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Abstract

A variety of emerging wide area applications challenge
existing techniques for data delivery to users and appli-
cations accessing data from multiple autonomous servers.
In this paper, we develop a framework for comparing pull
based solutions and present dual optimization approaches.
The first approach maximizes user utility while satisfying
constraints on the usage of system resources. The second
approach satisfies the utility of user profiles while minimiz-
ing the usage of system resources. We present a static op-
timal solution (SUP) for the latter approach and formally
identify sufficient conditions for SUP to be optimal for both.
A shortcoming of static solutions to pull-based delivery is
that they cannot adapt to the dynamic behavior of wide area
applications. Therefore, we present an adaptive algorithm
(fbSUP) and show how it can incorporate feedback to im-
prove user utility with only a moderate increase in resource
utilization. Using real and synthetic data traces, we ana-
lyze the behavior of SUP and fbSUP under various update
models.

1 Introduction

The diversity of data sources and Web services currently
available on the Internet and the computational Grid, as
well as the diversity of clients and application requirements
poses significant infrastructure challenges. In this paper, we
address the task of targeted data delivery. Users may have
specific requirements for data delivery, e.g., how frequently
or under what conditions they wish to be alerted about up-
date events or update values, or their tolerance to delays
or stale information. Initially these users were humans but
they are being replaced by decision agents. The challenge
is to deliver relevant data to a client at the desired time,

while conserving system resources. We consider a num-
ber of scenarios including RSS news feeds, stock prices and
auctions on the commercial Internet, scientific datasets and
Grid computational resources. We consider an architecture
of a proxy server that is managing a set of user profiles that
are specified with respect to a set of remote autonomous
servers. Push, pull and hybrid protocols have been used in
data delivery, and we discuss data delivery challenges for
these scenarios. We then focus on pull based resource mon-
itoring and satisfying user profiles and define two optimiza-
tion problems and present solutions.

Consider the commercial Internet where agents may be
monitoring multiple sources. While push based protocols
may be exploited to satisfy user profiles, targeted data de-
livery may require additional support. For example, there
may be a mismatch between a simple profile that a server
supports via push and the more complex profile of a deci-
sion making agent. A complex profile involving multiple
servers may also require pull based resource monitoring,
e.g., a profile that check a change in a stock price soon after
a financial report is released cannot be supported by push
from a single server. A decision agent may also not wish to
reveal her profile for privacy or other considerations.

The scenario of RSS feeds is growing in popularity and
it is supported by a pull based protocol. As the number of
users and servers grow, targeted data delivery by a proxy
can better manage system resources. In addition, the use of
profiles could lower the load on RSS servers by accessing
them only when a user profile is satisfied. A related appli-
cation is the personalization of individual Web pages; these
are typically supported by continuous queries which have
similar requirements to satisfying user profiles.

Many scientific datasets are being made available and the
by-products of scientific computations are increasingly be-
ing cached and re-used. In addition, the number of sites
with computational resources for on demand computing is
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increasing. Grid resource monitors such as NWS [12] have
been successful in monitoring and predicting the behavior
of individual resources, but such systems have not been de-
signed for scalability. Push based solutions are unlikely to
scale to these applications. Users will have specific require-
ments for datasets, as well as specific configurations of re-
sources. The large number of resources and the specialized
user profiles will challenge a proxy server to actively and
efficiently monitor resources and satisfy user profiles. To
summarize, there are many scenarios where targeted data
delivery requires a proxy server to efficiently monitor mul-
tiple servers to satisfy user profiles.

Much of the existing research in pull-based data delivery
(e.g., [4, 9]) casts the problem of data delivery as follows:
Given some set of limited system resources, solve a (static)
optimization problem to maximize the utility of a set of user
profiles. We refer to this problem as ���������
	�� .

Based on our motivating scenarios, we propose a frame-
work where we consider the dual of the previous optimiza-
tion problem, as follows: Given some set of user profiles,
solve a (static) optimization problem to minimize the con-
sumption of system resources while satisfying all user pro-
files. We label this problem as ���������
	� ; it will be for-
mally defined in Section 2.2. We present an optimal (static)
algorithm for this problem, namely Satisfy User Profiles
(SUP). We note that while our solution SUP is a pull based
solution, it can be modified to work with hybrid push-pull
protocols.

A limitation of the ���������
	 � formulation is that algo-
rithms in this class typically assume a priori estimates of
resource constraints. They do not attempt to determine an
adequate level of resource consumption appropriate to sat-
isfy a set of profiles given the update patterns of servers.
Given the diversity of Web and Grid resources, and the
complexity of user profiles, estimating the needed system
resources is critical. We present some complex profiles in
this paper which will illustrate the difficulty in determining
a priori the appropriate level of resources that are needed. It
is generally not known a priori how many times we need to
probe sources. An estimate that is too low will fail to satisfy
the user profile, while an estimate that is too high may re-
sult in excessive and wasteful probes. Conversely, solutions
to ���������
	 � also have not attempted to reduce resource
consumption, even if doing so would not negatively impact
client utility. We will specify in Section 3 the conditions un-
der which solutions to ���������
	� are guaranteed to satisfy
all user profiles (maximize utility), while minimizing total
number of probes.

A more serious limitation is that most prior work pro-
vides static solutions to the problem of maximizing util-
ity subject to system constraints, and cannot easily adapt
to changes in source behavior. Existing solutions typically
rely heavily on the existence of an accurate update model of

sources. Unfortunately such models may not be completely
accurate. Further, source behavior may change over time.
The autonomy and diversity of Web and Grid resources in-
variably means that any choice of values for these param-
eters may not be appropriately chosen. Further, these pa-
rameters will need to be updated continuously. Also, the
model of updates at the source may not be perfect. Finally,
we can expect an update trace to have stochastic behavior,
correlations, and bursts. Any offline solution must be able
to adapt to reflect the online changing behavior of sources.
Adaptations may include exploiting feedback from probes;
changing the model of updates; and even changing the pol-
icy that is used to determine the next probe, e.g., adapting
between algorithms for ���������
	 � and ���������
	  . In this
work we present a solution fbSUP that incorporates feed-
back and dynamically changes the scheduling for probing.
fbSUP assumes that the underlying model is accurate and
utilizes feedback to adapt to stochastic variations.

