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ABSTRACT 

AN EMPIRICAL ASSESSMENT OF ENVIRONMENTAL VARIABLE COMBINATIONS 
FOR USE IN FIRE WEATHER FORECASTS 

by Daniel Sunvold 

 Predicting high fire danger conditions is paramount to mitigating the impacts caused by 

wildfires. Such warning systems as red flag warnings (RFWs) and the National Fire Danger 

Rating System (NFDRS) utilize atmospheric and fuel moisture properties to warn public and 

government entities about conditions that may lead to the ignition or rapid growth of 

wildfires. In this study, we use high-resolution reanalysis and wildfire growth data from 

2003-2020 in California to test a variety of different variables to determine if a more viable 

variable combination exists that could be used to create a better warning index which would 

allow for a better estimate of high fire danger conditions. This is assessed by ranking 

combinations based on how well they organize daily fire acreage growth values within the 

heatmaps. It is found that turbulent kinetic energy (TKE) 50 meters above ground level 

presents a strong case to be used as a fire danger predictor. Sounding profiles are also created 

to ascertain a clearer picture of the vertical profiles typically seen on dangerous fire weather 

days, with the highest average daily acreage growth values seen with each combination 

exhibiting a dry and warm-to-hot environment. Line plots detailing daily average acreage 

growth rate changes indicate compounding effects of multiple variables being in extreme 

states at the same time as well as limiting behavior where a single variable being in a non-fire 

conducive state can shut-off the influence of another variable. We also find that relative 

humidity and sustained wind speed is the third-ranked variable combination, empirically 

confirming a previous mostly heuristic result.  
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1. Introduction 

 Wildfires in California continue to worsen. The total annual area burned and average 

wildfire size continues to rise, while the wildfire season length has increased. Between 1984 

and 2017, the total annual area burned in the state doubled (Dong et al. 2021). Forested 

regions in California have seen a particularly harsh increase in annual area burned, with a 

766% increase in the summer months between 1972 and 2018 (Williams et al. 2019), though 

the annual area burned during the fall months has been found to have been increasing by 

around 40% per decade between 1984 and 2018 (Goss et al. 2020). The impacts of these 

wildfires are wide-ranging, from health issues due to poor air quality caused by smoke to 

economic and environmental losses. For example, within the Klamath Mountain forests of 

Northern California, non-native plant species have been introduced following severe 

wildfires, which could lead to ecological consequences (Reilly et al. 2020). Regarding the 

average wildfire size, the average decadal fire size across the Western United States has 

nearly tripled between the 1950s and 2010s (Weber and Yadav 2020). This can be seen 

clearly in recent wildfires across the state, with the top eight largest wildfires in California 

history transpiring since 2017, and all but two of the top twenty occurring since 2003 

(CALFIRE 2022c). Both an increase in total area burned and the wildfire size also coincides 

with a prolonged wildfire season across the United States in general. In forested regions, the 

wildfire season length increased by 41% between 1979 and 2015 (Abatzoglou and Williams 

2016), with significant trend increases in the length of the wildfire season found across much 

of the Western United States in general (Jolly et al. 2015).  
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 Overall, the trends of increased annual area burned, wildfire size, and wildfire season 

length have led to an increase in severe consequences for local communities within 

California. This is particularly concerning when considering the wildland-urban interface 

(WUI), which marks the transition zone between undeveloped and developed land. Between 

1970 and 2000, California was among the top 16 states that saw the greatest increase in the 

WUI (Theobald and Romme 2007). As of 2010, California had the most houses within the 

WUI (Martinuzzi et al. 2015), with half of the total buildings destroyed by wildfires in 

California between 1985 and 2013 occurring in this zone (Kramer et al. 2019). Thousands of 

structures have been burned, with entire communities such as Paradise and Greenville 

entirely incinerated. In the case of the Camp Fire of 2018, which destroyed Paradise, 85 

people were killed and over 18,000 structures were destroyed, making this the most 

destructive wildfire in California state history (CALFIRE 2022a). Though the state has seen a 

great increase in the expansion of the WUI, it is still alarming that 15 of the top 20 most 

destructive wildfires in the state’s history have occurred since 2015 (CALFIRE 2022d). 

 The impacts seen from wildfires can be expected to continue and worsen. A doubling of 

area burned is projected from 2010-2039 in the Sierra Nevada when compared to 1961-2004 

(Kitzberger et al. 2017), while Yue et al. (2014) project that varying regions in Southern 

California would experience anywhere between 10-100% increase by the 2046-2065 time 

period. Additionally, model projections show a doubling of annual area burned in forested 

regions of the Western United States between 2021-2050 when compared to the historical 

period of 1991-2020 (Abatzoglou et al. 2021). Wildfire season length is also expected to 

continue to increase; for example, Ma et al. (2021) modeled that the wildfire season length in 
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the Santa Monica mountains (chaparral vegetation) could increase from anywhere between 

5% and nearly 15% percent between 1960-1999 and 2080-2099. Considering this, it is 

imperative that scientists and operational meteorologists are using the most optimal 

environmental variables to predict destructive daily wildfire growth so that impacts can be 

lessoned. Forecasts such as red flag warnings (RFWs), the National Fire Danger Rating 

System (NFDRS), the Hot-Dry-Windy Index (HDW), and the Haines Index do not directly 

mitigate wildfires or their impacts, but they do lead to increased awareness of the fire danger, 

thus allowing for precautions to be taken that will allow for the mitigation of wildfires. Such 

precautions would include the banning of outdoor burning and the deployment of 

government resources to the areas most likely to see wildfire ignition or growth. 

 Several variables are currently utilized by meteorologists to dissect the potential fire 

danger on a given day. Primary variables used to present fire weather conditions include 

relative humidity, sustained wind speed, fuel moisture content, vapor pressure deficit (VPD), 

and temperature and are thus included in this study. As with any sector of meteorology, 

meteorologists predicting fire danger rely on more than one variable to create the best 

possible forecasts, with relative humidity and sustained wind speed remaining the primary 

variable combination used for the forecasting of fire weather throughout the public and 

private sectors, as they account for winds and moisture. The warning systems mentioned 

utilize a variety of the variables mentioned to compute their respective values.  

 National Weather Service meteorologists rely on sustained wind speed and relative 

humidity to determine if RFWs are warranted. Sustained wind speed can determine growth 

characteristics, with higher wind speeds amplifying the growth of wildfires (Abatzoglou et al. 
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2018; Keeley and Syphard 2019; Potter and McEvoy 2021). Thus, it is important to consider 

sustained wind speed when determining fire danger. Additionally, low relative humidity 

values aid in fire danger and fire growth. For example, recent research on wildfire activity in 

the Klamath Mountains of California shows that the severity of wildfires is high when the 

average relative humidity is below 35% (Estes et al. 2017).  

 The Haines Index is a simplistic value on a scale of one to six that describes the fire 

danger. This is done using air temperature and dew point temperature values at various levels 

of the lower atmosphere depending on geographical location. The HDW Index is composed 

of VPD and wind speed to describe the potential fire danger (Srock et al. 2018), while the 

NFDRS forecasts utilize fuel moisture content values, among other variables. The products 

noted represent a wide array of variables that may affect wildfire growth. 

 Using a combination of variables when forecasting fire danger allows for multiple 

meteorological factors to be accounted for that affect fire weather, thus increasing the 

accuracy of the forecasts. This is particularly important when issuing products like RFWs, 

with recent research having found that RFWs issued by National Weather Service offices in 

the Pacific Northwest have a high skill (Clark et al. 2020), but improvements can always be 

made. For example, Clark et al. (2020) notes that the performance rate of RFWs in the 

Pacific Northwest was higher for lightning-induced wildfires than human-induced ones, 

resulting in an area under which RFW forecast could be improved. Regarding NFDRS 

forecasts, fuel moisture content values are relied upon to make such forecasts; however, they 

use interpolated data and are not easily run, thus indicating another area in which fire 

forecasts can be improved. The benefits of the Haines Index have been scrutinized by several 
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voices within the wildfire community (Potter 2018; Srock et al. 2018), while the HDW index 

relies solely on atmospheric variable data and does not include fuel moisture data. The 

warning systems that have been developed provide vital information to meteorologists 

regarding the forecasting of fire weather danger, with improvements allowing for more 

precise forecasts to be developed. 

 The overall main purpose of this study is to determine what variable combinations using 

a variety of candidates best represent the daily danger represented by the acreage growth of 

wildfires. As mentioned, wildfire danger warning systems use a variety of variables, both 

meteorological and fuel related. Both types, as well as topographical variables, are used in 

this study so as to consider variable combinations that are not solely relied upon on variable 

type. Related to this is the desire to determine the general characteristics of the average daily 

acreage growth rates as the variable combination values change. Additionally, ascertaining 

knowledge of the average vertical profile soundings seen with specific variable combination 

values is a purpose of this study as well. Using average daily acreage growth as the primary 

fire variable is important for a multitude of reasons, such as the difficulty faced by 

firefighters and other government agencies to respond to and mitigate the impacts of 

wildfires when rapid growth rates are seen. 

