

− 105

64
s4 + 15

8
s2 − 3

8

)
+ φe2

(
105

64
s4 − 45

32
s2

)
cos 2g +

+ e3

(
− 35

128
s4 + 15

64
s2

)
sin(f − 2g)+

+
(
e3

(
315

256
s4 − 45

32
s2 + 9

32

)
+ e

(
315

64
s4 − 45

8
s2 + 9

8

))
×

× sin f +
(
e3

(
− 105

128
s4 + 45

64
s2

)
+ e

(
− 105

32
s4 + 45

16
s2

))
×

× sin(f + 2g)+ 35

512
s4e3 sin(f + 4g)+ e3

(
35

128
s4 − 15

64
s2

)
×

× sin(f + φ − 2g)+
(
e3

(
− 315

256
s4 + 45

32
s2 − 9

32

)
+

+ e
(
− 315

64
s4 + 45

8
s2 − 9

8

))
sin(f + φ)+

+
(
e3

(
105

128
s4 − 45

64
s2

)
+ e

(
105

32
s4 − 45

16
s2

))
sin(f + φ + 2g)−

− 35

512
s4e3 sin(f + φ + 4g)+ e2

(
315

256
s4 − 45

32
s2 + 9

32

)
sin 2f +

+
(
e2

(
− 105

64
s4 + 45

32
s2

)
− 35

32
s4 + 15

16
s2

)
×

× sin(2f + 2g)+ 105

512
s4e2 sin(2f + 4g)+

+ e2

(
− 315

256
s4 + 45

32
s2 − 9

32

)
sin(2f + 2φ) +
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+
(
e2

(
105

64
s4 − 45

32
s2

)
+ 35

32
s4 − 15

16
s2

)
×

× sin(2f + 2φ + 2g)− 105

512
s4e2 ×

× sin(2f + 2φ + 4g)+ e3

(
35

256
s4 − 5

32
s2 + 1

32

)
sin 3f +

+
(
e3

(
− 35

128
s4 + 15

64
s2

)
+ e

(
− 35

32
s4 + 15

16
s2

))
×

× sin(3f + 2g)+
(

35

512
s4e3 + 35

128
s4e

)
sin(3f + 4g)+

+ e3

(
− 35

256
s4 + 5

32
s2 − 1

32

)
sin(3f + 3φ)+

+
(
e3

(
35

128
s4 − 15

64
s2

)
+ e

(
35

32
s4 − 15

16
s2

))
sin(3f + 3φ + 2g)+

+
(
− 35

512
s4e3 − 35

128
s4e

)
sin(3f + 3φ + 4g)+

+ e2

(
− 105

256
s4 + 45

128
s2

)
sin(4f + 2g)+

(
105

512
s4e2 + 35

256
s4

)
×

× sin(4f + 4g)+ e2

(
105

256
s4 − 45

128
s2

)
sin(4f + 4φ + 2g)+

+
(
− 105

512
s4e2 − 35

256
s4

)
sin(4f + 4φ + 4g)+

+ e3

(
− 7

128
s4 + 3

64
s2

)
sin(5f + 2g)+

(
21

512
s4e3 + 21

128
s4e

)
×

× sin(5f + 4g)+ e3

(
7

128
s4 − 3

64
s2

)
sin(5f + 5φ + 2g)+

+
(
− 21

512
s4e3 − 21

128
s4e

)
sin(5f + 5φ + 4g)+

+ 35

512
s4e2 sin(6f + 4g)− 35

512
s4e2 sin(6f + 6φ + 4g)+

+ 5

512
s4e3 sin(7f + 4g)− 5

512
s4e3 sin(7f + 7φ + 4g)

))
. (18)

In the Delaunay variables as shown, the presence of the eccentricity to an odd
power indicates that Poisson brackets, such as would be computed in the trans-
formation of the variables, will involve e to a negative power. This presents the
e = 0 singularity characteristic of Delaunay variables. In Whittaker variables,
the computation, like the normal form computation, should be free of the e = 0
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singularity. However, the change in true anomaly over the interval, φ, presents a
problem in Whittaker variables.

To extend the map to second rank including the J2 term only (second order in
J2), one applies the integrated exponential operator iex (:f1:) where

iex(w) =
∫ 1

0
etw dt =

∞∑
m=0

wm

(m+ 1)! . (19)

This leaves a ‘rest map’ C1 (Healy, 2001). The second rank part of this expression
is then integrated with respect to time to produce the Lie polynomial f2. Because
of the Poisson brackets that arise in computing C1, the mixed secular λ, φ terms
I (14) arise. The time integral of these terms produces the -, r/p, and log(p/r)
terms discussed above.