Our contributions can be summarized as follows:

� At a conceptual level, we present a framework of
dual offline optimization problems ���������
	 � and
���������
	  .

� At an algorithmic level, we present a (static) optimal
solution for ���������
	� , namely Satisfy User Profiles
(SUP).

� We show that for a strict utility function (Section 2)
and with sufficient resources, SUP is guaranteed to
find an optimal solution to ���������
	� and it does so
by consuming a minimal number of probes. Thus, in
this situation SUP is optimal for ���������
	�� as well.

� Using real trace data from an RSS server and syn-
thetic data, and example profiles, we evaluate the per-
formance of solutions to ���������
	 � and ���������
	  .

� We present a generic adaptive solution to SUP, namely
fbSUP. The specific adaptation that we consider is ex-
ploiting feedback from probing the server to change
the decision of when to probe next. We demonstrate
empirically that fbSUP improves on the utility of SUP
with a moderate overhead of additional probes.

The rest of the paper is organized as follows. Section 2
provides a framework for targeted data delivery. We next
introduce SUP, an optimal static algorithm for solving an
���������
	� problem (Section 3). We present our empirical
analysis in Section 4 and then offer an online algorithm,
fbSUP, to improve the performance of SUP (Section 5). We
conclude with a description of related work (Section 6) and
conclusion (Section 7).
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2 Framework for Targeted Data Delivery

We now present our framework for targeted data deliv-
ery. We define a specification language for user profiles; it
can be used in conjunction with push or pull based delivery.
We then focus on pull-based methods and introduce dual of-
fline optimization problems, ���������
	 � and ���������
	  . We
then discuss schedules and the utility of probing.

Let ������� ��� � 	��
�

� ����� be a set of pages, taken from
various page classes (e.g., eBay, Yahoo! RSS pages, etc.)
We denote by ��� the class of page ��� . Let � be an epoch
and let ��� ��� � ���
�

� ����� be a set of chronons (time points)
in � . A schedule �����������  	� �! �#"$"$" �%�  &! �#"$"$" � is a set of binary
decision variables, set to ' if page � � is probed at time �  
and ( otherwise. Let ) be the set of all possible schedules.

2.1 User Profiles and the Monitoring Task

User profiles are declarative specifications of goals for
data delivery. Our profile language consists of three parts,
namely Domain, Notification, and Profile. Domain is a set
of classes in which users have some interest. The domain
includes two class types, namely “Query classes,” classes
that users wish to monitor and “Trigger classes” that are
used to determine when some monitoring action should be
executed. For example, the condition for monitoring a page
from class * � (say stock prices) may be based on up-
dates to a page from class *  (say, financial news
reports). Query classes and trigger classes may overlap.
We present here a simple domain creation example in our
profile language, named + RSS Feeds” with three fields, ti-
tle, description, and publication date. A full-scale profile
language discussion is beyond the scope of this paper.

CREATE DOMAIN “RSS Feeds” AS
CLASS::RSS(channel.item.title:String�
channel.item.description:String,
channel.item.pubDate:String);

A profile is a triplet. It contains a list of predefined do-
mains such as a traffic domain or a weather domain, a set of
notification rules that are defined over the domains (see be-
low), and a set of users that are associated with the profile.
A notification rule may be associated with different profiles.
The following profile is defined for user u025487 over the
domain of RSS feeds, using SQL as its query language:

CREATE PROFILE “RSS Monitoring” AS
(DOMAIN “RSS Feeds”,
LANGUAGE “SQL”,
USER “u025487”);

A notification rule , is a quadruple of the form-/. � Tr � � �#0�1 . .
is a query written in any standard query

language, specifying the Query classes (in some domain)
that are to be monitored. Tr is a triggering expression and
can include a triggering event and a condition that must be
satisfied for monitoring to be initiated; both are defined for
the Trigger class(es). � is the period of time during which
the notification rule needs to be supported. 0 is a utility
function specifying the utility gained from notifications of.

. For each event that occurs, the notification has two pos-
sible states, namely “Triggered” and “Executable.” A notifi-
cation enters the Triggered state when an event specified in
Tr occurs; the condition of Tr is then evaluated. If this con-
dition is true, then the notification goes to the Executable
state (for that event). A notification remains executable as
long as the condition is true. The period in which a notifi-
cation rule is executable was referred to in the literature as
life [9]. Two examples of life we shall use in this paper are
overwrite, in which an upade is available for monitoring
only until the next update to the same page occurs. A more
relaxed life setting is called window(Y), for which an update
can be monitored up to 2 chronons after it has occured.

The period of time on which the notification is exe-
cutable for some event defines a possible “execution inter-
val,” duing which monitoring should take place. That means
that the query part of a notification that defines the moni-
toring task should be executed. Each notification rule , is
associated with a set of execution intervals 3�4657,98 . For each
4;:<3=4>5�,%8 we define ?@5/4A8 as the times �6 on which the
notification is executable for interval 4 . It is worth nothing
that execution intervals of a notification rule may overlap,
thus the execution of notification query may occur at the
same time for two or more events that cause the notification
to become executable.