 Table 1 shows the candidate variables used in this study, as well as their units and the 

specific variable type (surface meteorological, vertical profile meteorological, or 

topographic). The variables utilized in this study were chosen because of their inclusion in 

developed and currently operational products used by the National Weather Service and other 

government agencies and their noted impact on wildfire growth, with many of these  
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TABLE 1. Variables utilized in this study, the units of the variables, and the type of variable 
(surface meteorological, vertical profile meteorological, or topographic). 

Variables Tested Units Variable Type 
Daily mean Temperature °C Surface Meteorological 

Daily mean Relative Humidity (RH) % Surface Meteorological 
Daily mean Vapor Pressure Deficit (VPD) kPa Surface Meteorological 
Fuel Moisture Content – DFM 100-hour % Fuel 

Fuel Moisture Content – DFM 1000-hour % Fuel 
Daily mean Sustained Wind Speed mph Surface Meteorological 
Mean Precipitation Past 125 Days mm/day Surface Meteorological 

Daily mean Saturation Vapor Pressure kPa Surface Meteorological 
Daily mean Vapor Pressure kPa Surface Meteorological 

Slope % Topographic 
Aspect degrees Topographic 

Elevation meters Topographic 
Daily mean Planetary Boundary Layer Height meters above ground level (AGL) Vertical Profile Meteorological 

Daily mean Haines Index  n/a Vertical Profile Meteorological 
Daily mean Horizontal Wind Speed 300 meters AGL mph Vertical Profile Meteorological 

Daily mean Vertical Wind Speed 300 meters AGL mph Vertical Profile Meteorological 
Daily mean Turbulent Kinetic Energy (TKE) 50 meters AGL m2 s-2 Vertical Profile Meteorological 

 

candidate variables changing due to anthropogenic climate change. As these trends are 

realized, the issuance of products such as RFWs and the NFDRS will be crucial to help 

prevent potential wildfire growth. Numerous studies have noted these trends over the past 

several years, as well as their effects on other variables. 

 Fuel moisture content – a key component of fire weather regimes that measures the 

amount of moisture in vegetation – is expected to decrease. In this study, dead fuel moisture 

(DFM) 100- and 1000-hour content values are used; these correspond to differing vegetation 

radii of one to three inches and three to eight inches, respectively, and the time lag needed for 

the difference in initial moisture content and equilibrium moisture content to reach 63% for a 

fuel particle. Globally, fuel moisture content has been found to be declining over the past 

several decades (Ellis et al. 2022). Within the Western United States, projections indicate that 

DFM 100-hour values will decrease across much of the region in the coming decades; 

however, there is disagreement regarding this trend among areas within California (Gergel et 

al. 2017). Decreasing fuel moisture is important to watch, as fuel moisture has been found to 
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have a significant relationship with fire activity, with long periods of low fuel moisture 

increasing fire activity (Abatzoglou and Kolden 2013). Regardless of the overall projections 

of DFM in California, fuel moisture itself is affected by such variables as temperature, which 

is expected to continue to rise as we progress into the 21st Century. It has been found that 

these warming temperatures will result in the fuel moisture components for various fuel types 

(surface, duff, and deep organic soils) becoming drier, with a needed corresponding increase 

in precipitation (15%, 10%, and 5% increase for each of the fuels mentioned for each degree 

increase in warming) to offset this trend (Flannigan et al. 2016).  

 Rising temperatures over the past several decades have already been realized, as decadal 

temperature increases of 0.3°C during the autumn months have been found between 1979 and 

2018 (Goss et al. 2020). This coincides with research that states that temperature accounts for 

40.4% of global grid cells that saw a significant increase in Fire Weather Index days that met 

the 95th percentile, thus helping to drive increases in extreme fire weather (Jain et al. 2022). 

Additionally, Williams et al. (2019) found that daytime temperatures during the March-

October timeframe have increased by 1.4°C since the 1970s. Thus, these rises in temperature 

would aid in the decrease of fuel moisture content values. Rising temperatures also have 

noticeable effects on VPD. VPD, which represents the difference in the amount of moisture 

currently in the air and how much moisture the air can hold when saturated, is increased by 

rising temperatures through an increase in saturation vapor pressure. Williams et al. (2019) 

found that 78% of the increase in forested area burned during the summer months in 

California between 1972 and 2018 can be explained by the increase in VPD during the same 

time period. Significant positive trends between 1979 and 2020 in the days that met the 95th 
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VPD percentile criteria occurred in over 45% of the burnable area globally (Jain et al. 2022). 

Concurrently, the evaluation of multiple climate datasets has noted an increase in VPD since 

the 1990s (Yuan et al. 2019).  

 As mentioned, relative humidity, sustained wind speed (some minutes average), fuel 

moisture content, VPD, and temperature are primary variables used to present current fire 

weather conditions, with relative humidity and sustained wind speed remaining the primary 

variable combination used by meteorologists. Here, the RFW matrix currently in use by the 

National Weather Service will be tested using 2kmx2km resolution reanalysis and satellite-

derived fire growth data from 2003 to 2020 in much of California to determine if its 

conventional variable combination (sustained wind speed and relative humidity) is optimal in 

terms of predictive power for extreme wildfire danger, with 136 unique pairwise variable 

combinations tested to determine the most optimal combination. 

 It is also important to understand how average daily acreage growth rates vary as variable 

values shift. Corresponding line plots detailing how average daily acreage growth values 

change based on the percentile values used are created in association with the heatmaps. The 

line plots indicate that the average daily acreage growth rates are nonlinear, which illustrates 

that the most extreme variable values can lead to disproportionately high acreage growth 

rates – something that is not readily communicated in the traditional RFW matrix. Finally, 

sounding profiles are created for each bin within the individual heatmaps (matrices). The 

soundings are created to investigate the vertical profiles of temperature, dew point, and wind 

in order to gain a more complete physical understanding of why different surface variable 

combinations are associated with different levels of daily fire growth. Most studies focus on 
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surface variables, but fire growth is also heavily influenced by the vertical structure of the 

atmosphere – especially stability and momentum aloft that can be transmitted to the surface. 

Vertical profiles are used in the computation of the Haines Index, so exploring the created 

soundings is sensible in this regard. 



 

10 

2. Data and Methods 

 The data utilized in this study contains a variety of different variables and corresponding 

values for each fire day at its respective location between 1 January 2003 and 31 December 

2020. The reanalysis variables within the dataset include all variables except for relative 

humidity, saturation vapor pressure, and vapor pressure. Those three variables were 

calculated based on the reanalysis variables in the dataset. Temperature was converted from 

units of Kelvin to units of degrees Celsius, while the three wind variables (sustained wind 

speed, horizontal wind speed 300 meters above ground level (AGL), and vertical wind speed 

300 meters AGL) were converted from meters per second to miles per hour; this was done to 

convert the units into those more familiar to the operational meteorological community and 

the public.  

 Daily fire growth statistics for each day within the time period were calculated by 

Sonoma Technology (https://www.sonomatech.com/) utilizing data collected by NASA’s 

Terra and Aqua satellites MODIS system. The National Center for Atmospheric Research’s 

Weather Research and Forecasting (WRF) model (version 4.1.2) provided the dataset 

reanalysis variables at an hourly rate at a high resolution (2km by 2km). Initial and boundary 

conditions for the WRF reanalysis were provided by the National Centers for Environmental 

Prediction’s Climate Forecast System Reanalysis (CFSR), with CFSR being used for all data 

from 2003 to 2011 and CFSv2 being used for all data after 2011. Nested domains were 

utilized in the reanalysis, with grid resolutions of 18, 6, and 2 kilometers. Parameterizations 

used were as followed: 20mb for model top pressure level; MODIS30s with lakes for land 

use; NoahMP for land surface model; RRTMG for radiation schemes; Thompson for 
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microphysics scheme; MYNN2.5 for planetary boundary layer scheme; MYNN for surface 

layer scheme; Kain-Fritsch for the cumulus scheme in the outer domain; topographic shading 

and slope-dependent radiation for the innermost domain. There was a total of 50 vertical 

levels. Although the WRF reanalysis dataset provided was initially at an hourly time scale 

resolution, the variables were averaged to a daily time scale resolution to coincide with the 

daily time scale resolution of the fire growth data. This amounted to 17,910 individual fire 

days and 8,633 individual fires and their daily growth and meteorological, fuel, and 

topographical reanalysis values making up the dataset.  

 The fuel moisture content variables were calculated at 100-hour and 1000-hour levels. 