The expression for f2 is too long to reproduce here, but it can be summarized
as follows. All terms have δ2J 2

2 α
4

Common factor Number of terms

µ6L2G−12- 102

µ4rp−1L2G−9 354

µ4 log(p/r)L2G−9 87

µ4L2G−9 2368

µ2r−2L2G−9 138

a total of 3049 terms. It is possible to reexpress this with the negative powers of r
eliminated; the expression will then have a total of 3134 terms.

4.4. TIME DERIVATIVES

The time derivatives of r and log(p/r) are useful for checking the computed maps.
Write r as

r = p

1+ e cos f
. (20)

The time derivative is easily computed because the only thing time dependent on
the right-hand side is f ,

dr

dt
= p

d(1+ e cos f )−1

dt
= −p(1+ e cos f )−2(−e sin f )

df

dt

= Ge

p
sin f, (21)
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using df/dt = G/r2. The derivative of log(a/r) is computed similarly

d log(a/r)

dt
= r

a

d(a/r)

dt
= −1

r

dr

dt
= −Ge sin f

rp
. (22)

These results refer to the true anomaly generically; to stay consistent with our
current–time notation, we would map f → f + φ.

The method of strained coordinates, or Poincaré–Lighthill method (Zwillinger,
1989, Chapter 133 and references therein) is a way of eliminating false secular
terms in perturbation calculations. These secular terms arise because the pertur-
bation affects the frequency of the system; by making a perturbation correction
on that frequency, the secular terms can be eliminated and the long-term accuracy
improved. In the present case, one would hope that a strained coordinate calculation
would eliminate the secular term at first order, thus making the Lie polynomial at
second order easier to calculate. Alas, the problem secular terms at second order
arise not from the secular terms at first order, but from the Poisson bracket [φ,L]
which has the secular λ term. Still, it is possible that a strained coordinate method
could improve our prediction accuracy over a long time span, if not the task of map
computation.

5. Comparison of Closed Form and Eccentricity Expansion

One way to check the validity of the computed map is to see if it satisfies Hamilton’s
equations (Healy, 2001); the details of this calculation in the LTM formalism are
discussed in Appendix B. However, in the present instance, it is possible to com-
pare the results of computing the map from the eccentricity-expanded Hamiltonian
and eccentricity expansion of the map of the closed form Hamiltonian. If one has
been validated by showing that it solves Hamilton’s equations, then the other must
be correct also.

As noted in Section 3, eccentricity expansion is a tricky business. One is temp-
ted to treat it like a perturbation series: assume that a given expression expanded in
the eccentricity has been truncated consistently at a certain order. One may then
be use the map when eccentricity is low, having less confidence in the results
for satellites whose eccentricity is nearer one than zero. This misses the essential
fact that a small eccentricity does not imply a small derivative of eccentricity; the
opposite is true. Because the Hamiltonian (and the Lie polynomials) themselves
mean anything only insofar as their partial derivatives mean something, it is these
derivatives to which we must attend. Specifically, for each potential partial deriva-
tive, one must allow an extra order of e. Because at the lowest rank, the Lie transfer
map computation involves no partial derivatives, and each additional rank adds
another partial derivative, one may conclude that when comparing the two forms
at first rank, the eccentricity order should be the same, at second rank, it should be
one higher for the eccentricity-expanded Hamiltonian than for ultimate e-order of
interest for the closed form map, and so on.
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To make this expansion, it is necessary to substitute all e-dependent terms in the
closed form result. Specifically, the radius r, if it appears, and the true anomaly f
will be dependent on the eccentricity and must be substituted with an explicit ex-
pansion. Substitution of the e-dependent terms in the closed-form map (18) should
give the eccentricity expanded map (12).

The validity of the closed form map (12) may be confirmed for all zonal har-
monics by this comparison, because the eccentricity-expanded map is checked by
satisfaction of Hamilton’s equations.

6. Computation of the Explicit Map

With the Lie transfer map (18) in hand, derivation of the explicit map is straight-
forward by transformation of each phase space variable by the procedure described
in Appendix B. Essentially, one expands the exponential of the Lie operator in a
Taylor series, computes and sums the Poisson brackets appropriately. This series
may be truncated at any order; a natural order at which to stop would be the same
order through which the map has been computed. In this case, we compute the map
through first order in J2.

f ← f + φ + δJ2α
2µ2 L
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−
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×
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(
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sin(2f + φ)+