As an example, suppose the user would like to be no-
tified every time there are B new RSS feeds. The noti-
fication rule Num Update Watch, to be associated with
RSS Monitoring profile is defined as follows:

INSERT NOTIFICATION “Num Update Watch”
INTO “RSS Monitoring”
SET QUERY “SELECT channel.item.title,channel.item.description

FROM RSS”
SET TRIGGER “ON INSERT TO RSS

WHEN COUNT(*) % X =0”
START NOW
END “30 days” + NOW
SET UTILITY STRICT

Monitoring can be done using one of three methods,
namely push-based, pull-based, or hybrid. With push-based
monitoring the server pushes updates to clients, providing
guarantees with respect to data freshness at a possibly con-
siderable overhead at the server. With pull-based monitor-
ing, content is delivered upon request, reducing overhead
at servers, with limited effectiveness in estimating object
freshness. The hybrid approach combined push and pull,
either based on resource constraints [6] or role definition.
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For the latter, consider the user profile language we have
presented. Here, it is possible that servers of trigger classes
will push data to clients, while data regarding query classes
will be monitored by pulling content from servers once a
notification rule is satisfied. As another example for the hy-
brid approach, consider a three-layer architecture, in which
a mediator is positioned between clients and servers. The
mediator can monitor servers by periodically pulling their
content, and determine when to push data to clients based
on their content delivery profiles.

In the rest of the paper we focus on challenges in pull-
based monitoring. We start with detailing the impact on
pull-based monitoring on clients and introduce the dual op-
timization problem.

2.2 Framework of Dual Offline Optimization
Problems

There are two, principally different, approaches to sup-
port pull-based targeted data delivery. One formulation
���������
	 � assumes an a priori independent assignment of
system resources to this task, e.g., an upperbound on band-
width for probing. The task is to maximize user benefit un-
der such constraints. It is as follows:

maximize user utility

� 
 � 
 satisfying system constraints (1)

For example, in [9] ���������
	�� involves a system re-
source constraint of � , the maximum number of probes
per chronon for all pages in � . One can specify system re-
sources in terms of number of probes, assuming each probe
has an overhead of opening a TCP/IP channel of communi-
cation, downloading information from the server, deciding
on the timing of the next probe, etc. User utility can be pa-
rameterized to represent the amount of tolerance a user has
to delayed delivery.

We propose a dual formulation ���������
	� , which re-
verses the roles of user utility and system constraints. It
assumes that the system resources that will be consumed to
satisfy user profiles should be determined by the specific
profiles and the environment, e.g., the model of updates.
Thus, we do not assume an a priori limitation of system re-
sources. ���������
	  is the following optimization problem:

minimize system resource usage

� 
 � 
 satisfying user profiles (2)

The dual problems are inherently different. To illus-
trate this, consider two resource constraints, namely � (the
maximum number of probes per chronon) and � , the num-
ber of chronons in � . The total number of available probes
in � is ���
� . The behavior of all solutions to ���������
	 �

will be controlled by the values for � and � . For exam-
ple, a choice of a smaller chronon size results in larger �
and an increased utilization of probes (system resources) by
any solution to ���������
	�� . On the other hand, solutions
to ���������
	� can benefit from parameter settings, but the
parameter values do not control their behavior. For exam-
ple, a smaller chronon size and larger � allows a solution
to ���������
	  to probe resources at a finer level of chronon
granularity; however, the minimization of resource utiliza-
tion would ensure that resource consumption will not in-
crease in vain. To summarize, solutions to the two problems
cannot be compared directly. No solution for one problem
can dominate a solution to the other, for all possible prob-
lem instances.

2.2.1 Roadmap for Investigating the Dual Problem

In Section 3 we introduce SUP, an efficient algorithm for the
���������
	  challenge of targeted data delivery, given a user
profile. SUP is guaranteed to minimize system resources
while satisfying a user profile. SUP is an offline algorithm.
It determines a probing schedule given an a priori update
model of resources. Therefore, in run-time it may not be op-
timal due to two main problems. First, an update model for
pull-based monitoring is necessarily stochastic and there-
fore is subject to variations, due to the model variance. Sec-
ond, it is possible that the update model is inaccurate to start
with, which means that replacing it with another, more ac-
curate update model would yield better schedule. In this
research, we address the first problem by offering fbSUP,
an online algorithm that makes use of feedback to tune its
schedule. We defer the algorithmic solution of the second
problem to an extended version of this work.

2.3 Schedules and the Utility of Probing

Let ��� be the set of notification rules of profile ��� . Let
, :���� be a notification rule that utilizes classes from ���
domain and let

.	�
be the set of all pages in � that are in the

domain of �
� . We now define the satisfiability of a schedule
with respect to , as follows:

Definition 2.1. Let � : ) be a schedule, , be a notification
rule with

.	�
, and � be an epoch with � chronons. � is said

to satisfy , in � (denoted ��� �� , ) if ��4 : 3�4657,98���� � :.�� 5��%�  : ?@5�4 8�� �����  �<'�8 .
Definition 2.1 requires that in each execution interval,

every page in
.	�

is probed at least once. Whenever it be-
comes clear from the context, we use ��� � , instead of
��� �  , . This definition is easily extended to a profile and
a set of profiles, as follows:

Definition 2.2. Let � : ) be a schedule, ��� ��� �  � 

�
� �����
be a set of profiles, and � be an epoch with � chronons.

4



� is said to satisfy �
� : ��� ��� � 	� 


�� � �=� (denoted � � �
��� ) if for each notification rule , : � � , � � � , .

� is said to satisfy � � � � �  � 


�� � � � (denoted � � �
��� � � �� � 

�
� � � � ) if for each profile � � : ��� � � �  ��
�

�� � � � ,
� � � � � .

Given a notification rule , : � � and a page � � :� ������� .�� , a utility function ��5/��� � , � �> �8 describes the util-
ity of probing a page � � at chronon �6 . Intuitively, probing
a page � at time � is useful (and therefore should receive
a positive utility value) if it belongs to a class that is re-
ferred to in the Query part of the notification rule and if the
condition in the Trigger part of that profile holds. It is im-
portant to emphasize again the difference of roles between
the Query part and the Trigger part of the profile. In partic-
ular, probing a page � is useful only if the data required by
a profile (specified in the Query part) can be found at � .� 5�� � � , � �  8 is derived by assigning positive utility when
a condition is satisfied, and a utility of ( otherwise. � is
defined to be strict if it satisfies the following condition:

��5/� � � , � �  �8 � 	�
 �> : �� ��� ��� ��� ?@5�4 8�� ��� : . �
( otherwise

(3)
From now on we shall assume binary utility, i.e.,


 �
' . Example of strict utility functions include [9], uniform
(where utility is independent of delay) and sliding window
(where utility is 1 within the window and 0 out of it). Ex-
amples of non strict utility functions are non-linear decay
functions. For simplicity, we shall restrict ourselves to strict
utility functions.

