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As the gate oxide thickness of the metal-oxide-semiconductor (MOS) Field 

Effect Transistor (FET) is continuously scaled down with lateral device dimensions, 

the gate leakage current during operation increases exponentially. This increase in 

leakage current raises concerns regarding device reliability. Substitute dielectrics with 

high dielectric constant (high-k) have been proposed to replace traditional SiO2 to 

reduce the leakage current in future devices. However, these high-k dielectrics also 

have reliability issues due to the large amount of intrinsic trapping centers. 

In this work, electrically active defects generated during electrical stress of 

ultrathin SiO2 dielectrics are characterized and studied. The mechanism of oxide 

breakdown is studied by investigating the contributions of hot holes to device time-to-

breakdown (tbd). The proper extrapolation of tbd from accelerated testing conditions to 

normal device operating conditions is also studied. The factors that affect this 

extrapolation are discussed. Another important device reliability parameter, threshold 
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voltage shift (∆Vth), is also investigated in this work. The dominant mechanisms 

causing this shift is studied using both simulation and experimental results.  

The current primary reliability issue with high-k dielectrics is the large 

amount of intrinsic traps located in the dielectric stack. Therefore, the electrical 

characterization of high-k dielectrics in this work is focused on these initial as-

fabricated trapping centers. A methodology based on 2-level charge pumping (CP) 

measurements at different frequencies is used to study the spatial profile of these 

trapping centers. The correlation between device fabrication data and measurement 

results indicates this methodology is accurate and reliable. 
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Chapter 1 

Introduction 

 

 

1.1 Introduction 

Ever since the first transistor was introduced by Shockley and Pearson in 

1948 [1], the device with metal, oxide and semiconductor stacked structure has 

dramatically affected and changed the world. Today, the Metal-Oxide-

Semiconductor-Field-Effect-Transistor (MOSFET) is the basic building block of 

modern integrated circuits and can be found everywhere from kitchen appliances to 

the space shuttle. The remarkable capability of the MOSFET comes from the voltage-

modulated conductance of the semiconductor surface underneath the oxide layer. 

When a gate voltage is applied to the metal layer (or highly doped poly-silicon layer), 

minority carriers from the source and the drain are either accumulated or depleted at 

the semiconductor surface. This drives the device into the “on” and “off” states, 

accordingly. The key issue of this voltage-controlled characteristic of the MOSFET is 

attributed to the existence of the oxide layer sandwiched between the metal and the 

semiconductor layers. The oxide layer serves as an insulation layer by blocking the 
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current between the gate electrode and the semiconductor when mobile carriers are 

accumulated at the semiconductor layer surface.  

Silicon dioxide (SiO2) has been used as this insulation material for more than 

three decades [2]. The success of the Si-SiO2 system is because of the unique features 

of SiO2 such as high band gap energy, high thermal stability, and the excellent 

compatibility with the Complementary MOS (CMOS) technology. Furthermore, the 

high quality interface between the thermally grown SiO2 and Si substrate makes the 

Si-SiO2 system possess relatively high electron and hole mobilities and low interface 

states. These outstanding properties make the Si-SiO2 system irreplaceable in the past 

decades. 

Because of the improvement of process integration technology, the device 

density of integrated circuits has doubled for approximately every two years, 

according to Moore’s Law [3]. As shown in Figure 1.1, Intel has predicted that the 

number of transistors per integrated circuit will reach one billion by the year 2005 [4]. 

As the device density of the integrated circuits increases, all of the device dimensions 

are scaled downward.  As device dimensions are scaled, the operating voltage, VDD, is 

also scaled by the same factor as the device dimensions. The substrate doping density 

must then be increased in order to reduce short-channel effects. To keep the driving 

current for proper circuit operation, the gate oxide capacitance (Cox) must be 

increased [5].  Historically, this has been accomplished through a reduction of the 

gate oxide thickness (tox) [5, 6]. The 2004 International Technology Roadmap for 

Semiconductors (ITRS) predicts that the equivalent gate dielectric thickness will be 

reduced to approximately 7 Å by 2010, as shown in Figure 1.2 [7].  
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With the scaling of tox, SiO2 will no longer be able to block leakage current 

effectively. The exponentially increasing gate leakage current with decreasing tox has 

been considered as the essential factor limiting the future scaling of tox. The gate 

leakage current will increase the device standby power consumption [8] and also 

affect the circuit performance [9]. For tox ≤ 4 nm, it is found that the gate leakage 

current increases by approximately one order of magnitude for every 0.2-0.3 nm of 

oxide thickness reduction [10], as shown in Figure 1.3.  The maximum tolerable gate 

leakage current is suggested to be between 1 (A/cm2) and 10 (A/cm2), which 

correspond to an oxide thickness between 1.2 and 1.5 nm [11-13].  

The gate leakage current not only causes a power dissipation problem, but 

also raises concerns regarding the reliability of the gate oxide. It is known that 

electrically active defects are generated when electrons or holes tunnel through the 

gate oxide [6,9-12]. These defects cause shifts in Vth and degrade the channel carrier 

mobility impacting the device performance. When the generated defects reach a 

critical amount, they cause the gate oxide to breakdown. Although the reliability of 

ultra-thin SiO2 has been heavily studied, the exact physical mechanisms of defect 

generation of breakdown are still unknown. 

To reduce the large gate leakage with the scaling oxide thickness, substitute 

materials with high dielectric constant (high-k), such as Al2O3, HfO2 and ZrO2, have 

been proposed to replace SiO2 [14-22]. The principle of replacing SiO2 with these 

high-k materials is to keep Cox the same while permitting a physically thicker 

dielectric.  Cox for SiO2 and high-k materials can be expressed as 
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where ε0 is the vacuum dielectric constant, εSiO2 and εk are the relative dielectric 

constants for SiO2 and high-k dielectrics respectively, while 
2SiOt  and kt  represent the 

physical thickness of SiO2 and high-k dielectrics respectively. In order to compare 

high-k dielectrics with SiO2, equivalent oxide thickness (EOT) is defined for high-k 

dielectrics as the equivalent thickness of SiO2 which results in the same capacitance 

as the high-k.  From equation (1.1) it is easy to show that EOT can be expressed as  

Since the typical value for εk is between 10 and 25, which is larger than εSiO2 

(=3.9), the physical thickness of high-k dielectrics can be relatively thicker (~ 3 nm) 

while keeping EOT as small as 1 nm. Because the physical thickness of high-k 

materials is much thicker than SiO2 for a given capacitance, the tunneling current is 

expected to be reduced significantly for high-k gate dielectrics [23, 24]. Figure 1.4 

shows the comparison of the gate leakage current density (Jg) between SiO2 and HfO2 

gates at different EOT. It is obvious that Jg is reduced significantly for the HfO2 gate 

dielectric as compared to SiO2.  

The search of proper high-k dielectrics to replace SiO2 has proven to be 

extremely challenging. Problems associated with these dielectrics include thermal 

instability on silicon, instability with gate electrode materials, large tunneling 

)2.1(2

2
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅== k

k

SiO
SiO ttEOT

ε
ε

)1.1(00

2

2 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==
k

k

SiO

SiO
ox tt

C εεεε



 

 

5

 

currents, and lower than expected dielectric constants of the deposited films. 

Furthermore, unlike the Si-SiO2 system which shows a high quality interface with 

low interface state density and high channel carrier mobilities, the Si-high-k system 

generally has large interface state density and low channel carrier mobilities. [25-30]. 

To obtain a high quality interface with Si substrate while using a substitute 

high-k gate dielectric, a SiO2-like interfacial layer can be grown before the high-k 

dielectric is deposited. This interfacial layer provides a transition region from the Si 

substrate to the substitute high-k dielectrics and is required to form high quality 

interfaces with both Si substrate and high-k dielectrics. This high-k and interfacial 

layer stacked gate structure makes the high-k dielectric system even more 

complicated to characterize. 

There has been a lot of recent research related to high-k dielectrics [14-22]. 

The main issue related to the high-k gate dielectrics themselves is the large amount of 

fixed charges and charge trapping centers compared with SiO2 [31]. The charge 

trapping centers are believed to exist at the interface with gate electrode [32], the 

interface with SiO2-like interfacial layer [33] and inside the bulk dielectric. These 

trapping centers and intrinsic charge defects make high-k dielectrics much more 

complicated than the traditional SiO2 gate dielectric.  

 

1.2 Purpose and Approach 

The overall goal of the research presented in this thesis is to provide detailed 

electrical characterization and fundamental understanding of electrically active 
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defects in advanced gate dielectrics, including the traditional ultrathin SiO2 and HfO2 

dielectrics. The detailed approach to achieve this goal is described in the following. 

The initial work involved the study of MOSFETs with ultrathin SiO2. Since 

SiO2 is relatively free of initial defects, the focus was on defect generation 

mechanisms. Proposed mechanisms of defect generation and oxide breakdown from 

the literature were studied by injecting different carriers (electrons and holes) during 

stress. The behavior of the time-to-breakdown (tbd) and charge-to-breakdown (Qbd) of 

the devices was used to compare and eliminate less likely mechanisms. Attention was 

then turned to the relation between the defect generation and the injected charges by 

using an interrupted-stress method. The understanding of how to perform proper 

extrapolation and the correct interpretation of the data from electrical characterization 

results was the focus of this study. 

The understanding and characterization methodologies developed in ultrathin 

SiO2 were then applied to MOSFETs with HfO2 gate dielectrics. Since the main 

problem associated with HfO2 is the relatively large amount of initial defects, the 

focus of this research was to understand how to properly characterize these initial 

defects.  The initial defect characterization was conducted through measurements of 

the spatial as well as the energy distributions of defects in HfO2 using charge-

pumping. By changing the measurement conditions, defects at different energies and 

depths in HfO2 can be characterized.  

 

 

 



 

 

7

 

1.3 Preview of Thesis  

This thesis is organized into seven chapters. 