+λ
(

27

32
s2η4 − 81

16
s2η2 + 135

32
s2

)
cos(2f + φ + 2g)+

+
(

3

2
s2η5 − 9

4
s2η3

)
sin(2f + φ + 2g)+ λ

(
27

64
s2η4 − 27

32
s2η2 +

+27

64
s2

)
cos(2f + 2φ − 2g)+ λ

(
η4

(
− 27

16
s2 + 9

8

)
+

+η2

(
9

2
s2 − 3

)
− 45

16
s2 + 15

8

)
cos(2f + 2φ)+

(
η5

(
3

16
s2 − 1

8

)
+
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+η3

(
15

16
s2 − 5

8

))
sin(2f + 2φ)+ λ

(
27

64
s2η4 − 27

32
s2η2 + 27

64
s2

)
×

× cos(2f + 2φ + 2g)+
(
− 23

32
s2η5 − 9

32
s2η3

)
sin(2f + 2φ + 2g)+

+λ
(

9

128
s2eη4 − 9

64
s2eη2 + 9

128
s2e

)
cos(3f − 2φ + 2g)+

+
(
− 3

64
s2eη5 + 3

64
s2eη3

)
sin(3f − 2φ + 2g)+ λ

(
− 27

16
s2eη2 +

+27

16
s2e

)
cos(3f − φ + 2g)+ 9

8
s2eη3 sin(3f − φ + 2g)+

+λ
(
eη4

(
− 9

32
s2 + 3

16

)
+ eη2

(
9

8
s2 − 3

4

)
+ e

(
− 27

32
s2 + 9

16

))
×

× cos 3f +
(
eη5

(
3

32
s2 − 1

16

)
+ eη3

(
− 9

32
s2 + 3

16

))
sin 3f +

+λ
(

27

64
s2eη4 − 27

8
s2eη2 + 405

64
s2e

)
cos(3f + 2g)+

(
1

64
s2eη5 +

+25

64
s2eη3 − 7

8
s2eη + 7

8
s2 η

e

)
sin(3f + 2g)+ λ

(
eη2

(
27

8
s2 − 9

4

)
+

+e
(
− 27

8
s2 + 9

4

))
cos(3f + φ)+ λ

(
− 27

8
s2eη2 + 45

8
s2e

)
×

× cos(3f + φ + 2g)− 15

8
s2eη3 sin(3f + φ + 2g)+ λ

(
9

128
s2eη4 −

− 9

64
s2eη2 + 9

128
s2e

)
cos(3f + 2φ − 2g)+ λ

(
eη4

(
− 27

64
s2 + 9

32

)
+

+eη2

(
81

32
s2 − 27

16

)
+ e

(
− 135

64
s2 + 45

32

))
cos(3f + 2φ)+

+
(
eη5

(
− 9

32
s2 + 3

16

)
+ eη3

(
9

32
s2 − 3

16

))
sin(3f + 2φ)+

+λ
(

27

128
s2eη4 − 81

64
s2eη2 + 135

128
s2e

)
cos(3f + 2φ + 2g)+

+
(

3

8
s2eη5 − 9

16
s2eη3

)
sin(3f + 2φ + 2g)+ eη5

(
3

16
s2 − 1

8

)
×

× sin(3f + 3φ)+
(
− 11

32
s2eη5 + 7

8
s2eη3 + 7

8
s2eη − 7

8
s2 η

e

)
×

× sin(3f + 3φ + 2g)+ λ
(

9

32
s2η4 − 9

16
s2η2 + 9

32
s2

)
cos(4f − φ + 2g)+

+
(
− 3

16
s2η5 + 3

16
s2η3

)
sin(4f − φ + 2g)+ λ

(
27

32
s2η4 − 27

8
s2η2+
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+81

32
s2

)
cos(4f + 2g)+

(
− 9

32
s2η5 + 27

32
s2η3

)
sin(4f + 2g)+

+λ
(
η4

(
− 9

16
s2 + 3

8

)
+ η2

(
9

8
s2 − 3

4

)
− 9

16
s2 + 3

8

)
cos(4f + φ)+

+λ
(

27

32
s2η4 − 81

16
s2η2 + 135

32
s2

)
cos(4f + φ + 2g)+

(
9

16
s2η5 −

− 9

16
s2η3

)
sin(4f + φ + 2g)+ λ

(
η4

(
− 27

32
s2 + 9

16

)
+

+η2

(
27

16
s2 − 9

8

)
− 27

32
s2 + 9

16

)
cos(4f + 2φ)+ λ

(
27

32
s2η4 − 9

4
s2η2 +