This was done by integrating the following ordinary equation, Equation 1, over a time period 

of 3,000 hours preceding the individual fire: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝐸𝐸 −𝑑𝑑
𝑑𝑑𝐿𝐿

 

The following ordinary equation, Equation 2, is used to amend the equilibrium value so as to 

collect an accurate picture of the starting moisture content conditions: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝐸𝐸𝑑𝑑 −𝑑𝑑
𝑑𝑑𝐿𝐿

 𝑖𝑖𝑖𝑖 𝑑𝑑 >  𝐸𝐸𝑑𝑑

0 𝑖𝑖𝑖𝑖 𝐸𝐸𝑑𝑑 ≥ 𝑑𝑑 ≥  𝐸𝐸𝑤𝑤
𝐸𝐸𝑤𝑤 −𝑑𝑑
𝑑𝑑𝐿𝐿

 𝑖𝑖𝑖𝑖 𝑑𝑑 <  𝐸𝐸𝑤𝑤

𝑆𝑆 −𝑑𝑑
𝑇𝑇𝑟𝑟

�1 − 𝑒𝑒
𝑟𝑟−𝑟𝑟0
𝑟𝑟𝑠𝑠 � 𝑖𝑖𝑖𝑖 𝑟𝑟 >  𝑟𝑟0

 

with 𝐸𝐸𝑑𝑑 and 𝐸𝐸𝑤𝑤 represent the drying and wetting equilibrium, respectively. The last condition 

in ordinary differential equation is utilized when it rains. 𝐸𝐸𝑑𝑑 and 𝐸𝐸𝑤𝑤 are represented by the 

following equations, Equation 3 and Equation 4: 
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𝐸𝐸𝑑𝑑(𝑇𝑇) = 0.924 ∗ 𝑅𝑅𝑅𝑅(𝑇𝑇)0.679 + 0.000499 ∗ 𝑒𝑒0.1∗𝑅𝑅𝑅𝑅(𝑇𝑇) + 0.18 ∗ (21.1 + 273.15 − 𝑇𝑇)(1 − 𝑒𝑒−0.115∗𝑅𝑅𝑅𝑅(𝑇𝑇)) 

𝐸𝐸𝑤𝑤(𝑇𝑇) = 0.618 ∗ 𝑅𝑅𝑅𝑅(𝑇𝑇)0.753 + 0.000454 ∗ 𝑒𝑒0.1∗𝑅𝑅𝑅𝑅(𝑇𝑇) + 0.18 ∗ (21.1 + 273.15 − 𝑇𝑇)(1 − 𝑒𝑒−0.115∗𝑅𝑅𝑅𝑅(𝑇𝑇)) 

Using these equations, the DFM 100- and 1000-hour values within the dataset.  

 The provided dataset defines the study area, with portions of Southern California not 

included, as it was excluded from the two-kilometer resolution domain of the WRF 

reanalysis. As such, the southern boundary of the study area is 33.6042°N, which is roughly 

equal in latitude to Laguna Beach, CA. The eastern portion of the study area boundary is 

116.752°W, which runs east of the San Bernardino and Inyo National Forests in California. 

All areas north and west of those boundaries are included in the study area, with the northern 

boundary being the Oregon-California state border. The general location of all the individual 

fires included in the dataset used can be seen in Figure 1. 

 As mentioned, the values for the variables utilized represent a daily average for each 

individual fire growth day. The date, fire identification number, daily acreage growth rate, 

and longitude and latitude coordinates of each fire represent the daily fire statistics, 

calculated using NASA’s MODIS system. The reanalysis weather variables include mean 

daily temperature (°C), mean daily VPD, mean precipitation in the past 125 days (mm/day), 

and mean daily wind speed (mph). DFM in the 100- and 1000-hour intervals (DFM 100-hour 

and DFM 1000-hour) represent the fuel moisture content portion of the dataset. Topographic 

variables include slope, aspect (orientation of the surface), and elevation. Vertical profile 

variables consist of horizontal and vertical wind speed 300 meters AGL, turbulent kinetic 

energy (TKE) 50 meters AGL, and the planetary boundary layer height. The Haines Index 

value for each individual fire on each day is also included in the dataset. Saturation vapor 
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FIG. 1. Individual fires within much of California between 2003 and 

2020. Each red dot represents a specific fire, with 8,633 different fires over 
the period of the dataset (1/1/2003 – 12/31/2020). 

pressure and vapor pressure – two of the aforementioned calculated variables – are used to 

derive relative humidity. Land use type was also included in the dataset using nine different 

categories defined by WRF; these were then resolved to three land types: forest (1), shrub 

(2), and savanna and grassland (3). This totals to 25 different variables within the dataset, 

representing WRF reanalysis output variables, calculated variables, and MODIS fire 

detection data. It should be noted that there are various fire day values missing for the 

vertical profile variables, which has the potential effect of diluting the data. This is likely 

because of missing sounding profiles taken on those days. 
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 Of the 25 variables within the dataset, 17 are used as candidate variables for this study, 

shown in Table 1. The 14 variables that are of the meteorological or fuel type are space and 

time-varying variables, changing daily. The remaining three variables (aspect, topography, 

elevation) are space-only-varying variables, varying by location within the study area. Each 

variable is matched to other 16 variables, resulting in 136 unique pairwise variable 

combinations in total. This enables every possible combination to be tested, including 

combinations between the time- and space-varying variables. We systematically investigate 

how well each pairwise variable combination describes daily wildfire growth in an effort to 

test whether the variables traditionally used in the RFW system are indeed the most useful. 

The variables must be normalized in order to compare them on a standard scale, so 

percentiles (5th, 25th, 50th, 75th, and 95th) are found for each of the 17 variables used where 

percentiles are calculated on variable values at fire locations not over the entire domain.  

 A forced correction is done on the percentile values for the Haines Index; while the 

Haines Index value for a given fire day is not necessarily a round value within the range of 

possible Haines Index values (2-6), the 95th Percentile value initially calculated corresponds 

to the value of 6 – the highest possible Haines Index value. This is changed as the 95th 

Percentile cannot be the highest possible value; therefore, it was forcibly lowered to a 5.99 

value. Each individual fire day and their 17 observed and calculated variables are then 

categorized into six specific bins (<5th Percentile, 5th-25th Percentile, 25th-50th Percentile, 

50th-75th Percentile, 75th-95th Percentile, >95th Percentile) and matched with the bins of 

their corresponding variable combinations. 
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 Pivot tables are created that aggregate the average daily acreage growth values for each 

bin combination within each variable combination (i.e., <5th Percentile Variable A and 25th-

50th Percentile Variable B), resulting in 36 values being calculated. Following this, heatmaps 

displaying the average daily acreage growth for each of the 36 bins of each variable 

combination are created. The idea is that if a given variable combination is useful for 

predicting daily wildfire growth, then observed growth should change more-or-less 

monotonically with joint changes in the variables. Additional heatmaps displaying the 

number of fire days each bin criteria met are also created, allowing for a determination to be 

made on if the average daily acreage growth values can be trusted based on the number of 

fire days used in each calculation (around 25-30 days minimum). 

 136 heatmaps (6-by-6 matrices) displaying the average daily acreage growth rates are 

created. The heatmaps add historical context by providing the average daily acreage growth 

values that met specific variable percentile values. This creates a reference system that allows 

for future general estimations of the average daily acreage growth rates that may be seen on a 

given day that meets the variable combination percentile values. The ranking system 

incorporates value trends in the columns, rows, and diagonals of the heatmap, and values a 

convergence of the average daily acreage growth values to a corner. For example, a heatmap 

with values converging to the top-left corner (bin) would have its column values increase 

from bottom to top, its row values increase from right to left, its diagonal values increase 

from bottom-right to top-left, and its highest average daily acreage growth value occupying 

the top-left corner. This convergence is desired, as the corresponding corner percentiles 

represent the variable values that would lead to the most significant fire danger. Thus, having 
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this convergence would affirm accepted ideas regarding conditions leading to dangerous fire 

conditions (i.e., low relative humidity and high wind speeds leading to explosive growth). 

 The ranking system is designed to check each corner of the heatmap for the convergence 

of average daily acreage growth rates. A value of one is given to each column, row, and 

diagonal bin that increases in value. If a bin increase is followed by a bin decrease, and then 

followed by another bin increase, values of one, zero, and one would be assigned, 

respectively. The beginning bins in each row, column, and diagonal furthest from the corner 

being studied are not considered, as there is no prior value to base an increase or decrease on; 

in the example noted above, the bottommost column bins, rightmost row bins, and the 

bottom-right diagonal bin would not be considered and thus assigned a value of zero. The 

values are then summed, with an added value of three assigned if the highest average daily 

acreage growth value occupies the corner the values are converging towards. This added 

weight is included to emphasize the importance of the highest average daily acreage growth 

rate occupying one of the four corners. The highest possible value is 68, with no variable 

combinations in this study reaching that value. Heatmaps are not discriminated against 

regarding which corner they converge to; as mentioned, the system created accounts for 

convergence to either of the four corners, checking each one and selecting the convergence 

that has the highest sum value. A list containing the total summed value for each heatmap is 

then created. The scoring system rules are shown in Table 2. 