Chapter 2 provides background information for the rest of the thesis. It starts 

with the introduction of the percolation theory that connects the microscopic defect 

generation to the macroscopic gate oxide degradation phenomena and the eventual 

breakdown. The three major models proposed in the literature to explain defect 

generation mechanisms are then introduced. The success and controversies of these 

models are discussed in detail. The statistics of breakdown is then introduced 

followed by the description of the electrical characterization techniques such as stress 

induced leakage current (SILC) and charge-pumping (CP) measurements that are 

used to monitor the dynamic defect generation during a stress.  

Chapter 3 describes my research on possible defect generation models for 

SiO2 by studying the effect of injected substrate hot holes on defect generation and 

tbd. It is found that pre-injected substrate hot holes have no effect on the tbd for the 

subsequent constant voltage stress (CVS). The results suggest that holes are not 

responsible for defect generation and breakdown during CVS. The results also 

suggest that different types of defects may be generated during the CVS as compared 

to substrate hot hole injection.  

Chapter 4 describes defect generation mechanisms in SiO2 by inspecting  

defect generation as a function of injected charges. A non-linear relationship between 

the generated defects and the injected charges are revealed. This non-linear 

relationship raises the concern of extrapolating the tbd from stress conditions (high 

voltage) to device normal operating conditions (low voltage) correctly. The possible 
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mechanisms that cause this non-linear relationship are also investigated and it is 

found that the changes of carrier capture cross sections during stresses can not explain 

this non-linear relationship.   

Chapter 5 investigates the dominant mechanism that causes the threshold 

voltage (Vth) shifts in n- and p-channel MOSFETs. The results suggest that mobility 

degradation can be an important component of threshold voltage shift.  The results 

suggest that proposed oxide degradation models based on the Id-Vg measurements of 

Vth may not be accurate. 

In Chapter 6, the focus is changed to the HfO2 gated MOSFET. The spatial 

and energy distributions of the initial defects in HfO2 are characterized by using CP. 

The fraction of defects probed by CP at a given energy and depth within the dielectric 

is simulated. By changing CP measurement conditions, the spatial and energy profiles 

of defects in HfO2 can be characterized. The simulation results are compared with 

experimental data to extract the initial defect distribution in the HfO2 dielectric.     

Finally, Chapter 7 provides the summary of this thesis and some possible 

future work.  
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Figure 1.1   The extension of Moore’s law made by Intel. It is 
predicted that the number of transistors per integrated 
circuit will reach one billion by the year 2005 [4]. 
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Figure 1.2 A plot from the 2004 ITRS showing
future projected EOT and limit of gate
leakage current density [10]. 
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Figure 1.3 The gate tunneling current for SiO2 with tox ≤ 4nm. The
tunneling current increases exponentially with reducing
oxide thickness [13]. 
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Figure 1.4  The comparison of gate leakage current density between
SiO2 and HfO2 gates at different EOT. The leakage
current is significantly reduced for HfO2 gate dielectrics
when EOT is reduced [26]. 
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Chapter 2 

Background 

 

 

2.1 Overview 

The goal of this chapter is to provide the background that will be helpful to 

read the rest of this thesis. Macroscopic gate oxide degradation phenomena and 

eventual breakdown are first explained through percolation theory. The three major 

proposed empirical models for defect generation are discussed in detail, including the 

success and controversies of these models. The statistics of breakdown and electrical 

characterization techniques such as stress induced leakage current (SILC) and charge 

pumping (CP) will then be introduced. 

 

2.2 Percolation Theory 

Gate oxide degradation and eventual breakdown are due to the generation of 

defects during stresses. To explain how electrical defects cause oxide breakdown, 

Degraeve proposed the percolation theory in 1995 [34]. It suggests that electrical 

defects are generated randomly in the gate oxide during a stress, as the open circles 
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schematically depict in Figure 2.1. The energy levels of these defects are located 

within the silicon band gap and thus provide additional intermediate tunneling paths 

for electrons and holes. These tunneling paths degrade the oxide insulation ability and 

increase gate leakage current. As the defects are continuously generated, they have a 

chance to connect to each other electrically and form a conducting path. Once the 

conducting path connects the poly-Si gate to the Silicon substrate (as the shaded 

circles show in Figure 2.1), an electrical short across the oxide is found. This 

conducting path surges a large current that causes permanent structural breakdown of 

the oxide.  

Percolation theory successfully explains how the defects degrade and cause 

eventual oxide breakdown. The number of defects at breakdown (NBD) and the 

effective defect size (or the effective number of defects that causes the breakdown) 

can also be calculated by fitting this theory with experimental data [34-36]. The 

theory also successfully explains the dependence of NBD on oxide thickness and area. 

However, percolation theory does not explain how these defects are generated. 

 

2.3 Defect Generation Models 

To explain how the defects described in percolation theory are generated, 

several physical models have been proposed in the literature. Three major proposed 

models, the thermo-chemical electric field model, the anode hole injection (AHI) 

model and the hydrogen release (HR) model, will be introduced in the following 

sections.  
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2.3.1 Thermo-Chemical Electrical Field Model  

The thermo-chemical electric field model was developed based on the 

observation of tbd as a function of electrical field [37-39]. It suggests that defects are 

generated due to the interaction between the electric field and the oxide lattice [40]. 

When an electric field is applied across the SiO2 layer, it interacts with the weak Si-Si 

bonds associated with oxygen vacancies in the SiO2 layer. The applied electric field 

eventually breaks the weak bonds and creates permanent defects which lead to 

breakdown [41, 42]. This electric field driven model is no longer accepted as recent 

studies conclusively showed that defect generation is related to electron fluence and 

cannot be explained by the interaction of the SiO2 lattice with electrical field [43-46]. 

 

2.3.2 Anode Hole Injection Model 

The Anode Hole Injection (AHI) model suggests that hot holes are generated 

at the anode due to energetic electrons injected from the cathode. These holes can 

then tunnel back into the oxide and generate defects that cause gate oxide degradation 

[47-49]. Figure 2.2 shows illustratively the processes of the energetic tunneling 

electron, the anode hole generation, and the anode hole injection for an n-channel 

MOSFET. The oxide breakdown happens when a critical hole fluence (Qp) is reached 

[50]. The AHI model was later modified to include anode holes generated through 

minority ionization, which makes the anode hole generation possible at the low gate 

bias condition [51, 52]. 

The AHI model is based on experimental observations of thicker oxides that 

the number of defects generated in the gate oxide is uniquely correlated to the anode 



 

 

16

 

hole fluence, independent of the gate stress voltage and the oxide thickness [50]. The 

hole fluence is assumed to be equal to the measured substrate current which is 

proportional to the gate current during stress [53]. The AHI model can also explain 

the polarity dependence observed from both n-channel and p-channel devices stressed 

at opposite polarity bias conditions [54-56]. This model is supported by the 

observation that Qp is independent of the gate stress voltage (VG) and tox [53]. The 

AHI model also shows that the voltage acceleration factor (γ), which is defined as the 

negative derivative of the logarithm of tbd respect to the stress voltage (-∑ ln tbd / ∑V), 

should increase with decreasing gate voltage, as observed from experiment [57].  

Nevertheless, the AHI model is challenged by other observations. First, Qp is 

found not to be a constant for low electron injection conditions [58]. It is also found 

that Qp decreases with the decreasing oxide thickness [49], and shows a temperature 

dependence [59, 60]. Furthermore, physical mechanisms other than anode hole 

injection can also contribute to the measured substrate current [61, 62]. Other 

observations also indicate that even though the injected anode holes are efficient in 

generating electrical defects, these defects are inefficient in causing oxide breakdown 

[60]. 

 

2.3.3 Hydrogen Release Model 

The other model that tries to explain defect generation is the hydrogen 

release (HR) model. The HR model is similar to the AHI model but suggests that 

hydrogen species are generated at the anode by energetic electrons and do damage 

when they drift or diffuse into the gate oxide [60]. It is suggested that atomic 
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hydrogen can attack Si-O bonds and cause the damage. Hot electrons can also break 

Si-H bonds, which are believed to be one of the sources of oxide degradation [57, 63, 

64]. It is also found that the voltage dependence of the H atom desorption rate from 

the silicon surface is similar to the voltage dependence of the defect generation rate 

(Pg) in the gate oxide [65]. The HR model can also possibly explain the large 

exponent value (n~ 44) in the tbd power law dependence of the stress voltage [65-67]. 

The HR model has been questioned because some results suggest that Qbd is 

not improved if the deuterium is used to passivate the Si-SiO2 interface [68], as 

shown in Figure 2.3. It has been reported that deuterated oxide films have suppressed 

hydrogen desorption from the Si interface and, therefore, improved the immunity to 

the interfacial trap generation during channel hot carrier injection [69]. Nevertheless, 

it is also reported from other groups that deuterated oxide does improve device 

reliability [70, 71]. Therefore, the debate remains. 

  

2.4 Statistics and Characterization Techniques 

Percolation theory explains the oxide degradation process in terms of the 

defect generation from a microscopic point of view. To study how defects are 

generated, however, we can only rely on either observed statistical phenomenon or 

macroscopic electrical characteristics to correctly analyze the experimental data and 

link them to the defect generation mechanism. To analyze statistical phenomenon 

such as time-to-breakdown (tbd) (also known as time-dependent-dielectric-breakdown 

TDDB) and charge-to-breakdown (Qbd ≈ tbd • Jg, where Jg is the current density during 

a stress), proper statistics is necessary; while for characterizing electrical properties 
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such as interface state density (Nit) generation and gate tunneling current increase, 

electrical characterization techniques are needed. In the following sections, available 

statistics and electrical characterization techniques that are used to study the defect 

generation mechanisms from different aspects will be introduced separately.  

 

2.5 Weibull Statistics 

Percolation theory proposes that the formation of an electrical conducting 

path triggers oxide breakdown. However, since the formation of a percolation path is 

a random process, NBD (or macroscopically, Qbd and tbd) for different devices can vary 

by orders of magnitude. Therefore, statistics is required to describe the failure 

distribution and define NBD as well as tbd quantitatively.  

