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Abstract — Human factors and ergonomics have played an essential role in increasing the safety and 
performance of operators in the nuclear energy industry. In this critical review, we examine how artificial 
intelligence (AI) technologies can be leveraged to mitigate human errors, thereby improving the safety and 
performance of operators in nuclear power plants (NPPs). First, we discuss the various causes of human 
errors in NPPs. Next, we examine the ways in which AI has been introduced to and incorporated into 
different types of operator support systems to mitigate these human errors. We specifically examine (1) 
operator support systems, including decision support systems, (2) sensor fault detection systems, (3) 
operation validation systems, (4) operator monitoring systems, (5) autonomous control systems, (6) 
predictive maintenance systems, (7) automated text analysis systems, and (8) safety assessment systems. 
Finally, we provide some of the shortcomings of the existing AI technologies and discuss the challenges still 
ahead for their further adoption and implementation to provide future research directions.

Keywords — Human factors, human errors, nuclear power plants, artificial intelligence, operator support 
systems. 

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

Human errors in safety-critical systems, such as 
nuclear power plants (NPPs), have been an important 
topic of research in the field of human factors. The 
Three Mile Island and Chernobyl accidents sparked inter-
est in nuclear safety around the world. These accidents 
revealed that plant operators may not always adequately 
handle and process the large volume of information and 

that the high workload and stress during abnormal events 
can severely affect their performance. In fact, it is 
reported that human errors accounted for 40% of the 
failures during startup and shutdown operation from 
1997 to 2017 at NPPs in Korea because of the operator 
burden arising from monitoring hundreds of parameters 
for an extended period.1 A 1985 U.S. Nuclear Regulatory 
Commission (NRC) study showed that upward of 65% of 
commercial nuclear system failures involve human error.2 

Human-caused accidents remain rare, and most human 
errors do not have an impact on plant safety. Nonetheless, 
human errors can result in downtime for plants as systems 
are reset or repaired and root cause analyses are per-
formed to ensure continued safe operations.

The analysis of incidents in the nuclear industry over 
the past few decades has spawned a great deal of research 
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into the critical role played by human factors in ensuring 
low human error rates and maintaining the reliability of 
NPPs. Recent developments in digital technology and 
information technology and ergonomics have accelerated 
digitization and design innovation in the nuclear industry. 
Specifically, the involvement of human factors in the 
design of NPPs has gained considerable attention. 
Traditional alarm systems and many analog instruments 
and displays have already been replaced by more recent 
digitized systems. Many operator support systems have 
been created to assist operators in evaluating conditions, 
providing computerized procedures, and regulating their 
operations in response to changing circumstances. 
Beyond operation, human errors related to maintenance 
and modifications also have a significant influence on 
plant safety.2–5

Although NPPs have become increasingly digital over 
the years, the design of digital solutions has not always been 
optimized to simplify the work of operators. There is a need 
to build “intelligent” operator support systems that can accu-
rately assess the safety status of the NPP in real time and 
realize intelligent human-machine interaction. Specifically, 
such smart systems should assist operators in making mis-
sion-critical decisions and performing timely actions to 
reduce the risk in the operational safety of NPPs.

Artificial intelligence (AI) technology has the potential 
to bring this kind of intelligence and revolutionize this impor-
tant industry. Artificial intelligence can be defined as the 
study of “intelligent agents”: any device that perceives its 
environment and takes actions that maximize its chances of 
success.6 In recent decades, AI, and especially deep learning, 
which is a machine learning method based on artificial neural 
networks (ANNs), has made considerable progress.7 Modern 
AI-powered systems such as smart devices, mobile phones, 
and virtual assistants are ubiquitous today. With the develop-
ment and popularity of AI, many researchers have considered 
how this technology could be applied to NPPs to reduce 
errors overall (not just human errors), provide useful gui-
dance to operators, and help them make accurate and rapid 
decisions while ensuring and potentially enhancing the safety 
of nuclear energy production.

This work reviews the common human errors in the 
operation and maintenance of NPPs and explores the role 
AI technology can play in mitigating the risk of human 
failures and improving the performance of NPPs.

II. BACKGROUND

Human reliability analysis (HRA) is the study of 
human contributions to human error and the 

quantification of human error (e.g., rates, probabilities) 
for use in overall risk models. Historically, human factors 
and human reliability have diverged, whereby human 
factors engineering has tended to focus on understanding 
factors that influence human performance in sociotechni-
cal systems to improve the design of those systems, while 
HRA has tended to focus on safety and risk factors, 
including as-built systems like existing nuclear 
facilities.8 These two fields converge with the introduc-
tion of new analytical tools such as AI. Traditional HRA 
uses worksheets and subject matter experts to predict the 
factors that will contribute to human errors. This 
approach depends on the subjectivity of analysts and 
can result in considerable inter-analyst variability. The 
advent of AI techniques in HRA promises the opportunity 
to minimize such subjectivity and provide a more con-
sistent tool for HRA. Additionally, where the causes of 
human error are identified, AI can provide technology to 
assist operators in preventing and mitigating errors.

II.A. Causes of Human Error

Human performance is the product of the context in 
which the human operates. While humans have some 
tendencies to commit errors even in the most positive 
contexts, such error is considered random. Some con-
texts, however, clearly drive success or failure. In HRA, 
the systematic review of these contexts is treated through 
performance shaping factors (PSFs), also referred to as 
performance influencing factors and common perfor-
mance characteristics in different parts of the research 
community.

The earliest HRA method, the Technique for Human 
Error Rate Prediction9 (THERP) captures most contexts as 
predefined scenarios. The analyst matches scenarios under 
analysis to these predefined scenarios in THERP. This pro-
cess proves somewhat limited because the predefined scenar-
ios are not extensible, resulting in a degree of force fitting. 
THERP has limited coverage of PSFs to cover operator stress 
and experience levels, which serve as modifiers on the nom-
inal human error probability levels extracted from scenario 
matching. Descendants of THERP, like the Standard Plant 
Analysis Risk–Human Reliability Analysis (SPAR-H) 
method,10 expand the process to let PSFs cover most of the 
context without scenario matching. SPAR-H features a list of 
eight PSFs: Available Time, Stress/Stressors, Complexity, 
Experience/Training, Procedures, Ergonomics/Human– 
Machine Interface, Fitness for Duty, and Work Processes. 
The SPAR-H analyst assigns a level for each PSF, resulting in 
a positive effect, neutral or nominal effect, or a negative effect 
on performance. The subjective level of the PSF influence 
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translates to a multiplier on a nominal human error 
probability.