3 An Optimal Static Algorithm SUP

Let � � ��� � � �� ��
�

�� � � � be a set of 	 pages,
����� � �  � 

�
� � � � be a set of chronons in an epoch � , and
� � �������  	��: ) be a schedule. Let � � ��� � 	��
�

� � �=� be a set
of user profiles. ���������
	  is the following optimization
problem:

minimize ���� ��� � ��� �  �����  
� 
 � 
 � � � � � ��� � 	��
�

�� � �=� (4)

The expected utility 0 accrued by executing monitoring
schedule � in an epoch � , is given by:

0 5 � 8 � ������! "$#&%'� " �� � ��� ��� ��� � ��(*),+.-0/213 ' � �� � � � �����  �� 5���� � �  � ,%8546
(5)

The innermost summation ensures that utility is accumu-
lated whenever a probe is performed within an execution
interval. The utility cannot be more than ' since probing

a page more than once within the same execution interval
does not increase its utility. The utility is summed over all
execution intervals, all relevant pages, and over all notifica-
tion rules in a profile.

3.1 The SUP Algorithm

Recall that a notification rule , is associated with a set
of pages

. �
. Given a notification rule , and the set of its

execution intervals 3=4>5�,%8 , SUP identifies the set of pages. ��87 .��
that must be probed in an execution interval 4 .

We present a static algorithm SUP for solving ���������
	 � .
By static we mean that the schedule is determined a-priori.
Later, in Section 5, we show an adaptive algorithm that can
exploit feedback.

Algorithm 1 (SUP)
Input: � � � � � � � �9 ! � � 9
Output: ��� �������  ��
(1) For all pages ��� : � and chronons �> : � :
(2) Initialize ���7�  ;: ( .
(3) For <@� ' to � � � :
(4) � 9 � +=-0/ � ��� ��� ��� � +?>A@ ?@5�4 8#�/* � 9 , is the last chronon of the first */

/* execution interval of notification rule , 9 */
(5) repeat

(6) ?  � +.-B/DC � C9 ! � 57� 9 8
/* ?# is the earliest chronon for which a notification rule */
/* is executable and when SUP will probe*/

(7) , �FE&G�H!IKJ 	 C � C9 ! � 57� � 8
/* , is the notification rule whose */
/* pages in

. �� need to be probed*/
(8) 4 �FE&G�H&ILJ 	 � ��� ��� ��� � +.>�@ ?@5/4A8 �(9) For all ��� : . �� :
(10) set ���7�  ;: '
(11) For M � ' to � � � :
(12) UpdateNotificationEIs 5�?  � � � 8
(13) � 9 � +=-0/ � ��� ��� ��� � +?>A@ ?@5�4 8#�(14) until � 9DN �
The algorithm builds a schedule iteratively. It starts with
an empty schedule (�@�����  : � � �����  � ( ) and repeatedly
adds probes. The “for loop” in lines 3-4 generates an initial
probing schedule, where the last chronon in the first 4 :
3�4657,98 is picked to execute the probe. Lines 5-8 determine
the earliest chronon in which a probe is to be made, the
notification rule associated with this probe, and the specific
execution interval. All pages that belong to classes in the
query part of that notification rule are probed (lines 9-10).

In line 12, the algorithm uses a routine, UpdateNotifi-
cationEIs, to ensure that pages that belong to overlapping
intervals are only probed once. Let < � , be the assign-
ment in line 7 of the algorithm. , is the notification rule
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whose execution interval 4 is processed at time � , and all
pages that belong to classes in

. �� at time � are scheduled
for probing. Given an execution interval 4�� of a notification
rule , � , this routine removes from

. ���� � the (possibly empty)

class set
. ���� . ���� � if ?@5/4A8 � ?@5/4�� 8	���
 . By doing so, we

ensure that pages that belong to overlapping execution in-
tervals will be probed only once. In addition, this routine
removes any execution interval 4 for which

. �� ��
 , allow-
ing lines 4 and 13 to consider only execution intervals for
which monitoring is still needed.

The process continues until the end of the epoch. Gen-
erally speaking, a new probe is set for a page at the last
possible chronon where a notification remains executable.
That is, it is deferred to the last possible chronon where
the utility is still 1. This, combined with the use of the rou-
tine UpdateNotificationEIs � is needed to develop an optimal
schedule, in terms of resource utilization.

The following theorem ensures the optimal outcome of
the algorithm.

Theorem 3.1. Let � � ��� � � �  � 

�
� � � � be a set of 	 pages,
����� � �  � 

�
� � � � be a set of chronons in an epoch � , and
� � �������  	� be a monitoring schedule, generated by Al-
gorithm SUP, with  � � ��� � � � �  �����  ��� . Let ��� : ) ,
��� � � � � � � �� ��
�

�� � � � with  � � ��� � � � �  ����7�  ����� . Then
������� .
Proof (Sketch) We provide a sketch of a constructive
proof, in which ��� is modified into � without increasing the
number of probes. We look at the first chronon � for which
� ���  �� ����7�  , for some page � � . In case � ���  � ( and ������  �<' ,
we identify ��� N � such that � and ��� are within the same
execution interval of a notification rule , such that � � : .��
and � ���  �� � ' . If there is no such ��� , it means that � � was
probed already by both � and ��� (to satisfy some profile)
so we set � ����  � ( . If we find such � � we set � ��7�  � ( and
������  �� �<' . In the first case we decrease ��� by ' , while in the
second case we either do not change ��� (in case ������  � was
originally set to ( ) or we decrease ��� by ' (in case � ��7�  ��
was originally set to ' ). We continue iteratively until ��� be-
comes � . Due to the construction, we get that �!�"�#� .