Consider a system with N identical devices under the same electrical stress 

condition. The total number of failed devices at any given time can be defined as Nf(t) 

and the ratio of Nf(t) to N is defined as the cumulative distribution function (CDF), 

F(t).  Figure 2.4 (a) shows the general behavior of F(t). It is noticed that F(t) is zero 

initially and goes to one when time approaches to infinity. The counterpart function 

of F(t) is the reliability function R(t), which is defined as R(t) ª 1-F(t), as shown in 

Figure 2.4 (b). Meanwhile, R(t) can also be mathematically expressed as 

where β is called the shape parameter and θ is called the scale parameter [72].  

By using the definition of R(t) and equation 2.1, the following expression 

can be derived, 

( ) )1.2()(  ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= − β
θ
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where ln(-ln(1-F(t))) is the Weibull distribution function. By plotting the Weibull 

distribution function with respect to the natural logarithm of the tbd of the N devices, 

the slope of the curve is equal to β. The scale parameter θ, which corresponds to 63% 

of the failure, is the modal value of the tbd of the N devices and can be defined as the 

tbd of this N-device system, as shown in Figure 2.5. Similarly, the functions F(t) and 

R(t) could be defined as functions of stress injected charge instead of stress time and 

the Weibull distribution for Qbd can then be obtained. 

The β value of the Weibull distribution indicates the spread of the tbd 

distribution. It is found that oxide breakdown caused by extrinsic defects (non-stress 

related) and intrinsic defects (stress related) would result in different β values [73].  

Therefore, it is possible that β value can be used to identify different defect species 

generated by stress. On the other hand, the modal value of tbd from the Weibull 

distribution is directly affected by the stress conditions. Therefore, by comparing the 

β value and the modal value of tbd, the effect of gate oxide fabrication process and 

applied stress conditions on breakdown can be revealed. 

Historically, the lognormal distribution [78] has also been used to fit 

experimental data to describe tbd distribution. However, recent reports have indicated 

that that Weibull distribution can better fit tbd data for large number of samples.  

This permits more accurate extrapolation of  tbd to low percentile values [74, 75, 79-

81], as shown in Figure 2.6.  

   

)2.2()ln()))(1ln(ln( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=−− θβ ttF
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2.6 Characterization Techniques 

Another strategy for studying defect generation mechanisms is characterizing 

electrically active defects during a stress. To achieve this goal, it is required to 

interrupt a stress periodically and perform electrical measurements.  These results can 

then be linked to microscopic defect generation. This interrupted-stress strategy can 

reveal the relation between stress-induced defects and stress time (or injected 

electrons and/or holes). The most basic requirement of this strategy is that no further 

defects are generated during the measurement. Therefore, available measurement 

techniques must be carefully chosen and measurement conditions should be 

optimized.  

Two techniques commonly used to electrically characterize gate oxide 

reliability are charge pumping (CP) measurements [83-90] and stress induced leakage 

current (SILC) [91-95] measurements. The relative change of maximum CP current 

(ICP) is used to monitor the interface state density at Si-SiO2 interface [83-85] and the 

SILC is used to measure the bulk oxide defect density [91-93].  

 

2.6.1 SILC Measurement  

During SILC measurements, a sense voltage (Vsense) is applied to the gate 

while all the other terminals of an MOSFET or a capacitor are grounded. Vsense should 

be smaller than the stress voltage to avoid any further stress during the measurement 

[91]. The gate leakage current measured during SILC measurement is thought to be 

the electrical conducting path due to the generation of neutral-defect sites [96] or 
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oxygen vacancies [92] inside the bulk oxide.  It has been suggested that SILC can be 

described using the following equation [95], 

where JG is the SILC, NTS is the defect concentration, cL and cR are the defect capture 

rates at the cathode and anode respectively, and fL and fR are the Fermi distributions 

at the cathode and anode respectively. Therefore, by measuring the change of the 

SILC between successive stresses, the defect generation inside the bulk oxide due to a 

stress can be explored. 

 

2.6.2 Charge Pumping Measurement 

The experimental setup for CP is shown in Figure 2.7 [86]. A periodic ac 

pumping signal is applied to the gate, and the source and drain are either applied a 

small reverse bias or grounded. The substrate is also grounded and a dc CP current is 

measured from the substrate [85]. When performing the CP measurement a 

trapezoidal wave with the fixed amplitude (∆VA) and frequency, which is widely 

chosen as the pumping signal, is applied to the gate. During the measurement, the 

lower output voltage level of the trapezoidal wave (Vbase) as well as the upper output 

voltage level of the trapezoidal wave (Vtop) is ramped up, as shown in Figure 2.8. 

Figure 2.8 shows the typical measured CP current (ICP) for a n-channel MOSFET as a 

function of Vbase. The relative position of the gate pumping signal voltage level with 

respect to the device flat-band voltage (VFB) and threshold voltage (Vth) is also shown 
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in the figure and five different characteristic regions can be distinguished during the 

voltage ramp-up.  

In region 1, where Vtop (Vtop = Vbase + ∆VA) is higher than Vth while Vbase is 

lower than VFB, a significant dc current from the substrate due to the electron and 

hole recombination is measured and is denoted as ICP,MAX [83, 84]. This 

recombination happens because the device was in the accumulation state initially 

when the voltage applied to the gate was equal to Vbase, which is lower than VFB. All 

the interface states are occupied by holes at this moment. When the pulse passes 

through, the voltage applied to the gate switches to Vtop. Since Vtop is higher than Vth, 

the device is turned into the inversion state instantly. Electrons from the source and 

drain flush into the channel region and fill the interface states while holes are expelled 

from the channel area. For the holes occupying the interface states, however, they are 

“trapped” and cannot move back to the substrate during the short transition of the 

states. As a result, they are recombined with the electrons.  

Similarly, after the pulse passed by the voltage applied to the gate came back 

to Vbase again and the device went back to the accumulation state with holes refilling 

the channel region.  However, since the electrons trapped the at interface states 

cannot move back to source or drain so quickly, they are recombined with the holes. 

These two recombination currents from interface states contribute to the measured dc 

ICP,MAX [83-85].  

In region 2, since both of the Vbase and Vtop are lower than the VFB, the 

interface states are always filled with holes. In region 3, when Vbase and Vtop are both 
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higher than the Vth, the interface states are always filled with electrons. As a result, no 

recombination happens in these two regions and the charge pumping current is zero.  

 The equation for ICP,MAX in terms of interface state density is [90]: 

where,  

ICP,MAX           is the maximum charge pumping (Amp), 

q                 is the electron charge (Coul), 

Nit               is the total interface state density (cm-2), 

f                  is the pumping signal frequency (s-1), and 

AG              is the device channel area (cm-2). 

Furthermore, Nit can be expressed as 

where Dit (E) is the interface state density at energy level E (cm-2-eV-1), and E1 and E2 

are the lower and upper energy limits of the interface state density distribution, 

respectively [84]. By using equation (2.5), equation (2.4) can be rewritten as 

           __ 
where Dit is the averaged interface state density and ∆ψs is the energy range of the 

interface states. It is shown that ∆ψs can be expressed as [83, 84]: 
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and therefore, 

 

where  

Eem,h        is the energy level for the trapped holes (eV),  

Eem,e        is the energy level for the trapped electrons (eV),  

Ei                   is the silicon intrinsic Fermi level (eV),  

k              is the Boltzman constant (eV/K),  

T             is the absolute temperature (K),  

vth            is the thermal velocity (cm2/s),  

σp            is the hole capture cross section (cm2),  

σn            is the electron capture cross section (cm2),  
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ni             is the silicon intrinsic carrier density (cm-3),  

tem,h         is the hole emission time (s),  

tem,e         is the electron emission time (s),  

EF,acc        is the Fermi level in the accumulation state (eV),  

EF,inv         is the Fermi level in the inversion state (eV),  

tr              is the rise time of the trapezoidal wave (s), and 

tf              is the fall time of the trapezoidal wave (s).  

Then finally, ICP,MAX can be expressed as 

From equation (2.12) it can be seen that if ICP,MAX is plotted as a function                   
                                                                    _    

 of  fr tt , then the slope will be proportional to Dit, and the intersect with the x-axis 

will be proportional to the geometrical mean of electron and holes capture cross 

section ( npσσ ) [87]. 

 
Meanwhile, if equation (2.5) is differentiated with respect to tf, it is shown 

that 

Since E1 is independent of fall time [84] and also from equation (2.9), it is 

found that 
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Therefore, by using equation (2.13) and (2.14), the interface state density at trap 

energy level E2 can be expressed as 

Similarly, the defect density at E1 can be expressed as 

Therefore, by measuring ICP,MAX at various tr and tf, the energy distribution of 

interface states can be extrapolated, as shown in Figure 2.9 [84].  
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Figure 2.1 Schematic illustration of oxide breakdown proposed by
percolation theory [34]. As indicated, the open circles
represent the randomly generated electrical defects during
stress. When these defects electrically connect the poly-Si
and Si-SiO2 interfaces (shaded circles), they cause oxide
breakdown. 
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Figure 2.2 Illustration of AHI model for n-channel MOSFET. Energetic
electrons are injected from cathode (n-channel) and then tunnel
into anode (n+ poly-Si). Holes are generated at anode and tunnel
back into oxide due to gate bias. 
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Figure 2.3 The time-to-breakdown comparison between
devices with H2 annealing and D2 annealing
[68]. 
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 Figure 2.4  Illustration of the general statistical functions. (a) 

cumulative distribution function (CDF), (b) reliability 
function [72]. 
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Figure 2.5  Example of statistic Weibull distribution plot of tBD. The
slope of the curve is the shape parameter, β. The tBD
value of which logarithm value is corresponding to Ln(-
Ln(1-F)) = 0 (or F=63%) is usually defined as the time-
to-breakdown of the system. 
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Figure 2.6 Comparison of Weibull distribution and lognormal
distribution. Both distributions have been used to fit
experiment data but Weibull can better fit experiment
data, especially at low percentile [79]. 
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Figure 2.7 The experimental setup for CP measurement. The ac 
bias is applied to the gate while the source and drain 
can be grounded or applied small reverse bias. The CP 
current is measured from the grounded substrate [86]. 
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Figure 2.8 The measured ICP as a function of the ramped Vbase 
and the relative position of the pumping signal 
respect to the device VFB and Vth. The averaged 
interface state density is proportional to the ICP 
measured in region 1 [86]. 
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Figure 2.9 The energy distribution of interface trap density for n-channel
MOSFET measured by CP method with varying tr and tf [84]. 
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Chapter 3 