A proliferation of HRA methods to cover different appli-
cations and contexts results in an ever-growing list of possi-
ble PSFs. While HRA methods are mostly grounded in their 
specific and fixed sets of PSFs, the impression across meth-
ods is that no single HRA method covers all possible PSFs. 
Efforts to standardize the list of relevant PSFs have emerged. 
NUREG-1792, “Good Practices for Implementing Human 
Reliability Analysis,”11 provides a standard list of 15 PSFs to 
cover human actions in response to plant upset conditions:

1. applicability and suitability of training and 
experience

2. suitability of relevant procedures and adminis-
trative controls

3. availability and clarity of instrumentation

4. time available and time required to complete 
the action

5. the complexity of required diagnosis and 
response

6. workload, time pressure, and stress

7. team/crew dynamics and crew characteristics

8. available staffing and resources

9. ergonomic quality of human-system inter-
face (HSI)

10. environment in which the action needs to be 
performed

11. accessibility and operability of equipment to be 
manipulated

12. need for special tools

13. communications

14. special fitness needs

15. consideration of “realistic” accident sequence 
diversions and deviations (e.g., extraneous 
alarms, failed instruments, outside discussions).

This list was not meant to be exhaustive, but rather 
the minimum set of factors to consider in an HRA. While 
the list includes nearly double the number of PSFs as 
SPAR-H, treatment of the PSFs could easily be cross 
walked across most HRA methods. In the case of 
SPAR-H, for example, a single PSF covers multiple ele-
ments that are treated as separate PSFs in NUREG-1792.

NUREG/CR-4862 (Ref. 12) presents the cognitive 
environment simulation modeling tool that can be used 

to investigate what situations and factors lead to intention 
failures, what actions follow from intention failures (e.g., 
errors of omission, errors of commission), the ability to 
recover from errors or additional machine failures, and 
the effects of changes in the NPP person-machine system.

Realizing that contextual nuances provide for an 
almost infinite number of possible PSFs, efforts have 
been undertaken to develop PSF categories that could 
frame broad influences while allowing more nuanced 
explorations within individual HRA methods. Groth and 
Mosleh13 reviewd available HRA databases to identify 
PSFs in use and developed a Bayesian Belief Network of 
the interactions between PSFs. The optimal number of 
categories to maintain orthogonality is five, as follows: 
(1) organizational factors related to training, corrective 
action, safety culture, and management activities; (2) 
team factors related to communications, direct supervi-
sion, team coordination, and team cohesion; (3) personal 
factors related to cognitive attention, physical and psy-
chological abilities, morale and motivation, knowledge 
and experience, skills, familiarity, and biases; (4) situa-
tional factors related to external environment, hardware 
and software, conditioning events, task-specific factors, 
and decision making; and (5) machine design factors such 
as the HSI and system responses.

III. TYPES OF HUMAN ERROR

Just as there are a multitude of PSFs to catalog the 
causes of errors, there are numerous ways of classify-
ing the types of human error. For example, popular 
error taxonomies suggest that there are errors of omis-
sion and commission,9 reflecting actions skipped or 
done in addition to required tasks, respectively. 
Another taxonomy suggests an error may be considered 
a slip, lapse, mistake, or circumvention.14 Errors may 
occur leading up to an event (pre initiators), causing 
the event (initiating events), or in responding to the 
event (post initiators).11 Errors may be latent or active, 
meaning they have a delayed or immediate effect.14 

And errors may occur for all activities involving the 
nuclear facility, from the design, fabrication, and instal-
lation phases; to operations activities, involving control 
room and field operators; to emergency operations; to 
maintenance activities; to decommissioning.

The cognitive basis of human errors described in 
Whaley et al.15 anchors different causes and types of errors 
according to macro-cognitive functions. Macro-cognitive 
functions represent the basic processes of human mental 
activity, covering different stages: detecting and noticing, 
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in which sensory information is taken into the human; 
sense making and understanding, in which this information 
is imbued with meaning; decision making, in which 
courses of action or inaction are determined; action, in 
which decisions are turned into behaviors; and teamwork, 
which complements the other stages by providing supple-
mental people to perform each stage and relay information 
between each other. Each macro-cognitive function pre-
sents unique opportunities for errors. For example, key 
information and cues may be missed by not being per-
ceived, not being attended to, or being misperceived. This 
early-stage cognitive error affects subsequent stages and 
can lead to incorrect sense making and understanding, 
decision making, and actions. PSFs, such as the quality 
of the information or workload, set the context for detect-
ing and noticing, and poor PSFs may prime an increased 
likelihood of error.

Fortunately, human errors rarely rise to have sig-
nificant consequences at plants. Plants are designed with 
redundancies such that no single-point failure leads to 
an accident. Likewise, human activities feature checks 
and balances, from second-checker personnel to catch 
errors, to procedure checks for correct performance of 
tasks, to hardware safety systems to prevent unintended 
effects of human errors. The purpose of AI tools to 
support operations is therefore not specifically to 
address safety concerns but rather to assist operators 
in day-to-day operations at the plant and to provide 
additional defense in depth during potential upset con-
ditions. Artificial intelligence–based systems at NPPs 
foremost help ensure efficiency, ease of use, and relia-
bility of operations. They may in some cases reinforce 
safety practices to provide even greater safety margins 
at NPPs.

IV. MITIGATING HUMAN ERRORS USING AI

To reduce the consequences of human errors in 
NPPs, many efforts have been made to develop 
advanced operator support systems, such as decision 
support systems, sensor fault detection systems, opera-
tion validation systems, operator monitoring systems, 
autonomous control systems, predictive maintenance 
systems, automated text analysis systems, and safety 
assessment systems. Of particular interest is the use of 
AI technologies to ensure safe and reliable operation of 
a NPP. In this section, we examine the various AI- 
based methods that have been investigated in the lit-
erature to mitigate human errors in NPPs.

IV.A. Decision Support Systems

The use of smart support systems to assist operators’ 
decision-making ability has been widely researched in the 
past few decades. A well-designed decision support sys-
tem must aid the cognitive process of operators and allow 
for convenient main control room (MCR) operation. This 
is particularly important during abnormal transient and 
process disturbances in NPPs where operators need to 
assess the current situations promptly and accurately. 
A typical alarm system in an MCR has a thousand or 
more alarms in addition to displays of analog data. In the 
event of an emergency, such as a loss-of-coolant accident 
or a feedwater line break, hundreds of alarms occur 
simultaneously. This causes information overload and 
stress on operators, severely affecting their decision- 
making ability.

A fault diagnosis system is a type of decision support 
system whose objective is to make the task of fault 
diagnosis easier and reduce possibilities of human errors. 
Operators often need to perform high mental workload 
activities in the first few minutes after a fault occurrence. 
The information overload and time pressure under these 
emergency conditions cause stress, thereby severely 
affecting the operators’ decision-making ability when it 
is required the most. Fault diagnostic systems ease the 
workload of operators by quickly suggesting likely faults 
based on the probability of occurrence and provide acci-
dent-related information.