+45

32
s2

)
cos(4f + 2φ + 2g)+

(
15

32
s2η5 − 15

32
s2η3

)
sin(4f + 2φ + 2g)−

− 9

16
s2η5 sin(4f + 4φ + 2g)+ λ

(
9

64
s2eη4 − 9

16
s2eη2 + 27

64
s2e

)
×

× cos(5f + 2g)+
(
− 3

64
s2eη5 + 9

64
s2eη3

)
sin(5f + 2g)+

+λ
(
− 27

16
s2eη2 + 27

16
s2e

)
cos(5f + φ + 2g)+ λ

(
eη4

(
− 9

64
s2 +

+ 3

32

)
+ eη2

(
9

32
s2 − 3

16

)
+ e

(
− 9

64
s2 + 3

32

))
cos(5f + 2φ)+

+λ
(

27

128
s2eη4 − 81

64
s2eη2 + 135

128
s2e

)
cos(5f + 2φ + 2g)+

+
(

9

64
s2eη5 − 9

64
s2eη3

)
sin(5f + 2φ + 2g)− 3

32
s2eη5 ×

× sin(5f + 5φ + 2g)+ λ
(

9

32
s2η4 − 9

16
s2η2 + 9

32
s2

)
×

× cos(6f + φ + 2g)+ λ
(

27

64
s2η4 − 27

32
s2η2 + 27

64
s2

)
×

× cos(6f + 2φ + 2g)+ λ
(

9

128
s2eη4 − 9

64
s2eη2 +

+ 9

128
s2e

)
cos(7f + 2φ + 2g)

)
+ O(δ2). (23)

l ← l + λ+
+ δJ2α

2µ2 L
2

G6

(
λ

(
η2

(
27

8
s2 − 9

4

)
− 45

8
s2 + 15

4

)
+ λ

(
− 27

16
s2η2 +

+27

16
s2

)
cos 2g + λ

(
− 9

32
s2eη2 + 9

32
s2e

)
cos(f − 2g)+ 3

32
s2eη3×
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× sin(f − 2g)+ λ
(
eη2

(
27

16
s2 − 9

8

)
+ e

(
− 135

16
s2 + 45

8

))
cos f +

+
(
eη3

(
9

16
s2 − 3

8

)
+ eη

(
9

4
s2 − 3

2

)
+ η
e

(
− 9

4
s2 + 3

2

))
sin f +

+λ
(
− 27

32
s2eη2 + 135

32
s2e

)
cos(f + 2g)+

(
− 15

32
s2eη3 + 3

8
s2eη −

−3

8
s2 η

e

)
sin(f + 2g)− 3

32
s2eη3 sin(f + φ − 2g)+

(
eη3

(
− 9

16
s2 +

+3

8

)
+ eη

(
− 9

4
s2 + 3

2

)
+ η
e

(
9

4
s2 − 3

2

))
sin(f + φ)+

(
15

32
s2eη3 −

−3

8
s2eη + 3

8
s2 η

e

)
sin(f + φ + 2g)+ λ

(
η2

(
27

8
s2 − 9

4

)
− 27

8
s2 +

+9

4

)
cos 2f + η3

(
− 9

8
s2 + 3

4

)
sin 2f + λ

(
− 27

8
s2η2 + 45

8
s2

)
×

× cos(2f + 2g)+ η3

(
9

8
s2 − 3

4

)
sin(2f + 2φ)+ λ

(
eη2

(
9

16
s2 −

−3

8

)
+ e

(
− 9

16
s2 + 3

8

))
cos 3f +

+eη3

(
− 3

16
s2 + 1

8

)
sin 3f + λ

(
− 27

32
s2eη2 + 135

32
s2e

)
×

× cos(3f + 2g)+
(
− 1

32
s2eη3 − 7

8
s2eη + 7

8
s2 η

e

)
×

× sin(3f + 2g)+ eη3

(
3

16
s2 − 1

8

)
sin(3f + 3φ)+

+
(

1

32
s2eη3 + 7

8
s2eη − 7

8
s2 η

e

)
sin(3f + 3φ + 2g)+

+λ
(
− 27

16
s2η2 + 27

16
s2

)
cos(4f + 2g)+ 9

16
s2η3 ×

× sin(4f + 2g)− 9

16
s2η3 sin(4f + 4φ + 2g)+

+λ
(
− 9

32
s2eη2 + 9

32
s2e

)
cos(5f + 2g)+ 3

32
s2eη3 ×

× sin(5f + 2g)− 3

32
s2eη3 sin(5f + 5φ + 2g)

)
+O(δ2). (24)
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g ← g + δJ2α
2µ2 1