Substrate Hot Hole Injection 

Experiment 

 

 

3.1 Overview 

Recent work has suggested that the thermo-chemical electric field model 

cannot explain oxide breakdown. However, it is not clear whether anode hole 

injection or hydrogen release is the likely mechanism. To determine the more likely 

model that can describe the gate oxide breakdown, the impact of hot holes on gate 

oxide breakdown is studied by investigating devices under constant voltage stress 

with different amount of pre-injected substrate hot holes. The results show that oxide 

breakdown is independent of the amount of those pre-injected hot holes. This 

suggests that defects generated by hot holes are not directly related to oxide 

breakdown during constant voltage stress conditions. 
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3.2 Introduction  

The degradation of the silicon dioxide gate dielectric in Metal-Oxide-Silicon 

Field Effect Transistors (MOSFETs) has been an interesting and important research 

topic for several decades [97-101]. Understand the gate oxide breakdown mechanism 

of MOSFETs is becoming more and more important as the oxide thickness scales 

down. It is known that electrically active defects are generated when the oxide is 

under either constant current or voltage stress. Oxide breakdown is believed to be 

triggered when these defects overlap and form a conducting path connecting the two 

interfaces of gate oxide [102, 103].  

To describe the defect generation, three major models have been proposed: 

the thermo-chemical electric field model, the hydrogen release model, and the anode 

hole injection model. For the electric field model recent studies have conclusively 

shown that defect generation is related to electron fluence and can not just be 

explained by lattice and electric field interaction. As for the hydrogen release (HR) 

and anode hole injection (AHI) models, the current controversy between them is 

whether released hydrogen or generated anode hot holes cause oxide breakdown. A 

strategy to resolve this controversy is verifying the contributions of either one of 

these two carriers to oxide degradation. 

 

3.3 Experiment 

To focus on the effects of hot holes to oxide degradation, the substrate hot 

hole injection (SHHI) stress method has been previously used [104, 105]. Under this 

stress condition, holes are injected from a separate p+-doped region, which is called 
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injector, into a p-channel MOSFET substrate. These holes are then accelerated toward 

the Si-SiO2 interface using a high substrate bias. When they reach the interface, some 

of these holes can be tunneled or injected into the gate oxide. 

It has been shown that the number of defects generated per injected carrier 

for SHH stress is much higher than constant voltage stress (CVS) by at least one 

order of magnitude, which suggests that SHHs are much more efficient in generating 

or activating defects than electrons [104]. However, it was also reported that charge to 

breakdown (Qbd) for devices under subsequent CVS was not changed by pre-injected 

SHHs, which suggests that defects generated by holes are not directly linked to oxide 

breakdown [104]. One possible explanation for this contradiction is the amount of 

pre-injected SHHs may have been too small to show significant effects. The main 

purpose of this work is to inject different amounts of SHHs to determine their 

effectiveness in causing breakdown. 

The devices under test in this work are p-channel MOSFETs in a n-well on a 

p-type substrate as shown in Figure 3.1. The p-type substrate serves as the hole 

injector. The gate oxide thickness is approximately 3.5 nm and the device area is 2.5 

µm2. Stress induced leakage current (SILC) [106, 107] and charge pumping (CP) 

measurement [108, 109] are used to monitor the number of defects generated inside 

the bulk oxide and at the Si-SiO2 interface, respectively. The stress conditions for 

SHH injection are VG =-3 V, VS = VD = 0, VSUB = 6 V, and Vinj = 7 V; while for CVS, 

the stress conditions are VG = -5.2 V, VS=VD=VSUB=0. All the stresses and 

measurements are performed at room temperature. 

Figure 3.2 shows the characteristic CP data for the device under SHH stress 
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and subsequent CVS. CVS is applied to the devices right after SHH stress is 

terminated (within seconds) to reduce the impact of charging/discharging effect of the 

traps. It can be seen that defects are generated much faster during SHH stress as 

compared to CVS, which is consistent with previous reports [104]. Previous work has 

shown that the defects generated during the subsequent CVS are not due to the 

interaction of low-energy tunneling electrons with trapped holes in ultra-thin silicon 

[104, 110]. It has also been shown that defect generation is dependent on electron 

energy but is independent on hot hole energy. This is because electrically active 

defects generated by holes are created by hole trapping whereas defects generated by 

electrons are create by the release of hydrogen [104]. The SILC data (not shown) 

showed results similar to the CP data. 

Figure 3.3 shows the Weibull distribution for injected hot-hole-charge-to-

breakdown ( hh
bdQ ) taken from a group of devices under SHH stress only. This data is 

used to determine the density of SHHs to be pre-injected for subsequent CVS.  From 

this data, two SHH injections were chosen to be used in subsequent CVS: a high 

injection corresponding to 80% device failure under SHH stress and a low injection 

corresponding to 10% device failure under SHH stress. Devices which did not 

undergo breakdown during the SHH stress were used in the subsequent CVS. The 

CVS Qbd for devices with two different amounts of SHHs were compared to the CVS 

Qbd for fresh devices (without pre-injected SHHs). By choosing these two different 

SHH injection levels, it is expected to see a large decrease in modal Qbd with 

increasing injected SHHs due to the large number of defects created by the holes, if 

hot holes have any direct effects on CVS oxide breakdown. 
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Figure 3.4 shows the Qbd Weibull distributions of devices under CVS with 

different amount of pre-injected hot holes. The confidence intervals of modal values 

for each QBD are also calculated and shown [111]. It can be clearly seen that there is 

no significant change in either Weibull slopes or modal values in these distributions, 

which suggests that defects generated by hot holes are very inefficient in causing 

breakdown during CVS.  

The results suggest that although hot holes are efficient in generating defects, 

these defects are inefficient in causing breakdown during CVS.  However, previous 

reports [104] have shown that breakdown occurs during SHH stress within limited 

stress time and with a high NBD.  To explain this apparent contradiction, one 

speculation is that different defects are generated under CVS and SHH injection and 

these defects do not interact with each other. An observation that the Weibull 

distribution slope for devices under SHH stress is higher than CVS (comparing 

Figures 3.3 and 3.4), also suggests that different breakdown mechanisms may 

dominate or different defects are generated under these two different stress 

conditions. It is clear that if different defects are generated during SHH stress and 

CVS, it should be expected to see different Weibull slopes and NBD.  If these defects 

do not interact with each other, it should be expected to see the ineffectiveness of pre-

injected SHHs to Qbd for subsequent CVS, as reported in this section.  

 

3.4 Conclusion 

The results presented here clearly show that defects generated by hot holes 

have little or no influence on breakdown during CVS. This has important implications 
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in determining the correct physical model for oxide breakdown.  Future work will 

provide further insight as to why defects generated/activated by SHH stress do not 

cause oxide breakdown during CVS. 
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Figure 3.1 Schematic illustration of device structure in this work. 
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Chapter 4 

Sigmoidal Defect Generation 

 

 

4.1 Overview 

The goal of this chapter is to investigate the defect generation as a function 

of injected charges. The defect generation rate (Pg), which is defined as the derivative 

of generated defects respect to the injected charges (∆Nit/∆Qinj), during constant 

voltage stress (CVS) is investigated by using short-time voltage pulses over large 

fluence range. It is found that Pg is not constant during CVS and the voltage 

acceleration of Pg in the linear defect generation regime is similar to that of the 

reciprocal of Qbd. Possible mechanisms that can cause the nonlinear defect generation 

behavior is discussed and the effect of the change of carrier capture cross (σ) during 

CVS to this nonlinear behavior was investigated. From this study it is conclusively 

shown that the change of Pg during CVS can not be explained by the change of σ.  

However, the results conclusively indicate that the linear region of defect generation 

must be used to extrapolate Qbd. 
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4.2 Introduction 

As mentioned in section 2.4, device lifetimes or tbd are of great interests in 

both industry and reliability research [112-114]. However, since the oxide 

degradation is a gradual process, it usually takes years for the gate oxide to 

breakdown at normal device operating conditions. Therefore, to study the oxide 

degradation process within a limited time frame, the gate oxide is usually stressed at 

accelerated conditions (higher stress voltage or current). The critical reliability 

parameters such as tbd and Qbd are then extrapolated from the accelerated conditions 

to operating conditions.  Although tbd at operating conditions cannot be measured 

directly, it can be extracted by measuring Pg value. If one assumes a linear rate of 

defect generation, Pg, which is defined as ∆Nit/∆Qinj, is also equal to Nbd/Qbd. Then 

Qbd can be found as Qbd=Nbd/Pg. Since Nbd is weakly dependent on the gate voltage 

(Vg) [112], Qbd (and therefore tbd) can be extrapolated if the voltage dependence of Pg 

is known [114].  

However, since Pg is found not a constant during a stress [115], inconsistent 

extrapolations can be obtained using this method. Figure 4.1 shows the extrapolation 

of tbd from the stress condition (high stress voltage) to the normal device operating 

condition (low stress voltage) assuming linear and nonlinear defect generation [114]. 

The results show that different extrapolation methods can cause several orders of 

magnitude variations in the predicted tbd at normal operating condition. Therefore, 

understanding defect generation and its relationship to the oxide breakdown is 

important in the prediction of device lifetime. Moreover, it is also interesting to 

understand what mechanisms cause Pg value changes during a stress. 
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4.3 Determination of Defect Generation Rates 

To understand how Pg value changes with Qinj, short-time voltage pulses 

with constant amplitude have been used to stress devices and the defect generation 

over large fluence range is observed. The pulses used in this work are uni-polar 

square pulses with constant voltage amplitude between 5.2 volts and 6 volts, and the 

frequency is between 100 Hz and 100 kHz. The devices used are n-channel 

MOSFETs with channel area 30 um2 and gate oxide thickness approximately 3.5 nm. 