Various methods based on AI have been proposed to 
build smart decision support systems for fault diagnos-
tics (which include transient detection for many reactor 
conditions/states) and accident prediction in NPPs. The 
range of AI techniques studied spans from knowledge- 
based methods, such as expert systems, to more 
advanced and sophisticated data-driven algorithms such 
as ANNs, support vector machines (SVMs), and genetic 
algorithms.16–22

Artificial neural networks have been one of the most 
popular AI modeling techniques for fault diagnostics and 
transient analysis in nuclear plants.16,23–31 For instance, 
Mo et al.16 and Lee et al.23 propose a fault diagnosis and 
advisory system based on dynamic neural networks, 
which are a type of multilayer perceptron (MLP) neural 
network to enhance operators’ decision-making ability 
and reduce their mental workload. Mo et al.16 use a two- 
level classifier architecture for fault diagnosis. The first 
level classifier recognizes the type of transient, and con-
sequently, the second level classifier performs fault loca-
tion detection and severity prediction, providing detailed 
accident information. Lee et al.23 improve upon this fault 
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diagnostic system using two parallel neural networks, 
consisting of a modified dynamic neural network and 
a dynamic neuro-fuzzy network. The two networks per-
form independent fault diagnosis using different inputs to 
generate a more reliable output variable. Based on the 
diagnosis results, a computerized procedure search sys-
tem selects an appropriate operating procedure necessary 
to manage the current situation so that operators’ omis-
sion errors can be considerably reduced.

With the recent advances in neural network architec-
ture and training procedures in the past decade, the effec-
tiveness of deep learning–based models as a powerful 
feature extractor to perform high-accuracy prediction 
has come a long way. Many research works have 
explored the use of deep learning–based systems for the 
nuclear accident identification problem.32–36 Santos et al.-
32 demonstrate the performance of a deep rectifier neural 
network that can identify many operational situations 
quickly and with high accuracy rates under reasonable 
training times. Zhang et al.33 propose a modified long 
short-term memory (LSTM) neural network, an improved 
version of the recurrent neural network, to identify abnor-
mal or false pressurizer water levels (PWLs) in pressur-
ized water reactors. Specifically, by modifying the loss 
function to include a cost-sensitive weighting factor, the 
LSTM model can overcome the issue of time-shifting 
correlations and example imbalance in PWL prediction. 
Such identification of the pressurizers’ real water levels 
can reduce the difficulty of the operation and reduce the 
probability of human errors. Yang and Kim34 develop an 
accident diagnosis algorithm using LSTM that allows for 
longer time dependencies in the input data to be modeled. 
Choi and Lee35 propose an automated diagnosis algo-
rithm in emergency situations using a gated recurrent 
unit-decay model, an evolution over the LSTM model, 
to better handle missing data from faulty sensor measure-
ments. Yang and Kim36 develop an accident diagnosis 
algorithm for the startup mode of NPPs wherein anoma-
lies are harder to detect because of the several operation 
modes during startup.

Accurate and rapid identification of fault status is of 
premier importance to reduce human error under pressure 
and to guarantee the safe and reliable operation of an 
NPP. The accuracy of neural network–based fault diag-
nosis methods is shown to improve by applying principal 
component analysis for dimensionality reduction and 
noise filtering of the plant data in the prediagnostic 
stage.25,26 To recognize malfunctions in a timely manner, 
Yu and Liu24 evaluate a real-time fault diagnosis method 
using a two-stage neural network architecture. The first 
ANN performs a rapid prediagnosis while the second 

ANN verifies the diagnosis and makes it more accurate. 
Using this two-stage neural network architecture, the 
method can not only diagnose the learned faults accu-
rately with a low pretermission rate, but also identify 
unlearned faults under different operating conditions in 
real time. Ming et al.25 study a similar two-step hybrid 
approach for fault diagnosis wherein first a multiflow 
model (MFM) localizes the fault, and then an ANN per-
forms deep accurate diagnosis upon verifying the MFM 
result. The knowledge-based MFM method improves the 
understandability of diagnostic processes and results 
while the ANN enhances the success rate of 
identification.

Many studies suggest AI approaches to diagnose 
potential accident scenarios; however, if an unknown 
(or untrained) accident scenario is presented, the perfor-
mance of supervised approaches tends to deteriorate. To 
address these concerns, Yang et al.30 develop an accident 
diagnosis algorithm including the “don’t know” response 
using LSTM neural networks and an auto encoder 
novelty detection function. Pinheiro et al.31 augment 
state-of-the-art deep learning–based systems for the 
nuclear accident identification problem with novelty 
detection and demonstrate outstanding performance in 
terms of correct “don’t know” classifications.

Besides ANNs, some studies have explored support 
vector–based models, namely SVM classifier and support 
vector regressor, for fault identification and detailed acci-
dent information.17,37–39 Evolutionary algorithms, such as 
genetic algorithms, have also been reported to work 
robustly in terms of fault diagnosis.18,19

Beyond accurate fault identification and diagnosis, 
ANNs have also been used in the context of diagnosis 
error and uncertainty estimation in nuclear plants.20,27,40 

The prediction error/uncertainty, estimated using an aux-
iliary neural network, allows plant operators to examine 
the credibility of the fault diagnosis and thereby make 
reliable decisions in a timely manner.

While most research on decision support systems is 
based on modern machine learning algorithms, several 
intelligent operator support systems that adopted knowl-
edge-based systems (KBSs) have been reported in the 
literature.21,22,29,41–43 The most popular knowledge- 
based AI system is an expert system. An expert system 
is an AI program that emulates the decision-making abil-
ity of a human expert. Uhrig21 provides a survey of the 
different potential applications of expert systems in 
nuclear plants to reduce operator error and increase 
plant safety, reliability, and efficiency. Varde et al.44 

implement a hybrid expert system combining the advan-
tages of ANNs and KBSs to enhance the decision-making 
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ability of the operator while coping with operational 
requirements, particularly during abnormal conditions. 
In this study, the ANN monitors the reactor’s safety status 
while the KBS module performs the fault diagnosis and 
procedure generation. Uhrig and Tsoukalas29 discuss the 
use of an expert system that has a neural network in its 
knowledge base, called a connectionist expert system, for 
identification of transients in NPPs that yielded great 
benefits in terms of speed, robustness, and knowledge 
acquisition. Further, they report the robust performance 
of hybrid neuro-fuzzy approaches that couple a rule- 
based expert system with pretrained ANNs using fuzzy 
logic in the presence of noise.

Operator information/cognitive overload and lack of 
knowledge are major contributing factors to nuclear acci-
dents. As such, expert support systems have the potential 
to reduce operator error in NPPs (Ref. 45). For instance, 
Mampaey et al.46 discuss the problem of operator stress 
and information overload that arise from using written 
procedures in post-accident situations and propose an 
expert system that can act as a truly dynamic task sche-
duler, rather than a conventional computerized procedure 
display to minimize operator omission errors in NPPs.