 An example heatmap is shown in Table 3. The values from the heatmap rows and 

columns are extracted and plotted – hereafter referred to as line plots. Two line plots are 

created for each variable combination, with the average daily acreage growth rates 
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TABLE 2. The rules for the ranking system. 
Ranking Rules 

The first bin of the row, column, and diagonal furthest from the corner being considered is assigned a value of 0 
because of no prior average daily acreage growth value to base it off. 

If each subsequent bin in each row, column, and diagonal sees an increase in average acreage value, a value of 1 is 
assigned. 

If a bin increase is followed by a bin decrease, the bin with the decreased value is assigned a value of 0. 
If the highest acreage growth value is in one of the four corners of the matrix, an added value of 3 is assigned. 

Ideally, the corner bin would have the highest acreage growth value, but this is not always the case. 
Because value convergence can occur at one of four corners, the system is designed to check all possible 

combinations of the row, column, and diagonal reads (i.e., left to right, bottom to top, etc.) and the highest possible 
summed value will be taken. This ensures that the ranking system accurately ranks the heatmaps and does not 

disregard any possible convergence. 
The highest possible score value is 68. 

 

representing the y-axis. For each line plot, one of the variable’s percentile bins within the 

combination being considered is used as the x-axis, while the other variable’s percentile bins 

are plotted individually. The objective of these plots is to extract general characteristics 

regarding the change in the average daily acreage growth rates as the variable values change, 

thus gaining insight into how the variable combination values influence the growth rates. 

 Vertical profile data that contains various variables such as temperature, dewpoint 

temperature, pressure, and u and v wind values are used to create sounding profiles for the 

highest average daily acreage corner bin and opposite corner bin in the individual heatmaps. 

This vertical profile data aligns with the fire dataset referenced previously, thus allowing for 

the matching vertical profile data to be selected for every fire day in each bin. The soundings 

are plotted with air temperature, dewpoint temperature, parcel profile, and wind barbs. The 

vertical profile data is averaged for each bin using the fire days that met the criteria of the 

bin. The standard dry adiabats, moist adiabats, and mixing ratio lines are plotted on the  
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TABLE 3. A heatmap mockup. The plot shows simulated average daily acreage growth rates 
(in acres), as well as the ranking system for it. The three numbers below the average daily 
acreage growth rate represent the three different methods for determining the total value of 
the heatmap. The values are then summed. 

9547 Acres 
 

1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 

1𝑅𝑅𝐷𝐷𝑤𝑤 
3𝑅𝑅𝐷𝐷𝐷𝐷ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑉𝑉𝐷𝐷𝐷𝐷𝐶𝐶𝑒𝑒 

6623 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

2005 Acres 
 

0𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

1250 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

798 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

425 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
0𝑅𝑅𝐷𝐷𝑤𝑤 

7652 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

5571 Acres 
 

1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 

1𝑅𝑅𝐷𝐷𝑤𝑤 

2069 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

1101 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

731 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

402 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
0𝑅𝑅𝐷𝐷𝑤𝑤 

3100 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

2551 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

1614 Acres 
 

1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 

1𝑅𝑅𝐷𝐷𝑤𝑤 

897 Acres 
 

0𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

683 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

377 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
0𝑅𝑅𝐷𝐷𝑤𝑤 

1341 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

1114 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

865 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
0𝑅𝑅𝐷𝐷𝑤𝑤 

907 Acres 
 

1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 

1𝑅𝑅𝐷𝐷𝑤𝑤 

505 Acres 
 

0𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

325 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
0𝑅𝑅𝐷𝐷𝑤𝑤 

755 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
0𝑅𝑅𝐷𝐷𝑤𝑤 

765 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

712 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

505 Acres 
 

1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
0𝑅𝑅𝐷𝐷𝑤𝑤 

525 Acres 
 

1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
1𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 

1𝑅𝑅𝐷𝐷𝑤𝑤 

207 Acres 
 

0𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
0𝑅𝑅𝐷𝐷𝑤𝑤 

406 Acres 
 

0𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
0𝑅𝑅𝐷𝐷𝑤𝑤 

425 Acres 
 

0𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

398 Acres 
 

0𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

331 Acres 
 

0𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

298 Acres 
 

0𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 
1𝑅𝑅𝐷𝐷𝑤𝑤 

267 Acres 
 

0𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
0𝐶𝐶𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶𝐷𝐷 

0𝑅𝑅𝐷𝐷𝑤𝑤 
 

soundings. The lowest pressure possibly plotted varies by variable combination but is around 

20 millibars for each combination; however, for simplicity, all data points below 100 

millibars are disregarded. 
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3. Results and Discussions 

a. Heatmap results 

 For simplicity, the paper will focus on five of the top six ranked heatmaps and their 

related soundings, as well as notable variable combinations throughout the rankings. The one 

exception within the top six that will not be discussed or shown is sustained wind speed and 

DFM 1000-hour; the reason for this is the physical and visual similarities between DFM 100-

hour and DFM 1000-hour. By focusing on five of the top six, the most optimal variable 

combinations will be presented, allowing for more focus to be given to these combinations. 

The top six variable combinations (including sustained wind speed and DFM 1000-hour) by 

summed value are shown in Table 4. 

TABLE 4. The top five variable combination rankings are shown here. The total score (out of 
68 possible points) and the score percentage (score

68
∗ 100) are also shown. The corresponding 

figure number is included as a reference.   
Ranking Variable Combination Figure Score (out of 68 possible 

points) 
Score Percentage 

First RH vs. TKE 50m Fig. 2 60/68 88.23% 
Second Sustained WS vs. DFM 100-hour Fig. 3 59/68 86.76% 

Tied-Third Sustained WS vs. DFM 1000-hour N/A 57/68 83.82% 
Tied-Third Sustained WS vs. RH Fig. 4 57/68 83.82% 
Tied-Fifth DFM 1000-hour vs. TKE 50m Fig. 5 55/68 80.88% 
Tied-Fifth Vapor Pressure vs. TKE 50m Fig. 6 55/68 80.88% 

 

 The following five figures are the resultant heatmaps for each of those variable 

combinations. The convergence of the average daily acreage growth values to a specific 

corner can clearly be seen with these heatmaps.  

 Perhaps the most surprising result of this study was the emergence of TKE 50 meters 

AGL as a viable variable in predicting large daily acreage growth of wildfires. TKE is 

defined as the amount of energy in turbulent eddies generated by wind shear and buoyancy 
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effects (Heilman and Bian 2010). Alternatively, TKE acts as a measure of the amount of 

kinetic energy within turbulent flows. Limited research has been done on the effects of TKE 

on wildfires, but it is not without precedence. Heilman and Bian (2010) have researched its 

effects – combined with the Haines Index – on wildfires within the Great Lakes and New 

England regions of the United States and noted that high wind gusts and variable wind 

regimes are associated with high TKE values near the surface. Therefore, high TKE values 

could aid in the production of volatile wildfire environments that lead to the explosive 

growth of wildfires because of the associated winds that accompany them, with fire growth 

being exacerbated further by dry conditions. In their study, Heilman and Bian (2010) found 

that over 37% of large wildfires that occurred in the New England and Great Lakes regions 

between 2005 and 2007 had near-surface TKE values in excess of 3 m2 s-2. In this study, the 

95th percentile value for TKE 50 meters AGL was about 2.8 m2 s-2, closely mirroring 

Heilman and Bian’s results. The TKE 50 meters AGL and relative humidity heatmap is 

shown in Fig. 2. TKE 50 meters AGL and relative humidity saw a total score of 60 out of 68, 

resulting in a score percentage of 88.2%. The highest average daily acreage growth values 

corresponded with relative humidity values that fell below 25% (25th percentile value).  

 Low relative humidity values being a driver in wildfire activity and wildfire danger falls 

in line with past research (Brey et al. 2018; Dong et al. 2021; Jain et al. 2022; Williams et al. 

