
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Fall 2022

A RISC-V Matrix Multiplier Using Systolic Arrays A RISC-V Matrix Multiplier Using Systolic Arrays

Miao Wang
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

Recommended Citation Recommended Citation
Wang, Miao, "A RISC-V Matrix Multiplier Using Systolic Arrays" (2022). Master's Theses. 5354.
DOI: https://doi.org/10.31979/etd.cm7w-2gse
https://scholarworks.sjsu.edu/etd_theses/5354

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU
ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_theses
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5354&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/5354?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5354&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

A RISC-V MATRIX MULTIPLIER USING SYSTOLIC ARRAYS

A Thesis

Presented to

The Faculty of the Department of Computer Engineering

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Miao Wang

December 2022

© 2022

Miao Wang

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

A RISC-V MATRIX MULTIPLIER USING SYSTOLIC ARRAYS

by

Miao Wang

APPROVED FOR THE DEPARTMENT OF COMPUTER ENGINEERING

SAN JOSÉ STATE UNIVERSITY

December 2022

Nima Karimian, Ph.D. Department of Computer Engineering

Younghee Park, Ph.D. Department of Computer Engineering

Kaikai Liu, Ph.D. Department of Computer Engineering

ABSTRACT

A RISC-V MATRIX MULTIPLIER USING SYSTOLIC ARRAYS

by Miao Wang

Many modern day applications can be solved with the usage of machine learning,

which involves training a computer to learn on large amounts of data without direct

programmer guidance. Conventional computers typically use normal general purpose

central processing units, though more specialized tasks may take advantage of more

parallel hardware such as graphics processing units. In the pursuit of increased

performance to facilitate increasingly more complex machine learning models,

researchers in both academia and industry look towards field-programmable gate arrays

and application specific integrated circuits for their needs. Various implementations, both

theoretical and practical, exist across a wide variety of designs. A custom design, using

systolic arrays and built on the existing RISC-V Instruction Set Architecture, will be used

to accelerate matrix calculations, with example performance on the MNIST dataset

measured.

TABLE OF CONTENTS

List of Figures . vi

1 Introduction. 1

2 Background . 3
2.1 Machine Learning Basics . 3
2.2 Computational Platforms . 4

3 Related Work . 7
3.1 DianNao . 7
3.2 Hardware Implementation of Q-Learning . 9
3.3 Binarized Neural Networks . 10
3.4 Recurrent Neural Network Design. 12
3.5 Google TPU Using Systolic Arrays . 14
3.6 RISC-V Designs using Systolic Arrays . 16

4 Project Design . 18
4.1 High Level Overview . 18
4.2 Fixed Point Arithmetic . 19
4.3 Systolic Array . 21

4.3.1 Systolic Cell . 21
4.3.2 Array of Cells . 21

4.4 Issue Logic . 22
4.5 Memory Accesses . 24
4.6 TensorFlow Neural Network . 25
4.7 Memory and Data Organization . 28
4.8 Matrix Multiplication Assembly Code . 28

5 Results and Conclusions . 30
5.1 Results . 30
5.2 Conclusion . 31
5.3 Future Work . 32

Literature Cited . 33

v

vi

LIST OF FIGURES

Fig. 1. DianNao Memory tiling pseudocode [7] ©2014 IEEE. 8

Fig. 2. DianNao Accelerator diagram [7] ©2014 IEEE. 9

Fig. 3. Q-Learning Hardware Block Diagram [8] ©2019 IEEE. 11

Fig. 4. BNN Accelerator Block Diagram [2] ©2016 IEEE. 12

Fig. 5. BNN results relative to other platforms [2] ©2016 IEEE. 13

Fig. 6. RNN Accelerator Design [3] ©2016 IEEE. 14

Fig. 7. RNN Accelerator Design [9] ©2022 IEEE. 17

Fig. 8. High level block diagram of a RISC-V CPU. 18

Fig. 9. Fixed-Point bit arithmetic. 19

Fig. 10. Systolic Cell block diagram.. 22

Fig. 11. Systolic Array block diagram. 23

Fig. 12. Matrix Multiplication in flight. 23

Fig. 13. Systolic Array custom vector instructions. 23

Fig. 14. Systolic Array Issue block diagram. 25

Fig. 15. Memory Access stride organization. 26

Fig. 16. Simple MNIST classifier in TensorFlow. 26

Fig. 17. Neural Network Diagram, notice that the input is only 28 instead of
784 for scale. 27

Fig. 18. Table of data memory ranges. 28

Fig. 19. Python code simulating matrix multiplication. 29

Fig. 20. Waveform of Systolic Array calculation. 30

Fig. 21. TensorFlow results and source image. 31

1 INTRODUCTION

Machine learning is a burgeoning field in modern computing, concerned with drawing

patterns and relationships out of huge quantities of data. As technology progresses, larger

and larger amounts of data must be collected, with corresponding increases in

computational complexity. While general purpose computing hardware such as central

processing units (CPUs) have some degree of parallelization, the mathematical operations

typical of machine learning involve even larger amounts of parallel operations. Graphics

processing units (GPUs) are commonly used for machine learning for increased efficiency,

however in extreme cases it may be desirable to pursue more dedicated custom hardware.

This follows a general trend of increased specialization when it comes to high

performance computing, as mentioned by Patterson in his discussion of domain specific

architectures (DSAs) [1]. The application of DSAs when applied to machine learning

requires that custom machine learning hardware is either mapped to a field-programmable

gate array (FPGA), or even more ideally a custom-built application specific integrated

circuit (ASIC). Generally speaking, machine learning performance increases as

specialization increases, with the slowest being CPUs, followed by GPUs, FPGAs, and

ASICs.