Charge pumping (CP) [116, 117] and stress induced leakage current (SILC) [114, 

118] measurements are performed to determine the average interface state density 

(Dit) and oxide bulk trap density (Nt), respectively. An additional 50-Ω resistor is 

connected in parallel to the gate probe during pulse stress to match the circuit 

impedance and maintain the square pulse waveform at the probe end as shown in 

Figure. 4.2. 

From the CP theory introduced in section 2.4.3, it demonstrated that the peak 

CP current, ICP,MAX, is linearly proportional to Nit. Since the defect generation rate is 

proportional to the number of existing defects at any moment [119, 120], the relative 

increase of interface state density (∆Nit/Nit0) instead of the absolute value of Nit is 

generally used in the study of defect generation mechanisms. Therefore, the relative 

change of ICP,MAX (∆ICP,MAX/ICP0,MAX) instead of ICP,MAX itself is plotted respect to Qinj 

for comparison.  
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Figure 4.3 shows the relative increase in peak CP current (∆ICP,MAX/ICP0,MAX) 

as a function of Qinj at different frequencies. It can be seen that the pulse frequency 

does not affect the defect generation rate, which is consistent with previous report 

[121]. The frequency independent defect generation means that this pulse stress 

technique can be used to obtain defect density at extremely small Qinj. The linear 

defect generation curve is also shown in Figure 4.3 for comparison. It can be seen 

clearly that defect generation changes from a linear regime at low Qinj (for Qinj ~ 0.1 

C/cm2) to a saturated regime at high Qinj (for Qinj >10 C/cm2). The same result is also 

observed from SILC data (not shown).  

The nonlinear defect generation curve has also been observed by other 

research groups and its effects on tbd extrapolation at device operating voltage have 

been discussed [114]. In order to determine which Pg value can be used to extrapolate 

tbd or Qbd correctly, the voltage accelerations of Pg value in different regimes are 

compared. At first, a linear regression is used to fit the defect generation data, which 

is obtained by stressing a group of 10 devices at a certain stress voltage, as shown in 

Figure 4.4. This fitting curve represents the characteristic defect generation behavior 

at each stress condition and therefore, all fitting curves obtained from different stress 

voltages are compared, as shown in Figure 4.5. From this figure it can be seen that 

defect generation curves at different stress voltages all show the same saturated 

tendency at high Qinj. 

To investigate the change of voltage acceleration of Pg in different regimes in 

detail, the same fitting method used in Figure 4.5 is used to plot Pg as a function of 

Qinj, as shown in Figure 4.6. In the linear regime, significant voltage acceleration of 
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Pg is observed. However, this voltage acceleration becomes less significant in the 

saturation regime where all defect generation curves tend to converge. Moreover, it is 

also noticed that Pg in the “linear” regime is not constant either but changes relatively 

slower than in saturation regime.  

Since Pg is not a constant during a stress, it is necessary to determine which 

Pg value in different regimes could be used for Qbd or tbd extrapolation. It is reminded 

that Pg is in proportional to the reciprocal of Qbd by definition under the constant Pg 

assumption. Therefore, the voltage accelerations of Pg in the linear regime and in the 

saturation regime with the voltage acceleration of the reciprocal of Qbd are compared, 

as shown in Figure 4.7. The Pg values compared in certain regime (linear or saturated) 

are chosen at the same Qinj in different voltages. It can be seen that Pg in the linear 

regime has similar voltage acceleration as the reciprocal of Qbd, but Pg in the 

saturation regime is less dependent on voltage. This result suggests that the Pg value 

in the linear regime can be better used to extrapolate Qbd than that in the saturation 

regime. To conclusively confirm this point, further work is required on this issue and 

more experimental data is needed. 

 

4.4 Discussion of Possible Mechanisms for the Nonlinear Behavior of 

Defect Generation 

The non-linearity of defect generation has drawn attention from researchers 

and different theories have been proposed to explain it. Patrikar et al. suggested that 

the nonlinear defect generation is because the trapped electrons/holes are de-trapped 

and this trapping/de-trapping reaction will slow down the defect generation at high 
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injection fluence [122]. Hu suggests that the nonlinear behavior is because hydrogen 

atom diffuses from the broken silicon bond, and therefore it should follow a power 

law behavior [123]. Sune et al. suggest that the non-linearity observed from CP data 

is because σ changes during stresses [124]. Some of other researchers think the non-

linearity is due to the inadequacy of the measuring techniques [112].  

Figure 4.8 compares the characteristics of de-trapping model and hydrogen 

diffusion model with experimental data. The Hydrogen diffusion model requires that 

the power law exponent be between 0.5 and 1 but the experimental data shows that 

the exponent in the saturation regime is about 0.3. For the de-trapping model, it 

shows that the defect generation rate at high Qinj is almost zero, which has never been 

observed from experiments. Therefore, neither of these two models can explain the 

defect generation over the whole fluence range. As for the effect of σ change on the 

observed nonlinear relative increases of peak CP current and SILC, it is suggested 

that since σ is found not a constant during stress, the relative increases of peak CP 

current and SILC are not really proportional to Dit and Nt, respectively. Therefore, the 

nonlinear relative increases of peak CP current and SILC may still lead to linear Dit 

and Nt generations due to this σ change effect [125]. In the following part of this 

section, this issue will be addressed. However, since it is difficult to extract σ from 

SILC data, in the following analysis σ will be extracted from CP data only and the 

behavior of σ inside bulk oxide is assumed to be similar to that at the interface. 

By using the standard two-level charge pumping method with sinusoidal 

waveform as the pumping signal, both σ and Dit could be extracted at the same time 

[117, 125]. In this work, pulse stresses are interrupted periodically when the CP 
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measurement is performed and σ and Dit are extracted. Therefore, σ and Dit could be 

monitored as a function of injected charge. Figure 4.9 shows σ as a function of Qinj. 

As it can be seen, σ does change during voltage stress and it decreases with Qinj. 

However, the nonlinear generation behavior of Dit is still observed, as shown in 

Figure 4.10. It suggests that the change of σ can not explain the non-linearity of 

defect generation.  

To show the effect of σ change on defect generation over Qinj, the relative 

change in Dit assuming constant σ with that in which σ changes with Qinj are 

compared, as shown in Figure 4.11. The linear defect generation curve is also shown 

in this figure for comparison. It is shown that the Dit generation with changing σ is 

closer to linear generation than the data with constant σ at low Qinj. However, a 

similar power law saturated behavior of Dit is still observed at high Qinj. This result 

suggests that the saturated behavior of defect generation is unlikely to be explained 

by the change of σ. It is also noticed from Figure 4.11 that the difference between Dit 

curves with constant σ and changing σ is small, except at very small injected fluence. 

Therefore, the general assumption that the relative increase of peak CP current is 

proportional to Dit generation is still valid and the conclusion obtained in section 4.3 

still holds. 

To get a better idea of how possible it is for the change of σ to be fully 

responsible for the saturation of defect generation at high Qinj, the experimental CP 

data and the linear Dit generation curve are used to calculate the necessary 

corresponding σ over Qinj. The result is shown in Figure 4.12. The experimental 

measured σ as shown in Figure 4.9 is re-plotted and also shown for comparison. It 
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can be seen that in order to obtain linear Dit generation from the measured saturated 

CP data, σ has to increase instead of decrease as observed from experiment. Also, it 

has to increase to an unreasonable large value. This result suggests it is unlikely that 

the saturation of defect generation can be explained completely by the change of σ. 

 

4.5 Conclusion 

In this chapter, it has been shown that the voltage acceleration of Pg in the 

linear generation regime is closer to the voltage acceleration of the reciprocal of Qbd 

than that in the saturation regime. This result suggests the Pg value in the linear 

regime can be better used for Qbd and tbd extrapolation to device normal operating 

conditions. It is also shown that the saturated behavior of defect generation can not be 

solely explained by the change of σ. Further work is necessary to determine the 

reason behind the fluence dependence of Pg.  
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Figure 4.1   Extrapolation of tbd to device normal operating condition
(low stress voltage) from accelerated stress condition
(high stress voltage). It shows different extrapolations can
cause the variations in predicting device lifetime (tbd) as
large as several orders of magnitude [114]. 
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Figure 4.2    Illustration of experimental setup for the 
pulse stress experiment. 
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Figure 4.3  Defect generations at different frequencies under pulse stress.
The overlaps of these curves showed that this technique can be
used to measure defect density at a large range of fluence.  
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Chapter 5 

The Effect of Mobility Degradation to 

Threshold Voltage Shifts for  

Ultrathin Gate Oxides 

 

 

5.1 Overview 

In the previous chapter, the stress-induced defects as a function of injected 

charges are studied by using interrupted short-time pulse stress method and the 

nonlinear relationship is revealed. These generated defects affect device parameters 

such as gate leakage current density (Jg), carrier channel mobility (m), and device 

threshold voltage (Vth) through various mechanisms. These parameters are used not 

only to monitor oxide degradation but also as the bases for building up empirical 

oxide degradation models. To ensure these models are correct, it is important and 

necessary to study the mechanisms that affect these parameters. 



 

 

67

 

Therefore, the goal of this chapter is to investigate the dominant mechanism 

that causes device threshold voltage (Vth) shift. Vth shifts of p- and n-channel 

MOSFETs during a stress are analyzed from both experiment and simulation. The 

result of the analysis showed that Vth shift is mainly induced by the carrier channel 

mobility degradation. This result can explain the polarity dependence of Vth shifts in 

p- and n-channel MOSFETs. Besides, it suggested that the commonly accepted idea 

that Vth shifts are due to Coulombic charge generation in the oxide affecting the 

surface potential is not accurate. It also suggested that proposed oxide degradation 

mechanisms based on Vth shifts measured using Id-Vg may not be accurate. 