Probing at the last possible chronon ensures an optimal
usage of resources while still satisfying user profiles. How-
ever, due to the stochastic nature of the process, probing
later may decrease the probability of satisfying the pro-
file. This is true for example with hard deadlines; once the
deadline is passed, the utility is 0. Determining an optimal
probing point, i.e., the one that maximizes the probability
of satisfying the profile depends on the stochastic process
of choice, and is itself an interesting optimization problem.
We defer this analysis to an extended version of this work.

In Section 5 we introduce an adaptive algorithm that im-
proves the online performance of SUP.

SUP accesses � 5$� 8 execution intervals, where � is the
number of total probes in a schedule, bounded by � 	 . We
expect, however, � to be much smaller than � 	 , since �
serves as a measure of the amount of data clients expect to
receive during the monitoring process.

Theorem 3.1 shows that Algorithm SUP indeed min-
imizes  � � ��� � � � �  �����  . The following theorem (which
proof is immediate from Eq. 5) shows that the schedule
generated by Algorithm 1 also has maximum utility for the
class of strict utility functions (and hence can maximize util-
ity while minimizing system resource consumption).

Theorem 3.2. Let � � ��� ��� �  � 

�
� ���6� be a set of 	
pages, ��� ��� � 	��
�

�� ��� � be a set of chronons in an epoch
� , � � � � 


�� � � � be a set of user profiles and � � ��� ���  � be
a monitoring schedule, generated by Algorithm SUP, with
an expected utility 0 5 � 8 .
If for any notification rule , in � � � � 

�
� � � � , ��5/� � � �  � ,98
is strict, then 0 5 � 8�% 0 5 ���8 � for any schedule ��� �& ������  (' �� � .

Proof To maximize Eq. 5, a schedule has to schedule a
probe in each execution interval. SUP does that and there-
fore 0 5 � 8 has maximum value.

3.2 A Comparison of ���������
	�� and ���������
	�

Generally speaking, the dual optimization problems
���������
	 � and ���������
	  cannot be compared directly.
Satisfying user profiles may violate system constraints and
satisfying system constraints may fail to satisfy user pro-
files. However, Theorem 3.2 provides an interesting obser-
vation. Whenever the resources consumed by SUP satisfy
the system constraints of ���������
	�� , then SUP is guaran-
teed to solve the dual ���������
	�� and maximize user utility,
while at the same time minimizing resource utilization.

As an example, consider an algorithm (e.g., [9]) that sets
an upper limit � on the number of probes in a chronon
for all pages. Assume that in the schedule of SUP, the
maximum number of probes in any chronon does satisfy
� . Since SUP utilizes in each chronon only the amount
of probes that is needed to satisfy the profile expressions,
the total number of probes will never exceed �*) � . The
rigidity of ���������
	 � algorithms forces them to utilize all
available resources. This could be more than the resource
utilization of SUP.

Whenever strict utility functions are used, Algorithm
SUP can serve as a basis for solving the dual problem
���������
	 � . A schedule � , generated by SUP with no bound
on system resource usage, and a set of desired system re-
source constraints, can be used as a starting point in solv-
ing ���������
	 � . � can be used to avoid over-probing in
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chronons when less updates are expected. Resources may
be allocated to chronons that are more update intensive. In
this situation, SUP may serve as a tentative initial solution
to the ���������
	 � problem, allowing local tuning at the cost
of reduced utility. We defer a formal discussion of SUP un-
der system constraints to an extended version of this paper.

4 Experiments

We now present empirical results on the behavior of SUP.
We start in Section 4.1 with a description of the data sets
and the experiment setup. We then analyze the impact of
profile selection, life parameter, and update model on SUP
performance (sections 4.2-4.4). We then present an empri-
cial comparison of representatives of the dual optimization
problems in Section 4.5.

4.1 Datasets and Experiment Setup

Dimension Description parameters

Data set one real data set see Table 2
2 synthetic data sets see Table 2

Notification rule Num Update Watch ���������	��
�������
life overwrite

window ����� - ����� chronons
update model FPN ������� ������� ������� ������� �

Poisson �
Table 1. Summary of the experiment parame-
ters

We implemented SUP in Java, JDK version 1.4 and ex-
perimented with it on various data sets, profiles, life param-
eters, and update models. We consider a variety of traces
of update events. These traces could be real traces, e.g.,
RSS feeds, or they could be synthetic traces. We consider
two different update models, FPN and Poisson (to be dis-
cussed shortly) to model the arrival of new update events
to these traces. For comparison purposes, we also imple-
mented WIC to determine a schedule for ���������
	�� as de-
scribed in [9]. Details are omitted for space considerations.
Table 1 presents the various dimensions of our experiments.
We next discuss each parameter in more details.

Dataset Number of Update
objects events

RSS Feeds 103 1972
Synthetic Data 1 244 3754
Synthetic Data 2 792 4194

Table 2. Summary of the data sets

We used data from a real trace of RSS Feeds. We col-
lected RSS news feeds from several Web sites such as CNN
and Yahoo!. We have recorded the events of insertion of
new feeds into the RSS files. We also generated two types
of synthetic data. The first set simulates an epoch with three
different Exponential inter-arrival intensity, medium (first
half a day), low (next 2 days), and high (last half a day).
This data set can model the arrival of bids in an auction
(without the final bid sniping). The second data set has a
stochastic cyclic model of one week, separating working
days from weekends, and working hours from night hours.
Such a model is typical for many applications [7], includ-
ing posting to newsgroups, reservation data, etc. Here, it
can be representative of an RSS data with varying update
intensity. Both synthetic data sets were generated assuming
an exponential inter-arrival time. Table 2 summarizes the
properties of the three data sets. The epoch size vary from
one data set to another. To compare them on even grounds,
we have partitioned each epoch into 1000 chronons.