Custom machine learning accelerators are commonly implemented in either FPGAs or

ASICs, depending on the goals of the of researchers. Typical examples of physically

implemented ASIC designs commonly come from corporate researchers with access to

appropriate resources, such as from E. Nurvitadhi et al. at Intel [2], [3] or N. P. Jouppi et

al. from Google [4]. On the other hand, a great deal of research from academics will

typically be limited to designs mapped onto FPGAs, due to the relative affordability of an

individual FPGA as opposed to the entire process of fabricating a custom ASIC chip.

While much of this research, from either public or private sector, focuses on accelerating

machine learning algorithms of various types, the vast majority of machine learning

1

designs reduce to optimizing the performance of highly parallel mathematical

computation in the form of matrix multiplication.

This paper will discuss a custom implementation of a systolic array used for

accelerating matrix multiplication calculations in hardware. The design consists of a

standard 5 stage pipeline implementing a subset of the RISC-V (Reduced Instruction Set

Computer V) Instruction Set Architecture (ISA), along with additional instructions that

can be sent to a systolic array coprocessor used for matrix calculations. This system will

implemented on a standard Terasic De-10 FPGA and used to conduct neural network

inferences on a standard MNIST image set, with comparisons between speed and

accuracy between various numerical formats. Due to limitations in hardware, the results

may not necessarily be particularly impressive, but interesting comparisons can still be

drawn between this design and more common options such as simple CPUs.

2

2 BACKGROUND

2.1 Machine Learning Basics

Machine learning is a broad field consisting of many different mathematical,

numerical, or statistical approaches to interpreting data. While more commonly known

methods are grounded in statistics, such as linear regression or various forms of statistical

classification, one of the areas of most intense research involves neural networks [5].

Neural networks attempt on some level to imitate the operation of the human brain, with

numerous small functional units called “neurons” which take in potentially multiple

inputs and produce an output based on weights and biases generated during a process of

training. Each of these individual neurons potentially represents multiple simple

mathematical operations, typically consisting of multiplications and additions. Combining

thousands, millions, or even billions of these neurons together into a “layer” of neurons,

and then chaining these layers together, produces a neural network. These neural

networks, when properly “trained” through a process of passing data along with labels

(correct “answers” to the data), can produce surprisingly accurate results. Fundamentally,

usage of such large neural networks boils down to large matrix operations, repeated

millions of times with large sets of data. As researchers attempt to increase the accuracy

of models built on neural networks, increasingly large amounts of neurons and training

data are required to produce better results. For something as simple as image

classification, an increase of accuracy from 93.3% to 96.4%, in other words a mere 3%

increase in accuracy, results in a neural network increasing in size from 22 layers to 152

layers [5]. If the cost of increasing accuracy by 3% requires almost an order of magnitude

more computational resources, it becomes clear that an obvious roadblock to improving

machine learning models is the potential performance of the model itself. While it may be

possible to design more efficient machine learning models that produce comparable

results, the field is still quite immature and this may not be a feasible solution in the short

3

to medium term. The only other solution would be to find a way to increase the

computational resources available for running these complex machine learning models.

2.2 Computational Platforms

The typical workload for a computer CPU is concerned with very general

performance across a number of domains, as the average computer will be a consumer

product that must deal with a variety of tasks. For a normal person using their laptop or

other computing device, they may need to spend time on work related issues such as word

processing, or they may browse the internet for topical news and information, or they may

stream high-definition video. It is possible that a person would do all three things

simultaneously, or at least may switch between them frequently and without pattern. As a

result, the computer architecture used must be able to handle a wide variety of workloads

with different computational requirements and differing memory access patterns. The

generalized use case will also likely be very branch heavy, due both to the workloads

themselves and due to handling so much context switching. These varied workloads will

inherently be less parallelizable than other more regular workloads. Due to this typical

use case, the general trend in computing has been to design simpler, more modular

instruction sets which can break down typical tasks into smaller and easy to execute

blocks [1]. However, this is not necessarily the case for more specialized,

high-performance environments such as servers, or, more relevant to this paper, machine

learning. The typical machine learning task must process an extremely large quantity of

data, sometimes repeatedly, in a very wide and parallelizable fashion. For these types of

situations, a less generalized and more optimized approach is more appropriate. GPUs

were originally designed to be used for graphics rendering, which is primarily concerned

with generating a viewable image from a computer screen. This involves a great deal of

geometric projection in the form of matrix computations. However, it turns out that

machine learning also maps very well to GPUs, as most machine learning calculations are

4

equivalent to common matrix operations. Thus, performing machine learning calculations

on a GPU is significantly faster than on that of a generalized CPU. For situations where

even more performance is needed, users must then resort to creating custom hardware.

Field-programmable gate arrays (FPGAs) are reconfigurable hardware that consist of

reprogrammable logic blocks surrounded by configurable interconnects. These devices

allow an end user to configure the logic blocks to do whatever specific tasks they want

and configure the surrounding interconnect to connect the custom logic blocks in any way

needed. Essentially, this allows a user to create hardware customized to their needs on a

hardware level. By mapping specific computer architecture designs that are optimized for

machine learning to an FPGA, even greater performance can be achieved than CPUs or

even their more parallel cousins GPUs. However, this reconfigurability comes at a cost, as,

once again, the mere ability to reconfigure something means there is generality that must

be paid in a cost of performance. For the most extreme version of custom hardware, the

only remaining option becomes application specific integrated circuits, or ASICs. ASICs

are custom hardware that are designed from the ground up to perform a specific task, and

they can only do that specific task. Once fabricated, they can no longer be changed or

reprogrammed for the end user. However, because these ICs are designed specifically for a

singular purpose, they are extremely efficient at executing the workloads they are designed

for. The only drawback to this performance is, of course, the lack of reconfigurability, and

potentially cost. This cost limits the economic viability of most designs, however, for

large companies or cloud providers, they can offer incredible results [4] [6].