Recent research by Hanna et al.22 demonstrates the 
use of a novel declarative AI approach, namely, Answer 
Set Programming, to represent the qualitative knowledge 
of the NPP in the form of logic rules. The represented 
knowledge is structured to form a reasoning-based opera-
tor support system and is shown to be capable of diag-
nosing faults, informing the operator of different 
scenarios and consequences, and generating recom-
mended control actions.

IV.B. Sensor Fault Detection Systems

Sensors are used to measure a range of parameters 
(e.g., temperature, pressure, flow, fluid level, radiation) in 
NPPs and are one of the essential sources of data. Most 
automated and human-initiated decisions are based in 
whole or in part on these data, so it is important to ensure 
the reliability of the sensor and the accuracy of sensor 
readings. Incorrect sensor data could lead to incorrect 
decision making by humans or by automation systems. 
Human errors may also occur from operators misdiagnos-
ing an accident and taking actions based on fault plant 
parameter measurements. Sensor failure detection is thus 
an extremely useful component of process control sys-
tems where an unchecked failure can be expensive and 
potentially dangerous.

A study by Uhrig47 reports the use of probabilistic 
neural networks to diagnose instrument failures in NPPs. 

When a sensor begins to drift, the values predicted by the 
trained neural network and the observed plant parameters 
start to differ. By monitoring these deviations, a drift or 
instrumentation system failure can be identified. Uhrig 
and Tsoukalas29 survey an adaptive neural fuzzy infer-
ence system that uses fuzzy logic and the sequential 
probability ratio test (SPRT) for sensor fault detection. 
The system not only detects the fault but also isolates the 
channel in which the fault has occurred. Zvaljevski and 
Gross48 implement a combination of multivariate state 
estimation technique kernel with the SVM method to 
demonstrate superior sensor fault detection and general-
ization properties. Shaheryar et al.49 develop a denoised 
auto-associative sensor model based on deep learning to 
overcome the poor regularization and robustness issues 
that plague auto-associative neural network–based 
empirical sensor models.

While various online monitoring techniques have 
been developed to monitor the state of sensors during 
normal NPP operations,29,47–49 they are inappropriate in 
emergency situations where the plant parameters undergo 
complex and nonlinear changes because of the reactor 
core trip.48–51 Choi and Lee52,53 construct an abnormal 
sensor detection system for NPPs using an LSTM-based 
machine learning model adopting a consistency index. 
The use of consistency index labeling makes it possible 
to detect sensor error immediately and locate the sensor 
where the error occurred. Yoo et al.37 develop an auto- 
associative kernel regression model and SPRT to diag-
nose instrument failures in severe accident scenarios in 
NPPs.

Several data-driven AI methods have been 
researched and proposed for fault diagnosis in the nuclear 
field. However, for real applications, the developed fault 
identification systems need to be robust to sensor anoma-
lies such as sensor faults and noise. Choi and Lee54 

develop a sensor fault-tolerant accident diagnosis system 
that can be applied during abnormal situations and startup 
and shutdown operations of NPPs, as well as other indus-
tries requiring process parameter–based reactions sensi-
tive to sensor faults. The authors develop an iterative 
random forest–based regression model and a recurrent 
neural network (RNN)–based gated recurrent unit with 
decay model and demonstrate that the proposed approach 
successfully recovers the degradation in the performance 
from sensor errors.54

IV.C. Operation Validation System

An operation validation system is an advisory system 
used to supervise and validate operator actions in NPPs. 
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Operation validation systems provide two important func-
tions for the operators: validating operator actions and 
performing an effects analysis of the proposed actions. 
By providing these functions to validate operator actions 
in the control panel, operator commission errors that may 
arise in high stress emergency situations can be effec-
tively reduced.

Neural networks have been used to model the effects 
analysis of operator actions and reduce the error of 
commission in NPPs (Refs. 23, 55 through 58). Lee 
et al.23 and Mo et al.55 propose an operation validation 
system that evaluates each operator action and simulates 
possible outcomes using ANNs. The system provides 
both qualitative and quantitative effects analysis of 
operator actions. Based on the predictions, suggestions/ 
warnings are provided to operators to mitigate human 
errors during operation in emergency scenarios. 
Operators can examine the possible outcomes of their 
expected actions and accordingly choose to confirm or 
cancel their actions. Similarly, Bae et al.58 propose 
a recursive strategy that employs an ANN as its predic-
tion model to predict the future trends of important plant 
parameters to determine whether a performed action is 
an error or not. In this study, two types of ANNs, 
namely, MLP and LSTM networks, are compared 
against their usefulness in detecting and recovering 
human errors in emergency situations in NPPs. It is 
observed that the future trends of plant parameters are 
quite accurately predicted through the LSTM model. 
Ahn et al.56 suggest an unsafe acts detection system 
based on colored petri nets (CPNs) and deep neural 
networks to determine if an operator action is an error 
and discover its effect on the plant integrity. The pro-
posed system reduces human error in the MCR by redu-
cing the mental workload and enhancing the operators’ 
situational awareness.

Ahn and Lee57 propose a procedural compliance 
check (PCC) system based on CPN modeling and neural 
networks. The CPN model converts the NPP emergency 
operating procedures to modeling language and is used 
in situations where no decisions or only simple decisions 
are needed. In situations where it is difficult to implement 
rule-based answers, such as continuous observation of 
changes in the trends of a parameter, a deep learning 
algorithm is employed to assist with complex decision 
making. A procedure incompliance is judged when an 
operator action is inconsistent with the response planning 
as predicted by the system. The PCC system proposed 
can help reduce procedural violations and human error, 
and therefore reduce the human error probability in emer-
gency operating situations.

IV.D. Operator Monitoring System

Operators’ fitness for duty (FFD), defined as the 
physical and mental ability of operators to safely perform 
their duties, has been highlighted as one of the primary 
reasons for human error in industrial and nuclear 
accidents.14,59,60 For instance, the NRC has published 
the requirements for FFD programs in nuclear facilities 
in the Code of Federal Regulations (CFR), namely, 10 
CFR 26 (Ref. 61). In order to remain compliant with 10 
CFR 26, NPP licensees have implemented FFD manage-
ment programs that address operators’ physical fitness, 
drug and alcohol testing, fatigue management, and psy-
chological testing.62 However, these systems have been 
far from effective in practice.63 Many elements of the 
program involve tests that are subjective and infrequent 
(only once or twice a year) and pre-access or are con-
ducted as one-time events and thus can play only 
a supplemental role. A continuous operator monitoring 
system can hence overcome many of the challenges of 
existing FFD approaches.