G4

(
φ

(
− 15

4
s2 + 3

)
− 3

32
s2e sin(f − 2g)+

+
(
e

(
51

16
s2 − 21

8

)
+ 1

e

(
9

4
s2 − 3

2

))
sin f +

(
e

(
− 45

32
s2 + 3

4

)
+

+3

8
s2 1

e

)
sin(f + 2g)+ 3

32
s2e sin(f + φ − 2g)+

+
(
e

(
− 51

16
s2 + 21

8

)
+ 1

e

(
− 9

4
s2 + 3

2

))
sin(f + φ)+

+
(
e

(
45

32
s2 − 3

4

)
− 3

8
s2 1

e

)
sin(f + φ + 2g)+

+
(

9

8
s2 − 3

4

)
sin 2f +

(
− 15

8
s2 + 3

4

)
sin(2f + 2g)+

+
(
− 9

8
s2 + 3

4

)
sin(2f + 2φ)+

(
15

8
s2 − 3

4

)
sin(2f + 2φ + 2g)+

+e
(

3

16
s2 − 1

8

)
sin 3f +

(
e

(
− 19

32
s2 + 1

4

)
− 7

8
s2 1

e

)
×

× sin(3f + 2g)+ e
(
− 3

16
s2 + 1

8

)
sin(3f + 3φ)+

+
(
e

(
19

32
s2 − 1

4

)
+ 7

8
s2 1

e

)
sin(3f + 3φ + 2g)−

− 9

16
s2 sin(4f + 2g)+ 9

16
s2 sin(4f + 4φ + 2g)−

− 3

32
s2e sin(5f + 2g)+ 3

32
s2e sin(5f + 5φ + 2g)

)
+O(δ2). (25)

h ← h+ δJ2α
2µ2 1

G3H

(
φ

(
3

2
s2 − 3

2

)
+ e

(
− 3

2
s2 + 3

2

)
sin f +

+e
(

3

4
s2 − 3

4

)
sin(f + 2g)+ e

(
3

2
s2 − 3

2

)
sin(f + φ)+

+e
(
− 3

4
s2 + 3

4

)
sin(f + φ + 2g)+

(
3

4
s2 − 3

4

)
sin(2f + 2g)+

+
(
− 3

4
s2 + 3

4

)
sin(2f + 2φ + 2g)+ e

(
1

4
s2 − 1

4

)
sin(3f + 2g)+

+e
(
− 1

4
s2 + 1

4

)
sin(3f + 3φ + 2g)

)
+ O(δ2). (26)
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L ← L+ δJ2α
2µ2 L

3

G6

((
3

32
s2eη2 − 3

32
s2e

)
cos(f − 2g)+

+
(
eη2

(
− 9

16
s2 + 3

8

)
+ e

(
45

16
s2 − 15

8

))
cos f +

+
(

9

32
s2eη2 − 45

32
s2e

)
cos(f + 2g)+

(
− 3

32
s2eη2 + 3

32
s2e

)
×

× cos(f + φ − 2g)+
(
eη2

(
9

16
s2 − 3

8

)
+ e

(
− 45

16
s2 + 15

8

))
×

× cos(f + φ)+
(
− 9

32
s2eη2 + 45

32
s2e

)
cos(f + φ + 2g)+

+
(
η2

(
− 9

8
s2 + 3

4

)
+ 9

8
s2 − 3

4

)
cos 2f +

(
9

8
s2η2 − 15

8
s2

)
×

× cos(2f + 2g)+
(
η2

(
9

8
s2 − 3

4

)
− 9

8
s2 + 3

4

)
cos(2f + 2φ)+

+
(
− 9

8
s2η2 + 15

8
s2

)
cos(2f + 2φ + 2g)+

(
eη2

(
− 3

16
s2 + 1

8

)
+

+e
(

3

16
s2 − 1

8

))
cos 3f +

(
9

32
s2eη2 − 45

32
s2e

)
cos(3f + 2g)+

+
(
eη2

(
3

16
s2 − 1

8

)
+ e

(
− 3

16
s2 + 1

8

))
cos(3f + 3φ)+

+
(
− 9

32
s2eη2 + 45

32
s2e

)
cos(3f + 3φ + 2g)+

(
9

16
s2η2 − 9

16
s2

)
×

× cos(4f + 2g)+
(
− 9

16
s2η2 + 9

16
s2

)
cos(4f + 4φ + 2g)+

+
(

3

32
s2eη2 − 3

32
s2e

)
cos(5f + 2g)+

(
− 3

32
s2eη2 + 3

32
s2e

)
×

× cos(5f + 5φ + 2g)

)
+O(δ2). (27)

G ← G+ δJ2α
2µ2 1

G3

(
−3

4
s2e cos(f + 2g)+ 3

4
s2e cos(f + φ + 2g)−

−3

4
s2 cos(2f + 2g)+ 3

4
s2 cos(2f + 2φ + 2g)− 1

4
s2e ×

× cos(3f + 2g)+ 1

4
s2e cos(3f + 3φ + 2g)

)
+O(δ2). (28)

H ← H +O(δ2).
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Because of the singular nature of Delaunay variables for circular and equa-
torial orbits, this transfer map is not always useful; it may compute G > L for
some orbits and propagation times, which is not a physical result (correspond-
ing to imaginary eccentricity). A traditional circumvention of this problem is to
use non-singular variables such as Poincaré variables instead of the Delaunay
variables.