Combining knowledge about machine learning algorithms and computer architecture

allows for novel designs that may be optimized for a particular type of machine learning

execution pattern. Many potential hardware accelerators have been proposed by

academics, such as DianNao [7] or Q-Learning designs [8]. Typically, designs done in an

academic setting will either be tested through simulation in software (typically with a

5

language such as MATLAB or C++), or they may be mapped to an FPGA for a more

realistic use case. Due to the cost of design, verification, and fabrication of a custom chip,

most novel designs from academia will be tested on this purely theoretical basis. However,

custom machine learning hardware is also an area of interest to industry, with many

companies such as Google [4] or Amazon [6] providing access to these ASICs through

cloud services. Other companies such as Qualcomm [6] may offer such custom hardware

to original equipment manufacturers (OEMs) which may create consumer devices that

have specialized needs. Going even further, some proposed designs [4] [5] [6] [7] may be

even more unconventional, taking advantage of the fault tolerance of some machine

learning algorithms to integrate analog components or even theoretical memristors, to

achieve performance that is potentially impossible in a purely digital realm.

6

3 RELATED WORK

3.1 DianNao

One of the most common use cases in machine learning is the use of Neural Networks

(NNs), specifically Convolutional Neural Networks (CNNs) and Deep Neural Networks

(DNNs), to solve a wide variety of problems. CNNs and DNNs consist of countless

neurons organized first into horizontal layers, and then stacked together as the layers pass

information forward and backwards from layer to layer. For CNNs specifically, these

layers can be broadly broken down into two different types, convolutional layers, and

pooling layers, each of which has slightly different memory access patterns and

computational behavior. Convolutional layers essentially involve sliding an N by N

convolutional filter across a memory array, performing a matrix multiplication for each

iteration. On the other hand, Pooling consists of sliding a M by M filter across an array,

choosing the largest, smallest, or average value within the filter. The final layers of a CNN

consist of a “classifier layer”, which is typically a “multi-layer perceptron”, used to

convert numerical data from a previous layer into a classified result [7]. For all of these

types of layers, a non-linear function is applied to the output of each neuron, which

allows the neural network to solve a wide variety of problems.

A major portion of optimizing neural network performance, and the focus of the

DianNao paper, consists of optimizing memory accesses to improve neural network

performance. As the neural network must operate on large amounts of data, carefully

structuring the design to take advantage of parallel memory accesses leads to some of the

greatest gains in performance. Input and Output neurons are primarily concerned with

introducing novel information to the network, and since there may be a large number of

input neurons, it is possible that all input data cannot fit in the L1 cache. The authors

decide use memory tiling to optimize memory accesses and minimize cache usage [7].

Internal nodes, called synapses, will generally fit in an L2 cache, though that needs to be

7

optimized as well. The optimized source code will essentially break loops down into

smaller loops represented by a tile factor Tii, which essentially ensures that subloops

maximize cache usage. An example of the tiling pseudocode used in DianNao can be

found in Fig. 1.

Fig. 1. DianNao Memory tiling pseudocode [7] ©2014 IEEE.

The general architecture consists of memory buffers that feed into Neural Functional

units (NFUs), which “reflect the decomposition of a layer into computational blocks of Ti

inputs/synapses and Tn output neurons” [7]. Multiple NFUs are arranged in sequence,

taking advantage of pipelining to maximize throughput and parallelism. The input and

output memory buffers are optimized to minimize cache usage and maximize

performance. The general block diagram is found on Fig. 2.

As with any processor, the authors defined control logic and control instructions that

would be translated into hardware operations. The control instructions could be used “in

order to explore different implementations of layers, and to provide machine-learning

researchers with the flexibility to try out different layer implementations” [7]. While the

low-level details are beyond the scope of this literature review, the instruction set used

was optimized for performance as well.

8

Fig. 2. DianNao Accelerator diagram [7] ©2014 IEEE.

The design was synthesized and placed and routed using Synopsys tools, with power

estimated using PrimeTime PX [7]. Compared to the baseline of a GEM5+McPAT

implementation, the DianNao was both faster (1000x) and used less power (20%),

showing that CNN ASICs can be both faster and more energy efficient than alternative

methods.

3.2 Hardware Implementation of Q-Learning

According to Spano, et. al., “Reinforcement Learning (RL) is a Machine Learning

(ML) approach used to train an entity, called agent, to accomplish a certain task” [8].

Reinforcement learning consists of developing an “agent” who learns how to do things in

an environment, through taking actions that give a response. Fundamentally, the Agent

exists in an environment, and when it performs an action, it receives a reward. The most

common reinforcement learning algorithm is Q-learning, where the data structure called a

Q-Matrix is used to track the rewards of specific actions taken in specific states. The

9

Q-Matrix is of size S by A, where S represents the number of unique states, and A

represents the number of actions that can be taken [8]. Training this agent consists of

taking an action, seeing what the reward is, and then updating the Q matrix for that

specific State-Action combination. By iterating until convergence, the Q-Learning

algorithm will eventually converge into a result that can accomplish the desired task. One

common operation done in the Q-learning algorithm is to take the maximum value of all

potential rewards given a specific state. For extremely large action spaces, this is an

expensive operation, and thus must be optimized. While it may not be realistic for typical

general purpose hardware such as a CPU or GPU to perform this operation quickly, the

proposed custom design uses a streamlined sequence of multipliers in order to make

calculating the maximum value as quickly as possible. The general layout of the hardware

components can be found in Fig. 3. The design uses a “Xilinx Zynq UltraScale+ MPSoC

ZCU106 Evaluation Kit featuring the XCZU7EV 2FFVC1156 FPGA” [8], with

measurements taken with “Vivado 2019.1 EDA tool”, and focused on optimizing various

parameters in their custom design with existing basic blocks in the FPGA, such as “Look

Up Tables (LUTs), Flip-Flops (FF), and Digital Signal Processing Slices (DSP)” [8].