There have been a few notable works to objectively 
estimate operator performance to reduce human error and 
enhance human performance.64–67 Jo et al.64 propose 
a facial expression–based performance estimation system 
using an LSTM network. The system processes the opera-
tors’ facial images as they perform nuclear accident diag-
nosis tasks and provides an immediate analysis of their 
performance unobtrusively. Findings from this study are 
consistent with previous research that shows emotion- 
related facial expressions reflect biological responses to 
performance-impairing stress.68

Several studies have investigated the feasibility of 
using bio-monitoring systems to predict and thereby mini-
mize the risk of human error at nuclear facilities.65–67 

A study by Suh and Yim66 shows the potential of 
a machine learning–based approach to monitor 
a worker’s FFD status using bio-signals. The FFD statuses 
considered include psychoactive substance use (alcohol 
use), psychological status (depression, stress, anxiety), 
and physiological status (sleep deprivation). The important 
bio-signal markers of FFD are selected based on 
a multivariate analysis of variance and are fed to 
a multiclass and binary-class SVM classifier to achieve 
fast identification of a potential at-risk worker. In 
a different study by Kim et al.,67 electroencephalography 
(EEG) and eye movement signals are used to remotely 
measure operator attention levels in real time and provide 
feedback to supervisors. Specifically, the study demon-
strated that, with a few EEG and eye movement features, 
the presence or absence of human attention can be 
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classified with up to 90% accuracy using the k-nearest 
neighbor and SVM classification models. Along the 
same lines, Zhang et al.69 propose the use of wearable 
device sensors for real-time acquisition of physiological 
information to support automatic cognitive factor monitor-
ing using data mining algorithms.70,71 The use of such 
intelligent bio-signal-based fitness and attention monitor-
ing systems can thus help prevent human errors and 
enhance human performance in NPP MCRs.

The safe operation of an NPP can be further ensured 
through proper coordination and teamwork among the 
MCR operators.72 This is particularly important in the 
digital technology–based MCR environments where 
a lack of personal interactions and communications may 
reduce the performance of a team.73,74 Kim et al.74 sug-
gest quantitative indicators for estimating the implicit 
intentions of reactor operators to mitigate such concerns. 
Specifically, they propose an SVM-based classifier to 
classify implicit intentions of agreement and disagree-
ment. The classification is based on EEG data measured 
from operators while they performed operational tasks 
using soft controls. The proposed indicators support 
peer checks and concurrent/independent verifications to 
help diagnose and prevent human errors through 
enhanced operator communications.

Besides the use of wearable devices for operator mon-
itoring, Zhang et al.69 suggest the use of natural language 
processing (NLP) and computer vision technologies to moni-
tor operator cognitive factors for reducing human errors in 
NPPs. NLP technology can enable the automatic assessment 
of an operator’s situational awareness and mental workload 
through oral assessments. NLP simplifies the measurement 
process by reducing the workload and interruption caused by 
traditional survey-based cognitive measures. Moreover, 
through automated extraction of rich, semantic knowledge 
from the record of different events during the operation and 
maintenance in NPPs, NLP can aid in understanding complex 
team processes (e.g., team cognition). The insights gained 
therein can improve the team’s situational awareness and 
reduce their mental workload. Computer vision-based 
human tracking can be used to detect the anomalous behavior 
of field workers in NPPs, which in turn can help anticipate 
and avoid accidents. Further, the automatic sensing of opera-
tor traveling patterns can reduce time loss and errors during 
handoffs and enhance the management team’s situational 
awareness by keeping them informed.

IV.E. Autonomous Control Systems

An autonomous control system has the power for 
self-governance in performing control functions.75 Such 

a system is composed of hardware and software that can 
execute the requisite control function over extended per-
iods without human intervention. By removing humans 
from the control loop, autonomous operation algorithms 
can reduce operator burden and the potential for human 
errors in NPPs.

Autonomous control systems in the nuclear industry 
have relied on classical proportional-integral-derivative 
(PID) controllers. The optimal control strategy in 
Edwards et al.76 uses state feedback–assisted control 
along with a classical controller to achieve optimal reac-
tor performance over a wide range of operational scenar-
ios. The work demonstrated that state feedback–assisted 
control more effectively accommodated for plant model-
ing errors and disturbances than did a conventional con-
troller. Many AI-based methods, such as neural networks, 
fuzzy logic, genetic algorithms, and expert systems, have 
already been applied in order to move toward a higher 
level of automation.1,21,77–83

Ramaswamy et al.82 and Liu and Chan80 expand the 
application of classical controllers to include anticipatory 
control strategies using a neuro-fuzzy approach. Basher 
and Neal81 survey the industry status and practices on 
autonomous systems for nuclear reactor control and 
operations. This survey highlights the potential for 
increased plant safety and reduces the cost of operation. 
Specifically, they posit that a higher degree of autonomy 
in control of complex systems such as NPPs is more 
easily achievable through the integration of conventional 
control methods with intelligent components, such as 
fuzzy logic, neural networks, genetic algorithms, and 
expert systems. They investigate the feasibility of such 
integration in different aspects of reactor operations, such 
as reactor startup, shutdown in emergency situations, 
fault detection and diagnosis, nuclear reactor alarm pro-
cessing and diagnosis, and reactor load-following opera-
tions, to name a few.

Uhrig21 outlines the use of expert systems for mon-
itoring and control of NPPs. Such control expert systems 
take an action (e.g., opening a valve) automatically upon 
identifying a discrepancy from monitoring the plant over 
time. Lee and Kim78 develop an autonomous algorithm 
based on deep learning to control the safety systems of 
an NPP. The algorithm performs system analysis on 
power plant systems and achieves a high degree of auto-
mation for the nine safety functions of NPPs. RNNs, 
a type of ANN with feedback connections typically 
used for time series monitoring and predictions, have 
also been proposed for building automated control 
systems.77–79 Lee et al.77 suggest an autonomous control 
algorithm for NPP safety systems using an LSTM and 
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a function-based hierarchical framework (FHF). The 
FHF models the safety goals, functions, systems, and 
components in the NPP. The hierarchical structure is 
then transformed into an LSTM network that controls 
the safety functions. The automated algorithms are 
shown to respond to accidents faster than automatic 
plus human control. Similarly, Boroushaki et al.79 design 
an online intelligent reactor core controller for load- 
following operations of NPPs using RNNs and fuzzy 
logic systems.