 

5.2 Introduction 

The degradation of the gate oxide of metal-oxide-semiconductor field effect 

transistors (MOSFETs) during an electrical stress is an extensive issue in device 

reliability and has been investigated from various aspects for many years [126-128]. 

The proposed empirical models for the oxide degradation mechanisms based on 

experimental observations are monitored by using various techniques such as charge 

pumping (CP) [129, 130], stressed induced leakage current (SILC) [131-132], DCIV 

[133], gate leakage current [134-136], and Id-Vg [132, 137-139], etc. The device Vth 

shift measured by using MOSFET Id-Vg characteristics is commonly assumed to be 

due to shifting of the characteristics by Coulombic charge build-up (∆Q/Cox) in the 

dielectric [137-139]. However, the contribution of the carrier channel mobility 

degradation to Vth shift is not well characterized. Therefore, to distinguish the 
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contributions of Coulombic charge effect and the carrier channel mobility degradation 

to Vth shift is the main focus of this work.  

 

5.3 Vth and VFB Shift Measurements 

The devices under test were fully processed p- and n-channel MOSFETs 

with an area 50x50 µm2 and gate oxide thickness of 2 nm. Constant voltage stress 

(CVS) was applied at room temperature, and Vth was measured periodically during 

the stress. In order to explore the mechanisms causing Vth shifts, Vth shift measured 

using the Id-Vg method is compared with flat band voltage (VFB) shift measured by 

Capacitance-Voltage (C-V) method. For devices which VFB shifts were measured and 

calculated from the C-V method using a LRC meter, they were also stressed by using 

the same instrument to reduce noise. Accordingly, both p- and n-channel devices 

were divided into two groups in this work. In the first group, CVS was applied by 

using a HP4156B semiconductor analyzer at ±3.7 V, and Vth was measured by using 

the Id-Vg SPICE method [132, 136]. In the second group, CVS was applied by using a 

HP4248A LCR meter with DC bias at ±3.7 V, and the oscillation voltage amplitude 

was 5 mV at 10 Hz. VFB shifts of devices in this group were obtained by first 

measuring the capacitance change (∆C) at a chosen measurement voltage (Vmeasured) 

and then being divided by the derivative of the initial C-V curve (dC/dV) at Vmeasured, 

as shown in Figure 5.1. The frequency and oscillation voltage amplitude for VFB 

measurement were 100 kHz and 50 mV, respectively. 

Figure 5.2 shows the comparison of Vth shifts using Id-Vg method and VFB 

shifts using C-V methods in n-channel MOSFETs stressed in inversion condition. 
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Each measurement was repeated seven times after each stress and three different 

devices were tested. The variances between the maximum and minimum 

experimental data values were smaller than the plotted symbols. It can be seen clearly 

that Vth shift measured by the Id-Vg method is much larger than VFB measured by the 

C-V method. Figure 5.3 shows the measurement results for p-channel MOSFETs and 

similar conclusions are obtained. Although it is not shown, it should be noticed that 

the general behaviors of measured Vth and VFB shifts for both channels of MOSFET 

stressed in accumulation condition are similar to those observed in inversion 

condition.  

It is believed that the Vth shift measured by the Id-Vg method can be induced 

by Coulombic charge in the oxide affecting the surface potential or the degradation of 

the carrier channel mobility causing a decrease in the drain current at a given gate 

bias. On the other hand, the measured VFB shift is believed to be completely due to 

the Coulombic charge accumulation inside the oxide. Since the measured Vth shift 

from Id-Vg method is much larger than VFB shift from C-V method, it suggests that 

the mobility degradation during CVS should have a larger effect than the Coulombic 

charge accumulation inside the oxide on Vth shift measured by Id-Vg method. 

 

5.4 Simulation of Vth Shift 

To verify the hypothesis and determine the dominating mechanism causing 

Vth shifts, the North Carolina State University (NCSU) Mod2D mobility extraction 

program was used to simulate Vth shifts. In this program, the interface scatter density 

(Nscat) is used to model Coulombic scattering (and, hence, mobility reduction). The 
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fixed oxide charge density (Qox) is used to model the Coulombic charge in the oxide 

affecting the surface potential. To distinguish the contributions from Nscat (mobility 

degradation effect) and Qox (Coulombic shift effect) on Vth shift, three different 

scenarios that cause Vth shift were simulated: 1) Nscat and Qox increasing at the same 

rate, 2) Nscat increasing at a certain rate with Qox constant, and 3) Qox increasing at a 

certain rate with Nscat constant. The initial Nscat and Qox are assumed to be the same 

and equal to each other in all cases. The simulation results for n- and p- channel 

MOSFETs are shown in Figures 4 and 5, respectively. 

The simulation results clearly show that Vth shift due to Nscat is much higher 

than Qox in both n- and p-channel MOSFETs. It suggests that the carrier channel 

mobility degradation is the main mechanism causing Vth shifts in both types of 

MOSFET. This simulation result can explain the polarity dependence of Vth shifts in 

n- and p- channel MOSFETs without assuming charges of opposite polarities are 

generated at the same fabricated oxide in both types of MOSFET. Since the carrier 

channel mobility degraded during a stress [140, 141], it requires more positive 

(negative) gate voltage for the n-channel (p-channel) MOSFET to keep up the drain 

current. As a result, the absolute values of Vth in both types of MOSFET are 

increased, which automatically induces the polarity dependence. 

It should be reminded that the simulation results are based on the assumption 

that the initial Nscat and Qox are equal to each other. However, since the effective Nscat 

and Qox at Si/SiO2 interface are affected by the physical location and distribution of 

defects, the effective Nscat and Qox at interface may not be the same. Therefore, their 

contributions to Vth shifts may change. Nevertheless, the results of this simulation 
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suggest that the commonly accepted idea that Vth shifts are due to Coulombic charge 

generation in the oxide affecting the surface potential may not be accurate. It also 

suggests that proposed oxide degradation mechanisms based on Vth shifts measured 

using the Id-Vg method may not be accurate.  

 

5.5 Conclusion 

In this work, it is shown by using modeling that the dominant cause of Vth 

shift measured using Id-Vg is not shifting of the characteristic by Coulombic charges, 

but is instead due to modification of the Id-Vg characteristic by mobility degradation 

if the effective quantity of Nscat and Qox at interface are the same. This result can 

explain the polarity dependence of Vth shifts in p- and n-channel MOSFETs. 

Moreover, it suggests that oxide degradation mechanisms based on Vth shifts 

measured using Id-Vg may not be accurate. Finally, it has important consequences on 

interpreting data and developing an understanding of dielectric reliability physics.  
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Figure 5.1   Illustration of extraction method of VFB shifts for devices
measured by using the C-V method. The insert is the
complete C-V curve, and the figure showed the
magnified part around VFB. 
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Figure 5.2    Comparison of Vth shifts measured by Id-Vg and VFB 
shifts measured by C-V methods for n-type MOSFET
stressed in inversion.
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Figure 5.3   Comparison of Vth shifts measured by Id-Vg and
VFB shifts measured by C-V methods for n-type
MOSFET stressed in inversion. 

pFET_inversion

Qinj( x 103 C/cm2)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

∆V
th

(m
V

)

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

∆Vth(Id-Vg)
∆VFB(C-V)



 

 

75

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 5.4    Simulation results of Vth shifts in n-type MOSFET 
at different trap generation conditions. 
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Figure 5.5    Simulation results of Vth shifts in p-type MOSFET 
at different trap generation conditions. 
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Chapter 6 

Electrical Characterization of Spatial 

Distributions of Trapping Centers in 

HfO2/SiO2 Stacked Dielectrics 

 

 

6.1 Overview 

As mentioned in Chapter 1, high-k dielectrics will be used to replace SiO2 as 

the gate material for future MOS devices to reduce leakage current. It is known that 

high-k dielectrics have significant amount of intrinsic defects (trapping centers) and 

these defects are distributed not only at the interface but also inside the bulk high-k 

dielectrics. To correctly characterize these defects would be essentially helpful to 

understand the properties of these traps. 

Therefore, the goal of this chapter is to develop a methodology to 

characterize the spatial distribution of these traps. The methodology is based on 
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charge pumping (CP) measurement and is used to extract the spatial profile of traps 

inside SiO2/HfO2 stacked dielectrics. From simulation results it showed that different 

parts of the total traps inside high-k dielectrics would be probed during CP 

measurement by changing measurement parameters. Traps at different locations 

inside stacked dielectrics are therefore characterized separately and their spatial 

profile is revealed. From the spatial profiles of traps, SiO2 region, SiO2/HfO2 

diffusion region and HfO2 region in the stacked dielectric are clearly identified. The 

correlation between the shift of SiO2/HfO2 diffusion region and the difference of the 

interfacial layer thickness of stacked dielectrics demonstrate this methodology is 

accurate and reliable. 

 

6.2 Introduction 

As the gate oxide thickness of the Metal-Oxide-Semiconductor Field-Effect-

Transistor (MOSFET) is scaled down, the gate leakage current increases 

exponentially raising concerns regarding various reliability issues of the gate oxide 

[142-150]. To reduce the large gate leakage while further scaling equivalent oxide 

thickness, substitute materials with high dielectric constant (high-k), such as Al2O3, 

HfO2 and ZrO2, have been proposed to replace SiO2 [151-159]. Among these 

materials, HfO2 has been considered as one of the most promising substitute materials 

due to its thermodynamic stability on silicon, its large dielectric constant (25) and 

reasonable bandgap (~5.7 eV) [153,157-161]. One major difference between high-k 

dielectrics and SiO2 is the large amount of traps in the high-k. These traps are 

believed to be distributed not only at the interface but also inside the bulk dielectric 
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[162, 163]. However, the exact spatial distribution of these traps is still not clear. 

Knowing the spatial distribution of the traps is an important part of understanding of 

the physical nature of the defects and how they affect device properties. The main 

purpose of this work is to develop a CP method to characterize the spatial distribution 

of the traps in high-k dielectrics. 