Given a wide variety of parameters for Q-Matrix Size, unique states, and unique numbers

of actions, they found that their custom implementation was significantly more power

efficient than an existing design in previous literature [8]. While Q-learning is currently a

less important topic of machine learning than CNNs, this paper shows that there is much

promise in this avenue of research, should reinforcement learning become more important

in the future.

3.3 Binarized Neural Networks

As neural networks increase dramatically in size, one to way to simplify and

streamline behavior is to use binary values for weights, instead of the typical floating

point values [2]. Typical neural networks use floating point values to track weights on a

10

Fig. 3. Q-Learning Hardware Block Diagram [8] ©2019 IEEE.

per neuron basis, which offers a great degree of precision in the resulting classification.

However, floating point operations are significantly more expensive in hardware than even

a simple integer operation. However, for certain machine learning tasks, such as image

classification, neural networks can be remarkably fault tolerant. By taking a conventional

neural network and replacing weights with binary values representing +1 and -1, neural

network hardware can be simplified, since this converts conventional addition and

multiplication into logical operations of XOR and XNOR, respectively [2]. While neural

networks must be trained first, before being used for classification, the paper focuses on

the classification phase, as that is the typical use case for the average user. Training is

generally considered a one time cost that can be amortized across many devices using the

same trained weight values, and as such is a minor portion of all computational time [2].

The hardware must first convert input data from floating point to binary form, and then all

subsequent operations are conducted purely on binary values. The general structure of the

accelerator is found in Fig. 4.

Weights are read from memory and input into a simple multiply-add-accumulate block.

This is done in parallel for a variety of layers, and the same hardware can be used both for

11

Fig. 4. BNN Accelerator Block Diagram [2] ©2016 IEEE.

simple weight calculations and also other operations such as activation functions and

batch normalization. These blocks make up each individual Processing Elements (PEs),

and the design can be parameterized for wider or narrower data with more or less PEs.

The design was tested on multiple platforms, with simulated code equivalents on CPU

(Intel XEON E5-2699v3) and GPU (Nvidia Titan X), and actual hardware

implementations on an Altera Aria 10 FPGA and a custom ASIC design using Intel

technology [2]. The results displayed in Fig. 5 show that the CPU baseline performs the

worst, with GPU about 5x faster than CPU, FPGA about 50x faster than the CPU, and

ASIC 400x faster than the CPU. Binarization of the neural network also contributed

significantly to the increased performance, as a nonbinarized version of the same network

performed achieved only 20% the performance as the binarized model across all

platforms.

3.4 Recurrent Neural Network Design

Recurrent Neural Networks (RNNs) are a type of neural network used to learn from

data that consists of sequences where ordering matters. One common use case for RNNs

is natural language processing, where word meaning and significance can change

dramatically based on the order of appearance [3]. Gated Recurrent Units (GRUs) are a

12

Fig. 5. BNN results relative to other platforms [2] ©2016 IEEE.

more complex variant of RNN that has increased performance in terms of learning

ordering dependent patterns. GRUs consist of multiple gates that combine and selectively

ignore past and present information in order to learn useful patterns. Past information is

essentially fed back into RNNs continuously in a loop in order to maintain knowledge of

previous results. Similar to the binarized neural network implementation, this design is

primarily concerned with inferences, which is when information is fed into the neural

network in an attempt to classify inputs. Because the pattern of inferences is mainly

concerned with feeding new information forward, certain weight multiplications can be

precalculated and stored in memory [3]. While the authors note that this results in a

noticeable increase in memory usage (approximately 3x), the performance benefits of

avoiding multiply-accumulate operations are significant enough to justify the memory

usage.

The custom RNN design is divided into columns, shown in Fig. 6, where “each

floating-point multiply-accumulate processes a row in a column block” [3]. These results

are stored into on-chip memory. The same algorithm was implemented on an Intel Xeon

CPU, Nvidia Titan GPU, both StratixV and Aria10 FPGAs, and ASIC. The results

showed that generally, GPU performed about 4x better than CPU, and ASIC performed

13

Fig. 6. RNN Accelerator Design [3] ©2016 IEEE.

about 7x better than FPGA, once again confirming that machine learning ASICs can

achieve very high performance [3].

3.5 Google TPU Using Systolic Arrays

A wide variety of neural networks exist to perform several types of work, but in reality,

the vast majority of neural network implementations fall under only a few categories.