In addition to normal operating conditions, fully auton-
omous control systems that reduce human involvement in 
plant operations during transient and emergency situations 
have great potential in preventing human errors.83–87 Kim 
et al.87 present a conceptual design for a plant-wide autono-
mous operation system based on deep learning that can per-
form the control functions needed for the emergency 
operation of an NPP with reduced human intervention. 
Yang and Kim34 demonstrate the feasibility of accident diag-
nosis and correct response under startup operations using 
autonomous control with an LSTM neural network and func-
tional requirement analysis (FRA). The neural network 
ensures the safe operation (by performing both accident 
diagnosis and protection control) while the FRA is performed 
to define the goal, functions, processes, systems, and compo-
nents for protection control. Similarly, Kim et al.83 propose 
a framework to develop an LSTM-based control system to 
avoid human errors during startups and shutdowns in NPPs.

Although such intelligent control systems automate most 
of the NPP operations, there are some situations, e.g., when 
a critical decision needs to be made by an operator or the 
autonomous system cannot manage the situation, when an 
operator’s intervention is required. Autonomous control sys-
tems that do not correctly provision the HSI make it more 
difficult to detect and recover from errors and challenge the 
human’s ability to maintain awareness of the NPP operation 
modes. NUREG-0700, “Human-System Interface Design 
Review Guidelines,” provides the human factors guidelines 
for physical and functional characteristics of HSI design for 
the various levels of automation.88 The prototype autono-
mous emergency operation system by Kim et al.87 considers 
the human (operator)-autonomous system interaction as one 
of the key design features of the system and lay out high-level 
requirements to tackle the widely known human factors– 
related automation issues that are discussed in further detail 
in Sec. IV.

IV.F. Predictive Maintenance Systems

Maintenance of equipment in optimal condition is 
required to provide improved availability and reliability 

in NPP facilities. Monitoring and early detection of emer-
gent problems from faulty equipment are crucial for 
operational safety and performance improvement. 
However, performing such routine preventive and correc-
tive maintenance can significantly increase operating 
expenses. Performing corrective and predictive mainte-
nance of NPP systems, structures, and components can 
alleviate this problem.

A deviation from normal operating circumstances 
can be caused by a single component failure or several 
faults in many components. It can be difficult for an 
operator to detect such problems and locate the proble-
matic equipment in a timely manner, especially if the 
problem develops slowly. NPPs have effectively imple-
mented preventive and corrective maintenance strategies 
over several decades; however, these strategies are prov-
ing to be cost prohibitive and labor intensive, which 
challenges the economic stability of the current fleet in 
competitive energy markets. To address these challenges, 
plants are transitioning to a predictive maintenance strat-
egy that utilizes data collected from permanently installed 
sensors and from periodic inspection activities. Advanced 
data analytics and machine learning approaches can auto-
mate fault detection and diagnosis and prediction of 
remaining useful life. This, combined with automated 
work package generation, can optimize resource alloca-
tion and maximize plant asset availability while minimiz-
ing the possibility of potential human errors in both 
maintenance planning and maintenance execution.

Step-up transformers are a high-value asset that is 
crucial to export energy from an NPP to the grid. 
Aizpurua et al.89 present a novel transformer lifetime 
estimation approach integrating uncertainty modeling, 
data-driven forecasting models, and model-based experi-
mental models to increase the prediction accuracy in 
a Bayesian particle filtering framework. The use of gra-
dient-boosting algorithms for forecasting showed the best 
prediction performance. The proposed approach enables 
the modeling of these dynamic contexts accurately while 
accounting for uncertainties.

Tsoukalas90 develops an intelligent prognostics meth-
odology for predicting aging effects impacting the long- 
term performance of nuclear components and systems. 
The approach is particularly suitable for predicting the 
performance of nuclear reactor systems that have low 
failure probabilities. Such components and systems are 
often perceived as peripheral to the reactor and are left 
somewhat unattended. An ANN-based intelligent agent 
monitoring framework is developed and studied using 
test cases. Similarly, Ahsan and Hassan91 build an auto-
matic fault prediction system to be used for fault 
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monitoring using decision tree and ANN algorithms. 
Gohel et al.92 develop an advanced predictive mainte-
nance analytics system for nuclear infrastructure using 
machine learning algorithms to ensure efficient and 
secure operations. SVM and logistic regression models 
are used to perform the prediction. Specifically, the like-
lihood of a component failure in a given cycle and the 
chances of the component failure in the next n cycles are 
estimated and the results are contrasted with prior work.

IV.G. Automated Text Analysis Systems

The nuclear power industry has many licensee- 
generated event reports. A comprehensive analysis of 
these reports could yield useful information for enhancing 
NPP operation and safety. However, the reports’ free text 
structure makes such analysis difficult and time consum-
ing. To this end, several automated analysis approaches 
based on NLP techniques have been proposed.69,93–95

Zhang et al.69 discuss the use of NLP to achieve the 
automated extraction of rich, semantic information from the 
documentation of various events during the operation and 
maintenance of NPPs. Such automated systems can support 
the analysis of NPP personnel errors, safety violations, 
inadequate procedures, or supervision issues. Furthermore, 
such systems can assist in comprehending dynamic team 
processes, like team cognition during outages, providing 
insights and information on complex team skills to increase 
team situational awareness and minimize mental fatigue and 
even identify optimal interventions.

A preliminary study by Zhao et al.93 investigates the 
feasibility and provides the basis for developing an auto-
mated tool for analyzing text-based event reports. The 
study aims at identifying causal relationships between 
events described in the report in the NRC Licensee 
Event Report (LER) database. To this end, a list of key-
words that indicate causal relationships is first identified 
from examining a set of sample reports. These keywords 
are then considered together with part of speech tagging 
and dependency parsing of a sentence using state-of-the- 
art NLP techniques to identify the causal and consequent 
events in the sentence. In a related work, Zhao et al.94 

propose the use of a rule-based expert system that can 
identify over 86% of the causal relationships in the test 
data automatically. The proposed methods are foreseen to 
be used in a number of areas, such as the analysis of PSFs 
and reconstruction of the scenario in an event.

Pence et al.95 advance “sociotechnical” risk analysis 
by explicitly incorporating organizational factors into 
probabilistic risk assessments (PRAs) and quantifying 
them using data analytic techniques. By integrating text 

mining for the measurement of organizational factors and 
PRAs, useful features are extracted from unstructured 
free text data and an SVM classifier is used to estimate 
the probability of having “training deficiency” as one of 
the causes of reported events. The methodology is applied 
to a case study on a set of LERs from the database to 
demonstrate the efficacy of the text mining step.

IV.H. Safety Assessment

When designing a NPP, stringent design require-
ments are imposed to ensure that all components can 
withstand abnormal operating conditions. Severe weather, 
seismic activity, or extreme heat and pressure may occur 
as a result of an accident at the facility. This method of 
designing a plant and its components that includes 
requirements and safety margins to account for antici-
pated abnormal conditions is called deterministic safety 
analysis. Starting in the 1980s, PRAs (also called prob-
abilistic safety assessment) was established as a way to 
calculate the risk that arises from the interplay of equip-
ment failure and human error. PRA models analyze the 
overall risk to a nuclear power station under abnormal 
conditions using probabilities. PRAs assist operators in 
gaining a better understanding of each NPP and identify-
ing areas where safety can be improved.