Nevertheless, it is possible to use this result to validate the computation of the
map numerically. By picking orbital elements and propagation times that insure
that singularities are not an issue, the map may be compared numerically with
a known correct map, for example, one obtained from numerical integration. A
numerical evaluation of the closed form map at second rank will require the calcu-
lation of partial derivatives of -. These may be calculated by taking the derivatives
inside the integral,

∂-

∂l
= ∂

∂l

∫
φ dt

∫
∂φ

∂l
dt =

∫
L3

G3
[(1+ e cos(f + φ))2

− (1+ e cos f )2] dt (29)

which can then be reduced to integrals of the type (16).

7. Conclusion

Using the formalism developed by the author for computing Lie transfer maps
for perturbed Hamiltonian systems, it is possible to construct a map using Lie
transformations that gives a transfer map of the perturbed two-body Kepler motion
in celestial mechanics. No normal form is computed. This map may be computed
easily to first order in the zonal harmonics. At higher order, functions not integrable
in simple terms appear. Expanding the exponential of the Lie transformation, ex-
plicit functions giving the transformation of the Delaunay variables to first order in
the zonal coefficients have been shown. These functions may be used for numerical
propagation of satellite orbits.

Appendix A. True Anomaly Over Time Interval

As discussed above, the change in true anomaly from the beginning of the interval
φ needs to be handled differently than the true anomaly at the beginning of the
interval f .

The derivative of true anomaly

∂f

∂L
=

(
1+ p

r

) sin f

Le
= (2+ e cos f ) sin f

Le
(30)
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needs elaboration. Let F(l, L,G) be the function that gives the true anomaly in
terms of mean anomaly l at a particular time, Delaunay momentum L, and angular
momentum G. The true anomaly for some value of mean anomaly l + λ at an
arbitrary time after the start of the interval would be written f+φ = F(l+λ,L,G).
Therefore, based on the true anomaly at the start of the interval when the mean
anomaly is l, f = F(l, L,G), the change in true anomaly over the interval is
given by φ = F(l+λ,L,G)−F(l, L,G). Because of the transcendental nature of
Kepler’s equation, it is not possible to write this function explicitly. Nevertheless,
we may compute derivatives.

Partial derivatives of the true anomaly are really derivatives of the function f =
F(l, L,G),

∂f

∂ξ
= D1F(l, L,G)

∂l

∂ξ
+D2F(l, L,G)

∂L

∂ξ
+D3F(l, L,G)

∂G

∂ξ
, (31)

where ξ represents one of l, L, or G, and Dn represents the partial derivative with
respect to the nth argument. Therefore, the derivatives of φ may be derived from
them,

∂f

∂ξ
= D1F(l + φ,L,G)∂(l + λ)

∂ξ
+D2F(l + φ,L,G)∂L

∂ξ
+

+ D3F(l + φ,L,G)∂G
∂ξ
−D1F(l, L,G)

∂l

∂ξ
−

− D2F(l, L,G)
∂L

∂ξ
−D3F(l, L,G)

∂G

∂ξ
. (32)

Because λ is dependent only on L, the derivatives of φ are the derivatives of f ,
except for ∂φ/∂L. In this case, an additional term appears,

∂φ

∂L
= D1F(l + λ,L,G) ∂λ

∂L
+D2F(l + λ,L, g)−D2F(l, L,G). (33)

Since λ = nt , it derivative with respect to L is secular in time,

∂λ

∂L
= −3λ

L
. (34)

Putting this together with the result of the previous section and substituting for
p/r, we have the derivative of φ with respect to L,

∂φ

∂L
= −3λ

L

1

η3
(1+ e cos(f + φ))2 +

+ (2+ e cos(f + φ)) sin(f + φ)
Le

− (2+ e cos f ) sin f

Le
. (35)
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The other derivatives of φ are straightforward; they are simply the difference of
derivatives given in the previous section evaluated at the ends of the time interval,

∂φ

∂l
= L3

G3

[
(1+ e cos(f + φ))2 − (1+ e cos f )2

]
, (36)

∂φ

∂G
= −(2+ e cos(f + φ)) sin(f + φ)

Ge
+ (2+ e cos f ) sin f

Ge
. (37)

Appendix B. Lie Transfer Map Application

With the perturbation map in the form of a factored Lie product

Mζζζ = . . . e:f#+1:e:f#:ζζζ (38)

(Healy, 2001), we have a compact representation of the Hamiltonian evolution.
It is not, however, immediately practical for computation: the Lie polynomials
themselves do not give the transfer map explicitly. In order to obtain the explicit
transformation, we will need to apply the transformations. Then, we will be able to
propagate a particular initial condition, and, incidentally, check the validity of the
computed map analytically or numerically.