2019). However, it is surprising to see that, overall, in the top rankings, relative humidity 

outperforms VPD. This goes against recent work that establishes VPD as a prime moisture 

variable to use regarding potential area burned (Seager et al. 2015; Williams et al. 2015). 102 

of the 17,871 fire days considered (TKE values were missing for 39 days) were categorized  
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FIG. 2. The heatmap for Relative Humidity and TKE 50m AGL. In Fig. 2a, a 

convergence of values to the top-right corner can be seen in this heatmap, indicating a clear 
relationship between increasing average daily acreage growth and decreasing RH values and 
increasing TKE values. Fig. 2b shows the number of individual fire days that met the 
Relative Humidity and TKE 50m AGL criteria.  

in the top-right bin (<5th Percentile RH, >95th Percentile TKE 50 meters AGL), resulting in 

a total summed-area burned of over 835,000 acres, representing the largest daily acreage 

growth average in the heatmap at 8,187 acres. 

 Much like with TKE 50 meters AGL, sustained wind speed appeared multiple times in 

the top rankings. This confirms its utility as a variable highly predictive of fire danger. 

Sustained wind speed and DFM 100-hour (Fig. 3) had a total score of 59 out of 68 - falling 

just below relative humidity and TKE - for a score percentage of 86.8%. Research has found 

that high wind speeds and low DFM 100-hour values coincide with large human-ignited 

wildfires across the Western United States, with nearly a third of the large wildfires  
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FIG. 3. The heatmap for Sustained Wind Speed and DFM 100-hour. In this case, a 

convergence to the bottom-right corner can clearly be seen in this heatmap (Fig. 3a). 

coinciding with wind speeds above 5 m/s (11 mph) (Abatzoglou et al. 2018). Similar to the 

TKE values, this closely mirrors the corresponding sustained wind speed value for the 

highest average daily acreage growth rate in the heatmap, which is 10.7 mph, or just below 5 

m/s. Sustained wind speed and DFM 1000-hour had a total score of 57 out of 68, for a score 

percentage of 83.8%, but will not be discussed further in this paper due to the similarities, 

both physically and visually, between sustained wind speed and DFM 1000-hour and 

sustained wind speed and DFM 100-hour, as previously mentioned. 

 The highest average acreage growth values for the sustained wind speed and DFM 100-

hour combination occurred in the bottom-left bins of Figure 2 (<5th Percentile DFM 100, 

>95th Percentile sustained wind speed), corresponding to a DFM 100-hour value of less than 

6.4%, with sustained wind speeds of 10.7 mph, as mentioned above. For sustained wind 
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speed and DFM 100-hour, 26 out of 17,910 fire days were categorized in the bottom-left bin, 

resulting in a total summed-area burned of over 205,000 acres, with an average of 7,901 

acres burned per day. Sustained wind speed and DFM 1000-hour saw 34 out of 17,910 fire 

days categorized in the bottom-left bin for an average of 5,901 acres burned daily and a total 

summed-area burned of over 200,000 acres.  

 The most common variable combination used to distribute fire danger information to the 

public, sustained wind speed and relative humidity (Fig. 4), tied for third in the rankings with 

sustained wind speed and DFM 1000-hour. Such combinations must be particularly 

monitored in Northern and Southern California, where Diablo and Santa Ana wind events 

occur, respectively. Like the sustained wind speed and DFM 100-hour combination, the 

highest daily acreage growth average occurred in the bottom-left bin of the heatmap. This 

corresponded to percentile values of less than 13.7% relative humidity (<5th Percentile) and 

the aforementioned wind speed values of greater than 10.7 miles per hour (>95th Percentile). 

111 out of 17,910 fire days met these criteria, resulting in an average daily acreage growth 

value of 9,483 acres and a total summed acreage growth of over 1,000,000 acres.  

 DFM 1000-hour and TKE 50 meters AGL tied for fifth with vapor pressure and TKE 50 

meters AGL. Both variable combinations had a total score of 55 out of 68, resulting in a 

percentage score of 80.9%. The values converged to the top-right portion of the heatmaps, 

with the top-right bin seeing the highest average daily acreage growth value at 9,664 acres 

for DFM 1000-hour and TKE 50 meters AGL (seen in Fig. 5), while vapor pressure and TKE 

50 meters AGL had a highest average daily acreage growth value of 7,334 acres. These bins 

correspond to the greater than 95th percentile (values greater than 2.8 m2 s-2) for TKE 50  
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FIG. 4. The heatmap for Sustained Wind Speed and Relative Humidity. Another example 

of a strong convergence to a corner (bottom-right) can be seen in Fig. 4a, indicating another 
strong relationship between increasing average daily acreage growth values and decreasing 
Relative Humidity and increasing Sustained Wind Speed values. 

meters AGL and less than 5th percentile for DFM 1000-hour (values less than 8.1%) and 

vapor pressure (values less than 0.26 kPa). The DFM 1000-hour 95th percentile value agrees 

with previous research done by Brey et al. (2018), who found that wildfires in Mediterranean 

California ecoregions that occurred between 1992 and 2015 predominantly had DFM 1000-

hour values between roughly 7% and 15%. DFM 1000-hour values have seen significant 

declines over the past several decades across California and the Western U.S. as a whole due 

to climate change (Liu 2017; Williams et al. 2019), so a continuing trend would aid in 

increasing the fire danger in the state. Similar to the top-ranked combination of relative 

humidity and TKE 50 meters AGL, only 17,871 days were considered in both combinations 

due to the missing TKE 50 meters AGL data (39 days). As such, 21 out of the 17,871 days  
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FIG. 5. The heatmap for DFM 1000-hour and TKE 50m AGL. As with Fig. 2, this 

heatmap converges to the top-right corner (Fig. 5a). This is the second of two top five 
rankings, and the second of three in the top six, that involve TKE 50m AGL, which suggests 
that more emphasis should be placed on it when concerning the possibility of a high daily 
acreage growth rate. 

considered met the criteria of the top-right bin for DFM 1000-hour and TKE 50 meters AGL, 

while 80 of the 17,871 days met the criteria of the top-right bin for vapor pressure and TKE 

50 meters AGL. This resulted in a total summed area burned of just under 203,000 and 

590,000 acres, respectively. The heatmap for vapor pressure and TKE 50 meters AGL can be 

seen in Fig. 6. 

b. Line plot trends of average daily acreage growth rates 

 While the heatmaps show how daily average growth depends on the joint conditions of 

two variables, they also tell another story. The average daily acreage growth rates in each bin 

do not increase (decrease) in a linear fashion moving towards (away from) the highest growth  
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FIG. 6. The heatmap for Vapor Pressure and TKE 50m AGL. As with the other two 

heatmaps involving TKE 50m AGL, the values converge to the top-right corner (Fig. 6a). 
This marks the third of six variable combinations in the rankings discussed in this paper that 
involve TKE 50m AGL. 

corner. This indicates that the average daily acreage growth rates are nonlinear and thus 

increase (decrease) more in accordance with a power law towards (away from) the 

percentiles associated with high (low) average daily acreage growth. The following figures 

show these trends (with associated standard errors) for each of the five combinations 

discussed previously. Each figure contains two plots, with one plot showing the relationships 

in average daily acreage growth rates for one part of the variable combination as the 

percentiles increase for the second part of the variable combination. For example, Fig. 7a 

shows how the average daily acreage growth rates change for all TKE 50m AGL percentile 

conditions as relative humidity percentile conditions are increased, while Fig. 7b shows the  
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FIG. 7. The Relative Humidity and TKE 50m AGL plot showing the overall trends in 

average daily acreage growth rates for (a) TKE 50m AGL and (b) Relative Humidity at each 
percentile of the other variable not plotted. In Fig. 7a, we can clearly see an exponential 
decrease in average daily acreage growth rates across all TKE 50m AGL percentiles as 
Relative Humidity conditions move towards the higher percentile conditions (i.e., higher 
Relative Humidity values). Fig. 7b trends are more linear in nature, but still show dramatic 
increases in average daily acreage growth rate values across several Relative Humidity 
percentiles as TKE 50m AGL percentile conditions increase. 

same thing, but with the variables reversed. Standard errors are also plotted to indicate the 

uncertainty for each average daily acreage growth rate value within the plot. 

 Each plot indicates different relationships; however, there are similarities between the 

different figures. Fig. 7a, which details the growth rate trends for each of the TKE 50m AGL 

percentiles as the RH percentile conditions increase, shows a clear power law-like change 

throughout in average daily acreage growth rates. Fig. 7b, which flips the variables, shows a 

more linear-like trend; however, there are jumps in the average daily acreage growth rates as 

the conditions become more conducive for wildfires. The standard errors are quite large in 
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the more extreme range of conditions in Figs. 7a and 7b, reflecting the smaller number of 

samples from these conditions. Nevertheless, the figures overall show a clear point where the 

average daily acreage growth rates are highest and lowest. We find that RH needs to be low 

enough (below the 25th percentile) for a relationship between TKE and fire growth to emerge. 

If RH is not low enough, there is no relationship between TKE and fire growth. On the other 

hand, TKE does not exert the same controls on the relationship between RH and fire growth. 

No matter how low TKE is, there is still a relationship between RH and fire growth. 