Kim and Seong96 develop a new safety evaluation 
methodology for NPPs by adopting the concept of an 
early warning score from the medical field. The proposed 
methodology overcomes the challenges in existing meth-
odologies, such as PRAs or safety performance indica-
tors, by handling cases that are not included in the model 
and enables real-time safety evaluation.

Abrishami et al.97 study the use of Bayesian net-
works to improve the performance of Success 
Likelihood Index Models (SLIMs), one of the widely 
used deterministic techniques in HRA to handle uncer-
tainty arising from experts’ opinions and insufficient 
data. The proposed BN-SLIM model considers uncer-
tainty associated with the rates of PSFs using probability 
distributions and can provide a better estimation of 
human error probability by considering conditional 
dependencies resulting from common PSFs. The prob-
ability updating feature of the BN-SLIM can be used to 
determine which PSFs are most responsible for human 
failure events. To obtain more accurate and realistic 
results of PRAs, it is necessary to reflect more complete 
dynamics of NPPs. Kim et al.98 propose a fast-running 
model using deep learning techniques to obtain plausible 
accident scenarios while reducing the resources required 
to conduct a full PRA. The proposed method can reduce 
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uncertainty in PRAs and contribute a key technique to 
dynamic PRAs.

V. DISCUSSION

Several studies performed over the years indicate that 
the occurrence of human error is an important factor in 
NPP safety-related incidents and effective operations and 
maintenance. Many traditional decision-making systems 
and data intelligence functions based on static models and 
algorithms have been developed to aid operators’ cogni-
tive activities. Although such systems have made great 
progress, they are often limited in their impact when 
dealing with complex decision-making environments 
and the rapidly increasing volume and complexity of 
data.99 For instance, Hsieh et al.100 develop a decision 
support system based on a deterministic computer pro-
gram and a database for abnormal operating environ-
ments in NPPs. However, the system state combination 
created by dynamic and complicated parameter changes 
can quickly make the size of this database impractical to 
manage and eventually lead to unpredictable system 
states and faults.

Although the concept of automated control systems in 
NPPs has been around for decades, the degree of automa-
tion in safety functions is still low, and operator interven-
tion remains a crucial part of the control system. 
Extensions to traditional PID-based automated and antici-
patory control strategies have been proposed to advance 
the operation of NPPs and reduce the reliance on human 
actions.82 However, an effective fully autonomous system 
is still far from practical implementation in the nuclear 
industry. Moreover, insufficient automation also exists in 
other aspects apart from safety functions, such as power 
control, where traditional control methods are dominant.101

As described in the previous section, AI technology 
can overcome many of these challenges of traditional 
operator support systems. The infusion of AI in direct 
support systems, such as intelligent advisors, alarm sys-
tems, fault diagnostic systems, and operation validation 
systems, can aid plant operators in situation assessment 
and response planning and implementation. Artificial 
intelligence–powered fitness monitoring systems that 
continuously track worker wellbeing and safety assess-
ment systems are crucial to building a safe environment. 
Predictive maintenance systems and sensor fault detec-
tion systems are required to monitor and detect emergent 
problems early on to ensure the operational safety and 
performance improvement of NPPs. Automated text ana-
lysis systems that extract rich semantic information from 

the event reports during the operation and maintenance of 
NPPs yield useful information for enhancing NPP opera-
tion and safety. Figure 1 summarizes the different smart 
support systems discussed in the literature and the various 
AI technologies used therein.

Artificial intelligence–based systems also have their 
limitations. While recent years have seen significant 
advances in AI technologies, there has been growing 
discussion about the scalability, explainability, and trust-
worthiness of these AI technologies, and why a particular 
decision was reached.102,103 Starter and Billings104 

explain how autonomous systems may sometimes create 
surprises for operators when they confront unpredictable 
and difficult-to-understand system behavior in the context 
of ongoing operations. Building explainable AI systems 
is of paramount importance, especially for mission- 
critical applications such as NPP outage management. 
Further, the performance of any AI system depends heav-
ily on the data used to train and evaluate the system. With 
the information security and protection measures of NPPs 
still in their infancy,105,106 one needs to be wary of new 
threats and challenges to data and cybersecurity. For 
instance, the electrical systems in NPPs in use today 
lack effective protection measures and their information 
security protection capabilities are weak.106 It is also 
worth noting that the inferences drawn from previous 
studies about the usefulness of AI technology in reducing 
human errors are based on controlled experiments or 
nuclear event simulations and their practical implementa-
tion in NPPs is yet to be achieved.

While AI-enabled digital systems have the capability 
to enhance plant automation and automate error-prone 
and tedious activities, plant designers must decide what 
to automate and how to integrate operator interaction 
with automation to utilize these systems to their fullest 
potential. Novel approaches are thus needed to optimize 
the overall plant performance by allocating functions 
between operators and autonomous systems based on 
their strengths and weaknesses and designing HSIs that 
support human-automation interaction.

The interactions between human and autonomous 
systems are crucial to the plant system’s performance 
and reliability. Several human factors–related issues 
regarding the human-autonomous system interaction 
have been addressed in the literature.87,104,107,108 Starter 
and Billings104 describe how a considerable number of 
unanticipated problems and failures are related for the 
most part to breakdowns in the interaction between 
human operators and automated systems and explain the 
principles and benefits of a human-centered rather than 
a technology-centered approach to the design of 
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automated systems. O’Hara107 presents guidelines for the 
design of interfaces that enhance the ability of operators 
to monitor and supervise automation and facilitate greater 
cooperation between human and autonomous agents. 
O’Hara107 also describes a qualitative methodology that 
can be used to allocate functions to automatic systems, 
plant operators, or to some combination of the two based 
on the relative role of humans and automation. Similarly, 
O’Hara and Higgins109 develop a general guideline for 
human-automation interactions. Kim and Park110 list con-
siderations for designing HSIs using previous research of 
human-computer interactions or human-robot interac-
tions. Specifically, they consider task allocation and the 
five attributes of human-automation interactions to opti-
mize the performance of the joint human-automation 
system based on Goodrich and Schultz,111 namely, auton-
omy and interaction, information exchanges, team struc-
ture, adaptation, learning and training, and shape of the 
task.