Google offers cloud services that provide access to machines that can perform neural

network computations, and through their data collection researchers determined that 95%

of neural network inference workloads consisted of either “Multilayer Perceptrons (MLP),

Convolutional Neural Networks (CNN), or Recurrent Neural Networks (RNN)” [4]. With

this in mind, they designed a PCIe coprocessor called a Tensor Processing Unit (TPU)

that could perform NN calculations with much higher performance than the Nvidia K80

GPUs they were originally using. Focus was placed on designing the coprocessor such

that it could run almost autonomously with as little input from a host CPU as possible,

which means that the design consists of long instructions that perform many operations in

a row. While this flies in the face of the trend towards simpler instructions in general

14

purpose computing, it turns out that for more specialized uses such as machine learning

ASICs, certain computer architecture concepts that were once deemed obsolete or

impractical are actually quite useful. Specifically, “Ideas that didn’t fly for

general-purpose computing may be ideal for domain-specific architectures” [4]. While the

usage of decoupled-access/execute, which decouples memory accesses from actual

execution, and CISC instructions (complex instruction set computers), which uses long

instructions of varying length to direct operations, both were useful in TPU design, the

most significant portion of the design comes from the use of a systolic array.

A systolic array is a large array consisting of multiply-add units, where vectors of data

are fed into the array from two sides, and the data flows through the array, iteration by

iteration, to eventually calculate a complete result [4]. The primary use of a systolic array

is to calculate large matrix operations quickly and efficiently, relative to conventional

computer architecture designs. While systolic arrays were originally just a historic

curiosity from the 1980s, it turns out that they are very effective and performing neural

network operations.

The matrix multiply unit that performs all of the mathematical calculations in the TPU

is essentially one large systolic array. Feeding data into that are multiple memory buffers

that fetch from memory data and weights and feed them into the systolic array. Activation

functions, pooling, and normalization are done after the matrix multiply unit. All of this is

controlled by the control unit, which receives instructions across a PCIe bus from the host

CPU [4]. Compared to typical general-purpose processors, where a nontrivial portion of

chip area consists of control logic, the Google TPU control logic only occupies 2% of the

die [4]. This means that a larger portion of silicon is dedicated towards completing work,

which leads to increased efficiency.

Performance using the Google TPU is significantly than a CPU baseline. Power

efficiency is approximately 30x that of a baseline CPU, and performance is also about 30x

15

faster than the CPU, along with 15x faster than the K80 GPU [4]. It is clear from this

implementation that given the resources of a large technology company, machine learning

ASICs are significantly more efficient than general purpose CPUs and GPUs.

3.6 RISC-V Designs using Systolic Arrays

RISC-V is a relatively new instruction set, though it is an area of active research.

While the majority of machine learning accelerators covered so far are custom designs

with custom instruction sets, there do exist designs based on the RISC-V ISA. According

to Ju, Yuhao and Gu, Jie, conventional deep neural network (DNN) accelerators are

designed with a conventional CPU core and a separate accelerator, with communication

between the two systems managed through a direct memory access engine (DMA) [9].

The separation between these two components means that large amounts of latency exist

when moving data from component to component. While many methods have been

explored to mitigate these issues, Ju and Gu propose “a systolic neural CPU (SNCPU)”

which merges the two together [9]. The architecture contains components that can be

reconfigured to work as either a RISC-V CPU or a systolic convolutional neural network

(CNN) accelerator, which leads to increased resource usage at a minimal overhead of

about 10% [9].

The systolic array consists of a 10x10 array of 8 bit integer units, which are

dynamically reconfigured to do appropriate functions in a standard RISC-V pipeline. The

general design can be seen in Fig. 7. Considering that approximately 64-80% of the

systolic array processing engines (PEs) can be reused for the RISC-V pipeline, this is a

fairly interesting design.

A. Gonzalez et al. propose a design that integrates a variety of existing open source

solutions, including a Berkeley Out-of-Order Machine (BOOM) along with a Gemmini

systolic array DNN accelerator [10]. Their design contains a 16x16 systolic array of 8-bit

integers, with promising results. On the other hand, V.N. Chander and K. Varghese

16

Fig. 7. RNN Accelerator Design [9] ©2022 IEEE.

designed a RISC-V vector processor that operates on 8 unit wide vectors of 32-bits

integers [11]. While their results are also promising, it is interesting to note that the

majority of existing research focuses on integer vector operations.

17

4 PROJECT DESIGN

4.1 High Level Overview

The custom design implemented in this paper consists of a simple RISC-V CPU

implementing basic 32-bit integer instructions, with support for standard arithmetic,

memory, and branch/jump instructions. Specific CPU behavior is designed to match

descriptions provided by the official RISC-V specification edited by Andrew Waterman

and Krste Asanovi´c [12]. The design is based on a standard 5 stage RISC pipeline, with

Instruction Fetch, Decode, Execute, Memory, and Register Write-back stages. A general

outline of the design is shown in Fig. 8 below.

Fig. 8. High level block diagram of a RISC-V CPU.

The program counter tracks which particular instruction is being executed, and is used

as in index into the instruction cache (Icache), where the relevant instruction is fetched.

This instruction is deciphered in the Decode stage, where the appropriate signals are

generated to control the rest of CPU execution, along with fetching the appropriate data

from the register file. These control signals and register operands are passed further down

to the arithmetic logic unit (ALU), where the appropriate calculations are made with the

input data. If necessary, memory accesses are then handled through the data memory

18

(Dmem), and the result is written back to the register file when appropriate. If appropriate,

the decode stage detects if the instruction is actually a special instruction be passed into

the systolic array, and if so the instruction is instead routed to the issue logic of the

systolic array, instead of the rest of the RISC-V pipeline.

4.2 Fixed Point Arithmetic

While typical CPUs, including the majority of existing work covered previously in

this thesis, generally operate on integer numbers for simplicity, the custom design

implemented here uses a 16-bit fixed-point number format instead, consisting of a sign bit

and a 15 bit number. Instead of the typical two’s complement number representation used

in the vast majority of computing, this fixed point representation tracks magnitude only,

with the sign bit determining whether the number is positive or negative instead. While

this makes operations with negative numbers slightly less elegant, it does mean that

multiplication is very straightforward, as there is no need to convert both operands to

positive to avoid issues with multiplying negative numbers. The general breakdown of the

16-bit fixed-point format used is outlined in Fig. 9.