 Similar results can be seen in Figs. 8 and 9, which detail the trends for the sustained wind 

speed and DFM 100-hour combination and sustained wind speed and relative humidity 

combination, respectively. Power law-like decreases (increases) in the average daily acreage 

growth rates are visible in Figs. 8b and 9b as the percentile conditions for moisture variables 

plotted in each (Fig. 8b: DFM 100-hour; Fig. 9b: relative humidity) increases (decreases). 

The trends are more linear in Figs. 8a and 9a, but substantial increases in the average daily 

acreage growth rates are noted as the percentile conditions increase. 

 It is also worth mentioning the flatline average daily acreage growth rates seen in the 

figures discussed so far. For example, in Fig. 8a, the average daily acreage growth rates for 

DFM 100-hour conditions in the 75th or greater percentiles do not increase even when 

moving into sustained wind speed conditions more conducive to fire growth, indicating that 

the available moisture content prohibits large acreage growth rates from being seen. Growth 

rates like this can be seen in all the figures discussed in this section, showing that while one 

variable may have extreme conditions that aid in fire growth, the opposing variables’ 

conditions are adequate enough to offset this. This is a particularly interesting finding, as it 
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FIG. 8. The plot for the Sustained Wind Speed and DFM 100-hour combination. Fig. 8a 

details the trends in average daily acreage growth rates for the DFM 100-hour percentile 
conditions as the Sustained Wind Speed percentile conditions increase, with Fig. 8a showing 
the daily acreage growth rates for Sustained Wind Speed percentile conditions as DFM 100-
hour percentile conditions increase. Similar to Fig. 7, noted large increases in the average 
daily acreage growth rates at various points in both plots can be seen, indicating nonlinear-
like trends in the growth rates as conditions change.  

indicates that some variables may play a more important role in determining the likelihood of 

large acreage growth rates occurring than others. This is a logical explanation; for example, 

within Fig. 9, the high DFM 100-hour values would serve to counteract the high sustained 

wind speed values seen concurrently, as fuels that contain more moisture are difficult to 

ignite. This negates the high sustained wind speeds, as the likelihood of a fire igniting for the 

sustained wind speeds to fan and increase the size of decrease under wetter fuel conditions. 

 



 

30 

 
FIG. 9. The plot for the Sustained Wind Speed and Relative Humidity combination. The 

figure mirrors that of Fig. 8, with Fig 9a showing the average daily acreage growth rate 
trends for Relative Humidity percentile conditions as Sustained Wind Speed percentile 
conditions increase. Fig 9b shows the same, but with the variables flipped. Fig. 9b is more 
exponential-like regarding average daily acreage growth rate trends, but substantial increases 
can be seen in Fig. 9a in the average daily acreage growth rates as more conducive wildfire 
conditions occur. 

 DFM 1000-hour and TKE 50m AGL is shown in Fig. 10. Much like with Fig. 7a, Fig. 

10a shows power law-like qualities regarding the decrease (increase) in average daily acreage 

growth values for the TKE 50m AGL percentile conditions as the DFM 1000-hour percentile 

conditions increase (decrease), whereas the value changes in Fig. 10b have more linear-like 

qualities except for the large increases in the higher percentile conditions of DFM 1000-hour 

as TKE 50m AGL percentile conditions increase, similar to Fig. 7b. Of the line plots shown, 

the line plot for vapor pressure and TKE 50 meters AGL, shown in Fig. 11, is the most 

different. In Fig. 11a, most of the average daily acreage growth values for the percentile  
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FIG. 10. The plot for the DFM 1000-hour and TKE 50m AGL combination. Fig. 10 is 

similar to Fig. 7, with Fig. 10a showing a dramatic, exponential-like decrease (increase) in 
average daily acreage growth for TKE 50m AGL percentile conditions as DFM 1000-hour 
percentile conditions increase (decrease). Fig. 10b, which is more linear-like than its 
counterpart in Fig. 10a, still shows non-linear qualities, such as the marked increases 
(decreases) in average daily acreage growth for DFM 1000-hour percentile conditions as 
TKE 50m AGL percentile conditions increase (decrease). 

conditions of TKE 50m AGL do not change much as the vapor pressure percentile conditions 

increase or decrease, with the notable exception of the TKE 50m AGL >95th Percentile. 

Conversely in Fig. 11b, while the average daily acreage growth values of the vapor pressure 

percentile conditions increase (decrease) as the TKE 50m AGL percentiles increase 

(decrease), the value changes are virtually uniform throughout most of the vapor pressure 

percentile conditions except towards the higher TKE 50m AGL percentiles. These 

differences are important to note. It is likely that the flatline growth seen in Fig. 11a is due to 

the counterbalance act vapor pressure and TKE 50m AGL play. In Fig. 11b, the slow  
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FIG. 11. The plot for the Vapor Pressure and TKE 50m AGL combination. Fig. 11 is 

more varied than the other plots. Fig. 11a shows flatline average daily acreage growth rates 
for several of the TKE 50m AGL percentile conditions as Vapor Pressure percentile 
conditions increase or decrease, with the only main exception being the >95th Percentile for 
TKE 50m AGL. Fig. 11b, while showing increases (decreases) in average daily acreage 
growth for Vapor Pressure percentile conditions as TKE 50m AGL percentile conditions 
increase (decrease), are nearly uniform throughout, with the average daily acreage growth 
values for the Vapor Pressure percentile conditions increasing at a nearly constant rate 
throughout all six percentile lines of TKE 50m AGL until the last few percentiles. 

increase in the average daily acreage growth values for vapor pressure is almost uniform until 

the end, when the values see a large jump at the high range of the TKE 50m AGL percentile 

conditions. This could be attributed to a number of things. The higher range of the vapor 

pressure percentile values is likely counteracted by the lower range TKE 50m AGL 

percentile values, until the 50th-75th percentile range of TKE 50m AGL when it appears the 

TKE 50m AGL values aid in overcoming the high vapor pressure values to produce higher 
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average daily acreage growth values or increase the average daily acreage growth values 

together.   

c. Corresponding sounding results 

 Corresponding sounding profiles were created for each bin of the heatmaps. Only the 

highest acreage growth value corner bin and corresponding opposite corner bin charts will be 

shown in this paper. While the opposite corner bin might not necessarily have the lowest 

daily acreage growth value, it allows for a comprehensive look at the conditions seen on days 

that meet the opposite criteria of the highest daily acreage growth bin days. Each of the 

soundings is denoted by the variable combination and which corner (highest daily acreage 

growth, lower daily acreage growth) is plotted in the figure descriptions. As mentioned 

previously, the vertical profile data was selected for each of the days that met the bin criteria 

and then averaged. From the averaged data, mean-sounding profiles are plotted. The 

averaged data also allows for a crude understanding of the mean topographic elevation and 

the general area within the state the fire days occurred. It should be noted that the daily 

values themselves - before being averaged - represent the mean daily values, not the values at 

the daily peak fire growth. Likely because of this and directional cancellation within 

averaging, wind speed values are lower than they would be if they corresponded to values at 

the time of largest growth.  

 The green, red, and black lines on the sounding represent the dewpoint temperature, air 

temperature, and parcel profile, respectively. Many similarities can be observed throughout 

both the high- and low-growth corner sounding profiles, indicating general observations that 

should be looked for on sounding profiles on a forecasted dangerous fire weather day. The 
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high-growth corner sounding profiles feature large dewpoint depressions, warm-to-hot air 

temperatures, and high lifted condensation level (LCL) (denoted as the black dot on the 

sounding) pressure heights. Both the large dewpoint depressions and high LCL pressure 

heights are indicative of a dry atmospheric environment, which is to be expected on a 

dangerous fire weather day. Conversely, the low-growth corner sounding profiles reveal 

cooler, moister environments, with cooler air temperatures, small dewpoint depressions, low 

LCL pressure heights, and a lack of surface winds being present. As with the high-growth 

corner sounding profiles, this is expected. Such sounding profiles indicate an atmospheric 

environment much more hostile to fire growth than its high-growth corner counterparts. 

 The noted characteristics mentioned above can be clearly seen throughout the sounding 

profiles. For example, in Fig. 12, representing the relative humidity and TKE 50 meters AGL 

variable combination, a large dewpoint depression can be seen in Fig. 12a, with a value of 

near 30°C. Contrarily, in Fig. 12b, the dewpoint depression is much smaller, at only a few 

degrees Celsius. Similar sights can be seen in the high- and low-growth corner sounding 

profiles of the other variable combinations. Regarding the sustained wind speed and DFM 

100-hour combination (Fig. 13), the dewpoint depression for the high-growth corner 

sounding profile in Fig. 13a is near 30°C, compared to the much smaller dewpoint depression 

seen in Fig. 13b in relation to the low-growth corner sounding. 