For the experiments, we used the profile
"RSS Monitoring" as defined in Section 2.1, with
values of B � ' � � � � ��� for the "Num Update Watch"
notification rule. As for the life parameter, we have
experimented with overwrite, as well as window with
2 : ��( � 


 '�( (%� �"! G �
	��
	 � .

An update model defines the monitoring system view of
the update patterns of the data, which may or may not co-
incide with the actual update trace. To varify the impact of
the client-side update modeling on SUP performance, we
use two different update models to represent updates at the
servers, as follows:

� Poisson Update Model: Following [7], we devised an
update model as piecewise homogeneous Poisson pro-
cesses. A Poisson process with instantaneous arrival
rate #��%$'&)( ( ��* 8 models the occurrence of update
events. The number of update events occurring in any
interval 5/� ��+-, is assumed to be a Poisson random vari-

able with expected value . 5 � ��+ 8 �0/213 # 5 � 854 � . Due
to limitation of this modeling technique (see [7] for
details), the Poisson update model was applied to the
synthetic data traces only.

� False positives and False negatives (FPN) Update
Model: Following [9], we devised the FPN model.
Given a stream of updates, a probability �����  is as-
signed the value ' if a page � � is updated at time �> .
Once probabilities are defined, we add noise to the
probability model, as follows. Given an error factor6 :7( ( � ' , , the value of � ���  is switched from ' to (
with probability

6
. Then, for each modified � ���  , a

new time point �  � is randomly selected and the value
of �6���  � is set to ' . Note that FPN can be applied to any
data trace, regardless of its true stochastic pattern.
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With 3 datasets, 2 update models (and parameter varia-
tions for FPN) and varying life settings, there are a large
number of possible experiment configurations. due to space
consideration, in this work we restrict ourseleves to present-
ing results with the more “interesting” configurations.

To measure the performance of SUP, we use effective
utility, as follows. For each experiment, an optimal sched-
ule ��� for algorithm SUP was developed. Given a schedule
� , the effective utility of an algorithm is calculated as the
ratio of the utility gained by � divided by the utility of � � .
4.2 Impact of profile selection

In our first experiment we report on the impact a choice
of a profile has on the ability of SUP to perform online. In
Section 3.1 SUP is proven to be optimal offline, yet stochas-
tic variations may affect its online behavior. We chose a
complex profile where the user wish to be notified only af-
ter X number of updates were accumulated. Note that this
does not mean that the profile is less accurate and tolerates
missing update events.

Figure 1 provides the results of experimenting with the
five different profiles. We have set the update model to be� ��� 5�( 
 � 8 . The x axis represents an increasing window
size and each of the curves represent different B value. We
present the results for two data sets, RSS and synthetic data
1. Synthetic data 2 show similar behavior as RSS.

For both datasets, the effective utility is reasonably high.
It ranges from � ( 
���� to ��� 
 �	� for RSS and � ' � to 
 ( 
 ���
for synthetic data 1. As we vary the parameter Y that is
a part of the profile and control the window for reporting
the event, the effective utility increases. The difficulty of
supporting a complex profile is seen for both datasets. The
effective utility for X=1 is higher than for X=5, reflecting
that when the profile is required to determine when a fixed
number of updates have accumulated, the error of misesti-
mation also has a cumulative impact.

4.3 Impact of life parameter selection

The life parameter represents user tolerance towards the
exact monitoring time. The most restricted parameter in
our experiments is window(0), requiring the schedule to
monitoring at exactly the time of update. As window size
increases, the schedule can probe at increasing distances
from the actual update. Overwrite is restricted in set-
tings where many updates occur at close proximity.

Figure 2 provides the results of experimenting with four
different life parameters, overwrite and window(Y)
with 2 �;( � '�( �� ( chronons. We have set the update model
to be

� ��� 5/( 
 � 8 again. The x axis represents different pro-
files (note the difference from the previous experiment) and
each of the curves represent a different life parameter. We

present the results for two synthetic data sets. Once again,
synthetic data 2 and RSS show similar behavior.

Somewhat surprising, the worst performance is that of
the overwrite life parameter. Note that the performance
of overwrite in synthetic data 1 is much better than its
counterpart. This indicates that with synthetic data 1 SUP is
allowed more manuevering room to monitor properly, prob-
ably due to the way updates are spread across the epoch.
As for the window(Y) life parameter, effective utility in-
creases with 2 , since a wider window allow a better chance
for capturing updates.

4.4 Impact of update model selection

We study next how various parameter settings for the
FPN model and the use of the Poisson model impact ef-
fective utility. Recall that as the

6
FPN parameter is

less than 1.0, we are introducing more stochastic variation
in the update model. We present SUP performance for
the "Num Update Watch" notification rule, with B �
' � � � � ��� and the overwrite life parameter. We use the
synthetic data sets to illustrate our results.

In Figure 3, SUP has 100% utility for
6 � ' 
 ( , since

SUP offline estimation has an accurate understanding of the
update stream. As we modify the parameter to

6 � ( 
 � ,
more variance is added, and effective utility deteriorates.
Scheduled updates may come too early or too late. Gen-
erally speaking, Poisson seems to be the model with the
highest variance, resulting in low effective utility. For syn-
thetic data set 2, for all update models, the effective utility
decreases as the number of updates in the notification rule
increases from B ��' � � � � ��� . Note, however, the relative
stability of the Poisson model. Synthetic data set 1 demon-
strates a different pattern, in which the change of effective
utility, as B increases is less predictable.

4.5 ���������
	 � and ���������
	 

Recall that while ���������
	 � set hard constraints on sys-
tem resources, ���������
	  aims at minimizing its utilization;
thus they cannot be compared directly. Further, ���������
	 
secures the full satisfaction of user specification (at least
offline) while ���������
	 � can only aim at maximizing it.
Despite their differences, we can compare them indirectly,
using resource utilization of the different solutions and the
utility for given resource utilization.