Fig. 9. Fixed-Point bit arithmetic.

When using fixed point numbers, a point of contention is where to place the decimal

point of the number, as that determines both the maximum possible range and the

minimal precision supported by the number. As the intention of this project is to test

results of this custom CPU against a deep neural network (DNN) data set, the Modified

National Institute of Standards and Technology database (MNIST) was used to train a

19

DNN. The resulting weights and biases were extracted from the DNN, and inspected

using python code to check the typical numerical range of neural network training. From

an overview of results on the MNIST data set, it became clear that the vast majority of

weights, biases, intermediate results, and final results typically fell within the range of -32

to 32. As a result, the fixed point was chosen to be after bit 10, meaning that in the 16 bit

number, there is a sign bit, 5 bits to the left of the decimal place, and 10 bits to the right

of the decimal place. This gives a maximum magnitude of approximately 32 (with all 15

bits 1), and a maximum precision of about 0.001 (1/1024).

Matrix multiplication is fairly simple, as two numbers can simply have their

magnitudes multiplied together. The sign bit is a simple exclusive-or of the input signs, as

two negatives cancel when multiplied, and any situation where only one number is

negative means that the product must necessarily be negative. Given a 15 bit by 15 bit

multiplication, the resulting 30 bit product can be broken down into an overflow of the

first 5 bits, a 15 bit result, and the lower 10 bits are discarded as they fall under the

minimum precision of 10 bits below the decimal point.

For matrix adds, logic is slightly more complicated as sign bits do not roll over in the

way that they would for two’s complement arithmetic. If both numbers are the same sign,

then the magnitudes can be added and the sign of the result is the same. If the numbers

have differing signs, then the magnitude of both numbers A and B must be compared, and

the number with the larger magnitude has its sign bit propagated. Similarly, the difference

between both numbers, A-B and B-A are both calculated, and the number with the larger

magnitude determines which difference is chosen (if A is larger, then the result is A-B,

vice versa for B and B-A).

20

4.3 Systolic Array

4.3.1 Systolic Cell

A systolic array is, as the name implies, an array of systolic cells. A single systolic

cell is responsible for calculating a single multiply-accumulate within a computation. A

systolic cell consists of two numerical inputs named A and B, two control inputs to start

and stop computation, and a clock input. Inside the cell, there are registers to latch the

inputs A, B, start, and stop, along with a multiplier to find the product A*B, and an adder

to add this product to an accumulator register. There is also a result register, that stores

completed results when they are finished. When the systolic cell sees the start signal go

positive, it stores A*B directly into the accumulator without adding. Conversely, when the

systolic cell detects the stop signal, then the result of the accumulator is stored in the

result register. All data, including A, B, start, stop, and the result, is propagated out of the

cell for use by other cells. The general structure of a systolic cell can be seen in Fig. 10.

4.3.2 Array of Cells

A systolic array is a group of 4 by 4 systolic cells, with the outputs of one cell daisy

chained into the inputs of the next cell. Input vectors consist of four 16-bit fixed-point

numbers, grouped into a 64 bit vector register. These vectors are shifted into the array

cycle by cycle in a staggered format, with a start signal asserted at the beginning of a new

calculation, and a stop signal asserted at the end. Result vectors come out after a delay of

8 cycles, which compensates for shifting an entire input vector in and then back out.

Because of the design of the array, calculations can be pipelined so that multiple

calculations are in flight at one time.

It is important to note that while one set of inputs (the left side of the matrix

calculation, input A) is shifted in element by element, the second set of inputs (input B)

are shifted in vertically in a staggered fashion. This matches the expected behavior of a

typical matrix multiply, where the rows of the first matrix are multiplied against the

21

Fig. 10. Systolic Cell block diagram.

columns of the second matrix. As the vectors are shifted in cycle by cycle, each cell

generates a sum of products that matches the result of a matrix multiplication, where each

nth element of a row is multiplied with the nth element of a column, and then added

together. The pipeline registers used to stagger input shifts, along with the array itself, can

be seen in Fig. 11. An example calculation can be seen in Fig. 12.

4.4 Issue Logic

The systolic array unit is designed to handle a total of 5 unique instructions, which

covers all necessary functions to do matrix multiply operations in a typical

register-register architecture. The specific instructions supported are vector add, vector

multiply, vector load, vector store, and vector relu, all of which are shown in Fig. 13.

The issue unit contains 128 64-bit registers, with each 64-bit register containing 4

16-bit fixed point numbers. The 128 registers are organized into 4 registers batches,

22

Fig. 11. Systolic Array block diagram.

Fig. 12. Matrix Multiplication in flight.

Fig. 13. Systolic Array custom vector instructions.

23

meaning that the register file contains 32 groups of 4 registers each. All vector instructions

operate on 4 registers at a time, with each register handled on consecutive clock cycles.