B.1. TRANSFER MAP COMPUTATION

There are two ways to go about propagation of a point in phase space under a
factored Lie transformation. One is to apply the map to the symbolic set of phase
space variables ζ1, . . . , ζ2d to compute an expansion to the desired order of the
transformed variables ζ̄1, . . . , ζ̄2d . The alternative is to apply each Lie transform-
ation (and the unperturbed map) to the numerical set of values representing the
phase space point. This has two potential advantages: first, we save ourselves the
necessity of computing the effect of transforming the variables analytically. Al-
though PGLT will do this computation analytically, and it is then easy to generate
numerical code for evaluation, we may end up with very large expressions. Second,
in some circumstances, it is desirable to propagate a point such that the result
is symplectic to machine precision, even if the result is not accurate to machine
precision. There are methods to symplectify the map numerically based on the
individual Lie transformations.

It also has a disadvantage. Surprisingly, when computing numerically, the ho-
mogeneous Lie transformations are applied left to right, and therefore, the map as
computed from the Lie transfer map algorithm needs to be transformed from the
descending form (38) to the ascending form (Healy, 2001),

Mζζζ = e:g#:e:g#+1: . . . ζζζ. (39)
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To see that this is so, we need to be less elliptic in our notation; the polynomials f
that constitute the Lie transformations e:f : are really functions of phase space, so
that they should be written e:f (ζ ):. We need the theorem that governs the exchange
of transformations, which may be expressed as

e:f :e:g: = e:e:f :g:e:f :. (40)

Then, consider two successive Lie transformations that are to be numerically eval-
uated at the phase space point v,

v̄ = e:a(ζ ):e:b(ζ ):ζ ∣∣
ζ=v, (41a)

v̄ = e:b(e:a(ζ):ζ ):e:a(ζ ):ζ ∣∣
ζ=v, (41b)

v̄ = e:b(ξ):ξ ∣∣
ξ=e:a(ζ):ζ

∣∣
ζ=v
. (41c)

Algorithmically, this expression means we transform with a first,

v′ = e:a(ζ ):ζ ∣∣
ζ=v, (42)

and then with b,

v̄ = e:b(ζ ):ζ ∣∣
ζ=v′ . (43)

Thus, the left-hand transformations are applied first in a numerical computation.
This means that a factored Lie product in the descending form (38) that we get

from the Hamiltonian factorization algorithm is not useful, because the high rank
transformations would need to be applied first. In contrast, in the ascending form
(39), the lower rank terms are applied first, giving us the freedom to decide when
to stop on the spot.

To reformulate from descending to ascending (or vice versa), we need to use the
rule (40), or concatenate and pull out Lie transformations in the right order. This is
described in more detail in a forthcoming publication by the author.

B.2. ANALYTICAL COMPUTATION OF TRANSFER MAP

The analytical computation of propagation with the right-hand transformation first,
and proceeds right to left. The application of a Lie transformation to a phase space
variable produces an analytical expression for the transformation of that variable:

x̄ = e:f :x = x + [f, x] + 1
2 [f, [f, x]] + . . . , (44)

this analytical expression constitutes a function that gives the propagated position
and momentum of a phase space point. If the rank of f is at or equal the bracket
grade r(f )�# as required by the perturbation theory, then each term of this trans-
formation has the same or higher rank as the previous, but never lower. This allows
us to control the series, terminating it when terms can be neglected.
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B.3. EXAMPLE

Using the computed map of the quartic harmonic oscillator discussed in Healy
(2001),

f1 = exp : δµJ 2

(
−3

8

t

ω2
0

+ 1

ω3
0

(
− 1

4
sin 2θ + 1

4
sin(2θ + 2φ0)+

+ 1

32
sin 4θ − 1

32
sin(4θ + 4φ0)

))
: (45)

and

f2 = exp : δ2µ2J 3

(
t

ω5
0

(
17

64
+ 3

16
cos 2θ + 3

16
cos(2θ + 2φ0)−

− 3

64
cos 4θ − 3

64
cos(4θ + 4φ0)

)
+ 1

ω6
0

(
− 1

8
sin 2φ0 −

− 1

256
sin 4φ0 − 3

128
sin(2θ − 2φ0)+ 33

128
sin 2θ −

− 33

128
sin(2θ + 2φ0)+ 3

128
sin(2θ + 4φ0)− 3

128
sin 4θ +

+ 3

128
sin(4θ + 4φ0)− 1

384
sin 6θ + 1

128
sin(6θ + 2φ0)−

− 1

128
sin(6θ + 4φ0)+ 1

384
sin(6θ + 6φ0)