 Similarly, the difference between the LCL pressure heights in low- and high-growth 

corner soundings of the variable combinations is notable. Using the American 

Meteorological Society’s (2012) definition of the LCL, it is the atmospheric level where, 

when lifted dry-adiabatically, a moist parcel of air becomes saturated. It offers a rough  
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FIG. 12. Skew-T Log P charts for the highest daily acreage growth bin (Fig. 12a) in the 

Relative Humidity and TKE 50m AGL heatmap and the opposite corner (Fig. 12b) in the 
heatmap. A large dewpoint depression, high LCL pressure height, warm-to-hot surface 
temperature, and northeasterly surface winds can be seen in Fig. 12a while a smaller 
dewpoint depression, lower LCL pressure height, cooler surface temperature, and no 
surface winds can be seen in Fig. 12b. 

 
FIG. 13. The soundings for Sustained Wind Speed and DFM 100-hour. Moisture is 

lacking in the Skew-T Log P chart for the highest daily acreage growth bin (Fig. 13a), 
which can be seen by the large dewpoint depression and the high LCL pressure height. 
Conversely, the lower daily acreage growth in (Fig. 13b) has a lower dewpoint 
depression and LCL pressure height, indicative of more moisture available. Fig. 13a has a 
warm-to-hot surface temperature and available surface winds (out of the westerly 
direction), compared to the cooler surface temperature and lack of surface winds seen in 
Fig. 13b. 
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estimation of the height of the cloud base. Within the soundings, high-growth corner profiles 

see LCL pressure heights that are indicative of a dry atmosphere. Fig. 14 denotes the 

sounding profiles for sustained wind speed and relative humidity. In the high-growth corner 

sounding profile of Fig. 14a, the LCL pressure height is near 575 hPa, compared to the LCL 

pressure height of just above 900 hPa seen in the low-growth sounding profile of Fib. 14b. In 

the sounding profiles for the DFM 1000-hour and TKE 50 meters AGL variable combination 

(Fig. 15), the LCL pressure heights for the high- and low-growth corner sounding profiles 

(Fig. 15a and Fig. 15b, respectively) are similar to the other corresponding high-growth 

corner sounding profiles, with values of near 600 hPa and 800 hPa, respectively. 

 
FIG. 14. The soundings for Sustained Wind Speed and Relative Humidity. Note, again, 

the large dewpoint depressions and large LCL pressure heights in the highest daily acreage 
growth bin (Fig. 14a), showing a dry environment. Fig. 14b is more moisture laden, with 
cooler surface air temperatures as well. Surface winds are out of the northeasterly direction 
in Fig. 14a, with more directional shear throughout the surface- to mid-level areas of the 
sounding. Conversely, there are no surface winds in the lower daily acreage growth bin 
chart (Fig. 14b). 
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FIG. 15. The soundings for DFM 1000-hour and TKE 50m AGL. As with the other 

variable combinations, a large dewpoint depression and high LCL pressure height are 
visible in the chart for the highest daily acreage growth value (Fig. 15a), whereas the 
dewpoint depression is smaller and LCL pressure height is lower in the chart for the 
opposite corner (Fig. 15b). Additionally, Fig. 15a has a higher surface air temperature 
than Fig. 15b, with surface winds out of the northeasterly direction in Fig. 15a and surface 
winds nonexistent in Fig. 15b. 

 The surface air and dewpoint temperatures and LCL pressure heights in both the high-

growth corner and low-growth corner soundings vary but display the characteristics of high 

and low acreage growth days described previously. Surface air and dewpoint temperatures 

present on the high-growth corner sounding profiles range from 20°C to 26°C and -14°C to 

0°C, respectively, with the notable exception of the surface air temperature in the high-

growth corner sounding profile of the vapor pressure and TKE 50 meters AGL variable 

combination represented in Fig. 16a. The surface temperature is much lower in this sounding, 

with a value of just above 10°C; the surface air temperature in the low-growth corner 

sounding profile presented in Fig. 16b is warmer than that of its high-growth corner sounding 

counterpart. Even still, the dewpoint depression in Fig. 16a is large, signaling similar 

characteristics to its counterparts in Figs. 12a-15a. LCL pressure heights throughout  
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FIG. 16. The soundings for Vapor Pressure and TKE 50m AGL. The consistent large 

dewpoint depression and high LCL pressure height for high-growth corner soundings are 
seen in the Vapor Pressure and TKE 50m AGL high-growth corner sounding (Fig. 16a). 
The dewpoint depression and LCL pressure height for the low-growth corner sounding 
(Fig. 16b) is much smaller, consistent with the dewpoint depressions and LCL pressure 
heights seen in Figs. 12b-15b. The air and dewpoint temperatures in the high-growth corner 
sounding are the lowest among the high-growth corner soundings discussed. This data, 
along with the northeasterly direction winds at the surface- and low-level areas, indicate a 
fire environment likely seen in the late fall months when temperatures begin to decrease 
and wind events such as Diablo or Santa Ana winds are more prevalent. 

Figs. 12a-16a range from about 600 millibars to 550 millibars. Again, the resultant dewpoint 

depression and high LCL pressure heights indicate the overall dryness of the atmospheric 

profile. Regarding the low-growth corner soundings, the surface air and dewpoint 

temperatures range from 8°C to 15°C and -2°C to 11°C, respectively, with LCL pressure 

heights ranging from 920 millibars to 780 millibars, showing the overall cool, moisture-laden 

atmospheric profiles present during fire days that see little or no growth. 

 While there are several similarities between the high-growth corner soundings, one major 

difference is noticeable: the wind profile of the soundings. The surface to low-level winds on 

four of the high-growth corner sounding profiles (Figs. 12a, 14a-16a) differ from the other 

(Fig. 13a), suggesting different wind regimes that may play a role in aiding fire growth. In 
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Figs. 12a and 14a-16a, the winds are out of the northeasterly direction. Conversely, in Fig. 

13a, the surface winds are out of the westerly direction. The northeasterly directional surface 

winds would be indicative of either Santa Ana or Diablo winds. Considering this and some of 

the cooler range of air temperatures in the high growth sounding profiles described 

previously (most exemplified by Fig. 16a), it is likely that some of the sounding profiles 

characterize what is typically seen during a Diablo wind event, as Diablo winds are known to 

be generally northeasterly winds and have been found to not have associated daily maximum 

and minimum temperatures above climatological values (Smith et al. 2018). Similar to the 

surface winds, there are also differences between the high-growth sounding profiles mid- and 

upper-level winds, with Fig. 13a having southwesterly winds above 700 millibars while the 

other four high-growth corner soundings have more westerly winds. Pronounced directional 

shear is present throughout much of the wind profile from the surface to mid-levels before 

diminishing as the pressure decreases. This is perhaps the biggest difference between the 

high-growth corner profiles, as the pressure at which directional shear decreases varies 

throughout all five profiles, becoming more unidirectional anywhere from 700 millibars to 

300 millibars. Regarding wind speeds, the surface to low-level winds are less than five knots 

while the mid- to upper-level wind speeds are generally in the range of 10 knots to 20 knots, 

with the low wind speed values being attributed to the reasons discussed in the first 

paragraph of this section. 

 Conversely, the wind profiles on the low-growth corner sounding profiles are virtually 

similar throughout, with only minor differences. Throughout the soundings (Figs. 12b-16b), a 

lack of surface to low-level winds can be seen. Mid- to upper-level winds have variations in 
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speeds but remain, generally, out of the westerly direction throughout the five soundings. 

Mid- to upper-level wind speeds are more varied in each of the soundings compared to those 

seen in the high-growth corner profile soundings, with Fig. 16b, for example, ranging from 

10 knots to 50 knots throughout the wind profile. 