The Instruction buffer takes input instructions from the top level RISC-V CPU, and

holds them until the array unit is ready to accept new instructions. If the buffer is full, it

will indicate to the RISC-V CPU to stall until array instructions finish. When the array is

available to execute on new instructions, the instruction buffer is released to the control

unit, which contains a state machine that tracks instruction execution. The state machine

determines which registers are being operated on, and which execution unit (Adder,

Systolic Array, Relu, or Data cache) needs to do work. The adder is simply a vector adder

that adds 4 separate numbers and out puts the result, the systolic array is the multiply unit,

the Relu unit applies the Relu activation function on the register inputs, and the Data

cache (Dcache) deals with memory accesses of both reads and writes. Relu is particularly

simple to implement in hardware for sign-bit numbers, as a simple check of the sign bit

determines whether the magnitude is preserved (for positive numbers) or zeroed out (for

negative numbers). Results are calculated in 4 consecutive clock cycles, with reads and

writes overlapping during the 4 clock cycles where a grouping of 4 vectors is executed.

The general dataflow pattern is shown in Fig. 14.

4.5 Memory Accesses

Matrices are typically stored in memory as large contiguous arrays of numbers, with

each number one after the other. For a matrix of arbitrary dimension M by N of M rows

and N columns, loading the correct sub-matrix is necessary when breaking down a matrix

multiply into appropriately sized sub-products. Vector memory instructions take a base

address from the host RISC-V CPU, along with a stride value indicated by the immediate

field of the instruction. Memory accesses will first operate on the base address, followed

by the base address+stride, then +stride*2, then +stride*3. This means that the stride

value should be varied to access the desired 4x4 sub matrix, where the stride value is

24

Fig. 14. Systolic Array Issue block diagram.

essentially the width N divided by 4. An example of the stride pattern applied to a 64

element array can be found in Fig. 15.

4.6 TensorFlow Neural Network

The MNIST data set consists of 60000 handwritten number images in a training set,

along with 10000 more number images as a test set. Each image is a 28x28 black and

white image, where each pixel is represented by a single byte. The images are converted

into a single 1x784 array of numbers, which are then fed into a simple neural network

containing two fully connected layers, the first of which has 16 nodes with relu activiation

25

Fig. 15. Memory Access stride organization.

function, and the second output classification layer having 10 nodes. The general structure

of the TensorFlow code is shown in figure Fig. 16.

Fig. 16. Simple MNIST classifier in TensorFlow.

The neural network was trained on Google Tensorflow using adam optimizer and

SparseCategoricalCrossentropy loss, which is used for classification scenarios such as

distinguishing between handwritten numbers. The resulting trained neural network could

then have the weights and biases extracted. The first layer takes an input of 1x784, and

has an output of 16x1. This means that the weight matrix for the first layer has

26

dimensions of 784x16. The bias matrix of the first layer is simply 16x1, followed by a

Relu activation function. The next layer is an output layer of 10 nodes, meaning that the

1x16 input must generate an output of 10 numbers. The weight array of the second layer

is 16x10, followed by a bias array of 10x1. These weights and biases are padded with

zeros so that the height and width dimensions are a multiple of 4, then converted into 16

bit fixed-point numbers and then packed into memory. The approximate structure of the

neural network can be seen in Fig. 17, though the first layer is compressed to only 28

nodes for readability.

Fig. 17. Neural Network Diagram, notice that the input is only 28 instead of 784 for scale.

27

4.7 Memory and Data Organization

The neural network parameters consist of the first 784x16 weight vector followed by

the second padded 16x12 weight vector, and two bias vectors that are reshaped into 4x4

vectors each. These vectors are implemented as lookup tables for simplicity, as storing

them in a memory and then designing a cache around it was judged to be outside of the

scope of the project. Similarly, source images of 1x784 bytes could also be converted into

fixed point values and packed into a lookup table. User memory could be implemented as

a register array is both readable and writable. For the purposes of this project, these

memory regions are explicitly delineated with memory ranges, as seen in Fig. 18.

Fig. 18. Table of data memory ranges.

4.8 Matrix Multiplication Assembly Code

The matrix multiplication algorithm was implemented manually in custom RISC-V

assembly, as modifying a compiler for these purposes was deemed outside of the scope of

the project. Using known memory addresses for weights and image data previously

discussed, along with available branch and arithmetic instructions, approximately 100

lines of assembly code were written to break down the multiple matrix multiplications

into loops of 4x4 sub-matrix products followed by adds. The general structure of the code

can be seen in Fig. 19, as a python simulation.

28

Fig. 19. Python code simulating matrix multiplication.

29

5 RESULTS AND CONCLUSIONS

5.1 Results

The results of inferences using the custom matrix multiply unit are noticeably

different from inferences conducting using TensorFlow, however the margin of error for a

fault tolerant process like image recognition means that results are still reasonably

accurate compared to desired results.

The resulting vector from an example inference is shown in Fig. 20, and is 8556 a13e

05a5 a4fd 1063 8e49 9470 0979 8c53 0690, which corresponds to decimal values of

-1.33, -8.31, 1.41, -9.24, 4.10, -3.57, -5.11, 2.37, -3.08, 1.64. While the numbers vary

slightly from the more precise floating point calculation, numbers are generally of the

same magnitude, and critically, the largest number of the systolic array result matches the

expected result from the TensorFlow inference in Fig. 21, corresponding to number 4.

Fig. 20. Waveform of Systolic Array calculation.

An approximate analysis of clock cycles required to execute this on the systolic array

is approximately 5000 clock cycles amortized over parallel executions, which could be

increased significantly with even more systolic arrays added. However, a naive linear

implementation using a standard RISC-V pipeline without a systolic array would take

approximately 784x16x3=37600 clock cycles, leading to an approximate speedup of

about 9.4x. While this is assuming ideal memory behavior for both cases, you can

generally assume that since both scenarios are operating on the same data, the number of

memory accesses across both scenarios would be comparable.

30

Fig. 21. TensorFlow results and source image.