 

6.3 Simulation of the Probable Range in CP Measurement 

CP has been used to study interface and near-interface traps in the Si/SiO2 

system for more than thirty years and has been used widely [164-166]. When 

performing CP measurement, the source and drain are usually grounded or applied 

with a small reverse bias. Periodic pulses are applied to the gate and drive the channel 

region into inversion and accumulation conditions periodically [167]. A dc CP current 

measured from substrate is attributed to the recombination of trapped electrons and 

holes. If the pulse amplitude (Va) is kept constant and the pulse base voltage (Vbase) is 

swept from flat band voltage (VFB) to threshold voltage (Vth) or vice versa, a 

maximum dc CP current (ICP,MAX) will be observed. Conventionally, ICP,MAX is 

expressed as [168], 

where q (coul) is the unit Coulombic charge, f (s-1) is the frequency of the applied 

pulses, AG is the effective channel area (cm-2) and Nit (cm-2) is the total number of 

interface traps per area. In this expression, Nit is typically considered to be 

independent of the distance of traps from the interface. This assumption is valid in 

Si/SiO2 system for which most traps are located close to the Si/SiO2 interface and are 

)1.6....(........................................, GitMAXCP AfNqI =
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probed by the CP measurement at moderate frequencies [169, 170]. However, in 

high-k dielectrics since traps are not only at the interface but also inside the bulk 

dielectric, traps located away from the interface may not be probed during CP 

measurement. To include the effect of the spatial distributions of traps to ICP,MAX, 

equation (6.1) is re-written as 

where Nmit is the measured Nit during CP measurement and could be expressed as the 

double integral of the multiplication of Nit and an additional term ∆F . ∆F indicates 

the probability that a trap can be probed by CP measurement and is a function of the 

distance from the Si-substrate/gate-dielectric interface (x) and the trap energy (Et). 

The upper and lower limits of the double integral are the energy range (Emax – Emin) 

and the maximum probable depth (xd) in which traps inside can be probed. It will be 

shown in the following that ∆F is strongly affected by the parameters of the pulses 

applied to the gate during CP measurement such as Va, pulse on/off time (ton/toff), and 

pulse rise/fall time (tr/tf). From equation (6.2) it can also be seen that Nmit and ICP,MAX 

are functions of ∆F and therefore will be affected by the pulse parameters as well. It 

suggests that different ICP,MAX may be obtained by using different pulse parameters 

due to different parts of traps been characterized. It is therefore, crucial to understand 

how ∆F and ICP,MAX are affected by these pulse parameters during CP measurement. 

The explicit expression of ∆F can be obtained by considering the capture 

and emission processes of electrons and holes at traps described in Shockley-Read-
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Hall theory [171, 172]. From Shockley-Read-Hall theory, four different possible 

emission and capture processes can happen to a trapping center at energy Et: electron 

capture, electron mission, hole capture, and hole emission. The corresponding rates 

for these processes are the electron capture rate (cn), electron emission rate (en), hole 

capture rate (cp) and hole emission rate (ep).  The overall rate equation can be express 

as 

where F is the occupancy function and indicates the probability of a trapping center 

being occupied by an electron (or hole) at any given time t. 

To understand how F changes during CP, it is assumed that trapezoidal 

pulses are applied to the gate as a function of time and the corresponding F values can 

be found. However, it is noticed that cn and cp are functions of the Si substrate Fermi 

level (Ef) and therefore are functions of time during tr and tf [173]. To simplify the 

problem and obtain an analytic expression of F, both tr and tf are assumed to be 

negligible, which means the trapezoidal pulses are approximated by square pulses. 

Under this approximation, cn and cp are constant and equation (6.3) is a first-order 

ordinary differential equation. The solution to this equation is 

where t is the time and t = 0 is defined as the points at which Ef reaches the quasi-

steady state condition.  
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Figure 6.1 illustrates F as a function of time for a square pulse. It can be seen 

that during ton, F increases from its minimum value to its maximum value; while 

during toff, F decreases from its maximum value to its minimum value. Since t in 

equation (6.4) is the time after Ef reaches quasi-steady state, its origin can be assigned 

at any edges of the square pulse, as shown in Figure 6.1. The maximum and minimum 

F values can then be expressed as: 

where cn,on and cn,off are the electron capture rates during ton and toff and cp,on and cp,off 

are the hole capture rates during ton and toff.  

 Fmax and Fmin indicate the probabilities that a trapping center is occupied by 

electrons at the end of ton, and toff, respectively. The difference between Fmax and Fmin 

(∆F = Fmax - Fmin) indicates the probability of a trapping center being occupied by an 

electron and a hole alternatively (electron-hole recombination) during a complete 

pulse period. In other words, it indicates the probability a trapping center can be 

probed during CP measurement and contribute to ICP,MAX. By using equations (6.5) 

and (6.6), ∆F can be expressed as  
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In the derivation of ∆F, the input trapezoidal pulses are approximated by 

square pulses and assumed to have zero tr and tf. It implies that Ef changes abruptly 

from the Fermi level at accumulation condition (Ef,acc) to the Fermi level at inversion 

condition (Ef,inv) when the pulse voltage level (Vtop or Vbase) switches. Therefore, the 

time periods for electrons and holes to occupy traps are exactly ton and toff 

respectively. As for non-zero tr and tf, since now Ef changes gradually during tr and tf, 

the surface electron (hole) density increases exponentially during tr (tf). Therefore, the 

“effective” time period for electrons (holes) to occupy traps will be longer than ton 

(toff). This effect of tr and tf on the trap occupancy by electrons and holes will be 

considered later. 

Non-zero tr and tf have other effects on ∆F. Ideally, all traps with energy Et 

between Ef,inv and Ef,acc should be able to be probed during CP since Ef is pinned at 

these two energy levels during ton and toff. However for non-zero tr (tf), trapped holes 

(electrons) with energies close to Ef,acc (Ef,inv) can be emitted to the substrate (source 

and drain) instead of being recombined. The effective minimum and maximum trap 

energy between which recombination occurs are then given by equations (6.8) and 

(6.9) [168]: 
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where  Eem,h (Eem,e) is the effective maximum (minimum) trap energy level, Ei (ni) is 

the intrinsic Fermi level (carrier density), vth is the thermal velocity and  sn (sp) is the 

electron (hole) capture cross section.  

On the other hand, the effective carrier capture cross sections are known as 

functions of x and can be expressed as [169, 174] 

where sn/p (x) is the electron/hole capture cross section at any depth x, while sn/p (0) 

is the electron/hole capture cross section at the interface and ln/p is the characteristic 

tunneling distance of electron/hole. By using equation (6.10), equations (6.8) and 

(6.9) are re-written as 

By combining equations (6.7), (6.11) and (6.12), a 3-D DF simulation 

contour as a function of Et and x can be plotted as shown in Figure 6.2. Traps located 

inside the trapezoidal plateau with DF equal to one have the maximum probability to 

be probed and contribute to ICP,MAX during CP measurement. It can be seen that the 

detectable trap energy range is narrower at the interface and is expanding with x, as 
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described in equations (6.11) and (6.12). It can also be seen that DF drops from one to 

zero at about 8 Å, and it suggests that all traps beyond this depth can not be detected 

during CP measurement. Therefore, a probable depth during CP measurement can be 

defined accordingly. It should be reminded that the contour shown in Figure 6.2 

depends on applied pulse parameters during CP measurement. Therefore, by changing 

the pulse parameters different contours can be obtained, as shown in Figure 6.3. 

Figure 6.3 (a) and (b) show the 2-D simulation contours of DF equals to 0.5 with 

different pulse parameters. In both contours ton is set equal to toff and is equal to 50 ns 

in (a) while is equal to 1 µs in (b), and the other pulse parameters are kept the same. It 

can be seen that at lower frequency (longer ton and toff) the probable depth is deeper 

which suggests that electrons and holes have longer time to penetrate into bulk 

dielectric to occupy traps at deeper depth and contribute to ICP,MAX.  

As mentioned earlier, the effect of non-zero tr and tf on the derivation of 

equation (6.7) is to increase the effective ton and toff, and effectively increases the 

probing depth. However, since the real probing depth is affected strongly by dielectric 

parameters (which will be shown in the following), this effect on the increase of 

effective probing depth is not crucial and the ignorance of this effect is valid without 

affecting the further semi-quantitive analysis. 

 

6.4 Experiment 

The devices used in this work are fully processed MOSFETs with HfO2/SiO2 

stacked gate dielectrics. High-k gate dielectric transistors were fabricated on 200mm 

p/p+ epitaxial Si <100> wafers using a standard CMOS process with 1000 °C/10 sec 
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dopant activation anneal.  The gate stacks were formed by depositing a 3 nm ALD 

HfO2 dielectric on various scaled thermal oxide interface layers (IL) created by the 

controlled etch-back of a 1.9 nm thermal oxide.  The high-k film deposition was 

followed by a 700 ºC anneal in NH3 ambient, after which, a gate electrode was 

formed by CVD TiN with poly-Si cap [175]. 

CP measurement is performed by applying periodical trapezoidal pulses with 

fixed tr/tf and Va generated by HP8112A pulse generator to the gate. The electron-

hole combination dc current is measured from the substrate by using HP4156B 

semiconductor analyzer. To probe traps at different depth in the dielectric, ton and toff 

of the applied pulses are kept the same and change from 50 ns to 100 ms. Figure 6.4 

shows ICP,MAX as a function of ton/off. It can be seen that ICP,MAX decreases with 

increasing ton/toff and then saturates at long ton/off. This saturation indicates that ICP,MAX 

is dominated by the gate leakage current instead of the electron-hole recombination 

current. This leakage current limits the maximum probable depth in dielectrics while 

performing CP measurement. Meanwhile, the measured ICP,MAX at all ton/toff is 

corrected by using this leakage current to get the ICP,MAX due to electron-hole 

combination. 