Kim et al.87 discuss human-autonomous system inter-
action as one of the key design features of an advanced 
support system and describe three key human factors 
issues: (1) out-of-the-loop (OOTL) unfamiliarity wherein 
a lack of understanding of autonomous behavior can result 
in difficulties for human operators when they take over 

control of the operation, (2) the tendency of designers to 
create multimodal systems that possess increased complex-
ity and longer time constant feedback loops, and (3) the 
critical decision authority, especially in relation to safety, 
assigned to autonomous systems. Kaber and Endsley112 

also discuss the critical issue of OOTL performance in 
fully autonomous systems. Operators of highly automated 
systems are often separated from direct, real-time control 
of the system, whether it is determining if process control 
intervention is required, noticing a critical system event, or 
approving or rejecting the actions of an automated control 
system. OOTL performance is associated with many nega-
tive consequences, such as reduced vigilance (operator 
failure to observe system changes), complacency (human 
over-trust in computers), loss of situation awareness 
(because of poor system observability), and operator skill 
decay. These consequences have been found to impact 
human performance under both normal and abnormal 
operating conditions, with a greater effect on the latter.113 

This causes major problems with operators’ capacity to 
perform their role when working together with autono-
mous systems. Kaber and Endsley112 present a level of 
automation taxonomy to ameliorate OOTL performance 
problems. Using this framework, they identify optimal 
combinations of human and computer control of various 

Fig. 1. Summary of different intelligent support systems and AI technologies used to mitigate human factor errors in NPPs.
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system functions, such as monitoring, planning, and option 
selection and implementation, that produce improvements 
in system performance under intermediate levels. Results 
on its utility in a dynamic control task indicated decreases 
in the number of system processes/tasks overlooked by 
operators. These enhancements are expected to be relevant 
to general process control systems and could result in cost 
savings due to increased operational safety.

Traditional computer-based procedures and AI- 
powered portable devices can also play a key role in 
improving the plant work management process, thereby 
increasing operator productivity and decreasing cost. 
Rashdan et al.114 and Rashdan and Agarwal115 propose an 
automated work package (AWP) technology to improve the 
plant work management process in a manner that increases 
efficiency while reducing human error. AWP uses plant 
condition, resources status, and user progress to adaptively 
drive the work process using the information acquired from 
various systems of a NPP and incorporates several advanced 
instrumentation and control technologies along with mod-
ern human factors techniques.

Beyond building smart operator support systems, 
AI technology can also be leveraged to build 
improved indirect operator support systems. These 
include intelligent HSIs that support rich interactions, 
advanced display systems and information systems to 
improve the operators’ perceptions and awareness 
abilities for monitoring and detection activities.

There is also vast potential for cross knowledge 
transfer from other sectors and industries, including oil 
and gas, healthcare, aviation, and manufacturing indus-
tries, that have adopted and implemented AI technologies 
to mitigate human errors. Particularly, in the case of the 
healthcare industry, AI helps in detecting and mitigating 
preventable medical errors. The most common and costly 
types of measurable or preventable medical errors in the 
United States in 2008 were postoperative infection 
($3.4 billion); pressure ulcer ($3.3 billion); 
a mechanical complication of noncardiac device, implant, 
or graft ($1.1 billion); and post-laminectomy syndrome 
($1 billion), accounting for almost half of all estimated 
medical error–associated costs that year.116,117 To combat 
these, AI-based support systems could help physicians 
decide what treatment to provide patients, taking into 
account vast amounts of data and finding patterns that 
doctors might normally miss, especially in high-stress 
environments. Some of the AI models that are already 
in practice include hospital computerized physician order 
entry for medication ordering errors,118 image analysis in 
radiology and dermatology, and deep learning histo-
pathology for identifying metastatic breast cancer.119

Another industry where machine learning methodol-
ogies are proving to be useful is the aviation industry. 
Human errors are recognized to be the primary or sec-
ondary cause of most residual accidents or incidents in 
the aviation industry.120 Errors like a controlled flight 
into terrain and loss of control remain the predominant 
causes of loss of life in aviation worldwide, making 
humans one of the weak links in aircraft safety.121 Here, 
AI proves to be useful in mitigating errors. The already 
useful applications in practice can be seen in augmenting 
drone technology for flight accuracy, building smart 
cockpits for safety, and intelligent maintenance schedules 
to detect and track possible faults.122

Despite existing challenges, AI has immense 
potential to speed technological development in 
nuclear fields by seizing opportunities and borrowing 
ideas from different sectors and industries. As men-
tioned by Mikhail Chudakov, International Atomic 
Energy Agency Deputy Director General and Head 
of the Department of Nuclear Energy: 

In order to be competitive, as well as integrated into 
the mix of modern energy systems, nuclear power 
plants – in addition to being safe, secure and reliable – 
also need to be economical and efficient.123 

Although almost all subsectors of the nuclear energy 
industry have implementations of AI, there still remains 
the need for standardization and cooperation. Accepting 
a set of internationally acceptable standards enables even 
wider adoption of AI with the potential of developing 
from the current standards. Given that AI depends on data 
availability and quality, as more curated data are avail-
able, it will be easier for algorithms to identify patterns in 
certain phenomena and thus make better predictions. 
Therefore, international cooperation to obtain, develop, 
maintain, and analyze global data with the help of AI in 
various nuclear fields is key to accelerating technological 
development and realizing the full potential of AI (Ref. 
123). Along with this, collaboration across different dis-
ciplines to establish common knowledge-sharing plat-
forms to coordinate and support partnerships between 
cross-domain researchers for the development of guide-
lines related to regulations, education, and training in AI 
will enable researchers from around the world to share 
experience, knowledge, and good practices.123

VI. CONCLUSION

Human errors have been identified as the major cause of 
safety-related incidents in the nuclear industry. Although 
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some NPPs have been digitized after decades of use, many 
NPPs still use traditional operation and control methods, 
decreasing the operational performance and increasing the 
risk of accidents. Developing advanced operator support 
systems that leverage the latest advancements in AI technol-
ogy can enhance operations, potentially leading to additional 
benefits for overall plant safety and reliability. This critical 
review provides a deep insight via literature review and 
critical analysis into the potential of AI technology to miti-
gate human errors and their consequences in NPPs. While the 
incidence of human errors leading to events at NPPs is rare, 
the advent of AI technology increases the safety margin on 
plants and paves the way to introduce AI-based concepts of 
operation into future plants.

The causes for human error occurrences in NPP 
activities are introduced and their classification is pro-
vided. A thorough review of the different types of opera-
tor support systems, namely, decision support systems, 
sensor fault detection systems, operation validation sys-
tems, operator monitoring systems, autonomous control 
systems, autonomous control systems, predictive mainte-
nance systems, automated text analysis systems, and 
safety assessment systems, and how researchers have 
integrated AI technologies into NPPs is presented. 
Through the various research studies, the application of 
AI technologies to assist plant operators in diagnosing 
faults quicker and making mission-critical decisions for 
continued safe operation of the plant is discussed. Such 
intelligent operator support systems will pave the way for 
the safe, economic, reliable, and efficient operation of 
NPPs in years to come.
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