5.2 Conclusion

Machine learning computations in general, and more specifically neural network

inferences, are easily reducible to large matrix multiplication operations. One way to to

effectively parallelize these matrix computations is through the use of a systolic array of

many individual cells that conduct multiply-add operations. Though most research

typically focuses on integer operations for simplicity and efficiency, fixed-point arithmetic

allows a level of additional decimal precision without too much additional logic

complexity. This custom RISC-V systolic array design is able to conduct neural network

inferences with reasonable accuracy when compared with TensorFlow inferences using

floating point, while also being noticeably faster than a naive design using a simple

RISC-V arithmetic unit. Though this design is still fairly simple in the grand scheme of

things, hopefully this thesis demonstrates that there may be potential in using fixed point

arithmetic as a compromise between typical integer and the more expensive floating point

calculations.

31

5.3 Future Work

While this thesis successfully demonstrated that a RISC-V CPU with a fixed-point

systolic array can conduct neural network inference with reasonable accuracy, a great deal

of simplifying assumptions were made that can be elaborated on for future work.

Increasing the parallelism of the design with multiple systolic arrays operating in parallel

can be done fairly trivially, with a per-array memory offset setting to allow the multiple

arrays to work on different data in parallel. This would require implementing some basic

synchronization primitives, but would result in much larger increases in speed for parallel

tasks. Furthermore, the current design assumes idealized memory behavior in the form of

lookup tables for all weights and input data. A more realistic design would need to

implement a complex caching system that could load all manner of weights, biases, and

input data in parallel while maintaining coherence. While optimizing cache behavior

could justify a thesis on its own, adding and optimizing a cache would be a natural

extension of the existing work. Furthermore, as more functionality is added to this custom

CPU, writing assembly programs by hand would become more and more unsustainable. It

would be practical to write a custom compiler to handle generating machine code for this

systolic array accelerator as well, though that was judged to be outside of the focus of the

project for now. All in all, while the current design is promising, many extensions can

naturally be made to add functionality and increase performance.

32

Literature Cited

[1] D. Patterson, “50 years of computer architecture: From the mainframe cpu to the
domain-specific tpu and the open risc-v instruction set,” in 2018 IEEE International
Solid - State Circuits Conference - (ISSCC), pp. 27–31, 2018.

[2] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and D. Marr,
“Accelerating binarized neural networks: Comparison of fpga, cpu, gpu, and asic,” in
2016 International Conference on Field-Programmable Technology (FPT), pp. 77–84,
2016.

[3] E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr,
“Accelerating recurrent neural networks in analytics servers: Comparison of fpga, cpu,
gpu, and asic,” in 2016 26th International Conference on Field Programmable Logic
and Applications (FPL), pp. 1–4, 2016.

[4] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, et al., “In-datacenter performance analysis of a
tensor processing unit,” in Proceedings of the 44th annual international symposium
on computer architecture, pp. 1–12, 2017. testnote.

[5] S. Shim. (2021). Lecture 5: CNN Part 2 [PowerPoint slides].

[6] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner, “Ai
accelerator survey and trends,” in 2021 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1–9, 2021.

[7] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Diannao: A
small-footprint high-throughput accelerator for ubiquitous machine-learning,” ACM
SIGARCH Computer Architecture News, vol. 42, no. 1, pp. 269–284, 2014.

[8] S. Spano, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino, M. Matta,
A. Nannarelli, and M. Re, “An efficient hardware implementation of reinforcement
learning: The q-learning algorithm,” IEEE Access, vol. 7, pp. 186340–186351, 2019.

[9] Y. Ju and J. Gu, “A 65nm systolic neural cpu processor for combined deep learning
and general-purpose computing with 95% pe utilization, high data locality and
enhanced end-to-end performance,” in 2022 IEEE International Solid- State Circuits
Conference (ISSCC), vol. 65, pp. 1–3, 2022.

33

[10] A. Gonzalez, J. Zhao, B. Korpan, H. Genc, C. Schmidt, J. Wright, A. Biswas,
A. Amid, F. Sheikh, A. Sorokin, et al., “A 16mm 2 106.1 gops/w heterogeneous risc-v
multi-core multi-accelerator soc in low-power 22nm finfet,” in ESSCIRC 2021-IEEE
47th European Solid State Circuits Conference (ESSCIRC), pp. 259–262, IEEE, 2021.

[11] V. N. Chander and K. Varghese, “A soft risc-v vector processor for edge-ai,” in 2022
35th International Conference on VLSI Design and 2022 21st International
Conference on Embedded Systems (VLSID), pp. 263–268, 2022.

[12] A. Waterman and K. Asanović, The RISC-V Instruction Set Manual, Volume I:
User-Level ISA, Document Version 20191214-draft, December 2019. [Online].
Available: https://github.com/riscv/riscv-isa-manual/releases/download/
Ratified-IMAFDQC/riscv-spec-20191213.pdf.

34

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

	A RISC-V Matrix Multiplier Using Systolic Arrays
	Recommended Citation

	List of Figures
	Introduction
	Background
	Machine Learning Basics
	Computational Platforms

	Related Work
	DianNao
	Hardware Implementation of Q-Learning
	Binarized Neural Networks
	Recurrent Neural Network Design
	Google TPU Using Systolic Arrays
	RISC-V Designs using Systolic Arrays

	Project Design
	High Level Overview
	Fixed Point Arithmetic
	Systolic Array
	Systolic Cell
	Array of Cells

	Issue Logic
	Memory Accesses
	TensorFlow Neural Network
	Memory and Data Organization
	Matrix Multiplication Assembly Code

	Results and Conclusions
	Results
	Conclusion
	Future Work

	Literature Cited