We compare SUP as a representative of ���������
	  and
WIC as a representative of ���������
	�� . Figure 4 provides
the resource utilitization and corresponding utility of both
algorithms. The experiment used the Synthetic Data
2 dataset. We add a parameter denoted � , used by WIC, to
represent a system constraint on the total number of probes
allowed per chronon. Figure 4(a) provides the analysis re-
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Figure 2. SUP performance for various life parameters

sults for
� ��� 5 ' 
 ( 8 , where updates occur at the expected

update time as determined by the update model. Figure 4(b)
provides the execution results, assuming a Poisson update
model.

In Figure 4(a), SUP is represented by a single point in
the graph; this is its optimal schedule with an effective util-
ity of 1.0. The optimal number of probes for SUP is 1500
for this dataset. We study WIC under various parameter
settings; we consider 500, 1000 and 3000 for the number
of chronons in an epoch � . The three curves WIC 500,
WIC 1000 and WIC 3000 represent these parameter set-
tings. We also varied the � level. The x axis represents
the total number of probes ( � � � ). Thus, for � � � ( (
chronons and � ��� ( , we have 15,000 probes. Similarly,
with � � '�( ( ( chronons and � � ' � , we have 15,000
probes.

The effective utility of WIC approaches 1.0 with in-
creased probing but does not reach it. We note that for
1500 probes, (where SUP has 1.0 effective utility in the
ideal case), the effective utility of WIC is much below that
of SUP.

We now consider the analysis of using the Poisson up-
date model in Figure 4(b). The effective utility for SUP is
about 0.41 (about 41% of the optimal). This too is for the

same 1500 probes and is represented by a single point. WIC
starts with low effective utility (less than 0.2) and as it in-
creases the number of probes, the utility increases. In order
to reach utility of 0.41 it requires more than 9000 probes,
which is approximately 6 times higher than that of SUP.
The relatively low effective utility indicates that predicting
an update event using a static algorithm may not be very ac-
curate. We will next present our adaptive algorithm, which
allows changes to the a priori schedule using feedback.

5 Adaptive SUP

The optimal static algorithm SUP performs well assum-
ing a good underlying update model. However, in prac-
tice, the SUP algorithm (or any algorithm that relies on
a stochastic update model, for that matter) may perform
poorly due to two main problems. First, the underlying
update model that is assumed in the static calculation is
stochastic in nature and therefore updates deviate from the
expected update times. Second, it is possible that the un-
derlying update model is incorrect, and the real data stream
behaves differently than expected.

To tackle the first problem, we propose an algorithm
fbSUP, a variant of SUP. fbSUP exploits feedback from
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Figure 4. SUP and WIC for Synthetic Data 2 dataset for (a) FPN(1) (b) Poisson

probes, and revises the probing schedule in a dynamic man-
ner, after each probe. fbSUP responds to deviations in the
expected update behavior of sources that it observes as a
result of feedback from the probes, and it does so without
requiring changes to any parameters.

fbSUP is independent of both the profile description and
the specific details of the update model. The only require-
ment we make is that � be discrete.

5.1 fbSUP: SUP algorithm with feedback

We now present fbSUP, the adaptive SUP algorithm.
Given a notification rule , and a chronon � , we define� � 5�� 8 to be a boolean variable, set to true if , is satisfied at
time � . Intuitively the algorithm works as follows: Recall
that given a client profile, SUP probes a source once in an
execution interval. In the running example, that means that
the expected number of updates has increased by B . fbSUP
adds an extra probe whenever the recent probe has failed
to satisfy

� � 57� 8 , by generating a new execution interval in
3�4 5�,%8 . The algorithm for fbSUP is presented next.

Algorithm 2 (fbSUP)
Input: ��� � � � , � � � �������  	�
Output: ���>� ������7�  �
(1) If

� � 57� 8 � � E&< ��� then:
(2) 4 � E�G�H!IKJ 	 � � ��� ��� ��� � � � ��� �@?@5/4��78 �

(3) 4�� � recompute execution interval for , using feedback
(4) If not exists �  : ?@5�4���8 such that � ���  � ' then:
(5) �  �FILE���57��: ?@5/4 � 8&8
(6) set � ���  : '

Line 2 identifies the nearest execution interval 4 to time
� . Such execution interval is still current (that is � : ?@5/4A8 ),
based on the way SUP assigns probes to execution inter-
vals. Clearly, no more probes, beyond the probe at time � is
scheduled for 4 , due to the offline optimality of SUP. There-
fore, fbSUP recomputes a new execution interval, based on
the feedback it receives from the monitoring task (line 3).
In lines 4-6 we verify that no other probe is scheduled for
this page and then set a new monitoring task at the end of
the new execution interval.

As an example, consider our case study notification rule
and assume that at the time of monitoring, only <�� B
updates occur. fbSUP generates a new execution interval,
checking for B
	 < updates ahead.

5.2 Discussion

fbSUP refrains from changing the update model as a
method of adaptation. While changing the update model
can increase the flexibility of the algorithm, we believe this
approach has two main limitations. First, it does not seem to
be theoretically sound. fbSUP uses feedback to learn of the
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natural variation of the stochastic model, rather than learn-
ing a new update model. Second, recomputing parameter
values at every chronon increases the complexity of the al-
gorithm, requires extensive bookkeeping, and could delay
probes in some situations. Thus, this online approach to re-
compute parameter values does not optimize resource con-
sumption and could potentially result in excessive probing.

5.3 Experiments with fbSUP

We performed experiments on all three data sets, and
the various update models, comparing SUP and fbSUP. We
have measured both the improvement in effective utility of
fbSUP over SUP and the additional cost in terms of num-
ber of probes. Our results show that for a variety of traces
fbSUP can improve the effective utility by up to 110% com-
pared to SUP with only moderate increases in the number
of probes (less than 50% increase).