 

6.5 Results and Discussion 

One issue associated with this methodology is to get the probing depth from 

ton/toff. The conversion between ton/toff and x is affected by theoretical values of 

dielectric parameters such as effective electron/hole mass inside dielectrics (me/h), 

effective electron/hole barrier height (Φe/h), sn/p (0), and Va [169, 170]. This effect is 
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shown in Figure 6.5. Figure 6.5 shows that Nmit is plotted as a function of x by using 

two different sets of parameters. For the open circle, the used parameters are me/h = 

0.5/0.4 eV, Φe/h = 3.1/3.8 eV, sn/p (0) = 10-14/10-16 cm-2, which are the commonly 

accepted values for pure SiO2 [176, 177]. For the closed circle, the used parameters 

are me/h = 0.1/0.1 eV, Φe/h = 1.3/3.3 eV, sn/p (0) = 10-14/10-15 cm-2, which are the 

estimated values for pure HfO2. These values are estimated so that the location of the 

plotted curve is consistent with the thickness of SiO2 interfacial layer from 

fabrication. In both cases Va is equal to 1.2 V. It can be seen that by using different 

sets of parameters, the curve is not only shifted but also stretched out along x-axis. 

Since the device under test has a SiO2/HfO2 stacked gate dielectric, it is expected that 

the real values of these parameters should be somewhere in between the chosen two 

set values and they should also change with the probing depth. Therefore, the 

maximum detectable depth range is from end to end of these two curves which is 

about 1.6 nm as shown in the figure. However, since the accurate values of these 

parameters are not clear, the depth shown in the x-axis can only be a reference and 

only semi-quantitive analysis can be provided. Meanwhile, to simplify the analysis 

and make it easier to compare experimental results from devices with different 

interfacial layer thickness, parameters with values for HfO2 will be used for 

HfO2/SiO2 stacked dielectrics in the following analysis.   

Figure 6.6 shows Nmit at different x for devices with interfacial layer oxide 

thickness ranging from 1nm to 2 nm. Nmit from pure SiO2 dielectric is also shown for 

comparison. It should be reminded that Nmit (x) is an accumulation function which 

counts the total number of traps per area from Si/SiO2 interface to depth x. With that 
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it can be seen that the values of Nmit at the smallest x for all curves are very close, 

which suggests that all dielectrics have approximately the same amount of traps 

within a shallow depth. These traps are attributed to the commonly observed interface 

traps at Si/SiO2 interface. For SiO2 dielectric, its curve is flat and keep Nmit a constant 

through out the detectable depth range. It suggests no further traps exist inside the 

bulk SiO2 which is expected and is consistent with observations from other groups 

[169, 170]. As for the curves for HfO2/SiO2 stacked dielectrics, Nmit increases with 

depth and the value is higher for the dielectric with thinner SiO2 interfacial layer at 

the same depth. It suggests that additional traps are generated inside the bulk SiO2 

due to the diffusion phenomena at HfO2/SiO2 interface. For the dielectric with thinner 

interfacial layer, since HfO2/SiO2 interface is closer to Si/SiO2 interface this diffusion 

is more prominent so that Nmit is higher. As for the curve for the dielectric with the 

thickest interfacial layer (2nm), it shows similar behavior as that observed from SiO2 

dielectric. It suggests that since the interfacial layer is thick, additional traps inside 

SiO2 due to the diffusion at HfO2/SiO2 are still beyond the probable depth. Therefore, 

no additional prominent taps are observed in this dielectric.  

To get the trap volume density, Nt (cm-3), the derivative of Nmit(x) respect to 

x is taken and the result is shown in Figure 6.7. Since the dielectric with 2 nm SiO2 

interfacial layer does not show prominent additional traps, only dielectrics with 

thinner SiO2 interfacial layers are plotted. It can be seen clearly that both devices 

show that Nt is low at shallow depth, then increases with x and finally tends to 

saturate. The result suggests that the probing region changes from pure SiO2 region, 

passes SiO2/HfO2 diffusion region and then reaches pure HfO2 region. The saturation 
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of Nt in the HfO2 region may suggest that the trap distribution is relatively uniform. 

However, this result needs further work to be confirmed. Meanwhile, it can also be 

seen that the SiO2/HfO2 diffusion regions in these two dielectrics are shifted about 4 

Å, which is close to the difference between the SiO2 interfacial layer thickness of 

these two dielectrics. It suggests that although the accurate probing depth is unknown, 

the relative trap spatial distribution is accurate. 

 

6.6 Conclusion 

 From the simulation result it has been shown that Nmit during CP 

characterization is not equal to Nit in high-k dielectrics. It is also shown that the 

probable range of traps in the dielectrics is affected by pulse parameters. The results 

are essentially important while comparing experimental results from different 

electrical characterization techniques. The results are also helpful to understand 

which portions of traps been probed while study the properties of traps in high-k 

dielectrics. By using this methodology, trap spatial profiles in the SiO2/HfO2 stacked 

dielectrics with different SiO2 interfacial layer thickness are also shown in this report. 

The results clearly showed the change of Nt from SiO2 layer to SiO2/HfO2 diffusion 

region and reaches HfO2 layer. Although the accurate depth of traps are not clear due 

to the undetermined theoretical dielectric parameters, the relative shift of the trap 

profile is consistent with the difference of the interfacial layer thickness in different 

SiO2/HfO2 stacked dielectrics. It suggests that this methodology is accurate and 

reliable.  
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Figure 6.1.       Illustration of the change of F value with respect 
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Figure 6.2.      3-D ∆F contour simulation result. ∆F is equal to one
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having the maximum probability been probed. 
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0.5/0.4 eV, Φe/h = 3.1/3.8 eV, sn/p (0) = 10-14/10-16

cm-2, which are the commonly accepted values for
pure SiO2. For the closed circle, the used parameters
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thickness of SiO2 interfacial layer. It can be seen that
at the same depth Nmit is higher for the dielectric
having thicker interfacial layer. As for SiO2
dielectric, Nmit is constant which indicates no further
traps exist in bulk dielectric 



 

 

96

 

 
 

 
 

 
 
 
 

 

x (nm)
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

N
t (

 x
 1

020
 c

m
-3

)

1

2

3

4

5

6

7

8

N
t (

 x
 1

020
 c

m
-3

)

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.41 nm SiO2 + 3 nm HfO2

1.5 nm SiO2 + 3 nm HfO2

Figure 6.7.        The comparison of Nt in dielectrics with different
thickness of SiO2 interfacial layer. The pure
SiO2, SiO2/HfO2 diffusion and pure HfO2
regions can be identified clearly in both
dielectrics 



 

 

97

 

 

 

 

Chapter 7 

Summary and Future Work 

 

 

7.1 Overview 

Electrical characterizations on both ultra-thin SiO2 and SiO2/HfO2 stacked 

dielectrics from various aspects are performed in this research work. The goal of this 

chapter is summarize important results from previous chapters in this dissertation. 

Possible further extended work will also be discussed in this chapter. 

 

7.2 Summary 

In this research work, the generation of electrical active defects in SiO2 

dielectrics during stresses has been characterized from different aspects. It is found 

that different electrical defects may be generated during CVS and SHH injection. 

This conclusion is supported by the observation that the Weibull slope for hot-hole-

to-breakdown is much larger than that for Qbd during CVS. It is also supported by the 

other observation that pre-injected hot holes do not contribute to dielectric 

degradation during the subsequent CVS.  
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It is also shown in this work that critical reliability parameters such tbd can 

be extrapolated from accelerated test condition to device normal operating condition 

by using Pg value. However, since Pg is not a constant during stress, this extrapolation 

should be done by using Pg value in the linear generation regime. Although the real 

mechanism causing the non-constant Pg is still not well understood, it is shown that 

the change of defect capture cross section can not explain this phenomenon.  

Meanwhile, the dominant mechanism that causes Vth shifts in both n- and p-

channel MOSFETs are also investigated in this work. From both experiment and 

simulation results, it is found that channel mobility degradation is the main 

mechanism that causes this shift. Therefore, commonly accepted idea that Vth shift is 

due to the Coulombic charge accumulation at the interface is not accurate. This result 

also indicates that oxide degradation model based on Coulombic charge accumulation 

may not be accurate. 

The electrical characterization on high-k dielectrics in this work was focus 

on the properties of the initial traps in high-k dielectrics. A methodology based on 2-

level CP measurement with various frequencies was used to revel the spatial profile 

of these traps. From measurement results, the spatial profile of traps in the SiO2 

region, SiO2/HfO2 diffusion region and HfO2 region in the stacked dielectric are 

clearly identified. Although the exact probing depth in this methodology may not be 

accurate due to the unknown theoretical dielectric parameters, the correlation between 

the shift of SiO2/HfO2 diffusion region and the difference of the interfacial layer 

thickness of stacked dielectrics demonstrate this methodology is accurate and reliable. 
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7.3 Future work 

Electrical defect generation in SiO2 dielectrics has been studied extensively 

in the past a few decades. Although there is still no conclusive mechanism to describe 

the degradation process during electrical stresses, it is generally accepted that the 

generation of energetic carriers (holes or hydrogen species) are the dominant factor. 

Therefore, continuously focus on how these two species are generated and contribute 

to oxide degradation during various stress conditions such as CVS, SHH injection and 

negative bias temperature instability (NBTI) stress will be helpful to construct the 

whole picture of the physics behind the gate oxide degradation. 

Meanwhile, the understanding of oxide degradation process in SiO2 

dielectric will also provide helpful information in studying the defect generation 

mechanisms in high-k dielectrics. Although there are sill many unknowns about high-

k dielectrics, there is no doubt that high-k dielectrics such as HfO2 will be used to 

replace SiO2 in MOS devices in the future based on the need from industry. 

Therefore, it is expected that more research effort will be put into the filed of studying 

high-k dielectrics in the future. The future topics in high-k dielectrics shall include 

not only characterizing and improving the quality of high-k dielectrics but also 

understanding the defect generation in high-k dielectrics during electric stresses. It 

would be interesting and crucial to understand how high-k dielectrics degrade during 

electrics and how it is compared to SiO2 dielectric. By comparing the characterization 

results from SiO2 and high-k dielectrics, it can provide more information of electrical 

defect generation and oxide degradation in dielectrics. 
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