 The sounding profiles are useful in giving an inside look at the average atmospheric 

conditions seen for each bin in each heatmap. It should be noted, again, that the overall wind 

profiles of the soundings show weak winds at various points throughout the sounding 

profiles. As mentioned previously, this is likely because the datasets represent daily averaged 

values, thus the averaged wind speed values will be lower as the highest wind speeds only 

occurred over a small time period. It is also likely due to directional cancellation within the 

averaging. All of the u- and v-wind values are averaged together, but, for example, u-wind 

values of -6, -4, 3, and 7 would average to 0, thus giving a value that is lower than what is 

likely seen on an average day that meet the criteria. Large dewpoint depressions and high 

LCL pressure heights being commonplace in the highest daily acreage growth bins is not 

surprising, as these characteristics are indicative of a dry atmosphere, which, along with 

warm to hot surface temperatures, is a characteristic of wildfire days (Dong et al. 2021). This 

can be correlated to the Haines Index, as Winkler et al. (2007) found the 1961 to 2000 

average 700 millibar dewpoint depressions in excess of 20°C over much of the state, 

corresponding to the maximum value of the Haines Index moisture component (B). The 

difference in surface wind direction throughout the various sounding profiles shown is 

noteworthy, though. Northeasterly surface winds are perhaps indicative of Diablo or Santa 

Ana wind events occurring, which would validate the emphasis placed on both during the 
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wildfire season as key components to use regarding the potential for dangerous fire weather 

days. Low-growth corner profiles showing a moister, cooler environment with a lack of 

surface winds should not be surprising, as those components indicate a more hostile 

environment for fire growth.  
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4. Summary and Conclusions 

 Sustained wind speed and relative humidity are widely used to discern fire weather 

danger. This study uses high-resolution historical reanalysis combined with satellite fire 

growth data to assess the empirical effectiveness of relative humidity and sustained wind 

speed in representing conditions conducive to large fire growth and to determine if more 

viable variable combinations (17 variables, 136 total combinations) exist that could be used 

to create a new warning index that more accurately predicts high acreage growth rates. Our 

approach was to separate variable values into bins corresponding to specific percentile ranges 

(<5th Percentile, 5th-25th Percentile, 25-50th Percentile, 50th-75th Percentile, 75th-95th 

Percentile, >95th Percentile) and make joint distributions of fire growth (heat maps) for all 

pairwise variable combinations. We investigate the top five ranked heatmaps in detail and 

supplement the analysis with investigations of the changes in average daily acreage growth 

rates as variable percentile values change and the vertical profiles of temperature, moisture, 

and wind. 

 In confirmation of conventional wisdom, our data suggest that sustained wind speed and 

relative humidity are indeed very useful for describing conditions conducive to large growth; 

however, two variable combinations - relative humidity and TKE 50m AGL and sustained 

wind speed and DFM 100-hour - are ranked the highest using the ranking system devised. 

Sustained wind speed and relative humidity placed in a tie for third in the rankings, 

indicating its strong usefulness in predicting and describing fire danger potential. TKE 50m 

AGL and DFM 1000-hour and vapor pressure and TKE 50m AGL rounded out the rankings 

discussed in a tie for fifth. Sustained wind speed and DFM 1000-hour tied with sustained 
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wind speed and relative humidity; however, their exclusion from discussion here was due to 

the physical and visual similarities with sustained wind speed and DFM 100-hour. Though 

relative humidity is included in two of the top four rankings, DFM being involved in half of 

the top six rankings suggests it might be more useful than relative humidity. Relative 

humidity is a diurnal variable, whereas DFM 100- and 1000-hour values change more 

slowly. Thus, relative humidity values might not necessarily denote an accurate 

representation of the environmental moisture conditions present on a given day. 

 While the inclusion of relative humidity and sustained wind speed in the top five rankings 

is expected, TKE 50m AGL being a part of the top variable combination overall in the 

rankings is noteworthy. Its effects on wildfires have been noted, however, by Heilman and 

Bian (2010), finding that high near-surface TKE values are associated with strong wind gusts 

and variable wind regimes at the surface. Furthermore, TKE captures the gusty wind speeds 

seen near the surface at a high frequency and at a higher resolution than sustained wind 

speed. Considering this and the findings of this study, TKE could make for a logical variable 

to use in the creation of fire weather forecasts. Its inclusion in three of the top five rankings 

discussed was not expected, however. This underlines the potential importance of TKE 

regarding fire weather forecasts. 

 Aside from TKE, the other variables involved in the top five rankings - sustained wind 

speed, relative humidity, and DFM 100- and 1000-hour - are understandable. Emphasis has 

always been placed on moisture variables regarding fire weather danger, but more may be 

needed as fuel aridity continues to increase and fire season becomes longer (Abatzoglou and 

Williams 2016). However, a main conclusion drawn from this study is that the traditional 
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variables used when issuing RFWs are validated with the empirical data. While several 

variable combinations were found to perform better than or close to sustained wind speed and 

relative humidity, the limited public knowledge of terms like TKE and fuel moisture content 

could prevent wildfire information from being easily understood by the general public. That 

said, the findings regarding TKE 50m AGL should be strongly considered, as the underlying 

variables used to create fire weather forecasts do not rely on an understanding on part of the 

general public. 

 The results of the averaged sounding profiles created for each high-growth and low-

growth corner of the variable rankings discussed are expected. Overall, the high-growth 

corner soundings were accompanied by high LCL pressure heights and large dewpoint 

depressions, indicative of a very dry atmosphere. Coupled with wind regimes typical of 

California (i.e., Diablo and Santa Ana winds) that aid in the growth of fires, the soundings 

produced paint a very explosive picture regarding the potential for fire growth. Conversely, 

the soundings of the low-growth corners are moister and cooler generally, thus leading to 

inhibiting conditions for fire growth. It is worth noting the presence of cooler surface 

temperatures on high acreage growth days that are coupled with northeasterly surface winds, 

as this could represent atmospheric environments associated with Diablo wind events. Work 

done by Smith et al. (2018) supports this finding.  

 Regarding the line plots produced that show the average daily acreage growth values as 

percentile values for each variable are increased or decreased, the results are interesting. The 

line plots show a general nonlinearity trend in the average daily acreage growth values 

moving from bin combination to bin combination. This shows that there is no linear increase 
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in the area burned or the size of wildfires within the state as values for the variable 

combinations shown increase or decrease. It emphasizes the unpredictability of growth rate 

or area burned under specific conditions, while also showing the dangers associated with 

compound extreme conditions (multiple variables being in extreme states simultaneously) 

and how growth rate and area burned can rapidly increase during these said conditions. 

Additionally, the presence of flatline growth in several of the line plots suggests that the 

dangerous effects of certain variables can be negated by values of other variables not 

associated with high average daily acreage growth.  

 Much of the rankings were not discussed in this paper; however, the overall rankings are 

still worth briefly mentioning. Of the 136 different variable combinations considered, there 

were several surprises regarding the lower ranked variable combinations. For instance, a 

variable combination involving the Haines Index did not place higher than a tie for 13th in the 

overall rankings, with 8 of the possible 16 different variable combinations placing in the 

bottom half of the rankings. Considering that the Haines Index is a specific derived value 

meant to represent fire danger, this is surprising. However, the reliability and added 

forecasting benefit of the Haines Index has been researched and scrutinized by several voices 

within the wildfire community (Potter 2018; Srock et al. 2018). The lack of predictive power 

associated with the Haines Index in this study supports those criticisms. Elsewhere, another 

surprising result was the performance of VPD compared to relative humidity. 5 of the 16 

possible combinations involving relative humidity placed in the top 10 rankings, compared to 

none involving VPD. 12 of the 16 possible combinations involving relative humidity were 

ranked in the top half of the rankings, compared to 10 of 16 combinations involving VPD. 
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Additionally, 6 of the combinations involving VPD ranked in the bottom third of the 

rankings, with only 2 of the combinations involving relative humidity placing in that same 

category. Lastly, given the good performance overall of DFM 100-hour and TKE, it is a 

surprise that that variable combination placed near the exact middle of the rankings, in a tie 

for 63rd. One would think that the variable combination would place higher. More research 

on the physical mechanisms underlying these rankings should be undertaken in the future.  

 This study does have its limitations. The figures generated considered all vegetation fuel 

types, disregarding the location the wildfires in the dataset occurred. It is essential for future 

research to separate the fires by land use, revealing important differences in relationships 

between fires in different fire regimes. Variable combination rankings may differ for each 

land use type (forest, shrub, and savanna and grassland), thus leading to different variable 

combinations that could be used in different ecoregions of the state to help predict large 

acreage growth days. Additionally, the dataset used was geographically restricted to central 

and northern portions of the state of California, so it is unknown if these findings generalize 

to other regions. Like with land use type, different variable combination rankings from the 

ones discussed in this paper may exist for other locations. More research into both of these 

areas could be done including extending the geographic area to include the Pacific 

Northwest, the Intermountain region, and the Desert Southwest.  

 Climate change continues to worsen the wildfire season in California. Northern portions 

of the state have been particularly hit hard, with increases of over 600% in annual area 

burned seen in the North Coast and the Sierra Nevada regions (Williams et al. 2019). Aside 

from 2019, every fire season since 2017 has seen over one and a half million acres burned in 
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the state, with a staggering four million acres burned in 2020 alone (CALFIRE 2022b). 

Increased wildfire activity increases the importance of wildfire forecasting. Being able to 

better predict large acreage fire growth will aid substantially in preparing the public. Federal, 

state, and local resources will also be better positioned to mitigate the impact of these large 

acreage fires. While this study confirms the utility of variables already in widespread use, it 

also sheds new light on their relationships with wildfire danger, highlighting for example, 

nonlinearities when multiple variables, in their extreme state, act together to increase the 

wildfire potential. 
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