Figure 5 provides a comparison of SUP and fbSUP
for the RSS data set with life=overwrite. Figure 5(a)
presents the increase in relative utility with fbSUP for four
variations of FPN. For

6 � ' 
 ( , SUP performance is opti-
mal and therefore fbSUP cannot improve the schedule. For
smaller FPN values, fbSUP does not improve performance
for B � ' since its logic converges to that of SUP for this
notification rule. For larger B values, however, fbSUP im-
proves significantly (for this data set, up to 104% for B � �
and

6 � ( 
 
 ).
The cost of fbSUP is presented in Figure 5(b). Again,

for
6 � ' 
 ( no modification to the schedule is needed and

fbSUP adds no extra probes. For other models, and for B N
' , effective utility improvement comes at a cost, albeit not a
big one. Therefore, for

6 � ( 
 � and B � � , the increase in
the number of probes was � � � (compare with � 
 � increase
in effective utility). It is noteworthy that the increase in
effective utility and probing is not necessarily correlated.
For example, for B � � , the effective utility of fbSUP for6 � ( 
 � is dropping, while the number of probes slightly
increase.

6 Related work

Existing pull-based data delivery approaches can be clas-
sified along several dimensions. The first dimension is the
objective of the problem. The objective is the utility to be
optimized; by utility we mean some client-specified func-
tion to measure the value of an object to a client, based
on a metric such as data recency [1] or importance to the
client [3]. The second dimension is the constraints of the
problem. Constraints are restrictions, e.g., bandwidth, to
which the model should adhere. A third dimension is when
objects are refreshed, either in the background, on-demand
when clients request them, or some combination of the two.

In this section we describe several existing pull-based ap-
proaches, both background and on-demand, with different
objectives and constraints.

Several approaches assume no resource constraints. TTL
[8] is commonly used to maintain freshness of object copies
for applications such as on-demand Web access. Each ob-
ject is assigned a Time-to-Live and any object requested af-
ter this time must be validated at a server to check for up-
dates. The objective of TTL is to maximize the recency of
the data. Latency- recency profiles [1] are a generalization
of TTL that allow clients to explicitly trade off data recency
to reduce latency using a utility function. The objective is
to maximize the utility of all client requests, assuming no
bandwidth constraints.

RSS feeds [11] provide an interface for Web sources to
publish updates to clients. RSS readers convert pull-based
Web sources to push by periodically polling sources in the
background to check for updates. RSS provides no ex-
plicit bandwidth constraints, but readers typically monitor
sources at fixed intervals (e.g., every 15 minutes), which
may either consume excessive bandwidth or fail to meet
client requirements.

There are also many approaches that aim to maximize an
objective function (e.g., recency, utility), subject to explicit
resource constraints. These approaches assume that the
contraints are given a priori. TTL with pre-validation [Pre-
Validation] [5] extends TTL by validating expired cached
objects in the background. This approach assumes limits
on the amount of bandwidth for pre-validation, but assumes
no bandwidth constraints for on-demand requests. WIC
[9] monitors updates to a set of information sources in the
background subject to bandwidth constraints. The objec-
tive is to capture updates to a set of objects. WIC (and
also CAM [10]) monitor updates to a collection of sources,
but it assumes bandwidth constraints are given and does not
consider client utility per-se, although user preferences (re-
ferred to as urgency) are included in the utility computation.

Cache synchronization [4] and application-aware cache
synchronization [AA-Synch] [2] refresh objects in the back-
ground to maximize the average recency of a set of ob-
jects in a cache, subject to bandwidth constraints. These
approaches maximize average recency of a set of objects
rather than monitoring updates to sources, and unlike SUP
do not consider client utility.

Profile-driven cache management [3] is an on-demand
approach that enables data recharging for clients with in-
termittent connectivity. Clients specify complex profiles of
the utility of each object. The objective is to download a
set of objects to maximize client utility while the client is
connected, thus, there is an explicit limit on the number of
objects that can be downloaded. We note that PDCM does
not directly handle updates to objects.

A key observation is that the above approaches maxi-
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Figure 5. Relative performance of SUP and fbSUP for RSS data, life=overwrite

mize an objective function, subject to either unlimited re-
sources (e.g., bandwidth) or explicit resource constraints.
None of the above approaches explicitly minimize resource
consumption subject to satisfying a target recency or utility.
Existing background approaches such as WIC, CAM, and
Cache Synchronization, as well as PDCM [3] assume that
bandwidth constraints are given and do not attempt to use
fewer probes than the pre-specified constraint value. Thus,
existing approaches may have many wasteful probes. In
contrast, in this paper our proposed algorithm SUP solves
the dual problem of minimizing the number of probes to
sources subject to utility constraints. Unlike existing ap-
proaches, SUP monitors sources using a minimal number
of probes.

7 Conclusions

Pull-based data delivery is needed for many applications
to support diverse profiles across multiple sources, preserve
user privacy, and reduce resource consumption. Minimiz-
ing the number of probes to sources is important for pull-
based applications to conserve resources and improve scal-
ability. Solutions that can adapt to changes in source be-
havior are also important due to the difficulty of predicting
when updates occur. In this paper we have addressed these
challenges with two algorithms, SUP and fbSUP, that aim
to satisfy user profiles and minimize resource consumption.
We have formally shown that SUP is optimal for ���������
	 
and under certain restrictions can be optimal for ���������
	 �
as well. We have empirically shown, using data traces from
diverse Web sources that SUP can satisfy user profiles and
capture more updates compared to existing policies. We
have also analyzed the impact of profiles, life parameters,
and update models on SUP online performance. fbSUP was
introduced to increase the utility of SUP by dynamically
changing monitoring schedules. Our experiments show that
fbSUP improves on SUP with a moderate increase in the
number of needed probes.

In future work, we will consider how to incorporate re-
source constraints into SUP. We will also consider source
monitoring for mobile applications which introduces new
challenges due to intermittent connectivity. Finally, we plan
to investigate using profiles for grid and network monitoring
applications.
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