))
: (46)

we can compute a transfer map to any rank. We apply the computed Lie transform-
ations to each phase space variable,

θ̄ = . . . e:f2:e:f1:θ, (47)

J̄ = . . . e:f2:e:f1:J. (48)

To compute through a particular rank, we must expand these exponentials, and then
truncate at the appropriate point. Suppose we wish to have the transfer map through
rank 2; then we need to expand the f1 exponential through second order, and the
f2 exponential through first order:

. . . e:f2:e:f1: = I+ : f1 : + : f1 :2 + : f2 : +O(δ3), (49)

where I is the identity map and the ‘order’ term indicates a operators of rank-raise
indicated. Keep in mind this formula holds for zero bracket grade # = 0 only, with
f0 = 0. The map for the quartic harmonic oscillator may be computed using the
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polynomials above (45) and (46)

θ ← θ + φ0 + δµJ
(

3

4

t

ω2
0

+ 1

ω3
0

(
1

2
sin 2θ − 1

2
sin(2θ + 2φ0)−

− 1

16
sin 4θ + 1

16
sin(4θ + 4φ0)

))
+ δ2µ2J 2

(
t

ω5
0

(
− 51

64
−

− 3

8
cos 2θ − 3

4
cos(2θ + 2φ0)+ 3

32
cos 4θ + 3

16
cos(4θ + 4φ0)

)
+

+ 1

ω6
0

(
3

8
sin 2φ0 + 3

256
sin 4φ0 + 1

16
sin(2θ − 2φ0)− 49

64
sin 2θ +

+ 25

32
sin(2θ + 2φ0)− 5

64
sin(2θ + 4φ0)+ 17

128
sin 4θ −

− 1

8
sin(4θ + 2φ0)− 1

128
sin(4θ + 4φ0)+ 1

64
sin 6θ +

+ 3

64
sin(6θ + 4φ0)− 1

32
sin(6θ + 6φ0)+ 1

512
sin 8θ −

− 1

256
sin(8θ + 4φ0)+ 1

512
sin(8θ + 8φ0)

))
+O(δ3). (50)

J ← J + δµJ 2 1

ω3
0

(
− 1

2
cos 2θ + 1

2
cos(2θ + 2φ0)+ 1

8
cos 4θ −

− 1

8
cos(4θ + 4φ0)

)
+ δ2µ2J 3

(
t

ω5
0

(
− 3

4
sin(2θ + 2φ0)+

+ 3

8
sin(4θ + 4φ0)

)
+ 1

ω6
0

(
17

32
− 1

2
cos 2φ0 − 1

32
cos 4φ0 +

+ 3

32
cos(2θ − 2φ0)+ 3

8
cos 2θ − 21

32
cos(2θ + 2φ0)+

+ 3

16
cos(2θ + 4φ0)− 3

32
cos 4θ + 3

32
cos(4θ + 4φ0)+

+ 1

32
cos(6θ + 2φ0)− 1

16
cos(6θ + 4φ0)+

+ 1

32
cos(6θ + 6φ0)

))
+O(δ3).

B.4. CHECKING THE COMPUTED MAP

The most obvious way of checking any map obtained (with this method or any
other) is to see that it satisfies Hamilton’s equations of motion for the map

Ṁ =M : −H
(
ζζζin, t

) :, (51)
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and the initial condition, which is that it must reduce to the identity at t = 0.
Because it is a differential equation on an operator, it is not easily tested in the
form given. Instead, we must turn this into a differential equation of a phase space
function.

Pick an arbitrary phase space function g(ζζζ, t). The map M that we have obtained
propagates this from time t0 to time t , that is, g(ζζζ, t) =M(t, t0)g(ζζζ, t0). The result
should satisfy Hamilton’s equations of motion for a phase space function,

ġ(ζζζ, t) = [g(ζζζ, t),H(ζζζ, t)]. (52)

For a given function g, this is easy to check. Proof that the map is correct depends
on showing this for all functions; to satisfy this requirement, we need check only
each of the phase space variables themselves, that is, g = ζ1, ζ2, . . . , ζ2d in turn.
These form the explicit representation of the map.

Consider the factored Lie transformations computed in Healy (2001). To first
order, both sides of the differential equation (52) with g = θ are

ω0 + δµJ 1

ω2
0

(
3

4
+ cos(2θ + 2φ0)+ 1

4
cos(4θ + 4φ0)

)
+O(δ2) (53)

and for g = J are

δµJ 2 1

ω2
0

(
sin(2θ + 2φ0)+ 1

2
sin(4θ + 4φ0)

)
+O(δ2). (54)

Therefore, we know the computed map is correct to first order. A similar calcula-
tion on the second order map will confirm that the second rank polynomial (46)
and the resultant explicit transformation (50) are correct.
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